1
|
Bakari S, Lembrouk M, Sourd L, Ousalem F, André F, Orlowski S, Delaforge M, Frelet-Barrand A. Lactococcus lactis is an Efficient Expression System for Mammalian Membrane Proteins Involved in Liver Detoxification, CYP3A4, and MGST1. Mol Biotechnol 2016; 58:299-310. [PMID: 26961909 DOI: 10.1007/s12033-016-9928-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Despite the great importance of human membrane proteins involved in detoxification mechanisms, their wide use for biochemical approaches is still hampered by several technical difficulties considering eukaryotic protein expression in order to obtain the large amounts of protein required for functional and/or structural studies. Lactococcus lactis has emerged recently as an alternative heterologous expression system to Escherichia coli for proteins that are difficult to express. The aim of this work was to check its ability to express mammalian membrane proteins involved in liver detoxification, i.e., CYP3A4 and two isoforms of MGST1 (rat and human). Genes were cloned using two different strategies, i.e., classical or Gateway-compatible cloning, and we checked the possible influence of two affinity tags (6×-His-tag and Strep-tag II). Interestingly, all proteins could be successfully expressed in L. lactis at higher yields than those previously obtained for these proteins with classical expression systems (E. coli, Saccharomyces cerevisiae) or those of other eukaryotic membrane proteins expressed in L. lactis. In addition, rMGST1 was fairly active after expression in L. lactis. This study highlights L. lactis as an attractive system for efficient expression of mammalian detoxification membrane proteins at levels compatible with further functional and structural studies.
Collapse
Affiliation(s)
- Sana Bakari
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Mehdi Lembrouk
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Laura Sourd
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Fares Ousalem
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - François André
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Stéphane Orlowski
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Marcel Delaforge
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Annie Frelet-Barrand
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France. .,Institute FEMTO-ST, UMR6174 CNRS-Université de Franche-Comté, 25044, Besançon Cedex, France.
| |
Collapse
|
2
|
Higgins LG, Hayes JD. Mechanisms of induction of cytosolic and microsomal glutathione transferase (GST) genes by xenobiotics and pro-inflammatory agents. Drug Metab Rev 2011; 43:92-137. [PMID: 21495793 DOI: 10.3109/03602532.2011.567391] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glutathione transferase (GST) isoezymes are encoded by three separate families of genes (designated cytosolic, microsomal and mitochondrial transferases), with distinct evolutionary origins, that provide mammalian species with protection against electrophiles and oxidative stressors in the environment. Members of the cytosolic class Alpha, Mu, Pi and Theta GST, and also certain microsomal transferases (MGST2 and MGST3), are up-regulated by a diverse spectrum of foreign compounds typified by phenobarbital, 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene, pregnenolone-16α-carbonitrile, 3-methylcholanthrene, 2,3,7,8-tetrachloro-dibenzo-p-dioxin, β-naphthoflavone, butylated hydroxyanisole, ethoxyquin, oltipraz, fumaric acid, sulforaphane, coumarin, 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole, 12-O-tetradecanoylphorbol-13-acetate, dexamethasone and thiazolidinediones. Collectively, these compounds induce gene expression through the constitutive androstane receptor (CAR), the pregnane X receptor (PXR), the aryl hydrocarbon receptor (AhR), NF-E2-related factor 2 (Nrf2), peroxisome proliferator-activated receptor-γ (PPARγ) and CAATT/enhancer binding protein (C/EBP) β. The microsomal T family includes 5-lipoxygenase activating protein (FLAP), leukotriene C(4) synthase (LTC4S) and prostaglandin E(2) synthase (PGES-1), and these are up-regulated by tumour necrosis factor-α, lipopolysaccharide and transforming growth factor-β. Induction of genes encoding FLAP, LTC4S and PGES-1 is mediated by the transcription factors C/EBPα, C/EBPδ, C/EBPϵ, nuclear factor-κB and early growth response-1. In this article we have reviewed the literature describing the mechanisms by which cytosolic and microsomal GST are up-regulated by xenobiotics, drugs, cytokines and endotoxin. We discuss cross-talk between the different induction mechanisms, and have employed bioinformatics to identify cis-elements in the upstream regions of GST genes to which the various transcription factors mentioned above may be recruited.
Collapse
Affiliation(s)
- Larry G Higgins
- Biomedical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | | |
Collapse
|
3
|
Bateman TJ, Debenham JS, Madsen-Duggan C, Toupence RB, Walsh TF, Truong Q, Bradley SA, Doss GA, Kumar S, Reddy VBG. Glutathione S-transferase catalyzed desulfonylation of a sulfonylfuropyridine. Drug Metab Dispos 2010; 38:108-14. [PMID: 19797605 DOI: 10.1124/dmd.109.029801] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
MRL-1, a cannabinoid receptor-1 inverse agonist, was a member of a lead candidate series for the treatment of obesity. In rats, MRL-1 is eliminated mainly via metabolism, followed by excretion of the metabolites into bile. The major metabolite M1, a glutathione conjugate of MRL-1, was isolated and characterized by liquid chromatography/mass spectrometry and NMR spectroscopic methods. The data suggest that the t-butylsulfonyl group at C-2 of furopyridine was displaced by the glutathionyl group. In vitro experiments using rat and monkey liver microsomes in the presence of reduced glutathione (GSH) showed that the formation of M1 was independent of NADPH and molecular oxygen, suggesting that this reaction was not mediated by an oxidative reaction and a glutathione S-transferase (GST) was likely involved in catalyzing this reaction. Furthermore, a rat hepatic GST was capable of catalyzing the conversion of MRL-1 to M1 in the presence of GSH. When a close analog of MRL-1, a p-chlorobenzenesulfonyl furopyridine derivative (MRL-2), was incubated with rat liver microsomes in the presence of GSH, p-chlorobenzene sulfinic acid (M2) was also identified as a product in addition to the expected M1. Based on these data, a mechanism is proposed involving direct nucleophilic addition of GSH to sulfonylfuropyridine, resulting in an unstable adduct that spontaneously decomposes to form M1 and M2.
