1
|
Sheng MY, Peng DW, Peng HM, Zhang YL, Xiao L, Zhang MR, Wang SY, Zhao CP, Zhu SY, Lu JK, Lin L, Huang R, Nie J, Fang JB. Effective substances and molecular mechanisms guided by network pharmacology: An example study of Scrophulariae Radix treatment of hyperthyroidism and thyroid hormone-induced liver and kidney injuries. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117965. [PMID: 38423410 DOI: 10.1016/j.jep.2024.117965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scrophulariae Radix (Xuanshen [XS]) has been used for several years to treat hyperthyroidism. However, its effective substances and pharmacological mechanisms in the treatment of hyperthyroidism and thyroid hormone-induced liver and kidney injuries have not yet been elucidated. AIM OF THE STUDY This study aimed to explore the pharmacological material basis and potential mechanism of XS therapy for hyperthyroidism and thyroid hormone-induced liver and kidney injuries based on network pharmacology prediction and experimental validation. MATERIALS AND METHODS Based on 31 in vivo XS compounds identified using ultra-performance liquid chromatography tandem quadruple exactive orbitrap high-resolution accurate-mass spectrometry (UPLC-QE-HRMS), a network pharmacology approach was used for mechanism prediction. Systematic networks were constructed to identify the potential molecular targets, biological processes (BP), and signaling pathways. A component-target-pathway network was established. Mice were administered levothyroxine sodium through gavage for 30 d and then treated with different doses of XS extract with or without propylthiouracil (PTU) for 30 d. Blood, liver, and kidney samples were analyzed using an enzyme-linked immunosorbent assay (ELISA) and western blotting. RESULTS A total of 31 prototypes, 60 Phase I metabolites, and 23 Phase II metabolites were tentatively identified in the plasma of rats following the oral administration of XS extract. Ninety-six potential common targets between the 31 in vivo compounds and the diseases were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that Bcl-2, BAD, JNK, p38, and ERK1/2 were the top targets. XS extract with or without PTU had the following effects: inhibition of T3/T4/fT3/fT4 caused by levothyroxine; increase of TSH levels in serum; restoration of thyroid structure; improvement of liver and kidney structure and function by elevating the activities of anti-oxidant enzymes catalase (CAT),superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px); activation anti-apoptotic proteins Bcl-2; inhibition the apoptotic protein p-BAD; downregulation inflammation-related proteins p-ERK1/2, p-JNK, and p-p38; and inhibition of the aggregation of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6, as well as immune cells in the liver. CONCLUSION XS can be used to treat hyperthyroidism and liver and kidney injuries caused by thyroid hormones through its anti-oxidant, anti-inflammatory, and anti-apoptotic properties. In addition, serum pharmacochemical analysis revealed that five active compounds, namely 4-methylcatechol, sugiol, eugenol, acetovanillone, and oleic acid, have diverse metabolic pathways in vivo and exhibit potential as effective therapeutic agents.
Collapse
Affiliation(s)
- Meng-Yuan Sheng
- School of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China; School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Institute for Drug Control, Wuhan, 430064, China; Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - De-Wei Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hui-Ming Peng
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Ya-Li Zhang
- School of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China.
| | - Ling Xiao
- Hubei Institute for Drug Control, Wuhan, 430064, China.
| | - Meng-Ru Zhang
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Si-Yu Wang
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Chuan-Peng Zhao
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Si-Ying Zhu
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jian-Kang Lu
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Li Lin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Rong Huang
- Department of Ophthalmology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, Hubei, China; Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, China.
| | - Jing Nie
- School of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China; Hubei Institute for Drug Control, Wuhan, 430064, China.
| | - Jin-Bo Fang
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
2
|
Gao T, Luo S, Li H, Su Z, Wen Q. Prospective role of lusianthridin in attenuating cadmium-induced functional and cellular damage in rat thyroid. Heliyon 2024; 10:e27080. [PMID: 38449627 PMCID: PMC10915401 DOI: 10.1016/j.heliyon.2024.e27080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/30/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
The thyroid represents the most prevalent form of head and neck and endocrine cancer. The present investigation demonstrates the anticancer effects of Lusianthridin against cadmium (Cd)-induced thyroid cancer in rats. Swiss Wistar rats were utilized in this experimental study. Cd was employed to induce thyroid cancer, and the rats were divided into different groups, receiving oral administration of Lusianthridin (20 mg/kg) for 14 days. Thyroid parameters, deiodinase levels, hepatic parameters, lipid parameters, and antioxidant parameters were respectively estimated. The mRNA expression was assessed using real-time reverse transcriptase polymerase chain reaction (RT-PCR). Lusianthridin significantly (P < 0.001) improved protein levels, T4, T3, free iodine in urine, and suppressed the level of TSH. Lusianthridin significantly (P < 0.001) enhanced the levels of FT3, FT4, and decreased the level of rT3. Lusianthridin significantly (P < 0.001) reduced the levels of D1, D2, D3, and enhanced the levels of hepatic parameters like AST, ALT. Lusianthridin remarkably (P < 0.001) altered the levels of lipid parameters such as LDL, total cholesterol, HDL, and triglycerides; antioxidant parameters viz., MDA, GSH, CAT, and SOD. Lusianthridin significantly altered the mRNA expression of Bcl-2, Bax, MEK1, ERK1, ERK2, p-eIf2α, GRP78, eIf2α, and GRP94. The results clearly state that Lusianthridin exhibits protective effects against thyroid cancer.
Collapse
Affiliation(s)
- Teng Gao
- Department of Thyroid Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, Henan, 450003, China
| | - Sijia Luo
- Department of General Surgery, General Hospital of Central Theater Command, Wuhan, Hubei, 430070, China
| | - Hongguang Li
- Department of Thyroid Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, Henan, 450003, China
| | - Zijie Su
- Department of Thyroid Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, Henan, 450003, China
| | - Qinghui Wen
- Department of Clinical Laboratory, Dongguan People's Hospital, Dongguan, Guangdong, 523059, China
| |
Collapse
|
3
|
Behringer V, Heistermann M, Malaivijitnond S, Schülke O, Ostner J. Developmental and environmental modulation of fecal thyroid hormone levels in wild Assamese macaques (Macaca assamensis). Am J Primatol 2023; 85:e23530. [PMID: 37365835 DOI: 10.1002/ajp.23530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/09/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
Thyroid hormones are key modulators of development, as well as mediators of environmental conditions, by regulating developmental processes and metabolism in primates. Hormone measurement in noninvasively collected samples, that is, feces and urine, is a valuable tool for studying the endocrine function of wildlife, and recent studies have demonstrated the feasibility of measuring thyroid hormones in fecal samples of zoo-housed and wild nonhuman primates. Our study aimed to (i) validate the measurement of immunoreactive fecal total triiodothyronine (IF-T3) in wild Assamese macaques (Macaca assamensis) and (ii) to investigate its developmental changes and its response to environmental changes, including stress responses, in immature individuals. Fecal samples and environmental parameters were collected from individuals of three social groups of wild Assamese macaques living at Phu Khieo Wildlife Sanctuary, Northeastern Thailand. Our study confirmed the methodological feasibility and biological validity of measuring IF-T3 in this population. Specifically, the biological validation demonstrated higher IF-T3 levels in immatures compared to adults, and higher levels in females during late gestation compared to the preconception stage. Our analysis of IF-T3 levels in developing immature macaques revealed a significant increase with age. Furthermore, we found a positive association between IF-T3 and immunoreactive fecal glucocorticoid levels, an indicator of the physiological stress response. Neither minimum temperature nor fruit abundance predicted variation in IF-T3 levels in the immatures. Our findings indicate the possibility for differing effects of climatic factors and food availability on thyroid hormone level changes in immature versus adult animals and in wild compared to experimental conditions. Overall, our study provides the basis for further investigations into the role of thyroid hormones in shaping species-specific traits, growth, and overall primate development.
Collapse
Affiliation(s)
- Verena Behringer
- Endocrinology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Michael Heistermann
- Endocrinology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Suchinda Malaivijitnond
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi, Thailand
| | - Oliver Schülke
- Leibniz ScienceCampus Primate Cognition, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Behavioral Ecology Department, University of Goettingen, Göttingen, Germany
- Primate Social Evolution Group, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Julia Ostner
- Leibniz ScienceCampus Primate Cognition, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Behavioral Ecology Department, University of Goettingen, Göttingen, Germany
- Primate Social Evolution Group, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
4
|
Sonawane K, Dixit H, Thota N, Mistry T, Balavenkatasubramanian J. "Knowing It Before Blocking It," the ABCD of the Peripheral Nerves: Part B (Nerve Injury Types, Mechanisms, and Pathogenesis). Cureus 2023; 15:e43143. [PMID: 37692583 PMCID: PMC10484240 DOI: 10.7759/cureus.43143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Selander emphatically said, "Handle these nerves with care," and those words still echo, conveying a loud and clear message that, however rare, peripheral nerve injury (PNI) remains a perturbing possibility that cannot be ignored. The unprecedented nerve injuries associated with peripheral nerve blocks (PNBs) can be most tormenting for the unfortunate patient and a nightmare for the anesthetist. Possible justifications for the seemingly infrequent occurrences of PNB-related PNIs include a lack of documentation/reporting, improper aftercare, or associated legal implications. Although they make up only a small portion of medicolegal claims, they are sometimes difficult to defend. The most common allegations are attributed to insufficient informed consent; preventable damage to a nerve(s); delay in diagnosis, referral, or treatment; misdiagnosis, and inappropriate treatment and follow-up care. Also, sufficient prospective studies or randomized trials have not been conducted, as exploring such nerve injuries (PNB-related) in living patients or volunteers may be impractical or unethical. Understanding the pathophysiology of various types of nerve injury is vital to dealing with them further. Processes like degeneration, regeneration, remyelination, and reinnervation can influence the findings of electrophysiological studies. Events occurring in such a process and their impact during the assessment determine the prognosis and the need for further interventions. This educational review describes various types of PNB-related nerve injuries and their associated pathophysiology.
Collapse
Affiliation(s)
- Kartik Sonawane
- Anesthesiology, Ganga Medical Centre and Hospitals, Coimbatore, IND
| | - Hrudini Dixit
- Anesthesiology, Sir H. N. Reliance Foundation Hospital and Research Centre, Mumbai, IND
| | - Navya Thota
- Anesthesiology, Ganga Medical Centre and Hospitals, Coimbatore, IND
| | - Tuhin Mistry
- Anesthesiology, Ganga Medical Centre and Hospitals, Coimbatore, IND
| | | |
Collapse
|
5
|
Petito G, Cioffi F, Magnacca N, de Lange P, Senese R, Lanni A. Adipose Tissue Remodeling in Obesity: An Overview of the Actions of Thyroid Hormones and Their Derivatives. Pharmaceuticals (Basel) 2023; 16:ph16040572. [PMID: 37111329 PMCID: PMC10146771 DOI: 10.3390/ph16040572] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Metabolic syndrome and obesity have become important health issues of epidemic proportions and are often the cause of related pathologies such as type 2 diabetes (T2DM), hypertension, and cardiovascular disease. Adipose tissues (ATs) are dynamic tissues that play crucial physiological roles in maintaining health and homeostasis. An ample body of evidence indicates that in some pathophysiological conditions, the aberrant remodeling of adipose tissue may provoke dysregulation in the production of various adipocytokines and metabolites, thus leading to disorders in metabolic organs. Thyroid hormones (THs) and some of their derivatives, such as 3,5-diiodo-l-thyronine (T2), exert numerous functions in a variety of tissues, including adipose tissues. It is known that they can improve serum lipid profiles and reduce fat accumulation. The thyroid hormone acts on the brown and/or white adipose tissues to induce uncoupled respiration through the induction of the uncoupling protein 1 (UCP1) to generate heat. Multitudinous investigations suggest that 3,3',5-triiodothyronine (T3) induces the recruitment of brown adipocytes in white adipose depots, causing the activation of a process known as "browning". Moreover, in vivo studies on adipose tissues show that T2, in addition to activating brown adipose tissue (BAT) thermogenesis, may further promote the browning of white adipose tissue (WAT), and affect adipocyte morphology, tissue vascularization, and the adipose inflammatory state in rats receiving a high-fat diet (HFD). In this review, we summarize the mechanism by which THs and thyroid hormone derivatives mediate adipose tissue activity and remodeling, thus providing noteworthy perspectives on their efficacy as therapeutic agents to counteract such morbidities as obesity, hypercholesterolemia, hypertriglyceridemia, and insulin resistance.
