1
|
Shigematsu M, Gumas J, Kirino Y. cP-RNA-seq for tRNA half sequencing. Methods Enzymol 2024; 711:135-153. [PMID: 39952701 PMCID: PMC11938272 DOI: 10.1016/bs.mie.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Although RNA-seq data are becoming more widely available for biomedical research, most datasets for short non-coding RNAs (sncRNAs) primarily focus on microRNA analysis using standard RNA-seq, which captures only sncRNAs with 5'-phosphate (5'-P) and 3'-hydroxyl (3'-OH) ends. Standard RNA-seq fails to sequence sncRNAs with different terminal phosphate states, including tRNA halves, the most abundant class of tRNA-derived sncRNAs that play diverse roles in various biological processes. tRNA halves are produced through the endoribonucleolytic cleavage of mature tRNA anticodon loops. The responsible endoribonucleases, such as Angiogenin, commonly leave a 2',3'-cyclic phosphate (cP) at the 3'-end of 5'-tRNA halves and forms a 5'-OH end of 3'-tRNA halves, making them incompatible with standard RNA-seq. We developed a method named "cP-RNA-seq" that selectively amplifies and sequences tRNA halves and other cP-containing sncRNAs. Here we describe a detailed and recently updated cP-RNA-seq protocol. In this method, the 3'-end of all sncRNAs, except those containing a cP, are cleaved through periodate treatment after phosphatase treatment. Consequently, adaptor ligation and cDNA amplification steps are exclusively applied to cP-containing sncRNAs. Our cP-RNA-seq only requires commercially available reagents and is broadly applicable for the global identification of tRNA halves and other cP-containing sncRNA repertoires in various transcriptomes.
Collapse
Affiliation(s)
- Megumi Shigematsu
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Justin Gumas
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
2
|
Malinovschi A, Rydell N, Fujisawa T, Borres MP, Kim CK. Clinical Potential of Eosinophil-Derived Neurotoxin in Asthma Management. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:750-761. [PMID: 36581068 DOI: 10.1016/j.jaip.2022.11.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/27/2022]
Abstract
The assessment and management of patients with asthma is challenging because of the complexity of the underlying inflammatory mechanisms and heterogeneity of their clinical presentation. Optimizing disease management requires therapy individualization that should rely on reliable biomarkers to unravel the phenotypes and endotypes of asthma. The secretory activity and turnover of eosinophils, as assessed by measuring eosinophil-derived proteins, may provide an accurate and complementary tool that mirrors the eosinophil activation status. Emerging evidence suggests that eosinophil-derived neurotoxin has considerable potential as a precision medicine biomarker. In this review, we explore the suitability of eosinophil-derived neurotoxin as a biomarker in asthma management, with particular emphasis on its clinical significance in the management of both pediatric and adult populations.
Collapse
Affiliation(s)
- Andrei Malinovschi
- Clinical Physiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| | - Niclas Rydell
- ImmunoDiagnostics, Thermo Fisher Scientific, Uppsala, Sweden
| | - Takao Fujisawa
- Allergy Center, National Hospital Organization Mie National Hospital, Tsu, Japan
| | - Magnus P Borres
- ImmunoDiagnostics, Thermo Fisher Scientific, Uppsala, Sweden; Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Chang-Keun Kim
- Asthma and Allergy Center, Inje University Sanggye Paik Hospital, Seoul, South Korea
| |
Collapse
|
3
|
Tripathy DR, Panda A, Dinda AK, Dasgupta S. Positional preferences in flavonoids for inhibition of ribonuclease A: Where "OH" where? Proteins 2021; 89:577-587. [PMID: 33423292 DOI: 10.1002/prot.26043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/16/2020] [Accepted: 12/31/2020] [Indexed: 11/09/2022]
Abstract
Flavonoids are a class of polyphenols that possess diverse properties. The structure-activity relationship of certain flavonoids and resveratrol with ribonuclease A (RNase A) has been investigated. The selected flavonoids have a similar skeleton and the positional preferences of the phenolic moieties toward inhibition of the catalytic activity of RNase A have been studied. The results obtained for RNase A inhibition by flavonoids suggest that the planarity of the molecules is necessary for effective inhibitory potency. Agarose gel electrophoresis and precipitation assay experiments along with kinetic studies reveal Ki values for the various flavonoids in the micromolar range. Minor secondary structural changes of RNase A were observed after interaction with the flavonoids. An insight into the specific amino acid involvement in the binding of the substrate using docking studies is also presented. The dipole moment of the flavonoids that depends on the orientation of the hydroxyl groups in the molecule bears direct correlation with the inhibitory potency against RNase A. The direct association of this molecular property with enzyme inhibition can be exploited for the design and development of inhibitors of proteins.
Collapse
Affiliation(s)
- Debi Ranjan Tripathy
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Atashi Panda
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Amit Kumar Dinda
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
4
|
Gotte G, Menegazzi M. Biological Activities of Secretory RNases: Focus on Their Oligomerization to Design Antitumor Drugs. Front Immunol 2019; 10:2626. [PMID: 31849926 PMCID: PMC6901985 DOI: 10.3389/fimmu.2019.02626] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022] Open
Abstract
Ribonucleases (RNases) are a large number of enzymes gathered into different bacterial or eukaryotic superfamilies. Bovine pancreatic RNase A, bovine seminal BS-RNase, human pancreatic RNase 1, angiogenin (RNase 5), and amphibian onconase belong to the pancreatic type superfamily, while binase and barnase are in the bacterial RNase N1/T1 family. In physiological conditions, most RNases secreted in the extracellular space counteract the undesired effects of extracellular RNAs and become protective against infections. Instead, if they enter the cell, RNases can digest intracellular RNAs, becoming cytotoxic and having advantageous effects against malignant cells. Their biological activities have been investigated either in vitro, toward a number of different cancer cell lines, or in some cases in vivo to test their potential therapeutic use. However, immunogenicity or other undesired effects have sometimes been associated with their action. Nevertheless, the use of RNases in therapy remains an appealing strategy against some still incurable tumors, such as mesothelioma, melanoma, or pancreatic cancer. The RNase inhibitor (RI) present inside almost all cells is the most efficacious sentry to counteract the ribonucleolytic action against intracellular RNAs because it forms a tight, irreversible and enzymatically inactive complex with many monomeric RNases. Therefore, dimerization or multimerization could represent a useful strategy for RNases to exert a remarkable cytotoxic activity by evading the interaction with RI by steric hindrance. Indeed, the majority of the mentioned RNases can hetero-dimerize with antibody derivatives, or even homo-dimerize or multimerize, spontaneously or artificially. This can occur through weak interactions or upon introducing covalent bonds. Immuno-RNases, in particular, are fusion proteins representing promising drugs by combining high target specificity with easy delivery in tumors. The results concerning the biological features of many RNases reported in the literature are described and discussed in this review. Furthermore, the activities displayed by some RNases forming oligomeric complexes, the mechanisms driving toward these supramolecular structures, and the biological rebounds connected are analyzed. These aspects are offered with the perspective to suggest possible efficacious therapeutic applications for RNases oligomeric derivatives that could contemporarily lack, or strongly reduce, immunogenicity and other undesired side-effects.
Collapse
Affiliation(s)
- Giovanni Gotte
- Biological Chemistry Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marta Menegazzi
- Biological Chemistry Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
5
|
Filippone RT, Sahakian L, Apostolopoulos V, Nurgali K. Eosinophils in Inflammatory Bowel Disease. Inflamm Bowel Dis 2019; 25:1140-1151. [PMID: 30856253 DOI: 10.1093/ibd/izz024] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Indexed: 12/16/2022]
Abstract
Clinical investigations in inflammatory bowel disease (IBD) patients have provided increasing evidence that eosinophils contribute to chronic intestinal inflammation. Accumulation of eosinophils in the gastrointestinal tract correlates with the variations of eosinophil regulatory molecules; however, their role in gastrointestinal dysfunction in IBD has not been fully elucidated. This review will describe the development and characterization of gastrointestinal eosinophils, mechanisms of eosinophil recruitment to the gastrointestinal tract. Moreover, the eosinophil-induced changes to the enteric nervous system associated with disease severity and gastrointestinal dysfunction will be analyzed with suggestive molecular pathways for enteric neuronal injury. Current and potential therapeutic interventions targeting eosinophils will be discussed.
