1
|
Mozumder S, Bej A, Sengupta J. Ligand-Dependent Modulation of the Dynamics of Intracellular Loops Dictates Functional Selectivity of 5-HT 2AR. J Chem Inf Model 2022; 62:2522-2537. [PMID: 35324173 DOI: 10.1021/acs.jcim.2c00118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The serotonin 2A receptor (5-HT2AR) subtype of the G protein-coupled receptor (GPCR) family is involved in a plethora of neuromodulatory functions (e.g., neurogenesis, sleep, and cognitive processes). 5-HT2AR is the target of pharmacologically distinct classes of ligands, binding of which either activate or inactivate the receptor. Although high-resolution structures of 5-HT2AR as well as several other 5-HT GPCRs provided snapshots of both active and inactive conformational states, these structures, representing a truncated form of the receptor, cannot fully explain the mechanism of conformational transitions during their function. Importantly, biochemical studies have suggested the importance of intracellular loops in receptor functions. In our previous study, a model of the ligand-free form of 5-HT2AR with the third intracellular loop (ICL3) has been meticulously built. Here, we have investigated the functional regulation of 5-HT2AR with intact intracellular loops in ligand-free and five distinct ligand-bound configurations using unbiased atomistic molecular dynamics (MD) simulations. The selected ligands belong to either of the full, partial, or inverse agonist classes, which exert distinct pharmacological responses. We have observed significant structural, dynamic, and thermodynamic differences within ligand-bound complexes. Our results revealed, for the first time, that either activation or inactivation of the receptor upon specific ligand binding is primarily achieved through conformational transitions of its second and third intracellular loops (ICL2 and ICL3). A remarkable allosteric cross-talk between the ligand-binding site and the distal intracellular parts of the receptor, where binding of a specific ligand thermodynamically controls (either stabilizes or destabilizes) the intracellular region, consisting of crucial dynamic elements ICL2 and ICL3, and differential conformational transitions of these loops determine ligand-dependent functional selectivity.
Collapse
Affiliation(s)
- Sukanya Mozumder
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aritra Bej
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Jayati Sengupta
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Eldeeb K, Ganjiwale AD, Chandrashekaran IR, Padgett LW, Burgess J, Howlett AC, Cowsik SM. CB1 cannabinoid receptor-phosphorylated fourth intracellular loop structure-function relationships. Pept Sci (Hoboken) 2018; 111. [PMID: 32411924 DOI: 10.1002/pep2.24104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A peptide comprising the juxtamembrane C-terminal intracellular loop 4 (IL4) of the CB1 cannabinoid receptor possesses three Serine residues (Ser402, Ser411 and Ser415). Here we report the effect of Ser phosphorylation on the CB1 IL4 peptide conformation and cellular signaling functions using nuclear magnetic resonance spectroscopy, circular dichroism, G protein activation and cAMP production. Circular dichroism studies indicated that phosphorylation at various Ser residues induced helical structure in different environments. NMR data indicates that helical content varies in the order of IL4pSer411 > IL4pSer415 > IL4 > IL4pSer402. The efficacy of phosphorylated IL4 peptides in activating Go and Gi3 ([35S]GTPγS binding) and inhibiting cAMP accumulation in N18TG2 cells were correlated with helicity changes. Treatment of cells with bradykinin, which activates PKC, augmented CB1-mediated inhibition of cAMP accumulation, and this was reversed by a PKC inhibitor, suggesting that phosphorylation of serine might be a physiologically relevant modification in vivo. We conclude that phosphorylation-dependent alterations of helicity of CB1 IL4 peptides can increase efficacy of G protein signaling.
Collapse
Affiliation(s)
- Khalil Eldeeb
- Wake Forest University Health Sciences, Winston-Salem, NC, USA.,Al Azhar Faculty of Medicine, New Damietta, Egypt
| | - Anjali D Ganjiwale
- Department of Life Sciences, Bangalore University, Bangalore, Karnataka, India
| | | | - Lea W Padgett
- J.L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA
| | | | - Allyn C Howlett
- Wake Forest University Health Sciences, Winston-Salem, NC, USA.,J.L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA
| | | |
Collapse
|
3
|
Copenhaver PF, Kögel D. Role of APP Interactions with Heterotrimeric G Proteins: Physiological Functions and Pathological Consequences. Front Mol Neurosci 2017; 10:3. [PMID: 28197070 PMCID: PMC5281615 DOI: 10.3389/fnmol.2017.00003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/05/2017] [Indexed: 12/27/2022] Open
Abstract
Following the discovery that the amyloid precursor protein (APP) is the source of β-amyloid peptides (Aβ) that accumulate in Alzheimer’s disease (AD), structural analyses suggested that the holoprotein resembles a transmembrane receptor. Initial studies using reconstituted membranes demonstrated that APP can directly interact with the heterotrimeric G protein Gαo (but not other G proteins) via an evolutionarily G protein-binding motif in its cytoplasmic domain. Subsequent investigations in cell culture showed that antibodies against the extracellular domain of APP could stimulate Gαo activity, presumably mimicking endogenous APP ligands. In addition, chronically activating wild type APP or overexpressing mutant APP isoforms linked with familial AD could provoke Go-dependent neurotoxic responses, while biochemical assays using human brain samples suggested that the endogenous APP-Go interactions are perturbed in AD patients. More recently, several G protein-dependent pathways have been implicated in the physiological roles of APP, coupled with evidence that APP interacts both physically and functionally with Gαo in a variety of contexts. Work in insect models has demonstrated that the APP ortholog APPL directly interacts with Gαo in motile neurons, whereby APPL-Gαo signaling regulates the response of migratory neurons to ligands encountered in the developing nervous system. Concurrent studies using cultured mammalian neurons and organotypic hippocampal slice preparations have shown that APP signaling transduces the neuroprotective effects of soluble sAPPα fragments via modulation of the PI3K/Akt pathway, providing a mechanism for integrating the stress and survival responses regulated by APP. Notably, this effect was also inhibited by pertussis toxin, indicating an essential role for Gαo/i proteins. Unexpectedly, C-terminal fragments (CTFs) derived from APP have also been found to interact with Gαs, whereby CTF-Gαs signaling can promote neurite outgrowth via adenylyl cyclase/PKA-dependent pathways. These reports offer the intriguing perspective that G protein switching might modulate APP-dependent responses in a context-dependent manner. In this review, we provide an up-to-date perspective on the model that APP plays a variety of roles as an atypical G protein-coupled receptor in both the developing and adult nervous system, and we discuss the hypothesis that disruption of these normal functions might contribute to the progressive neuropathologies that typify AD.
Collapse
Affiliation(s)
- Philip F Copenhaver
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Sciences University, Portland OR, USA
| | - Donat Kögel
- Experimental Neurosurgery, Goethe University Frankfurt Frankfurt am Main, Germany
| |
Collapse
|
4
|
Xiong Q, Chai J, Chen M, Tao YX. Identification and pharmacological analyses of eight naturally occurring caprine melanocortin-1 receptor mutations in three different goat breeds. Gen Comp Endocrinol 2016; 235:1-10. [PMID: 27229376 DOI: 10.1016/j.ygcen.2016.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 12/22/2022]
Abstract
The melanocortin-1 receptor (MC1R) belongs to the family of seven transmembrane G protein-coupled receptors and plays a central role in animal coat color. We have sequenced the full coding region of 954bp of the MC1R gene in 72 goats of three breeds with different coat colors and identified five missense mutations (K226E, F250V, G255D, V265I, and C267W) and one silent mutation (A61A), among which two haplotypes with complete linkage disequilibrium (A61A and F250V, G255D and V265I) were found. We performed detailed functional studies on the six single and two double mutations in transiently transfected HEK293T cells. We found that none of the mutants had decreased cell surface expression. However, all the mutants except A61A had decreased constitutive activities in the cAMP pathway. Five mutations (F250V, G255D, G267W, A61A/F250V, G255D/V265I) exhibited significant defects in ligand binding and consequent agonist-induced cAMP signaling and ERK1/2 activation. Additionally, K226E, with normal ligand binding affinity and cAMP signaling, showed a significant defect in ERK1/2 activation, exhibiting biased signaling. Co-expression studies showed that the five defective mutants did not affect wild-type MC1R signaling, hence they were not dominant negative. In summary, we provided detailed data of these goat MC1R mutations leading to a better understanding of the role of MC1R mutation and coat color in goats.
Collapse
Affiliation(s)
- Qi Xiong
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430070, China; Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849-5519, United States
| | - Jin Chai
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849-5519, United States; Ministry of Agriculture Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mingxin Chen
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430070, China
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849-5519, United States.
| |
Collapse
|
5
|
Ali M, Moustafa M Z. Effectiveness of a recombinant human follicle stimulating hormone on the ovarian follicles, peripheral progesterone, estradiol-17β, and pregnancy rate of dairy cows. Vet World 2016; 9:699-704. [PMID: 27536029 PMCID: PMC4983119 DOI: 10.14202/vetworld.2016.699-704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 06/02/2016] [Indexed: 11/23/2022] Open
Abstract
Aims: This study aimed at elucidating the effects of recombinant human follicle stimulating hormone (r-hFSH) on the ovarian follicular dynamics, progesterone, estradiol-17β profiles, and pregnancy of dairy cows. Materials and Methods: Three groups (G, n=5 cows) of multiparous dairy cows were used. G1 (C) control cows were given controlled internal drug release (CIDR) and prostaglandin F2α; G2 (L) cows were given low dose (525 IU and G3 (H) cows were given high dose (1800 IU) of r-hFSH on twice daily basis at the last 3 days before CIDR removal. All cows were ultrasonically scanned for follicular growth and dynamics, and blood samples were collected every other day for two consecutive estrus cycles for the determination of estradiol-17β and progesterone. Results: Estrus was observed in all C and L but not in H cows. Dominant follicle was bigger in L compared to C and H cows. Dominant follicle in C (16.00±2.5 mm) and L cows (17.40±2.3 mm) disappeared at 72 h after CIDR removal. However, in H cows, no ovulation has occurred during 7 days post-CIDR removal. Progesterone was not different (p>0.10) among groups, whereas estradiol-17β revealed significant (p<0.01) reduction in H (15.96±2.5 pg/ml) cows compared to C (112.26±26.1 pg/ml) and L (97.49±15.9 pg/ml) cows. Pregnancy rate was higher in L cows (60%) compared with C cows (20%). However, H cows were not artificially inseminated due to non-ovulation. Only a cow of C group has calved one calf, however, 2 of the L cows gave birth of twins and a cow gave single calf. Conclusion: Administration of a low dose (525 IU) of r-hFSH resulted in an optimal size of dominant follicle, normal values of progesterone and estradiol-17β, and 40% twinning rate, howeverusing 1800 IU of r-hFSH, have adverse effects on ovarian follicular dynamics and hormonal profiles with non-pregnancy of dairy cows raised under hot climate.
