1
|
Guo L, Fang Y, Wang S, Xiao Y, Ding Y, Jin Y, Tian X, Du A, Liao Z, He K, Chen S, Zhao Y, Tan L, Yi Z, Che Y, Chen L, Li J, Zhao L, Zhang P, Gu Z, Zhang F, Hong Y, Zhang Q, Zhao H. Duckweed: a starch-hyperaccumulating plant under cultivation with a combination of nutrient limitation and elevated CO 2. FRONTIERS IN PLANT SCIENCE 2025; 16:1531849. [PMID: 39996114 PMCID: PMC11847889 DOI: 10.3389/fpls.2025.1531849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025]
Abstract
Introduction The increasing global demand for starch has created an urgent need to identify more efficient and sustainable production methods. However, traditional starch sources, such as crop-based options, experience significant bottlenecks due to limitations in land use, water consumption, and the impacts of climate change. Therefore, there is a pressing need to explore and develop new sources of starch. Methods We develop a novel duckweed cultivation technology that combines nutrients limitation and CO2 supplementation to achieve very high starch content. In this study, we integrated whole-genome sequencing, epigenomics, transcriptomics, enzyme activity, and composition variation to elucidate the mechanisms of efficient starch accumulation in duckweed in terms of starch accumulation and carbon partitioning, regulation of the expression of genes in the starch metabolic pathway, and sucrose biosynthesis and transportation. Results and discussion Although Landoltia punctata exhibits dramatic gene family contraction, its starch content and productivity reached 72.2% (dry basis) and 10.4 g m-2 d-1, respectively, in 10 days, equivalent to a yield of 38.0 t ha-1 y-1, under nutrient limitation treatment with elevated CO2 levels. We also examined the mechanism of high starch accumulation in duckweed. This phenomenon is associated with the regulation of DNA methylation and transcription factors as well as the significantly upregulated transcription levels and the increased activities of key enzymes involved in starch biosynthesis. Moreover, while nitrogen redistribution was increased, sucrose biosynthesis and transportation and lignocellulose biosynthesis were reduced. These alterations led to a reduction in lignocellulose and protein contents and ultimately an increase in the accumulation of starch in the chloroplasts. Conclusion This work demonstrates the potential of duckweed as a highly efficient starch producer.
Collapse
Affiliation(s)
- Ling Guo
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, National Engineering and Research Center for Natural Medicines, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Department of Pediatrics, Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Southwest Medical University, Luzhou, China
| | - Yang Fang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, National Engineering and Research Center for Natural Medicines, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Songhu Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, National Engineering and Research Center for Natural Medicines, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yao Xiao
- Analytical and Testing Center, Sichuan University of Science and Engineering, Zigong, China
| | - Yanqiang Ding
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, National Engineering and Research Center for Natural Medicines, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yanling Jin
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, National Engineering and Research Center for Natural Medicines, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xueping Tian
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, National Engineering and Research Center for Natural Medicines, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Anping Du
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, National Engineering and Research Center for Natural Medicines, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhihua Liao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Kaize He
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, National Engineering and Research Center for Natural Medicines, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Shuang Chen
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, National Engineering and Research Center for Natural Medicines, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yonggui Zhao
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, China
| | - Li Tan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, National Engineering and Research Center for Natural Medicines, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhuolin Yi
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, National Engineering and Research Center for Natural Medicines, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yuqing Che
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, National Engineering and Research Center for Natural Medicines, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Lanchai Chen
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, National Engineering and Research Center for Natural Medicines, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jinmeng Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, National Engineering and Research Center for Natural Medicines, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Leyi Zhao
- Department of Biology, Pitzer College, Claremont, CA, United States
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhengbiao Gu
- School of Food Science & Technology, Jiangnan University, Wuxi, China
| | - Fangyuan Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Yan Hong
- School of Food Science & Technology, Jiangnan University, Wuxi, China
| | - Qing Zhang
- College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Hai Zhao
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, National Engineering and Research Center for Natural Medicines, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
2
|
Long J, Zhou H, Huang H, Xiao Y, Luo J, Pu Y, Liu Z, Qiu M, Lu X, He Y, Liu C. The high-affinity pineapple sucrose transporter AcSUT1B, regulated by AcCBF1, exhibited enhanced cold tolerance in transgenic Arabidopsis. Int J Biol Macromol 2024; 283:137952. [PMID: 39579829 DOI: 10.1016/j.ijbiomac.2024.137952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Sucrose transporter (SUT) plays essential roles in plant growth and development, as well as responses to diverse abiotic stresses. However, limited information about the function of SUT was available in pineapple, an important tropical fruit crop with crassulacean acid metabolism. Here, four AcSUT genes were identified in pineapple genome, and divided into three clades according to the phylogenetic analysis. The expression profiles of AcSUTs were systemically examined, and they were all localized to plasma membrane. Transport activity assay by two-electrode voltage clamp of Xenopus oocytes showed that AcSUT1A and AcSUT1B were capable of transporting a range of glucosides, and they were exhibited high affinity for sucrose with Km value of 0.09 mM and 0.41 mM at pH 5.0, respectively. Overexpression of the cold-induced AcSUT1B conferred enhanced cold tolerance in transgenic Arabidopsis. DNA-protein interaction analysis further demonstrated that AcCBF1 directly binds the CRT/DRE element of the AcSUT1B promoter and activated its expression. Heterologous expression of AcCBF1 in Arabidopsis also increased cold tolerance. In this study, we investigated the transport activities of AcSUTs in pineapple and identified the AcCBF1-AcSUT1B module involved in cold stress, which provided new insights into the molecular mechanism of the cold response in pineapple.
Collapse
Affiliation(s)
- Jianmei Long
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Huimin Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Haixin Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Yufei Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Jiandong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Yue Pu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Institute of South Subtropical Crops, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, Guangdong, China
| | - Zihong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Institute of South Subtropical Crops, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, Guangdong, China
| | - Mengqing Qiu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Xinxin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Yehua He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Chaoyang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Seitz J, Reimann TM, Fritz C, Schröder C, Knab J, Weber W, Stadler R. How pollen tubes fight for food: the impact of sucrose carriers and invertases of Arabidopsis thaliana on pollen development and pollen tube growth. FRONTIERS IN PLANT SCIENCE 2023; 14:1063765. [PMID: 37469768 PMCID: PMC10352115 DOI: 10.3389/fpls.2023.1063765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 06/05/2023] [Indexed: 07/21/2023]
Abstract
Pollen tubes of higher plants grow very rapidly until they reach the ovules to fertilize the female gametes. This growth process is energy demanding, however, the nutrition strategies of pollen are largely unexplored. Here, we studied the function of sucrose transporters and invertases during pollen germination and pollen tube growth. RT-PCR analyses, reporter lines and knockout mutants were used to study gene expression and protein function in pollen. The genome of Arabidopsis thaliana contains eight genes that encode functional sucrose/H+ symporters. Apart from AtSUC2, which is companion cell specific, all other AtSUC genes are expressed in pollen tubes. AtSUC1 is present in developing pollen and seems to be the most important sucrose transporter during the fertilization process. Pollen of an Atsuc1 knockout plant contain less sucrose and have defects in pollen germination and pollen tube growth. The loss of other sucrose carriers affects neither pollen germination nor pollen tube growth. A multiple knockout line Atsuc1Atsuc3Atsuc8Atsuc9 shows a phenotype that is comparable to the Atsuc1 mutant line. Loss of AtSUC1 can`t be complemented by AtSUC9, suggesting a special function of AtSUC1. Besides sucrose carriers, pollen tubes also synthesize monosaccharide carriers of the AtSTP family as well as invertases. We could show that AtcwINV2 and AtcwINV4 are expressed in pollen, AtcwINV1 in the transmitting tissue and AtcwINV5 in the funiculi of the ovary. The vacuolar invertase AtVI2 is also expressed in pollen, and a knockout of AtVI2 leads to a severe reduction in pollen germination. Our data indicate that AtSUC1 mediated sucrose accumulation during late stages of pollen development and cleavage of vacuolar sucrose into monosaccharides is important for the process of pollen germination.
Collapse
Affiliation(s)
- Jessica Seitz
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Theresa Maria Reimann
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Carolin Fritz
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Carola Schröder
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Johanna Knab
- Cell Biology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Walter Weber
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Ruth Stadler
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
4
|
Liu P, Fang Y, Tan X, Hu Z, Jin Y, Yi Z, He K, Wei C, Chen R, Zhao H. Local endocytosis of sucrose transporter 2 in duckweed reveals the role of sucrose transporter 2 in guard cells. FRONTIERS IN PLANT SCIENCE 2022; 13:996618. [PMID: 36352881 PMCID: PMC9638040 DOI: 10.3389/fpls.2022.996618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
The local endocytosis of membrane proteins is critical for many physiological processes in plants, including the regulation of growth, development, nutrient absorption, and osmotic stress response. Much of our knowledge on the local endocytosis of plasma membrane (PM) protein only focuses on the polar growth of pollen tubes in plants and neuronal axon in animals. However, the role of local endocytosis of PM proteins in guard cells has not yet been researched. Here, we first cloned duckweed SUT2 (sucrose transporter 2) protein and then conducted subcellular and histological localization of the protein. Our results indicated that LpSUT2 (Landoltia punctata 0202 SUT2) is a PM protein highly expressed on guard cells. In vitro experiments on WT (wild type) lines treated with high sucrose concentration showed that the content of ROS (reactive oxygen species) in guard cells increased and stomatal conductance decreased. We observed the same results in the lines after overexpression of the LpSUT2 gene with newfound local endocytosis of LpSUT2. The local endocytosis mainly showed that LpSUT2 was uniformly distributed on the PM of guard cells in the early stage of development, and was only distributed in the endomembrane of guard cells in the mature stage. Therefore, we found the phenomenon of guard cell LpSUT2 local endocytosis through the changes of duckweed stomata and concluded that LpSUT2 local endocytosis might be dependent on ROS accumulation in the development of duckweed guard cells. This paper might provide future references for the genetic improvement and water-use efficiency in other crops.
Collapse
Affiliation(s)
- Penghui Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Fang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiao Tan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhubin Hu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanling Jin
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhuolin Yi
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Kaize He
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Cuicui Wei
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rui Chen
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hai Zhao
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Sun L, Deng R, Liu J, Lai M, Wu J, Liu X, Shahid MQ. An overview of sucrose transporter (SUT) genes family in rice. Mol Biol Rep 2022; 49:5685-5695. [PMID: 35699859 DOI: 10.1007/s11033-022-07611-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Photosynthesis provides the energy basis for the life activities of plants by producing organic compounds, mainly sugar. As the main energy form of photosynthesis, sugar affects the growth and development of plants. During long-distance transportation, sucrose is the main form of transportation. The rate of sugar transport and the allocation of carbohydrates affect the biomass of crops and are closely related to the reproductive growth of crops. MAIN TEXT The transportation of sugar is divided into active transportation and passive transportation. So how does the sucrose transporters (SUT) genes, which are the main carriers of sucrose in active transportation, affect the performance of rice agronomic traits is still to be explored. In this article, we describe the structure of inflorescence and review the transport forms and metabolic processes of sucrose in rice, such as how CO2 is fixed, carbohydrate assimilation, and transport of organic matter. Sucrose transporters exhibited remarkable effects on the development of reproductive organs in rice. CONCLUSIONS Here, the effects of different factors, such as the effects of anthers morphology on starch enrichment of pollen, effects of biotic and abiotic factors on sucrose transporters, effects of changes in trace elements on sucrose transporters, were discussed. Moreover, the regulation of transcription or translation level provides ideas for future research on sucrose transporters.
