1
|
Genetic Studies on Mammalian DNA Methyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:111-136. [PMID: 36350508 PMCID: PMC9815518 DOI: 10.1007/978-3-031-11454-0_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cytosine methylation at the C5-position-generating 5-methylcytosine (5mC)-is a DNA modification found in many eukaryotic organisms, including fungi, plants, invertebrates, and vertebrates, albeit its levels vary greatly in different organisms. In mammals, cytosine methylation occurs predominantly in the context of CpG dinucleotides, with the majority (60-80%) of CpG sites in their genomes being methylated. DNA methylation plays crucial roles in the regulation of chromatin structure and gene expression and is essential for mammalian development. Aberrant changes in DNA methylation and genetic alterations in enzymes and regulators involved in DNA methylation are associated with various human diseases, including cancer and developmental disorders. In mammals, DNA methylation is mediated by two families of DNA methyltransferases (Dnmts), namely Dnmt1 and Dnmt3 proteins. Over the last three decades, genetic manipulations of these enzymes, as well as their regulators, in mice have greatly contributed to our understanding of the biological functions of DNA methylation in mammals. In this chapter, we discuss genetic studies on mammalian Dnmts, focusing on their roles in embryogenesis, cellular differentiation, genomic imprinting, and human diseases.
Collapse
|
2
|
Zeng Y, Chen T. DNA Methylation Reprogramming during Mammalian Development. Genes (Basel) 2019; 10:E257. [PMID: 30934924 PMCID: PMC6523607 DOI: 10.3390/genes10040257] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 12/15/2022] Open
Abstract
DNA methylation (5-methylcytosine, 5mC) is a major form of DNA modification in the mammalian genome that plays critical roles in chromatin structure and gene expression. In general, DNA methylation is stably maintained in somatic tissues. However, DNA methylation patterns and levels show dynamic changes during development. Specifically, the genome undergoes two waves of global demethylation and remethylation for the purpose of producing the next generation. The first wave occurs in the germline, initiated with the erasure of global methylation in primordial germ cells (PGCs) and completed with the establishment of sex-specific methylation patterns during later stages of germ cell development. The second wave occurs after fertilization, including the erasure of most methylation marks inherited from the gametes and the subsequent establishment of the embryonic methylation pattern. The two waves of DNA methylation reprogramming involve both distinct and shared mechanisms. In this review article, we provide an overview of the key reprogramming events, focusing on the important players in these processes, including DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) family of 5mC dioxygenases.
Collapse
Affiliation(s)
- Yang Zeng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, 1808 Park Road 1C, Smithville, TX 78957, USA.
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, 1808 Park Road 1C, Smithville, TX 78957, USA.
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Estrogen-dependent epigenetic regulation of soluble epoxide hydrolase via DNA methylation. Proc Natl Acad Sci U S A 2018; 115:613-618. [PMID: 29295935 DOI: 10.1073/pnas.1716016115] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
To elucidate molecular mechanisms responsible for the sexually dimorphic phenotype of soluble epoxide hydrolase (sEH) expression, we tested the hypothesis that female-specific down-regulation of sEH expression is driven by estrogen-dependent methylation of the Ephx2 gene. Mesenteric arteries isolated from male, female, ovariectomized female (OV), and OV with estrogen replacement (OVE) mice, as well as the human cell line (HEK293T) were used. Methylation-specific PCR and bisulfite genomic sequencing analysis indicate significant increases in DNA/CG methylation in vessels of female and OVE compared with those of male and OV mice. The same increase in CG methylation was also observed in male vessels incubated with a physiological concentration of 17β-estradiol (17β-E2) for 48 hours. All vessels that displayed increases in CG methylation were concomitantly associated with decreases in their Ephx2 mRNA and protein, suggesting a methylation-induced gene silencing. Transient transfection assays indicate that the activity of Ephx2 promoter-coding luciferase was significantly attenuated in HEK293T cells treated with 17β-E2, which was prevented by additional treatment with an estrogen receptor antagonist (ICI). ChIP analysis indicates significantly reduced binding activities of transcription factors (including SP1, AP-1, and NF-κB with their binding elements located in the Ephx2 promoter) in vessels of female mice and human cells treated with 17β-E2, responses that were prevented by ICI and Decitabine (DNA methyltransferase inhibitor), respectively. In conclusion, estrogen/estrogen receptor-dependent methylation of the promoter of Ephx2 gene silences sEH expression, which is involved in specific transcription factor-directed regulatory pathways.
Collapse
|
4
|
Gouin JP, Zhou QQ, Booij L, Boivin M, Côté SM, Hébert M, Ouellet-Morin I, Szyf M, Tremblay RE, Turecki G, Vitaro F. Associations among oxytocin receptor gene (OXTR) DNA methylation in adulthood, exposure to early life adversity, and childhood trajectories of anxiousness. Sci Rep 2017; 7:7446. [PMID: 28785027 PMCID: PMC5547144 DOI: 10.1038/s41598-017-07950-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 07/06/2017] [Indexed: 12/17/2022] Open
Abstract
Recent models propose deoxyribonucleic acid methylation of key neuro-regulatory genes as a molecular mechanism underlying the increased risk of mental disorder associated with early life adversity (ELA). The goal of this study was to examine the association of ELA with oxytocin receptor gene (OXTR) methylation among young adults. Drawing from a 21-year longitudinal cohort, we compared adulthood OXTR methylation frequency of 46 adults (23 males and 23 females) selected for high or low ELA exposure based on childhood socioeconomic status and exposure to physical and sexual abuse during childhood and adolescence. Associations between OXTR methylation and teacher-rated childhood trajectories of anxiousness were also assessed. ELA exposure was associated with one significant CpG site in the first intron among females, but not among males. Similarly, childhood trajectories of anxiousness were related to one significant CpG site within the promoter region among females, but not among males. This study suggests that females might be more sensitive to the impact of ELA on OXTR methylation than males.
Collapse
Affiliation(s)
- J P Gouin
- Department of Psychology, Concordia University, Montreal, Canada.
- Research Unit on Children's Psychosocial Maladjustment (GRIP), University of Montreal, Montreal, Canada.
| | - Q Q Zhou
- Department of Psychology, Concordia University, Montreal, Canada
| | - L Booij
- Department of Psychology, Concordia University, Montreal, Canada
- Sainte-Justine Hospital Research Center, University of Montreal, Montreal, Canada
- Research Unit on Children's Psychosocial Maladjustment (GRIP), University of Montreal, Montreal, Canada
| | - M Boivin
- Research Unit on Children's Psychosocial Maladjustment (GRIP), Laval University, Québec, Canada
- Institute of Genetic, Neurobiological, and Social Foundations of Child Development, Tomsk State University, Tomsk, Russian Federation
- School of Psychology, Laval University, Québec, Canada
| | - S M Côté
- Department of Social and Preventive Medicine, University of Montreal, Montreal, Canada
- Research Unit on Children's Psychosocial Maladjustment (GRIP), University of Montreal, Montreal, Canada
- Bordeaux Population Health Research Center, INSERM and Bordeaux University, Bordeaux, France
| | - M Hébert
- Department of Sexology, Université du Québec à Montréal, Montreal, Canada
| | - I Ouellet-Morin
- Research Unit on Children's Psychosocial Maladjustment (GRIP), University of Montreal, Montreal, Canada
- Department of Criminology, University of Montreal, Montreal, Canada
| | - M Szyf
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Canada
| | - R E Tremblay
- Research Unit on Children's Psychosocial Maladjustment (GRIP), University of Montreal, Montreal, Canada
- Departments of Pediatrics and Psychology, University of Montreal, Montreal, Canada
- School of Public Health, University College Dublin, Dublin, Ireland
| | - G Turecki
- Research Unit on Children's Psychosocial Maladjustment (GRIP), University of Montreal, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| | - F Vitaro
- Research Unit on Children's Psychosocial Maladjustment (GRIP), University of Montreal, Montreal, Canada
- School of Psychoeducation, University of Montreal, Montreal, Canada
| |
Collapse
|
5
|
Dan J, Chen T. Genetic Studies on Mammalian DNA Methyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:123-150. [PMID: 27826837 DOI: 10.1007/978-3-319-43624-1_6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cytosine methylation at the C5-position, generating 5-methylcytosine (5mC), is a DNA modification found in many eukaryotic organisms, including fungi, plants, invertebrates, and vertebrates, albeit its levels vary greatly in different organisms. In mammals, cytosine methylation occurs predominantly in the context of CpG dinucleotides, with the majority (60-80 %) of CpG sites in their genomes being methylated. DNA methylation plays crucial roles in the regulation of chromatin structure and gene expression and is essential for mammalian development. Aberrant changes in DNA methylation levels and patterns are associated with various human diseases, including cancer and developmental disorders. DNA methylation is mediated by three active DNA methyltransferases (Dnmts), namely, Dnmt1, Dnmt3a, and Dnmt3b, in mammals. Over the last two decades, genetic manipulations of these enzymes, as well as their regulators, in mice have greatly contributed to our understanding of the biological functions of DNA methylation in mammals. In this chapter, we discuss genetic studies on mammalian Dnmts, focusing on their roles in embryogenesis, cellular differentiation, genomic imprinting, and X-chromosome inactivation.
Collapse
Affiliation(s)
- Jiameng Dan
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, 1808 Park Road 1C, Smithville, TX, 78957, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, 1808 Park Road 1C, Smithville, TX, 78957, USA
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, 1808 Park Road 1C, Smithville, TX, 78957, USA.
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, 1808 Park Road 1C, Smithville, TX, 78957, USA.
- Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Marcho C, Cui W, Mager J. Epigenetic dynamics during preimplantation development. Reproduction 2015; 150:R109-20. [PMID: 26031750 DOI: 10.1530/rep-15-0180] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/01/2015] [Indexed: 12/31/2022]
Abstract
Successful mammalian development requires descendants of single-cell zygotes to differentiate into diverse cell types even though they contain the same genetic material. Preimplantation dynamics are first driven by the necessity of reprogramming haploid parental epigenomes to reach a totipotent state. This process requires extensive erasure of epigenetic marks shortly after fertilization. During the few short days after formation of the zygote, epigenetic programs are established and are essential for the first lineage decisions and differentiation. Here we review the current understanding of DNA methylation and histone modification dynamics responsible for these early changes during mammalian preimplantation development. In particular, we highlight insights that have been gained through next-generation sequencing technologies comparing human embryos to other models as well as the recent discoveries of active DNA demethylation mechanisms at play during preimplantation.
Collapse
Affiliation(s)
- Chelsea Marcho
- Department of Veterinary and Animal ScienceUniversity of Massachusetts Amherst, 661 North Pleasant Street, Amherst, Massachusetts 01003, USA
| | - Wei Cui
- Department of Veterinary and Animal ScienceUniversity of Massachusetts Amherst, 661 North Pleasant Street, Amherst, Massachusetts 01003, USA
| | - Jesse Mager
- Department of Veterinary and Animal ScienceUniversity of Massachusetts Amherst, 661 North Pleasant Street, Amherst, Massachusetts 01003, USA
| |
Collapse
|
7
|
Cao-Lei L, Massart R, Suderman MJ, Machnes Z, Elgbeili G, Laplante DP, Szyf M, King S. DNA methylation signatures triggered by prenatal maternal stress exposure to a natural disaster: Project Ice Storm. PLoS One 2014; 9:e107653. [PMID: 25238154 PMCID: PMC4169571 DOI: 10.1371/journal.pone.0107653] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/13/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Prenatal maternal stress (PNMS) predicts a wide variety of behavioral and physical outcomes in the offspring. Although epigenetic processes may be responsible for PNMS effects, human research is hampered by the lack of experimental methods that parallel controlled animal studies. Disasters, however, provide natural experiments that can provide models of prenatal stress. METHODS Five months after the 1998 Quebec ice storm we recruited women who had been pregnant during the disaster and assessed their degrees of objective hardship and subjective distress. Thirteen years later, we investigated DNA methylation profiling in T cells obtained from 36 of the children, and compared selected results with those from saliva samples obtained from the same children at age 8. RESULTS Prenatal maternal objective hardship was correlated with DNA methylation levels in 1675 CGs affiliated with 957 genes predominantly related to immune function; maternal subjective distress was uncorrelated. DNA methylation changes in SCG5 and LTA, both highly correlated with maternal objective stress, were comparable in T cells, peripheral blood mononuclear cells (PBMCs) and saliva cells. CONCLUSIONS These data provide first evidence in humans supporting the conclusion that PNMS results in a lasting, broad, and functionally organized DNA methylation signature in several tissues in offspring. By using a natural disaster model, we can infer that the epigenetic effects found in Project Ice Storm are due to objective levels of hardship experienced by the pregnant woman rather than to her level of sustained distress.
Collapse
Affiliation(s)
- Lei Cao-Lei
- Department of Psychiatry, McGill University and Psychosocial Research Division, Douglas Hospital Research Centre, Montreal, Quebec, Canada
| | - Renaud Massart
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Matthew J. Suderman
- Department of Pharmacology and Therapeutics, Sackler Program for Epigenetics and Developmental Psychobiology and McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada
| | - Ziv Machnes
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Guillaume Elgbeili
- Psychosocial Research Division, Douglas Hospital Research Centre, Montreal, Quebec, Canada
| | - David P. Laplante
- Psychosocial Research Division, Douglas Hospital Research Centre, Montreal, Quebec, Canada
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics and Sackler Program for Epigenetics and Developmental Psychobiology, McGill University, Montreal, Quebec, Canada
| | - Suzanne King
- Department of Psychiatry, McGill University and Psychosocial Research Division, Douglas Hospital Research Centre, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Messerschmidt DM, Knowles BB, Solter D. DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev 2014; 28:812-28. [PMID: 24736841 PMCID: PMC4003274 DOI: 10.1101/gad.234294.113] [Citation(s) in RCA: 467] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Methylation of DNA is an essential epigenetic control mechanism in mammals. Messerschmidt et al. review the current understanding of epigenetic dynamics regulating the molecular processes that prepare the mammalian embryo for normal development. Methylation of DNA is an essential epigenetic control mechanism in mammals. During embryonic development, cells are directed toward their future lineages, and DNA methylation poses a fundamental epigenetic barrier that guides and restricts differentiation and prevents regression into an undifferentiated state. DNA methylation also plays an important role in sex chromosome dosage compensation, the repression of retrotransposons that threaten genome integrity, the maintenance of genome stability, and the coordinated expression of imprinted genes. However, DNA methylation marks must be globally removed to allow for sexual reproduction and the adoption of the specialized, hypomethylated epigenome of the primordial germ cell and the preimplantation embryo. Recent technological advances in genome-wide DNA methylation analysis and the functional description of novel enzymatic DNA demethylation pathways have provided significant insights into the molecular processes that prepare the mammalian embryo for normal development.
Collapse
Affiliation(s)
- Daniel M Messerschmidt
- Developmental Epigenetics and Disease, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), 138673 Singapore,
| | | | | |
Collapse
|
9
|
Alvarado S, Wyglinski J, Suderman M, Andrews SA, Szyf M. Methylated DNA binding domain protein 2 (MBD2) coordinately silences gene expression through activation of the microRNA hsa-mir-496 promoter in breast cancer cell line. PLoS One 2013; 8:e74009. [PMID: 24204564 PMCID: PMC3812180 DOI: 10.1371/journal.pone.0074009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 07/25/2013] [Indexed: 12/31/2022] Open
Abstract
Methylated DNA binding protein 2 (MBD2) binds methylated promoters and suppresses transcription in cis through recruitment of a chromatin modification repressor complex. We show here a new mechanism of action for MBD2: suppression of gene expression indirectly through activation of microRNA hsa-mir-496. Overexpression of MBD2 in breast epithelial cell line MCF-10A results in induced expression and demethylation of hsa-mir-496 while depletion of MBD2 in a human breast cancer cell lines MCF-7 and MDA-MB231 results in suppression of hsa-mir-496. Activation of hsa-mir-496 by MBD2 is associated with silencing of several of its target genes while depletion of MBD2 leads to induction of hsa-mir-496 target genes. Depletion of hsa-mir-496 by locked nucleic acid (LNA) antisense oligonucleotide leads to activation of these target genes in MBD2 overexpressing cells supporting that hsa-mir-496 is mediating in part the effects of MBD2 on gene expression. We demonstrate that MBD2 binds the promoter of hsa-mir-496 in MCF-10A, MCF-7 and MDA-MB-231 cells and that it activates an in vitro methylated hsa-mir-496 promoter driving a CG-less luciferase reporter in a transient transfection assay. The activation of hsa-mir-496 is associated with reduced methylation of the promoter. Taken together these results describe a novel cascade for gene regulation by DNA methylation whereby activation of a methylated microRNA by MBD2 that is associated with loss of methylation triggers repression of downstream targets.
Collapse
Affiliation(s)
- Sebastian Alvarado
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Joanne Wyglinski
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Matthew Suderman
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada
| | - Stephen A. Andrews
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Sackler Program for Epigenetics and Developmental Psychobiology, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
10
|
Abstract
Asthma is a complex genetic disease, which arises from the interaction of multiple genes and environmental stimuli. These influences are important to asthma pathogenesis. These can be mechanically explained by the Epigenetic phenomenon, which consists of the chromatin and its modifications, as well as a covalent modification of cytosines residing at the dinucleotide sequence CG in DNA by methylation. This reaction is catalyzed by a family of DNA methyltransferase enzyme (DNMTs). DNMT1 is one of them which maintained the methylation status during replication and also critical for the development, differentiation and regulation of Th1 and Th2 cells. Therefore we studied the DNMT1 mRNA expression profiling as well as CpG methylation status in promoter region. For these studies we developed asthma mouse model, and used Flow cytometer, qRT(2)-PCR, Methylation specific PCR, bisulfate conversion and BiQ analyzer. We found that DNMT1 expression level was low in all the tissues (lung, trachea and BALF cells) of asthmatic in comparison to normal mice. This was due to the methylation of regulatory sites of DNMT1 promoter region at cytosine residue. As the incidence of asthma is increasing globally and in world, this study assumes greater significance in designing and developing therapeutic means.