Collapse
Affiliation(s)
- Giuseppe Petito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", 81100 Caserta, Italy
| | - Federica Cioffi
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy
| | - Nunzia Magnacca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", 81100 Caserta, Italy
| | - Pieter de Lange
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", 81100 Caserta, Italy
| | - Rosalba Senese
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", 81100 Caserta, Italy
| | - Antonia Lanni
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", 81100 Caserta, Italy
| |
Collapse
|
6
|
Lee HY, Sim BC, Nga HT, Moon JS, Tian J, Linh NT, Ju SH, Choi DW, Setoyama D, Yi HS. Metabolite Changes during the Transition from Hyperthyroidism to Euthyroidism in Patients with Graves' Disease. Endocrinol Metab (Seoul) 2022; 37:891-900. [PMID: 36604959 PMCID: PMC9816501 DOI: 10.3803/enm.2022.1590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/28/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGRUOUND An excess of thyroid hormones in Graves' disease (GD) has profound effects on systemic energy metabolism that are currently partially understood. In this study, we aimed to provide a comprehensive understanding of the metabolite changes that occur when patients with GD transition from hyperthyroidism to euthyroidism with methimazole treatment. METHODS Eighteen patients (mean age, 38.6±14.7 years; 66.7% female) with newly diagnosed or relapsed GD attending the endocrinology outpatient clinics in a single institution were recruited between January 2019 and July 2020. All subjects were treated with methimazole to achieve euthyroidism. We explored metabolomics by performing liquid chromatography-mass spectrometry analysis of plasma samples of these patients and then performed multivariate statistical analysis of the metabolomics data. RESULTS Two hundred metabolites were measured before and after 12 weeks of methimazole treatment in patients with GD. The levels of 61 metabolites, including palmitic acid (C16:0) and oleic acid (C18:1), were elevated in methimazole-naïve patients with GD, and these levels were decreased by methimazole treatment. The levels of another 15 metabolites, including glycine and creatinine, were increased after recovery of euthyroidism upon methimazole treatment in patients with GD. Pathway analysis of metabolomics data showed that hyperthyroidism was closely related to aminoacyl-transfer ribonucleic acid biosynthesis and branched-chain amino acid biosynthesis pathways. CONCLUSION In this study, significant variations of plasma metabolomic patterns that occur during the transition from hyperthyroidism to euthyroidism were detected in patients with GD via untargeted metabolomics analysis.
Collapse
Affiliation(s)
- Ho Yeop Lee
- Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Byeong Chang Sim
- Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Ha Thi Nga
- Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Ji Sun Moon
- Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, Daejeon, Korea
| | - Jingwen Tian
- Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Nguyen Thi Linh
- Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Sang Hyeon Ju
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Dong Wook Choi
- Department of Biochemistry, Chungnam National University College of Natural Sciences, Daejeon, Korea
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka, Japan
- Corresponding authors: Hyon-Seung Yi. Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, 282 Munhwa-ro, Jung-gu, Daejeon 35015, Korea Tel: +82-42-280-6994, Fax: +82-42-280-7995, E-mail:
| | - Hyon-Seung Yi
- Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
- Daiki Setoyama. Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, 3-1-1 Maidashi, Fukuoka 812-8582, Japan Tel: +81-92-642-5752, Fax: +81-92-642-5752, E-mail:
| |
Collapse
|
7
|
Cioffi F, Giacco A, Goglia F, Silvestri E. Bioenergetic Aspects of Mitochondrial Actions of Thyroid Hormones. Cells 2022; 11:cells11060997. [PMID: 35326451 PMCID: PMC8947633 DOI: 10.3390/cells11060997] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/04/2022] [Accepted: 03/13/2022] [Indexed: 02/07/2023] Open
Abstract
Much is known, but there is also much more to discover, about the actions that thyroid hormones (TH) exert on metabolism. Indeed, despite the fact that thyroid hormones are recognized as one of the most important regulators of metabolic rate, much remains to be clarified on which mechanisms control/regulate these actions. Given their actions on energy metabolism and that mitochondria are the main cellular site where metabolic transformations take place, these organelles have been the subject of extensive investigations. In relatively recent times, new knowledge concerning both thyroid hormones (such as the mechanisms of action, the existence of metabolically active TH derivatives) and the mechanisms of energy transduction such as (among others) dynamics, respiratory chain organization in supercomplexes and cristes organization, have opened new pathways of investigation in the field of the control of energy metabolism and of the mechanisms of action of TH at cellular level. In this review, we highlight the knowledge and approaches about the complex relationship between TH, including some of their derivatives, and the mitochondrial respiratory chain.
Collapse
|
8
|
Song E, Koo MJ, Noh E, Hwang SY, Park MJ, Kim JA, Roh E, Choi KM, Baik SH, Cho GJ, Yoo HJ. Risk of Diabetes in Patients with Long-Standing Graves' Disease: A Longitudinal Study. Endocrinol Metab (Seoul) 2021; 36:1277-1286. [PMID: 34915605 PMCID: PMC8743588 DOI: 10.3803/enm.2021.1251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/04/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The detrimental effects of excessive thyroid hormone on glucose metabolism have been widely investigated. However, the risk of diabetes in patients with long-standing hyperthyroidism, especially according to treatment modality, remains uncertain, with few longitudinal studies. METHODS The risk of diabetes in patients with Graves' disease treated with antithyroid drugs (ATDs) for longer than the conventional duration (≥2 years) was compared with that in age-and sex-matched controls. The risk was further compared according to subsequent treatment modalities after a 24-month course of ATD: continuation of ATD (ATD group) vs. radioactive iodine ablation (RIA) group. RESULTS A total of 4,593 patients were included. Diabetes was diagnosed in 751 (16.3%) patients over a follow-up of 7.3 years. The hazard ratio (HR) for diabetes, after adjusting for various known risk factors, was 1.18 (95% confidence interval [CI], 1.10 to 1.28) in patients with hyperthyroidism. Among the treatment modality groups, the RIA group (n=102) had a higher risk of diabetes than the ATD group (n=4,491) with HR of 1.56 (95% CI, 1.01 to 2.42). Further, the risk of diabetes increased with an increase in the ATD treatment duration (P for trend=0.019). CONCLUSION The risk of diabetes was significantly higher in patients with long-standing Graves' disease than in the general population, especially in patients who underwent RIA and prolonged ATD treatment. Special attention to hyperglycemia during follow-up along with effective control of hyperthyroidism may be necessary to reduce the risk of diabetes in these patients.
Collapse
Affiliation(s)
- Eyun Song
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul,
Korea
| | - Min Ji Koo
- Smart Healthcare Center, Korea University Guro Hospital, Korea University College of Medicine, Seoul,
Korea
| | - Eunjin Noh
- Smart Healthcare Center, Korea University Guro Hospital, Korea University College of Medicine, Seoul,
Korea
| | - Soon Young Hwang
- Department of Biostatistics, Korea University College of Medicine, Seoul,
Korea
| | - Min Jeong Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul,
Korea
| | - Jung A Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul,
Korea
| | - Eun Roh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul,
Korea
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul,
Korea
| | - Sei Hyun Baik
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul,
Korea
| | - Geum Joon Cho
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul,
Korea
| | - Hye Jin Yoo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul,
Korea
| |
Collapse
|
9
|
Mohammed Hussein SM, AbdElmageed RM. The Relationship Between Type 2 Diabetes Mellitus and Related Thyroid Diseases. Cureus 2021; 13:e20697. [PMID: 35106234 PMCID: PMC8787293 DOI: 10.7759/cureus.20697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/25/2021] [Indexed: 01/25/2023] Open
Abstract
Diabetes and thyroid diseases are caused by endocrine dysfunction and both have been demonstrated to mutually impact each other. Variation in thyroid hormone levels, even within the normal range, can trigger the onset of type 2 diabetes mellitus (T2DM), particularly in people with prediabetes. However, the available evidence is contradictory. The purpose of this review is to understand the pathological relationship between thyroid-related disorders and T2DM. T2DM in thyroid dysfunction is thought to be caused by altered gene expression of a group of genes, as well as physiological abnormalities that result in decreased glucose uptake increased, splanchnic glucose absorption, disposal in muscles, increased hepatic glucose output. Additionally, both hyperthyroidism and hypothyroidism can cause insulin resistance. Insulin resistance can develop in subclinical hypothyroidism as a result of a reduced rate of insulin-stimulated glucose transfer caused by a translocation of the glucose transporter type 2 (GLUT 2) gene. On the other hand, novel missense variations in (Thr92Ala) can cause insulin resistance. Furthermore insulin resistance and hyperinsulinemia resulting from diabetes can cause culminate in goitrous transformation of the thyroid gland. Thyroid-related diseases and T2DM are closely linked. Type 2 diabetes can be exacerbated by thyroid disorders, and diabetes can worsen thyroid dysfunction. Insulin resistance has been found to play a crucial role in both T2DM and thyroid dysfunction. Therefore, failure to recognize inadequate thyroid hormone levels in diabetes and insulin resistance in both conditions can lead to poor management of patients.
Collapse
|
10
|
Chinnappan SM, George A, Pandey P, Narke G, Choudhary YK. Effect of Eurycoma longifolia standardised aqueous root extract-Physta ® on testosterone levels and quality of life in ageing male subjects: a randomised, double-blind, placebo-controlled multicentre study. Food Nutr Res 2021; 65:5647. [PMID: 34262417 PMCID: PMC8254464 DOI: 10.29219/fnr.v65.5647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/08/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
Background Low testosterone levels cause physiological changes that compromise the quality of life in ageing men. A standardised water extract from the root of Eurycoma longifolia (EL), known as Physta®, is known to increase testosterone levels. Objective To evaluate the safety and efficacy of Physta® in improving the testosterone levels and quality of life in ageing male subjects. Design This randomised, double-blind, placebo-controlled study enrolled 105 male subjects aged 50-70 years with a testosterone level <300 ng/dL, BMI ≥ 18 and ≤30.0 kg/m2. The subjects were given either Physta® 100 mg, 200 mg or placebo daily for 12 weeks. The primary endpoints were changes in serum total and free testosterone levels. The secondary endpoints included changes in the level of sex hormone-binding globulin (SHBG), dihydroepiandrosterone (DHEA), glycated haemoglobin (HbA1c), insulin-like growth factor-1 (IGF-1), thyroid function tests (T3, T4, TSH and Free T3) and cortisol. Changes in Ageing Male Symptoms (AMS) score, Fatigue Severity Scale (FSS) score and muscle strength are other secondary endpoints. The safety of the intervention products was measured by complete blood count, lipid profile, liver and renal function tests. Results There was a significant increase in the total testosterone levels at week 12 (P < 0.05) in the Physta® 100 mg group and at weeks 4 (P < 0.05), 8 (P < 0.01) and 12 (P < 0.001) in the Physta® 200 mg group compared to placebo. No significant between-group differences in free testosterone levels were observed but a significant within-group increase occurred at weeks 4 (P < 0.01), 8 (P < 0.001) and 12 (P < 0.001) in the Physta®100 mg group and at weeks 2 (P < 0.01), 4 (P < 0.01), 8 (P < 0.001) and 12 (P < 0.001) in the Physta® 200 mg group. The AMS and FSS showed significant reduction (P < 0.001) in total scores at all time-points within- and between-group in both Physta® groups. DHEA levels significantly increased (P < 0.05) within-group in both Physta® groups from week 2 onwards. Cortisol levels significantly (P < 0.01) decreased in the Physta® 200 mg group, while muscle strength significantly (P < 0.001) increased in both Physta® groups at week 12 in the within-group comparison. There were no significant changes in SHBG. No safety related clinically relevant changes were observed. Conclusion Supplementation of Physta® at 200 mg was able to increase the serum total testosterone, reduce fatigue and improve the quality of life in ageing men within 2 weeks' time. Trial registration This clinical study has been registered in ctri.nic.in (CTRI/2019/03/017959).
Collapse
Affiliation(s)
| | - Annie George
- Biotropics Malaysia Berhad, Shah Alam, Selangor, Malaysia
| | - Pragya Pandey
- Oriana Hospital, Ravindrapuri, Varanasi, Uttar Pradesh, India
| | - Govinda Narke
- Lokmanya Multi-Specialty Hospital, Pradhikaran, Nigdi, Pune, Maharashtra, India
| | | |
Collapse
|
11
|
Giammanco M, Di Liegro CM, Schiera G, Di Liegro I. Genomic and Non-Genomic Mechanisms of Action of Thyroid Hormones and Their Catabolite 3,5-Diiodo-L-Thyronine in Mammals. Int J Mol Sci 2020; 21:ijms21114140. [PMID: 32532017 PMCID: PMC7312989 DOI: 10.3390/ijms21114140] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Since the realization that the cellular homologs of a gene found in the retrovirus that contributes to erythroblastosis in birds (v-erbA), i.e. the proto-oncogene c-erbA encodes the nuclear receptors for thyroid hormones (THs), most of the interest for THs focalized on their ability to control gene transcription. It was found, indeed, that, by regulating gene expression in many tissues, these hormones could mediate critical events both in development and in adult organisms. Among their effects, much attention was given to their ability to increase energy expenditure, and they were early proposed as anti-obesity drugs. However, their clinical use has been strongly challenged by the concomitant onset of toxic effects, especially on the heart. Notably, it has been clearly demonstrated that, besides their direct action on transcription (genomic effects), THs also have non-genomic effects, mediated by cell membrane and/or mitochondrial binding sites, and sometimes triggered by their endogenous catabolites. Among these latter molecules, 3,5-diiodo-L-thyronine (3,5-T2) has been attracting increasing interest because some of its metabolic effects are similar to those induced by T3, but it seems to be safer. The main target of 3,5-T2 appears to be the mitochondria, and it has been hypothesized that, by acting mainly on mitochondrial function and oxidative stress, 3,5-T2 might prevent and revert tissue damages and hepatic steatosis induced by a hyper-lipid diet, while concomitantly reducing the circulating levels of low density lipoproteins (LDL) and triglycerides. Besides a summary concerning general metabolism of THs, as well as their genomic and non-genomic effects, herein we will discuss resistance to THs and the possible mechanisms of action of 3,5-T2, also in relation to its possible clinical use as a drug.