Collapse
Affiliation(s)
- Rhiannon T Filippone
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Lauren Sahakian
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Vasso Apostolopoulos
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Kulmira Nurgali
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Australia.,Department of Medicine Western Health, Melbourne University, Melbourne, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, Australia
| |
Collapse
|
6
|
Moon LDF. Chromatolysis: Do injured axons regenerate poorly when ribonucleases attack rough endoplasmic reticulum, ribosomes and RNA? Dev Neurobiol 2018; 78:1011-1024. [PMID: 30027624 PMCID: PMC6334169 DOI: 10.1002/dneu.22625] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 02/06/2023]
Abstract
After axonal injury, chromatolysis (fragmentation of Nissl substance) can occur in the soma. Electron microscopy shows that chromatolysis involves fission of the rough endoplasmic reticulum. In CNS neurons (which do not regenerate axons back to their original targets) or in motor neurons or dorsal root ganglion neurons denied axon regeneration (e.g., by transection and ligation), chromatolysis is often accompanied by degranulation (loss of ribosomes from rough endoplasmic reticulum), disaggregation of polyribosomes and degradation of monoribosomes into dust‐like particles. Ribosomes and rough endoplasmic reticulum may also be degraded in autophagic vacuoles by ribophagy and reticulophagy, respectively. In other words, chromatolysis is disruption of parts of the protein synthesis infrastructure. Whereas some neurons may show transient or no chromatolysis, severely injured neurons can remain chromatolytic and never again synthesize normal levels of protein; some may atrophy or die. Ribonuclease(s) might cause the following features of chromatolysis: fragmentation and degranulation of rough endoplasmic reticulum, disaggregation of polyribosomes and degradation of monoribosomes. For example, ribonucleases in the EndoU/PP11 family can modify rough endoplasmic reticulum; many ribonucleases can degrade mRNA causing polyribosomes to unchain and disperse, and they can disassemble monoribosomes; Ribonuclease 5 can control rRNA synthesis and degrade tRNA; Ribonuclease T2 can degrade ribosomes, endoplasmic reticulum and RNA within autophagic vacuoles; and Ribonuclease IRE1α acts as a stress sensor within the endoplasmic reticulum. Regeneration might be improved after axonal injury by protecting the protein synthesis machinery from catabolism; targeting ribonucleases using inhibitors can enhance neurite outgrowth and could be a profitable strategy in vivo. © 2018 Wiley Periodicals, Inc. Develop Neurobiol, 2018
Collapse
Affiliation(s)
- Lawrence David Falcon Moon
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, 16-20 Newcomen Street, London, SE1 1UL, United Kingdom
| |
Collapse
|
7
|
Diny NL, Rose NR, Čiháková D. Eosinophils in Autoimmune Diseases. Front Immunol 2017; 8:484. [PMID: 28496445 PMCID: PMC5406413 DOI: 10.3389/fimmu.2017.00484] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/07/2017] [Indexed: 12/15/2022] Open
Abstract
Eosinophils are multifunctional granulocytes that contribute to initiation and modulation of inflammation. Their role in asthma and parasitic infections has long been recognized. Growing evidence now reveals a role for eosinophils in autoimmune diseases. In this review, we summarize the function of eosinophils in inflammatory bowel diseases, neuromyelitis optica, bullous pemphigoid, autoimmune myocarditis, primary biliary cirrhosis, eosinophilic granulomatosis with polyangiitis, and other autoimmune diseases. Clinical studies, eosinophil-targeted therapies, and experimental models have contributed to our understanding of the regulation and function of eosinophils in these diseases. By examining the role of eosinophils in autoimmune diseases of different organs, we can identify common pathogenic mechanisms. These include degranulation of cytotoxic granule proteins, induction of antibody-dependent cell-mediated cytotoxicity, release of proteases degrading extracellular matrix, immune modulation through cytokines, antigen presentation, and prothrombotic functions. The association of eosinophilic diseases with autoimmune diseases is also examined, showing a possible increase in autoimmune diseases in patients with eosinophilic esophagitis, hypereosinophilic syndrome, and non-allergic asthma. Finally, we summarize key future research needs.
Collapse
Affiliation(s)
- Nicola L Diny
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Noel R Rose
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniela Čiháková
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Martin L, Koczera P, Simons N, Zechendorf E, Hoeger J, Marx G, Schuerholz T. The Human Host Defense Ribonucleases 1, 3 and 7 Are Elevated in Patients with Sepsis after Major Surgery--A Pilot Study. Int J Mol Sci 2016; 17:294. [PMID: 26927088 PMCID: PMC4813158 DOI: 10.3390/ijms17030294] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/04/2016] [Accepted: 02/16/2016] [Indexed: 01/21/2023] Open
Abstract
Sepsis is the most common cause of death in intensive care units and associated with widespread activation of host innate immunity responses. Ribonucleases (RNases) are important components of the innate immune system, however the role of RNases in sepsis has not been investigated. We evaluated serum levels of RNase 1, 3 and 7 in 20 surgical sepsis patients (Sepsis), nine surgical patients (Surgery) and 10 healthy controls (Healthy). RNase 1 and 3 were elevated in Sepsis compared to Surgery (2.2- and 3.1-fold, respectively; both p < 0.0001) or compared to Healthy (3.0- and 15.5-fold, respectively; both p < 0.0001). RNase 1 showed a high predictive value for the development of more than two organ failures (AUC 0.82, p = 0.01). Patients with renal dysfunction revealed higher RNase 1 levels than without renal dysfunction (p = 0.03). RNase 1 and 3 were higher in respiratory failure than without respiratory failure (p < 0.0001 and p = 0.02, respectively). RNase 7 was not detected in Healthy patients and only in two patients of Surgery, however RNase 7 was detected in 10 of 20 Sepsis patients. RNase 7 was higher in renal or metabolic failure than without failure (p = 0.04 and p = 0.02, respectively). In conclusion, RNase 1, 3 and 7 are secreted into serum under conditions with tissue injury, such as major surgery or sepsis. Thus, RNases might serve as laboratory parameters to diagnose and monitor organ failure in sepsis.
Collapse
Affiliation(s)
- Lukas Martin
- Department of Intensive Care and Intermediate Care, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany.
| | - Patrick Koczera
- Department of Intensive Care and Intermediate Care, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany.
| | - Nadine Simons
- Department of Intensive Care and Intermediate Care, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany.
| | - Elisabeth Zechendorf
- Department of Intensive Care and Intermediate Care, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany.
| | - Janine Hoeger
- Department of Intensive Care and Intermediate Care, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany.
| | - Gernot Marx
- Department of Intensive Care and Intermediate Care, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany.
| | - Tobias Schuerholz
- Department of Intensive Care and Intermediate Care, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany.
| |
Collapse
|
9
|
Metcalfe DD, Pawankar R, Ackerman SJ, Akin C, Clayton F, Falcone FH, Gleich GJ, Irani AM, Johansson MW, Klion AD, Leiferman KM, Levi-Schaffer F, Nilsson G, Okayama Y, Prussin C, Schroeder JT, Schwartz LB, Simon HU, Walls AF, Triggiani M. Biomarkers of the involvement of mast cells, basophils and eosinophils in asthma and allergic diseases. World Allergy Organ J 2016; 9:7. [PMID: 26904159 PMCID: PMC4751725 DOI: 10.1186/s40413-016-0094-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/14/2016] [Indexed: 12/19/2022] Open
Abstract
Biomarkers of disease activity have come into wide use in the study of mechanisms of human disease and in clinical medicine to both diagnose and predict disease course; as well as to monitor response to therapeutic intervention. Here we review biomarkers of the involvement of mast cells, basophils, and eosinophils in human allergic inflammation. Included are surface markers of cell activation as well as specific products of these inflammatory cells that implicate specific cell types in the inflammatory process and are of possible value in clinical research as well as within decisions made in the practice of allergy-immunology.
Collapse
Affiliation(s)
- Dean D. Metcalfe
- />Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Ruby Pawankar
- />Division of Allergy, Department of Pediatrics, Nippon Medical School, Tokyo, Japan
| | - Steven J. Ackerman
- />Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois, Chicago, IL USA
| | - Cem Akin
- />Harvard Medical School, Brigham and Women’s Hospital, Boston, MA USA
| | - Frederic Clayton
- />Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT USA
| | - Franco H. Falcone
- />The School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Gerald J. Gleich
- />Department of Dermatology, University of Utah, School of Medicine, Salt Lake City, UT USA
| | - Anne-Marie Irani
- />Virginia Commonwealth University, Children’s Hospital of Richmond, Richmond, VA USA
| | - Mats W. Johansson
- />Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI USA
| | - Amy D. Klion
- />Human Eosinophil Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | | | | | - Gunnar Nilsson
- />Clinical Immunology and Allergy, Department of Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Yoshimichi Okayama
- />Allergy and Immunology Group, Research Institute of Medical Science, Nihon University Graduate School of Medicine, Tokyo, Japan
| | - Calman Prussin
- />Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - John T. Schroeder
- />Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | | | - Hans-Uwe Simon
- />University of Bern, Institute of Pharmacology, Bern, Switzerland
| | - Andrew F. Walls
- />Southampton General Hospital, Immunopharmacology Group, Southampton, Hampshire UK
| | - Massimo Triggiani
- />Division of Allergy and Clinical Immunology, University of Salerno, Salerno, Italy
| |
Collapse
|
10
|
Chatzileontiadou DSM, Parmenopoulou V, Manta S, Kantsadi AL, Kylindri P, Griniezaki M, Kontopoulou F, Telopoulou A, Prokova H, Panagopoulos D, Boix E, Balatsos NAA, Komiotis D, Leonidas DD. Triazole double-headed ribonucleosides as inhibitors of eosinophil derived neurotoxin. Bioorg Chem 2015; 63:152-65. [PMID: 26551065 DOI: 10.1016/j.bioorg.2015.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/26/2015] [Accepted: 10/30/2015] [Indexed: 02/01/2023]
Abstract
Eosinophil derived neurotoxin (EDN) is an eosinophil secretion protein and a member of the Ribonuclease A (RNase A) superfamily involved in the immune response system and inflammatory disorders. The pathological actions of EDN are strongly dependent on the enzymatic activity and therefore, it is of significant interest to discover potent and specific inhibitors of EDN. In this framework we have assessed the inhibitory potency of triazole double-headed ribonucleosides. We present here an efficient method for the heterologous production and purification of EDN together with the synthesis of nucleosides and their biochemical evaluation in RNase A and EDN. Two groups of double-headed nucleosides were synthesized by the attachment of a purine or a pyrimidine base, through a triazole group at the 3'-C position of a pyrimidine or a purine ribonucleoside, respectively. Based on previous data with mononucleosides these compounds were expected to improve the inhibitory potency for RNase A and specificity for EDN. Kinetics data revealed that despite the rational, all but one, double-headed ribonucleosides were less potent than the respective mononucleosides while they were also more specific for ribonuclease A than for EDN. Compound 11c (9-[3'-[4-[(cytosine-1-yl)methyl]-1,2,3-triazol-1-yl]-β-d-ribofuranosyl]adenine) displayed a stronger preference for EDN than for ribonuclease A and a Ki value of 58μM. This is the first time that an inhibitor is reported to have a better potency for EDN than for RNase A. The crystal structure of EDN-11c complex reveals the structural basis of its potency and selectivity providing important guidelines for future structure-based inhibitor design efforts.