Collapse
Affiliation(s)
- Thomas J Bateman
- Department of Drug Metabolism and Pharmacokinetics, Merck Research Laboratories, Rahway, New Jersey, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Park H, Ahn IY, Kim H, Lee J, Shin SC. Glutathione S-transferase as a biomarker in the Antarctic bivalve Laternula elliptica after exposure to the polychlorinated biphenyl mixture Aroclor 1254. Comp Biochem Physiol C Toxicol Pharmacol 2009; 150:528-36. [PMID: 19651242 DOI: 10.1016/j.cbpc.2009.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 07/21/2009] [Accepted: 07/23/2009] [Indexed: 11/19/2022]
Abstract
Glutathione S-transferases (GSTs) are a family of multifunctional enzymes involved in cellular detoxification that catalyze the attachment of electrophilic substrates to glutathione. Two classes of GSTs related to the rho and sigma classes of enzymes in Antarctic bivalves have been cloned from Laternula elliptica. The full-length cDNA of rho class GST (leGSTr) is 1530bp in length and contains an open reading frame (ORF) of 672bp encoding 223 amino acid residues. The deduced amino acid sequences of this gene have 41% and 40% identity to rho class GSTs from Ctenopharyngodon idella and Pleuronectes platessa, respectively. The sigma class GST (leGSTs) cDNA, however, is 1127bp in length and contains an ORF of 696bp encoding 231 amino acid residues. The deduced amino acid sequences share only 22% identity with sigma class GST from Xenopus laevis. The transcriptional expression of leGSTr, leGSTs, and leGSTp cloned in our previous study were examined using real-time polymerase chain reaction in response to exposure to a polychlorinated biphenyl (PCB) mixture. The expressions of these three GST transcripts were rapidly upregulated, although they showed different expression levels and patterns within each isoform. Moreover, leGSTs was the most upregulated in the gill and digestive gland in response to PCB exposure. The recombinant GSTs were highly expressed in transformed Escherichia coli, and their kinetic properties were studied with various substrates. As a result, the three classes of GSTs were found to have diverse biological functions and were responsible for different enzymatic features.
Collapse
Affiliation(s)
- Hyun Park
- Korea Polar Research Institute, Incheon 406-840, Republic of Korea.
| | | | | | | | | |
Collapse
|
5
|
Hayes JD, Pulford DJ. The Glut athione S-Transferase Supergene Family: Regulation of GST and the Contribution of the lsoenzymes to Cancer Chemoprotection and Drug Resistance Part II. Crit Rev Biochem Mol Biol 2008. [DOI: 10.3109/10409239509083492] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Siritantikorn A, Johansson K, Ahlen K, Rinaldi R, Suthiphongchai T, Wilairat P, Morgenstern R. Protection of cells from oxidative stress by microsomal glutathione transferase 1. Biochem Biophys Res Commun 2007; 355:592-6. [PMID: 17306223 DOI: 10.1016/j.bbrc.2007.02.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Accepted: 02/03/2007] [Indexed: 12/31/2022]
Abstract
Rat liver microsomal glutathione transferase 1 (MGST1) is a membrane-bound enzyme that displays both glutathione transferase and glutathione peroxidase activities. We hypothesized that physiologically relevant levels of MGST1 is able to protect cells from oxidative damage by lowering intracellular hydroperoxide levels. Such a role of MGST1 was studied in human MCF7 cell line transfected with rat liver mgst1 (sense cell) and with antisense mgst1 (antisense cell). Cytotoxicities of two hydroperoxides (cumene hydroperoxide (CuOOH) and hydrogen peroxide) were determined in both cell types using short-term and long-term cytotoxicity assays. MGST1 significantly protected against CuOOH and against hydrogen peroxide (although less pronounced and only in short-term tests). These results demonstrate that MGST1 can protect cells from both lipophilic and hydrophilic hydroperoxides, of which only the former is a substrate. After CuOOH exposure MGST1 significantly lowered intracellular ROS as determined by FACS analysis.
Collapse
Affiliation(s)
- Atchasai Siritantikorn
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | | | | | | | | | | |
Collapse
|
7
|
Mattes WB, Daniels KK, Summan M, Xu ZA, Mendrick DL. Tissue and species distribution of the glutathione pathway transcriptome. Xenobiotica 2007; 36:1081-121. [PMID: 17118919 DOI: 10.1080/00498250600861793] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The goal of this study was to compare and contrast the basal gene expression levels of the various enzymes involved in glutathione metabolism among tissues and genders of the rat, mouse and canine. The approach taken was to use Affymetrix GeneChip microarray data for rat, mouse and canine tissues, comparing intensity levels for individual probes between tissues and genders. As was hypothesized, the relative expression in liver, lung, heart, kidney and testis varied from gene to gene, with differences of expression between tissues sometimes greater than a 1000-fold. The pattern of differential expression was usually similar between male and female animals, but varied greatly between the three species. Gstp1 appears to be expressed at high levels in male mouse liver, reasonable levels in canine liver, but very low levels in male rat liver. In all species examined, Gstp1 expression was below detectable levels in testis. Gsta3/Yc2 expression appeared high in rodent liver and female canine liver, but not male canine liver. Finally, Mgst1 and Gpx3 expression appeared to be lower in canine heart and testis than seen in rodents. Given the critical role of the glutathione pathway in the detoxification of many drugs and xenobiotics, the observed differences in basal tissue distribution among mouse, rat and canine has far-reaching implications in comparing responses of these species in safety testing.