Collapse
|
11
|
Peripheral SLC6A4 DNA methylation is associated with in vivo measures of human brain serotonin synthesis and childhood physical aggression. PLoS One 2012; 7:e39501. [PMID: 22745770 PMCID: PMC3379993 DOI: 10.1371/journal.pone.0039501] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 05/21/2012] [Indexed: 12/16/2022] Open
Abstract
The main challenge in addressing the role of DNA methylation in human behaviour is the fact that the brain is inaccessible to epigenetic analysis in living humans. Using positron emission tomography (PET) measures of brain serotonin (5-HT) synthesis, we found in a longitudinal sample that adult males with high childhood-limited aggression (C-LHPA) had lower in vivo 5-HT synthesis in the orbitofrontal cortex (OBFC). Here we hypothesized that 5-HT alterations associated with childhood aggression were linked to differential DNA methylation of critical genes in the 5-HT pathway and these changes were also detectable in peripheral white blood cells. Using pyrosequencing, we determined the state of DNA methylation of SLC6A4 promoter in T cells and monocytes isolated from blood of cohort members (N = 25) who underwent a PET scan, and we examined whether methylation status in the blood is associated with in vivo brain 5-HT synthesis. Higher levels of methylation were observed in both T cells and monocytes at specific CpG sites in the C-LHPA group. DNA methylation of SLC6A4 in monocytes appears to be associated more reliably with group membership than T cells. In both cell types the methylation state of these CpGs was associated with lower in vivo measures of brain 5-HT synthesis in the left and right lateral OBFC (N = 20) where lower 5-HT synthesis in C-LHPA group was observed. Furthermore, in vitro methylation of the SLC6A4 promoter in a luciferase reporter construct suppresses its transcriptional activity supporting a functional role of DNA methylation in SLC6A4 promoter regulation. These findings indicate that state of SLC6A4 promoter methylation is altered in peripheral white blood cells of individuals with physical aggression during childhood. This supports the relevance of peripheral DNA methylation for brain function and suggests that peripheral SLC6A4 DNA methylation could be a marker of central 5-HT function.
Collapse
|
12
|
Tajerian M, Alvarado S, Millecamps M, Dashwood T, Anderson KM, Haglund L, Ouellet J, Szyf M, Stone LS. DNA methylation of SPARC and chronic low back pain. Mol Pain 2011; 7:65. [PMID: 21867537 PMCID: PMC3182907 DOI: 10.1186/1744-8069-7-65] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 08/25/2011] [Indexed: 12/21/2022] Open
Abstract
Background The extracellular matrix protein SPARC (Secreted Protein, Acidic, Rich in Cysteine) has been linked to degeneration of the intervertebral discs and chronic low back pain (LBP). In humans, SPARC protein expression is decreased as a function of age and disc degeneration. In mice, inactivation of the SPARC gene results in the development of accelerated age-dependent disc degeneration concurrent with age-dependent behavioral signs of chronic LBP. DNA methylation is the covalent modification of DNA by addition of methyl moieties to cytosines in DNA. DNA methylation plays an important role in programming of gene expression, including in the dynamic regulation of changes in gene expression in response to aging and environmental signals. We tested the hypothesis that DNA methylation down-regulates SPARC expression in chronic LBP in pre-clinical models and in patients with chronic LBP. Results Our data shows that aging mice develop anatomical and behavioral signs of disc degeneration and back pain, decreased SPARC expression and increased methylation of the SPARC promoter. In parallel, we show that human subjects with back pain exhibit signs of disc degeneration and increased methylation of the SPARC promoter. Methylation of either the human or mouse SPARC promoter silences its activity in transient transfection assays. Conclusions This study provides the first evidence that DNA methylation of a single gene plays a role in chronic pain in humans and animal models. This has important implications for understanding the mechanisms involved in chronic pain and for pain therapy.
Collapse
Affiliation(s)
- Maral Tajerian
- Alan Edwards Centre for Research on Pain, McGill University, 740 Dr, Penfield Avenue, Montreal, Quebec, H3A 1A4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Affiliation(s)
- Diane E. Handy
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Rita Castro
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Metabolism & Genetics Group, Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Portugal
| | - Joseph Loscalzo
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
14
|
Abstract
The study of CpG methylation of genomic DNA in neurons has emerged from the shadow of cancer biology into a fundamental investigation of neuronal physiology. This advance began with the discovery that catalytic and receptor proteins related to the insertion and recognition of this chemical mark are robustly expressed in neurons. At the smallest scale of analysis is the methylation of a single cytosine base within a regulatory cognate sequence. This singular alteration in a nucleotide can profoundly modify transcription factor binding with a consequent effect on the primary 'transcript'. At the single promoter level, the methylation-demethylation of CpG islands and associated alterations in local chromatin assemblies creates a type of cellular 'memory' capable of long-term regulation of transcription particularly in stages of brain development, differentiation, and maturation. Finally, at the genome-wide scale, methylation studies from post-mortem brains suggest that CpG methylation may serve to cap the genome into active and inactive territories introducing a 'masking' function. This may facilitate rapid DNA-protein interactions by ambient transcriptional proteins onto actively networked gene promoters. Beyond this broad portrayal, there are vast gaps in our understanding of the pathway between neuronal activity and CpG methylation. These include the regulation in post-mitotic neurons of the executor proteins, such as the DNA methyltransferases, the elusive and putative demethylases, and the interactions with histone modifying enzymes.
Collapse
|
15
|
Burdge GC, Lillycrop KA, Jackson AA. Nutrition in early life, and risk of cancer and metabolic disease: alternative endings in an epigenetic tale? Br J Nutr 2009; 101:619-30. [PMID: 19079817 PMCID: PMC2649281 DOI: 10.1017/s0007114508145883] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
There is substantial evidence which shows that constraints in the early life environment are an important determinant of risk of metabolic disease and CVD. There is emerging evidence that higher birth weight, which reflects a more abundant prenatal environment, is associated with increased risk of cancer, in particular breast cancer and childhood leukaemia. Using specific examples from epidemiology and experimental studies, this review discusses the hypothesis that increased susceptibility to CVD, metabolic disease and cancer have a common origin in developmental changes induced in the developing fetus by aspects of the intra-uterine environment including nutrition which involve stable changes to the epigenetic regulation of specific genes. However, the induction of specific disease risk is dependent upon the nature of the environmental challenge and interactions between the susceptibility set by the altered epigenome and the environment throughout the life course.
Collapse
Affiliation(s)
- Graham C Burdge
- Institute of Human Nutrition, Southampton General Hospital, Tremona Road, Southampton, UK.
| | | | | |
Collapse
|
16
|
Abstract
Within the human genome there are hundreds of copies of the rRNA gene, but only a fraction of these genes are active. Silencing through epigenetics has been extensively studied; however, it is essential to understand how active rRNA genes are maintained. Here, we propose a role for the methyl-CpG binding domain protein MBD3 in epigenetically maintaining active rRNA promoters. We show that MBD3 is localized to the nucleolus, colocalizes with upstream binding factor, and binds to unmethylated rRNA promoters. Knockdown of MBD3 by small interfering RNA results in increased methylation of the rRNA promoter coupled with a decrease in RNA polymerase I binding and pre-rRNA transcription. Conversely, overexpression of MBD3 results in decreased methylation of the rRNA promoter. Additionally, overexpression of MBD3 induces demethylation of nonreplicating plasmids containing the rRNA promoter. We demonstrate that this demethylation occurs following the overexpression of MBD3 and its increased interaction with the methylated rRNA promoter. This is the first demonstration that MBD3 is involved in inducing and maintaining the demethylated state of a specific promoter.
Collapse
Affiliation(s)
- Shelley E Brown
- Department of Pharmacology and Therapeutics, McGill University, 3655 Sir William Osler Promenade, Montréal, Québec H3G 1Y6, Canada
| | | |
Collapse
|
17
|
Numachi Y, Shen H, Yoshida S, Fujiyama K, Toda S, Matsuoka H, Sora I, Sato M. Methamphetamine alters expression of DNA methyltransferase 1 mRNA in rat brain. Neurosci Lett 2007; 414:213-7. [PMID: 17254711 DOI: 10.1016/j.neulet.2006.12.052] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 12/06/2006] [Accepted: 12/14/2006] [Indexed: 11/20/2022]
Abstract
Methamphetamine, a potent and indirect dopaminergic agonist, also increases glucocorticoid hormone secretion. Glucocorticoid hormones facilitate behavioral effects of methamphetamine in rodents. Several reports suggest that glucocorticoid hormones modulate expression of DNA (cytosine-5-)-methyltransferase 1 (Dnmt1). Dnmt1 was originally recognized as being involved in DNA replication, but a recent study found high levels of Dnmt1 in rodent brains, suggesting a neuron-specific unknown function of Dnmt1. In the present study, we found subchronic methamphetamine treatment (4 mg/kg, i.p., once daily for 21 days) to induce different patterns of Dnmt1 mRNA expression in the nucleus caudatus and nucleus accumbens of two inbred rat strains, Fischer 344/N (increased Dnmt1) and Lewis/N (decreased Dnmt1). These patterns paralleled methamphetamine-induced striatal glucocorticoid receptor mRNA in these two rat strains in our previous study. Because Fischer rats have a hyperresponsive negative feedback in their hypothalamic-pituitary-adrenocortical (HPA) axis and thus a shorter duration corticosterone response to subchronic methamphetamine treatment, they were resistant to sensitizing effects of methamphetamine and their glucocorticoid receptor mRNA levels were upregulated. Lewis rats which have a hyporesponsive feedback in their HPA axis and a longer duration of corticosterone secretion with subchronic methamphetamine were prone to methamphetamine sensitization and their striatal glucocorticoid receptor mRNA levels were downregulated. Our present data suggest that methamphetamine results in differential DNA methylation as well as gene expression in the nucleus caudatus and nucleus accumbens of F344 and Lewis rats. Methamphetamine-induced differences in gene expression might be related to the contrasting susceptibilities of these rats to behavioral and neurochemical effects of methamphetamine.