Collapse
Affiliation(s)
- Mohamed Ali
- Department of Animal Production and Breeding, Qassim University, College of Agriculture and Veterinary Medicine, Buraidah 6622, Saudi Arabia
| | - Zeitoun Moustafa M
- Department of Animal Production and Breeding, Qassim University, College of Agriculture and Veterinary Medicine, Buraidah 6622, Saudi Arabia
| |
Collapse
|
6
|
Zhang B, Yang X, Tiberi M. Functional importance of two conserved residues in intracellular loop 1 and transmembrane region 2 of Family A GPCRs: insights from ligand binding and signal transduction responses of D1 and D5 dopaminergic receptor mutants. Cell Signal 2015; 27:2014-25. [PMID: 26186971 DOI: 10.1016/j.cellsig.2015.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 06/30/2015] [Accepted: 07/10/2015] [Indexed: 12/31/2022]
Abstract
For many G protein-coupled receptors (GPCRs), the role of the first intracellular loop (IL1) and its connections with adjacent transmembrane (TM) regions have not been investigated. Notably, these regions harbor several polar residues such as Ser and Thr. To begin uncovering how these polar residues may contribute to the structural basis for GPCR functionality, we have designed human D1-class receptor mutants (hD1-ST1 and hD5-ST1) whereby all Ser and Thr of IL1 and IL1/TM2 juncture have been replaced by Ala and Val, respectively. Both ST1 mutants exhibited a loss of dopamine affinity but similar binding properties for inverse agonists compared to their parent receptors. As well, these mutations diminished receptor activation for both subtypes, as indicated by an ablated constitutive activity and a pronounced decrease in dopamine potency. Interestingly, both mutants exhibited enhanced dopamine-mediated maximal stimulation (Emax) of adenylyl cyclase that was at least two-fold higher than wild-type. Point mutations for hD1R revealed that the loss in dopamine affinity and potency was attributed to Thr59, while the enhanced Emax of adenylyl cyclase was directly influenced by Ser65. These two residues are conserved among many Family A GPCRs and have recurring molecular interactions among crystallized structures. As such, their functional roles for IL1 and its transition into TM2 reported herein may also be applicable to other GPCRs. Our work thus potentially highlights a structural role of Thr59 and Ser65 in the formation of critical intramolecular interactions for ligand binding and signal transduction of D1-class dopaminergic receptors.
Collapse
Affiliation(s)
- Boyang Zhang
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, Ontario K1H 8M5, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario K1H 8M5, Canada; Departments of Medicine, Cellular & Molecular Medicine, and Psychiatry, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Xiaodi Yang
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, Ontario K1H 8M5, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario K1H 8M5, Canada; Departments of Medicine, Cellular & Molecular Medicine, and Psychiatry, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Mario Tiberi
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, Ontario K1H 8M5, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario K1H 8M5, Canada; Departments of Medicine, Cellular & Molecular Medicine, and Psychiatry, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
7
|
Biochemical characterization of a heterotrimeric G(i)-protein activator peptide designed from the junction between the intracellular third loop and sixth transmembrane helix in the m4 muscarinic acetylcholine receptor. Biochem Biophys Res Commun 2015; 463:64-9. [PMID: 25986737 DOI: 10.1016/j.bbrc.2015.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 05/07/2015] [Indexed: 11/24/2022]
Abstract
Muscarinic acetylcholine receptors (mAChRs) are G-protein coupled receptors (GPCRs) that are activated by acetylcholine released from parasympathetic nerves. The mAChR family comprises 5 subtypes, m1-m5, each of which has a different coupling selectivity for heterotrimeric GTP-binding proteins (G-proteins). m4 mAChR specifically activates the Gi/o family by enhancing the guanine nucleotide exchange factor (GEF) reaction with the Gα subunit through an interaction that occurs via intracellular segments. Here, we report that the m4 mAChR mimetic peptide m4i3c(14)Gly, comprising 14 residues in the junction between the intracellular third loop (i3c) and transmembrane helix VI (TM-VI) extended with a C-terminal glycine residue, presents GEF activity toward the Gi1 α subunit (Gαi1). The m4i3c(14)Gly forms a stable complex with guanine nucleotide-free Gαi1 via three residues in the VTI(L/F) motif, which is conserved within the m2/4 mAChRs. These results suggest that this m4 mAChR mimetic peptide, which comprises the amino acid of the mAChR intracellular segments, is a useful tool for understanding the interaction between GPCRs and G-proteins.
Collapse
|
8
|
Ulloa-Aguirre A, Zariñán T, Dias JA, Conn PM. Mutations in G protein-coupled receptors that impact receptor trafficking and reproductive function. Mol Cell Endocrinol 2014; 382:411-423. [PMID: 23806559 PMCID: PMC3844050 DOI: 10.1016/j.mce.2013.06.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/28/2013] [Accepted: 06/17/2013] [Indexed: 11/15/2022]
Abstract
G protein coupled receptors (GPCRs) are a large superfamily of integral cell surface plasma membrane proteins that play key roles in transducing extracellular signals, including sensory stimuli, hormones, neurotransmitters, or paracrine factors into the intracellular environment through the activation of one or more heterotrimeric G proteins. Structural alterations provoked by mutations or variations in the genes coding for GPCRs may lead to misfolding, altered plasma membrane expression of the receptor protein and frequently to disease. A number of GPCRs regulate reproductive function at different levels; these receptors include the gonadotropin-releasing hormone receptor (GnRHR) and the gonadotropin receptors (follicle-stimulating hormone receptor and luteinizing hormone receptor), which regulate the function of the pituitary-gonadal axis. Loss-of-function mutations in these receptors may lead to hypogonadotropic or hypergonadotropic hypogonadism, which encompass a broad spectrum of clinical phenotypes. In this review we describe mutations that provoke misfolding and failure of these receptors to traffick from the endoplasmic reticulum to the plasma membrane. We also discuss some aspects related to the therapeutic potential of some target-specific drugs that selectively bind to and rescue function of misfolded mutant GnRHR and gonadotropin receptors, and that represent potentially valuable strategies to treat diseases caused by inactivating mutations of these receptors.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Division of Reproductive Health, Research Center in Population Health, National Institute of Public Health, Cuernavaca, Mexico; Divisions of Reproductive Sciences and Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA.
| | - Teresa Zariñán
- Research Unit in Reproductive Medicine, UMAE Hospital de Ginecobstetricia "Luis Castelazo Ayala", Mexico, DF, Mexico
| | - James A Dias
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA
| | - P Michael Conn
- Divisions of Reproductive Sciences and Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Department of Pharmacology and Physiology, Oregon Health and Science University, Beaverton, OR 97006, USA; Department of Cell and Developmental Biology, Oregon Health and Science University, Beaverton, OR 97006, USA; Department of Obstetrics and Gynecology, Oregon Health and Science University, Beaverton, OR 97006, USA
| |
Collapse
|
9
|
Shim JY, Ahn KH, Kendall DA. Molecular basis of cannabinoid CB1 receptor coupling to the G protein heterotrimer Gαiβγ: identification of key CB1 contacts with the C-terminal helix α5 of Gαi. J Biol Chem 2013; 288:32449-32465. [PMID: 24092756 DOI: 10.1074/jbc.m113.489153] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cannabinoid (CB1) receptor is a member of the rhodopsin-like G protein-coupled receptor superfamily. The human CB1 receptor, which is among the most expressed receptors in the brain, has been implicated in several disease states, including drug addiction, anxiety, depression, obesity, and chronic pain. Different classes of CB1 agonists evoke signaling pathways through the activation of specific subtypes of G proteins. The molecular basis of CB1 receptor coupling to its cognate G protein is unknown. As a first step toward understanding CB1 receptor-mediated G protein signaling, we have constructed a ternary complex structural model of the CB1 receptor and Gi heterotrimer (CB1-Gi), guided by the x-ray structure of β2-adrenergic receptor (β2AR) in complex with Gs (β2AR-Gs), through 824-ns duration molecular dynamics simulations in a fully hydrated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayer environment. We identified a group of residues at the juxtamembrane regions of the intracellular loops 2 and 3 (IC2 and IC3) of the CB1 receptor, including Ile-218(3.54), Tyr-224(IC2), Asp-338(6.30), Arg-340(6.32), Leu-341(6.33), and Thr-344(6.36), as potential key contacts with the extreme C-terminal helix α5 of Gαi. Ala mutations of these residues at the receptor-Gi interface resulted in little G protein coupling activity, consistent with the present model of the CB1-Gi complex, which suggests tight interactions between CB1 and the extreme C-terminal helix α5 of Gαi. The model also suggests that unique conformational changes in the extreme C-terminal helix α5 of Gα play a crucial role in the receptor-mediated G protein activation.
Collapse
Affiliation(s)
- Joong-Youn Shim
- From the J. L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina 27707.
| | - Kwang H Ahn
- the Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269
| | - Debra A Kendall
- the Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|
10
|
Nocillado JN, Biran J, Lee YY, Levavi-Sivan B, Mechaly AS, Zohar Y, Elizur A. The Kiss2 receptor (Kiss2r) gene in Southern Bluefin Tuna, Thunnus maccoyii and in Yellowtail Kingfish, Seriola lalandi - functional analysis and isolation of transcript variants. Mol Cell Endocrinol 2012; 362:211-20. [PMID: 22824208 DOI: 10.1016/j.mce.2012.06.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 06/26/2012] [Accepted: 06/29/2012] [Indexed: 01/17/2023]
Abstract
The kisspeptin system plays an essential role in reproductive function in vertebrates, particularly in the onset of puberty. We investigated the kisspeptin system in two Perciform teleosts, the Southern Bluefin Tuna (SBT; Thunnus maccoyii), and the Yellowtail Kingfish (YTK; Seriola lalandi), by characterising their kisspeptin 2 receptor (Kiss2r) genes. In addition to the full length Kiss2r cDNA sequences, we have isolated from SBT and YTK a transcript variant that retained an intron. We have further obtained three ytkKiss2r transcript variants that contained deletions. In vitro functional analysis of the full length SBT and YTK Kiss2r showed higher response to Kiss2-10 than to Kiss1-10, with stronger transduction via PKC than PKA. The full length ytkKiss2r and two deletion variants were differentially expressed in the brain of male, but not in female, juvenile YTK treated with increasing doses of Kiss2-10 peptide. In the gonads, the expression level of the ytkKiss2r transcripts did not vary significantly either in the male or female fish. This is the first time that transcript variants of the Kiss2r gene that contain deletions and show responsiveness to treatments with kisspeptin have been reported in any teleost.