Collapse
Affiliation(s)
- W B Mattes
- Department of Toxicogenomics Services, Gene Logic Inc, Gaithersburg, MD, USA.
| | | | | | | | | |
Collapse
|
8
|
Fan C, Zhang S, Liu Z, Li L, Luan J, Saren G. Identification and expression of a novel class of glutathione-S-transferase from amphioxus Branchiostoma belcheri with implications to the origin of vertebrate liver. Int J Biochem Cell Biol 2007; 39:450-61. [PMID: 17084657 DOI: 10.1016/j.biocel.2006.09.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 09/27/2006] [Accepted: 09/28/2006] [Indexed: 11/20/2022]
Abstract
Glutathione-S-transferases have been identified in all the living species examined so far, yet little is known to date about them in amphioxus, a model organism for insights into the origin and evolution of vertebrates. We have isolated a cDNA encoding an amphioxus (Branchiostoma belcheri) glutathione-S-transferase with a predicted molecular mass of approximately 26 kDa, from the gut cDNA library. The glutathione-S-transferase had 43.7-51.8% identity to most glutathione-S-transferases identified from aquatic organisms including fish and green alga, but it was much less identical (<27%) to other cytosolic glutathione-S-transferase classes. The phylogenetic analysis revealed that the glutathione-S-transferase was grouped together with most piscine and algal glutathione-S-transferases, separating from other cytosolic glutathione-S-transferase classes. Moreover, the glutathione-S-transferase had an exon-intron organization typical of zebrafish putative GST, red sea bream GSTR1 and plaice GSTA1 genes. The recombinant glutathione-S-transferase has been successfully expressed and purified, which showed a relatively high catalytic activity (3.37+/-0.1 unit/mg) toward 1-chloro-2, 4-dinitrobenzene and a moderate activity toward ethacrynic acid (0.41+/-0.01 unit/mg), although it had no detectable activity toward 1, 2-dichloro-4-nitrobenzene, 4-hydroxynonenal, 4-nitrobenzyl chloride and cumene hydroperoxide. In addition, we have revealed a tissue-specific expression pattern of the glutathione-S-transferase gene in B. belcheri, with the most abundant expression in the hepatic caecum. All these indicate that the amphioxus glutathione-S-transferase belongs to a novel rho-class of glutathione-S-transferases with a tissue-specific expression pattern. The relation between the glutathione-S-transferase expression in amphioxus hepatic caecum and the origin of vertebrate liver is also discussed.
Collapse
Affiliation(s)
- Chunxin Fan
- Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | | | | | | | | | | |
Collapse
|
9
|
Fahey RC, Sundquist AR. Evolution of glutathione metabolism. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 64:1-53. [PMID: 1675828 DOI: 10.1002/9780470123102.ch1] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- R C Fahey
- Department of Chemistry, University of California, San Diego, La Jolla
| | | |
Collapse
|
10
|
Nishimura M, Naito S. Tissue-specific mRNA expression profiles of human phase I metabolizing enzymes except for cytochrome P450 and phase II metabolizing enzymes. Drug Metab Pharmacokinet 2006; 21:357-74. [PMID: 17072089 DOI: 10.2133/dmpk.21.357] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pairs of forward and reverse primers and TaqMan probes specific to each of 52 human phase I metabolizing enzymes (alcohol dehydrogenase, aldehyde dehydrogenase, aldehyde oxidase, dihydropyrimidine dehydrogenase, epoxide hydrolase, esterase, flavin-containing monooxygenase, monoamine oxidase, prostaglandin endoperoxide synthase, quinone oxidoreductase, and xanthene dehydrogenase) and 48 human phase II metabolizing enzymes (acetyltransferase, acyl-CoA:amino acid N-acyltransferase, UDP-glucuronosyltransferase, glutathione S-transferase, methyltransferase, and sulfotransferase) were prepared. The mRNA expression level of each target enzyme was analyzed in total RNA from single and pooled specimens of various human tissues (adrenal gland, bone marrow, brain, colon, heart, kidney, liver, lung, pancreas, peripheral leukocytes, placenta, prostate, salivary gland, skeletal muscle, small intestine, spinal cord, spleen, stomach, testis, thymus, thyroid gland, trachea, and uterus) by real-time reverse transcription PCR using an ABI PRISM 7700 Sequence Detection System. Further, individual differences in the mRNA expression of representative human phase I and II metabolizing enzymes in the liver were also evaluated. The mRNA expression profiles of the above phase I and phase II metabolizing enzymes in 23 different human tissues were used to identify the tissues exhibiting high transcriptional activity for these enzymes. These results are expected to be valuable in establishing drug metabolism-mediated screening systems for new chemical entities in new drug development and in research concerning the clinical diagnosis of disease.
Collapse
Affiliation(s)
- Masuhiro Nishimura
- Division of Pharmacology, Drug Safety and Metabolism, Otsuka Pharmaceutical Factory Inc, Naruto, Tokushima, Japan.