Collapse
Affiliation(s)
- Yohtaro Numachi
- Clinical Research Institute, National Hospital Organization Hanamaki Hospital, Hanamaki, and Department of Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Torrisani J, Unterberger A, Tendulkar SR, Shikimi K, Szyf M. AUF1 cell cycle variations define genomic DNA methylation by regulation of DNMT1 mRNA stability. Mol Cell Biol 2007; 27:395-410. [PMID: 17030625 PMCID: PMC1800664 DOI: 10.1128/mcb.01236-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 07/28/2006] [Accepted: 09/22/2006] [Indexed: 01/26/2023] Open
Abstract
DNA methylation is a major determinant of epigenetic inheritance. DNA methyltransferase 1 (DNMT1) is the enzyme responsible for the maintenance of DNA methylation patterns during cell division, and deregulated expression of DNMT1 leads to cellular transformation. We show herein that AU-rich element/poly(U)-binding/degradation factor 1 (AUF1)/heterogeneous nuclear ribonucleoprotein D interacts with an AU-rich conserved element in the 3' untranslated region of the DNMT1 mRNA and targets it for destabilization by the exosome. AUF1 protein levels are regulated by the cell cycle by the proteasome, resulting in cell cycle-specific destabilization of DNMT1 mRNA. AUF1 knock down leads to increased DNMT1 expression and modifications of cell cycle kinetics, increased DNA methyltransferase activity, and genome hypermethylation. Concurrent AUF1 and DNMT1 knock down abolishes this effect, suggesting that the effects of AUF1 knock down on the cell cycle are mediated at least in part by DNMT1. In this study, we demonstrate a link between AUF1, the RNA degradation machinery, and maintenance of the epigenetic integrity of the cell.
Collapse
Affiliation(s)
- Jerome Torrisani
- Department of Pharmacology and Therapeutics, McGill University, 3655 Sir William Osler Promenade, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | | | |
Collapse
|
19
|
Benderdour M, Charron G, Comte B, Ayoub R, Beaudry D, Foisy S, Deblois D, Des Rosiers C. Decreased cardiac mitochondrial NADP+-isocitrate dehydrogenase activity and expression: a marker of oxidative stress in hypertrophy development. Am J Physiol Heart Circ Physiol 2004; 287:H2122-31. [PMID: 15271667 DOI: 10.1152/ajpheart.00378.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mitochondrial dysfunction subsequent to increased oxidative stress and alterations in energy metabolism is considered to play a role in the development of cardiac hypertrophy and its progression to failure, although the sequence of events remains to be elucidated. This study aimed at characterizing the impact of hypertrophy development on the activity and expression of mitochondrial NADP+-isocitrate dehydrogenase (mNADP+-ICDH), a metabolic enzyme that controls redox and energy status. We expanded on our previous finding of its inactivation through posttranslational modification by the lipid peroxidation product 4-hydroxynonenal (HNE) in 7-wk-old spontaneously hypertensive rat (SHR) hearts before hypertrophy development (Benderdour et al. J Biol Chem 278: 45154-45159, 2003). In this study, we used 7-, 15-, and 30-wk-old SHR and Sprague-Dawley (SD) rats with abdominal aortic coarctation. Compared with age-matched control Wistar-Kyoto (WKY) rats, SHR hearts showed a significant 25% decrease of mNADP+-ICDH activity, which preceded in time 1) the decline in its protein and mRNA expression levels (between 10% and 35%) and 2) the increase in hypertrophy markers. The chronic and persistent loss of mNADP+-ICDH activity in SHR was associated with enhanced tissue accumulation of HNE-mNADP+-ICDH and total HNE-protein adducts at all ages and contrasted with the profile of changes in the activity of other mitochondrial enzymes involved in antioxidant or energy metabolism. Two-way ANOVA of the data also revealed a significant effect of age on most parameters measured in SHR and WKY hearts. The mNADP+-ICDH activity, protein, and mRNA expression were reduced between 25% and 35% in coarctated SD rats and were normalized by treatment of SHR or coarctated SD rats with renin-angiotensin system inhibitors, which prevented or attenuated hypertrophy. Altogether, our data show that cardiac mNADP+-ICDH activity and expression are differentially and sequentially affected in hypertrophy development and, to a lesser extent, with aging. Decreased cardiac mNADP+-ICDH activity, which is attributed at least in part to HNE adduct formation, appears to be a relevant early and persistent marker of mitochondrial oxidative stress-related alterations in hypertrophy development. Potentially, this could also contribute to the aetiology of cardiomyopathy.
Collapse
Affiliation(s)
- Mohamed Benderdour
- Department of Nutrition, University of Montreal, Montreal, Quebec, Canada H1T 1C8
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
DNA methylation is a common epigenetic modification found in eukaryotic organisms ranging from fungi to mammals. Over the past 15 years, a number of eukaryotic DNA methyltransferases have been identified from various model organisms. These enzymes exhibit distinct biochemical properties and biological functions, partly due to their structural differences. The highly variable N-terminal extensions of these enzymes harbor various evolutionarily conserved domains and motifs, some of which have been shown to be involved in functional specializations. DNA methylation has divergent functions in different organisms, consistent with the notion that it is a dynamically evolving mechanism that can be adapted to fulfill various functions. Genetic studies using model organisms have provided evidence suggesting the progressive integration of DNA methylation into eukaryotic developmental programs during evolution.
Collapse
Affiliation(s)
- Taiping Chen
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | |
Collapse
|
21
|
Detich N, Bovenzi V, Szyf M. Valproate induces replication-independent active DNA demethylation. J Biol Chem 2003; 278:27586-92. [PMID: 12748177 DOI: 10.1074/jbc.m303740200] [Citation(s) in RCA: 251] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this report, we demonstrate that valproic acid (VPA), a drug that has been used for decades in the treatment of epilepsy and as a mood stabilizer, triggers replication-independent active demethylation of DNA. Thus, this drug can potentially reverse DNA methylation patterns and erase stable methylation imprints on DNA in non-dividing cells. Recent discoveries support a role for VPA in the regulation of methylated genes; however, the mechanism has been unclear because it is difficult to dissociate active demethylation from the absence of DNA methylation during DNA synthesis. We therefore took advantage of an assay that measures active DNA demethylation independently from other DNA methylation and DNA replication activities in human embryonal kidney 293 cells. We show that VPA induces histone acetylation, DNA demethylation, and expression of an ectopically methylated CMV-GFP plasmid in a dose-dependent manner. In contrast, valpromide, an analogue of VPA that does not induce histone acetylation, does not induce demethylation or expression of CMV-GFP. Furthermore, we illustrate that methylated DNA-binding protein 2/DNA demethylase (MBD2/dMTase) participates in this reaction since antisense knockdown of MBD2/dMTase attenuates VPA-induced demethylation. Taken together, our data support a new mechanism of action for VPA as enhancing intracellular demethylase activity through its effects on histone acetylation and raises the possibility that DNA methylation is reversible independent of DNA replication by commonly prescribed drugs.
Collapse
Affiliation(s)
- Nancy Detich
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6 Canada
| | | | | |
Collapse
|
22
|
Detich N, Hamm S, Just G, Knox JD, Szyf M. The methyl donor S-Adenosylmethionine inhibits active demethylation of DNA: a candidate novel mechanism for the pharmacological effects of S-Adenosylmethionine. J Biol Chem 2003; 278:20812-20. [PMID: 12676953 DOI: 10.1074/jbc.m211813200] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
S-Adenosylmethionine (AdoMet) is the methyl donor of numerous methylation reactions. The current model is that an increased concentration of AdoMet stimulates DNA methyltransferase reactions, triggering hypermethylation and protecting the genome against global hypomethylation, a hallmark of cancer. Using an assay of active demethylation in HEK 293 cells, we show that AdoMet inhibits active demethylation and expression of an ectopically methylated CMV-GFP (green fluorescent protein) plasmid in a dose-dependent manner. The inhibition of GFP expression is specific to methylated GFP; AdoMet does not inhibit an identical but unmethylated CMV-GFP plasmid. S-Adenosylhomocysteine (AdoHcy), the product of methyltransferase reactions utilizing AdoMet does not inhibit demethylation or expression of CMV-GFP. In vitro, AdoMet but not AdoHcy inhibits methylated DNA-binding protein 2/DNA demethylase as well as endogenous demethylase activity extracted from HEK 293, suggesting that AdoMet directly inhibits demethylase activity, and that the methyl residue on AdoMet is required for its interaction with demethylase. Taken together, our data support an alternative mechanism of action for AdoMet as an inhibitor of intracellular demethylase activity, which results in hypermethylation of DNA.
Collapse
Affiliation(s)
- Nancy Detich
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1YG, Canada
| | | | | | | | | |
Collapse
|
23
|
Detich N, Theberge J, Szyf M. Promoter-specific activation and demethylation by MBD2/demethylase. J Biol Chem 2002; 277:35791-4. [PMID: 12177048 DOI: 10.1074/jbc.c200408200] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MBD2 is the only member of a family of methyl-CpG-binding proteins that has been reported to be both a transcriptional repressor and a DNA demethylase (dMTase). To understand the apparently contradictory function of MBD2/dMTase, we studied the effects of dMTase overexpression on the activity of various in vitro methylated promoters transiently transfected into HEK293 cells. We found that forced expression of a MBD2/dMTase expression vector (His-dMTase) differentially activated two methylated reporters, pSV40-CAT (the SV40 enhancerless promoter adjacent to the chloramphenicol acetyltransferase (CAT) reporter gene) and pGL2T+I4xTBRE (a region of the p21 promoter next to the luciferase reporter gene), in a time- and dose-dependent manner. His-dMTase increased pSV40-CAT expression by 3-10-fold after 96 h, while pGL2T+I4xTBRE expression was increased by 2-3-fold after only 48 h and did not further increase at 96 h. Gene activation was not universal because no effect was seen with the p19-ARF promoter. We then assessed whether activation might be due to demethylation within the promoter region. Using bisulfite mapping, we found that exogenous expression of His-dMTase induced demethylation at 8 of the 10 CpG sites within the SV40 promoter. The observation that His-dMTase increases the demethylase activity in the cells was also confirmed using an in vitro CpG demethylase assay with a mC32pG oligonucleotide substrate and purified Q-Sepharose fractions from HEK293 cells transfected with His-dMTase or empty pcDNA3.1His vector. We propose that a single protein possessing both repressor and demethylase functions has evolved to coordinate a program that requires suppression of some methylated genes and activation of others.