Collapse
Affiliation(s)
- Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.,College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Ruilian Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.,College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jingwen Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.,College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Mingyu Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.,College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.,College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.,College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China. .,College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
6
|
Garg V, Kühn C. Subcellular dynamics and protein-protein interactions of plant sucrose transporters. JOURNAL OF PLANT PHYSIOLOGY 2022; 273:153696. [PMID: 35472692 DOI: 10.1016/j.jplph.2022.153696] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Although extensively studied for their role in long distance transport, plant sucrose transporters are active not only in the phloem but throughout the plant body. Sucrose transporters of the SUT family were first described to be plasma membrane-resident proteins, but recent investigations revealed that subcellular dynamics of these transporters were part of complex regulatory mechanisms. The yeast two-hybrid split-ubiquitin system, tandem-affinity purification, and bimolecular-fluorescence complementation aided in identification of a complex network of SUT-interacting proteins that led to answers to many open questions. We found, for example, interacting proteins localized to other subcellular compartments. Although sucrose transporters were assumed to be localized mainly on the plasma membrane, and the tonoplast in the case of SUT4, the interaction partners were not exclusively predicted to be plasma membrane proteins, but belonged to the extracellular space (cell wall), intracellular vesicles, the ER, tonoplast, nuclei, and peroxisomes, among other cellular compartments. A subset of the SUT-interacting proteins localized exclusively to plasmodesmata. We conclude that (transient) protein-protein interactions of integral membrane proteins help to sequester SUTs to subcellular compartments, such as membrane microdomains, with specific functions to enable subcellular transport and cell-to-cell trafficking via plasmodesmata. Identification of SNARE proteins (soluble N-ethylmaleimide-sensitive factor protein attachment protein receptors) and protein disulfide isomerases support the assumption that the protein-protein interaction plays an important role for the subcellular movement of sugar transporters. It becomes apparent that the interaction partners provide a substantial impact on how and where the transporter is localized or processed for either targeting to a specific cellular or extracellular location, or tagging for degradation or recycling. In this review, interacting proteins, as well as the role of oligomeric complex formation, post-translational modification, and stress responses are summarized for SUTs of higher plants.
Collapse
Affiliation(s)
- Varsha Garg
- Humboldt Universität zu Berlin, Institute of Biology, Plant Physiology Department, Philippstr. 13, Building 12, 10115, Berlin, Germany
| | - Christina Kühn
- Humboldt Universität zu Berlin, Institute of Biology, Plant Physiology Department, Philippstr. 13, Building 12, 10115, Berlin, Germany.
| |
Collapse
|
7
|
van den Herik B, ten Tusscher K. Undirected Sucrose Efflux Mitigation by the FT-Like SP6A Preferentially Enhances Tuber Resource Partitioning. FRONTIERS IN PLANT SCIENCE 2022; 13:817909. [PMID: 35615135 PMCID: PMC9125184 DOI: 10.3389/fpls.2022.817909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/18/2022] [Indexed: 06/15/2023]
Abstract
The yield of harvestable plant organs depends on overall photosynthetic output and the subsequent distribution of the produced assimilates from source leaves across different sink organs. In this study, we aimed to obtain, using a two-sink transport model, mechanistic understanding of how the interplay between sink and pathway properties together determines sink resource partitioning. As a working example, we analyzed the partitioning of resources within potato plants, investigating the determinants of tuber sink yield. Our results indicated that, contrary to earlier studies, with a spatially explicit biophysically detailed model, transport pathway properties significantly affect sink resource partitioning within the physiologically relevant domain. Additionally, we uncovered that xylem flow, through its hydraulic coupling to the phloem, and sucrose efflux along the phloem, also significantly affected resource partitioning. For tubers, it is the cumulative disadvantage compared to sink leaves (distance, xylem flow, and sucrose efflux) that enable an undirected SP6A-mediated reduction of sucrose efflux to preferentially benefit tuber resource partitioning. Combined with the SP6A-mediated sink strength increase, undirected SP6A introduction significantly enhances tuber resource partitioning.
Collapse
|
8
|
Han X, Gao C, Liang B, Cui J, Xu Q, Schulz A, Liesche J. Evidence for conifer sucrose transporters' functioning in the light-dependent adjustment of sugar allocation. TREE PHYSIOLOGY 2022; 42:488-500. [PMID: 35020944 DOI: 10.1093/treephys/tpab149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Sucrose is the central unit of carbon and energy in plants. Active intercellular transport of sucrose is mediated by sucrose transporters (SUTs), genes for which have been found in the genomes of all land plants. However, they have only been assigned functions in angiosperm species. Here, we cloned two types of SUTs from two gymnosperms, the conifers Cedrus deodara (Roxb. G. Don) and Pinus massoniana Lambert, and analyzed their sucrose transport activities. Uptake of the fluorescent sucrose-analog esculin into tobacco epidermis cells expressing the conifer SUT confirmed their transport ability. To determine their function in planta, we investigated their mRNA abundance in relation to photosynthesis and sugar levels in leaves, inner bark, wood and roots. Combined with measurements of protein abundance and immunolocalization of C. deodara SUTs, our results suggest a role for CdSUT1G and CdSUT2 in supporting phloem transport under varying environmental conditions. The implications of these findings regarding conifer physiology and SUT evolution are discussed.
Collapse
Affiliation(s)
- Xiaoyu Han
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
- Biomass Energy Center for Arid and Semi-arid Lands, Northwest A&F University, Yangling 712100, China
| | - Chen Gao
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Buyou Liang
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Jingxuan Cui
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Qiyu Xu
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
- Biomass Energy Center for Arid and Semi-arid Lands, Northwest A&F University, Yangling 712100, China
| | - Alexander Schulz
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Johannes Liesche
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
- Biomass Energy Center for Arid and Semi-arid Lands, Northwest A&F University, Yangling 712100, China
- Institute for Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| |
Collapse
|
9
|
Ko HY, Ho LH, Neuhaus HE, Guo WJ. Transporter SlSWEET15 unloads sucrose from phloem and seed coat for fruit and seed development in tomato. PLANT PHYSIOLOGY 2021; 187:2230-2245. [PMID: 34618023 PMCID: PMC8644451 DOI: 10.1093/plphys/kiab290] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/02/2021] [Indexed: 05/06/2023]
Abstract
Tomato (Solanum lycopersium), an important fruit crop worldwide, requires efficient sugar allocation for fruit development. However, molecular mechanisms for sugar import to fruits remain poorly understood. Expression of sugars will eventually be exported transporters (SWEETs) proteins is closely linked to high fructose/glucose ratios in tomato fruits and may be involved in sugar allocation. Here, we discovered that SlSWEET15 is highly expressed in developing fruits compared to vegetative organs. In situ hybridization and β-glucuronidase fusion analyses revealed SlSWEET15 proteins accumulate in vascular tissues and seed coats, major sites of sucrose unloading in fruits. Localizing SlSWEET15-green fluorescent protein to the plasma membrane supported its putative role in apoplasmic sucrose unloading. The sucrose transport activity of SlSWEET15 was confirmed by complementary growth assays in a yeast (Saccharomyces cerevisiae) mutant. Elimination of SlSWEET15 function by clustered regularly interspaced short palindromic repeats (CRISPRs)/CRISPR-associated protein gene editing significantly decreased average sizes and weights of fruits, with severe defects in seed filling and embryo development. Altogether, our studies suggest a role of SlSWEET15 in mediating sucrose efflux from the releasing phloem cells to the fruit apoplasm and subsequent import into storage parenchyma cells during fruit development. Furthermore, SlSWEET15-mediated sucrose efflux is likely required for sucrose unloading from the seed coat to the developing embryo.
Collapse
Affiliation(s)
- Han-Yu Ko
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 7013, Taiwan
| | - Li-Hsuan Ho
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 7013, Taiwan
- Department of Plant Physiology, University of Kaiserslautern, Kaiserslautern, Germany
| | - H Ekkehard Neuhaus
- Department of Plant Physiology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Woei-Jiun Guo
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 7013, Taiwan
- Author for communication:
| |
Collapse
|
10
|
Hetero/Homo-Complexes of Sucrose Transporters May Be a Subtle Mode to Regulate Sucrose Transportation in Grape Berries. Int J Mol Sci 2021; 22:ijms222112062. [PMID: 34769493 PMCID: PMC8584533 DOI: 10.3390/ijms222112062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/17/2022] Open
Abstract
The sugar distribution mechanism in fruits has been the focus of research worldwide; however, it remains unclear. In order to elucidate the relevant mechanisms in grape berries, the expression, localization, function, and regulation of three sucrose transporters were studied in three representative Vitis varieties. Both SUC11 and SUC12 expression levels were positively correlated with sugar accumulation in grape berries, whereas SUC27 showed a negative relationship. The alignment analysis and sucrose transport ability of isolated SUCs were determined to reflect coding region variations among V. vinifera, V. amurensis Ruper, and V. riparia, indicating that functional variation existed in one SUT from different varieties. Furthermore, potentially oligomerized abilities of VvSUCs colocalized in the sieve elements of the phloem as plasma membrane proteins were verified. The effects of oligomerization on transport properties were characterized in yeast. VvSUC11 and VvSUC12 are high-affinity/low-capacity types of SUTs that stimulate each other by upregulating Vmax and Km, inhibiting sucrose transport, and downregulating the Km of VvSUC27. Thus, changes in the distribution of different SUTs in the same cell govern functional regulation. The activation and inhibition of sucrose transport could be achieved in different stages and tissues of grape development to achieve an effective distribution of sugar.
Collapse
|
11
|
Yoon J, Cho LH, Tun W, Jeon JS, An G. Sucrose signaling in higher plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110703. [PMID: 33288016 DOI: 10.1016/j.plantsci.2020.110703] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/14/2020] [Accepted: 10/01/2020] [Indexed: 05/27/2023]
Abstract
Sucrose controls various developmental and metabolic processes in plants. In this review, we evaluate whether sucrose could be a preferred signaling molecule that controls processes like carbohydrate metabolism, accumulation of storage proteins, sucrose transport, anthocyanin accumulation, and floral induction. We summarize putative sucrose-dependent signaling pathways. Sucrose, but not other sugars, stimulates the genes that encode ADP-glucose pyrophosphorylase (AGPase), granule-bound starch synthase I, and UDP-glucose pyrophosphorylase in several species. The class-1 patatin promoter is induced under high sucrose conditions in potato (Solanum tuberosum). Exogenous sucrose reduces the loading of sucrose to the phloem by inhibiting the expression of the sucrose transporter and its protein activity in sugar beet (Beta vulgaris). Sucrose also influences a wide range of growth processes, including cell division, ribosome synthesis, cotyledon development, far-red light signaling, and tuber development. Floral induction is promoted by sucrose in several species. The molecular mechanisms by which sucrose functions as a signal are largely unknown. Sucrose enhances the expression of transcription factors such as AtWRKY20 and MYB75, which function upstream of the sucrose-responsive genes. Sucrose controls the expression of AtbZIP11 at the post-transcriptional level by the peptide encoded by uORF2. Sucrose levels affect translation of a group of mRNAs in Arabidopsis. Sucrose increases the activity of AGPase by posttranslational redox-modification. Sucrose interrupts the interaction between sucrose transporter SUT4 and cytochrome b5. In addition, the SNF-related protein kinase-1 appears to be involved in sucrose-dependent pathways by controlling sucrose synthase (SUS4) expression.