| | | |
Collapse
|
11
|
Abstract
The Drosophila glutathione S-transferases (GSTs; EC2.5.1.18) comprise a host of cytosolic proteins that are encoded by a gene superfamily and a homolog of the human microsomal GST. Biochemical studies of certain recombinant GSTs have linked their enzymatic functions to important substrates such as the pesticide DDT and 4-hydroxynonenal, a reactive lipid metabolite. Moreover, a correspondence has been observed between resistance to insecticide substrates-such as DDT-and elevated enzyme levels in resistant strains. Such significant, recurring connections suggest that these gst genes may feature in a model for the development of insecticide resistance. We have amassed substantial biochemical support for relating the overexpression of a particular gst gene to insecticide resistance but are still short of solid genetic evidence to affirm a causal relationship. With the Drosophila system, we have at our disposal genetic and molecular techniques such as p-element mutagenesis and excision, siRNA technology, and versatile transgenic techniques. We can use these methods to effect loss-of-function and gain-of-function conditions and, in these rendered contexts, study other potentially important functions of the gst gene superfamily. An immediate problem that comes to mind is the possible causal relationship between GST substrate specificity and chemical resistance phenotype(s). In this chapter, we present an analysis of selected strategies and laboratory methods that may be useful in pursuing a variety of interesting problems. We will cover three kinds of approaches-biochemistry, genetics, and genomics-as important instruments in a toolkit for studies of the Drosophila gst superfamily. We make the case that these approaches (biochemistry, genetics, and genomics) have helped us gain important insights and can continue to help the community gain a more complete understanding of the biological functions of GSTs. Such knowledge may be key in addressing questions about the detoxification of pesticides and how oxidative stresses affect life span. We hope that these techniques will prove fruitful in studying a host of other physiologic functions as well.
Collapse
Affiliation(s)
- Chen-Pei D Tu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | | |
Collapse
|
12
|
Lengqvist J, Svensson R, Evergren E, Morgenstern R, Griffiths WJ. Observation of an Intact Noncovalent Homotrimer of Detergent-solubilized Rat Microsomal Glutathione Transferase-1 by Electrospray Mass Spectrometry. J Biol Chem 2004; 279:13311-6. [PMID: 14726533 DOI: 10.1074/jbc.m310958200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microsomal glutathione transferase-1 (MGST1) is a membrane-bound enzyme involved in the detoxification of xenobiotics and the protection of cells against oxidative stress. The proposed active form of the enzyme is a noncovalently associated homotrimer that binds one substrate glutathione molecule/trimer. In this study, this complex has been directly observed by electrospray mass spectrometry analysis of active rat liver MGST1 reconstituted in a minimum amount of detergent. The measured mass of the homotrimer is 53 kDa, allowing for the mass of three MGST molecules in complex with one glutathione molecule. Collision-induced dissociation of the trimer complex resulted in the formation of monomer and homodimer ion species. Two distinct species of homodimer were observed, one unliganded and one identified as a homodimer.glutathione complex. Activation of the enzyme by N-ethylmaleimide through modification of Cys(49) (Svensson, R., Rinaldi, R., Swedmark, S., and Morgenstern, R. (2000) Biochemistry 39, 15144-15149) was monitored by the observation of an appropriate increase in mass in both the denatured monomeric and native trimeric forms of MGST1. Together, the data correspond well with the proposed functional organization of MGST1. These results also represent the first example of direct electrospray mass spectrometry analysis of a detergent-solubilized multimeric membrane protein complex in its native state.
Collapse
Affiliation(s)
- Johan Lengqvist
- Department of Medical Biochemistry and Biophysics, Lüdwig Institute for Cancer Research, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
13
|
Affiliation(s)
- David Hamilton
- Department of Pharmacology and Therapeutics, McGill University, Lady Davis Institute for Medical Research, Sir Mortimer B Davis-Jewish General Hospital, Montréal, Québec, Canada
| | | | | |
Collapse
|
14
|
van Haaften RIM, Haenen GRMM, Evelo CTA, Bast A. Effect of vitamin E on glutathione-dependent enzymes. Drug Metab Rev 2003; 35:215-53. [PMID: 12959415 DOI: 10.1081/dmr-120024086] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Reactive oxygen species and various electrophiles are involved in the etiology of diseases varying from cancer to cardiovascular and pulmonary disorders. The human body is protected against damaging effects of these compounds by a wide variety of systems. An important line of defense is formed by antioxidants. Vitamin E (consisting of various forms of tocopherols and tocotrienols) is an important fat-soluble, chain-breaking antioxidant. Besides working as an antioxidant, this compound possesses other functions with possible physiological relevance. The glutathione-dependent enzymes form another line of defense. Two important enzymes in this class are the free radical reductase and glutathione S-transferases (GSTs). The GSTs are a family of phase II detoxification enzymes. They can catalyze glutathione conjugation with various electrophiles. In most cases the electrophiles are detoxified by this conjugation, but in some cases the electrophiles are activated. Antioxidants do not act in isolation but form an intricate network. It is, for instance, known that vitamin E, together with glutathione (GSH) and a membrane-bound heat labile GSH-dependent factor, presumably an enzyme, can prevent damaging effects of reactive oxygen species on polyunsaturated fatty acids in biomembranes (lipid peroxidation). This manuscript reviews the interaction between the two defense systems, vitamin E and glutathione-dependent enzymes. On the simplest level, antioxidants such as vitamin E have protective effects on glutathione-dependent enzymes; however, we will see that reality is somewhat more complicated.
Collapse
Affiliation(s)
- Rachel I M van Haaften
- Department of Pharmacology and Toxicology, Faculty of Medicine, Universiteit Maastricht, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
15
|
Abstract
Peroxynitrite (ONOO-) toxicity is associated with protein oxidation and/or tyrosine nitration, usually resulting in inhibition of enzyme activity. We examined the effect of ONOO- on the activity of purified rat liver microsomal glutathione S-transferase (GST) and found that the activity of reduced glutathione (GSH)-free enzyme was increased 4- to 5-fold by 2 mM ONOO-; only 15% of this increased activity was reversed by dithiothreitol. Exposure of the microsomal GST to ONOO- resulted in concentration-dependent oxidation of protein sulfhydryl groups, dimer and trimer formation, protein fragmentation, and tyrosine nitration. With the exception of sulfhydryl oxidation, these modifications of the enzyme correlated well with the increase in enzyme activity. Nitration or acetylation of tyrosine residues of the enzyme using tetranitromethane and N-acetylimidazole, respectively, also resulted in increased enzyme activity, providing additional evidence that modification of tyrosine residues can alter catalytic activity. Addition of ONOO--treated microsomal GST to microsomal membrane preparations caused a marked reduction in iron-induced lipid peroxidation, which raises the possibility that this enzyme may act to lessen the degree of membrane damage that would otherwise occur under pathophysiological conditions of increased ONOO- formation.