Collapse
Affiliation(s)
- Nancy Detich
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | |
Collapse
|
24
|
Cervoni N, Detich N, Seo SB, Chakravarti D, Szyf M. The oncoprotein Set/TAF-1beta, an inhibitor of histone acetyltransferase, inhibits active demethylation of DNA, integrating DNA methylation and transcriptional silencing. J Biol Chem 2002; 277:25026-31. [PMID: 11978794 DOI: 10.1074/jbc.m202256200] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone hypoacetylation and DNA hypermethylation are hallmarks of gene silencing. Although a role for DNA methylation in regulating histone acetylation has been established, it is not clear how and whether epigenetic histone markings influence DNA modifications in transcriptional silencing. We have previously shown that induction of histone acetylation by trichostatin A promotes demethylation of ectopically methylated DNA (Cervoni, N., and Szyf, M. (2001) J. Biol. Chem. 276, 40778-40787). The oncoprotein Set/TAF-Ibeta is a subunit of the recently identified inhibitor of acetyltransferases complex that inhibits histone acetylation by binding to and masking histone acetyltransferase targets (Seo, S. B., McNamara, P., Heo, S., Turner, A., Lane, W. S., and Chakravarti, D. (2001) Cell 104, 119-130). We show here that the overexpression of Set/TAF-Ibeta, whose expression is up-regulated in multiple tumor tissues, inhibits demethylation of ectopically methylated DNA resulting in gene silencing. Overexpression of a mutant Set/TAF-Ibeta that does not inhibit histone acetylation is defective in inhibiting DNA demethylation. Taken together, these results are consistent with a novel regulatory role for Set/TAF-Ibeta, integrating epigenetic states of histones and DNA in gene regulation and provide a new mechanism that can explain how hypermethylation of specific regions might come about by inhibition of demethylation in cancer cells.
Collapse
Affiliation(s)
- Nadia Cervoni
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | | | |
Collapse
|
25
|
Szyf M. Utilization of antisense oligonucleotides to study the role of 5-cytosine DNA methyltransferase in cellular transformation and oncogenesis. Methods 2002; 27:184-91. [PMID: 12095279 DOI: 10.1016/s1046-2023(02)00073-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A large body of data point toward 5-cytosine DNA methyltransferase 1 (DNMT1) as a critical component of oncogenic programs. The study of the role of DNMT1 in cancer has been hindered by the lack of specific inhibitors. A different approach to study the role of DNMT1 in cancer is to use sequence-specific antisense oligonucleotides against DNMT1 mRNA. This paper discusses methods used to identify sequence-specific antisense oligonucleotides and to assess their DNA methylation inhibitory properties. Antisense oligonucleotides are applied to determine whether DNMT1 plays a causal role in specific cancer models ex vivo as well as in vivo.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, 3655 Sir William Osler Promenade, Montreal, PQ H3G 1Y6, Canada.
| |
Collapse
|
26
|
Abstract
Mammalian genomes are compartmentalized into dense inactive chromatin that is hypermethylated and active open chromatin that is hypomethylated. It is generally accepted that this bimodal pattern of methylation is established during development and is then faithfully inherited through subsequent cell divisions by a maintenance DNA methyltransferase (DNMT1). The pattern of methylation is believed to direct local histone acetylation states. In contrast to this well accepted consensus, we show here using a transient transfection model that an active demethylase is involved in shaping patterns of methylation in somatic cells. Demethylase activity is directed by the state of histone acetylation, and therefore, the resulting methylation pattern is determined by local histone acetylation states contrary to the accepted model. Our data support a new model suggesting that the pattern of methylation is maintained by a dynamic balance of methylation and demethylation activities and the local state of histone acetylation. This provides a simple mechanism for explaining why active genes are not methylated.
Collapse
Affiliation(s)
- N Cervoni
- Department of Pharmacology and Therapeutics, McGill University, Montreal, PQ H3G 1Y6, Canada
| | | |
Collapse
|
27
|
Szyf M, Detich N. Regulation of the DNA methylation machinery and its role in cellular transformation. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 69:47-79. [PMID: 11550798 DOI: 10.1016/s0079-6603(01)69044-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNA methylation, a covalent modification of the genome, is emerging as an important player in the regulation of gene expression. This review discusses the different components of the DNA methylation machinery responsible for replicating the DNA methylation pattern. Recent data have changed our basic understanding of the DNA methylation machinery. A number of DNA methyltransferases (DNMT) have been identified and a demethylase has recently been reported. Because the DNA methylation pattern is critical for gene expression programs, the cell possesses a number of mechanisms to coordinate DNA replication and methylation. DNMT1 levels are regulated with the cell cycle and are induced upon entry into the S phase of the cell cycle. DNMT1 also regulates expression of cell-cycle proteins by its other regulatory functions and not through its DNA methylation activity. Once the mechanisms that coordinate DNMT1 and the cell cycle are disrupted, DNMT1 exerts an oncogenic activity. Tumor suppressor genes are frequently methylated in cancer but the mechanisms responsible are unclear. Overexpression of DNMT1 is probably not responsible for the aberrant methylation of tumor suppressor genes. Unraveling how the different components of the DNA methylation machinery interact to replicate the DNA methylation pattern, and how they are disrupted in cancer, is critical for understanding the molecular mechanisms of cancer.
Collapse
Affiliation(s)
- M Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|
28
|
Abstract
The field of epigenetics has recently moved to the forefront of studies relating to diverse processes such as transcriptional regulation, chromatin structure, genome integrity, and tumorigenesis. Recent work has revealed how DNA methylation and chromatin structure are linked at the molecular level and how methylation anomalies play a direct causal role in tumorigenesis and genetic disease. Much new information has also come to light regarding the cellular methylation machinery, known as the DNA methyltransferases, in terms of their roles in mammalian development and the types of proteins they are known to interact with. This information has forced a new view for the role of DNA methyltransferases. Rather than enzymes that act in isolation to copy methylation patterns after replication, the types of interactions discovered thus far indicate that DNA methyltransferases may be components of larger complexes actively involved in transcriptional control and chromatin structure modulation. These new findings will likely enhance our understanding of the myriad roles of DNA methylation in disease as well as point the way to novel therapies to prevent or repair these defects.
Collapse
Affiliation(s)
- K D Robertson
- Epigenetic Gene Regulation and Cancer Section, National Cancer Institute, NIH, Bldg. 41, 41 Library Dr., Bethesda, Maryland, MD 20892, USA
| |
Collapse
|
29
|
Slack A, Pinard M, Araujo FD, Szyf M. A novel regulatory element in the dnmt1 gene that responds to co-activation by Rb and c-Jun. Gene 2001; 268:87-96. [PMID: 11368904 DOI: 10.1016/s0378-1119(01)00427-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Rb, c-Jun and dnmt1 play critical roles in the process of cellular differentiation. We demonstrate that a regulatory region of murine dnmt1 contains an element which is responsible for transactivation by Rb and c-Jun in P19 embryocarcinoma cells which is not observed in Y1 adrenocarcinoma cells. During differentiation of P19 cells, the induction of Rb and c-Jun coincides with an increase of dnmt1 mRNA. Using linker scanning mutagenesis we identify the element that is responsible for this activation to be a non-canonical AP-1 site. Our data is an example of how a proto-oncogene activates its downstream effectors by recruiting a tumor suppressor. This interaction of Rb and a proto-oncogene might play an important role in differentiation. The responsiveness of dnmt1 to this type of signal is consistent with an important role for regulated expression of dnmt1 during cellular differentiation.
Collapse
Affiliation(s)
- A Slack
- Department of Pharmacology and Therapeutics, McGill University, 3655 Drummond Street, Montreal, Canada
| | | | | | | |
Collapse
|
30
|
Milutinovic S, Knox JD, Szyf M. DNA methyltransferase inhibition induces the transcription of the tumor suppressor p21(WAF1/CIP1/sdi1). J Biol Chem 2000; 275:6353-9. [PMID: 10692435 DOI: 10.1074/jbc.275.9.6353] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Previous lines of evidence have shown that inhibition of DNA methyltransferase (MeTase) can arrest tumor cell growth; however, the mechanisms involved were not clear. In this manuscript we show that out of 16 known tumor suppressors and cell cycle regulators, the cyclin-dependent kinase inhibitor p21 is the only tumor suppressor induced in the human lung cancer cell line, A549, following inhibition of DNA MeTase by a novel DNA MeTase antagonist or antisense oligonucleotides. The rapid induction of p21 expression points to a mechanism that does not involve demethylation of p21 promoter. Consistent with this hypothesis, we show that part of the CpG island upstream of the endogenous p21 gene is unmethylated and that the expression of unmethylated p21 promoter luciferase reporter constructs is induced following inhibition of DNA MeTase. These results are consistent with the hypothesis that the level of DNA MeTase in a cell can control the expression of a nodal tumor suppressor by a mechanism that does not involve DNA methylation.