Collapse
Affiliation(s)
- Jinmi Yoon
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, South Korea
| | - Lae-Hyeon Cho
- Department of Plant Bioscience, Pusan National University, Miryang, 50463, South Korea
| | - Win Tun
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, South Korea
| | - Jong-Seong Jeon
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, South Korea.
| | - Gynheung An
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, South Korea.
| |
Collapse
|
12
|
Poudel K, Luo X, Chen L, Jing D, Xia X, Tang L, Li H, Cao S. Identification of the SUT Gene Family in Pomegranate ( Punica granatum L.) and Functional Analysis of PgL0145810.1. Int J Mol Sci 2020; 21:ijms21186608. [PMID: 32927615 PMCID: PMC7554910 DOI: 10.3390/ijms21186608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 11/20/2022] Open
Abstract
Sucrose, an important sugar, is transported from source to sink tissues through the phloem, and plays important role in the development of important traits in plants. However, the SUT gene family is still not well characterized in pomegranate. In this study, we first identified the pomegranate sucrose transporter (SUT) gene family from the whole genome. Then, the phylogenetic relationship of SUT genes, gene structure and their promoters were analyzed. Additionally, their expression patterns were detected during the development of the seed. Lastly, genetic transformation and cytological observation were used to study the function of PgL0145810.1. A total of ten pomegranate SUT genes were identified from the whole genome of pomegranate ‘Tunisia’. The promoter region of all the pomegranate SUT genes contained myeloblastosis (MYB) elements. Four of the SUT genes, PgL0328370.1, PgL0099690.1, PgL0145810.1 and PgL0145770.1, were differentially expressed during seed development. We further noticed that PgL0145810.1 was expressed most prominently in the stem parts in transgenic plants compared to other tissue parts (leaves, flowers and silique). The cells in the xylem vessels were small and lignin content was lower in the transgenic plants as compared to wild Arabidopsis plants. In general, our result suggests that the MYB cis-elements in the promoter region might regulate PgL0145810.1 expression to control the structure of xylem, thereby affecting seed hardness in pomegranate.
Collapse
|
13
|
Cai Y, Yan J, Tu W, Deng Z, Dong W, Gao H, Xu J, Zhang N, Yin L, Meng Q, Zhang Y. Expression of Sucrose Transporters from Vitis vinifera Confer High Yield and Enhances Drought Resistance in Arabidopsis. Int J Mol Sci 2020; 21:ijms21072624. [PMID: 32283825 PMCID: PMC7177370 DOI: 10.3390/ijms21072624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 01/10/2023] Open
Abstract
Sucrose is the predominant form of sugar transported from photosynthetic (source) to non-photosynthetic (sink) organs in higher plants relying on the transporting function of sucrose transporters (SUTs or SUCs). Many SUTs have been identified and characterized in both monocots and dicots. However, the function of sucrose transporters (SUTs or SUCs) from Vitis is not clear. As the world’s most planted grape species, Vitis vinifera owns three sucrose transport activity verified SUTs. In this study, we constructed three kinds of VvSUC (Vitis vinifera SUC)-overexpressing transgenic Arabidopsis. VvSUC-overexpressing transgenic Arabidopsis was cultured on sucrose-supplemented medium. VvSUC11- and VvSUC12-overexpressing lines had similar thrived growth phenotypes, whereas the size and number of leaves and roots from VvSUC27-overexpressing lines were reduced compared with that of WT. When plants were cultured in soil, all SUT transgenic seedlings produced more number of leaves and siliques, resulting in higher yield (38.6% for VvSUC12-transformants) than that of WT. Besides, VvSUC27-transformants and VvSUC11-transformants enhanced drought resistance in Arabidopsis, providing a promising target for crop improvement
Collapse
Affiliation(s)
- Yumeng Cai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.C.); (J.Y.); (W.T.); (Z.D.); (W.D.); (H.G.); (J.X.); (N.Z.)
- Tianjin Key Laboratory of Crop Genetics and Breeding, Crops Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Jing Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.C.); (J.Y.); (W.T.); (Z.D.); (W.D.); (H.G.); (J.X.); (N.Z.)
| | - Wenrui Tu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.C.); (J.Y.); (W.T.); (Z.D.); (W.D.); (H.G.); (J.X.); (N.Z.)
| | - Zhefang Deng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.C.); (J.Y.); (W.T.); (Z.D.); (W.D.); (H.G.); (J.X.); (N.Z.)
| | - Wenjie Dong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.C.); (J.Y.); (W.T.); (Z.D.); (W.D.); (H.G.); (J.X.); (N.Z.)
| | - Han Gao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.C.); (J.Y.); (W.T.); (Z.D.); (W.D.); (H.G.); (J.X.); (N.Z.)
| | - Jinxu Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.C.); (J.Y.); (W.T.); (Z.D.); (W.D.); (H.G.); (J.X.); (N.Z.)
| | - Nan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.C.); (J.Y.); (W.T.); (Z.D.); (W.D.); (H.G.); (J.X.); (N.Z.)
| | - Ling Yin
- Guangxi Crop Genetic Improvement and Biotechnology Key Lab, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Qingyong Meng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Science, China Agricultural University, Beijing 100193, China;
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yali Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.C.); (J.Y.); (W.T.); (Z.D.); (W.D.); (H.G.); (J.X.); (N.Z.)
- Correspondence: ; Tel.: +86-010-62737465
| |
Collapse
|
14
|
Garg V, Hackel A, Kühn C. Subcellular Targeting of Plant Sucrose Transporters Is Affected by Their Oligomeric State. PLANTS 2020; 9:plants9020158. [PMID: 32012757 PMCID: PMC7076641 DOI: 10.3390/plants9020158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 12/24/2022]
Abstract
Post-translational regulation of sucrose transporters represents one possibility to adapt transporter activity in a very short time frame. This can occur either via phosphorylation/dephosphorylation, oligomerization, protein-protein interactions, endocytosis/exocytosis, or degradation. It is also known that StSUT1 can change its compartmentalization at the plasma membrane and concentrate in membrane microdomains in response to changing redox conditions. A systematic screen for protein-protein-interactions of plant sucrose transporters revealed that the interactome of all three known sucrose transporters from the Solanaceous species Solanum tuberosum and Solanum lycopersicum represents a specific subset of interaction partners, suggesting different functions for the three different sucrose transporters. Here, we focus on factors that affect the subcellular distribution of the transporters. It was already known that sucrose transporters are able to form homo- as well as heterodimers. Here, we reveal the consequences of homo- and heterodimer formation and the fact that the responses of individual sucrose transporters will respond differently. Sucrose transporter SlSUT2 is mainly found in intracellular vesicles and several of its interaction partners are involved in vesicle traffic and subcellular targeting. The impact of interaction partners such as SNARE/VAMP proteins on the localization of SlSUT2 protein will be investigated, as well as the impact of inhibitors, excess of substrate, or divalent cations which are known to inhibit SUT1-mediated sucrose transport in yeast cells. Thereby we are able to identify factors regulating sucrose transporter activity via a change of their subcellular distribution.
Collapse
|
15
|
Chen G, Hu J, Dong L, Zeng D, Guo L, Zhang G, Zhu L, Qian Q. The Tolerance of Salinity in Rice Requires the Presence of a Functional Copy of FLN2. Biomolecules 2019; 10:biom10010017. [PMID: 31877655 PMCID: PMC7022601 DOI: 10.3390/biom10010017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022] Open
Abstract
A panel of ethane-methyl-sulfonate-mutagenized japonica rice lines was grown in the presence of salinity in order to identify genes required for the expression of salinity tolerance. A highly nontolerant selection proved to harbor a mutation in FLN2, a gene which encodes fructokinase-like protein2. Exposure of wild-type rice to salinity up-regulated FLN2, while a CRISPR/Cas9-generated FLN2 knockout line was hypersensitive to the stress. Both ribulose 1,5-bisphosphate carboxylase/oxygenase activity and the abundance of the transcript generated by a number of genes encoding components of sucrose synthesis were lower in the knockout line than in wild-type plants’ leaves, while the sucrose contents of the leaf and root were, respectively, markedly increased and decreased. That sugar partitioning to the roots was impaired in FLN2 knockout plants was confirmed by the observation that several genes involved in carbon transport were down-regulated in both the leaf and in the leaf sheath. The levels of sucrose synthase, acid invertase, and neutral invertase activity were distinctly lower in the knockout plants’ roots than in those of wild-type plants, particularly when the plants were exposed to salinity stress. The compromised salinity tolerance exhibited by the FLN2 knockout plants was likely a consequence of an inadequate supply of the assimilate required to support growth, a problem which was rectifiable by providing an exogenous supply of sucrose. The conclusion was that FLN2, on account of its influence over sugar metabolism, is important in the context of seedling growth and the rice plant’s response to salinity stress.
Collapse
Affiliation(s)
- Guang Chen
- Correspondence: (G.C.); (L.Z.); (Q.Q.); Tel.: +86-571-6337-0179 (G.C. & L.Z.); +86-571-6337-0483 (Q.Q.)
| | | | | | | | | | | | - Li Zhu
- Correspondence: (G.C.); (L.Z.); (Q.Q.); Tel.: +86-571-6337-0179 (G.C. & L.Z.); +86-571-6337-0483 (Q.Q.)
| | - Qian Qian
- Correspondence: (G.C.); (L.Z.); (Q.Q.); Tel.: +86-571-6337-0179 (G.C. & L.Z.); +86-571-6337-0483 (Q.Q.)
| |
Collapse
|
16
|
Cerutti A, Jauneau A, Laufs P, Leonhardt N, Schattat MH, Berthomé R, Routaboul JM, Noël LD. Mangroves in the Leaves: Anatomy, Physiology, and Immunity of Epithemal Hydathodes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:91-116. [PMID: 31100996 DOI: 10.1146/annurev-phyto-082718-100228] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hydathodes are organs found on aerial parts of a wide range of plant species that provide almost direct access for several pathogenic microbes to the plant vascular system. Hydathodes are better known as the site of guttation, which is the release of droplets of plant apoplastic fluid to the outer leaf surface. Because these organs are only described through sporadic allusions in the literature, this review aims to provide a comprehensive view of hydathode development, physiology, and immunity by compiling a historic and contemporary bibliography. In particular, we refine the definition of hydathodes.We illustrate their important roles in the maintenance of plant osmotic balance, nutrient retrieval, and exclusion of deleterious chemicals from the xylem sap. Finally, we present our current understanding of the infection of hydathodes by adapted vascular pathogens and the associated plant immune responses.