Collapse
Affiliation(s)
| | - Vanessa Parmenopoulou
- Department of Biochemistry and Biotechnology, University of Thessaly, 26 Ploutonos Str., 41221 Larissa, Greece
| | - Stella Manta
- Department of Biochemistry and Biotechnology, University of Thessaly, 26 Ploutonos Str., 41221 Larissa, Greece
| | - Anastassia L Kantsadi
- Department of Biochemistry and Biotechnology, University of Thessaly, 26 Ploutonos Str., 41221 Larissa, Greece
| | - Paroula Kylindri
- Department of Biochemistry and Biotechnology, University of Thessaly, 26 Ploutonos Str., 41221 Larissa, Greece
| | - Marianna Griniezaki
- Department of Biochemistry and Biotechnology, University of Thessaly, 26 Ploutonos Str., 41221 Larissa, Greece
| | - Filitsa Kontopoulou
- Department of Biochemistry and Biotechnology, University of Thessaly, 26 Ploutonos Str., 41221 Larissa, Greece
| | - Aikaterini Telopoulou
- Department of Biochemistry and Biotechnology, University of Thessaly, 26 Ploutonos Str., 41221 Larissa, Greece
| | - Helena Prokova
- Department of Biochemistry and Biotechnology, University of Thessaly, 26 Ploutonos Str., 41221 Larissa, Greece
| | - Dimitrios Panagopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, 26 Ploutonos Str., 41221 Larissa, Greece
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Nikolaos A A Balatsos
- Department of Biochemistry and Biotechnology, University of Thessaly, 26 Ploutonos Str., 41221 Larissa, Greece
| | - Dimitri Komiotis
- Department of Biochemistry and Biotechnology, University of Thessaly, 26 Ploutonos Str., 41221 Larissa, Greece.
| | - Demetres D Leonidas
- Department of Biochemistry and Biotechnology, University of Thessaly, 26 Ploutonos Str., 41221 Larissa, Greece.
| |
Collapse
|
11
|
Eosinophil-Derived Neurotoxin (EDN/RNase 2) and the Mouse Eosinophil-Associated RNases (mEars): Expanding Roles in Promoting Host Defense. Int J Mol Sci 2015; 16:15442-55. [PMID: 26184157 PMCID: PMC4519907 DOI: 10.3390/ijms160715442] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/18/2015] [Accepted: 06/30/2015] [Indexed: 12/30/2022] Open
Abstract
The eosinophil-derived neurotoxin (EDN/RNase2) and its divergent orthologs, the mouse eosinophil-associated RNases (mEars), are prominent secretory proteins of eosinophilic leukocytes and are all members of the larger family of RNase A-type ribonucleases. While EDN has broad antiviral activity, targeting RNA viruses via mechanisms that may require enzymatic activity, more recent studies have elucidated how these RNases may generate host defense via roles in promoting leukocyte activation, maturation, and chemotaxis. This review provides an update on recent discoveries, and highlights the versatility of this family in promoting innate immunity.
Collapse
|
12
|
Datta D, Dasgupta S, Pathak T. Ribonuclease A inhibition by carboxymethylsulfonyl-modified xylo- and arabinopyrimidines. ChemMedChem 2014; 9:2138-49. [PMID: 25125220 DOI: 10.1002/cmdc.201402179] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Indexed: 11/10/2022]
Abstract
A group of acidic nucleosides were synthesized to develop a new class of ribonuclease A (RNase A) inhibitors. Our recent study on carboxymethylsulfonyl-modified nucleosides revealed some interesting results in RNase A inhibition. This positive outcome triggered an investigation of the role played by secondary sugar hydroxy groups in inhibiting RNase A activity. Uridines and cytidines modified with SO2 CH2 COOH groups at the 2'- and 3'-positions show good inhibitory properties with low inhibition constant (Ki ) values in the range of 109-17 μM. The present work resulted in a set of inhibitors that undergo more effective interactions with the RNase A active site, as visualized by docking studies.
Collapse
Affiliation(s)
- Dhrubajyoti Datta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur (India), Fax: (+91) 3222-255303
| | | | | |
Collapse
|
13
|
Abstract
Experimental and clinical data strongly support a role for the eosinophil in the pathogenesis of asthma, allergic and parasitic diseases, and hypereosinophilic syndromes, in addition to more recently identified immunomodulatory roles in shaping innate host defense, adaptive immunity, tissue repair/remodeling, and maintenance of normal tissue homeostasis. A seminal finding was the dependence of allergic airway inflammation on eosinophil-induced recruitment of Th2-polarized effector T-cells to the lung, providing a missing link between these innate immune effectors (eosinophils) and adaptive T-cell responses. Eosinophils come equipped with preformed enzymatic and nonenzymatic cationic proteins, stored in and selectively secreted from their large secondary (specific) granules. These proteins contribute to the functions of the eosinophil in airway inflammation, tissue damage, and remodeling in the asthmatic diathesis. Studies using eosinophil-deficient mouse models, including eosinophil-derived granule protein double knock-out mice (major basic protein-1/eosinophil peroxidase dual gene deletion) show that eosinophils are required for all major hallmarks of asthma pathophysiology: airway epithelial damage and hyperreactivity, and airway remodeling including smooth muscle hyperplasia and subepithelial fibrosis. Here we review key molecular aspects of these eosinophil-derived granule proteins in terms of structure-function relationships to advance understanding of their roles in eosinophil cell biology, molecular biology, and immunobiology in health and disease.
Collapse
Affiliation(s)
- K Ravi Acharya
- From the Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom and
| | - Steven J Ackerman
- the Department of Biochemistry and Molecular Genetics, College of Medicine, The University of Illinois, Chicago, Illinois 60607
| |
Collapse
|
14
|
Loutsios C, Farahi N, Porter L, Lok LSC, Peters AM, Condliffe AM, Chilvers ER. Biomarkers of eosinophilic inflammation in asthma. Expert Rev Respir Med 2014; 8:143-50. [PMID: 24460178 DOI: 10.1586/17476348.2014.880052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Eosinophils are mediators of allergic inflammation and are implicated in the pathogenesis of numerous conditions including asthma, parasitic infections, neoplasms, hyper-eosinophilic syndromes, vasculitic disorders, and organ-specific conditions. Assessing eosinophilic inflammation is therefore important in establishing a diagnosis, in monitoring and assessing response to treatment, and in testing novel therapeutics. Clinical markers of atopy and eosinophilic inflammation include indirect tests such as lung function, exhaled breath condensate analysis, fractional exhaled nitric oxide, serum immunoglobulin E levels and serum periostin. Direct measures, which quantify but do not anatomically localise inflammation include blood eosinophil counts, serum or plasma eosinophil cationic protein and sputum eosinophil levels. Cytology from bronchoalveolar lavage and histology from endobronchial and transbronchial biopsies are better at localising inflammation but are more invasive. Novel approaches using radiolabelled eosinophils with single-photon emission computed tomography, offer the prospect of non-invasive methods to localise eosinophilic inflammation.
Collapse
Affiliation(s)
- Chrystalla Loutsios
- Department of Medicine, Division of Respiratory Medicine, University of Cambridge, School of Clinical Medicine, Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|
15
|
Datta D, Samanta A, Dasgupta S, Pathak T. 3′-Oxo-, amino-, thio- and sulfone-acetic acid modified thymidines: Effect of increased acidity on ribonuclease A inhibition. Bioorg Med Chem 2013; 21:4634-45. [DOI: 10.1016/j.bmc.2013.05.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 01/13/2023]
|
16
|
Sikriwal D, Seth D, Parveen S, Malik A, Broor S, Batra JK. An insertion in loop L7 of human eosinophil-derived neurotoxin is crucial for its antiviral activity. J Cell Biochem 2013; 113:3104-12. [PMID: 22581709 DOI: 10.1002/jcb.24187] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The human eosinophil granule ribonuclease, eosinophil-derived neurotoxin (EDN) has been shown to have antiviral activity against respiratory syncytial virus-B (RSV-B). Other closely related and more active RNases such as RNase A, onconase, and RNase k6 do not have any antiviral activity. A remarkable unique feature of EDN is a nine-residue insertion in its carboxy-terminal loop, L7 which is not present in RNase A, and differs in sequence from the corresponding loop in another eosinophil RNase, eosinophil cationic protein (ECP). ECP has a much lower antiviral activity as compared to EDN. The current study probed the role of loop L7 of EDN in its antiviral activity. Three residues in loop L7, Arg117, Pro120, and Gln122, which diverge between EDN, ECP, and RNase A, were mutated to alanine alone and in combination to generate single, double, and triple mutants. These mutants, despite having RNase activity had decreased antiviral activity towards RSV suggesting the involvement of loop L7 in the interaction of EDN with RSV. It appears that the mutations in loop L7 disrupt the interaction of protein with the viral capsid, thereby inhibiting its entry into the virions. The study demonstrates that besides the RNase activity, loop L7 is another important determinant for the antiviral activity of EDN.