Collapse
Affiliation(s)
- S Milutinovic
- Department of Pharmacology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | |
Collapse
|
31
|
Lin MJ, Lee TL, Hsu DW, Shen CK. One-codon alternative splicing of the CpG MTase Dnmt1 transcript in mouse somatic cells. FEBS Lett 2000; 469:101-4. [PMID: 10708765 DOI: 10.1016/s0014-5793(00)01254-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The genomic methylation patterns in the mammalian somatic cells are presumably maintained by a single enzyme, dnmt1. In mouse, this DNA (cytosine-5)-methyltransferase, or CpG MTase, is encoded by the Dnmt1 gene. We now present evidence that in different tissues and cell types, the primary transcript of mouse dnmt1 is alternatively spliced to generate two poly-(A) RNAs of approximately similar abundance. This alternative splicing most likely originates from the existence of two tandemly arranged acceptor sites separated by only 3 nt. The two Dnmt1 mRNAs thus encode two CpG MTases differing by two amino acids. We discuss the implications of the discovery of two dnmt1 isozymes, instead of one enzyme as previously thought, in the somatic cells of both mouse and human.
Collapse
Affiliation(s)
- M J Lin
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | | | | | | |
Collapse
|
32
|
Bigey P, Ramchandani S, Theberge J, Araujo FD, Szyf M. Transcriptional regulation of the human DNA Methyltransferase (dnmt1) gene. Gene 2000; 242:407-18. [PMID: 10721735 DOI: 10.1016/s0378-1119(99)00501-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA methylation is an important component of the epigenetic control of genome functions. Understanding the regulation of the DNA Methyltransferase (dnmt1) gene expression is critical for comprehending how DNA methylation is coordinated with other critical biological processes. In this paper, we investigate the transcriptional regulatory region of the human dnmt1 gene using a combination of RACE, RNase protection analysis and CAT assays. We identified one major and three minor transcription initiation sites in vivo (P1-P4), which are regulated by independent enhancers and promoter sequences. The minimal promoter elements of P1, P2 and P4 are mapped within 256 bp upstream of their respective transcription initiation sites. P1 is nested within a CG-rich area, similar to other housekeeping genes, whereas P2-P4 are found in CG-poor areas. Three c-Jun-dependent enhancers are located downstream to P1 and upstream to P2-P4, thus providing a molecular explanation for the responsiveness of dnmt1 to oncogenic signals that are mediated by the Ras-c-Jun oncogenic signaling pathway.
Collapse
Affiliation(s)
- P Bigey
- Department of Pharmacology and Therapeutics, McGill University, Montreal, PQ, Canada
| | | | | | | | | |
Collapse
|
33
|
Hmadcha A, Bedoya FJ, Sobrino F, Pintado E. Methylation-dependent gene silencing induced by interleukin 1beta via nitric oxide production. J Exp Med 1999; 190:1595-604. [PMID: 10587350 PMCID: PMC2195731 DOI: 10.1084/jem.190.11.1595] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Interleukin (IL)-1beta is a pleiotropic cytokine implicated in a variety of activities, including damage of insulin-producing cells, brain injury, or neuromodulatory responses. Many of these effects are mediated by nitric oxide (NO) produced by the induction of NO synthase (iNOS) expression. We report here that IL-1beta provokes a marked repression of genes, such as fragile X mental retardation 1 (FMR1) and hypoxanthine phosphoribosyltransferase (HPRT), having a CpG island in their promoter region. This effect can be fully prevented by iNOS inhibitors and is dependent on DNA methylation. NO donors also cause FMR1 and HPRT gene silencing. NO-induced methylation of FMR1 CpG island can be reverted by demethylating agents which, in turn, produce the recovery of gene expression. The effects of IL-1beta and NO appear to be exerted through activation of DNA methyltransferase (DNA MeTase). Although exposure of the cells to NO does not increase DNA MeTase gene expression, the activity of the enzyme selectively increases when NO is applied directly on a nuclear protein extract. These findings reveal a previously unknown effect of IL-1beta and NO on gene expression, and demonstrate a novel pathway for gene silencing based on activation of DNA MeTase by NO and acute modification of CpG island methylation.
Collapse
Affiliation(s)
- Abdelkrim Hmadcha
- Departamento de Bioquímica Médica y Biología Molecular, Facultad de Medicina y Hospital Universitario Virgen Macarena, Universidad de Sevilla, 41009 Sevilla, Spain
| | - Francisco J. Bedoya
- Departamento de Bioquímica Médica y Biología Molecular, Facultad de Medicina y Hospital Universitario Virgen Macarena, Universidad de Sevilla, 41009 Sevilla, Spain
| | - Francisco Sobrino
- Departamento de Bioquímica Médica y Biología Molecular, Facultad de Medicina y Hospital Universitario Virgen Macarena, Universidad de Sevilla, 41009 Sevilla, Spain
| | - Elizabeth Pintado
- Departamento de Bioquímica Médica y Biología Molecular, Facultad de Medicina y Hospital Universitario Virgen Macarena, Universidad de Sevilla, 41009 Sevilla, Spain
| |
Collapse
|
34
|
Slack A, Cervoni N, Pinard M, Szyf M. Feedback regulation of DNA methyltransferase gene expression by methylation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:191-9. [PMID: 10447688 DOI: 10.1046/j.1432-1327.1999.00603.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This paper tests the hypothesis that expression of the DNA methyltransferase, dnmt1, gene is regulated by a methylation-sensitive DNA element. Methylation of DNA is an attractive system for feedback regulation of DNA methyltransferase as the final product of the reaction, methylated DNA, can regulate gene expression in cis. We show that an AP-1-dependent regulatory element of dnmt1 is heavily methylated in most somatic tissues and in the mouse embryonal cell line, P19, and completely unmethylated in a mouse adrenal carcinoma cell line, Y1. dnmt1 is highly over expressed in Y1 relative to P19 cell lines. Global inhibition of DNA methylation in P19 cells by 5-azadeoxycytidine results in demethylation of the AP-1 regulatory region and induction of dnmt1 expression in P19cells, but not Y1 cells. We propose that this regulatory region of dnmt1 acts as a sensor of the DNA methylation capacity of the cell. These results provide an explanation for the documented coexistence of global hypomethylation and high levels of DNA methyltransferase activity in many cancer cells and for the carcinogenic effect of hypomethylating diets.
Collapse
Affiliation(s)
- A Slack
- Department of Pharmacology, McGill University, Montreal, PQ, Canada
| | | | | | | |
Collapse
|
35
|
Deng J, Szyf M. Downregulation of DNA (cytosine-5-)methyltransferase is a late event in NGF-induced PC12 cell differentiation. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 71:23-31. [PMID: 10407183 DOI: 10.1016/s0169-328x(99)00147-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
DNA methylation patterns are a critical component of the epigenetic machinery that controls the expression of genetic programs in vertebrates. DNA methyltransferase gene (dnmt1) encodes the enzyme catalyzing the methylation of DNA during replication. We tested the hypothesis that the expression of dnmt1 is regulated with the developmental state of neuronal cells. We show that DNA methyltransferase (Dnmt1) activity is sharply reduced 4 days after induction of differentiation of PC12 cells with NGF. Similarly, the adult brain expresses reduced levels of Dnmt1 activity. We propose that the level of Dnmt1 is downregulated to adjust the activity of the DNA methyltransferase to a different role in mature post-mitotic neurons. Both the abundance of dnmt1 mRNA as well as the Dnmt1 polypeptide are downregulated. Downregulation of dnmt1 parallels other indicators of withdrawal from the cell cycle such as induction of p21, and downregulation of the S phase maker PCNA (proliferating cell nuclear antigen). The temporal pattern of downregulation of dnmt1 in nerve growth factor (NGF)-induced PC12 cells is different from myotube differentiation where downregulation of DNA methyltransferase and demethylation is an early event and was proposed to play a causal role in differentiation. We propose that NGF differentiation of PC12 cells represents a different paradigm of involvement of DNA methylation in terminal differentiation.
Collapse
Affiliation(s)
- J Deng
- Department of Pharmacology and Therapeutics, McGill University, 3655 Drummond Street, Montreal, PQ, Canada
| | | |
Collapse
|
36
|
Brakebusch C, Sures I, Jallal B, Mossie K, Fusco O, Iacobelli S, Ullrich A. Isolation and functional characterization of the human 90K promoter. Genomics 1999; 57:268-78. [PMID: 10198166 DOI: 10.1006/geno.1999.5760] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
90K is a secreted protein thought to be involved in the body's defense against pathogens and cancer. To elucidate its transcriptional regulation, the promoter of human 90K (HGMW-approved symbol LGAL S3BP) was isolated and characterized. Analysis of the 3. 3-kb 5'-flanking region revealed that it is a TATA-less promoter, but neither GC-rich nor dependent on SP1 sites. RNase protection assays detected one major transcription start site (+1) and several minor transcription start sites upstream and downstream. Deletion studies defined a minimal promoter (-103 --> -49) and indirectly suggested positive synergism between different elements within it. Consistent with the proposed function of 90K, its promoter activity could be stimulated by poly(I). poly(C), mimicking viral infection. Two regions mediating induction by poly(I). poly(C) (-171 --> -112, -32 --> 46) were identified by deletion mutants. A small region around the minimal promoter (-99 --> -12) was highly homologous between human and mouse. While both human and mouse minimal promoters contained an interferon-responsive element (IRF-E), the human minimal promoter was not inducible by poly(I). poly(C) in contrast to that of the mouse. Point mutations 30 bp upstream of the IRF-E, however, conferred inducibility to the human minimal promoter, suggesting interaction between different promoter elements.