Collapse
Affiliation(s)
- Aude Cerutti
- LIPM, Université de Toulouse, INRA and CNRS and Université Paul Sabatier, F-31326 Castanet-Tolosan, France;
| | - Alain Jauneau
- Plateforme Imagerie, Institut Fédératif de Recherche 3450, Pôle de Biotechnologie Végétale, F-31326 Castanet-Tolosan, France
| | - Patrick Laufs
- Institut Jean-Pierre Bourgin, INRA and AgroParisTech and CNRS, Université Paris-Saclay, F-78000 Versailles, France
| | - Nathalie Leonhardt
- Laboratoire de Biologie du Développement des Plantes, Institut de Biosciences et Biotechnologies d'Aix-Marseille, Aix-Marseille Université and Commissariat à l'Energie Atomique et aux Energies Alternatives and CNRS, UMR 7265, F-13108 Saint Paul-Les-Durance, France
| | - Martin H Schattat
- Department of Plant Physiology, Institute for Biology, Martin-Luther-University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Richard Berthomé
- LIPM, Université de Toulouse and INRA and CNRS, F-31326 Castanet-Tolosan, France;
| | - Jean-Marc Routaboul
- LIPM, Université de Toulouse and INRA and CNRS, F-31326 Castanet-Tolosan, France;
| | - Laurent D Noël
- LIPM, Université de Toulouse and INRA and CNRS, F-31326 Castanet-Tolosan, France;
| |
Collapse
|
17
|
Cai Y, Yan J, Li Q, Deng Z, Liu S, Lu J, Zhang Y. Sucrose transporters of resistant grapevine are involved in stress resistance. PLANT MOLECULAR BIOLOGY 2019; 100:111-132. [PMID: 30806883 DOI: 10.1007/s11103-019-00847-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/20/2019] [Indexed: 05/08/2023]
Abstract
The whole promoter regions of SUTs in Vitis were firstly isolated. SUTs are involved in the adaptation to biotic and abiotic stresses. The vulnerability of Vitis vinifera to abiotic and biotic stresses limits its yields. In contrast, Vitis amurensis displays resistance to environmental stresses, such as microbial pathogens, low temperatures, and drought. Sucrose transporters (SUTs) are important regulators for plant growth and stress tolerance; however, the role that SUTs play in stress resistance in V. amurensis is not known. Using V. amurensis Ruper. 'Zuoshan-1' and V. vinifera 'Chardonnay', we found that SUC27 was highly expressed in several vegetative organs of Zuoshan-1, SUC12 was weakly expressed or absent in most organs in both the species, and the distribution of SUC11 in source and sink organs was highest in Zuoshan-1. A search for cis-regulatory elements in the promoter sequences of SUTs revealed that they were regulated by light, environmental stresses, physiological correlation, and hormones. The SUTs in Zuoshan-1 mostly show a higher and rapid response than in Chardonnay under the induction by Plasmopara viticola infection, cold, water deficit, and dark conditions. The induction of SUTs was associated with the upregulation of key genes involved in sucrose metabolism and the biosynthesis of plant hormones. These results indicate that stress resistance in Zuoshan-1 is governed by the differential distribution and induction of SUTs by various stimuli, and the subsequent promotion of sucrose metabolism and hormone synthesis.
Collapse
Affiliation(s)
- Yumeng Cai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jing Yan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qike Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhefang Deng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shaoli Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jiang Lu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yali Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| |
Collapse
|
18
|
Ma S, Sun L, Sui X, Li Y, Chang Y, Fan J, Zhang Z. Phloem loading in cucumber: combined symplastic and apoplastic strategies. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:391-404. [PMID: 30604489 DOI: 10.1111/tpj.14224] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 05/22/2023]
Abstract
Phloem loading, as the first step of transporting photoassimilates from mesophyll cells to sieve element-companion cell complex, creates a driving force for long-distance nutrient transport. Three loading strategies have been proposed: passive symplastic loading, apoplastic loading and symplastic transfer followed by polymer-trapping of stachyose and raffinose. Although individual species are generally referred to as using a single phloem loading mechanism, it has been suggested that some plants may use more than one, i.e. 'mixed loading'. Here, by using a combination of electron microscopy, reverse genetics and 14 C labeling, loading strategies were studied in cucumber, a polymer-trapping loading species. The results indicate that intermediary cells (ICs), which mediate polymer-trapping, and ordinary companion cells, which mediate apoplastic loading, were mainly found in the fifth and third order veins, respectively. Accordingly, a cucumber galactinol synthase gene (CsGolS1) and a sucrose transporter gene (CsSUT2) were expressed mainly in the fifth/third and the third order veins, respectively. Immunolocalization analysis indicated that CsGolS1 was localized in companion cells (CCs) while CsSUT2 was in CCs and sieve elements (SEs). Suppressing CsGolS1 significantly decreased the stachyose level and increased sucrose content, while suppressing CsSUT2 decreased the sucrose level and increased the stachyose content in leaves. After 14 CO2 labeling, [14 C]sucrose export increased and [14 C]stachyose export reduced from petioles in CsGolS1i plants, but [14 C]sucrose export decreased and [14 C]stachyose export increased into petioles in CsSUT2i plants. Similar results were also observed after pre-treating the CsGolS1i leaves with PCMBS (transporter inhibitor). These results demonstrate that cucumber phloem loading depends on both polymer-trapping and apoplastic loading strategies.
Collapse
Affiliation(s)
- Si Ma
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lulu Sun
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaolei Sui
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yaxin Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ying Chang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jingwei Fan
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhenxian Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
19
|
Ma Q, Sun M, Lu J, Kang H, You C, Hao Y. An apple sucrose transporter MdSUT2.2 is a phosphorylation target for protein kinase MdCIPK22 in response to drought. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:625-637. [PMID: 30133123 PMCID: PMC6381786 DOI: 10.1111/pbi.13003] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 08/02/2018] [Accepted: 08/18/2018] [Indexed: 05/22/2023]
Abstract
Sugars increase with drought stress in plants and accumulate in the vacuole. However, the exact molecular mechanism underlying this process is not clear yet. In this study, protein interaction and phosphorylation experiments were conducted for sucrose transporter and CIPK kinase in apple. The specific phosphorylation site of sucrose transporter was identified with mass spectrometry. Transgenic analyses were performed to characterize their biological function. It was found that overexpression of sucrose transporter gene MdSUT2.2 in apple plants promoted sugar accumulation and drought tolerance. MdSUT2.2 protein was phosphorylated at Ser381 site in response to drought. A DUALmembrane system using MdSUT2.2 as bait through an apple cDNA library got a protein kinase MdCIPK22. Bimolecular fluorescence complementary (BiFC), pull-down and co-immunoprecipitation (Co-IP) assays further demonstrated that MdCIPK22 interacted with MdSUT2.2. A series of transgenic analysis showed that MdCIPK22 was required for the drought-induced phosphylation at Ser381 site of MdSUT2.2 protein, and that it enhanced the stability and transport activity of MdSUT2.2 protein. Finally, it was found that MdCIPK22 overexpression promoted sugar accumulation and improved drought tolerance in an MdSUT2.2-dependent manner in transgenic apple plants. MdCIPK22-MdSUT2.2 regulatory module shed light on the molecular mechanism by which plant accumulates sugars and enhances tolerance in response to drought stress.
Collapse
Affiliation(s)
- Qi‐Jun Ma
- National Key Laboratory of Crop BiologyMOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in Huanghuai RegionCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai‐AnShandongChina
| | - Mei‐Hong Sun
- National Key Laboratory of Crop BiologyMOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in Huanghuai RegionCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai‐AnShandongChina
| | - Jing Lu
- National Key Laboratory of Crop BiologyMOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in Huanghuai RegionCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai‐AnShandongChina
| | - Hui Kang
- National Key Laboratory of Crop BiologyMOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in Huanghuai RegionCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai‐AnShandongChina
| | - Chun‐Xiang You
- National Key Laboratory of Crop BiologyMOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in Huanghuai RegionCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai‐AnShandongChina
| | - Yu‐Jin Hao
- National Key Laboratory of Crop BiologyMOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in Huanghuai RegionCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai‐AnShandongChina
| |
Collapse
|
20
|
Interaction of mammalian and plant H +/sucrose transporters with 14-3-3 proteins. Biochem J 2018; 475:3239-3254. [PMID: 30237153 DOI: 10.1042/bcj20180293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/22/2018] [Accepted: 09/18/2018] [Indexed: 01/08/2023]
Abstract
The solute carrier 45 family (SLC45) was defined in the course of the Human Genome Project and consists of four members, A1-A4, which show only 20-30% identity of amino acid sequences among each other. All these members exhibit an identity of ∼20% to plant H+/sucrose cotransporters. Recently, we expressed members of the murine SLC45 family in yeast cells and demonstrated that they are, like their plant counterparts, H+/sucrose cotransporters. In contrast with the plant proteins, SLC45 transporters recognise also the monosaccharides glucose and fructose as physiological substrates and seem to be involved in alternative sugar supply as well as in osmoregulation of several mammalian tissues. In the present study, we provide novel insights into the regulation of SLC45 transporters. By screening for interaction partners, we found a 14-3-3 protein as a promising candidate for control of transport activity. Indeed, co-expression of the gamma isoform of murine 14-3-3 protein in yeast and Xenopus oocytes led to a significant decrease in transport rates of the murine SLC45 transporters as well as of the plant H+/sucrose transporter Sut1.
Collapse
|
21
|
Zakhartsev M, Medvedeva I, Orlov Y, Akberdin I, Krebs O, Schulze WX. Metabolic model of central carbon and energy metabolisms of growing Arabidopsis thaliana in relation to sucrose translocation. BMC PLANT BIOLOGY 2016; 16:262. [PMID: 28031032 PMCID: PMC5192601 DOI: 10.1186/s12870-016-0868-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 08/05/2016] [Indexed: 05/12/2023]
Abstract
BACKGROUND Sucrose translocation between plant tissues is crucial for growth, development and reproduction of plants. Systemic analysis of these metabolic and underlying regulatory processes allow a detailed understanding of carbon distribution within the plant and the formation of associated phenotypic traits. Sucrose translocation from 'source' tissues (e.g. mesophyll) to 'sink' tissues (e.g. root) is tightly bound to the proton gradient across the membranes. The plant sucrose transporters are grouped into efflux exporters (SWEET family) and proton-symport importers (SUC, STP families). To better understand regulation of sucrose export from source tissues and sucrose import into sink tissues, there is a need for a metabolic model that takes in account the tissue organisation of Arabidopsis thaliana with corresponding metabolic specificities of respective tissues in terms of sucrose and proton production/utilization. An ability of the model to operate under different light modes ('light' and 'dark') and correspondingly in different energy producing modes is particularly important in understanding regulatory modules. RESULTS Here, we describe a multi-compartmental model consisting of a mesophyll cell with plastid and mitochondrion, a phloem cell, as well as a root cell with mitochondrion. In this model, the phloem was considered as a non-growing transport compartment, the mesophyll compartment was considered as both autotrophic (growing on CO2 under light) and heterotrophic (growing on starch in darkness), and the root was always considered as heterotrophic tissue dependent on sucrose supply from the mesophyll compartment. In total, the model includes 413 balanced compounds interconnected by 400 transformers. The structured metabolic model accounts for central carbon metabolism, photosynthesis, photorespiration, carbohydrate metabolism, energy and redox metabolisms, proton metabolism, biomass growth, nutrients uptake, proton gradient generation and sucrose translocation between tissues. Biochemical processes in the model were associated with gene-products (742 ORFs). Flux Balance Analysis (FBA) of the model resulted in balanced carbon, nitrogen, proton, energy and redox states under both light and dark conditions. The main H+-fluxes were reconstructed and their directions matched with proton-dependent sucrose translocation from 'source' to 'sink' under any light condition. CONCLUSIONS The model quantified the translocation of sucrose between plant tissues in association with an integral balance of protons, which in turn is defined by operational modes of the energy metabolism.