Collapse
Affiliation(s)
- Deepa Sikriwal
- Immunochemistry Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | | | |
Collapse
|
17
|
Thiyagarajan N, Acharya KR. Crystal structure of human angiogenin with an engineered loop exhibits conformational flexibility at the functional regions of the molecule. FEBS Open Bio 2012; 3:65-70. [PMID: 23772376 PMCID: PMC3668512 DOI: 10.1016/j.fob.2012.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 12/19/2012] [Accepted: 12/19/2012] [Indexed: 11/18/2022] Open
Abstract
Human angiogenin (ANG) is an angiogenic molecule and a ribonucleolytic enzyme with significant amino acid sequence identity to pancreatic RNase A, plays a critical role in the establishment and growth of tumours. An association between ANG and cancer has been observed in more than 25 clinical studies to date. In addition, ANG has now been shown to be implicated in Amyotrophic Lateral Sclerosis (ALS) and Parkinson's Disease (PD). Structural and biochemical studies so far have showed several distinguishing features of ANG molecule compared to RNase A and provided details of the putative cell binding site, active site, nuclear translocation sequence and the roles of residues in binding and cleaving RNA. A key finding elucidated from the structural study on ANG is the presence of a 'blocked' C-terminus (part of the active site apparatus) compared with RNase A. Here we report the crystal structure of ANG with an 'engineered-loop' from eosinophil derived neurotoxin (a homologue of ANG) which has resulted with local perturbations (conformational flexibility) at the cell binding site and at the C-terminus of the molecule. This experimental observation will now provide a new avenue to design compounds (potent inhibitors) through a structure guided drug design route.
Collapse
Affiliation(s)
| | - K. Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| |
Collapse
|
18
|
Ochkur SI, Kim JD, Protheroe CA, Colbert D, Condjella RM, Bersoux S, Helmers RA, Moqbel R, Lacy P, Kelly EA, Jarjour NN, Kern R, Peters A, Schleimer RP, Furuta GT, Nair P, Lee JJ, Lee NA. A sensitive high throughput ELISA for human eosinophil peroxidase: a specific assay to quantify eosinophil degranulation from patient-derived sources. J Immunol Methods 2012; 384:10-20. [PMID: 22750539 PMCID: PMC3432656 DOI: 10.1016/j.jim.2012.06.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/20/2012] [Accepted: 06/20/2012] [Indexed: 11/19/2022]
Abstract
Quantitative high throughput assays of eosinophil-mediated activities in fluid samples from patients in a clinical setting have been limited to ELISA assessments for the presence of the prominent granule ribonucleases, ECP and EDN. However, the demonstration that these ribonucleases are expressed by leukocytes other than eosinophils, as well as cells of non-hematopoietic origin, limits the usefulness of these assays. Two novel monoclonal antibodies recognizing eosinophil peroxidase (EPX) were used to develop an eosinophil-specific and sensitive sandwich ELISA. The sensitivity of this EPX-based ELISA was shown to be similar to that of the commercially available ELISA kits for ECP and EDN. More importantly, evidence is also presented confirming that among these granule protein detection options, EPX-based ELISA is the only eosinophil-specific assay. The utility of this high throughput assay to detect released EPX was shown in ex vivo degranulation studies with isolated human eosinophils. In addition, EPX-based ELISA was used to detect and quantify eosinophil degranulation in several in vivo patient settings, including bronchoalveolar lavage fluid obtained following segmental allergen challenge of subjects with allergic asthma, induced sputum derived from respiratory subjects following hypotonic saline inhalation, and nasal lavage of chronic rhinosinusitis patients. This unique EPX-based ELISA thus provides an eosinophil-specific assay that is sensitive, reproducible, and quantitative. In addition, this assay is adaptable to high throughput formats (e.g., automated assays utilizing microtiter plates) using the diverse patient fluid samples typically available in research and clinical settings.
Collapse
Affiliation(s)
- Sergei I. Ochkur
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ
| | - John Dongil Kim
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Cheryl A. Protheroe
- Division of Hematology/Oncology, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ
| | - Dana Colbert
- Division of Hematology/Oncology, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ
| | - Rachel M. Condjella
- Division of Hematology/Oncology, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ
| | - Sophie Bersoux
- Division of Primary Care, Department of Internal Medicine, Mayo Clinic Arizona, Scottsdale, AZ
| | - Richard A. Helmers
- Division of Pulmonary Medicine, Department of Critical Care Medicine, Mayo Clinic Arizona, Scottsdale, AZ
| | - Redwan Moqbel
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Paige Lacy
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Elizabeth A. Kelly
- Division of Pulmonary Medicine, Department of Internal Medicine, University of Wisconsin Medical School, Madison, WI
| | - Nizar N. Jarjour
- Division of Pulmonary Medicine, Department of Internal Medicine, University of Wisconsin Medical School, Madison, WI
| | - Robert Kern
- Departments of Medicine and Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Anju Peters
- Departments of Medicine and Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Robert P. Schleimer
- Departments of Medicine and Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Glenn T. Furuta
- Digestive Health Institute, Section of Pediatric Gastroenterology and Hepatology, Gastrointestinal Eosinophilic Diseases Program, Children's Hospital Colorado, National Jewish Health; Mucosal Inflammation Program, University of Colorado Denver School of Medicine, Aurora CO
| | - Parameswaran Nair
- Division of Respiratory, Department of Internal Medicine, McMaster University, Hamilton, Ontario Canada
| | - James J. Lee
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ
| | - Nancy A. Lee
- Division of Hematology/Oncology, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ
| |
Collapse
|
19
|
Tripathy DR, Singha Roy A, Dasgupta S. Complex formation of rutin and quercetin with copper alters the mode of inhibition of Ribonuclease A. FEBS Lett 2011; 585:3270-6. [DOI: 10.1016/j.febslet.2011.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/19/2011] [Accepted: 09/04/2011] [Indexed: 10/17/2022]
|
20
|
Samanta A, Dasgupta S, Pathak T. 5′-Modified pyrimidine nucleosides as inhibitors of ribonuclease A. Bioorg Med Chem 2011; 19:2478-84. [DOI: 10.1016/j.bmc.2010.08.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 08/27/2010] [Accepted: 08/28/2010] [Indexed: 10/19/2022]
|
21
|
Singh A, Batra JK. Role of unique basic residues in cytotoxic, antibacterial and antiparasitic activities of human eosinophil cationic protein. Biol Chem 2011; 392:337-46. [PMID: 21303303 DOI: 10.1515/bc.2011.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Eosinophil granule proteins, eosinophil cationic protein (ECP) and eosinophil-derived neurotoxin are members of the RNase A superfamily, which play a crucial role in host defense against various pathogens as they are endowed with several biological activities. Some of the biological activities possessed by ECP have been attributed to its strong basic character. In the current study, we have investigated the role of five unique basic residues, Arg22, Arg34, Arg61, Arg77 and His64 of ECP in its catalytic, cytotoxic, antibacterial and antiparasitic activities. These residues were changed to alanine to generate single and double mutants. None of the selected residues was found to be involved in the RNase activity of ECP. The substitution of all five residues individually was detrimental for the cytotoxic, antibacterial and antiparasitic activities of ECP; however, mutation of Arg22 and Arg34 resulted in the most significant effects. The double mutants also had reduced biological activities. All ECP mutants that had significantly reduced toxicity also had reduced membrane destabilization activity. Our study demonstrates that Arg22, Arg34, Arg61, Arg77 and His64 of ECP are crucial for its membrane destabilization activity, which appears to be the underlying mechanism of its cytotoxic, antibacterial and antiparasitic activities.
Collapse
Affiliation(s)
- Anubha Singh
- Immunochemistry Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | |
Collapse
|
22
|
Debnath J, Dasgupta S, Pathak T. Comparative inhibitory activity of 3′- and 5′-functionalized nucleosides on ribonuclease A. Bioorg Med Chem 2010; 18:8257-63. [DOI: 10.1016/j.bmc.2010.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 10/03/2010] [Accepted: 10/05/2010] [Indexed: 10/19/2022]
|
23
|
Dutta S, Basak A, Dasgupta S. Synthesis and ribonuclease A inhibition activity of resorcinol and phloroglucinol derivatives of catechin and epicatechin: Importance of hydroxyl groups. Bioorg Med Chem 2010; 18:6538-46. [DOI: 10.1016/j.bmc.2010.06.077] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 06/18/2010] [Accepted: 06/19/2010] [Indexed: 11/29/2022]
|
24
|
C2-Symmetric azobenzene-amino acid conjugates and their inhibition of Subtilisin Kexin Isozyme-1. Bioorg Med Chem Lett 2010; 20:3977-81. [DOI: 10.1016/j.bmcl.2010.04.101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 04/21/2010] [Accepted: 04/22/2010] [Indexed: 11/22/2022]
|
25
|
The eight human "canonical" ribonucleases: molecular diversity, catalytic properties, and special biological actions of the enzyme proteins. FEBS Lett 2010; 584:2194-200. [PMID: 20388512 DOI: 10.1016/j.febslet.2010.04.018] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 04/07/2010] [Accepted: 04/07/2010] [Indexed: 01/25/2023]
Abstract
Human ribonucleases (RNases) are members of a large superfamily of rapidly evolving homologous proteins. Upon completion of the human genome, eight catalytically active RNases (numbered 1-8) were identified. These structurally distinct RNases, characterized by their various catalytic differences on different RNA substrates, constitute a gene family that appears to be the sole vertebrate-specific enzyme family. Apart from digestion of dietary RNA, a wide variety of biological actions, including neurotoxicity, angiogenesis, immunosuppressivity, and anti-pathogen activity, have been recently reported for almost all members of the family. Recent evolutionary studies suggest that RNases started off in vertebrates as host defence or angiogenic proteins.