Collapse
Affiliation(s)
- C Brakebusch
- Department of Molecular Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18A, Martinsried, 82152, Germany.
| | | | | | | | | | | | | |
Collapse
|
37
|
Slack A, Cervoni N, Pinard M, Szyf M. DNA methyltransferase is a downstream effector of cellular transformation triggered by simian virus 40 large T antigen. J Biol Chem 1999; 274:10105-12. [PMID: 10187792 DOI: 10.1074/jbc.274.15.10105] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This paper tests the hypothesis that DNA methyltransferase plays a causal role in cellular transformation induced by SV40 T antigen. We show that T antigen expression results in elevation of DNA methyltransferase (MeTase) mRNA, DNA MeTase protein levels, and global genomic DNA methylation. A T antigen mutant that has lost the ability to bind pRb does not induce DNA MeTase. This up-regulation of DNA MeTase by T antigen occurs mainly at the posttranscriptional level by altering mRNA stability. Inhibition of DNA MeTase by antisense oligonucleotide inhibitors results in inhibition of induction of cellular transformation by T antigen as determined by a transient transfection and soft agar assay. These results suggest that elevation of DNA MeTase is an essential component of the oncogenic program induced by T antigen.
Collapse
Affiliation(s)
- A Slack
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | |
Collapse
|
38
|
Abstract
Five subtypes of the muscarinic receptor have been cloned from both the rat and human genomes. Although all five genes have the coding sequences in a single exon, their structures 5' of the initiation codon are largely uncharacterized, except for the M4 receptor. In the brain, muscarinic receptors mediate motor and memory function by interaction with their ligand acetylcholine. In addition, the M1 muscarinic subtype has been implicated in behavior, stress-adaptive cardiovascular reflexes, and blood pressure regulation. In the current study the M1 muscarinic receptor noncoding 5'-flanking region has been identified and characterized, including the promoter and two 5' noncoding exons located approximately 13-14 kb from the coding exon. Similar to the M4 muscarinic receptor gene the M1 promoter is GC-rich, contains no TATA box, but has two potential CAAT boxes and several putative binding sites for transcription factors such as SP1 and AP-1-3. The transcription initiation site was identified by RNase protection and primer extension. Promoter activity was confirmed in transient expression assays, using luciferase reporter constructs. A 0.89-kb fragment consisting of 480 bp of the promoter, exon 1, and part of intron 1 expressed luciferase activity in two M1 receptor-expressing cell lines (CCL-107 and CCL-147), whereas a longer fragment (1.5 kb) that extends into intron 2 demonstrated significantly increased luciferase activity. The constructs exhibited responses indicating the presence of functional glucocorticoid-, acute-phase-, and heat shock-responsive elements.
Collapse
Affiliation(s)
- C P Klett
- Department of Pharmacology, University of California at San Diego, La Jolla, USA
| | | |
Collapse
|
39
|
|
40
|
Koike K. Cloning, structure, chromosomal localization and promoter analysis of human 2-oxoglutarate dehydrogenase gene. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1385:373-84. [PMID: 9655939 DOI: 10.1016/s0167-4838(98)00081-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human 2-oxoglutarate dehydrogenase (OGDH) is an E1-component of the OGDH multi-enzyme complex and catalyzes both the ThDP-dependent decarboxylation of 2-oxoglutarate and the subsequent reductive succinylation of the lipoyl moiety which is covalently bound to the E2 component, dihydrolipoamide succinyltransferase. The cDNA and genomic DNA encoding human OGDH has been cloned and sequenced. The cDNA contains a 3006-bp open reading frame encoding a 40-amino acid leader peptide and a 962-amino acid mature OGDH protein (Mr=108878). The gene contains 22 exons spanning approximately 85 kb. The putative ThDP-binding sequence motif is identified in both DNAs. The gene is localized to chromosome 7 at p13-p14 by fluorescence in situ hybridization. With the TATA- and CAAT-less 5'-flanking region (wild type, -3276/+212) of the OGDH gene-luciferase reporter vector construct and its nested deletion or linker-scanning mutant constructs the transient reporter expression assays in BHK-21 cells reveal the existence of two 10-bp cis-acting elements (-53/-44 and -33/-24) and two trans-acting elements (-536/-496 and -93/-84). A nuclear factor that binds to the region from -63 to -24 including two cis-acting elements.
Collapse
Affiliation(s)
- K Koike
- Department of Pathological Biochemistry, Atomic Disease Institute, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
41
|
Flynn J, Azzam R, Reich N. DNA binding discrimination of the murine DNA cytosine-C5 methyltransferase. J Mol Biol 1998; 279:101-16. [PMID: 9636703 DOI: 10.1006/jmbi.1998.1761] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mammalian DNA cytosine-C5 methyltransferase modifies the CpG dinucleotide in the context of many different genomic sequences. A rigorous DNA binding assay was developed for the murine enzyme and used to define how sequences flanking the CpG dinucleotide affect the stability of the enzyme:DNA complex. Oligonucleotides containing a single CpG site form reversible 1:1 complexes with the enzyme that are sequence-specific. A guanine/cytosine-rich 30 base-pair sequence, a mimic of the GC-box cis-element, bound threefold more tightly than an adenine/thymine-rich sequence, a mimic of the cyclic AMP responsive element. However, the binding discrimination between hemi- and unmethylated forms of these DNA substrates was small, as we previously observed at the K(m)DNA level (Biochemistry, 35, 7308-7315 (1996)). Single-stranded substrates are bound much more weakly than double-stranded DNA forms. An in vitro screening method was used to select for CpG flanking sequence preferences of the DNA methyltransferase from a large, divergent population of DNA substrates. After five iterative rounds of increasing selective pressure, guanosine/cytosine-rich sequences were abundant and contributed to binding stabilization for at least 12 base-pairs on either side of a central CpG. Our results suggest a read-out of sequence-dependent conformational features, such as helical flexibility, minor groove dimensions and critical phosphate orientation and mobility, rather than interactions with specific bases over the course of two complete helical turns. Thus, both studies reveal a preference for guanosine/cytosine deoxynucleotides flanking the cognate CpG. The enzyme specificity for similar sequences in the genome may contribute to the in vivo functions of this vital enzyme.
Collapse
Affiliation(s)
- J Flynn
- Department of Chemistry, University of California, Santa Barbara 93106, USA
| | | | | |
Collapse
|
42
|
Abstract
We determined the genomic structure of the gene encoding human DNA methyltransferase (DNA MTase). Six overlapping human genomic DNA clones which include all of the known cDNA sequence were isolated. Analysis of these clones demonstrates that the human DNA MTase gene consists of at least 40 exons and 39 introns spanning a distance of 60 kilobases. Elucidation of the chromosomal organization of the human DNA MTase gene provides the template for future structure-function analysis of the properties of mammalian DNA MTase.
Collapse
Affiliation(s)
- S Ramchandani
- Department of Pharmacology and Therapeutics, McGill University, Montreal, PQ, Canada
| | | | | |
Collapse
|
43
|
Gherzi R, Leprini A, Siri A, Zardi L. Structure of 5' region of human tenascin-R gene and characterization of its promoter. DNA Cell Biol 1998; 17:275-82. [PMID: 9539107 DOI: 10.1089/dna.1998.17.275] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The tenascin-R (TN-R) gene encodes a multidomain extracellular matrix protein belonging to the tenascin family, previously detected only in the central nervous system. In this report, we describe the structure of the 5' region of the human TN-R gene and characterize the activity of its promoter. We cloned two previously unreported nontranslated exons (exons 1 and 2, 539 and 101 bp in length, respectively) separated by a large (> or = 40-kb) intron. The intron between exons 2 and 3 (containing the ATG codon) is 122 kb in length. Tenascin-R transcripts in fetal, adult, and neoplastic human brain contain both exons 1 and 2, as demonstrated by S1 nuclease analysis and reverse transcriptase-polymerase chain reaction. The human TN-R promoter displays relatively unusual features in terms of sequence in that it lacks any TATA box, CAAT box, GC-rich regions, or initiator element. The promoter displays its activity only in cultured cells of neural and glial origin, not in transformed epithelial cells and melanoma cells. All the elements required for the full and cell-specific activity of the promoter are contained in the 57-bp sequence closest to the transcription startpoint.
Collapse
Affiliation(s)
- R Gherzi
- Laboratory of Cell Biology, Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | | | | | | |
Collapse
|
44
|
Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res 1998. [PMID: 9338076 DOI: 10.1016/s0065-230x(08)60702-2] [Citation(s) in RCA: 1210] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neoplastic cells simultaneously harbor widespread genomic hypomethylation, more regional areas of hypermethylation, and increased DNA-methyltransferase (DNA-MTase) activity. Each component of this "methylation imbalance" may fundamentally contribute to tumor progression. The precise role of the hypomethylation is unclear, but this change may well be involved in the widespread chromosomal alterations in tumor cells. A main target of the regional hypermethylation are normally unmethylated CpG islands located in gene promoter regions. This hypermethylation correlates with transcriptional repression that can serve as an alternative to coding region mutations for inactivation of tumor suppressor genes, including p16, p15, VHL, and E-cad. Each gene can be partially reactivated by demethylation, and the selective advantage for loss of gene function is identical to that seen for loss by classic mutations. How abnormal methylation, in general, and hypermethylation, in particular, evolve during tumorigenesis are just beginning to be defined. Normally, unmethylated CpG islands appear protected from dense methylation affecting immediate flanking regions. In neoplastic cells, this protection is lost, possibly by chronic exposure to increased DNA-MTase activity and/or disruption of local protective mechanisms. Hypermethylation of some genes appears to occur only after onset of neoplastic evolution, whereas others, including the estrogen receptor, become hypermethylated in normal cells during aging. This latter change may predispose to neoplasia because tumors frequently are hypermethylated for these same genes. A model is proposed wherein tumor progression results from episodic clonal expansion of heterogeneous cell populations driven by continuous interaction between these methylation abnormalities and classic genetic changes.