Collapse
Affiliation(s)
- Maksim Zakhartsev
- Department of Plant Systems Biology, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| | - Irina Medvedeva
- Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia
| | - Yury Orlov
- The Federal Research Center Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Ilya Akberdin
- The Federal Research Center Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentyeva 10, 630090 Novosibirsk, Russia
- Biology Department, San Diego State University, San Diego, CA 92182-4614 USA
| | - Olga Krebs
- Heidelberg Institute of Theoretical Sciences, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Waltraud X. Schulze
- Department of Plant Systems Biology, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| |
Collapse
|
22
|
Divergent Evolutionary Pattern of Sugar Transporter Genes is Associated with the Difference in Sugar Accumulation between Grasses and Eudicots. Sci Rep 2016; 6:29153. [PMID: 27356489 PMCID: PMC4928125 DOI: 10.1038/srep29153] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/15/2016] [Indexed: 01/22/2023] Open
Abstract
Sugars play a variety of roles in plants, and their accumulation in seeds and/or surrounding pericarp tissues is distinctly different between grasses and eudicots. However, little is known about the evolutionary pattern of genes involved in sugar accumulation in these two major groups of flowering plants. Here, we compared evolutionary rates, gene duplication, and selective patterns of genes involved in sugar metabolism and transport between grasses and eudicots using six grass species and seven eudicot species as materials. Overall, sugar transporter genes exhibit divergent evolutionary patterns, whereas, sugar metabolism genes showing similar evolutionary pattern between monocots and eudicots. Sugar transporter genes have higher frequencies of recent duplication in eudicots than in grasses and their patterns of evolutionary rate are different. Evidence for divergent selection of these two groups of flowering plants is also observed in sugar transporter genes, wherein, these genes have undergone positive selection in eudicots, but not in grasses. Taken together, these findings suggest that sugar transporter genes rather than sugar metabolism genes play important roles in sugar accumulation in plants, and that divergent evolutionary patterns of sugar transporter genes are associated with the difference of sugar accumulation in storage tissues of grasses and eudicots.
Collapse
|
23
|
Bailey KJ, Leegood RC. Nitrogen recycling from the xylem in rice leaves: dependence upon metabolism and associated changes in xylem hydraulics. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2901-11. [PMID: 27053722 PMCID: PMC4861031 DOI: 10.1093/jxb/erw132] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Measurements of amino acids in the guttation fluid and in the xylem exudates of cut leaves from intact plants provide evidence of the remarkable efficiency with which these nitrogenous compounds are reabsorbed from the xylem sap. This could be achieved by mechanisms involving intercellular transport and/or metabolism. Developmental changes in transcripts and protein showed that transcripts for phosphoenolpyruvate carboxykinase (PEPCK) increased from the base to the leaf tip, and were markedly increased by supplying asparagine. Supplying amino acids also increased the amounts of protein of PEPCK and, to a lesser extent, of pyruvate, Pi dikinase. PEPCK is present in the hydathodes, stomata and vascular parenchyma of rice leaves. Evidence for the role of PEPCK was obtained by using 3-mercaptopicolinic acid (MPA), a specific inhibitor of PEPCK, and by using an activation-tagged rice line that had an increase in PEPCK activity, to show that activation of PEPCK resulted in a decrease in N in the guttation fluid and that treatment by MPA resulted in an increase in amino acids in the guttation fluid and xylem sap towards the leaf tip. Furthermore, increasing PEPCK activity decreased the amount of guttation fluid, whereas decreasing PEPCK activity increased the amount of xylem sap or guttation fluid towards the leaf tip. The findings suggest the following hypotheses: (i) both metabolism and transport are involved in xylem recycling and (ii) excess N is the signal involved in modulating xylem hydraulics, perhaps via nutrient regulation of water-transporting aquaporins. Water relations and vascular metabolism and transport are thus intimately linked.
Collapse
Affiliation(s)
- Karen J Bailey
- Robert Hill Institute and Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Richard C Leegood
- Robert Hill Institute and Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
24
|
Zanon L, Falchi R, Hackel A, Kühn C, Vizzotto G. Expression of peach sucrose transporters in heterologous systems points out their different physiological role. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 238:262-72. [PMID: 26259193 DOI: 10.1016/j.plantsci.2015.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/10/2015] [Accepted: 06/14/2015] [Indexed: 05/26/2023]
Abstract
Sucrose is the major phloem-translocated component in a number of economically important plant species. The comprehension of the mechanisms involved in sucrose transport in peach fruit appears particularly relevant, since the accumulation of this sugar, during ripening, is crucial for the growth and quality of the fruit. Here, we report the functional characterisation and subcellular localisation of three sucrose transporters (PpSUT1, PpSUT2, PpSUT4) in peach, and we formulate novel hypotheses about their role in accumulation of sugar. We provide evidence, about the capability of both PpSUT1 and PpSUT4, expressed in mutant yeast strains to transport sucrose. The functionality of PpSUT1 at the plasma membrane, and of PpSUT4 at the tonoplast, has been demonstrated. On the other hand, the functionality of PpSUT2 was not confirmed: this protein is unable to complement two sucrose uptake-deficient mutant yeast strains. Our results corroborate the hypotheses that PpSUT1 partakes in phloem loading in leaves, and PpSUT4 sustains cell metabolism by regulating sucrose efflux from the vacuole.
Collapse
Affiliation(s)
- Laura Zanon
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, via delle Scienze 206, 33100 Udine, Italy.
| | - Rachele Falchi
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, via delle Scienze 206, 33100 Udine, Italy.
| | - Aleksandra Hackel
- Department of Plant Physiology, Humboldt University of Berlin, Philippstr. 13, Building 12, 10115 Berlin, Germany.
| | - Christina Kühn
- Department of Plant Physiology, Humboldt University of Berlin, Philippstr. 13, Building 12, 10115 Berlin, Germany.
| | - Giannina Vizzotto
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, via delle Scienze 206, 33100 Udine, Italy.
| |
Collapse
|
25
|
Bitterlich M, Krügel U, Boldt-Burisch K, Franken P, Kühn C. The sucrose transporter SlSUT2 from tomato interacts with brassinosteroid functioning and affects arbuscular mycorrhiza formation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:877-89. [PMID: 24654931 DOI: 10.1111/tpj.12515] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 05/20/2023]
Abstract
Mycorrhizal plants benefit from the fungal partners by getting better access to soil nutrients. In exchange, the plant supplies carbohydrates to the fungus. The additional carbohydrate demand in mycorrhizal plants was shown to be balanced partially by higher CO2 assimilation and increased C metabolism in shoots and roots. In order to test the role of sucrose transport for fungal development in arbuscular mycorrhizal (AM) tomato, transgenic plants with down-regulated expression of three sucrose transporter genes were analysed. Plants that carried an antisense construct of SlSUT2 (SlSUT2as) repeatedly exhibited increased mycorrhizal colonization and the positive effect of plants to mycorrhiza was abolished. Grafting experiments between transgenic and wild-type rootstocks and scions indicated that mainly the root-specific function of SlSUT2 has an impact on colonization of tomato roots with the AM fungus. Localization of SISUT2 to the periarbuscular membrane indicates a role in back transport of sucrose from the periarbuscular matrix into the plant cell thereby affecting hyphal development. Screening of an expression library for SlSUT2-interacting proteins revealed interactions with candidates involved in brassinosteroid (BR) signaling or biosynthesis. Interaction of these candidates with SlSUT2 was confirmed by bimolecular fluorescence complementation. Tomato mutants defective in BR biosynthesis were analysed with respect to mycorrhizal symbiosis and showed indeed decreased mycorrhization. This finding suggests that BRs affect mycorrhizal infection and colonization. If the inhibitory effect of SlSUT2 on mycorrhizal growth involves components of BR synthesis and of the BR signaling pathway is discussed.
Collapse
Affiliation(s)
- Michael Bitterlich
- Plant Physiology Department, Humboldt University of Berlin, Philippstr. 13, Building 12, 10115, Berlin, Germany; Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | | | | | | | | |
Collapse
|
26
|
Deol KK, Mukherjee S, Gao F, Brûlé-Babel A, Stasolla C, Ayele BT. Identification and characterization of the three homeologues of a new sucrose transporter in hexaploid wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2013; 13:181. [PMID: 24237613 PMCID: PMC4225610 DOI: 10.1186/1471-2229-13-181] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 11/11/2013] [Indexed: 05/05/2023]
Abstract
BACKGROUND Sucrose transporters (SUTs) play important roles in regulating the translocation of assimilates from source to sink tissues. Identification and characterization of new SUTs in economically important crops such as wheat provide insights into their role in determining seed yield. To date, however, only one SUT of wheat has been reported and functionally characterized. The present study reports the isolation and characterization of a new SUT, designated as TaSUT2, and its homeologues (TaSUT2A, TaSUT2B and TaSUT2D) in hexaploid wheat (Triticum aestivum L.). RESULTS TaSUT2A and TaSUT2B genes each encode a protein with 506 amino acids, whereas TaSUT2D encodes a protein of 508 amino acids. The molecular mass of these proteins is predicted to be ~ 54 kDA. Topological analysis of the amino acid sequences of the three homeologues revealed that they contain 12 transmembrane spanning helices, which are described as distinct characteristic features of glycoside-pentoside-hexuronide cation symporter family that includes all known plant SUTs, and a histidine residue that appears to be localized at and associated conformationally with the sucrose binding site. Yeast SUSY7/ura3 strain cells transformed with TaSUT2A, TaSUT2B and TaSUT2D were able to uptake sucrose and grow on a medium containing sucrose as a sole source of carbon; however, our subcellular localization study with plant cells revealed that TaSUT2 is localized to the tonoplast. The expression of TaSUT2 was detected in the source, including flag leaf blade, flag leaf sheath, peduncle, glumes, palea and lemma, and sink (seed) tissues. The relative contributions of the three genomes of wheat to the total expression of TaSUT2 appear to differ with tissues and developmental stages. At the cellular level, TaSUT2 is expressed mainly in the vein of developing seeds and subepidermal mesophyll cells of the leaf blade. CONCLUSION This study demonstrated that TaSUT2 is a new wheat SUT protein. Given that TaSUT2 is localized to the tonoplast and sucrose is temporarily stored in the vacuoles of both source and sink tissues, our data imply that TaSUT2 is involved in the intracellular partitioning of sucrose, particularly between the vacuole and cytoplasm.
Collapse
Affiliation(s)
- Kirandeep K Deol
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, Manitoba R3T 2 N2, Canada
| | - Shalini Mukherjee
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, Manitoba R3T 2 N2, Canada
| | - Feng Gao
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, Manitoba R3T 2 N2, Canada
| | - Anita Brûlé-Babel
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, Manitoba R3T 2 N2, Canada
| | - Claudio Stasolla
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, Manitoba R3T 2 N2, Canada
| | - Belay T Ayele
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, Manitoba R3T 2 N2, Canada
| |
Collapse
|
27
|
Wu XN, Sanchez Rodriguez C, Pertl-Obermeyer H, Obermeyer G, Schulze WX. Sucrose-induced receptor kinase SIRK1 regulates a plasma membrane aquaporin in Arabidopsis. Mol Cell Proteomics 2013; 12:2856-73. [PMID: 23820729 PMCID: PMC3790296 DOI: 10.1074/mcp.m113.029579] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 06/30/2013] [Indexed: 11/06/2022] Open
Abstract
The transmembrane receptor kinase family is the largest protein kinase family in Arabidopsis, and it contains the highest fraction of proteins with yet uncharacterized functions. Here, we present functions of SIRK1, a receptor kinase that was previously identified with rapid transient phosphorylation after sucrose resupply to sucrose-starved seedlings. SIRK1 was found to be an active kinase with increasing activity in the presence of an external sucrose supply. In sirk1 T-DNA insertional mutants, the sucrose-induced phosphorylation patterns of several membrane proteins were strongly reduced; in particular, pore-gating phosphorylation sites in aquaporins were affected. SIRK1-GFP fusions were found to directly interact with aquaporins in affinity pull-down experiments on microsomal membrane vesicles. Furthermore, protoplast swelling assays of sirk1 mutants and SIRK1-GFP expressing lines confirmed a direct functional interaction of receptor kinase SIRK1 and aquaporins as substrates for phosphorylation. A lack of SIRK1 expression resulted in the failure of mutant protoplasts to control water channel activity upon changes in external sucrose concentrations. We propose that SIRK1 is involved in the regulation of sucrose-specific osmotic responses through direct interaction with and activation of an aquaporin via phosphorylation and that the duration of this response is controlled by phosphorylation-dependent receptor internalization.