Collapse
Affiliation(s)
- Yanbin Ji
- Department of Pharmacology and Toxicology, Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
16
|
Abstract
Glutathione (GSH) is a major cellular antioxidant, which can conjugate chemically reactive, electrophilic molecules and thus, prevent unwanted reactions with important cell constituents. A large number of electrophilic eicosanoids, in particular alpha/beta-unsaturated ketones, are synthesized during arachidonic acid oxidative metabolism which can participate in the Michael addition reaction with GSH catalyzed by the GSH-S-transferase (GST) family. The structures of these adducts have been determined primarily using mass spectrometry techniques in the past after degradation to volatile products, but more recently by electrospray ionization. GSH-adducts have been observed with molecules synthesized through the 5-lipoxygenase (LTB4, LTC4, and 5-oxo-ETE), 12-lipoxygenase (hepoxilin A3), 15-lipoxygenase (13-oxo-ODE), PGH synthase (PGA1, PGA2, PGD2, PGE2, and PGJ2), and cytochrome P450-epoxygenase (14,15-EET) pathways of arachidonic acid metabolism. It has also been demonstrated that these oxyeicosanoid GSH-adducts do not represent just inactivation products, but they can both retain (GSH-adduct of hepoxilin A3) or show novel biological activities (LTC4 and FOG7).
Collapse
Affiliation(s)
- Robert C Murphy
- Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206, USA.
| | | |
Collapse
|
17
|
Lee AJ, Huntley J, Van den Broek A, Coates D, Isaac RE. Expression and characterisation of a Psoroptes ovis glutathione S-transferase. Vet Parasitol 2002; 105:49-63. [PMID: 11879966 DOI: 10.1016/s0304-4017(01)00622-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The astigmatid mite Psoroptes ovis is the causative agent of sheep scab, a highly contagious parasitic disease of sheep. Infection causes severe allergic dermatitis, resulting in damage to the fleece and hide, loss of condition and occasional mortality. Interest in the P. ovis allergens led us to characterise a glutathione S-transferase (GST) which displays homology to GST allergens isolated from the house dust mite, Dermatophagoides pteronyssinus and the cockroach, Blatella germanica. A cDNA encoding a mu-class GST from P. ovis was expressed in Escherichia coli and the recombinant protein purified for biochemical analysis. SDS-PAGE analysis indicated that the purified product was homogeneous and had an apparent molecular weight of 30 kDa. The recombinant GST (rGST) is active towards the substrate 1-chloro-2,4-dinitrobenzene (CDNB), whereas 1,2-dichloro-4-nitrobenzene (DCNB) is a poor substrate. The recombinant protein was also tested for recognition by IgE and IgG antibodies in serum from P. ovis naïve and P. ovis infested sheep. Neither IgE nor IgG antibodies were detected to the rGST. Prausnitz--Küstner testing with rGST did not provoke a characteristic weal and flare response. Biopsies collected at the PK test sites were stained for eosinophils, neutrophils, mast cells and basophils. Neutrophil, mast cell and basophil counts were not significantly different to the controls. Eosinophil numbers were significantly higher than controls, but were not due to an IgE response.
Collapse
Affiliation(s)
- Alison J Lee
- School of Biology, The University of Leeds, LS2 9JT, Leeds, UK.
| | | | | | | | | |
Collapse
|
18
|
Holm PJ, Morgenstern R, Hebert H. The 3-D structure of microsomal glutathione transferase 1 at 6 A resolution as determined by electron crystallography of p22(1)2(1) crystals. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1594:276-85. [PMID: 11904223 DOI: 10.1016/s0167-4838(01)00311-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pure solubilised microsomal glutathione transferase 1 (MGST1) forms well-ordered two-dimensional (2-D) crystals of two different symmetries, one orthorhombic (p22(1)2(1)) and one hexagonal (p6), both diffracting electrons to a resolution beyond 3 A. A three-dimensional (3-D) map has previously been calculated to 6 A resolution from the hexagonal crystal form. From orthorhombic crystals we have now calculated a 6 A 3-D reconstruction displaying three repeats of four rod-like densities. These are inclined relative to the normal of the membrane plane and consistent with arising from a left-handed four-helix bundle fold. The rendered volume clearly displays the same structural features as the map previously calculated from the p6 crystal type including similar lengths and substructure of the helices, but several distinguishing features do exist. The helices are more tilted in the map calculated from the orthorhombic crystals indicating conformational flexibility. Density present on the cytosolic side is consistent with the location of the active site. In addition, the current map displays the noted similarity to subunit I of cytochrome c oxidase.