Collapse
|
26
|
Ozaki S, Toida K, Suzuki M, Nakamura Y, Ohno N, Ohashi T, Nakayama M, Hamajima Y, Inagaki A, Kitaoka K, Sei H, Murakami S. Impaired olfactory function in mice with allergic rhinitis. Auris Nasus Larynx 2010; 37:575-83. [PMID: 20346605 DOI: 10.1016/j.anl.2009.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 11/03/2009] [Accepted: 12/11/2009] [Indexed: 11/17/2022]
Abstract
OBJECTIVE It has been reported that olfactory function is impaired in patients with allergic rhinitis. However, the mechanism of olfactory dysfunction in allergic rhinitis remains poorly understood. Because of difficulties in obtaining and analyzing human olfactory mucosa due to both technical and ethical issues, an animal model needs to be established to clarify the mechanism of olfactory dysfunction in allergic rhinitis. The purpose of this study was to study olfactory function and changes in olfactory mucosa using allergic rhinitis mice. METHODS A model of allergic rhinitis mice with olfactory dysfunction was developed by sensitizing with ovalbumin (OVA), and intranasally challenging with the same allergen. Olfactory function of mice with or without allergic rhinitis was assessed by odor detection ability test with cycloheximide and local field potential (LFP) with 1-octanal. We also evaluated histological changes in the olfactory mucosa of allergic rhinitis mice by both light and electron microscopy. RESULTS Both of odor detection ability test and LFP showed that olfactory function was impaired in mice with allergic rhinitis, but not in mice without allergic rhinitis. Histopathological findings showed prominent infiltration of eosinophils, plasma cells, neutrophils, mast cells, and macrophages in lamina propria of olfactory mucosa of mice with allergic rhinitis, although infiltration of these cells was not seen in control mice. Allergic rhinitis also increased the number and size of glands in olfactory mucosa, suggesting an elevated amount of mucin in olfactory mucosa. CONCLUSION This study showed for the first time that mice with allergic rhinitis have impaired olfactory function, increased size and number of olfactory glands, and infiltration of eosinophils, neutrophils, mast cells, plasma cells, and macrophages in the olfactory mucosa. This suggests that allergic reactions are seen in olfactory mucosa of mice with allergic rhinitis, and that greater olfactory gland activity is associated with olfactory dysfunction. Also, this mouse model could provide an expedient system for analyzing mechanisms of olfactory dysfunction.
Collapse
Affiliation(s)
- Shinya Ozaki
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8602, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Holloway DE, Chavali GB, Leonidas DD, Baker MD, Acharya KR. Influence of naturally-occurring 5'-pyrophosphate-linked substituents on the binding of adenylic inhibitors to ribonuclease a: an X-ray crystallographic study. Biopolymers 2009; 91:995-1008. [PMID: 19191310 PMCID: PMC2816359 DOI: 10.1002/bip.21158] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 01/26/2009] [Accepted: 01/27/2009] [Indexed: 11/22/2022]
Abstract
Ribonuclease A is the archetype of a functionally diverse superfamily of vertebrate-specific ribonucleases. Inhibitors of its action have potential use in the elucidation of the in vivo roles of these enzymes and in the treatment of pathologies associated therewith. Derivatives of adenosine 5'-pyrophosphate are the most potent nucleotide-based inhibitors known. Here, we use X-ray crystallography to visualize the binding of four naturally-occurring derivatives that contain 5'-pyrophosphate-linked extensions. 5'-ATP binds with the adenine occupying the B(2) subsite in the manner of an RNA substrate but with the gamma-phosphate at the P(1) subsite. Diadenosine triphosphate (Ap(3)A) binds with the adenine in syn conformation, the beta-phosphate as the principal P(1) subsite ligand and without order beyond the gamma-phosphate. NADPH and NADP(+) bind with the adenine stacked against an alternative rotamer of His119, the 2'-phosphate at the P(1) subsite, and without order beyond the 5'-alpha-phosphate. We also present the structure of the complex formed with pyrophosphate ion. The structural data enable existing kinetic data on the binding of these compounds to a variety of ribonucleases to be rationalized and suggest that as the complexity of the 5'-linked extension increases, the need to avoid unfavorable contacts places limitations on the number of possible binding modes.
Collapse
Affiliation(s)
- Daniel E Holloway
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | | | | | | | | |
Collapse
|
28
|
Plager DA, Davis MDP, Andrews AG, Coenen MJ, George TJ, Gleich GJ, Leiferman KM. Eosinophil ribonucleases and their cutaneous lesion-forming activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:4013-20. [PMID: 19717523 PMCID: PMC2852253 DOI: 10.4049/jimmunol.0900055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Eosinophil granule proteins are deposited in cutaneous lesions in many human diseases, but how these proteins contribute to pathophysiology is obscure. We injected eosinophil cationic protein (ECP or RNase 3), eosinophil-derived neurotoxin (EDN or RNase 2), eosinophil peroxidase (EPO), and major basic protein-1 (MBP1) intradermally into guinea pig and rabbit skin. ECP and EDN each induced distinct skin lesions at >or=2.5 microM that began at 2 days, peaking at approximately 7 days and persisting up to 6 wk. These lesions were ulcerated (ECP) or crusted (EDN) with marked cellular infiltration. EPO and MBP1 (10 microM) each produced perceptible induration and erythema with moderate cellular infiltration resolving within 2 wk. ECP and EDN localized to dermal cells within 2 days, whereas EPO and MBP1 remained extracellular. Overall, cellular localization and RNase activity of ECP and EDN were critical for lesion formation; differential glycosylation, net cationic charge, or RNase activity alone did not account for lesion formation. Ulcerated lesions from patients with the hypereosinophilic syndrome showed ECP and EDN deposition comparable to that in guinea pig skin. In conclusion, ECP and EDN disrupt skin integrity and cause inflammation. Their presence in ulcerative skin lesions may explain certain findings in human eosinophil-associated diseases.
Collapse
Affiliation(s)
- Douglas A Plager
- Department of Dermatology, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Ghosh KS, Sen S, Sahoo BK, Dasgupta S. A spectroscopic investigation into the interactions of 3'-O-carboxy esters of thymidine with bovine serum albumin. Biopolymers 2009; 91:737-44. [PMID: 19402143 DOI: 10.1002/bip.21220] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Binding studies of 3'-O-carboxy esters of thymidine, reported inhibitors of ribonucleases, with bovine serum albumin (BSA) have been explored in this report. Fluorescence spectroscopy in combination with Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopy have been used to determine the nature and mode of binding. The binding and quenching parameters were determined from tryptophan fluorescence quenching by Scatchard plots and modified Stern-Volmer plots. The association constants are of the order of 10(4) M(-1) for both the ligands. Thermodynamic parameters suggest that apart from an initial hydrophobic association, hydrogen bonding and van der Waals interactions play a decisive role during protein-ligand complex formation. Minor changes were observed in the secondary structures of human serum albumin (HSA) as revealed by FTIR and CD. Docking studies suggest that the ligands are close to Trp 213, which causes fluorescence quenching.
Collapse
Affiliation(s)
- Kalyan Sundar Ghosh
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721 302, India
| | | | | | | |
Collapse
|
30
|
Rubin J, Zagai U, Blom K, Trulson A, Engström A, Venge P. The coding ECP 434(G>C) gene polymorphism determines the cytotoxicity of ECP but has minor effects on fibroblast-mediated gel contraction and no effect on RNase activity. THE JOURNAL OF IMMUNOLOGY 2009; 183:445-51. [PMID: 19542456 DOI: 10.4049/jimmunol.0803912] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Eosinophil cationic protein (ECP) is a secretory protein of the eosinophil granulocyte, a cell involved in innate immunity. Functional studies have implicated ECP in numerous processes, such as tissue remodeling in allergic inflammation and cytotoxicity toward a variety of pathogens. Recent genetic studies have suggested that the ECP 434(G>C) polymorphism resulting in an arg97thr substitution would alter the function of ECP in vivo. Functional (in vitro) studies of ECP up until now have either been conducted with native preparations containing an unknown mixture of the ECP(97arg) and ECP(97thr) variants, or with recombinant proteins. Therefore, we have now for the first time extracted the native ECP(97arg) and ECP(97thr) variants from healthy blood donors and tested them functionally in vitro. Our results show that the arg97thr shift dramatically alters the cytotoxic capacity of ECP in vitro; the tested ECP(97arg) variants were cytotoxic toward the small-cell lung cancer cell line NCI-H69, whereas ECP(97thr) was noncytotoxic. RNase activity was unaffected by the arg97thr substitution. Both ECP(97arg) and ECP(97thr) stimulated fibroblast-mediated collagen gel contraction, an experimental model, which depicts wound healing, in a dose-dependent manner. In conclusion, our results demonstrate that the ECP 434(G>C) gene polymorphism affects the functional properties of native ECP, but also that there is a dissociation between different biological activities; the arg97thr substitution impairs the cytotoxic potential of ECP but less the gel contraction and not at all the RNase activity.
Collapse
Affiliation(s)
- Jenny Rubin
- Department of Medical Sciences, Uppsala University, Sweden.
| | | | | | | | | | | |
Collapse
|
31
|
Protheroe C, Woodruff SA, DePetris G, Mukkada V, Ochkur SI, Janarthanan S, Lewis JC, Pasha S, Lunsford T, Harris L, Sharma VK, McGarry MP, Lee NA, Furuta GT, Lee JJ. A novel histologic scoring system to evaluate mucosal biopsies from patients with eosinophilic esophagitis. Clin Gastroenterol Hepatol 2009; 7:749-755.e11. [PMID: 19345285 PMCID: PMC2706311 DOI: 10.1016/j.cgh.2009.03.022] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 03/02/2009] [Accepted: 03/22/2009] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Eosinophilic esophagitis (EoE) is characterized by medically/surgically-resistant gastroesophageal reflux symptoms and dense squamous eosinophilia. Studies suggest that histologic assessment of esophageal eosinophilia alone cannot reliably separate patients with EoE from those with gastroesophageal reflux disease (GERD). Our goal was to develop an assay to identify EoE patients and perhaps differentiate EoE from other causes of esophageal eosinophilia. METHODS A monoclonal antibody specific for an eosinophil secondary granule protein (eosinophil peroxidase [EPX]) was developed and shown to specifically identify intact eosinophils and detect eosinophil degranulation in formalin-fixed specimens. A histopathologic scoring algorithm was developed to analyze data from patient evaluations; the utility of this algorithm was assessed by using archived esophageal tissues from patients with known diagnoses of EoE and GERD as well as controls from 2 tertiary care centers. RESULTS Intraobserver/interobserver blinded evaluations demonstrated a significant difference (P < .001) between scores of samples taken from control subjects, from patients with esophageal eosinophilia who had a diagnosis of EoE, and from patients with GERD (P < .001). This algorithm also was able to identify patients whose clinical course was suggestive of a diagnosis of EoE, but that nonetheless failed to reach the critical threshold number of > or =15 eosinophils in a high-power (40x) microscopy field. CONCLUSIONS A novel immunohistochemical scoring system was developed to address an unmet medical need to differentiate histologic specimens from patients with EoE relative to those with GERD. The availability of a unique anti-EPX-specific monoclonal antibody, combined with the ease/rapidity of this staining method and scoring system, will provide a valuable strategy for the assessment of esophageal eosinophilia.