Collapse
Affiliation(s)
- Xu Na Wu
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany
| | | | | | | | | |
Collapse
|
28
|
Site directed mutagenesis of StSUT1 reveals target amino acids of regulation and stability. Biochimie 2013; 95:2132-44. [PMID: 23954800 DOI: 10.1016/j.biochi.2013.07.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 07/25/2013] [Indexed: 12/15/2022]
Abstract
Plant sucrose transporters (SUTs) are functional as sucrose-proton-cotransporters with an optimal transport activity in the acidic pH range. Recently, the pH optimum of the Solanum tuberosum sucrose transporter StSUT1 was experimentally determined to range at an unexpectedly low pH of 3 or even below. Various research groups have confirmed these surprising findings independently and in different organisms. Here we provide further experimental evidence for a pH optimum at physiological extrema. Site directed mutagenesis provides information about functional amino acids, which are highly conserved and responsible for this extraordinary increase in transport capacity under extreme pH conditions. Redox-dependent dimerization of the StSUT1 protein was described earlier. Here the ability of StSUT1 to form homodimers was demonstrated by heterologous expression in Lactococcus lactis and Xenopus leavis using Western blots, and in plants by bimolecular fluorescence complementation. Mutagenesis of highly conserved cysteine residues revealed their importance in protein stability. The accessibility of regulatory amino acid residues in the light of StSUT1's compartmentalization in membrane microdomains is discussed.
Collapse
|
29
|
Hafke JB, Höll SR, Kühn C, van Bel AJE. Electrophysiological approach to determine kinetic parameters of sucrose uptake by single sieve elements or phloem parenchyma cells in intact Vicia faba plants. FRONTIERS IN PLANT SCIENCE 2013; 4:274. [PMID: 23914194 PMCID: PMC3728481 DOI: 10.3389/fpls.2013.00274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 07/04/2013] [Indexed: 05/05/2023]
Abstract
Apart from cut aphid stylets in combination with electrophysiology, no attempts have been made thus far to measure in vivo sucrose-uptake properties of sieve elements. We investigated the kinetics of sucrose uptake by single sieve elements and phloem parenchyma cells in Vicia faba plants. To this end, microelectrodes were inserted into free-lying phloem cells in the main vein of the youngest fully-expanded leaf, half-way along the stem, in the transition zone between the autotrophic and heterotrophic part of the stem, and in the root axis. A top-to-bottom membrane potential gradient of sieve elements was observed along the stem (-130 mV to -110 mV), while the membrane potential of the phloem parenchyma cells was stable (approx. -100 mV). In roots, the membrane potential of sieve elements dropped abruptly to -55 mV. Bathing solutions having various sucrose concentrations were administered and sucrose/H(+)-induced depolarizations were recorded. Data analysis by non-linear least-square data fittings as well as by linear Eadie-Hofstee (EH) -transformations pointed at biphasic Michaelis-Menten kinetics (2 MM, EH: K m1 1.2-1.8 mM, K m2 6.6-9.0 mM) of sucrose uptake by sieve elements. However, Akaike's Information Criterion (AIC) favored single MM kinetics. Using single MM as the best-fitting model, K m values for sucrose uptake by sieve elements decreased along the plant axis from 1 to 7 mM. For phloem parenchyma cells, higher K m values (EH: K m1 10 mM, K m2 70 mM) as compared to sieve elements were found. In preliminary patch-clamp experiments with sieve-element protoplasts, small sucrose-coupled proton currents (-0.1 to -0.3 pA/pF) were detected in the whole-cell mode. In conclusion (a) K m values for sucrose uptake measured by electrophysiology are similar to those obtained with heterologous systems, (b) electrophysiology provides a useful tool for in situ determination of K m values, (c) As yet, it remains unclear if one or two uptake systems are involved in sucrose uptake by sieve elements, (d) Affinity for sucrose uptake by sieve elements exceeds by far that by phloem parenchyma cells, (e) Patch-clamp studies provide a feasible basis for quantification of sucrose uptake by single cells. The consequences of the findings for whole-plant carbohydrate partitioning are discussed.
Collapse
Affiliation(s)
- Jens B. Hafke
- Institute of Plant Physiology, Justus-Liebig-UniversityGiessen, Germany
- Institute of General Botany, Plant Cell Biology Research Group, Justus-Liebig-UniversityGiessen, Germany
| | - Sabina-Roxana Höll
- Institute of General Botany, Plant Cell Biology Research Group, Justus-Liebig-UniversityGiessen, Germany
| | - Christina Kühn
- Department of Plant Physiology, Institute of Biology, Humboldt UniversityBerlin, Germany
| | - Aart J. E. van Bel
- Institute of General Botany, Plant Cell Biology Research Group, Justus-Liebig-UniversityGiessen, Germany
| |
Collapse
|
30
|
Milne RJ, Byrt CS, Patrick JW, Grof CPL. Are sucrose transporter expression profiles linked with patterns of biomass partitioning in Sorghum phenotypes? FRONTIERS IN PLANT SCIENCE 2013; 4:223. [PMID: 23805151 PMCID: PMC3693075 DOI: 10.3389/fpls.2013.00223] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/08/2013] [Indexed: 05/06/2023]
Abstract
Sorghum bicolor is a genetically diverse C4 monocotyledonous species, encompassing varieties capable of producing high grain yields as well as sweet types which accumulate soluble sugars (predominantly sucrose) within their stems to high concentrations. Sucrose produced in leaves (sources) enters the phloem and is transported to regions of growth and storage (sinks). It is likely that sucrose transporter (SUT) proteins play pivotal roles in phloem loading and the delivery of sucrose to growth and storage sinks in all Sorghum ecotypes. Six SUTs are present in the published Sorghum genome, based on the BTx623 grain cultivar. Homologues of these SUTs were cloned and sequenced from the sweet cultivar Rio, and compared with the publically available genome information. SbSUT5 possessed nine amino acid sequence differences between the two varieties. Two of the remaining five SUTs exhibited single variations in their amino acid sequences (SbSUT1 and SbSUT2) whilst the rest shared identical sequences. Complementation of a mutant Saccharomyces yeast strain (SEY6210), unable to grow upon sucrose as the sole carbon source, demonstrated that the Sorghum SUTs were capable of transporting sucrose. SbSUT1, SbSUT4, and SbSUT6 were highly expressed in mature leaf tissues and hence may contribute to phloem loading. In contrast, SbSUT2 and SbSUT5 were expressed most strongly in sinks consistent with a possible role of facilitating sucrose import into stem storage pools and developing inflorescences.
Collapse
Affiliation(s)
- Ricky J. Milne
- School of Environmental and Life Sciences, University of Newcastle, NewcastleNSW, Australia
| | - Caitlin S. Byrt
- School of Environmental and Life Sciences, University of Newcastle, NewcastleNSW, Australia
- Australian Research Council Centre of Excellence in Plant Cell Walls, Waite Campus, University of AdelaideAdelaide, SA, Australia
| | - John W. Patrick
- School of Environmental and Life Sciences, University of Newcastle, NewcastleNSW, Australia
| | - Christopher P. L. Grof
- School of Environmental and Life Sciences, University of Newcastle, NewcastleNSW, Australia
| |
Collapse
|
31
|
Reinders A, Sun Y, Karvonen KL, Ward JM. Identification of amino acids important for substrate specificity in sucrose transporters using gene shuffling. J Biol Chem 2012; 287:30296-304. [PMID: 22807445 DOI: 10.1074/jbc.m112.372888] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plant sucrose transporters (SUTs) are H(+)-coupled uptake transporters. Type I and II (SUTs) are phylogenetically related but have different substrate specificities. Type I SUTs transport sucrose, maltose, and a wide range of natural and synthetic α- and β-glucosides. Type II SUTs are more selective for sucrose and maltose. Here, we investigated the structural basis for this difference in substrate specificity. We used a novel gene shuffling method called synthetic template shuffling to introduce 62 differentially conserved amino acid residues from type I SUTs into OsSUT1, a type II SUT from rice. The OsSUT1 variants were tested for their ability to transport the fluorescent coumarin β-glucoside esculin when expressed in yeast. Fluorescent yeast cells were selected using fluorescence-activated cell sorting (FACS). Substitution of five amino acids present in type I SUTs in OsSUT1 was found to be sufficient to confer esculin uptake activity. The changes clustered in two areas of the OsSUT1 protein: in the first loop and the top of TMS2 (T80L and A86K) and in TMS5 (S220A, S221A, and T224Y). The substrate specificity of this OsSUT1 variant was almost identical to that of type I SUTs. Corresponding changes in the sugarcane type II transporter ShSUT1 also changed substrate specificity, indicating that these residues contribute to substrate specificity in type II SUTs in general.
Collapse
Affiliation(s)
- Anke Reinders
- Department of Plant Biology, University of Minnesota, St. Paul, MN 55108-1095, USA
| | | | | | | |
Collapse
|
32
|
Gora PJ, Reinders A, Ward JM. A novel fluorescent assay for sucrose transporters. PLANT METHODS 2012; 8:13. [PMID: 22475854 PMCID: PMC3337809 DOI: 10.1186/1746-4811-8-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 04/04/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND We have developed a novel assay based on the ability of type I sucrose uptake transporters (SUTs) to transport the fluorescent coumarin β-glucoside, esculin. Budding yeast (Saccharomyces cerevisiae) is routinely used for the heterologous expression of SUTs and does not take up esculin. RESULTS When type I sucrose transporters StSUT1 from potato or AtSUC2 from Arabidopsis were expressed in yeast, the cells were able to take up esculin and became brightly fluorescent. We tested a variety of incubation times, esculin concentrations, and buffer pH values and found that for these transporters, a 1 hr incubation at 0.1 to 1 mM esculin at pH 4.0 produced fluorescent cells that were easily distinguished from vector controls. Esculin uptake was assayed by several methods including fluorescence microscopy, spectrofluorometry and fluorescence-activiated cell sorting (FACS). Expression of the type II sucrose transporter OsSUT1 from rice did not result in increased esculin uptake under any conditions tested. Results were reproduced successfully in two distinct yeast strains, SEY6210 (an invertase mutant) and BY4742. CONCLUSIONS The esculin uptake assay is rapid and sensitive and should be generally useful for preliminary tests of sucrose transporter function by heterologous expression in yeast. This assay is also suitable for selection of yeast showing esculin uptake activity using FACS.