Collapse
Affiliation(s)
- Marco Giammanco
- Department of Surgical, Oncological and Oral Sciences (Discipline Chirurgiche, Oncologiche e Stomatologiche), University of Palermo, 90127 Palermo, Italy;
| | - Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)), University of Palermo, 90128 Palermo, Italy; (C.M.D.L.); (G.S.)
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)), University of Palermo, 90128 Palermo, Italy; (C.M.D.L.); (G.S.)
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (Bi.N.D.)), University of Palermo, 90127 Palermo, Italy
- Correspondence: ; Tel.: +39-091-2389-7415 or +39-091-2389-7446
| |
Collapse
|
12
|
Vamshidhar IS, Rani SSS. A Study of Association of Thyroid Dysfunctions in Patients with Type 2 Diabetes Mellitus. MAEDICA 2020; 15:169-173. [PMID: 32952680 PMCID: PMC7482697 DOI: 10.26574/maedica.2020.15.2.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Background: Type 2 diabetes mellitus is known to be associated with other endocrine dysfunctions and thyroid is one of them. In the current study we tried to evaluate the frequency of thyroid dysfunctions in patients with type 2 diabetes mellitus and compare them with a normal control population. Methods: This cross-sectional study was carried out in the Department of Physiology and Department of General Medicine, Kakatiya Medical College, and MGM Hospital, Warangal, India. A total of 50 consecutive patients with diabetes mellitus type 2 were selected as cases, and an equal number of age- and sex-matched individuals with normoglycemia as controls. Laboratory investigations included measurements of fasting blood sugar [FBS] and HbA1c values after overnight fasting for eight hours, serum triglycerides, along with serum TSH, FT3, and FT4, which were measured by chemiluminescence immunoassay. Results: Among all cases of type 2 diabetes mellitus, eight (16%) presented thyroid disorders, with 10% in male patients and 6% in female patients. The overall frequency of thyroid disorders was found in four (8%) cases, of which two (4%) in males and two in females. The values of TSH μIU/ml and FBS mg/dl in type 2 diabetes mellitus cases were plotted and a Pearson correlation coefficient of +0.70 was calculated, indicating a positive correlation between the TSH and FBS. Along with TSH levels, the values of HbA1c were plotted in patients with type 2 diabetes mellitus and a Pearson correlation coefficient of +0.76 was calculated. Conclusion: Within the limitations of the present study, it can be concluded that the prevalence of thyroid dysfunctions is more common in patients with type 2 diabetes mellitus. Also, a continuous positive correlation of TSH with FBS and HbA1c was found. Hence, a periodic screening for their coexistence in thyroid dysfunctions among diabetic patients is advisable.
Collapse
Affiliation(s)
- I S Vamshidhar
- Department of Physiology, All India Institute of Medical Sciences (AIIMS), Bibinagar-508126, Telangana State, India
| | - S S Sabitha Rani
- Department of Pathology, Kamineni Institute of Medical Sciences (KIMS), Sreepuram, Narketpally, Telangana-508254, India
| |
Collapse
|
13
|
Yang Q, Liu W, Sun D, Wang C, Li Y, Bi X, Gu P, Feng H, Wu F, Hou L, Hou C, Li Y. Yinning Tablet, a hospitalized preparation of Chinese herbal formula for hyperthyroidism, ameliorates thyroid hormone-induced liver injury in rats: Regulation of mitochondria-mediated apoptotic signals. JOURNAL OF ETHNOPHARMACOLOGY 2020; 252:112602. [PMID: 32004632 DOI: 10.1016/j.jep.2020.112602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/01/2019] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hyperthyroidism is closely associated with liver injury. The preliminary clinical observation suggests that Yinning Tablet, a hospitalized preparation of traditional Chinese formula for hyperthyroidism, improves not only hyperthyroidism, but also hyperthyroidism-associated liver injury. AIM To evaluate the effect and underlying mechanisms of Yinning Tablet on thyroid hormone-induced liver injury. MATERIALS AND METHODS Female rats were orally administered L-thyroxine (1 mg/kg) once daily for 60 days, and co-treated with the carefully identified Yinning Tablet extract (0.6-2.4 g/kg) during the last 30 days. Blood and liver variables were determined enzymatically, histologically, by ELISA, radioimmunoassay, Real-Time PCR or Western blot, respectively. RESULTS Co-treatment with the extract attenuated L-thyroxine-induced increases in serum alanine transaminase and aspartate transaminase activities, the ratio of liver weight to body weight, cytoplasmic vacuolization in hepatocytes, infiltrated inflammatory cells and confused structures in liver tissue, accompanied by attenuation of increased serum triiodo-l-thyronine concentration and hepatic deiodinase type I overexpression in rats. Importantly, Yinning Tablet suppressed L-thyroxine-triggered hepatic Bax, cleaved caspases-3, -8 and -9 protein overexpression, and Bcl-2 protein downregulation. Furthermore, the increases in cytochrome c protein expression, Ca2+-ATPase activity and malondialdehyde content, and decreases in activities of Na+/K+-ATPase, catalase, superoxide dismutase and glutathione peroxidase, and total antioxidant capacity in liver tissue were attenuated. CONCLUSION The present results suggest that Yinning Tablet ameliorates thyroid hormone-induced liver injury in rats by regulating mitochondria-mediated apoptotic signals. Our findings go insight into the pharmacological basis of the hospitalized preparation for treatment of hyperthyroidism-associated liver injury.
Collapse
Affiliation(s)
- Qin Yang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenqin Liu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Dongmei Sun
- Guangdong Yifang Pharmaceutical Co., Ltd, Foshan, 528244, China
| | - Chunxia Wang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yangxue Li
- Analysis Department of Chinese Medicine, Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, 510095, China
| | - Xiaoli Bi
- Analysis Department of Chinese Medicine, Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, 510095, China
| | - Peng Gu
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China
| | - Haixing Feng
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Fuling Wu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lianbing Hou
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Chuqi Hou
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Yuhao Li
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Endocrinology and Metabolism Group, Sydney Institute of Health Sciences/Sydney Institute of Traditional Chinese Medicine, Sydney, NSW, 2000, Australia
| |
Collapse
|
14
|
Jayanthi R, Srinivasan AR. Biochemical isthmus [nexus] between type 2 diabetes mellitus and thyroid status-an update. Diabetes Metab Syndr 2019; 13:1173-1177. [PMID: 31336461 DOI: 10.1016/j.dsx.2019.01.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/18/2019] [Indexed: 11/29/2022]
Abstract
Both Type 1 [T1DM] and Type 2 diabetes mellitus [T2DM] share a nexus with altered thyroid status. In recent times, evidences point to the link between thyroid hormones andT2DM in particular. Several lines of evidences suggest an array of biochemical and molecular events. Gene polymorphism, disturbances in gene expression and regulation, enhanced and bizarre absorption of dietary glucose from intestine, decreased utilization of glucose by tissues and aberrations in hepatic handling of glucose with the onus on Gluconeogenesis are some of the projected mechanisms. Insulin resistance, a progressive condition is the hallmark in T2DM. Hypothyroidism as well as hyperthyroidism have been associated with insulin resistance which are synonymous with impaired glucose metabolism in T2DM. A multitude of basic, clinical and molecular studies provide an insight into thyroid comorbidity in T2DM, though there are a few instances to suggest equivocal link denoting cause-effect relationship. In biochemical pharmacology, as fortified by pharmacogenomics, modalities have now been proposed, through drug trials, to underline the utility of specifically designed thyroid hormone analogues in addressing metabolic syndrome, DM and associated cardiovascular pathology. A thorough understanding of the physiological, biochemical and molecular mechanisms would certainly open newer vistas in the perspectives of T2DM with special reference to alterations in thyroid status.
Collapse
Affiliation(s)
- Rajendran Jayanthi
- Department of Biochemistry, Mahatma Gandhi Medical College and Research Institute, Sri Balaji Vidyapeeth, Pillaiyarkuppam, Pondicherry, 607 402, India
| | - Abu Raghavan Srinivasan
- Department of Biochemistry, Mahatma Gandhi Medical College and Research Institute, Sri Balaji Vidyapeeth, Pillaiyarkuppam, Pondicherry, 607 402, India.
| |
Collapse
|
15
|
Yau WW, Singh BK, Lesmana R, Zhou J, Sinha RA, Wong KA, Wu Y, Bay BH, Sugii S, Sun L, Yen PM. Thyroid hormone (T 3) stimulates brown adipose tissue activation via mitochondrial biogenesis and MTOR-mediated mitophagy. Autophagy 2019; 15:131-150. [PMID: 30209975 PMCID: PMC6287687 DOI: 10.1080/15548627.2018.1511263] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/26/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022] Open
Abstract
The thyroid hormone triiodothyronine (T3) activates thermogenesis by uncoupling electron transport from ATP synthesis in brown adipose tissue (BAT) mitochondria. Although T3 can induce thermogenesis by sympathetic innervation, little is known about its cell autonomous effects on BAT mitochondria. We thus examined effects of T3 on mitochondrial activity, autophagy, and metabolism in primary brown adipocytes and BAT and found that T3 increased fatty acid oxidation and mitochondrial respiration as well as autophagic flux, mitophagy, and mitochondrial biogenesis. Interestingly, there was no significant induction of intracellular reactive oxygen species (ROS) despite high mitochondrial respiration and UCP1 induction by T3. However, when cells were treated with Atg5 siRNA to block autophagy, induction of mitochondrial respiration by T3 decreased, and was accompanied by ROS accumulation, demonstrating a critical role for autophagic mitochondrial turnover. We next generated an Atg5 conditional knockout mouse model (Atg5 cKO) by injecting Ucp1 promoter-driven Cre-expressing adenovirus into Atg5Flox/Flox mice to examine effects of BAT-specific autophagy on thermogenesis in vivo. Hyperthyroid Atg5 cKO mice exhibited lower body temperature than hyperthyroid or euthyroid control mice. Metabolomic analysis showed that T3 increased short and long chain acylcarnitines in BAT, consistent with increased β-oxidation. T3 also decreased amino acid levels, and in conjunction with SIRT1 activation, decreased MTOR activity to stimulate autophagy. In summary, T3 has direct effects on mitochondrial autophagy, activity, and turnover in BAT that are essential for thermogenesis. Stimulation of BAT activity by thyroid hormone or its analogs may represent a potential therapeutic strategy for obesity and metabolic diseases. Abbreviations: ACACA: acetyl-Coenzyme A carboxylase alpha; AMPK: AMP-activated protein kinase; Acsl1: acyl-CoA synthetase long-chain family member 1; ATG5: autophagy related 5; ATG7: autophagy related 7; ATP: adenosine triphosphate; BAT: brown adipose tissue; cKO: conditional knockout; COX4I1: cytochrome c oxidase subunit 4I1; Cpt1b: carnitine palmitoyltransferase 1b, muscle; CQ: chloroquine; DAPI: 4',6-diamidino-2-phenylindole; DIO2: deiodinase, iodothyronine, type 2; DMEM: Dulbecco's modified Eagle's medium; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; Fabp4: fatty acid binding protein 4, adipocyte; FBS: fetal bovine serum; FCCP: carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone; FGF: fibroblast growth factor; FOXO1: forkhead box O1; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; Gpx1: glutathione peroxidase 1; Lipe: lipase, hormone sensitive; MAP1LC3B: microtubule-associated protein 1 light chain 3; mRNA: messenger RNA; MTORC1: mechanistic target of rapamycin kinase complex 1; NAD: nicotinamide adenine dinucleotide; Nrf1: nuclear respiratory factor 1; OCR: oxygen consumption rate; PBS: phosphate-buffered saline; PCR: polymerase chain reaction; PPARGC1A: peroxisome proliferative activated receptor, gamma, coactivator 1 alpha; Pnpla2: patatin-like phospholipase domain containing 2; Prdm16: PR domain containing 16; PRKA: protein kinase, AMP-activated; RPS6KB: ribosomal protein S6 kinase; RFP: red fluorescent protein; ROS: reactive oxygen species; SD: standard deviation; SEM: standard error of the mean; siRNA: small interfering RNA; SIRT1: sirtuin 1; Sod1: superoxide dismutase 1, soluble; Sod2: superoxide dismutase 2, mitochondrial; SQSTM1: sequestosome 1; T3: 3,5,3'-triiodothyronine; TFEB: transcription factor EB; TOMM20: translocase of outer mitochondrial membrane 20; UCP1: uncoupling protein 1 (mitochondrial, proton carrier); ULK1: unc-51 like kinase 1; VDAC1: voltage-dependent anion channel 1; WAT: white adipose tissue.