Collapse
Affiliation(s)
- J N Nocillado
- School of Science, Education and Engineering, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, Queensland 4558, Australia
| | | | | | | | | | | | | |
Collapse
|
11
|
Shpakov AO. Somatostatin receptors and signaling cascades coupled to them. J EVOL BIOCHEM PHYS+ 2012. [DOI: 10.1134/s0022093012040020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
San Martin L, Cerda F, Jimenez V, Fuentealba J, Muñoz B, Aguayo LG, Guzman L. Inhibition of the ethanol-induced potentiation of α1 glycine receptor by a small peptide that interferes with Gβγ binding. J Biol Chem 2012; 287:40713-21. [PMID: 23035114 DOI: 10.1074/jbc.m112.393603] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Gβγ interaction with GlyR is an important determinant in ethanol potentiation of this channel. RESULTS A small peptide, RQH(C7), can inhibit ethanol potentiation of GlyR currents. CONCLUSION Results with RQH(C7) indicate that ethanol mediated potentiation of GlyR is in part by Gβγ activation. SIGNIFICANCE Molecular interaction between Gβγ and GlyR could be used as a target for pharmacological modification of ethanol effects. Previous studies indicate that ethanol can modulate glycine receptors (GlyR), in part, through Gβγ interaction with basic residues in the intracellular loop. In this study, we show that a seven-amino acid peptide (RQH(C7)), which has the primary structure of a motif in the large intracellular loop of GlyR (GlyR-IL), was able to inhibit the ethanol-elicited potentiation of this channel from 47 ± 2 to 16 ± 4%, without interfering with the effect of Gβγ on GIRK (G protein activated inwardly rectifying potassium channel) activation. RQH(C7) displayed a concentration-dependent effect on ethanol action in evoked and synaptic currents. A fragment of GlyR-IL without the basic amino acids did not interact with Gβγ or inhibit ethanol potentiation of GlyR. In silico analysis using docking and molecular dynamics allowed to identify a region of ~350Å(2) involving aspartic acids 186, 228, and 246 in Gβγ where we propose that RQH(C7) binds and exerts its blocking action on the effect of ethanol in GlyR.
Collapse
Affiliation(s)
- Loreto San Martin
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, 403901 Concepcion, Chile
| | | | | | | | | | | | | |
Collapse
|
13
|
Deželak M, Bavec A. Glucagon like-peptide-1 receptor is covalently modified by endogenous mono-ADP-ribosyltransferase. Mol Biol Rep 2011; 39:4375-81. [DOI: 10.1007/s11033-011-1225-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 06/20/2011] [Indexed: 10/17/2022]
|
14
|
Shpakov AO. Signal protein-derived peptides as functional probes and regulators of intracellular signaling. JOURNAL OF AMINO ACIDS 2011; 2011:656051. [PMID: 22312467 PMCID: PMC3268021 DOI: 10.4061/2011/656051] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 06/01/2011] [Indexed: 12/21/2022]
Abstract
The functionally important regions of signal proteins participating in their specific interaction and responsible for transduction of hormonal signal into cell are rather short in length, having, as a rule, 8 to 20 amino acid residues. Synthetic peptides corresponding to these regions are able to mimic the activated form of full-size signal protein and to trigger signaling cascades in the absence of hormonal stimulus. They modulate protein-protein interaction and influence the activity of signal proteins followed by changes in their regulatory and catalytic sites. The present review is devoted to the achievements and perspectives of the study of signal protein-derived peptides and to their application as selective and effective regulators of hormonal signaling systems in vitro and in vivo. Attention is focused on the structure, biological activity, and molecular mechanisms of action of peptides, derivatives of the receptors, G protein α subunits, and the enzymes generating second messengers.
Collapse
Affiliation(s)
- Alexander O Shpakov
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez avenue 44, 194223 St. Petersburg, Russia
| |
Collapse
|
15
|
Deželak M, Bavec A. Third intracellular loop of glucagon like-peptide-1 receptor is coupled with endogenous mono-ADP-ribosyltransferase - novel type of receptor regulation? Eur J Pharmacol 2011; 666:35-42. [PMID: 21635883 DOI: 10.1016/j.ejphar.2011.05.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 05/13/2011] [Accepted: 05/17/2011] [Indexed: 10/18/2022]
Abstract
Our previous studies revealed the main role of the third intracellular loop (IC(3)) of glucagon-like peptide-1 receptor (GLP-1 receptor), in G-protein activation, where the presence or absence of agonist and the receptor phosphorylation seemed to be the only regulatory mechanisms. In order to further study the signaling mechanisms of GLP-1 receptor, we investigated the effect of the third intracellular loop-derived peptide on endogenous mono-ADP-ribosyltransferase mediated mono-ADP-ribosylation of G-proteins β subunit in CHO cells. Results showed an inhibitory effect of IC(3) peptide on mono-ADP-ribosylation of β subunit, obviously via the mechanism of competitive inhibition. Excluding the activity of this inhibitory mechanism via pertussis toxin-sensitive G proteins, the direct functional coupling of IC(3) of GLP-1 receptor and endogenous mono-ADP-ribosyltransferase was confirmed. We suggest that this arginine specific enzymatic posttranslational modification of third intracellular loop of GLP-1 receptor might represent a possible novel mechanism of receptor activity regulation and the pharmacological potential in treatment of diabetes mellitus type 2.
Collapse
Affiliation(s)
- Matjaž Deželak
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | | |
Collapse
|
16
|
|
17
|
Zariñán T, Perez-Solís MA, Maya-Núñez G, Casas-González P, Conn PM, Dias JA, Ulloa-Aguirre A. Dominant negative effects of human follicle-stimulating hormone receptor expression-deficient mutants on wild-type receptor cell surface expression. Rescue of oligomerization-dependent defective receptor expression by using cognate decoys. Mol Cell Endocrinol 2010; 321:112-22. [PMID: 20206665 PMCID: PMC2854281 DOI: 10.1016/j.mce.2010.02.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 02/22/2010] [Accepted: 02/22/2010] [Indexed: 12/31/2022]
Abstract
Current evidence indicates that G protein-coupled receptors form dimers that may affect biogenesis and membrane targeting of the complexed receptors. We here analyzed whether expression-deficient follicle-stimulating hormone receptor (FSHR) mutants exert dominant negative actions on wild-type FSHR cell surface membrane expression. Co-transfection of constant amounts of wild-type receptor cDNA and increasing quantities of mutant (R556A or R618A) FSHR cDNAs progressively decreased agonist-stimulated cAMP accumulation, [(125)I]-FSH binding, and plasma membrane expression of the mature wild-type FSHR species. Co-transfection of wild-type FSHR fragments involving transmembrane domains 5-6, or transmembrane domain 7 and/or the carboxyl-terminus specifically rescued wild-type FSHR expression from the transdominant inhibition by the mutants. Mutant FSHRs also inhibited function of the luteinizing hormone receptor but not that of the thyrotropin receptor or non-related receptors. Defective intracellular transport and/or interference with proper maturation due to formation of misfolded mutant:wild-type receptor complexes may explain the negative effects provoked by the altered FSHRs.
Collapse
Affiliation(s)
- Teresa Zariñán
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia “Luis Castelazo Ayala”, Instituto Mexicano del Seguro Social, Mexico D.F., Mexico
| | - Marco A. Perez-Solís
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia “Luis Castelazo Ayala”, Instituto Mexicano del Seguro Social, Mexico D.F., Mexico
| | - Guadalupe Maya-Núñez
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia “Luis Castelazo Ayala”, Instituto Mexicano del Seguro Social, Mexico D.F., Mexico
| | - Patricia Casas-González
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia “Luis Castelazo Ayala”, Instituto Mexicano del Seguro Social, Mexico D.F., Mexico
| | - P. Michael Conn
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia “Luis Castelazo Ayala”, Instituto Mexicano del Seguro Social, Mexico D.F., Mexico
- Oregon National Primate Research Center, Oregon Health Sciences University, Beaverton, Oregon, USA
| | - James A. Dias
- Wadsworth Center, New York State Dept of Health, Albany, NY, and Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA
| | - Alfredo Ulloa-Aguirre
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia “Luis Castelazo Ayala”, Instituto Mexicano del Seguro Social, Mexico D.F., Mexico
- Oregon National Primate Research Center, Oregon Health Sciences University, Beaverton, Oregon, USA
| |
Collapse
|
18
|
Shpakov AO, Gur’yanov IA, Tarasenko II, Vlasov GP. Effects of polycationic peptides of different natures on the functional state of the serotonin-regulated adenylate cyclase system in the rat brain. NEUROCHEM J+ 2009. [DOI: 10.1134/s1819712409040060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Shpakov AO. Polycationic peptides as nonhormonal regulators of chemosignal systems. J EVOL BIOCHEM PHYS+ 2009. [DOI: 10.1134/s002209300904001x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Peverelli E, Lania AG, Mantovani G, Beck-Peccoz P, Spada A. Characterization of intracellular signaling mediated by human somatostatin receptor 5: role of the DRY motif and the third intracellular loop. Endocrinology 2009; 150:3169-76. [PMID: 19342453 PMCID: PMC2703549 DOI: 10.1210/en.2008-1785] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Somatostatin (SST) exerts inhibitory effects on hormone secretion and cell proliferation by interacting with five different receptors (SST1-SST5) linked to multiple cellular effectors. The receptor structural domains involved in these effects have been only partially elucidated. The aim of the study was to investigate the molecular determinants mediating the interaction of the human SST5 with intracellular signaling in the pituitary cell line GH3, focusing on the BBXXB domain in the third intracellular loop and the DRY motif in the second intracellular loop. We analyzed the effects of the SST5 agonist BIM23206 on cAMP accumulation, intracellular calcium, GH secretion, cell proliferation, and ERK1/2 phosphorylation in cells expressing either wild-type SST5 or mutant receptors, in particular the naturally occurring mutant R240W in the BBXXB domain and the D136A and R137A mutants in the DRY motif. We found that residues D136 and R137 were critical for SST5 signaling because their substitutions abolished all the intracellular responses. Conversely, third intracellular loop mutations resulted in receptor that inhibited intracellular cAMP levels similar to the wild-type (50 +/- 9 vs. 53 +/- 12% inhibition) but failed to mediate the other responses elicited by wild-type SST5, i.e. reduction of intracellular calcium levels as well as inhibition of ERK1/2. These events resulted in an absent inhibition of GH release and an impaired reduction of cell proliferation (38 +/- 7 vs. 76 +/- 6% inhibition in wild type, P < 0.05). These data indicate that different regions of SST5 are required for the activation of different signaling pathways.