Collapse
Affiliation(s)
- Peter J Gora
- Department of Plant Biology, University of Minnesota, 250 Biological Sciences Center, 1445 Gortner Ave., St. Paul, MN 55108-1095, USA
| | - Anke Reinders
- Department of Plant Biology, University of Minnesota, 250 Biological Sciences Center, 1445 Gortner Ave., St. Paul, MN 55108-1095, USA
| | - John M Ward
- Department of Plant Biology, University of Minnesota, 250 Biological Sciences Center, 1445 Gortner Ave., St. Paul, MN 55108-1095, USA
| |
Collapse
|
33
|
Schneider S, Hulpke S, Schulz A, Yaron I, Höll J, Imlau A, Schmitt B, Batz S, Wolf S, Hedrich R, Sauer N. Vacuoles release sucrose via tonoplast-localised SUC4-type transporters. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:325-36. [PMID: 21972845 DOI: 10.1111/j.1438-8677.2011.00506.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Arabidopsis thaliana has seven genes for functionally active sucrose transporters. Together with sucrose transporters from other dicot and monocot plants, these proteins form four separate phylogenetic groups. Group-IV includes the Arabidopsis protein SUC4 (synonym SUT4) and related proteins from monocots and dicots. These Group-IV sucrose transporters were reported to be either tonoplast- or plasma membrane-localised, and in heterologous expression systems were shown to act as sucrose/H(+) symporters. Here, we present comparative analyses of the subcellular localisation of the Arabidopsis SUC4 protein and of several other Group-IV sucrose transporters, studies on tissue specificity of the Arabidopsis SUC4 promoter, phenotypic characterisations of Atsuc4.1 mutants and AtSUC4 overexpressing (AtSUC4-OX) plants, and functional comparisons of Atsuc4.1 and AtSUC4-OX vacuoles. Our data show that SUC4-type sucrose transporters from different plant families (Brassicaceae, Cucurbitaceae and Solanaceae) localise exclusively to the tonoplast, demonstrating that vacuolar sucrose transport is a common theme of all SUC4-type proteins. AtSUC4 expression is confined to the stele of Arabidopsis roots, developing anthers and meristematic tissues in all aerial parts. Analyses of the carbohydrate content of WT and mutant seedlings revealed reduced sucrose content in AtSUC4-OX seedlings. This is in line with patch-clamp analyses of AtSUC4-OX vacuoles that characterise AtSUC4 as a sucrose/H(+) symporter directly in the tonoplast membrane.
Collapse
Affiliation(s)
- S Schneider
- Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Wippel K, Sauer N. Arabidopsis SUC1 loads the phloem in suc2 mutants when expressed from the SUC2 promoter. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:669-79. [PMID: 22021573 PMCID: PMC3254675 DOI: 10.1093/jxb/err255] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 07/18/2011] [Accepted: 07/27/2011] [Indexed: 05/18/2023]
Abstract
Active loading of sucrose into phloem companion cells (CCs) is an essential process in apoplastic loaders, such as Arabidopsis or tobacco (Nicotiana sp.), and is even used by symplastic loaders such as melon (Cucumis melo) under certain stress conditions. Reduction of the amount or complete removal of the transporters catalysing this transport step results in severe developmental defects. Here we present analyses of two Arabidopsis lines, suc2-4 and suc2-5, that carry a null allele of the SUC2 gene which encodes the Arabidopsis phloem loader. These lines were complemented with constructs expressing either the Arabidopsis SUC1 or the Ustilago maydis srt1 cDNA from the SUC2 promoter. Both SUC1 and Srt1 are energy-dependent sucrose/H(+) symporters and differ in specific kinetic properties from the SUC2 protein. Transgene expression was confirmed by RT-PCRs, the subcellular localization of Srt1 in planta with an Srt1-RFP fusion, and the correct CC-specific localization of the recombinant proteins by immunolocalization with anti-Srt1 and anti-SUC1 antisera. The transport capacity of Srt1 was studied in Srt1-GFP expressing Arabidopsis protoplasts. Although both proteins were found exclusively in CCs, only SUC1 complemented the developmental defects of suc2-4 and suc2-5 mutants. As SUC1 and Srt1 are well characterized, this result provides an insight into the properties that are essential for sucrose transporters to load the phloem successfully.
Collapse
Affiliation(s)
- Kathrin Wippel
- Molekulare Pflanzenphysiologie, Universität Erlangen-Nürnberg, Staudtstraße 5, D-91058 Erlangen, Germany
| | - Norbert Sauer
- Molekulare Pflanzenphysiologie, Universität Erlangen-Nürnberg, Staudtstraße 5, D-91058 Erlangen, Germany
- Erlangen Center of Plant Science (ECROPS), Universität Erlangen-Nürnberg, Staudtstraße 5, D-91058 Erlangen, Germany
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Reinders A, Sivitz AB, Ward JM. Evolution of plant sucrose uptake transporters. FRONTIERS IN PLANT SCIENCE 2012; 3:22. [PMID: 22639641 PMCID: PMC3355574 DOI: 10.3389/fpls.2012.00022] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/20/2012] [Indexed: 05/18/2023]
Abstract
In angiosperms, sucrose uptake transporters (SUTs) have important functions especially in vascular tissue. Here we explore the evolutionary origins of SUTs by analysis of angiosperm SUTs and homologous transporters in a vascular early land plant, Selaginella moellendorffii, and a non-vascular plant, the bryophyte Physcomitrella patens, the charophyte algae Chlorokybus atmosphyticus, several red algae and fission yeast, Schizosaccharomyces pombe. Plant SUTs cluster into three types by phylogenetic analysis. Previous studies using angiosperms had shown that types I and II are localized to the plasma membrane while type III SUTs are associated with vacuolar membrane. SUT homologs were not found in the chlorophyte algae Chlamydomonas reinhardtii and Volvox carterii. However, the characean algae Chlorokybus atmosphyticus contains a SUT homolog (CaSUT1) and phylogenetic analysis indicated that it is basal to all other streptophyte SUTs analyzed. SUTs are present in both red algae and S. pombe but they are less related to plant SUTs than CaSUT1. Both Selaginella and Physcomitrella encode type II and III SUTs suggesting that both plasma membrane and vacuolar sucrose transporter activities were present in early land plants. It is likely that SUT transporters are important for scavenging sucrose from the environment and intracellular compartments in charophyte and non-vascular plants. Type I SUTs were only found in eudicots and we conclude that they evolved from type III SUTs, possibly through loss of a vacuolar targeting sequence. Eudicots utilize type I SUTs for phloem (vascular tissue) loading while monocots use type II SUTs for phloem loading. We show that HvSUT1 from barley, a type II SUT, reverted the growth defect of the Arabidopsis atsuc2 (type I) mutant. This indicates that type I and II SUTs evolved similar (and interchangeable) phloem loading transporter capabilities independently.
Collapse
Affiliation(s)
- Anke Reinders
- Department of Plant Biology, University of MinnesotaSt. Paul, MN, USA
| | - Alicia B. Sivitz
- Department of Biological Sciences, Dartmouth CollegeHanover, NH, USA
| | - John M. Ward
- Department of Plant Biology, University of MinnesotaSt. Paul, MN, USA
- *Correspondence: John M. Ward, Department of Plant Biology, University of Minnesota, 250 Biological Sciences Center, 1445 Gortner Avenue, St. Paul, MN 55108, USA. e-mail:
| |
Collapse
|
37
|
Eom JS, Cho JI, Reinders A, Lee SW, Yoo Y, Tuan PQ, Choi SB, Bang G, Park YI, Cho MH, Bhoo SH, An G, Hahn TR, Ward JM, Jeon JS. Impaired function of the tonoplast-localized sucrose transporter in rice, OsSUT2, limits the transport of vacuolar reserve sucrose and affects plant growth. PLANT PHYSIOLOGY 2011; 157:109-19. [PMID: 21771914 PMCID: PMC3165862 DOI: 10.1104/pp.111.176982] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 07/18/2011] [Indexed: 05/18/2023]
Abstract
Physiological functions of sucrose (Suc) transporters (SUTs) localized to the tonoplast in higher plants are poorly understood. We here report the isolation and characterization of a mutation in the rice (Oryza sativa) OsSUT2 gene. Expression of OsSUT2-green fluorescent protein in rice revealed that OsSUT2 localizes to the tonoplast. Analysis of the OsSUT2 promoter::β-glucuronidase transgenic rice indicated that this gene is highly expressed in leaf mesophyll cells, emerging lateral roots, pedicels of fertilized spikelets, and cross cell layers of seed coats. Results of Suc transport assays in yeast were consistent with a H(+)-Suc symport mechanism, suggesting that OsSUT2 functions in Suc uptake from the vacuole. The ossut2 mutant exhibited a growth retardation phenotype with a significant reduction in tiller number, plant height, 1,000-grain weight, and root dry weight compared with the controls, the wild type, and complemented transgenic lines. Analysis of primary carbon metabolites revealed that ossut2 accumulated more Suc, glucose, and fructose in the leaves than the controls. Further sugar export analysis of detached leaves indicated that ossut2 had a significantly decreased sugar export ability compared with the controls. These results suggest that OsSUT2 is involved in Suc transport across the tonoplast from the vacuole lumen to the cytosol in rice, playing an essential role in sugar export from the source leaves to sink organs.
Collapse
|
38
|
Sun A, Dai Y, Zhang X, Li C, Meng K, Xu H, Wei X, Xiao G, Ouwerkerk PBF, Wang M, Zhu Z. A transgenic study on affecting potato tuber yield by expressing the rice sucrose transporter genes OsSUT5Z and OsSUT2M. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:586-595. [PMID: 21676173 DOI: 10.1111/j.1744-7909.2011.01063.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In many plants, sucrose transporters are essential for both sucrose exports from sources and imports into sinks, indicating a function in assimilate partitioning. To investigate whether sucrose transporters can improve the yield of starch plant, potato plants (Solanum tuberosum L. cv. Désirée) were transformed with cDNAs of the rice sucrose transporter genes OsSUT5Z and OsSUT2M under the control of a tuber-specific, class-I patatin promoter. Compared to the controls, the average fructose content of OsSUT5Z transgenic tubers significantly increased. However, the content of the sugars and starch in the OsSUT2M transgenic potato tubers showed no obvious difference. Correspondingly, the average tuber yield, average number of tubers per plant and average weight of single tuber showed no significant difference in OsSUT2M transgenic tubers with controls. In the OsSUT5Z transgenic lines, the average tuber yield per plant was 1.9-fold higher than the controls, and the average number of tubers per plant increased by more than 10 tubers on average, whereas the average weight of a single tuber did not increase significantly. These results suggested that the average number of tubers per plant showed more contribution than the average weight of a single tuber to the tuber yield per plant.
Collapse
Affiliation(s)
- Aijun Sun
- National Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Meyer H, Vitavska O, Wieczorek H. Identification of an animal sucrose transporter. J Cell Sci 2011; 124:1984-91. [PMID: 21586609 DOI: 10.1242/jcs.082024] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
According to a classic tenet, sugar transport across animal membranes is restricted to monosaccharides. Here, we present the first report of an animal sucrose transporter, SCRT, which we detected in Drosophila melanogaster at each developmental stage. We localized the protein in apical membranes of the late embryonic hindgut as well as in vesicular membranes of ovarian follicle cells. The fact that knockdown of SCRT expression results in significantly increased lethality demonstrates an essential function for the protein. Experiments with Saccharomyces cerevisiae as a heterologous expression system revealed that sucrose is a transported substrate. Because the knockout of SLC45A2, a highly similar protein belonging to the mammalian solute carrier family 45 (SLC45) causes oculocutaneous albinism and because the vesicular structures in which SCRT is located appear to contain melanin, we propose that these organelles are melanosome-like structures and that the transporter is necessary for balancing the osmotic equilibrium during the polymerization process of melanin by the import of a compatible osmolyte. In the hindgut epithelial cells, sucrose might also serve as a compatible osmolyte, but we cannot exclude the possibility that transport of this disaccharide also serves nutritional adequacy.
Collapse
Affiliation(s)
- Heiko Meyer
- Department of Biology and Chemistry, University of Osnabrück, 49069 Osnabrück, Germany
| | | | | |
Collapse
|
40
|
Abstract
The majority of higher plants use sucrose as their main mobile carbohydrate. Proton-driven sucrose transporters play a crucial role in cell-to-cell and long-distance distribution of sucrose throughout the plant. A very negative plant membrane potential and the ability of sucrose transporters to accumulate sucrose concentrations of more than 1 M indicate that plants evolved transporters with unique structural and functional features. The knowledge about the transport mechanism and structural/functional domains of these nano-machines is, however, still fragmentary. In this review, the current knowledge about the biophysical properties of plant sucrose transporters is summarized and discussed.