Collapse
Affiliation(s)
- Winifred W. Yau
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Brijesh K. Singh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Ronny Lesmana
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
- Physiology Division, Department of Anatomy, Physiology and Biology Cell, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Central laboratory, Universitas Padjadjaran, Bandung, Indonesia
| | - Jin Zhou
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Rohit A. Sinha
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Kiraely A. Wong
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Yajun Wu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shigeki Sugii
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
- Fat Metabolism and Stem Cell Group, Singapore Bioimaging Consortium, A*STAR, Singapore
| | - Lei Sun
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Paul M. Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
- Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
16
|
Venediktova NI, Pavlik LL, Belosludtseva NV, Khmil NV, Murzaeva SV, Mironova GD. Formation of lamellar bodies in rat liver mitochondria in hyperthyroidism. J Bioenerg Biomembr 2018; 50:289-295. [PMID: 29721776 DOI: 10.1007/s10863-018-9758-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
Abstract
In the present work, ultrastructural changes of rat liver mitochondria in hyperthyroidism were studied. Hyperthyroidism was induced in male Wistar rats by daily administration of 100 μg thyroxin per 100 g body weight for 5 days. The level of triiodothyronine and thyroxine increased 3- and 4-fold, respectively, in comparison with the same parameters in the control group, indicating the development of hyperthyroidism in experimental animals. It was found that under this experimental pathology 58% of the mitochondria are swollen, with their matrix enlightened, as compared to the control. In 40% of the profiles, the swollen mitochondria in the liver under hyperthyroidism exhibited rounded mono- or multilayer membrane structures, called lamellar bodies (LBs), presumably at different stages of their development: from the formation to the release from the organelles. Most LBs were located in the mitochondria near the nuclear zone (27%), while their number was reduced in the part of the cell adjacent to the plasma membrane. In a number of swollen mitochondria the cristae were shown to change their orientation, being directed radially toward the center of the mitochondria. We suggested that it is the first stage of formation of LBs. The second stage can be attributed to the formation of monomembrane structures in the center of the organelles. The third stage is characterized by the fact that the membrane of the lamellar bodies consists of several layers, and in this case the bodies were located closer to the outer mitochondrial membrane. The evagination of the outer mitochondrial membrane and its connection with lamellar structure can be recognized as the fourth stage of formation of LBs. At the fifth stage the developed lamellar formations exited the mitochondria. At the same time, following the exit of LBs from the mitochondria, no damage to the mitochondrial membrane was registered, and the structure of the remaining part of the mitochondria was similar to the control. The nucleus of the hepatocyte also underwent structural changes in hyperthyroidism, exhibiting changes in the membrane configuration, and chromatin condensation. The nature and structure of the LBs, as well as their functional role in the liver mitochondria in hyperthyroidism, require further investigation.
Collapse
Affiliation(s)
- Natalya I Venediktova
- Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow, Region 142290, Russia
| | - Lubov L Pavlik
- Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow, Region 142290, Russia
| | - Natalia V Belosludtseva
- Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow, Region 142290, Russia
- Pushchino State Institute of Natural Sciences, Pushchino, Moscow, Region 142290, Russia
| | - Natalya V Khmil
- Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow, Region 142290, Russia
| | - Svetlana V Murzaeva
- Pushchino State Institute of Natural Sciences, Pushchino, Moscow, Region 142290, Russia
| | - Galina D Mironova
- Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow, Region 142290, Russia.
- Pushchino State Institute of Natural Sciences, Pushchino, Moscow, Region 142290, Russia.
| |
Collapse
|
17
|
Reis LTC, da Silva MRD, Costa SL, Velozo EDS, Batista R, da Cunha Lima ST. Estrogen and Thyroid Hormone Receptor Activation by Medicinal Plants from Bahia, Brazil. MEDICINES (BASEL, SWITZERLAND) 2018; 5:E8. [PMID: 29342924 PMCID: PMC5874573 DOI: 10.3390/medicines5010008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
Background: A number of medicinal plants are traditionally used for metabolic disorders in Bahia state, Brazil. The aim of this study was to evaluate the estrogen receptor (ER) and thyroid receptor (TR) activation of crude extracts prepared from 20 plants. Methods: Species were extracted and assayed for receptor activation through both ER and TR gene-reporter assays, using 17β-estradiol and triiodothyronine (T3), respectively, as the positive controls. Results: Cajanus cajan (Fabaceae), Abarema cochliacarpus (Fabaceae), and Borreria verticillata (Rubiaceae) were able to activate ER as much as the positive control (17β-estradiol). These three plant species were also assayed for TR activation. At the concentration of 50 µg/mL, C. cajans exerted the highest positive modulation on TR, causing an activation of 59.9%, while B. verticillata and A. cochliacarpus caused 30.8% and 23.3%, respectively. Conclusions: Our results contribute towards the validation of the traditional use of C. cajans, B. verticillata, and A. cochliacarpus in the treatment of metabolic disorders related to ER and TR functions. The gene-reporter assay was proven effective in screening crude plant extracts for ER/TR activation, endorsing this methodology as an important tool for future bioprospection studies focused on identifying novel starting molecules for the development of estrogen and thyroid agonists.
Collapse
Affiliation(s)
- Luã Tainã Costa Reis
- Laboratory of Bioprospection and Biotechnology (LaBBiotec), Institute of Biology, Federal University of Bahia (UFBA), Barão de Jeremoabo Street, 147-Ondina, Salvador, BA 40170-115, Brazil.
| | - Magnus Régios Dias da Silva
- Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Federal University of São Paulo (UNIFESP), R. Sena Madureira, 1500-Vila Clementino, São Paulo, SP 04021-001, Brazil.
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biofunction, Institute of Health Sciences, Federal University of Bahia (UFBA), Reitor Miguel Calmon Avenue, 1272-Canela, Salvador, BA 40231-300, Brazil.
| | - Eudes da Silva Velozo
- Laboratory of Research in Materia Medica, Department of Medicament, Faculty of Pharmacy, Federal University of Bahia (UFBA), Barão de Jeremoabo Street, 147-Ondina, Salvador, BA 40170-115, Brazil.
| | - Ronan Batista
- Department of Organic Chemistry, Institute of Chemistry, Federal University of Bahia (UFBA), Barão de Jeremoabo Street, 147-Ondina, Salvador, BA 40170-115, Brazil.
| | - Suzana Telles da Cunha Lima
- Laboratory of Bioprospection and Biotechnology (LaBBiotec), Institute of Biology, Federal University of Bahia (UFBA), Barão de Jeremoabo Street, 147-Ondina, Salvador, BA 40170-115, Brazil.
| |
Collapse
|
18
|
Jayanthi R, Srinivasan AR, Hanifah M, Maran AL. Associations among Insulin Resistance, Triacylglycerol/High Density Lipoprotein (TAG/HDL ratio) and Thyroid hormone levels-A study on Type 2 diabetes mellitus in obese and overweight subjects. Diabetes Metab Syndr 2017; 11 Suppl 1:S121-S126. [PMID: 28043815 DOI: 10.1016/j.dsx.2016.12.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/12/2016] [Indexed: 12/01/2022]
Abstract
AIM Triacylglycerol/High density lipoprotein (TAG/HDL) ratio, a surrogate marker of LDL particle size (small dense) was included in our study to observe the link with insulin resistance and thyroid co-morbidity. METHODS Ninety three patients with T2DM of both genders were enrolled from a tertiary health care unit in Puducherry, during the latter half of 2015. The cardio-metabolic risk factors were assessed through body mass index (BMI), blood pressure, fasting blood glucose and lipid profile, glycated haemoglobin and homeostasis model assessment of insulin resistance (HOMA-IR). Serum free T4, T3 and TSH were also measured to evaluate the thyroid co-morbidity as a function of insulin resistance. RESULTS In addition to insulin resistance, results of our study were focussed on thyroid comorbidity. In overweight diabetic patients, the ROC curve analyses demonstrated that the best marker for insulin resistance was Triacylglycerol/High density lipoprotein (TAG/HDL), with the area under the ROC curve being 0.902. Thyroxine (T4) was less significant when compared to TAG/HDL with area under the ROC curve of 0.583. Triiodothyronine (T3) and T4 were more significant in obese group with areas under the curve being 0.842 and 0.816 respectively when compared against insulin resistance (cut-off value for HOMA-IR 2.69). The optimal cut-off points for overweight were: TAG≥101mg/dl; T4≥1.16ng/dl; TAG/HDL≥2.26 whereas for obese: TC≥163.5mg/dl; TAG≥141.5mg/dl; T3≥2.42pg/ml; T4≥0.96ng/ml. CONCLUSIONS In overweight type 2 diabetics, TAG/HDL ratio could be used as a reliable marker for insulin resistance with thyroid co-morbidity and T3, T4 were better objective markers in obese type 2 diabetics.
Collapse
Affiliation(s)
- Rajendran Jayanthi
- Department of Biochemistry, Mahatma Gandhi Medical College & Research Institute, Sri Balaji Vidyapeeth, Pondicherry 607403, India
| | - Abu Raghavan Srinivasan
- Department of Biochemistry, Mahatma Gandhi Medical College & Research Institute, Sri Balaji Vidyapeeth, Pondicherry 607403, India.
| | - Mohammed Hanifah
- Department of General Medicine, Mahatma Gandhi Medical College & Research Institute, Sri Balaji Vidyapeeth, India
| | - Anandraj Lokesh Maran
- Department of Community Medicine, Mahatma Gandhi Medical College & Research, Institute Sri Balaji Vidyapeeth, India
| |
Collapse
|
19
|
Janssen BG, Byun HM, Roels HA, Gyselaers W, Penders J, Baccarelli AA, Nawrot TS. Regulating role of fetal thyroid hormones on placental mitochondrial DNA methylation: epidemiological evidence from the ENVIR ONAGE birth cohort study. Clin Epigenetics 2017. [PMID: 28649287 PMCID: PMC5479026 DOI: 10.1186/s13148-017-0366-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Fetal development largely depends on thyroid hormone availability and proper placental function with an important role played by placental mitochondria. The biological mechanisms by which thyroid hormones exert their effects on mitochondrial function are not well understood. We investigated the role of fetal thyroid hormones on placental mitochondrial DNA (mtDNA) content and mtDNA methylation. We collected placental tissue and cord blood from 305 mother-child pairs that were enrolled between February 2010 and June 2014 in the ENVIRONAGE (ENVIRonmental influence ON early AGEing) birth cohort (province of Limburg, Belgium). Placental mtDNA content was determined by qPCR and placental mtDNA methylation by bisulfite-pyrosequencing in two regions, i.e., the D-loop control region and 12S ribosomal RNA (MT-RNR1). The levels of free thyroid hormones (FT3, FT4) and thyroid-stimulating hormone (TSH) were measured in cord blood. RESULTS Cord blood FT3 and FT4 were inversely associated with placental mtDNA methylation at the MT-RNR1 (p ≤ 0.01) and D-loop (p ≤ 0.05) regions, whereas a positive association was observed for both hormones with placental mtDNA content (p ≤ 0.04). Assuming causality, we estimated that MT-RNR1 and D-loop methylation mediated, respectively, 77% [indirect effect +14.61% (95% CI 2.64 to 27.98%, p = 0.01)] and 47% [indirect effect +8.60% (95% CI 1.23 to 16.50%, p = 0.02] of the positive association between FT3 and placental mtDNA content. Mediation models with FT4 gave similar results but the estimated effect proportions were smaller compared with those of FT3 (54% and 24%, respectively). CONCLUSIONS We showed that epigenetic modification at specific loci of the mitochondrial genome could intervene with the thyroid-dependent regulation of mitochondrial DNA copy numbers.
Collapse
Affiliation(s)
- Bram G Janssen
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Hyang-Min Byun
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE4 5PL UK
| | - Harry A Roels
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium.,Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Université catholique de Louvain, Brussels, Belgium
| | - Wilfried Gyselaers
- Department of Obstetrics, East-Limburg Hospital, Genk, 3600 Belgium.,Biomedical Research Institute, Hasselt University, Diepenbeek, 3590 Belgium
| | - Joris Penders
- Biomedical Research Institute, Hasselt University, Diepenbeek, 3590 Belgium.,Laboratory of Clinical Biology, East-Limburg Hospital, Genk, 3600 Belgium
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032 USA
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium.,Department of Public Health & Primary Care, Occupational & Environmental Medicine, Leuven University, Leuven, Belgium
| |
Collapse
|
20
|
Korejo NA, Wei QW, Shah AH, Shi FX. Effects of concomitant diabetes mellitus and hyperthyroidism on testicular and epididymal histoarchitecture and steroidogenesis in male animals. J Zhejiang Univ Sci B 2017; 17:850-863. [PMID: 27819132 DOI: 10.1631/jzus.b1600136] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This study evaluated the effects of comorbid disorders of diabetes and hyperthyroidism in the adult male mice. In total, 32 ICR strain mice were equally distributed into four groups: control (C), diabetic (D), diabetic-plus-hyperthyroid (DH), and hyperthyroid (H). Mice allocated for diabetes received a single intraperitoneal injection of streptozotocin (STZ) at 200 mg/kg body weight. At the onset of diabetes, one group of mice was concomitantly injected levothyroxine (LT4; 0.3 mg/kg body weight) and the other set of animals received the same treatment independently on a daily basis. The body weight, as well as the testicular and epididymal weights, was reduced markedly in D and DH mice. Higher trends of blood glucose levels were seen in the DH group, in comparison to euthyroid diabetic mice. Thyroid hormones could exert a transient effect on blood glucose homeostasis by altering the serum blood glucose level in diabetic patients. Histomorphometric analysis showed increased luminal sizes of seminiferous tubules, along with decreased epithelial height and atrophic changes in germinal stem cells in the testis of DH and H mice. Caput epididymis of DH mice showed extensive compaction of principal cells, loss of stereocilia, lipid vacuolization, and inflammatory infiltrations; however, damaged tubular integrity, packed clear cells, exfoliated cells, and round spermatids were profoundly noticed in the cauda epididymis. Hyperthyroidism elevated the serum testosterone levels in H and DH mice and produced critical damages to the histoarchitecture of the epididymis. Collectively, this experiment endeavored to mimic the polyglandular autoimmune syndrome, which will be helpful to better understand the reasons for male infertility in diabetic-cum-hyperthyroid patients.