Collapse
Affiliation(s)
- Peter J Holm
- Karolinska Institutet, Center for Structural Biochemistry, Department of Biosciences at Novum, Huddinge, Sweden
| | | | | |
Collapse
|
19
|
Guan Y, Zhang Y, Schneider A, Riendeau D, Mancini JA, Davis L, Kömhoff M, Breyer RM, Breyer MD. Urogenital distribution of a mouse membrane-associated prostaglandin E(2) synthase. Am J Physiol Renal Physiol 2001; 281:F1173-7. [PMID: 11704570 DOI: 10.1152/ajprenal.0116.2001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
PGE(2) plays a critical role in regulating renal function and facilitating reproduction. One of the rate-limiting biosynthetic enzymes in PGE(2) synthesis is the terminal PGE(2) synthase (PGES). In the present studies, we report the functional expression of a membrane-associated murine PGES (mPGES) and its expression in urogenital tissues. Two independent cDNA clones sharing an identical open reading frame of 459 bp and encoding a peptide of 153 amino acids, but differing in the 3'-untranslated region, were identified. Assays for enzymatic activity, using microsomes prepared from cells transfected with mPGES cDNA, showed that these cDNA sequences encode a functional protein that catalyzes the conversion of PGH(2) to PGE(2). Constitutive expression of mPGES was highest in the mouse kidney, ovary, and urinary bladder but was also expressed at lower levels in uterus and testis. Renal mPGES expression was predominantly localized to epithelia of distal tubules and medullary collecting ducts. High expression was also seen in transitional epithelial cells of bladder and ureter and in the primary and secondary follicles in the ovary. In conclusion, mPGES is constitutively expressed along the urogenital tract, where it may have important roles in normal physiology and disease.
Collapse
Affiliation(s)
- Y Guan
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37212, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Gulumian M. The ability of mineral dusts and fibres to initiate lipid peroxidation. Part II: relationship to different particle-induced pathological effects. Redox Rep 2001; 5:325-51. [PMID: 11140744 DOI: 10.1179/135100000101535906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Exposure to pathogenic mineral dusts and fibres is associated with pulmonary changes including fibrosis and cancer. Investigations into aetiological mechanisms of these diseases have identified modifications in specific macromolecules as well as changes in certain early processes, which have preceded fibrosis and cancer. Peroxidation of lipids is one such modification, which is observed following exposure to mineral dusts and fibres. Their ability to initiate lipid peroxidation and the parameters that determine this ability have recently been reviewed. Part II of this review examines the relationship between the capacity of mineral dusts and fibres to initiate lipid peroxidation and a number of pathological changes they produce. The oxidative modification of polyunsaturated fatty acids is a major contributor to membrane damage in cells and has been implicated in a great variety of pathological processes. In most pathological conditions where an induction of lipid peroxidation is observed it is assumed to be the consequence of disease, without further establishing if the induction of lipid peroxidation may have preceded or accompanied the disease. In the great majority of instances, however, despite the difficulty in proving this association, a causal relationship between lipid peroxidation and disease cannot be ruled out.
Collapse
Affiliation(s)
- M Gulumian
- National Centre for Occupational Health and Department of Haematology and Molecular Medicine, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
21
|
Svensson R, Rinaldi R, Swedmark S, Morgenstern R. Reactivity of cysteine-49 and its influence on the activation of microsomal glutathione transferase 1: evidence for subunit interaction. Biochemistry 2000; 39:15144-9. [PMID: 11106493 DOI: 10.1021/bi001764u] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microsomal glutathione transferase 1 is a homotrimeric detoxication enzyme protecting against electrophiles. The enzyme can also react with electrophiles, and when modification occurs at a unique Cys49 the reaction often results in activation. Here we describe the characterization of the chemical properties of this sulfhydryl (kinetic pK(a) was 8.8 +/- 0.3 and 9.0 +/- 0.1 with two different reagents) and we conclude that the protein environment does not lower the pK(a). Upon a direct comparison of the reactivity of Cys49 and low molecular weight thiols [L-Cys and glutathione (GSH)], the protein sulfhydryl displayed a 10-fold lower reactivity. The reactivity was correlated to reagent concentration in a linear fashion with a polar reagent, whereas the reactivity toward a hydrophobic reagent displayed saturation behavior (at low concentrations). This finding indicates that Cys49 is situated in a hydrophobic binding pocket. In a series of related quinones, activation occurs with the more reactive and less sterically hindered compounds. Thus, activation can be used to detect reactive intermediates during the metabolism of foreign compounds but certain intermediates can (and will) escape undetected. The reactivities of the three cysteines in the homotrimer were shown not to differ dramatically as the reaction of the protein with 4, 4'-dithiodipyridine could be fitted to a single exponential. On the basis of this result, a probabilistic expression could be used to relate the overall degree of modification to fractional activation. When N-ethylmaleimide activation (determined by the 1-chloro-2, 4-dinitrobenzene assay) was plotted against modification (determined with 4,4'-dithiodipyridine), a nonlinear relation was obtained, clearly showing that subunits do not function independently. The contribution to activation by single-, double-, and triple-modified trimers, were 0 +/- 0.06, 0.74 +/- 0.09, and 0.97 +/- 0.06, respectively. The double-modified enzyme appears partly activated, but this conclusion is more uncertain due to the possibility of independent modification of the purified enzyme upon storage. It is, however, clear that the single-modified enzyme is not activated whereas the triple-modified enzyme is fully activated. These observations together with the fact that MGST1 homotrimers bind only one substrate molecule (GSH) strongly support the view that subunits must interact in a functional manner.
Collapse
Affiliation(s)
- R Svensson
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, S-171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
22
|
Toba G, Aigaki T. Disruption of the microsomal glutathione S-transferase-like gene reduces life span of Drosophila melanogaster. Gene 2000; 253:179-87. [PMID: 10940555 DOI: 10.1016/s0378-1119(00)00246-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Microsomal glutathione S-transferase-I (MGST-I) has been thought to be important for protecting the cell from oxidative damages and/or xenobiotics. We have previously identified the Microsomal glutathione S-transferase-like (Mgstl) gene, a Drosophila homologue of human MGST-I. To investigate the function of the enzyme using Drosophila as a model system, we examined the expression pattern of Mgstl during development, and generated loss-of-function mutants to assess its in-vivo function. Mgstl was expressed in all developmental stages. It is expressed ubiquitously with the highest expression in the larval fat body, an insect organ thought to be functionally corresponding to mammalian liver, while relatively low in the central nervous system. This tissue distribution is consistent with that of MGST-I in humans or Rats. Mgstl null mutants generated from a P element insertion line showed no obvious defects in morphology, indicating that it is not essential for the development. However, their life span was significantly reduced compared to control flies, suggesting that the MGSTL protein is involved in processes somehow contributing to aging. We found an Mgstl pseudogene, which is apparently derived through the reverse transcription of Mgstl mRNA and subsequent integration into the genome.