Collapse
Affiliation(s)
- S B Baylin
- Johns Hopkins Comprehensive Cancer Center, Baltimore, Maryland, USA
| | | | | | | | | |
Collapse
|
45
|
Glickman JF, Pavlovich JG, Reich NO. Peptide mapping of the murine DNA methyltransferase reveals a major phosphorylation site and the start of translation. J Biol Chem 1997; 272:17851-7. [PMID: 9211941 DOI: 10.1074/jbc.272.28.17851] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The murine DNA methyltransferase catalyzes the transfer of methyl groups from S-adenosylmethionine to cytosines within d(CpG) dinucleotides. The enzyme is necessary for normal embryonic development and is implicated in a number of important processes, including the control of gene expression and cancer. Metabolic labeling and high pressure liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) were performed on DNA methyltransferase purified from murine erythroleukemia cells. Serine 514 was identified as a major phosphorylation site that lies in a domain required for targeting of the enzyme to the replication foci. These results present a potential mechanism for the regulation of DNA methylation. HPLC-ESI-MS peptide mapping data demonstrated that the purified murine DNA methyltransferase protein contains the N-terminal regions predicted by the recently revised 5' gene sequences (Yoder, J. A., Yen, R.-W. C., Vertino, P. M., Bestor, T. H. , and Baylin, S. B. (1996) J. Biol. Chem. 271, 31092-31097). The evidence suggests a start of translation at the first predicted methionine, with no alternate translational start sites. Our peptide mapping results provide a more detailed structural characterization of the DNA methyltransferase that will facilitate future structure/function studies.
Collapse
Affiliation(s)
- J F Glickman
- Program in Biochemistry and Molecular Biology and Department of Chemistry, University of California, Santa Barbara, California 93106, USA
| | | | | |
Collapse
|
46
|
Koike K, Matsuo S. Functional characterization of the 5'-flanking region of the gene encoding human 2-oxoglutarate dehydrogenase. Gene 1997; 186:45-53. [PMID: 9047343 DOI: 10.1016/s0378-1119(96)00677-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The 5'-flanking region of the gene (OGDH) encoding human 2-oxoglutarate dehydrogenase (OGDH) does not contain TATA or CAAT boxes, but contains an inverted GC box. To identify a functional OGDH promoter, systematic transient expression analysis of the 5'-flanking region (wild type, -3276/+212) of the OGDH was performed using serially nested deletions and linker-scanning mutations. The OGDH (wild type)-luciferase (LUC) reporter vector (pGV-E) construct and its deletion or linker-mutant constructs were transfected into BHK-21 cells and LUC activity was assessed. The OGDH-LUC construct expressed reproducibly >12-fold more LUC activity than did a control pGV-E vector. The promoter activity was up-regulated by treatment with 2-oxoglutarate and 2-oxoglutarate/glutamate. Deletions of sequences between nt -563 and -62 (M6 and M7) resulted in a 2-fold increase in LUC activity. Further deletion of the sequence between nt -61 and +212 (M8-M10) abolished LUC activity. High resolution mutagenesis within the -113 to -14 region indicated that the -53 to -44 and -33 to -24 sequences were required for positive regulation and the -93 to -84 sequence for negative regulation. We have identified a nuclear factor that binds to nt -63 to -24 including two cis-acting sites.
Collapse
Affiliation(s)
- K Koike
- Department of Pathological Biochemistry, Atomic Disease Institute, Nagasaki University School of Medicine, Sakamoto, Japan
| | | |
Collapse
|
47
|
Brakebusch C, Jallal B, Fusco O, Iacobelli S, Ullrich A. Expression of the 90K immunostimulator gene is controlled by a promoter with unique features. J Biol Chem 1997; 272:3674-82. [PMID: 9013622 DOI: 10.1074/jbc.272.6.3674] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
90K is a secreted glycoprotein with tumor suppressive functions, which is up-regulated in various types of cancer and in AIDS. In order to understand the regulation of its expression, the mouse 90K gene was isolated and analyzed. The gene spans about 8.8-kilobase pairs and consists of 6 exons and was localized on chromosome 11, region E. RNase protection identified one major transcription start site (+1) and three minor ones (-3, +32, +34). The mouse 90K gene was found to have a TATA-less promoter of unusual structure. The 2. 3-kilobase pair 5'-flanking region exhibited strong promoter activity in NIH 3T3 cells; however, it contained neither a TATA-box nor a SP1 site and was not GC-rich. No known initiator motif was found around the transcription start site. 5'- and 3'-deletions defined a minimal promoter of 51 base pairs (-66 --> -16), not including the start site, essential and sufficient for promoter activity. This minimal promoter showed increased activity after stimulation with interferon-gamma or poly(I.C), a substance mimicking viral infection. Essential for both inductions was the integrity of an interferon regulatory factor element within this sequence, a potential binding site for the anti-oncogenic transcription factor interferon regulatory factor-1.
Collapse
Affiliation(s)
- C Brakebusch
- Max-Planck-Institute of Biochemistry, Department of Molecular Biology, Am Klopferspitz 18A, 82152 Martinsried, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
48
|
Ramchandani S, MacLeod AR, Pinard M, von Hofe E, Szyf M. Inhibition of tumorigenesis by a cytosine-DNA, methyltransferase, antisense oligodeoxynucleotide. Proc Natl Acad Sci U S A 1997; 94:684-9. [PMID: 9012845 PMCID: PMC19574 DOI: 10.1073/pnas.94.2.684] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
This paper tests the hypothesis that cytosine DNA methyltransferase (DNA MeTase) is a candidate target for anticancer therapy. Several observations have suggested recently that hyperactivation of DNA MeTase plays a critical role in initiation and progression of cancer and that its up-regulation is a component of the Ras oncogenic signaling pathway. We show that a phosphorothioate-modified, antisense oligodeoxynucleotide directed against the DNA MeTase mRNA reduces the level of DNA MeTase mRNA, inhibits DNA MeTase activity, and inhibits anchorage independent growth of Y1 adrenocortical carcinoma cells ex vivo in a dose-dependent manner. Injection of DNA MeTase antisense oligodeoxynucleotides i.p. inhibits the growth of Y1 tumors in syngeneic LAF1 mice, reduces the level of DNA MeTase, and induces demethylation of the adrenocortical-specific gene C21 and its expression in tumors in vivo. These results support the hypothesis that an increase in DNA MeTase activity is critical for tumorigenesis and is reversible by pharmacological inhibition of DNA MeTase.
Collapse
Affiliation(s)
- S Ramchandani
- Department of Pharmacology and Therapeutics, McGill University, Montreal, PQ, Canada
| | | | | | | | | |
Collapse
|
49
|
Yoder JA, Yen RW, Vertino PM, Bestor TH, Baylin SB. New 5' regions of the murine and human genes for DNA (cytosine-5)-methyltransferase. J Biol Chem 1996; 271:31092-7. [PMID: 8940105 DOI: 10.1074/jbc.271.49.31092] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
DNA (cytosine-5)-methyltransferases (EC 2.1.1.37) maintain patterns of methylated cytosine residues in the mammalian genome; faithful maintenance of methylation patterns is required for normal development of mice, and aberrant methylation patterns are associated with certain human tumors and developmental abnormalities. The organization of coding sequences at the 5'-end of the murine and human DNA methyltransferase genes was investigated, and the DNA methyltransferase open reading frame was found to be longer than previously suspected. Expression of the complete open reading frame by in vitro transcription-translation and by transfection of expression constructs into COS7 cells resulted in the production of an active DNA methyltransferase of the same apparent mass as the endogenous protein, while translation from the second in-frame ATG codon produced a slightly smaller but fully active protein. Characterization of mRNA 5' sequences and the intron-exon structure of the 5' region of the murine and human genes indicated that a previously described promoter element (Rouleau, J., Tanigawa, G., and Szyf, M. (1992) J. Biol. Chem. 267, 7368-7377) actually lies in an intron that is more than 5 kilobases downstream of the transcription start sites.
Collapse
Affiliation(s)
- J A Yoder
- Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA.
| | | | | | | | | |
Collapse
|
50
|
Tucker KL, Talbot D, Lee MA, Leonhardt H, Jaenisch R. Complementation of methylation deficiency in embryonic stem cells by a DNA methyltransferase minigene. Proc Natl Acad Sci U S A 1996; 93:12920-5. [PMID: 8917520 PMCID: PMC24021 DOI: 10.1073/pnas.93.23.12920] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/1996] [Accepted: 08/22/1996] [Indexed: 02/03/2023] Open
Abstract
Previous attempts to express functional DNA cytosine methyltransferase (EC 2.1.1.37) in cells transfected with the available Dnmt cDNAs have met with little or no success. We show that the published Dnmt sequence encodes an amino terminal-truncated protein that is tolerated only at very low levels when stably expressed in embryonic stem cells. Normal expression levels were, however, obtained with constructs containing a continuation of an ORF with a coding capacity of up to 171 amino acids upstream of the previously defined start site. The protein encoded by these constructs comigrated in SDS/PAGE with the endogenous enzyme and restored methylation activity in transfected cells. This was shown by functional rescue of Dnmt mutant embryonic stem cells that contain highly demethylated genomic DNA and fail to differentiate normally. When transfected with the minigene construct, the genomic DNA became remethylated and the cells regained the capacity to form teratomas that displayed a wide variety of differentiated cell types. Our results define an amino-terminal domain of the mammalian MTase that is crucial for stable expression and function in vivo.
Collapse
Affiliation(s)
- K L Tucker
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | | | | | | | |
Collapse
|