Collapse
Affiliation(s)
- Dietmar Geiger
- Julius-von-Sachs Institute, Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs Platz 2, D-97082 Würzburg, Germany.
| |
Collapse
|
41
|
|
42
|
Functional Classification of Plant Plasma Membrane Transporters. THE PLANT PLASMA MEMBRANE 2011. [DOI: 10.1007/978-3-642-13431-9_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
|
44
|
Antony E, Borland AM. The Role and Regulation of Sugar Transporters in Plants with Crassulacean Acid Metabolism. PROGRESS IN BOTANY 2008. [DOI: 10.1007/978-3-540-68421-3_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
45
|
Niittylä T, Fuglsang AT, Palmgren MG, Frommer WB, Schulze WX. Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of Arabidopsis. Mol Cell Proteomics 2007; 6:1711-26. [PMID: 17586839 DOI: 10.1074/mcp.m700164-mcp200] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Sucrose is the main product of photosynthesis and the most common transport form of carbon in plants. In addition, sucrose is a compound that serves as a signal affecting metabolic flux and development. Here we provide first results of externally induced phosphorylation changes of plasma membrane proteins in Arabidopsis. In an unbiased approach, seedlings were grown in liquid medium with sucrose and then depleted of carbon before sucrose was resupplied. Plasma membranes were purified, and phosphopeptides were enriched and subsequently analyzed quantitatively by mass spectrometry. In total, 67 phosphopeptides were identified, most of which were quantified over five time points of sucrose resupply. Among the identified phosphorylation sites, the well described phosphorylation site at the C terminus of plasma membrane H(+)-ATPases showed a relative increase in phosphorylation level in response to sucrose. This corresponded to a significant increase of proton pumping activity of plasma membrane vesicles from sucrose-supplied seedlings. A new phosphorylation site was identified in the plasma membrane H(+)-ATPase AHA1 and/or AHA2. This phosphorylation site was shown to be crucial for ATPase activity and overrode regulation via the well known C-terminal phosphorylation site. Novel phosphorylation sites were identified for both receptor kinases and cytosolic kinases that showed rapid increases in relative intensities after short times of sucrose treatment. Seven response classes were identified including non-responsive, rapid increase (within 3 min), slow increase, and rapid decrease. Relative quantification of phosphorylation changes by phosphoproteomics provides a means for identification of fast responses to external stimuli in plants as a basis for further functional characterization.
Collapse
Affiliation(s)
- Totte Niittylä
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany
| | | | | | | | | |
Collapse
|
46
|
Schmidt A, Baumann N, Schwarzkopf A, Frommer WB, Desimone M. Comparative studies on Ureide Permeases in Arabidopsis thaliana and analysis of two alternative splice variants of AtUPS5. PLANTA 2006; 224:1329-40. [PMID: 16738859 DOI: 10.1007/s00425-006-0315-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Accepted: 05/03/2006] [Indexed: 05/09/2023]
Abstract
The recovery of free purine and pyrimidine bases and their degradation products represent alternative pathways in plant cells either to synthesize nucleotides (salvage pathways) by low energy consumption or to reuse organic nitrogen. Such recycling of metabolites often requires their uptake into the cell by specialized transport systems residing in the plasma membrane. In plants, it has been suggested that several protein families are involved in this process, but only a few transporters have so far been characterized. In this work, gene expression, substrate specificities, and transport mechanisms of members of the Ureide Permease family in Arabidopsis (AtUPS) were analyzed and compared. Promoter-GUS studies indicated that the members of the family have distinct and partially overlapping expression patterns with regard to developmental stages or tissue specific localization. In addition, two alternative splice variants of AtUPS5, a novel member of the transporter family, were identified and investigated. The abundance of both alternative mRNAs varied in different organs, while the relative amounts were comparable. AtUPS5l (longer isoform) shares similar structural prediction with AtUPS1 and AtUPS2. In contrast, AtUPS5s (shorter isoform) lacks two transmembrane domains as structural consequence of the additional splice event. When expressed in yeast, AtUPS5l mediates cellular import of cyclic purine degradation products and pyrimidines similarly to AtUPS1 and AtUPS2, but differences in transport efficiencies were observed. AtUPS5s, however, could not be shown to mediate uptake of these compounds into yeast cells and might therefore be defective or have a different function.
Collapse
Affiliation(s)
- Anja Schmidt
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | | | | | | | | |
Collapse
|
47
|
Hackel A, Schauer N, Carrari F, Fernie AR, Grimm B, Kühn C. Sucrose transporter LeSUT1 and LeSUT2 inhibition affects tomato fruit development in different ways. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:180-92. [PMID: 16367963 DOI: 10.1111/j.1365-313x.2005.02572.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Sucrose transporters of higher plants belong to a large gene family. At least four different sucrose transporters are known in Solanaceous plants, although their function remains to be elucidated in detail. The isolation of LeSUT1 and LeSUT2from Lycopersicon esculentum has been described earlier. Whereas SUT1 is supposed to be the main phloem loader of sucrose in Solanaceae, the role of SUT2 remains a matter of debate. A transgenic approach was taken to evaluate the potential functions of SUT2/SUC3 proteins in sucrose transport or sensing. Expression of LeSUT1 and LeSUT2 was inhibited independently in transgenic tomato plants, using the antisense technique, in order to analyse their specific functions. Although the phloem-specific inhibition of LeSUT1 antisense plants showed a phenotype consistent with an essential role in phloem loading, constitutive LeSUT2 antisense inhibition exclusively affected tomato fruit and seed development. Neither LeSUT1, nor the LeSUT2 antisense plants were able to produce normal tomato fruits; however, it is likely that independent mechanisms underlie these phenomena. While phloem loading was blocked in LeSUT1 antisense plants, the fertility of fruits was reduced in LeSUT2 antisense plants. A detailed physiological analysis of these plants established a role for SUT2 in pollen tube growth and thus assigned a physiological role for SUT2.
Collapse
Affiliation(s)
- Aleksandra Hackel
- Biology Department, Plant Physiology, Humboldt University of Berlin, Philippstr. 13, 10115 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Sivitz AB, Reinders A, Ward JM. Analysis of the Transport Activity of Barley Sucrose Transporter HvSUT1. ACTA ACUST UNITED AC 2005; 46:1666-73. [PMID: 16091371 DOI: 10.1093/pcp/pci182] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Localization studies indicate that barley (Hordeum vulgare) sucrose transporter HvSUT1 functions in sucrose uptake into seeds during grain filling. To further understand the physiological function of HvSUT1, we have expressed the HvSUT1 cDNA in Xenopus laevis oocytes and analyzed the transport activity by two-electrode voltage clamping. Consistent with a H(+)-coupled transport mechanism, sucrose induced large inward currents in HvSUT1-expressing oocytes with a K (0.5) of 3.8 mM at pH 5.0 and a membrane potential of -157 mV. Of 21 other sugars tested, four glucosides were also transported by HvSUT1. These glucosides were maltose, salicin (2-(hydroxymethyl) phenyl beta-D-glucoside), alpha-phenylglucoside and alpha-paranitrophenylglucoside. Kinetic analysis of transport of these substrates by HvSUT1 was performed and K (0.5) values were measured. The apparent affinity for all substrates was dependent on membrane potential and pH with lower K (0.5) values at lower external pH and more negative membrane potentials. HvSUT1 was more selective for alpha-glucosides over beta-glucosides than the Arabidopsis sucrose transporter AtSUC2. Several substrates transported by AtSUC2 (beta-phenylglucoside, beta-paranitrophenylglucoside, alpha-methylglucoside, turanose, and arbutin (hydroquinone beta-D-glucoside)) showed low or undetectable transport by HvSUT1. Of these, beta-paranitrophenylglucoside inhibited sucrose transport by HvSUT1 indicating that it interacts with the transporter while arbutin and alpha-methyl glucoside did not inhibit. The results demonstrate significant differences in substrate specificity between HvSUT1 and AtSUC2.
Collapse
Affiliation(s)
- Alicia B Sivitz
- Department of Plant Biology, University of Minnesota Twin Cities, Biological Sciences Center, St. Paul, 55108, USA
| | | | | |
Collapse
|
49
|
Rae AL, Perroux JM, Grof CPL. Sucrose partitioning between vascular bundles and storage parenchyma in the sugarcane stem: a potential role for the ShSUT1 sucrose transporter. PLANTA 2005; 220:817-25. [PMID: 15517352 DOI: 10.1007/s00425-004-1399-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Accepted: 08/27/2004] [Indexed: 05/18/2023]
Abstract
A transporter with homology to the SUT/SUC family of plant sucrose transporters was isolated from a sugarcane (Saccharum hybrid) stem cDNA library. The gene, designated ShSUT1, encodes a protein of 517 amino acids, including 12 predicted membrane-spanning domains and a large central cytoplasmic loop. ShSUT1 was demonstrated to be a functional sucrose transporter by expression in yeast. The estimated K(m) for sucrose of the ShSUT1 transporter was 2 mM at pH 5.5. ShSUT1 was expressed predominantly in mature leaves of sugarcane that were exporting sucrose and in stem internodes that were actively accumulating sucrose. Immunolocalization with a ShSUT1-specific antiserum identified the protein in cells at the periphery of the vascular bundles in the stem. These cells became lignified and suberized as stem development proceeded, forming a barrier to apoplasmic solute movement. However, the movement of the tracer dye, carboxyfluorescein from phloem to storage parenchyma cells suggested that symplasmic connections are present. ShSUT1 may have a role in partitioning of sucrose between the vascular tissue and sites of storage in the parenchyma cells of sugarcane stem internodes.
Collapse
Affiliation(s)
- Anne L Rae
- CSIRO Plant Industry, Queensland Bioscience Precinct, 306 Carmody Road, Qld. 4067, St. Lucia, Australia
| | | | | |
Collapse
|
50
|
Sauer N, Ludwig A, Knoblauch A, Rothe P, Gahrtz M, Klebl F. AtSUC8 and AtSUC9 encode functional sucrose transporters, but the closely related AtSUC6 and AtSUC7 genes encode aberrant proteins in different Arabidopsis ecotypes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:120-30. [PMID: 15361146 DOI: 10.1111/j.1365-313x.2004.02196.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Three members of the Arabidopsis sucrose transporter gene family, AtSUC6-AtSUC8 (At5g43610; At1g66570; At2g14670), share a high degree of sequence homology in their coding regions and even in their introns and in their 5'- and 3'-flanking regions. A fourth sucrose transporter gene, AtSUC9 (At5g06170), which is on the same branch of the AtSUC-phylogenetic tree, shows only slightly less sequence homology. Here we present data demonstrating that two genes from this subgroup, AtSUC6 and AtSUC7, encode aberrant proteins and seem to represent sucrose transporter pseudogenes, whereas AtSUC8 and AtSUC9 encode functional sucrose transporters. These results are based on analyses of splice patterns and polymorphic sites between these genes in different Arabidopsis ecotypes, as well as on functional analyses by cDNA expression in baker's yeast. For one of these genes, AtSUC7 (At1g66570), different, ecotype-specific splice patterns were observed in Wassilewskija (Ws), C24, Columbia wild type (Col-0) and Landsberg erecta (Ler). No incorrect splicing and no sequence polymorphism were detected in the cDNAs of AtSUC8 and AtSUC9, which encode functional sucrose transporters and are expressed in floral tissue. Finally, promoter-reporter gene plants and T-DNA insertion lines were analyzed for AtSUC8 and AtSUC9.
Collapse
Affiliation(s)
- Norbert Sauer
- Molekulare Pflanzenphysiologie, FAU Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|