Collapse
Affiliation(s)
- G Toba
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-shi, 192-0397, Tokyo, Japan
| | | |
Collapse
|
23
|
Kelner MJ, Bagnell RD, Montoya MA, Estes LA, Forsberg L, Morgenstern R. Structural organization of the microsomal glutathione S-transferase gene (MGST1) on chromosome 12p13.1-13.2. Identification of the correct promoter region and demonstration of transcriptional regulation in response to oxidative stress. J Biol Chem 2000; 275:13000-6. [PMID: 10777602 DOI: 10.1074/jbc.275.17.13000] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The structure and regulation of the microsomal glutathione S-transferase gene (MGST1) are considerably more complex than originally perceived to be. The MGST1 gene has two alternative first exons and is located in the 12p13.1-13.2 region. Two other potential first exons were determined to be nonfunctional. The region between the functional first exons cannot direct transcription. Thus, one common promoter element directing transcription exists, and RNA splicing occurs such that only one of the first exons (containing only untranslated mRNA) is incorporated into each mRNA species with common downstream exons. MGST1 expression and regulation are therefore similar to those of other hepatic xenobiotic handling enzymes, which also produce mRNA species differing only in the 5'-untranslated regions to yield identical proteins. MGST1 was previously considered a "housekeeping" gene, as non-oxidant inducers had little effect on activity. However, the promoter region immediately upstream of the dominant first exon transcriptionally responds to oxidative stress. In this respect, MGST1 is similar to glutathione peroxidases that also transcriptionally respond to oxidative stress. The discovery that MGST1 utilizes alternative first exon splicing eliminates a problem with the first description of MGST1 cDNA in that it appeared that MGST1 expression was in violation of the ribosomal scanning model. The identification that the first exon originally noted is in fact a minor alternative first exon far downstream of the primary first exon eliminates this conundrum.
Collapse
Affiliation(s)
- M J Kelner
- Department of Pathology, University of California, San Diego, California 92103-8320, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Hayes JD, McLellan LI. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic Res 1999; 31:273-300. [PMID: 10517533 DOI: 10.1080/10715769900300851] [Citation(s) in RCA: 1051] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Increases in the intracellular levels of reactive oxygen species (ROS), frequently referred to as oxidative stress, represents a potentially toxic insult which if not counteracted will lead to membrane dysfunction, DNA damage and inactivation of proteins. Chronic oxidative stress has numerous pathological consequences including cancer, arthritis and neurodegenerative disease. Glutathione-associated metabolism is a major mechanism for cellular protection against agents which generate oxidative stress. It is becoming increasingly apparent that the glutathione tripeptide is central to a complex multifaceted detoxification system, where there is substantial inter-dependence between separate component members. Glutathione participates in detoxification at several different levels, and may scavenge free radicals, reduce peroxides or be conjugated with electrophilic compounds. Thus, glutathione provides the cell with multiple defences not only against ROS but also against their toxic products. This article discusses how glutathione biosynthesis, glutathione peroxidases, glutathione S-transferases and glutathione S-conjugate efflux pumps function in an integrated fashion to allow cellular adaption to oxidative stress. Co-ordination of this response is achieved, at least in part, through the antioxidant responsive element (ARE) which is found in the promoters of many of the genes that are inducible by oxidative and chemical stress. Transcriptional activation through this enhancer appears to be mediated by basic leucine zipper transcription factors such as Nrf and small Maf proteins. The nature of the intracellular sensor(s) for ROS and thiol-active chemicals which induce genes through the ARE is described. Gene activation through the ARE appears to account for the enhanced antioxidant and detoxification capacity of normal cells effected by many cancer chemopreventive agents. In certain instances it may also account for acquired resistance of tumours to cancer chemotherapeutic drugs. It is therefore clear that determining the mechanisms involved in regulation of ARE-driven gene expression has enormous medical implications.
Collapse
Affiliation(s)
- J D Hayes
- Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, Scotland, UK
| | | |
Collapse
|
25
|
Lee SH, DeJong J. Microsomal GST-I: genomic organization, expression, and alternative splicing of the human gene. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1446:389-96. [PMID: 10524215 DOI: 10.1016/s0167-4781(99)00112-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this paper we report the genomic organization of the human microsomal GST-I gene. This gene spans 18 kb, and contains seven exons. Sequences that encode the 155 amino acid open reading frame are present in Exons II, III, IV, the 5'-untranslated region is present in Exons Ia, Ib, Ic, Id, and II, and the 3'-untranslated region is present in Exon IV. Exons Ia, Ib, Ic, Id, and III are alternatively spliced to generate at least six different mGST-I transcripts. The results of EST and PCR analysis show that most mGST-I transcripts terminate within Exon Ib, and primer extension analysis shows these transcripts initiate at three major sites located at 79, 81, and 88 nucleotides upstream of the ATG initiation codon. Sequences surrounding the putative initiation sites are G-C rich, and several Sp1 consensus binding sites were identified. Northern analysis shows that the human GST-I gene is preferentially expressed as a 1.0 kb transcript in liver, and in several other tissues. Finally, a comparison of the mGST-I and PIG12 sequences with those of FLAP, LTC4 synthase, mGST-II, and mGST-III suggests that these proteins are the related products of a dispersed microsomal GST gene superfamily.