Collapse
Affiliation(s)
- Nazar Ali Korejo
- Laboratory of Animal Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.,Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University Tandojam, Tandojam 70060, Hyderabad, Pakistan
| | - Quan-Wei Wei
- Laboratory of Animal Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Atta Hussain Shah
- Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University Tandojam, Tandojam 70060, Hyderabad, Pakistan
| | - Fang-Xiong Shi
- Laboratory of Animal Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
21
|
Damiano F, Rochira A, Gnoni A, Siculella L. Action of Thyroid Hormones, T3 and T2, on Hepatic Fatty Acids: Differences in Metabolic Effects and Molecular Mechanisms. Int J Mol Sci 2017; 18:ijms18040744. [PMID: 28362337 PMCID: PMC5412329 DOI: 10.3390/ijms18040744] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 12/28/2022] Open
Abstract
The thyroid hormones (THs) 3,3′,5,5′-tetraiodo-l-thyronine (T4) and 3,5,3′-triiodo-l-thyronine (T3) influence many metabolic pathways. The major physiological function of THs is to sustain basal energy expenditure, by acting primarily on carbohydrate and lipid catabolism. Beyond the mobilization and degradation of lipids, at the hepatic level THs stimulate the de novo fatty acid synthesis (de novo lipogenesis, DNL), through both the modulation of gene expression and the rapid activation of cell signalling pathways. 3,5-Diiodo-l-thyronine (T2), previously considered only a T3 catabolite, has been shown to mimic some of T3 effects on lipid catabolism. However, T2 action is more rapid than that of T3, and seems to be independent of protein synthesis. An inhibitory effect on DNL has been documented for T2. Here, we give an overview of the mechanisms of THs action on liver fatty acid metabolism, focusing on the different effects exerted by T2 and T3 on the regulation of the DNL. The inhibitory action on DNL exerted by T2 makes this compound a potential and attractive drug for the treatment of some metabolic diseases and cancer.
Collapse
Affiliation(s)
- Fabrizio Damiano
- Laboratory of Biochemistry and Molecular Biology, Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy.
| | - Alessio Rochira
- Laboratory of Biochemistry and Molecular Biology, Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy.
| | - Antonio Gnoni
- Department of Basic Medical Sciences, Section of Medical Biochemistry, University of Bari Aldo Moro, 70125 Bari, Italy.
| | - Luisa Siculella
- Laboratory of Biochemistry and Molecular Biology, Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy.
| |
Collapse
|
22
|
Caballano-Infantes E, Terron-Bautista J, Beltrán-Povea A, Cahuana GM, Soria B, Nabil H, Bedoya FJ, Tejedo JR. Regulation of mitochondrial function and endoplasmic reticulum stress by nitric oxide in pluripotent stem cells. World J Stem Cells 2017; 9:26-36. [PMID: 28289506 PMCID: PMC5329687 DOI: 10.4252/wjsc.v9.i2.26] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/09/2016] [Accepted: 01/14/2017] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial dysfunction and endoplasmic reticulum stress (ERS) are global processes that are interrelated and regulated by several stress factors. Nitric oxide (NO) is a multifunctional biomolecule with many varieties of physiological and pathological functions, such as the regulation of cytochrome c inhibition and activation of the immune response, ERS and DNA damage; these actions are dose-dependent. It has been reported that in embryonic stem cells, NO has a dual role, controlling differentiation, survival and pluripotency, but the molecular mechanisms by which it modulates these functions are not yet known. Low levels of NO maintain pluripotency and induce mitochondrial biogenesis. It is well established that NO disrupts the mitochondrial respiratory chain and causes changes in mitochondrial Ca2+ flux that induce ERS. Thus, at high concentrations, NO becomes a potential differentiation agent due to the relationship between ERS and the unfolded protein response in many differentiated cell lines. Nevertheless, many studies have demonstrated the need for physiological levels of NO for a proper ERS response. In this review, we stress the importance of the relationships between NO levels, ERS and mitochondrial dysfunction that control stem cell fate as a new approach to possible cell therapy strategies.
Collapse
|
23
|
Wu Z, Martinez ME, St. Germain DL, Hernandez A. Type 3 Deiodinase Role on Central Thyroid Hormone Action Affects the Leptin-Melanocortin System and Circadian Activity. Endocrinology 2017; 158:419-430. [PMID: 27911598 PMCID: PMC5413080 DOI: 10.1210/en.2016-1680] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/29/2016] [Indexed: 01/21/2023]
Abstract
The role of thyroid hormones (THs) in the central regulation of energy balance is increasingly appreciated. Mice lacking the type 3 deiodinase (DIO3), which inactivates TH, have decreased circulating TH levels relative to control mice as a result of defects in the hypothalamic-pituitary-thyroid axis. However, we have shown that the TH status of the adult Dio3-/- brain is opposite that of the serum, exhibiting enhanced levels of TH action. Because the brain, particularly the hypothalamus, harbors important circuitries that regulate metabolism, we aimed to examine the energy balance phenotype of Dio3-/- mice and determine whether it is associated with hypothalamic abnormalities. Here we show that Dio3-/- mice of both sexes exhibit decreased adiposity, reduced brown and white adipocyte size, and enhanced fat loss in response to triiodothyronine (T3) treatment. They also exhibit increased TH action in the hypothalamus, with abnormal expression and T3 sensitivity of genes integral to the leptin-melanocortin system, including Agrp, Npy, Pomc, and Mc4r. The normal to elevated serum levels of leptin, and elevated and repressed expression of Agrp and Pomc, respectively, suggest a profile of leptin resistance. Interestingly, Dio3-/- mice also display elevated locomotor activity and increased energy expenditure. This occurs in association with expanded nighttime activity periods, suggesting a disrupted circadian rhythm. We conclude that DIO3-mediated regulation of TH action in the central nervous system influences multiple critical determinants of energy balance. Those influences may partially compensate each other, with the result likely contributing to the decreased adiposity observed in Dio3-/- mice.
Collapse
Affiliation(s)
- Zhaofei Wu
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine 04074
| | - M. Elena Martinez
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine 04074
| | - Donald L. St. Germain
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine 04074
| | - Arturo Hernandez
- Center for Molecular Medicine, and
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine 04074
| |
Collapse
|
24
|
Pereira JC, Pradella Hallinan M, Alves RC. Secondary to excessive melatonin synthesis, the consumption of tryptophan from outside the blood-brain barrier and melatonin over-signaling in the pars tuberalis may be central to the pathophysiology of winter depression. Med Hypotheses 2017; 98:69-75. [DOI: 10.1016/j.mehy.2016.11.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 11/27/2016] [Indexed: 12/17/2022]
|
25
|
Chng CL, Lim AYY, Tan HC, Kovalik JP, Tham KW, Bee YM, Lim W, Acharyya S, Lai OF, Chong MFF, Yen PM. Physiological and Metabolic Changes During the Transition from Hyperthyroidism to Euthyroidism in Graves' Disease. Thyroid 2016; 26:1422-1430. [PMID: 27465032 DOI: 10.1089/thy.2015.0602] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The serum metabolomic profile and its relationship to physiological changes during hyperthyroidism and restoration to euthyroidism are not known. This study aimed to examine the physiological, adipokine, and metabolomic changes that occur when subjects with Graves' disease transition from hyperthyroidism to euthyroidism with medical treatment. METHODS Chinese women between 21 and 50 years of age and with newly diagnosed Graves' disease attending the endocrine outpatient clinics in a single institution were recruited between July 2012 and September 2014. All subjects were treated with thioamides to achieve euthyroidism. Clinical parameters (body weight, body composition via bioelectrical impedance analysis, resting energy expenditure and respiratory quotient via indirect calorimetry, and reported total energy intake via 24 h food diary), biochemical parameters (thyroid hormones, lipid profile, fasting insulin and glucose levels), serum leptin, adiponectin, and metabolomics profiles were measured during hyperthyroidism and repeated in early euthyroidism. RESULTS Twenty four Chinese women with an average age of 36.3 ± 8.6 years were included in the study. The average duration of treatment that was required to reach euthyroidism for these subjects was 38 ± 16.3 weeks. There was a significant increase in body weight (52.6 ± 9.0 kg to 55.3 ± 9.4 kg; p < 0.001) and fat mass (14.3 ± 6.9 kg to 16.8 ± 6.5 kg; p = 0.005). There was a reduction in resting energy expenditure corrected for weight (28.7 ± 4.0 kcal/kg to 21.5 ± 4.1 kcal/kg; p < 0.001) and an increase in respiratory quotient (0.76 to 0.81; p = 0.037). Resting energy expenditure increased significantly with increasing free triiodothyronine levels (p = 0.007). Significant increases in total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol were noted. There was no significant change in leptin levels, but adiponectin levels increased significantly (p = 0.018). Significant reductions in fasting C2, medium-chain, long-chain, and total acylcarnitines were observed, but no changes in the fat-free mass, branched chain amino acid levels, or insulin sensitivity during recovery from hyperthyroidism were noted. CONCLUSIONS Serum metabolomics profile changes complemented the physiological changes observed during the transition from hyperthyroidism to euthyroidism. This study provides a comprehensive and integrated view of the changes in fuel metabolism and energy balance that occur following the treatment of hyperthyroidism.
Collapse
Affiliation(s)
- Chiaw-Ling Chng
- 1 Department of Endocrinology, Singapore General Hospital , Singapore
| | | | - Hong Chang Tan
- 1 Department of Endocrinology, Singapore General Hospital , Singapore
| | - Jean-Paul Kovalik
- 2 Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School , Singapore
| | - Kwang Wei Tham
- 1 Department of Endocrinology, Singapore General Hospital , Singapore
| | - Yong Mong Bee
- 1 Department of Endocrinology, Singapore General Hospital , Singapore
| | - Weiying Lim
- 1 Department of Endocrinology, Singapore General Hospital , Singapore
| | - Sanchalika Acharyya
- 3 Centre for Quantitative Medicine, Duke-NUS Graduate Medical School , Singapore
| | - Oi Fah Lai
- 4 Department of Clinical Research, Singapore General Hospital , Singapore
| | - Mary Foong-Fong Chong
- 5 Singapore Institute for Clinical Sciences (SICS) , A*star, Brenner Centre for Molecular Medicine, Singapore
| | - Paul Michael Yen
- 2 Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School , Singapore
| |
Collapse
|
26
|
Teixeira SDS, Panveloski-Costa AC, Carvalho A, Monteiro Schiavon FP, Ruiz Marque ADC, Campello RS, Bazotte RB, Nunes MT. Thyroid hormone treatment decreases hepatic glucose production and renal reabsorption of glucose in alloxan-induced diabetic Wistar rats. Physiol Rep 2016; 4:4/18/e12961. [PMID: 27655796 PMCID: PMC5037915 DOI: 10.14814/phy2.12961] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/12/2016] [Indexed: 12/16/2022] Open
Abstract
The thyroid hormone (TH) plays an important role in glucose metabolism. Recently, we showed that the TH improves glycemia control by decreasing cytokines expression in the adipose tissue and skeletal muscle of alloxan‐induced diabetic rats, which were also shown to present primary hypothyroidism. In this context, this study aims to investigate whether the chronic treatment of diabetic rats with T3 could affect other tissues that are involved in the control of glucose homeostasis, as the liver and kidney. Adult Male Wistar rats were divided into nondiabetic, diabetic, and diabetic treated with T3 (1.5 μg/100 g BW for 4 weeks). Diabetes was induced by alloxan monohydrate (150 mg/kg, BW, i.p.). Animals showing fasting blood glucose levels greater than 250 mg/dL were selected for the study. After treatment, we measured the blood glucose, serum T3, T4, TSH, and insulin concentration, hepatic glucose production by liver perfusion, liver PEPCK, GAPDH, and pAKT expression, as well as urine glucose concentration and renal expression of SGLT2 and GLUT2. T3 reduced blood glucose, hepatic glucose production, liver PEPCK, GAPDH, and pAKT content and the renal expression of SGLT2 and increased glycosuria. Results suggest that the decreased hepatic glucose output and increased glucose excretion induced by T3 treatment are important mechanisms that contribute to reduce serum concentration of glucose, accounting for the improvement of glucose homeostasis control in diabetic rats.