Collapse
Affiliation(s)
- Erika Peverelli
- Department of Medical Sciences, Fondazione Ospedale Maggiore Policlinico Mangiagalli e Regina Elena IRCCS, University of Milan, 20122 Milan, Italy
| | | | | | | | | |
Collapse
|
21
|
Parker MS, Parker SL. The fourth intracellular domain of G-protein coupling receptors: helicity, basicity and similarity to opsins. Amino Acids 2009; 38:1-13. [DOI: 10.1007/s00726-009-0316-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 06/15/2009] [Indexed: 11/27/2022]
|
22
|
Kubota M, Wakamatsu K. Peptide fragment of the m3 muscarinic acetylcholine receptor activates Gqbut not Gi2. J Pept Sci 2008; 14:998-1002. [DOI: 10.1002/psc.1034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Uribe A, Zariñán T, Pérez-Solis MA, Gutiérrez-Sagal R, Jardón-Valadez E, Piñeiro A, Dias JA, Ulloa-Aguirre A. Functional and structural roles of conserved cysteine residues in the carboxyl-terminal domain of the follicle-stimulating hormone receptor in human embryonic kidney 293 cells. Biol Reprod 2008; 78:869-82. [PMID: 18199880 DOI: 10.1095/biolreprod.107.063925] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The carboxyl-terminal segment of G protein-coupled receptors has one or more conserved cysteine residues that are potential sites for palmitoylation. This posttranslational modification contributes to membrane association, internalization, and membrane targeting of proteins. In contrast to other members of the glycoprotein hormone receptor family (the LH and thyroid-stimulating hormone receptors), it is not known whether the follicle-stimulating hormone receptor (FSHR) is palmitoylated and what are the effects of abolishing its potential palmitoylation sites. In the present study, a functional analysis of the FSHR carboxyl-terminal segment cysteine residues was carried out. We constructed a series of mutant FSHRs by substituting cysteine residues with alanine, serine, or threonine individually and together at positions 629 and 655 (conserved cysteines) and 627 (nonconserved). The results showed that all three cysteine residues are palmitoylated but that only modification at Cys629 is functionally relevant. The lack of palmitoylation does not appear to greatly impair coupling to G(s) but, when absent at position 629, does significantly impair cell surface membrane expression of the partially palmitoylated receptor. All FSHR Cys mutants were capable of binding agonist with the same affinity as the wild-type receptor and internalizing on agonist stimulation. Molecular dynamics simulations at a time scale of approximately 100 nsec revealed that replacement of Cys629 resulted in structures that differed significantly from that of the wild-type receptor. Thus, deviations from wild-type conformation may potentially contribute to the severe impairment in plasma membrane expression and the modest effects on signaling exhibited by the receptors modified in this particular position.
Collapse
Affiliation(s)
- Aída Uribe
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia "Luis Castelazo Ayala," Instituto Mexicano del Seguro Social, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Ulloa-Aguirre A, Zariñán T, Pasapera AM, Casas-González P, Dias JA. Multiple facets of follicle-stimulating hormone receptor function. Endocrine 2007; 32:251-63. [PMID: 18246451 DOI: 10.1007/s12020-008-9041-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 01/04/2008] [Accepted: 01/14/2008] [Indexed: 10/22/2022]
Abstract
Follicle-stimulating hormone (FSH) is a glycoprotein hormone produced by the anterior pituitary gland. This gonadotropin plays an essential role in reproduction. Its receptor (FSHR) belongs to the superfamily of G protein-coupled receptors (GPCR), specifically the family of rhodopsin-like receptors. Agonist binding to the FSHR triggers the rapid activation of multiple signaling cascades, mainly the cAMP-adenylyl cyclase-protein kinase A cascade, that impact diverse biological effects of FSH in the gonads. As in other G protein-coupled receptors, the several cytoplasmic domains of the FSHR are involved in signal transduction and termination of the FSH signal. Here we summarize some recent information on the signaling cascades activated by FSH as well as on the role of the intracytoplasmic domains of the FSHR in coupling to membrane and cytosolic proteins linked to key biological functions regulated by the FSH-FSHR system.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia "Luis Castelazo Ayala", Instituto Mexicano del Seguro Social, Apartado Postal 99-065, Unidad Independencia, C.P. 10101 Mexico, D.F., Mexico.
| | | | | | | | | |
Collapse
|
25
|
Rose RA, Giles WR. Natriuretic peptide C receptor signalling in the heart and vasculature. J Physiol 2007; 586:353-66. [PMID: 18006579 DOI: 10.1113/jphysiol.2007.144253] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Natriuretic peptides (NPs), including atrial, brain and C-type natriuretic peptides (ANP, BNP and CNP), bind two classes of cell surface receptors: the guanylyl cyclase-linked A and B receptors (NPR-A and NPR-B) and the C receptor (NPR-C). The biological effects of NPs have been mainly attributed to changes in intracellular cGMP following their binding to NPR-A and NPR-B. NPR-C does not include a guanylyl cyclase domain. It has been denoted as a clearance receptor and is thought to bind and internalize NPs for ultimate degradation. However, a substantial body of biochemical work has demonstrated the ability of NPR-C to couple to inhibitory G proteins (Gi) and cause inhibition of adenylyl cyclase and activation of phospholipase-C. Recently, novel physiological effects of NPs, mediated specifically by NPR-C, have been discovered in the heart and vasculature. We have described the ability of CNP, acting via NPR-C, to selectively inhibit L-type calcium currents in atrial and ventricular myocytes, as well as in pacemaker cells (sinoatrial node myocytes). In contrast, our studies of the electrophysiological effects of CNP on cardiac fibroblasts demonstrated an NPR-C-Gi-phospholipase-C-dependent activation of a non-selective cation current mediated by transient receptor potential (TRP) channels. It is also known that CNP and BNP have important anti-proliferative effects in cardiac fibroblasts that appear to involve NPR-C. In the mammalian resistance vessels, including mesenteric and coronary arteries, CNP has been found to function as an NPR-C-dependent endothelium-derived hyperpolarizing factor that regulates local blood flow and systemic blood pressure by hyperpolarizing smooth muscle cells. In this review we highlight the role of NPR-C in mediating these NP effects in myocytes and fibroblasts from the heart as well as in vascular smooth muscle cells.
Collapse
Affiliation(s)
- Robert A Rose
- Departments of Physiology, Heart and Stroke/Richard Lewar Centre, University of Toronto and University Health Network, Toronto, Ontario, Canada M5S 3E2.
| | | |
Collapse
|
26
|
Grace CRR, Cowsik SM, Shim JY, Welsh WJ, Howlett AC. Unique helical conformation of the fourth cytoplasmic loop of the CB1 cannabinoid receptor in a negatively charged environment. J Struct Biol 2007; 159:359-68. [PMID: 17524664 PMCID: PMC2042966 DOI: 10.1016/j.jsb.2007.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2006] [Revised: 11/27/2006] [Accepted: 04/04/2007] [Indexed: 11/19/2022]
Abstract
The proximal portion of the C-terminus of the CB(1) cannabinoid receptor is a primary determinant for G-protein activation. A 17 residue proximal C-terminal peptide (rodent CB1 401-417), the intracellular loop 4 (IL4) peptide, mimicked the receptor's G-protein activation domain. Because of the importance of the cationic amino acids to G-protein activation, the three-dimensional structure of the IL4 peptide in a negatively charged sodium dodecyl sulfate (SDS) micellar environment has been studied by two-dimensional proton nuclear magnetic resonance (2D (1)H NMR) spectroscopy and distance geometry calculations. Unambiguous proton NMR assignments were carried out with the aid of correlation spectroscopy (DQF-COSY and TOCSY) and nuclear Overhauser effect spectroscopy (NOESY and ROESY) experiments. The distance constraints were used in torsion angle dynamics algorithm for NMR applications (DYANA) to generate a family of structures which were refined using restrained energy minimization and dynamics. In water, the IL4 peptide prefers an extended conformation, whereas in SDS micelles, 3(10)-helical conformation is induced. The predominance of 3(10)-helical domain structure in SDS represents a unique difference compared with structure in alternative environments, which can significantly impact global electrostatic surface potential on the cytoplasmic surface of the CB(1) receptor and might influence the signal to the G-proteins.
Collapse
Affiliation(s)
- Christy R. R. Grace
- Post-Graduate Department of Physics, Christ College, Bangalore - 560 029, India
| | - Sudha M. Cowsik
- School of Life Sciences, Jawaharlal Nehru University, New Delhi - 110 067, India
| | - Joong-Youn Shim
- Neuroscience of Drug Abuse Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707
| | - William J. Welsh
- Department of Pharmacology, Univ. Medicine & Dentistry of New Jersey (UMDNJ), Robert Wood Johnson Medical School, and the Informatics Institute of UMDNJ, Piscataway, NJ 08854
| | - Allyn C. Howlett
- Neuroscience of Drug Abuse Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707
| |
Collapse
|
27
|
Conn PM, Ulloa-Aguirre A, Ito J, Janovick JA. G protein-coupled receptor trafficking in health and disease: lessons learned to prepare for therapeutic mutant rescue in vivo. Pharmacol Rev 2007; 59:225-50. [PMID: 17878512 DOI: 10.1124/pr.59.3.2] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
G protein-coupled receptors (GPCR) comprise the largest family of drug targets. This is not surprising as many signaling systems rely on this class of receptor to convert external and internal stimuli to intracellular responses. As is the case with other membrane proteins, GPCRs are subjected to a stringent quality control mechanism at the endoplasmic reticulum, which ensures that only correctly folded proteins enter the secretory pathway. Because of this quality control system, point mutations resulting in protein sequence variations may result in the production of misfolded and disease-causing proteins that are unable to reach their functional destinations in the cell. There is now a wealth of information demonstrating the functional rescue of misfolded mutant receptors by small nonpeptide molecules originally designed to serve as receptor antagonists; these small molecules ("pharmacoperones") serve as molecular templates, promoting correct folding and allowing the mutants to pass the scrutiny of the cellular quality control system and be expressed at the cell surface membrane. Two of these systems are especially well characterized: the gonadotropin-releasing hormone and the vasopressin type 2 receptors, which play important roles in regulating reproduction and water homeostasis, respectively. Mutations in these receptors can lead to well defined diseases that are recognized as being caused by receptor misfolding that may potentially be amenable to treatment with pharmacoperones. This review is focused on protein misfolding and misrouting related to various disease states, with special emphasis on these two receptors, which have proved to be of value for development of drugs potentially useful in regulating GPCR trafficking in healthy and disease states.