Collapse
Affiliation(s)
- Cheryl Protheroe
- Division of Hematology/Oncology, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259
| | - Samantha A. Woodruff
- Section of Pediatric Gastroenterology, Hepatology and Nutrition; Gastrointestinal Eosinophilic Diseases Program, The Children’s Hospital, Denver, University of Colorado Denver, School of Medicine, Aurora, CO 80045
| | - Giovanni DePetris
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, AZ 85259
| | - Vince Mukkada
- Section of Pediatric Gastroenterology, Hepatology and Nutrition; Gastrointestinal Eosinophilic Diseases Program, The Children’s Hospital, Denver, University of Colorado Denver, School of Medicine, Aurora, CO 80045
| | - Sergei I Ochkur
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259
| | - Sailajah Janarthanan
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259
| | - John C. Lewis
- Division of Allergy, Department of Internal Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259
| | - Shabana Pasha
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259
| | - Tisha Lunsford
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259
| | - Lucinda Harris
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259
| | - Virender K. Sharma
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259
| | - Michael P. McGarry
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259
| | - Nancy A. Lee
- Division of Hematology/Oncology, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259
| | - Glenn T. Furuta
- Section of Pediatric Gastroenterology, Hepatology and Nutrition; Gastrointestinal Eosinophilic Diseases Program, The Children’s Hospital, Denver, University of Colorado Denver, School of Medicine, Aurora, CO 80045
| | - James J. Lee
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259
| |
Collapse
|
32
|
Nucleoside–amino acid conjugates: An alternative route to the design of ribonuclease A inhibitors. Bioorg Med Chem 2009; 17:4921-7. [DOI: 10.1016/j.bmc.2009.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Revised: 06/01/2009] [Accepted: 06/02/2009] [Indexed: 11/20/2022]
|
33
|
Sikriwal D, Seth D, Batra JK. Role of catalytic and non-catalytic subsite residues in ribonuclease activity of human eosinophil-derived neurotoxin. Biol Chem 2009; 390:225-34. [PMID: 19090717 DOI: 10.1515/bc.2009.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Human eosinophil-derived neurotoxin (EDN), a secretory protein from eosinophils, is a member of the RNase A superfamily. The ribonucleolytic activity of EDN is central to its biological activities. EDN binds RNA in a cationic cleft, and the interaction between EDN and RNA substrate extends beyond the scissile bond. Based on its homology with RNase A, putative substrate binding subsites have been identified in EDN. The B1 and B2 subsites interact specifically with bases, whereas P0, P1, and P2 subsites interact with phosphoryl groups. In this study, we evaluated the role of putative residues of these subsites in the ribonucleolytic activity of EDN. We demonstrate that of the two base binding subsites, B1 is critical for the catalytic activity of EDN, as the substrate cleavage was dramatically reduced upon substitution of B1 subsite residues. Among the phosphate-binding subsites, P1 is the most crucial as mutations of its constituting residues totally abolished the catalytic activity of EDN. Mutation of P0 and P2 subsite residues only affected the catalytic activity on the homopolymer Poly(U). Our study demonstrates that P1 and B1 subsites of EDN are critical for its catalytic activity and that the other phosphate-binding subsites are involved in the activity on long homopolymeric substrates.
Collapse
Affiliation(s)
- Deepa Sikriwal
- Immunochemistry Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | |
Collapse
|
34
|
Ghosh KS, Debnath J, Pathak T, Dasgupta S. Using proton nuclear magnetic resonance to study the mode of ribonuclease A inhibition by competitive and noncompetitive inhibitors. Bioorg Med Chem Lett 2008; 18:5503-6. [DOI: 10.1016/j.bmcl.2008.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 09/02/2008] [Accepted: 09/04/2008] [Indexed: 10/21/2022]
|
35
|
Ghosh KS, Maiti TK, Debnath J, Dasgupta S. Inhibition of Ribonuclease A by polyphenols present in green tea. Proteins 2007; 69:566-80. [PMID: 17623866 DOI: 10.1002/prot.21484] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We report the effect of the natural polyphenolic compounds from green tea on the catalytic activity of Ribonuclease A (RNase A). The compounds behave as noncompetitive inhibitors of the protein with inhibition constants ranging from 80-1300 microM. The dissociation constants range from 50-150 microM for the RNase A-polyphenol complexes as determined by ultraviolet (UV) and circular dichroism (CD) studies. We have also investigated the changes in the secondary structure of RNase A on complex formation by CD and Fourier transformed infrared (FTIR) spectroscopy. The presence of the gallate moiety has been shown to be important for the inhibition of enzymatic activity. Docking studies for these compounds indicate that the preferred site of binding is the region encompassing residues 34-39 with possible hydrogen bonding with Lys 7 and Arg 10. Finally we have also looked at changes in the accessible surface area of the interacting residues on complex formation for an insight into the residues involved in the interaction.
Collapse
Affiliation(s)
- Kalyan S Ghosh
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | | | | | | |
Collapse
|
36
|
Dey P, Islam A, Ahmad F, Batra JK. Role of unique basic residues of human pancreatic ribonuclease in its catalysis and structural stability. Biochem Biophys Res Commun 2007; 360:809-14. [PMID: 17631275 DOI: 10.1016/j.bbrc.2007.06.141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 06/26/2007] [Indexed: 11/18/2022]
Abstract
Human pancreatic ribonuclease (HPR) and bovine RNase A belong to the RNase A superfamily and possess similar key structural and catalytic residues. Compared to RNase A, HPR has six extra non-catalytic basic residues and high double-stranded RNA (dsRNA) cleavage activity. We mutated four of these basic residues, K6, R32, K62, and K74 to alanine and characterized the variants for function and stability. Only the variant K74A had an altered secondary structure. Whereas R32A and K62A had full catalytic activity, the mutants K6A and K74A had reduced activity on both ssRNA and dsRNA. The mutations of K62 and K74 resulted in reduction in protein stability and DNA double helix unwinding activity of HPR; while substitutions of K6 and R32 did not affect either the stability or helix unwinding activity. The reduced catalytic and DNA melting activities of K74A mutant appear to be an outcome of its altered secondary structure. The basic residues studied here, appear to contribute to the overall stability, folding, and general catalytic activity of HPR.
Collapse
Affiliation(s)
- Punyatirtha Dey
- Immunochemistry Laboratory, National Institute of Immunology, Aruna Asaf Ali Road, New Delhi 110067, India
| | | | | | | |
Collapse
|
37
|
Sikriwal D, Seth D, Dey P, Batra JK. Human eosinophil-derived neurotoxin: involvement of a putative non-catalytic phosphate-binding subsite in its catalysis. Mol Cell Biochem 2007; 303:175-81. [PMID: 17483910 DOI: 10.1007/s11010-007-9471-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 03/30/2007] [Indexed: 11/25/2022]
Abstract
Human eosinophil-derived neurotoxin (EDN) or RNase 2, found in the non-core matrix of eosinophils is a ribonuclease belonging to the Ribonuclease A superfamily. EDN manifests a number of bioactions including neurotoxic and antiviral activities, which are dependent on its ribonuclease activity. The core of the catalytic site of EDN contains various base and phosphate-binding subsites. Unlike many members of the RNase A superfamily, EDN contains an additional non-catalytic phosphate-binding subsite, P(-1). Although RNase A also contains a P(-1) subsite, the composition of the site in EDN and RNase A is different. In the current study we have generated site-specific mutants to study the role of P(-1) subsite residues Arg(36), Asn(39), and Gln(40) of EDN in its catalytic activity. The individual mutation of Arg(36), Asn (39), and Gln(40) resulted in a reduction in the catalytic activity of EDN on poly(U) and poly(C). However, there was no change in the activities on yeast tRNA and dinucleotide substrates. The study shows that the P(-1) subsite is crucial for the ribonucleolytic activity of EDN on polymeric RNA substrates.
Collapse
Affiliation(s)
- Deepa Sikriwal
- Immunochemistry Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | |
Collapse
|
38
|
Yakovlev GI, Mitkevich VA, Struminskaya NK, Varlamov VP, Makarov AA. Low molecular weight chitosan is an efficient inhibitor of ribonucleases. Biochem Biophys Res Commun 2007; 357:584-8. [PMID: 17442276 DOI: 10.1016/j.bbrc.2007.03.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 03/05/2007] [Indexed: 11/19/2022]
Abstract
RNase inhibitors are commonly used to block the RNase activity in manipulations with RNA-containing preparations. Recently RNase inhibitors, either synthetic or natural, have been intensively sought because they appeared to be promising for therapy of cancer and allergy. However, there is only a limited number of efficient RNase inhibitors. We have shown that a low molecular weight chitosan (M(r) approximately 6 kDa) inhibits activity of pancreatic RNase A and some bacterial RNases with inhibition constants in the range of 30-220 nM at pH 7.0 and ionic strength 0.14 M. The preferential contribution to the chitosan complex formation with RNases is due to establishment of 5-6 ion pairs. The results of this work show that polycations may efficiently inhibit ribonuclease activities.