Collapse
Affiliation(s)
- Silvania da Silva Teixeira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana C Panveloski-Costa
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Aline Carvalho
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Raquel S Campello
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Roberto B Bazotte
- Department of Pharmacology and Therapeutics, State University of Maringa, Maringa, Parana, Brazil
| | - Maria T Nunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
27
|
Walker RS, Martin RM, Buttrey B. Effects of residual feed intake and dam body weight on replacement heifer intake, efficiency, performance, and metabolic response. J Anim Sci 2016; 93:3602-12. [PMID: 26440028 DOI: 10.2527/jas.2015-9040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Thirty-eight Angus-based, crossbred, nulliparous beef heifers (BW = 280 ± 26.3 kg) sired by 2 Angus sires were used to determine if dam BW affected heifer performance, DMI, residual feed intake (RFI), and endocrine markers. Heifers were housed in individual pens (2.2 by 9.1 m) equipped with 2.2 m of bunk space and fed a diet (90.4% DM, 13.7% CP, 67.2% NDF, and 56.2% TDN) consisting of 87.2% bermudagrass hay and 12.8% liquid protein supplement for a 14-d adaption period and a 70-d feeding period. Individual daily feed intake was used to calculate RFI for each heifer, and heifer was the experimental unit. Two-day beginning and end BW were recorded and hip height was used to calculate frame score (FS). Heifer dams were assigned to a light (LIT; 544 ± 21.3 kg) or heavy (HEV; 621 ± 34.8 kg) BW group on the basis of mean BW at the beginning of their lactation period the previous year to determine differences in heifer offspring DMI and RFI. Based on heifer RFI ranking, heifers were classified as positive (POS; 0.34) or negative (NEG; –0.31) RFI and low (LOW; –0.45), medium (MED; 0.00), or high (HI; 0.49) RFI for analysis of BW, FS, BW gain, and DMI. There were no dam BW group × sire interactions (P > 0.10) for all independent variables. Beginning and end BW was greater (P < 0.05) for heifers out of HEV compared with LIT BW dams. Body weight gain, ADG, FS, DMI, and RFI were not significant (P > 0.10) for heifers out of HEV compared with LIT BW dams; however, a sire effect existed (P < 0.01) for BW gain, ADG, FS, and DMI. Among RFI classifications, beginning and end BW, BW gain, ADG, and FS were not different (P > 0.10) whereas DMI was greater (P = 0.03) among heifers in the POS compared with the NEG RFI group and greater (P = 0.01) among heifers in the MED and HI compared with LOW RFI group, respectively. Plasma insulin levels were greater (P = 0.03) in the NEG compared with the POS RFI heifers, and thyroxine (T4) levels were greater (P = 0.02) in the POS compared with the NEG RFI heifers. A positive relationship existed (P ≤ 0.05) between dam BW and heifer DMI (r = 0.42), beginning and end BW (r = 0.45 and 54), and FS (r = 0.58) and between RFI and d 70 triiodothyronine (r = 0.34), d 70 T4 (r = 0.35), and d 0 and 70 combined T4 (r = 0.32), respectively. Heifers out of dams from the HEV BW group were heavier and a positive correlation existed between dam BW and heifer BW, gain, DMI, and FS, which can impact selection goals for replacement heifers.
Collapse
|
28
|
Ashwini S, Bobby Z, Joseph M. Mild hypothyroidism improves glucose tolerance in experimental type 2 diabetes. Chem Biol Interact 2015; 235:47-55. [DOI: 10.1016/j.cbi.2015.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 02/07/2023]
|
29
|
Abstract
In recent years, a number of advancements have been made in the study of entire mitochondrial proteomes in both physiological and pathological conditions. Naturally occurring iodothyronines (i.e., T3 and T2) greatly influence mitochondrial oxidative capacity, directly or indirectly affecting the structure and function of the respiratory chain components. Blue native PAGE (BN-PAGE) can be used to isolate enzymatically active oxidative phosphorylation (OXPHOS) complexes in one step, allowing the clinical diagnosis of mitochondrial metabolism by monitoring OXPHOS catalytic and/or structural features. Protocols for isolating mammalian liver mitochondria and subsequent one-dimensional (1D) BN-PAGE will be described in relation to the impact of thyroid hormones on mitochondrial bioenergetics.
Collapse
|
30
|
Hroudová J, Fišar Z. Control mechanisms in mitochondrial oxidative phosphorylation. Neural Regen Res 2014; 8:363-75. [PMID: 25206677 PMCID: PMC4107533 DOI: 10.3969/j.issn.1673-5374.2013.04.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/20/2013] [Indexed: 01/30/2023] Open
Abstract
Distribution and activity of mitochondria are key factors in neuronal development, synaptic plasticity and axogenesis. The majority of energy sources, necessary for cellular functions, originate from oxidative phosphorylation located in the inner mitochondrial membrane. The adenosine-5’- triphosphate production is regulated by many control mechanism–firstly by oxygen, substrate level, adenosine-5’-diphosphate level, mitochondrial membrane potential, and rate of coupling and proton leak. Recently, these mechanisms have been implemented by “second control mechanisms,” such as reversible phosphorylation of the tricarboxylic acid cycle enzymes and electron transport chain complexes, allosteric inhibition of cytochrome c oxidase, thyroid hormones, effects of fatty acids and uncoupling proteins. Impaired function of mitochondria is implicated in many diseases ranging from mitochondrial myopathies to bipolar disorder and schizophrenia. Mitochondrial dysfunctions are usually related to the ability of mitochondria to generate adenosine-5’-triphosphate in response to energy demands. Large amounts of reactive oxygen species are released by defective mitochondria, similarly, decline of antioxidative enzyme activities (e.g. in the elderly) enhances reactive oxygen species production. We reviewed data concerning neuroplasticity, physiology, and control of mitochondrial oxidative phosphorylation and reactive oxygen species production.
Collapse
Affiliation(s)
- Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
31
|
Pereira JC, Andersen ML. The role of thyroid hormone in sleep deprivation. Med Hypotheses 2014; 82:350-5. [DOI: 10.1016/j.mehy.2014.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/20/2013] [Accepted: 01/06/2014] [Indexed: 11/24/2022]
|
32
|
Oshima S, Miyauchi S, Asaka M, Kawano H, Taguchi M, Torii S, Higuchi M. Relative contribution of organs other than brain to resting energy expenditure is consistent among male power athletes. J Nutr Sci Vitaminol (Tokyo) 2014; 59:224-31. [PMID: 23883693 DOI: 10.3177/jnsv.59.224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have previously shown that resting energy expenditure (REE) adjusted by fat-free mass (FFM) in male college athletes remains consistent regardless of FFM. The FFM comprises internal organs with high metabolic activity, such as liver and brain, which account for 60 to 80% of REE in adults. The purpose of the present study is to examine the contribution of internal organs to the REE of the FFM fraction among male power athletes. The study included 37 American male college football players. REE was measured by indirect calorimetry and body composition was measured by dual energy X-ray absorptiometry (DXA). Mass of brain, liver, and kidneys was measured by MRI and mass of heart was estimated by echocardiography. Normal levels of thyroid hormone (triiodothyronine: T3) were confirmed in all subjects prior to the analysis. Multiple regression analysis was used to assess the influence of FFM, fat mass (FM), T3, and mass of organs on variance of REE. Average body weight and FFM were 81.2±11.3 kg and 67.7±7.4 kg, respectively. The relative contributions of liver, kidneys, and heart to REE were consistent regardless of FFM, while the REE of brain was negatively correlated with FFM (r=-0.672, p<0.001). Only FFM and T3 were found to be independent factors influencing REE. These results suggest that a steady contribution of internal organs other than the brain is the major reason for the consistency of the REE/FFM ratio in male power athletes.
Collapse
Affiliation(s)
- Satomi Oshima
- Graduate School of Sport Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Maity S, Kar D, De K, Chander V, Bandyopadhyay A. Hyperthyroidism causes cardiac dysfunction by mitochondrial impairment and energy depletion. J Endocrinol 2013; 217:215-28. [PMID: 23428368 DOI: 10.1530/joe-12-0304] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This study elucidates the role of metabolic remodeling in cardiac dysfunction induced by hyperthyroidism. Cardiac hypertrophy, structural remodeling, and expression of the genes associated with fatty acid metabolism were examined in rats treated with triiodothyronine (T3) alone (8 μg/100 g body weight (BW), i.p.) for 15 days or along with a peroxisome proliferator-activated receptor alpha agonist bezafibrate (Bzf; 30 μg/100 g BW, oral) and were found to improve in the Bzf co-treated condition. Ultrastructure of mitochondria was damaged in T3-treated rat heart, which was prevented by Bzf co-administration. Hyperthyroidism-induced oxidative stress, reduction in cytochrome c oxidase activity, and myocardial ATP concentration were also significantly checked by Bzf. Heart function studied at different time points during the course of T3 treatment shows an initial improvement and then a gradual but progressive decline with time, which is prevented by Bzf co-treatment. In summary, the results demonstrate that hyperthyroidism inflicts structural and functional damage to mitochondria, leading to energy depletion and cardiac dysfunction.
Collapse
Affiliation(s)
- Sangeeta Maity
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
| | | | | | | | | |
Collapse
|
34
|
Pereira JC, Pradella-Hallinan M, Alves RC. Saint John's wort, an herbal inducer of the cytochrome P4503A4 isoform, may alleviate symptoms of Willis-Ekbom's disease. Clinics (Sao Paulo) 2013; 68:469-74. [PMID: 23778343 PMCID: PMC3634959 DOI: 10.6061/clinics/2013(04)06] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 12/06/2012] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Certain drug classes alleviate the symptoms of Willis-Ekbom's disease, whereas others aggravate them. The pharmacological profiles of these drugs suggest that drugs that alleviate Willis-Ekbom's disease inhibit thyroid hormone activity, whereas drugs that aggravate Willis-Ekbom's disease increase thyroid hormone activity. These different effects may be secondary to the opposing actions that drugs have on the CYP4503A4 enzyme isoform. Drugs that worsen the symptoms of the Willis-Ekbom's disease inhibit the CYP4503A4 isoform, and drugs that ameliorate the symptoms induce CYP4503A4. The aim of this study is to determine whether Saint John's wort, as an inducer of the CYP4503A4 isoform, diminishes the severity of Willis-Ekbom's disease symptoms by increasing the metabolism of thyroid hormone in treated patients. METHODS In an open-label pilot trial, we treated 21 Willis-Ekbom's disease patients with a concentrated extract of Saint John's wort at a daily dose of 300 mg over the course of three months. RESULTS Saint John's wort reduced the severity of Willis-Ekbom's disease symptoms in 17 of the 21 patients. CONCLUSION Results of this trial suggest that Saint John's wort may benefit some Willis-Ekbom's disease patients. However, as this trial was not placebo-controlled, the extent to which Saint John's wort is effective as a Willis-Ekbom's disease treatment will depend on future, blinded placebo-controlled studies.
Collapse
|
35
|
3,5-Diiodo-L-thyronine administration to hypothyroid rats rapidly enhances fatty acid oxidation rate and bioenergetic parameters in liver cells. PLoS One 2013; 8:e52328. [PMID: 23308110 PMCID: PMC3537720 DOI: 10.1371/journal.pone.0052328] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 11/12/2012] [Indexed: 12/13/2022] Open
Abstract
Growing evidence shows that, among triiodothyronine derivatives, 3,5 diiodo-L-thyronine (T(2)) plays an important role in energy metabolism and fat storage. In the present study, short-term effects of T(2) administration to hypothyroid rats on fatty acid oxidation rate and bioenergetic parameters were investigated. Within 1 h following T(2) injection, state 3 and state 4 respiration rates, which were reduced in hypothyroid mitochondria, were noticeably increased particularly in succinate- with respect to glutamate/malate-energized mitochondria. Maximal respiratory activity, observed when glutamate/malate/succinate were simultaneously present in the respiratory medium, was significantly stimulated by T(2) treatment. A T(2)-induced increase in respiratory rates was also observed when palmitoyl-CoA or L-palmitoylcarnitine were used as substrates. No significant change in respiratory control index and ADP/O ratio was observed. The activities of the mitochondrial respiratory chain complexes, especially Complex II, were increased in T(2)-treated rats. In the latter, Complex V activities, assayed in both ATP synthesis and hydrolysis direction, were enhanced. The rate of fatty acid oxidation, followed by conversion of [(14)C]palmitate to CO(2) and ketone bodies, was higher in hepatocytes isolated from T(2)-treated rats. This increase occurs in parallel with the raise in the activity of carnitine palmitoyltransferase-I, the rate limiting enzyme of fatty acid β-oxidation, assayed in situ in digitonin-permeabilized hepatocytes. Overall, these results indicate that T(2) rapidly increases the ability of mitochondria to import and oxidize fatty acids. An emerging idea in the literature is the ability of T(2) to reduce adiposity and dyslipidemia and to prevent the development in liver steatosis. The results of the present study, showing a rapid T(2)-induced increase in the ability of mitochondria to import and oxidize fatty acids, may contribute to understand the biochemical mechanisms of T(2)-metabolic effects.