Collapse
Affiliation(s)
- P Michael Conn
- Divisions of Neuroscience and Reproductive Biology, ONPRC/OHSU, Beaverton, OR 97006, USA.
| | | | | | | |
Collapse
|
28
|
Zhong M, Parish B, Murtazina DA, Ku CY, Sanborn BM. Amino acids in the COOH-terminal region of the oxytocin receptor third intracellular domain are important for receptor function. Am J Physiol Endocrinol Metab 2007; 292:E977-84. [PMID: 17148753 DOI: 10.1152/ajpendo.00531.2005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Previously, residue K6.30 in the COOH-terminal region of the third intracellular domain (3iC) of the oxytocin (OT) receptor (OTR) was identified as important for receptor function leading to phospholipase C activation in both OTR and the vasopressin V(2) receptor (V(2)R) chimera V(2)ROTR3iC. Substitution of either A6.28K or V6.30K in wild-type V(2)R did not recapitulate the increase in phosphatidylinositide (PI) turnover observed in V(2)ROTR3iC. Hence, the role of K6.30 may be context-specific. Deletion of two NH(2)-terminal OTR3iC segments in the V(2)ROTR3iC chimera did not diminish vasopressin-stimulated PI turnover, whereas deletion of RVSSVKL (residues 6.19-6.25) reduced receptor expression. Deletion of this sequence in wild-type OTR reduced expression by 50% without affecting affinity for [(3)H]OT. This OTR mutant was unable to activate PI turnover or extracellular signal-regulated kinase 1/2 phosphorylation. The effects of alanine substitution for individual residues in RVSSVKL indicated differential importance for OTR function. The R6.19A substitution lost high-affinity sites for [(3)H]OT and the ability to stimulate PI turnover. Affinity for [(3)H]OT and membrane expression was not affected by any other substitutions. OTR-V6.20A and OTR-K6.24A mutants functioned as well as wild-type OTR, whereas OTR S6.21A, S6.22A, and V6.23A mutants exhibited impaired abilities to activate PI turnover (20-40% of OTR), and the OTR-L6.25A mutant exhibited constitutive activity. In conclusion, specific amino acids in the RVSSVKL segment in the COOH-terminal region of the third intracellular domain of OTR influence the ability of OTR to activate G protein-mediated actions.
Collapse
Affiliation(s)
- Miao Zhong
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | |
Collapse
|
29
|
Ulloa-Aguirre A, Uribe A, Zariñán T, Bustos-Jaimes I, Pérez-Solis MA, Dias JA. Role of the intracellular domains of the human FSH receptor in G(alphaS) protein coupling and receptor expression. Mol Cell Endocrinol 2007; 260-262:153-62. [PMID: 17045734 PMCID: PMC1782136 DOI: 10.1016/j.mce.2005.11.050] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 11/15/2005] [Indexed: 11/18/2022]
Abstract
The human (h) follicle-stimulating hormone receptor (FSHR) belongs to the superfamily of G protein-coupled receptors (GPCRs). This receptor consists of 695 amino acid residues and is preferentially coupled to the G(s) protein. This receptor is highly conserved among species (overall homology, 85%), with a 25-69% homology drop when compared to the human LH and TSH receptors. Although studies in prototypical rhodopsin/beta-adrenergic receptors suggest that multiple domains in the intracellular loops (iL) and the carboxyl-terminus (Ctail) of these receptors contribute to G protein coupling and receptor expression, there is a paucity of structure/function data on the role of these domains in FSHR function. Employing point mutations we have found that several residues present in the iL2 of the hFSHR are important for both coupling the receptor to the G(s) protein and maintaining the receptor molecule in an inactive conformation. In fact, HEK-293 cells expressing several hFSHR mutants with substitutions at R(450) (central to the highly conserved ERW triplet motif) and T(453) (a potential target for phosphorylation) failed to mediate ligand-provoked G(s) protein activation but not agonist binding, whereas substitutions at the hydrophobic L(460) (a conserved residue present in all glycoprotein hormone receptors) conferred elevated basal cAMP to the transfected cells. Thus, this particular loop apparently acts as a conformational switch for allowing the receptor to adopt an active conformation upon agonist stimulation. Residues in both ends of the iL3 are important for signal transduction in a number of GPCRs, including the FSHR. We have recently explored the importance of the reversed BBXXB motif (BXXBB; where B represents a basic residue and X a non-basic residue) present in the juxtamembrane region of the hFSHR iL3. A hFSHR mutant with all basic amino acids present in the iL3 BXXBB motif replaced by alanine failed to bind agonist and activate effector, and was expressed as an immature < or =62kDa form of the receptor. Individual substitutions of basic residues resulted in mutants that bound agonist normally but failed to activate effector when replaced at R(552) or R(556). Triple mutations in the same motif located in the NH(2)-end of the Ctail resulted in a complete inability of the receptor to bind agonist and activate effector, whereas individual substitutions resulted in decreased or virtually abolished agonist binding and cAMP accumulation, with both functions correlating with the detected levels of mature (80kDa) forms of the receptor. Thus, the BXXBB motif at the iL3 of the FSHR is essential for coupling the activated receptor to the G(s) protein, whereas the same motif in the Ctail is apparently more important for membrane expression. The role of cysteine residues present in the Ctail of the FSHR is an enigma since there are no conserved cysteines amongst LHR, FSHR and TSHR. C(629) and C(655) are conserved in the gonadotropin receptors but not in the TSHR. Alanine replacement of C(627) had no effect on hFSHR expression and function, whereas the same mutation at C(629) altered membrane expression and signal transduction. Serine or threonine substitutions of C(655) did not modify any of the parameters analyzed. In the hFSHR, C(629) may be a target for palmitoylation, and apparently it is the only cysteine residue in the Ctail domain that might play an important role in receptor function.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia Luis Castelazo Ayala, Instituto Mexicano del Seguro Social, Apartado Postal 99-065, Unidad Independencia, México 10101 D.F., Mexico.
| | | | | | | | | | | |
Collapse
|
30
|
Palmer TM, Stiles GL. The new biology of adenosine receptors. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 69:83-120. [PMID: 7817871 DOI: 10.1002/9780470123157.ch3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- T M Palmer
- Department of Medicine, Duke University Medical Center, Durham, NC
| | | |
Collapse
|
31
|
Abstract
Phosphorylation of Ser19 on the 20-kDa regulatory light chain of myosin II (MLC20) by Ca2+/calmodulin-dependent myosin light-chain kinase (MLCK) is essential for initiation of smooth muscle contraction. The initial [Ca2+]i transient is rapidly dissipated and MLCK inactivated, whereas MLC20 and muscle contraction are well maintained. Sustained contraction does not reflect Ca2+ sensitization because complete inhibition of MLC phosphatase activity in the absence of Ca2+ induces smooth muscle contraction. This contraction is suppressed by staurosporine, implying participation of a Ca2+-independent MLCK. Thus, sustained contraction, as with agonist-induced contraction at experimentally fixed Ca2+ concentrations, involves (a) G protein activation, (b) regulated inhibition of MLC phosphatase, and (c) MLC20 phosphorylation via a Ca2+-independent MLCK. The pathways that lead to inhibition of MLC phosphatase by G(q/13)-coupled receptors are initiated by sequential activation of Galpha(q)/alpha13, RhoGEF, and RhoA, and involve Rho kinase-mediated phosphorylation of the regulatory subunit of MLC phosphatase (MYPT1) and/or PKC-mediated phosphorylation of CPI-17, an endogenous inhibitor of MLC phosphatase. Sustained MLC20 phosphorylation is probably induced by the Ca2+-independent MLCK, ZIP kinase. The pathways initiated by G(i)-coupled receptors involve sequential activation of Gbetagamma(i), PI 3-kinase, and the Ca2+-independent MLCK, integrin-linked kinase. The last phosphorylates MLC20 directly and inhibits MLC phosphatase by phosphorylating CPI-17. PKA and PKG, which mediate relaxation, act upstream to desensitize the receptors (VPAC2 and NPR-C), inhibit adenylyl and guanylyl cyclase activities, and stimulate cAMP-specific PDE3 and PDE4 and cGMP-specific PDE5 activities. These kinases also act downstream to inhibit (a) initial contraction by inhibiting Ca2+ mobilization and (b) sustained contraction by inhibiting RhoA and targets downstream of RhoA. This increases MLC phosphatase activity and induces MLC20 dephosphorylation and muscle relaxation.
Collapse
Affiliation(s)
- Karnam S Murthy
- Department of Physiology, Virginia Commonwealth University Medical Center, Richmond, Virginia 23298, USA.
| |
Collapse
|
32
|
Nanoff C, Koppensteiner R, Yang Q, Fuerst E, Ahorn H, Freissmuth M. The carboxyl terminus of the Galpha-subunit is the latch for triggered activation of heterotrimeric G proteins. Mol Pharmacol 2006; 69:397-405. [PMID: 16210429 DOI: 10.1124/mol.105.016725] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The receptor-mimetic peptide D2N, derived from the cytoplasmic domain of the D(2) dopamine receptor, activates G protein alpha-subunits (G(i) and G(o)) directly. Using D2N, we tested the current hypotheses on the mechanism of receptor-mediated G protein activation, which differ by the role assigned to the Gbetagamma-subunit: 1) a receptor-prompted movement of Gbetagamma is needed to open up the nucleotide exit pathway ("gear-shift" and "lever-arm" model) or 2) the receptor first engages Gbetagamma and then triggers GDP release by interacting with the carboxyl (C) terminus of Galpha (the "sequential-fit" model). Our results with D2N were compatible with the latter hypothesis. D2N bound to the extreme C terminus of the alpha-subunit and caused a conformational change that was transmitted to the switch regions. Hence, D2N led to a decline in the intrinsic tryptophan fluorescence, increased the guanine nucleotide exchange rate, and modulated the Mg(2+) control of nucleotide binding. A structural alteration in the outer portion of helix alpha5 (substitution of an isoleucine by proline) blunted the stimulatory action of D2N. This confirms that helix alpha5 links the guanine nucleotide binding pocket to the receptor contact site on the G protein. However, neither the alpha-subunit amino terminus (as a lever-arm) nor Gbetagamma was required for D2N-mediated activation; conversely, assembly of the Galphabetagamma heterotrimer stabilized the GDP-bound species and required an increased D2N concentration for activation. We propose that the receptor can engage the C terminus of the alpha-subunit to destabilize nucleotide binding from the "back side" of the nucleotide binding pocket.