Collapse
Affiliation(s)
- Gennady I Yakovlev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| | | | | | | | | |
Collapse
|
39
|
Li H, Wang S. Kinetics of inhibition of ribonuclease A by Pholiota Nameko polysaccharide. Int J Biol Macromol 2007; 40:134-8. [PMID: 16890987 DOI: 10.1016/j.ijbiomac.2006.06.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 06/23/2006] [Accepted: 06/27/2006] [Indexed: 11/16/2022]
Abstract
Pholiota nameko polysaccharide (PNPS-1) has been isolated and purified by enzyme hydrolysis, hot water extraction, ethanol precipitation, ion-exchange chromatography and gel-filtration column chromatography. The inhibition of bovine pancreas ribonuclease (RNase A) by PNPS-1 has been studied to elucidate the mechanism responsible for the decreased activity. PNPS-1 was effective in a linear mixed-type inhibition as suggested from the Lineweaver-Burk plot, Dixon plot and their replots. The values of K(i) and alphaK(i) were estimated as 299.92 and 545.71 microM, respectively. The alphaK(i) was greater than K(i) indicating that noncompetitive inhibition was predominant over competitive inhibition.
Collapse
Affiliation(s)
- Haiping Li
- Tianjin Key Laboratory of Food Nutrition and Safety, Faculty of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | | |
Collapse
|
40
|
|
41
|
Ghosh KS, Maiti TK, Mandal A, Dasgupta S. Copper complexes of (−)-epicatechin gallate and (−)-epigallocatechin gallate act as inhibitors of Ribonuclease A. FEBS Lett 2006; 580:4703-8. [PMID: 16884715 DOI: 10.1016/j.febslet.2006.07.054] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 07/12/2006] [Indexed: 11/17/2022]
Abstract
Green tea polyphenols, which have the ability to inhibit angiogenesis, form complexes with Cu(II), a known potent stimulator of blood vessel proliferation. Copper complexes of (-)-epicatechin gallate and (-)-epigallocatechin gallate were found to inhibit the enzymatic activity of Ribonuclease A (RNase A) as revealed by an agarose gel based assay and urea denatured gel electrophoresis. The copper complexes were found to be non-competitive inhibitors of RNase A with inhibition constants in the micromolar range. Changes in the secondary structure of the protein are found to occur due to the interaction as revealed from Fourier transform infrared and circular dichroism studies.
Collapse
Affiliation(s)
- Kalyan Sundar Ghosh
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | | | | | | |
Collapse
|
42
|
Baker MD, Holloway DE, Swaminathan GJ, Acharya KR. Crystal structures of eosinophil-derived neurotoxin (EDN) in complex with the inhibitors 5'-ATP, Ap3A, Ap4A, and Ap5A. Biochemistry 2006; 45:416-26. [PMID: 16401072 DOI: 10.1021/bi0518592] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Eosinophil-derived neurotoxin (EDN) is a catalytically proficient member of the pancreatic ribonuclease superfamily secreted along with other eosinophil granule proteins during innate host defense responses and various eosinophil-related inflammatory and allergic diseases. The ribonucleolytic activity of EDN is central to its antiviral and neurotoxic activities and possibly to other facets of its biological activity. To probe the importance of this enzymatic activity further, specific inhibitors will be of great aid. Derivatives of 5'-ADP are among the most potent inhibitors currently known. Here, we use X-ray crystallography to investigate the binding of four natural nucleotides containing this moiety. 5'-ATP binds in two alternative orientations, one occupying the B2 subsite in a conventional manner and one being a retro orientation with no ordered adenosine moiety. Diadenosine triphosphate (Ap3A) and diadenosine tetraphosphate (Ap4A) bind with one adenine positioned at the B2 subsite, the polyphosphate chain extending across the P1 subsite in an ill-defined conformation, and a disordered second adenosine moiety. Diadenosine pentaphosphate (Ap5A), the most avid inhibitor of this series, binds in a completely ordered fashion with one adenine positioned conventionally at the B2 subsite, the polyphosphate chain occupying the P1 and putative P(-1) subsites, and the other adenine bound in a retro-like manner at the edge of the B1 subsite. The binding mode of each of these inhibitors has features seen in previously determined structures of adenosine diphosphates. We examine the structure-affinity relationships of these inhibitors and discuss the implications for the design of improved inhibitors.
Collapse
Affiliation(s)
- Matthew D Baker
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | | | | | | |
Collapse
|
43
|
Iyer S, Holloway DE, Kumar K, Shapiro R, Acharya KR. Molecular recognition of human eosinophil-derived neurotoxin (RNase 2) by placental ribonuclease inhibitor. J Mol Biol 2005; 347:637-55. [PMID: 15755456 DOI: 10.1016/j.jmb.2005.01.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 01/08/2005] [Accepted: 01/13/2005] [Indexed: 11/23/2022]
Abstract
Placental ribonuclease inhibitor (RI) binds diverse mammalian RNases with dissociation constants that are in the femtomolar range. Previous studies on the complexes of RI with RNase A and angiogenin revealed that RI utilises largely distinctive interactions to achieve high affinity for these two ligands. Here we report a 2.0 angstroms resolution crystal structure of RI in complex with a third ligand, eosinophil-derived neurotoxin (EDN), and a mutational analysis based on this structure. The RI-EDN interface is more extensive than those of the other two complexes and contains a considerably larger set of interactions. Few of the contacts present in the RI-angiogenin complex are replicated; the correspondence to the RI-RNase A complex is somewhat greater, but still modest. The energetic contributions of various interface regions differ strikingly from those in the earlier complexes. These findings provide insight into the structural basis for the unusual combination of high avidity and relaxed stringency that RI displays.
Collapse
Affiliation(s)
- Shalini Iyer
- Department of Biology and Biochemistry, 4 South, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | | | | | | | | |
Collapse
|
44
|
Carreras E, Boix E, Navarro S, Rosenberg HF, Cuchillo CM, Nogués MV. Surface-exposed amino acids of eosinophil cationic protein play a critical role in the inhibition of mammalian cell proliferation. Mol Cell Biochem 2005; 272:1-7. [PMID: 16010966 DOI: 10.1007/s11010-005-4777-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Eosinophil cationic protein (ECP) is a ribonuclease secreted from activated eosinophils that may cause tissue injure as a result of eosinophilic inflammation. ECP possesses bactericidal, antiviral and helminthotoxic activity and inhibits mammalian cell growth. The mechanism by which ECP exerts its toxicity is not known but it has been related to the ability of the protein to destabilise lipid bilayers. We have assessed the involvement of some cationic and aromatic surface exposed residues of ECP in the inhibition of proliferation of mammalian cell lines. We have constructed ECP mutants for the selected residues and assessed their ability to prevent cell growth. Trp10 and Trp35 together with the adjacent stacking residue are critical for the damaging effect of ECP on mammalian cell lines. These residues are also crucial for the membrane disruption activity of ECP. Other exposed aromatic residues packed against arginines (Arg75-Phe76 and Arg121-Tyr122) and specific cationic amino acids (Arg101 and Arg104) of ECP play a secondary role in the cell growth inhibition. This may be related to the ability of the protein to bind carbohydrates such as those found on the surface of mammalian cells.
Collapse
Affiliation(s)
- Esther Carreras
- Departament de Bioquímica i Biologia Molecular, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193-Bellaterra, Spain
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Acquired blood eosinophilia is considered either a primary or a secondary phenomenon. Causes of secondary (ie, reactive) eosinophilia include tissue-invasive parasitosis, allergic or inflammatory conditions, and malignancies in which eosinophils are not considered part of the neoplastic process. Primary eosinophilia is classified operationally into 2 categories: clonal and idiopathic. Clonal eosinophilia stipulates the presence of either cytogenetic evidence or bone marrow histological evidence of an otherwise classified hematologic malignancy such as acute leukemia or a chronic myeloid disorder. Idiopathic eosinophilia is a diagnosis of exclusion (ie, not secondary or clonal). Hypereosinophilic syndrome is a subcategory of idiopathic eosinophilia; diagnosis requires documentation of both sustained eosinophilia (absolute eosinophil count > or = 1500 cells/microL for at least 6 months) and target organ damage (eg, involvement of the heart, lung, skin, or nerve tissue). Genetic mutations involving the platelet-derived growth factor receptor genes (PDGFR-alpha and PDGFR-beta) have been pathogenetically linked to clonal eosinophilia, and their presence predicts treatment response to imatinib. Accordingly, cytogenetic and/or molecular investigations for the presence of an imatinib-sensitive molecular target should accompany current evaluation for primary eosinophilia. In the absence of such a drug target, specific treatment is dictated by the underlying hematologic malignancy in cases of clonal eosinophilia; however, the initial treatment of choice for symptomatic patients with hypereosinophilic syndrome is prednisone and/or interferon alfa.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Department of Internal Medicine and Division of Hematology, Mayo Clinic College of Medicine, Rochester, Minn 55905, USA.
| |
Collapse
|
46
|
Ghosh KS, Maiti TK, Dasgupta S. Green tea polyphenols as inhibitors of ribonuclease A. Biochem Biophys Res Commun 2005; 325:807-11. [PMID: 15541362 DOI: 10.1016/j.bbrc.2004.10.116] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Indexed: 11/24/2022]
Abstract
Ribonucleases (RNases), which are essential for cleavage of RNA, may be cytotoxic due to undesired cleavage of RNA in the cell. The quest for small molecule inhibitors of members of the ribonuclease superfamily has become indispensable with a growing number exhibiting unusual biological properties. Thus, inhibitors of RNases may serve as potential drug candidates. Green tea catechins (GTC), particularly its major constituent (-)-epigallocatechin-3-gallate (EGCG), have reported potential against cell proliferation and angiogenesis induced by several growth factors including angiogenin, a member of the RNase superfamily. This study reports the inhibition of bovine pancreatic ribonuclease A (RNase A) by EGCG and GTC. This has been checked qualitatively by an agarose gel based assay. Enzyme kinetic studies with cytidine 2',3' cyclic monophosphate as the substrate have also been conducted. Results indicate substantial inhibitory activity of a noncompetitive nature with an inhibition constant of approximately 80 microM for EGCG and approximately 100 microM for GTC measured in gallic acid equivalents.