Collapse
|
36
|
Wang C. The Relationship between Type 2 Diabetes Mellitus and Related Thyroid Diseases. J Diabetes Res 2013; 2013:390534. [PMID: 23671867 PMCID: PMC3647563 DOI: 10.1155/2013/390534] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 03/15/2013] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) has an intersecting underlying pathology with thyroid dysfunction. The literature is punctuated with evidence indicating a contribution of abnormalities of thyroid hormones to type 2 DM. The most probable mechanism leading to T2DM in thyroid dysfunction could be attributed to perturbed genetic expression of a constellation of genes along with physiological aberrations leading to impaired glucose utilization and disposal in muscles, overproduction of hepatic glucose output, and enhanced absorption of splanchnic glucose. These factors contribute to insulin resistance. Insulin resistance is also associated with thyroid dysfunction. Hyper- and hypothyroidism have been associated with insulin resistance which has been reported to be the major cause of impaired glucose metabolism in T2DM. The state-of-art evidence suggests a pivotal role of insulin resistance in underlining the relation between T2DM and thyroid dysfunction. A plethora of preclinical, molecular, and clinical studies have evidenced an undeniable role of thyroid malfunctioning as a comorbid disorder of T2DM. It has been investigated that specifically designed thyroid hormone analogues can be looked upon as the potential therapeutic strategies to alleviate diabetes, obesity, and atherosclerosis. These molecules are in final stages of preclinical and clinical evaluation and may pave the way to unveil a distinct class of drugs to treat metabolic disorders.
Collapse
Affiliation(s)
- Chaoxun Wang
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Huinan Town, Pudong, Shanghai 201399, China
- *Chaoxun Wang:
| |
Collapse
|
37
|
Brenta G. Why can insulin resistance be a natural consequence of thyroid dysfunction? J Thyroid Res 2011; 2011:152850. [PMID: 21941681 PMCID: PMC3175696 DOI: 10.4061/2011/152850] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 07/05/2011] [Indexed: 01/06/2023] Open
Abstract
Evidence for a relationship between T4 and T3 and glucose metabolism appeared over 100 years ago when the influence of thyroid hormone excess in the deterioration of glucose metabolism was first noticed. Since then, it has been known that hyperthyroidism is associated with insulin resistance. More recently, hypothyroidism has also been linked to decreased insulin sensitivity. The explanation to this apparent paradox may lie in the differential effects of thyroid hormones at the liver and peripheral tissues level.
The purpose of this paper is to explore the effects of thyroid hormones in glucose metabolism and analyze the mechanisms whereby alterations of thyroid hormones lead to insulin resistance.
Collapse
Affiliation(s)
- Gabriela Brenta
- Department of Endocrinology, Dr. César Milstein Hospital, La Rioja 951, C1221ACI, Buenos Aires, Argentina
| |
Collapse
|
38
|
Cavallo A, Gnoni A, Conte E, Siculella L, Zanotti F, Papa S, Gnoni GV. 3,5-diiodo-L-thyronine increases FoF1-ATP synthase activity and cardiolipin level in liver mitochondria of hypothyroid rats. J Bioenerg Biomembr 2011; 43:349-57. [PMID: 21739248 DOI: 10.1007/s10863-011-9366-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 05/17/2011] [Indexed: 01/19/2023]
Abstract
Short-term effects of 3,5-L-diiodothyronine (T(2)) administration to hypothyroid rats on F(o)F(1)-ATP synthase activity were investigated in liver mitochondria. One hour after T(2) injection, state 4 and state 3 respiration rates were noticeably stimulated in mitochondria subsequently isolated. F(o)F(1)-ATP synthase activity, which was reduced in mitochondria from hypothyroid rats as compared to mitochondria from euthyroid rats, was significantly increased by T(2) administration in both the ATP-synthesis and hydrolysis direction. No change in β-subunit mRNA accumulation and protein amount of the α-β subunit of F(o)F(1)-ATP synthase was found, ruling out a T(2) genomic effect. In T(2)-treated rats, changes in the composition of mitochondrial phospholipids were observed, cardiolipin (CL) showing the greatest alteration. In mitochondria isolated from hypothyroid rats the decrease in the amount of CL was accompanied by an increase in the level of peroxidised CL. T(2) administration to hypothyroid rats enhanced the level of CL and decreased the amount of peroxidised CL in subsequently isolated mitochondria, tending to restore the CL value to the euthyroid level. Minor T(2)-induced changes in mitochondrial fatty acid composition were detected. Overall, the enhanced F(o)F(1)-ATP synthase activity observed following injection of T(2) to hypothyroid rats may be ascribed, at least in part, to an increased level of mitochondrial CL associated with decreased peroxidation of CL.
Collapse
Affiliation(s)
- Alessandro Cavallo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | | | | | | | | | | | | |
Collapse
|
39
|
Silvestri E, Lombardi A, de Lange P, Glinni D, Senese R, Cioffi F, Lanni A, Goglia F, Moreno M. Studies of complex biological systems with applications to molecular medicine: the need to integrate transcriptomic and proteomic approaches. J Biomed Biotechnol 2010; 2011:810242. [PMID: 20981256 PMCID: PMC2963870 DOI: 10.1155/2011/810242] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 09/08/2010] [Indexed: 02/07/2023] Open
Abstract
Omics approaches to the study of complex biological systems with potential applications to molecular medicine are attracting great interest in clinical as well as in basic biological research. Genomics, transcriptomics and proteomics are characterized by the lack of an a priori definition of scope, and this gives sufficient leeway for investigators (a) to discern all at once a globally altered pattern of gene/protein expression and (b) to examine the complex interactions that regulate entire biological processes. Two popular platforms in "omics" are DNA microarrays, which measure messenger RNA transcript levels, and proteomic analyses, which identify and quantify proteins. Because of their intrinsic strengths and weaknesses, no single approach can fully unravel the complexities of fundamental biological events. However, an appropriate combination of different tools could lead to integrative analyses that would furnish new insights not accessible through one-dimensional datasets. In this review, we will outline some of the challenges associated with integrative analyses relating to the changes in metabolic pathways that occur in complex pathophysiological conditions (viz. ageing and altered thyroid state) in relevant metabolically active tissues. In addition, we discuss several new applications of proteomic analysis to the investigation of mitochondrial activity.
Collapse
Affiliation(s)
- Elena Silvestri
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi del Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| | - Assunta Lombardi
- Dipartimento delle Scienze Biologiche, Sezione Fisiologia, Università degli Studi di Napoli “Federico II”, Via Mezzocannone 8, 80134 Napoli, Italy
| | - Pieter de Lange
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Daniela Glinni
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi del Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| | - Rosalba Senese
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Federica Cioffi
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Antonia Lanni
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Fernando Goglia
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi del Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| | - Maria Moreno
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi del Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| |
Collapse
|
40
|
Scapin S, Leoni S, Spagnuolo S, Gnocchi D, De Vito P, Luly P, Pedersen JZ, Incerpi S. Short-term effects of thyroid hormones during development: Focus on signal transduction. Steroids 2010; 75:576-84. [PMID: 19900468 DOI: 10.1016/j.steroids.2009.10.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 10/21/2009] [Accepted: 10/28/2009] [Indexed: 12/27/2022]
Abstract
Extranuclear or nongenomic effects of thyroid hormones are mediated by receptors located at the plasma membrane or inside cells, and are independent of protein synthesis. Recently the alphaVbeta3 integrin was identified as a cell membrane receptor for thyroid hormones, and a wide variety of nongenomic effects have now been shown to be induced through binding of thyroid hormones to this receptor. However, also other thyroid hormone receptors can produce nongenomic effects, including the cytoplasmic TRalpha and TRbeta receptors and probably also a G protein-coupled membrane receptor, and increasing importance is now given to thyroid hormone metabolites like 3,5-diiodothyronine and reverse T(3) that can mimick some nongenomic effects of T(3) and T(4). Signal transduction from the alphaVbeta3 integrin may proceed through at least three independent pathways (protein kinase C, Src or mitogen-activated kinases) but the details are still unknown. Thyroid hormones induce nongenomic effects on at least three important Na(+)-dependent transport systems, the Na(+)/K(+)-ATPase, the Na(+)/H(+) exchanger, and amino acid transport System A, leading to a mitogenic response in embryo cells; but modulation of the same transport systems may have different roles in other cells and at different developmental stages. It seems that thyroid hormones in many cases can modulate nongenomically the same targets affected by the nuclear receptors through long-term mechanisms. Recent results on nongenomic effects confirm the old theory that the primary role of thyroid hormones is to keep the steady-state level of functioning of the cell, but more and more mechanisms are discovered by which this goal can be achieved.
Collapse
Affiliation(s)
- Sergio Scapin
- Department of Cellular and Developmental Biology, Sapienza University, 00185 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Senatore V, Cione E, Gnoni A, Genchi G. Retinoylation reactions are inversely related to the cardiolipin level in testes mitochondria from hypothyroid rats. J Bioenerg Biomembr 2010; 42:321-8. [PMID: 20490639 DOI: 10.1007/s10863-010-9293-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 03/04/2010] [Indexed: 01/27/2023]
Abstract
The effect of hypothyroidism, induced by 6-n-propyl-2-thiouracil (PTU) administration to rats, on the retinoylation reaction and oxidative status was investigated in rat-testes mitochondria. In hypothyroid mitochondria, when compared to euthyroid controls, we found a noticeable increase in the amount of all-trans-retinoic acid (atRA) bound to mitochondrial proteins by an acylation process (34.2 +/- 1.9 pmoles atRA/mg protein/360 min and 22.2 +/- 1.7 pmoles atRA/mg protein/360 min, respectively). This increase, which was time- and temperature-dependent, was accompanied by a strong reduction in the cardiolipin (CL) amount in the mitochondrial membranes of hypothyroid (2.6 +/- 0.2%) as compared to euthyroid rats (4.5 +/- 0.5%) Conversely, a decreased retinoylation reaction was observed when CL liposomes were added to mitochondria or mitoplasts from both euthyroid and hypothyroid rats, thus confirming a role of CL in the retinoylation process. In mitochondria from the latter animals an increase of the level of oxidized CL occurred. The ATP level, which was reduced in hypothyroid mitochondria (27.3 +/- 4.1 pmoles ATP/mg protein versus 67.1 +/- 8.3 pmoles ATP/mg protein of euthyroid animals), was surprisingly increased in mitochondria by the retinoylation reaction in the presence of 100 nM atRA (481.5 +/- 19.3 pmoles ATP/mg protein of hypothyroid animals versus 84.7 +/- 7.7 pmoles ATP/mg protein of euthyroid animals). Overall, in hypothyroid rat-testes mitochondria the increase in retinoylation activity correlates with a significant depletion of the CL level, due to a peroxidation of this lipid. In addition, an enhanced production of reactive oxygen species was observed.
Collapse
Affiliation(s)
- Valentina Senatore
- Department of Pharmaco-Biology, University of Calabria, Rende, Cosenza, Italy
| | | | | | | |
Collapse
|
42
|
Mangiullo R, Gnoni A, Damiano F, Siculella L, Zanotti F, Papa S, Gnoni GV. 3,5-diiodo-L-thyronine upregulates rat-liver mitochondrial FoF1-ATP synthase by GA-binding protein/nuclear respiratory factor-2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:233-40. [DOI: 10.1016/j.bbabio.2009.10.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 10/01/2009] [Accepted: 10/22/2009] [Indexed: 12/01/2022]
|
43
|
Ashkar FA, Semple E, Schmidt CH, St John E, Bartlewski PM, King WA. Thyroid hormone supplementation improves bovine embryo development in vitro. Hum Reprod 2009; 25:334-44. [PMID: 19920067 DOI: 10.1093/humrep/dep394] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Early embryo development (EED) forms the basis of assisted reproductive technologies (ARTs), which are used to treat human infertility and to propagate other mammalian species. Thyroid hormones (THs) play an important role in the post-implantation development of the embryo in mammals; however, the effects of THs on pre-attachment embryos are not known. Currently utilized in-vitro embryo production media are devoid of THs and hence our main objective was to examine whether THs affected EED in a bovine model. METHODS To determine if THs are present at the site of fertilization and EED in cattle, we evaluated the presence of the hormones in oviductal and uterine horn tissues. To assess the outcome of free TH supplementation (50 ng/ml of each hormone: triiodothyronine-T3 and thyroxin-T4), embryos were followed through standard and TH-supplemented in-vitro procedures, and evaluated for the cleavage rates, blastocyst formation rate and hatching rates. Embryo quality was assessed using TUNEL assay and post-cryopreservation survival was also evaluated. RESULTS Although TH levels in in-vitro culture media were found to be approximately 60% of the administered doses, the TH-treated embryos exhibited significant increases in blastocyst formation and hatching rates (P < 0.05). Embryo quality was significantly improved in the treated groups as demonstrated by greater total cell counts and reduced proportions of apoptotic cells (P < 0.05). Finally, TH supplementation was associated with improved post-cryopreservation viability, defined by blastocyst re-expansion and hatching rates after frozen embryos had been thawed and cultured (P < 0.05). CONCLUSIONS These findings not only provide a way of optimizing ART efficiency, but also further our understanding of how THs influence embryonic development in mammals.