Collapse
Affiliation(s)
- Christian Nanoff
- Institute of Pharmacology, Center of Biomolecular Medicine and Pharmacology, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
33
|
Ruan CH, Wu J, Ruan KH. A strategy using NMR peptide structures of thromboxane A2 receptor as templates to construct ligand-recognition pocket of prostacyclin receptor. BMC BIOCHEMISTRY 2005; 6:23. [PMID: 16271145 PMCID: PMC1298286 DOI: 10.1186/1471-2091-6-23] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Accepted: 11/04/2005] [Indexed: 11/10/2022]
Abstract
Background: Prostacyclin receptor (IP) and thromboxane A2 receptor (TP) belong to rhodopsin-type G protein-coupling receptors and respectively bind to prostacyclin and thromboxane A2 derived from arachidonic acid. Recently, we have determined the extracellular loop (eLP) structures of the human TP receptor by 2-D 1H NMR spectroscopy using constrained peptides mimicking the individual eLP segments. The studies have identified the segment along with several residues in the eLP domains important to ligand recognition, as well as proposed a ligand recognition pocket for the TP receptor. Results: The IP receptor shares a similar primary structure in the eLPs with those of the TP receptor. Forty percent residues in the second eLPs of the receptors are identical, which is the major region involved in forming the ligand recognition pocket in the TP receptor. Based on the high homology score, the eLP domains of the IP receptor were constructed by the homology modeling approach using the NMR structures of the TP eLPs as templates, and then configured to the seven transmembrane (TM) domains model constructed using the crystal structure of the bovine rhodopsin as a template. A NMR structure of iloprost was docked into the modeled IP ligand recognition pocket. After dynamic studies, the segments and residues involved in the IP ligand recognition were proposed. A key residue, Arg173 involved in the ligand recognition for the IP receptor, as predicted from the modeling, was confirmed by site-directed mutagenesis. Conclusion: A 3-D model of the human IP receptor was constructed by homology modeling using the crystal structure of bovine rhodopsin TM domains and the NMR structures of the synthetic constrained peptides of the eLP domains of the TP receptor as templates. This strategy can be applied to molecular modeling and the prediction of ligand recognition pockets for other prostanoid receptors.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Binding Sites/physiology
- COS Cells
- Cattle
- Chlorocebus aethiops
- Humans
- Ligands
- Models, Molecular
- Molecular Sequence Data
- Nuclear Magnetic Resonance, Biomolecular/methods
- Receptors, Epoprostenol/chemistry
- Receptors, Epoprostenol/genetics
- Receptors, Epoprostenol/metabolism
- Receptors, Thromboxane A2, Prostaglandin H2/chemistry
- Receptors, Thromboxane A2, Prostaglandin H2/genetics
- Receptors, Thromboxane A2, Prostaglandin H2/metabolism
- Sequence Analysis, Protein/methods
- Templates, Genetic
Collapse
Affiliation(s)
- Cheng-Huai Ruan
- From the Vascular Biology Research Center and Division of Hematology, Department of Internal Medicine, The University of Texas Health Science Center, Houston, 6431 Fannin St., Houston, Texas 77030, USA
| | - Jaixin Wu
- From the Vascular Biology Research Center and Division of Hematology, Department of Internal Medicine, The University of Texas Health Science Center, Houston, 6431 Fannin St., Houston, Texas 77030, USA
| | - Ke-He Ruan
- From the Vascular Biology Research Center and Division of Hematology, Department of Internal Medicine, The University of Texas Health Science Center, Houston, 6431 Fannin St., Houston, Texas 77030, USA
| |
Collapse
|
34
|
Shpakov AO, Pertseva MN. Use of Peptide Strategy for Study of Molecular Mechanisms of Hormonal Signal Transduction into Cell. J EVOL BIOCHEM PHYS+ 2005. [DOI: 10.1007/s10893-005-0088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Flordellis C, Manolis A, Scheinin M, Paris H. Clinical and pharmacological significance of α2-adrenoceptor polymorphisms in cardiovascular diseases. Int J Cardiol 2004; 97:367-72. [PMID: 15561320 DOI: 10.1016/j.ijcard.2003.10.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2003] [Revised: 08/12/2003] [Accepted: 10/12/2003] [Indexed: 11/20/2022]
Abstract
The alpha2-adrenoceptors (alpha2-ARs) are receptors for endogenous catecholamines (norepinephrine and epinephrine) that mediate a number of physiological and pharmacological responses such as hypotension and sedation. Three distinct subtypes, denoted alpha2A-, alpha2B- and alpha2C-AR, have been characterized and cloned. Employment of mutation screening in the study of human populations from various ethnic backgrounds has shown that alpha2-AR genes are polymorphic. The functional and biochemical consequences of these polymorphisms have been analyzed by expressing the wild-type receptors and their respective genetic variants in heterologous systems such as CHO and COS-7 cells. Changes include alteration in G-protein coupling and in agonist-promoted receptor phosphorylation and desensitization. Case-control and population-based studies have shown clinical association with cardiovascular risk. Further investigation of the genetic variants in specialized cells and transgenic animals will provide the molecular basis of cardiovascular disease and may reveal alpha2-AR variants as potential targets for selective pharmacological interventions.
Collapse
|
36
|
Timossi C, Ortiz-Elizondo C, Pineda DB, Dias JA, Conn PM, Ulloa-Aguirre A. Functional significance of the BBXXB motif reversed present in the cytoplasmic domains of the human follicle-stimulating hormone receptor. Mol Cell Endocrinol 2004; 223:17-26. [PMID: 15279907 DOI: 10.1016/j.mce.2004.06.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 05/31/2004] [Accepted: 06/09/2004] [Indexed: 10/26/2022]
Abstract
The minimal structural motif, BBXXB (where B represents a basic amino acid residue and X a non-basic residue), located in particular regions of the intracellular domains of cell surface membrane receptors is involved in the G protein-activating activity of a number of G protein-coupled receptors. The human FSH receptor (hFSHR) exhibits a reversed BBXXB motif (BXXBB) in the juxtamembrane region of the third intracellular loop (IL3) and the carboxyl terminus (Ctail) of the receptor; however the importance of this sequence on receptor function remains unclear. In the present study, we analyzed the effects of mutations in this structural motif on hFSHR expression, receptor-mediated effector activation and agonist-provoked receptor internalization. Human embryonic kidney 293 cells were transiently transfected with plasmids containing the cDNA of the wild-type (Wt) hFSHR or several hFSHR mutants in which basic amino acids of the minimal structural motif at the IL3 and Ctail were replaced with alanine (i.e. AXXAA, AXXBB, BXXAB and BXXBA mutants). Alanine substitution of the three basic residues present in the IL3-BXXBB (IL3-AXXAA mutant) yielded a < or =60 kDa possibly under-glycosylated form of the FSHR, whereas the same substitutions in the Ctail resulted in the immature >62 kDa form of the receptor; both AXXAA hFSHR mutants completely failed to bind agonist and activate effector. Individual substitutions resulted in different cAMP responses to agonist stimulation: the IL3-AXXBB and IL3-BXXBA mutant hFSHRs failed to evoke Gs protein activation, whereas agonist-stimulated cAMP production was completely normal when the IL3-BXXAB mutant was expressed. All three IL3 mutants bound [125I]-labelled FSH in a similar fashion to the Wt hFSHR. Ligand-binding, cell surface membrane receptor expression and agonist-provoked effector activation were significantly affected by the individual substitutions at the Ctail-BXXBB motif: the Ctail-AXXBB variant exhibited reduced (approximately 50%) maximal cAMP response and ability to bind ligand, whereas both ligand binding and effector activation was severely reduced or abolished by expression of the Ctail-BXXBA and -BXXAB hFSHR mutants; the expression levels of the 80 kDa form of the receptor correlated with the magnitude of ligand-provoked cAMP production and binding capability of the mutant receptors. Upon stimulation by agonist, all mutants with detectable ligand-binding activity internalized following the pattern exhibited by the Wt hFSHR species. These results indicate that the BXXBB motif at the IL3 of the hFSHR is essential for coupling the activated receptor to the Gs protein, whereas the same motif in the Ctail is apparently more important for membrane expression.
Collapse
Affiliation(s)
- Carlos Timossi
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia Luis Castelazo Ayala, Instituto Mexicano del Seguro Social, Apartado Postal 99-065, Unidad Independencia, México 10101, D.F., Mexico
| | | | | | | | | | | |
Collapse
|
37
|
Tetsuka M, Saito Y, Imai K, Doi H, Maruyama K. The basic residues in the membrane-proximal C-terminal tail of the rat melanin-concentrating hormone receptor 1 are required for receptor function. Endocrinology 2004; 145:3712-23. [PMID: 15117878 DOI: 10.1210/en.2003-1638] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide that plays a key role in food intake. It acts through two G protein-coupled receptors (GPCRs), MCH1R and MCH2R, of which MCH1R is the primary regulator of food intake. We have previously reported that N-linked glycosylation of the extracellular domain of MCH1R is necessary for cell surface expression and signal transduction. We now report a role for the rat MCH1R C-terminal region. We constructed serial C-terminal truncation mutants and determined the resulting changes in protein expression, cell surface expression, ligand binding, and MCH-stimulated calcium influx. By analyzing two mutants, deltaT317 (deletion of 36 C-terminal amino acids) and deltaR321 (deletion of 32 C-terminal amino acids), we found that the region between Phe(318) and Arg(321)) was responsible for signal transduction. A more detailed analysis was performed with single or multiple residue mutations. Single mutations of Arg(319), Lys(320), or Arg(321) exhibited a decrease in the cell surface expression, whereas mutations of either Arg(319) or Lys(320), but not Arg(321), showed a significant reduction in the calcium influx. Furthermore, simultaneous mutations of Arg(319) and Lys(320) produced a pronounced decrease in the efficacy of calcium influx stimulation compared with single mutations. A computational analysis revealed a dibasic amino acid motif that is conserved among many class 1 GPCRs and may be part of the amphiphilic cytoplasmic helix 8 (an eight-cytoplasmic helix). Our results therefore provide new insights into the role of the putative helix 8 in the regulation of GPCR function.
Collapse
Affiliation(s)
- Mitsue Tetsuka
- Department of Pharmacology, Saitama Medical School, Iruma-gun, Saitama 350-0492, Japan
| | | | | | | | | |
Collapse
|
38
|
Rose RA, Lomax AE, Kondo CS, Anand-Srivastava MB, Giles WR. Effects of C-type natriuretic peptide on ionic currents in mouse sinoatrial node: a role for the NPR-C receptor. Am J Physiol Heart Circ Physiol 2004; 286:H1970-7. [PMID: 14704228 DOI: 10.1152/ajpheart.00893.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of C-type natriuretic peptide (CNP) on heart rate and ionic currents were demonstrated by recording the ECG from adult mice and performing voltage-clamp experiments on single sinoatrial (SA) node cells isolated from mouse heart. The selective natriuretic peptide type C receptor (NPR-C) agonist cANF (10–7M) significantly decreased heart rate in the presence of isoproterenol (5 × 10–9M), as indicated by an increase in the R-R interval of ECGs obtained from Langendorff-perfused hearts. Voltage-clamp measurements in enzymatically isolated single pacemaker myocytes revealed that CNP (10–8M) and cANF (10–8M) significantly inhibited L-type Ca2+current [ ICa(L)]. These findings suggest that the CNP effect on this current is mediated by NPR-C. Further support for an NPR-C-mediated inhibition of ICa(L)in SA node myocytes was obtained by altering the functional coupling between the G protein Giand NPR-C. In these experiments, a “Gi-activator peptide,” which consists of a 17-amino acid segment of NPR-C containing a specific Giprotein-activator sequence, was dialyzed into SA node myocytes. This peptide decreased ICa(L)significantly, suggesting that NPR-C activation can result in a reduction in ICa(L)when CNP is bound and the Giprotein pathway is activated. This effect of CNP appears to be selective for ICa(L), because the hyperpolarization-activated current was unaffected by CNP or cANF. These results provide the first demonstration that CNP has a negative chronotropic effect on heart rate and suggest that this effect is mediated by selectively activating NPR-C and reducing ICa(L)through coupling to Giprotein.