Collapse
Affiliation(s)
- Kalyan Sundar Ghosh
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | | | | |
Collapse
|
47
|
Abstract
The recent discovery of an eosinophilia-specific, imatinib-sensitive, karyotypically occult but fluorescence in situ hybridization-apparent molecular lesion in a subset of patients with blood eosinophilia has transformed the diagnostic as well as treatment approach to eosinophilic disorders. Primary (i.e. nonreactive) eosinophilia is considered either "clonal" or "idiopathic" based on the presence or absence, respectively, of either a molecular or bone marrow histological evidence for a myeloid neoplasm. Clonal eosinophilia might accompany a spectrum of clinicopathological entities, the minority of whom are molecularly characterized; Fip1-like-1-platelet-derived growth factor receptor alpha (FIP1L1-PDGFRA(+)) systemic mastocytosis, platelet-derived growth factor receptor beta (PDGFRB)-rearranged atypical myeloproliferative disorder, chronic myeloid leukemia, and the 8p11 syndrome that is associated with fibroblast growth factor receptor 1 (FGFR1) rearrangement. Hypereosinophilic syndrome (HES) is a subcategory of idiopathic eosinophilia and is characterized by an absolute eosinophil count of > or =1.5 x 10(9)/l for at least 6 months as well as eosinophil-mediated tissue damage. At present, a working diagnosis of primary eosinophilia mandates a bone marrow examination, karyotype analysis, and additional molecular studies in order to provide the patient with accurate prognostic information as well as select appropriate therapy. For example, the presence of either PDGFRA or PDGFRB mutations warrants the use of imatinib in clonal eosinophilia. In HES, prednisone, hydroxyurea, and interferon-alpha constitute first-line therapy, whereas imatinib, cladribine, and monoclonal antibodies to either interleukin-5 (mepolizumab) or CD52 (alemtuzumab) are considered investigational. Allogeneic transplantation offers a viable treatment option for drug-refractory cases.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Bone Marrow/pathology
- Humans
- Hypereosinophilic Syndrome/diagnosis
- Hypereosinophilic Syndrome/pathology
- Hypereosinophilic Syndrome/therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Mastocytosis, Systemic/diagnosis
- Mastocytosis, Systemic/pathology
- Mastocytosis, Systemic/therapy
- Oncogene Proteins, Fusion
- Receptor, Platelet-Derived Growth Factor alpha/analysis
- Stem Cell Transplantation
- Transplantation, Homologous
- mRNA Cleavage and Polyadenylation Factors/analysis
Collapse
Affiliation(s)
- A Tefferi
- Divisions of Hematology and Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
48
|
Abstract
Acquired blood eosinophilia is considered either a primary or a secondary phenomenon. Causes of secondary (ie, reactive) eosinophilia include tissue-invasive parasitosis, allergic or inflammatory conditions, and malignancies in which eosinophils are not considered part of the neoplastic process. Primary eosinophilia is classified operationally into 2 categories: clonal and idiopathic. Clonal eosinophilia stipulates the presence of either cytogenetic evidence or bone marrow histological evidence of an otherwise classified hematologic malignancy such as acute leukemia or a chronic myeloid disorder. Idiopathic eosinophilia is a diagnosis of exclusion (ie, not secondary or clonal). Hypereosinophilic syndrome is a subcategory of idiopathic eosinophilia; diagnosis requires documentation of both sustained eosinophilia (absolute eosinophil count > or = 1500 cells/microL for at least 6 months) and target organ damage (eg, involvement of the heart, lung, skin, or nerve tissue). Genetic mutations involving the platelet-derived growth factor receptor genes (PDGFR-alpha and PDGFR-beta) have been pathogenetically linked to clonal eosinophilia, and their presence predicts treatment response to imatinib. Accordingly, cytogenetic and/or molecular investigations for the presence of an imatinib-sensitive molecular target should accompany current evaluation for primary eosinophilia. In the absence of such a drug target, specific treatment is dictated by the underlying hematologic malignancy in cases of clonal eosinophilia; however, the initial treatment of choice for symptomatic patients with hypereosinophilic syndrome is prednisone and/or interferon alfa.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Department of Internal Medicine and Division of Hematology, Mayo Clinic College of Medicine, Rochester, Minn 55905, USA.
| |
Collapse
|
49
|
Leonidas DD, Chavali GB, Oikonomakos NG, Chrysina ED, Kosmopoulou MN, Vlassi M, Frankling C, Acharya KR. High-resolution crystal structures of ribonuclease A complexed with adenylic and uridylic nucleotide inhibitors. Implications for structure-based design of ribonucleolytic inhibitors. Protein Sci 2003; 12:2559-74. [PMID: 14573867 PMCID: PMC2366950 DOI: 10.1110/ps.03196603] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The crystal structures of bovine pancreatic ribonuclease A (RNase A) in complex with 3',5'-ADP, 2',5'-ADP, 5'-ADP, U-2'-p and U-3'-p have been determined at high resolution. The structures reveal that each inhibitor binds differently in the RNase A active site by anchoring a phosphate group in subsite P1. The most potent inhibitor of all five, 5'-ADP (Ki = 1.2 microM), adopts a syn conformation (in contrast to 3',5'-ADP and 2',5'-ADP, which adopt an anti), and it is the beta- rather than the alpha-phosphate group that binds to P1. 3',5'-ADP binds with the 5'-phosphate group in P1 and the adenosine in the B2 pocket. Two different binding modes are observed in the two RNase A molecules of the asymmetric unit for 2',5'-ADP. This inhibitor binds with either the 3' or the 5' phosphate groups in subsite P1, and in each case, the adenosine binds in two different positions within the B2 subsite. The two uridilyl inhibitors bind similarly with the uridine moiety in the B1 subsite but the placement of a different phosphate group in P1 (2' versus 3') has significant implications on their potency against RNase A. Comparative structural analysis of the RNase A, eosinophil-derived neurotoxin (EDN), eosinophil cationic protein (ECP), and human angiogenin (Ang) complexes with these and other phosphonucleotide inhibitors provides a wealth of information for structure-based design of inhibitors specific for each RNase. These inhibitors could be developed to therapeutic agents that could control the biological activities of EDN, ECP, and ANG, which play key roles in human pathologies.
Collapse
Affiliation(s)
- Demetres D Leonidas
- Institute of Organic and Pharmaceutical Chemistry, The National Hellenic Research Foundation, 11635 Athens, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Sorrentino S, Naddeo M, Russo A, D'Alessio G. Degradation of double-stranded RNA by human pancreatic ribonuclease: crucial role of noncatalytic basic amino acid residues. Biochemistry 2003; 42:10182-90. [PMID: 12939146 DOI: 10.1021/bi030040q] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Under physiological salt conditions double-stranded (ds) RNA is resistant to the action of most mammalian extracellular ribonucleases (RNases). However, some pancreatic-type RNases are able to degrade dsRNA under conditions in which the activity of bovine RNase A, the prototype of the RNase superfamily, is essentially undetectable. Human pancreatic ribonuclease (HP-RNase) is the most powerful enzyme to degrade dsRNA within the tetrapod RNase superfamily, being 500-fold more active than the orthologous bovine enzyme on this substrate. HP-RNase has basic amino acids at positions where RNase A shows instead neutral residues. We found by modeling that some of these basic charges are located on the periphery of the substrate binding site. To verify the role of these residues in the cleavage of dsRNA, we prepared four variants of HP-RNase: R4A, G38D, K102A, and the triple mutant R4A/G38D/K102A. The overall structure and active site conformation of the variants were not significantly affected by the amino acid substitutions, as deduced from CD spectra and activity on single-stranded RNA substrates. The kinetic parameters of the mutants with double-helical poly(A).poly(U) as a substrate were determined, as well as their helix-destabilizing action on a synthetic DNA substrate. The results obtained indicate that the potent activity of HP-RNase on dsRNA is related to the presence of noncatalytic basic residues which cooperatively contribute to the binding and destabilization of the double-helical RNA molecule. These data and the wide distribution of the enzyme in different organs and body fluids suggest that HP-RNase has evolved to perform both digestive and nondigestive physiological functions.
Collapse
MESH Headings
- Amino Acid Substitution
- Amino Acids, Basic/chemistry
- Amino Acids, Basic/genetics
- Amino Acids, Basic/metabolism
- Animals
- Circular Dichroism
- Hot Temperature
- Humans
- Kinetics
- Models, Molecular
- Nucleic Acid Conformation
- Poly dA-dT/chemistry
- Poly dA-dT/metabolism
- Polyribonucleotides/chemistry
- Polyribonucleotides/metabolism
- RNA, Double-Stranded/chemistry
- RNA, Double-Stranded/metabolism
- RNA, Fungal/metabolism
- RNA, Viral/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Ribonuclease, Pancreatic/chemistry
- Ribonuclease, Pancreatic/genetics
- Ribonuclease, Pancreatic/metabolism
- Ribonucleases/metabolism
- Static Electricity
- Statistics as Topic
- Substrate Specificity
Collapse
Affiliation(s)
- Salvatore Sorrentino
- Department of Biological Chemistry, University Federico II of Naples, Naples, Italy.
| | | | | | | |
Collapse
|