Collapse
Affiliation(s)
- Fazl A Ashkar
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | | | | | | | | | | |
Collapse
|
44
|
Rabøl R, Svendsen PF, Skovbro M, Boushel R, Haugaard SB, Schjerling P, Schrauwen P, Hesselink MKC, Nilas L, Madsbad S, Dela F. Reduced skeletal muscle mitochondrial respiration and improved glucose metabolism in nondiabetic obese women during a very low calorie dietary intervention leading to rapid weight loss. Metabolism 2009; 58:1145-52. [PMID: 19454354 DOI: 10.1016/j.metabol.2009.03.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 03/24/2009] [Indexed: 11/20/2022]
Abstract
Reduced oxidative capacity of skeletal muscle has been proposed to lead to accumulation of intramyocellular triglyceride (IMTG) and insulin resistance. We have measured mitochondrial respiration before and after a 10% low-calorie-induced weight loss in young obese women to examine the relationship between mitochondrial function, IMTG, and insulin resistance. Nine obese women (age, 32.3 years [SD, 3.0]; body mass index, 33.4 kg/m(2) [SD, 2.6]) completed a 53-day (SE, 3.8) very low calorie diet (VLCD) of 500 to 600 kcal/d without altering physical activity. The target of the intervention was a 10% weight loss; and measurements of mitochondrial respiration, IMTG, respiratory exchange ratio, citrate synthase activity, mitochondrial DNA copy number, plasma insulin, 2-hour oral glucose tolerance test, and free fatty acids were performed before and after weight loss. Mitochondrial respiration was measured in permeabilized muscle fibers using high-resolution respirometry. Average weight loss was 11.5% (P < .05), but the levels of IMTG remained unchanged. Fasting plasma glucose, plasma insulin homeostasis model assessment of insulin resistance, and insulin sensitivity index (composite) obtained during 2-hour oral glucose tolerance test improved significantly. Mitochondrial respiration per milligram tissue decreased by approximately 25% (P < .05), but citrate synthase activity and mitochondrial DNA copy number remained unchanged. Respiratory exchange ratio decreased from 0.87 (SE, 0.01) to 0.79 (SE, 0.02) (P < .05) as a sign of increased whole-body fat oxidation. Markers of insulin sensitivity improved after the very low calorie diet; but mitochondrial function decreased, and IMTG remained unchanged. Our results do not support a direct relationship between mitochondrial function and insulin resistance in young obese women and do not support a direct relationship between IMTG and insulin sensitivity in young obese women during weight loss.
Collapse
Affiliation(s)
- Rasmus Rabøl
- Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Heme oxygenase-1 prevents hyperthyroidism induced hepatic damage via an antioxidant and antiapoptotic pathway. J Surg Res 2009; 164:266-75. [PMID: 19665148 DOI: 10.1016/j.jss.2009.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 03/16/2009] [Accepted: 04/03/2009] [Indexed: 12/15/2022]
Abstract
BACKGROUND The exact pathogenesis of hepatic dysfunction in hyperthyroidism is still unknown. We aimed to investigate the pathogenesis of liver dysfunction caused by hyperthyroidism through inducing heme oxygenase-1 (HO-1) expression, which has antioxidant and anti-apoptotic properties. METHODS Rats were divided into six groups: untreated (group 1), treated with zinc protoporphyrin (ZnPP) (group 2), treated with hemin (group 3), treated with tri-iodothyronine (T3) (group 4), treated with T3 and ZnPP (group 5), and treated with T3 and hemin (group 6). After 22 d, oxidative stress and antioxidant enzymes and the expression of HO-1, mitochondrial permeability transition, cytochrome c, Bax, Bcl-2, caspase-3, caspase-8, and caspase-3 activity, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay were examined. RESULTS Hyperthyroidism induced oxidative stress of liver tissue was ameliorated by HO-1 induction. Administration of hemin (HO-1 inducer) increased Bcl-2 expression. Decreased expression of cytochrome c was accompanied by a decrease in caspase-3, caspase-8, Bax expression, and caspase-3 activity. The apoptotic activity and oxidative damage were found to be increased by the administration of ZnPP (HO-1 inhibitor). Immunohistochemistry findings supported these results. CONCLUSION HO-1 induction plays a protective role in the pathogenesis of the liver dysfunction in hyperthyroidism. This effect is dependent on modulation of the antiapoptotic and antioxidative pathways by HO-1 expression.
Collapse
|
46
|
Rabøl R, Højberg PMV, Almdal T, Boushel R, Haugaard SB, Madsbad S, Dela F. Improved glycaemic control decreases inner mitochondrial membrane leak in type 2 diabetes. Diabetes Obes Metab 2009; 11:355-60. [PMID: 19267714 DOI: 10.1111/j.1463-1326.2008.00977.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM Several mechanisms have been targeted as culprits of weight gain during antihyperglycaemic treatment in type 2 diabetes (T2DM). These include reductions in glucosuria, increased food intake from fear of hypoglycaemia, the anabolic effect of insulin, decreased metabolic rate and increased efficiency in fuel usage. The purpose of the study was to test the hypothesis that mitochondrial efficiency increases as a result of insulin treatment in patients with type 2 diabetes. METHODS We included ten patients with T2DM (eight males) on oral antidiabetic treatment, median age: 51.5 years (range: 39-67) and body mass index (BMI): 30.1 +/- 1.2 kg/m2 (mean +/- s.e.). Muscle biopsies from m. vastus lateralis and m. deltoideus were obtained before and after seven weeks of intensive insulin treatment, and mitochondrial respiration was measured using high-resolution respirometry. State 3 respiration was measured with the substrates malate, pyruvate, glutamate, succinate and ADP. State 4o was measured with addition of oligomycine. An age, sex and BMI-matched control group was also included. RESULTS HbA1c improved significantly and the patients gained on average 3.4 +/- 0.9 kg. Before treatment, respiratory control ratios (RCRs) of the T2DM were lower than the obese controls [2.6 vs. 3.2 (p < 0.05)], but RCR returned to the levels of the control subjects during treatment. Average state 4o of arm and leg declined by 14% (p < 0.05) during insulin treatment. CONCLUSIONS Tight glycaemic control leads to reductions in inner mitochondrial membrane leak and increased efficiency of mitochondria. This change in mitochondrial physiology could contribute to the weight gain seen with antihyperglycaemic treatment.
Collapse
Affiliation(s)
- R Rabøl
- Copenhagen Muscle Research Centre, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
47
|
Lombardi A, de Lange P, Silvestri E, Busiello RA, Lanni A, Goglia F, Moreno M. 3,5-Diiodo-L-thyronine rapidly enhances mitochondrial fatty acid oxidation rate and thermogenesis in rat skeletal muscle: AMP-activated protein kinase involvement. Am J Physiol Endocrinol Metab 2009; 296:E497-502. [PMID: 19116374 DOI: 10.1152/ajpendo.90642.2008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Triiodothyronine regulates energy metabolism and thermogenesis. Among triiodothyronine derivatives, 3,5-diiodo-l-thyronine (T(2)) has been shown to exert marked effects on energy metabolism by acting mainly at the mitochondrial level. Here we investigated the capacity of T(2) to affect both skeletal muscle mitochondrial substrate oxidation and thermogenesis within 1 h after its injection into hypothyroid rats. Administration of T(2) induced an increase in mitochondrial oxidation when palmitoyl-CoA (+104%), palmitoylcarnitine (+80%), or succinate (+30%) was used as substrate, but it had no effect when pyruvate was used. T(2) was able to 1) activate the AMPK-ACC-malonyl-CoA metabolic signaling pathway known to direct lipid partitioning toward oxidation and 2) increase the importing of fatty acids into the mitochondrion. These results suggest that T(2) stimulates mitochondrial fatty acid oxidation by activating several metabolic pathways, such as the fatty acid import/beta-oxidation cycle/FADH(2)-linked respiratory pathways, where fatty acids are imported. T(2) also enhanced skeletal muscle mitochondrial thermogenesis by activating pathways involved in the dissipation of the proton-motive force not associated with ATP synthesis ("proton leak"), the effect being dependent on the presence of free fatty acids inside mitochondria. We conclude that skeletal muscle is a target for T(2), and we propose that, by activating processes able to enhance mitochondrial fatty acid oxidation and thermogenesis, T(2) could play a role in protecting skeletal muscle against excessive intramyocellular lipid storage, possibly allowing it to avoid functional disorders.
Collapse
Affiliation(s)
- A Lombardi
- Università degli Studi del Napoli, Federic II, Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
48
|
Scapin S, Leoni S, Spagnuolo S, Fiore AM, Incerpi S. Short-term effects of thyroid hormones on Na+-K+-ATPase activity of chick embryo hepatocytes during development: focus on signal transduction. Am J Physiol Cell Physiol 2009; 296:C4-12. [DOI: 10.1152/ajpcell.90604.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nongenomic effects of thyroid hormones on Na+-K+-ATPase activity were studied in chick embryo hepatocytes at two different developmental stages, 14 and 19 days of embryonal age, and the signal transduction pathways involved were characterized. Our data showed the following. 1) 3,5,3′-Triiodo-l-thyronine (T3) and 3,5-diiodo-l-thyronine (3,5-T2) rapidly induced a transient inhibitory effect on the Na+-K+-ATPase; the extent and duration depended on the developmental age of the cells. 2) 3,5-T2behaved as a true hormone and fully mimicked the effect of T3. 3) Thyroxine had no effect at any of the developmental stages. 4) The inhibition of Na+-K+-ATPase was mediated by activation of protein kinase A, protein kinase C, and phosphoinositide 3-kinase, suggesting several modes of modulation of ATPase activity through phosphorylation at different sites. 5) The MAPK pathway did not seem to be involved in the early phase of hormone treatment. 6) The nonpermeant analog T3-agarose inhibited Na+-K+-ATPase activity in the same way as T3, confirming that hormone signaling initiated at a receptor on the plasma membrane. From these results, it can be concluded that the cell response mechanisms change rapidly and drastically within the early phase of embryo growth. The differences found at the two stages probably reflect the different roles of thyroid hormones during development and differentiation.
Collapse
|
49
|
de Lange P, Senese R, Cioffi F, Moreno M, Lombardi A, Silvestri E, Goglia F, Lanni A. Rapid activation by 3,5,3'-L-triiodothyronine of adenosine 5'-monophosphate-activated protein kinase/acetyl-coenzyme a carboxylase and akt/protein kinase B signaling pathways: relation to changes in fuel metabolism and myosin heavy-chain protein content in rat gastrocnemius muscle in vivo. Endocrinology 2008; 149:6462-70. [PMID: 18703632 DOI: 10.1210/en.2008-0202] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T3 stimulates metabolic rate in many tissues and induces changes in fuel use. The pathways by which T3 induces metabolic/structural changes related to altered fuel use in skeletal muscle have not been fully clarified. Gastrocnemius muscle (isolated at different time points after a single injection of T3 into hypothyroid rats), displayed rapid inductions of AMP-activated protein kinase (AMPK) phosphorylation (threonine 172; within 6 h) and acetyl-coenzyme A carboxylase phosphorylation (serine 79; within 12 h). As a consequence, increases occurred in mitochondrial fatty acid oxidation and carnitine palmitoyl transferase activity. Concomitantly, T3 stimulated signaling toward increased glycolysis through a rapid increase in Akt/protein kinase B (serine 473) phosphorylation (within 6 h) and a directly related increase in the activity of phosphofructokinase. The kinase specificity of the above effects was verified by treatment with inhibitors of AMPK and Akt activity (compound C and wortmannin, respectively). In contrast, glucose transporter 4 translocation to the membrane (activated by T3 within 6 h) was maintained when either AMPK or Akt activity was inhibited. The metabolic changes were accompanied by a decline in myosin heavy-chain Ib protein [causing a shift toward the fast-twitch (glycolytic) phenotype]. The increases in AMPK and acetyl-coenzyme A carboxylase phosphorylation were transient events, both levels declining from 12 h after the T3 injection, but Akt phosphorylation remained elevated until at least 48h after the injection. These data show that in skeletal muscle, T3 stimulates both fatty acid and glucose metabolism through rapid activations of the associated signaling pathways involving AMPK and Akt/protein kinase B.
Collapse
Affiliation(s)
- Pieter de Lange
- Dipartimento di Scienze della Vita, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Receptors for glucocorticoids, estrogens, androgens, and thyroid hormones have been detected in mitochondria of various cell types by Western blotting, immunofluorescence labeling, confocal microscopy, and immunogold electron microscopy. A role of these receptors in mitochondrial transcription, OXPHOS biosynthesis, and apoptosis is now being revealed. Steroid and thyroid hormones regulate energy production, inducing nuclear and mitochondrial OXPHOS genes by way of cognate receptors. In addition to the action of the nuclearly localized receptors on nuclear OXPHOS gene transcription, a parallel direct action of the mitochondrially localized receptors on mitochondrial transcription has been demonstrated. The coordination of transcription activation in nuclei and mitochondria by the respective receptors is in part realized by their binding to common trans acting elements in the two genomes. Recent evidence points to a role of the mitochondrial receptors in cell survival and apoptosis, exerted by genomic and nongenomic mechanisms. The identification of additional receptors of the superfamily of nuclear receptors and of other nuclear transcription factors in mitochondria increases their arsenal of regulatory molecules and further underlines the central role of these organelles in the integration of growth, metabolic, and cell survival signals.
Collapse
Affiliation(s)
- Anna-Maria G Psarra
- Biomedical Research Foundation, Academy of Athens, Center for Basic Research, Athens, Greece
| | | |
Collapse
|