Collapse
Affiliation(s)
- Robert A Rose
- Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | |
Collapse
|
39
|
Geng L, Wu J, So SP, Huang G, Ruan KH. Structural and functional characterization of the first intracellular loop of human thromboxane A2 receptor. Arch Biochem Biophys 2004; 423:253-65. [PMID: 15001390 DOI: 10.1016/j.abb.2004.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2003] [Indexed: 11/19/2022]
Abstract
The conformation of a constrained peptide mimicking the putative first intracellular domain (iLP1) of thromboxane A(2) receptor (TP) was determined by (1)H 2D NMR spectroscopy. Through completed assignments of TOCSY, DQF-COSY, and NOESY spectra, a NMR structure of the peptide showed a beta-turn in residues 56-59 and a short helical structure in the residues 63-66. It suggests that residues 63-66 may be part of the second transmembrane domain (TM), and that Arg60, in an exposed position on the outer surface of the loop, may be involved in signaling through charge contact with Gq protein. The sequence alignment of Lys residue in the same position of other prostanoid receptors mediates different G protein couplings, suggesting that the chemical properties of Arg and Lys may also affect the receptor signaling activity. These hypotheses were supported by mutagenesis studies, in which the mutant of Arg60Leu completely lost activity in increasing intracellular calcium level through Gq coupling, and the mutant of Arg60Lys retained only about 35% signaling activity. The difference between the side chain functions of Lys and Arg in effecting the signaling was discussed.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Arginine/genetics
- Arginine/metabolism
- COS Cells
- Calcium/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Circular Dichroism
- Humans
- Models, Molecular
- Nuclear Magnetic Resonance, Biomolecular
- Protein Binding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, Thromboxane A2, Prostaglandin H2/antagonists & inhibitors
- Receptors, Thromboxane A2, Prostaglandin H2/chemistry
- Receptors, Thromboxane A2, Prostaglandin H2/genetics
- Receptors, Thromboxane A2, Prostaglandin H2/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Alignment
- Sequence Homology, Amino Acid
- Transfection
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Linda Geng
- Vascular Biology Research Center and Division of Hematology, Department of Internal Medicine, The University of Texas Health Science Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
40
|
Rose RA, Lomax AE, Giles WR. Inhibition of L-type Ca2+ current by C-type natriuretic peptide in bullfrog atrial myocytes: an NPR-C-mediated effect. Am J Physiol Heart Circ Physiol 2003; 285:H2454-62. [PMID: 12881210 DOI: 10.1152/ajpheart.00388.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Single atrial myocytes were isolated from the bullfrog heart and studied under current and voltage clamp conditions to determine the electrophysiological effects of the C-type natriuretic peptide (CNP). CNP (10(-8) M) significantly shortened the action potential and reduced its peak amplitude after the application of isoproteronol (10(-7) M). In voltage clamp studies, CNP inhibited isoproteronol-stimulated L-type Ca2+ current (ICa) without any significant effect on the inward rectifier K+ current. The effects of cANF (10(-8) M), a selective agonist of the natriuretic peptide C receptor (NPR-C), were very similar to those of CNP. Moreover, HS-142-1, an antagonist of the guanylyl cyclase-linked NPR-A and NPR-B receptors did not alter the inhibitory effect of CNP on ICa. Inclusion of cAMP in the recording pipette to stimulate ICa at a point downstream from adenylyl cyclase increased ICa, but this effect was not inhibited by cANF. These results provide the first demonstration that CNP can inhibit ICa after binding to NPR-C, and suggest that this inhibition involves a decrease in adenylyl cyclase activity, which leads to reduced intracellular levels of cAMP.
Collapse
Affiliation(s)
- R A Rose
- Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta, Canada T2N 4N1
| | | | | |
Collapse
|
41
|
Tsukamoto E, Hashimoto Y, Kanekura K, Niikura T, Aiso S, Nishimoto I. Characterization of the toxic mechanism triggered by Alzheimer's amyloid-beta peptides via p75 neurotrophin receptor in neuronal hybrid cells. J Neurosci Res 2003; 73:627-36. [PMID: 12929130 DOI: 10.1002/jnr.10703] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neuronal pathology of the brain with Alzheimer's disease (AD) is characterized by numerous depositions of amyloid-beta peptides (Abeta). Abeta binding to the 75-kDa neurotrophin receptor (p75NTR) causes neuronal cell death. Here we report that Abeta causes cell death in neuronal hybrid cells transfected with p75NTR, but not in nontransfected cells, and that p75NTR(L401K) cannot mediate Abeta neurotoxicity. We analyzed the cytotoxic pathway by transfecting pertussis toxin (PTX)-resistant G protein alpha subunits in the presence of PTX and identified that Galpha(o), but not Galpha(i), proteins are involved in p75NTR-mediated Abeta neurotoxicity. Further investigation suggested that Abeta neurotoxicity via p75NTR involved JNK, NADPH oxidase, and caspases-9/3 and was inhibited by activity-dependent neurotrophic factor, insulin-like growth factor-I, basic fibroblast growth factor, and Humanin, as observed in primary neuron cultures. Understanding the Abeta neurotoxic mechanism would contribute significantly to the development of anti-AD therapies.
Collapse
Affiliation(s)
- Emi Tsukamoto
- Departments of Pharmacology and Anatomy, KEIO University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Zhou H, Murthy KS. Identification of the G protein-activating sequence of the single-transmembrane natriuretic peptide receptor C (NPR-C). Am J Physiol Cell Physiol 2003; 284:C1255-61. [PMID: 12676657 DOI: 10.1152/ajpcell.00520.2002] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rat natriuretic peptide clearance receptor (NPR-C) contains four sequences capable of inhibiting adenylyl cyclase. We have undertaken mutational and deletion studies on the intracellular domain of rat NPR-C to determine which of these sequences is functionally relevant. Nine mutant receptors were constructed by deletion of 11 or 28 COOH-terminal residues or by site-directed mutagenesis of basic residues in a 17-amino acid sequence, R(469)RNHQEESNIGKHRELR(485), corresponding to the main active peptide. Substitution of arginine residues (R(469)R(470)) flanking the NH(2) terminus abolished G(i1) and G(i2) and PLC-beta activities and inhibition of adenylyl cyclase. Substitution of one or two basic residues (H(481) and/or R(482) or R(485)) in the COOH-terminal motif (H(481)RELR(485)) greatly decreased or abolished G protein and PLC-beta activities and inhibition of adenylyl cyclase. This implies that sequences NH(2)-terminal to the motif or COOH-terminal to R(470) could not sustain receptor activity in situ, although they exhibited activity when used as synthetic peptides. Deletion of the 11 COOH-terminal residues (E(486) to A(496)) suggested an autoinhibitory function for this sequence. We conclude that the 17-amino acid sequence (R(469) to R(485)) in the middle region of the intracellular domain of NPR-C is both necessary and sufficient for activation of G proteins and effector enzymes.
Collapse
Affiliation(s)
- Huiping Zhou
- Department of Physiology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | |
Collapse
|
43
|
Pommier B, Marie-Claire C, Da Nascimento S, Wang HL, Roques BP, Noble F. Further evidence that the CCK2 receptor is coupled to two transduction pathways using site-directed mutagenesis. J Neurochem 2003; 85:454-61. [PMID: 12675921 DOI: 10.1046/j.1471-4159.2003.01690.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A heterogeneity of CCK2 receptors has been reported which could correspond to different states of coupling to G proteins and/or association with different second messenger systems. To investigate these hypotheses, the wild-type CCK2 receptor and three mutants F347A, D100N and K333M/K334T/R335L, expected to modify the coupling of the G protein with the third intracellular loop of the receptor, were transfected into Cos-7 cells and their binding and signalling properties were evaluated using the natural ligand CCK8. Activation of wild-type as well as F347A, D100N or K333M/K334T/R335L CCK2 receptors by this ligand led to a similar arachidonic acid release which was blocked by pertussis toxin and the phospholipase A2 inhibitor, mepacrine. Nevertheless, in contrast to the wild-type CCK2 receptor, addition of CCK8 to cells transfected with the F347A or K333M/K334T/R335L mutants did not result in the production of inositol phosphates while the maximum increase in this second messenger formation was reduced by 30% with the D100N mutant. Taken together, these results suggest that the CCK2 receptor is coupled to two G proteins and that Phe347 and the cluster of basic residues K333/K334/R335 probably play a key role in Gq protein stimulation leading to inositol phosphate production but not in activation of the G protein coupled to phospholipase A2. These data bring additional support at the molecular level to the existence of different affinity states of CCK2 receptors suggested from the results of binding assays and behavioural studies.
Collapse
Affiliation(s)
- Blandine Pommier
- Département de Pharmacochimie Moléculaire et Structurale, Université René Descartes, UFR des Sciences Pharmaceutiques et Biologiques, Paris, France
| | | | | | | | | | | |
Collapse
|
44
|
Bavec A, Hällbrink M, Langel U, Zorko M. Different role of intracellular loops of glucagon-like peptide-1 receptor in G-protein coupling. REGULATORY PEPTIDES 2003; 111:137-44. [PMID: 12609761 DOI: 10.1016/s0167-0115(02)00282-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previous studies revealed the importance of the third intracellular loop of glucagon-like peptide-1 receptor (GLP-1R) in coupling to G(s) and G(i1) proteins. In order to further study the signaling mechanisms of GLP-1R, we tested three peptides, corresponding to the sequences of the first (IC(1)), the second (IC(2)), and the third (IC(3)) intracellular loop of GLP-1R, for their interactions with heterotrimeric G-proteins of different types (G(alphas), G(alphao), G(alphai1), and G(alpha11) plus G(beta1gamma2)) overexpressed in sf9 cells. IC(3) peptide powerfully stimulates all types of tested G-proteins, whereas IC(1) and IC(2) peptides show differential effects on G-proteins. Both IC(1) and IC(2) peptides activate G(s) and cooperate with IC(3) peptide in its stimulation. G(o) is not affected by IC(1) and IC(2). G(i1) and G(11) are not affected by IC(1), but are activated by IC(2), which in activation cooperates with IC(3). We suggest that GLP-1R is not coupled only to G(s) and G(i1), as shown previously, but also to G(o) and G(11). IC(3) loop is the main switch that mediates signaling via GLP-1R to G-proteins, while IC(1) and IC(2) loops are important in discrimination between different types of G-proteins.
Collapse
Affiliation(s)
- Aljosa Bavec
- Medical Faculty, Institute of Biochemistry, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | | | | | | |
Collapse
|
45
|
DeGraff JL, Gurevich VV, Benovic JL. The third intracellular loop of alpha 2-adrenergic receptors determines subtype specificity of arrestin interaction. J Biol Chem 2002; 277:43247-43252. [PMID: 12205092 DOI: 10.1074/jbc.m207495200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nonvisual arrestins (arrestin-2 and -3) serve as adaptors to link agonist-activated G protein-coupled receptors to the endocytic machinery. Although many G protein-coupled receptors bind arrestins, the molecular determinants involved in binding remain largely unknown. Because arrestins selectively promote the internalization of the alpha(2b)- and alpha(2c)-adrenergic receptors (ARs) while having no effect on the alpha(2a)AR, here we used alpha(2)ARs to identify molecular determinants involved in arrestin binding. Initially, we assessed the ability of purified arrestins to bind glutathione S-transferase fusions containing the third intracellular loops of the alpha(2a)AR, alpha(2b)AR, or alpha(2c)AR. These studies revealed that arrestin-3 directly binds to the alpha(2b)AR and alpha(2c)AR but not the alpha(2a)AR, whereas arrestin-2 only binds to the alpha(2b)AR. Truncation mutagenesis of the alpha(2b)AR identified two arrestin-3 binding domains in the third intracellular loop, one at the N-terminal end (residues 194-214) and the other at the C-terminal end (residues 344-368). Site-directed mutagenesis further revealed a critical role for several basic residues in arrestin-3 binding to the alpha(2b)AR third intracellular loop. Mutation of these residues in the holo-alpha(2b)AR and subsequent expression in HEK 293 cells revealed that the mutations had no effect on the ability of the receptor to activate ERK1/2. However, agonist-promoted internalization of the mutant alpha(2b)AR was significantly attenuated as compared with wild type receptor. These results demonstrate that arrestin-3 binds to two discrete regions within the alpha(2b)AR third intracellular loop and that disruption of arrestin binding selectively abrogates agonist-promoted receptor internalization.
Collapse
Affiliation(s)
- Jessica L DeGraff
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
46
|
Debus N, Dutour A, Boudouresque F, Vuaroqueaux V, Oliver C, Ouafik L. Molecular cloning and tissue distribution of the ovine somatostatin receptor subtype 5: osst5. Domest Anim Endocrinol 2002; 23:397-410. [PMID: 12206873 DOI: 10.1016/s0739-7240(02)00177-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The sheep is a valuable model to study growth hormone (GH) neuroregulation since its GH secretion pattern is close to that in humans and an integrated physiological approach is possible in this species. Somatostatin receptor subtype 5 (sst5) appears to be important in GH regulation but the ovine sst5 gene (osst5) has not yet been cloned. We report here the cloning of sst5 in that species. We screened a cDNA sheep library and isolated a 1.24 kb cDNA, which includes the whole coding region of osst5. The predicted protein consists of 367 amino acids exhibiting a putative seven transmembrane domain topology typical of G protein-coupled receptors. Nucleotide sequence comparisons with that of other species sst5 showed that osst5 displays 83.8, 81 and 79.7% homology with human, rat, and mice sst5, respectively. Southern blot analysis of ovine cortex DNA demonstrated that osst5 is encoded by a single gene. Osst5 transiently expressed in Chinese Hamster ovary (CHO) cells exhibit a high affinity for somatostatin-14. Reverse transcriptase-polymerase chain reaction (RT-PCR) studies demonstrated that osst5 mRNAs are present in pituitary, cortex, hypothalamus, hippocampus, colon and adrenal gland. The cloning of osst5 should provide a useful tool to study the mechanisms through which somatostatin inhibits hormone secretion in the sheep.
Collapse
Affiliation(s)
- N Debus
- Laboratoire de Neuroendocrinologie Expérimentale, INSERM U501, IFR Jean Roche, Bvd P Dramard, 13916 Cedex 20, Marseille, France.
| | | | | | | | | | | |
Collapse
|
47
|
Kang DS, Leeb-Lundberg LMF. Negative and positive regulatory epitopes in the C-terminal domains of the human B1 and B2 bradykinin receptor subtypes determine receptor coupling efficacy to G(q/11)-mediated [correction of G(9/11)-mediated] phospholipase Cbeta activity. Mol Pharmacol 2002; 62:281-8. [PMID: 12130679 DOI: 10.1124/mol.62.2.281] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human B1 bradykinin (BK) receptor (B1R) is more efficacious than the human B2 BK receptor (B2R) in both ligand-independent and agonist-dependent coupling to G(q/11)-mediated phospholipase Cbeta activity. In fact, B1R is constitutively active, whereas B2R exhibits little if any constitutive activity. To evaluate the role of the C-terminal domain in receptor G(q/11) coupling, we constructed chimeric and C-terminally truncated receptors. The slopes of the increase in basal and agonist-dependent cellular phosphoinositide hydrolysis as a function of receptor density in transiently transfected human embryonic kidney 293 cells provided parameters of receptor coupling. Exchanging the C-terminal domains between the two receptors revealed that these domains are largely responsible for the difference in coupling. B1R truncation showed that this receptor does not directly depend on the C-terminal domain for efficient coupling, although coupling is dramatically augmented by residues in the membrane-distal portion of the domain downstream from Tyr(327). On the other hand, coupling of B2R is absolutely dependent on a membrane-proximal epitope in the C-terminal domain upstream from Lys(315). This epitope is adjacent to a basic residue, Arg(311), which exerts an inhibitory effect on coupling. Arg(311) is not conserved in B1R, and complementary mutations in B2R and B1R showed that this residue, together with previously identified serines and threonines, acts to attenuate the coupling efficacy of B2R. Therefore, the C-terminal domain participates intimately in the efficacy of B1R and B2R G(q/11) coupling by contributing both positive and negative regulatory epitopes.
Collapse
Affiliation(s)
- Dong Soo Kang
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | |
Collapse
|
48
|
Patel TB, Wittpoth C, Barbier AJ, Yigzaw Y, Scholich K. Functional analyses of type V adenylyl cyclase. Methods Enzymol 2002; 345:160-87. [PMID: 11665603 DOI: 10.1016/s0076-6879(02)45015-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Tarun B Patel
- Department of Pharmacology and Vascular Biology Center, University of Tennessee, Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | |
Collapse
|
49
|
Timossi C, Maldonado D, Vizcaíno A, Lindau-Shepard B, Conn PM, Ulloa-Aguirre A. Structural determinants in the second intracellular loop of the human follicle-stimulating hormone receptor are involved in G(s) protein activation. Mol Cell Endocrinol 2002; 189:157-68. [PMID: 12039074 DOI: 10.1016/s0303-7207(01)00720-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the present study, we analyzed the structural determinants present in the second intracellular loop (IL-2) of the human follicle-stimulating hormone (FSH) receptor (R) involved in G(s) protein-mediated signal transduction. Human embryonic kidney 293 (HEK-293) cells, stably expressing wild-type (Wt) human FSHR (HEK-293((+))), were transiently transfected with plasmids containing cDNAs encoding the entire IL-2 or several IL-2 sequences mutated in R467 (a residue located at the center of the conserved ERW motif in the glycoprotein hormone receptors), T470 (a potential site for phosphorylation by protein kinase-A and -C) or L477 (a residue conserved in all glycoprotein hormone receptors). Expression of the IL-2 Wt in HEK-293((+)) cells reduced the maximum FSH-stimulated cAMP production significantly by approximately 40%; similar results were observed with the R467A and R467K IL-2 mutants. The IL-2(R467H), IL-2(T470A), the triple R467A/T470A/L477A IL-2 mutant and the IL-2 of the oxytocin receptor (G(q/11)-coupled) had no effects on Wt FSHR-mediated intracellular signaling whereas the L477A mutation provoked a higher ( approximately 55%) inhibition of FSH-stimulated cAMP than the free, Wt IL-2. These results suggested a specific role of IL-2 residues in FSHR function. Site directed mutagenesis of the FSHR and the expression of resulting mutants in HEK-293 cells were performed in order to corroborate the effects of these substitutions. Expression of FSHR(R467H), FSHR(R467A) and FSHR(T470A) failed to mediate ligand-provoked G(s) protein activation, whereas the R467K mutant behaved as the Wt receptor. Interestingly, the expression of L477A, L477D and L477P FSHR mutants conferred elevated basal cAMP levels to HEK-293 cells. This study indicates that the IL-2 of the human FSHR possesses amino acid residues that are important for both coupling the receptor to the G(s) protein (R467 and T470) and maintaining the receptor molecule in an inactive conformation (L477). It appears that this particular intracellular domain may act as a conformational switch to produce the activation of G proteins as has been reported for the IL-2 of other G protein-coupled receptors.
Collapse
Affiliation(s)
- Carlos Timossi
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia 'Luis Castelazo Ayala', Instituto Mexicano del Seguro Social, Mexico D.F., Mexico
| | | | | | | | | | | |
Collapse
|
50
|
Ford DJ, Essex A, Spalding TA, Burstein ES, Ellis J. Homologous mutations near the junction of the sixth transmembrane domain and the third extracellular loop lead to constitutive activity and enhanced agonist affinity at all muscarinic receptor subtypes. J Pharmacol Exp Ther 2002; 300:810-7. [PMID: 11861785 DOI: 10.1124/jpet.300.3.810] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies have found that a mutation near the junction of the sixth transmembrane domain (TM6) and the third extracellular loop of the M5 muscarinic receptor leads to constitutive activation and enhanced agonist affinity for the mutated receptor. These results were consistent with the extended ternary complex model, which predicts a correlation between agonist affinity and constitutive activity. We have introduced the homologous mutation into all five subtypes of the highly conserved muscarinic receptor family; SerThr-->TyrPro was introduced into M1 and M5, and AsnThr-->TyrPro was introduced into M2, M3, and M4. In binding assays, these mutations produced increases in affinities toward acetylcholine and carbachol that ranged from 5-fold at the M2 receptor to 15- to 20-fold at M1, M3, and M4, to 40-fold at M5. In functional assays, all five mutant receptors exhibited constitutive activity, at levels ranging between 30 and 80% of the maximal response elicited by carbachol. In every case, the muscarinic antagonist atropine inhibited this constitutive activity with high affinity. Thus, despite differences in effector coupling and in wild-type sequence at the mutation site, all five subtypes were activated by this mutation at the top of TM6. Previous studies of the M5 subtype have indicated that TM6 is a ligand-dependent switch that sets the activation state of the receptor. Based on the results of the present study, it is possible that TM6 represents a general switch for the activation of the muscarinic receptor family.
Collapse
Affiliation(s)
- Diane J Ford
- Department of Pharmacology, the Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | |
Collapse
|