Collapse
Affiliation(s)
- S H Lee
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson 75080, USA
| | | |
Collapse
|
26
|
Estonius M, Forsberg L, Danielsson O, Weinander R, Kelner MJ, Morgenstern R. Distribution of microsomal glutathione transferase 1 in mammalian tissues. A predominant alternate first exon in human tissues. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 260:409-13. [PMID: 10095775 DOI: 10.1046/j.1432-1327.1999.00165.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An extensive Northern blot analysis of microsomal glutathione transferase 1 in human and rat tissues was performed. When normalized against the glyceraldehyde-3-phosphate dehydrogenase or actin expression it was evident that the predominant expression occurs in liver and pancreas. An ontogenetic, as well as a functional, basis for the high levels in these two organs is possible. The relative expression levels in man ranged from: liver and pancreas (100%), to kidney, prostate, colon (30-40%), heart, brain, lung, testis, ovary, small intestine (10-20%), placenta, skeletal muscle, spleen, thymus and peripheral blood leucocytes (1-10%). Liver-enriched expression was detected in human fetal tissues with lung and kidney displaying lower levels (10-20%). No transcripts could be detected in fetal brain or heart. When comparing the expression levels between rat and man it is apparent that human extrahepatic mRNA levels are much higher relative to liver. Rat microsomal glutathione transferase mRNA expression ranges from 0.2 to 10% that of liver, with adrenal, uterus, ovary and stomach displaying the highest levels of the organs tested. Based on these observations, and the fact that the enzyme is encoded by a highly conserved single-copy gene, it is suggested that microsomal glutathione transferase 1 performs essential functions vital to most mammalian cell types. We suggest that protection against oxidative stress constitutes one such function. Human expressed sequence tag (EST) characterization yielded four alternate mRNA transcripts with different 5'-ends (four alternate noncoding exons 1). The predominant exon (based on the observed EST frequency) revealed a tissue distribution similar to that obtained using the reading frame as probe. Thus, it appears that one exon preferentially gives rise to mature mRNA in the human tissues examined. This exon is different from the one reported in the original cDNA characterized.
Collapse
Affiliation(s)
- M Estonius
- Department of Medical Biochemistry and Biophysics, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
27
|
Jakobsson PJ, Morgenstern R, Mancini J, Ford-Hutchinson A, Persson B. Common structural features of MAPEG -- a widespread superfamily of membrane associated proteins with highly divergent functions in eicosanoid and glutathione metabolism. Protein Sci 1999; 8:689-92. [PMID: 10091672 PMCID: PMC2144274 DOI: 10.1110/ps.8.3.689] [Citation(s) in RCA: 248] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A novel superfamily designated MAPEG (Membrane Associated Proteins in Eicosanoid and Glutathione metabolism), including members of widespread origin with diversified biological functions is defined according to enzymatic activities, sequence motifs, and structural properties. Two of the members are crucial for leukotriene biosynthesis, and three are cytoprotective exhibiting glutathione S-transferase and peroxidase activities. Expression of the most recently recognized member is strongly induced by p53, and may therefore play a role in apoptosis or cancer development. In spite of the different biological functions, all six proteins demonstrate common structural characteristics typical of membrane proteins. In addition, homologues are identified in plants, fungi, and bacteria, demonstrating this superfamily to be generally occurring.
Collapse
Affiliation(s)
- P J Jakobsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
28
|
Toba G, Ohsako T, Miyata N, Ohtsuka T, Seong KH, Aigaki T. The gene search system. A method for efficient detection and rapid molecular identification of genes in Drosophila melanogaster. Genetics 1999; 151:725-37. [PMID: 9927464 PMCID: PMC1460511 DOI: 10.1093/genetics/151.2.725] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have constructed a P-element-based gene search vector for efficient detection of genes in Drosophila melanogaster. The vector contains two copies of the upstream activating sequence (UAS) enhancer adjacent to a core promoter, one copy near the terminal inverted repeats at each end of the vector, and oriented to direct transcription outward. Genes were detected on the basis of phenotypic changes caused by GAL4-dependent forced expression of vector-flanking DNA, and the transcripts were identified with reverse transcriptase PCR (RT-PCR) using the vector-specific primer and followed by direct sequencing. The system had a greater sensitivity than those already in use for gain-of-function screening: 64% of the vector insertion lines (394/613) showed phenotypes with forced expression of vector-flanking DNA, such as lethality or defects in adult structure. Molecular analysis of 170 randomly selected insertions with forced expression phenotypes revealed that 21% matched the sequences of cloned genes, and 18% matched reported expressed sequence tags (ESTs). Of the insertions in cloned genes, 83% were upstream of the protein-coding region. We discovered two new genes that showed sequence similarity to human genes, Ras-related protein 2 and microsomal glutathione S-transferase. The system can be useful as a tool for the functional mapping of the Drosophila genome.
Collapse
Affiliation(s)
- G Toba
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, USA
| | | | | | | | | | | |
Collapse
|
29
|
Bannenberg G, Dahlén SE, Luijerink M, Lundqvist G, Morgenstern R. Leukotriene C4 is a tight-binding inhibitor of microsomal glutathione transferase-1. Effects of leukotriene pathway modifiers. J Biol Chem 1999; 274:1994-9. [PMID: 9890956 DOI: 10.1074/jbc.274.4.1994] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microsomal glutathione transferase-1 (MGST-1) is an abundant protein that catalyzes the conjugation of electrophilic compounds with glutathione, as well as the reduction of lipid hydroperoxides. Here we report that leukotriene C4 is a potent inhibitor of MGST-1. Leukotriene C4 was found to be a tight-binding inhibitor, with a Ki of 5.4 nM for the unactivated enzyme, and 9.2 nM for the N-ethylmaleimide activated enzyme. This is the first tight-binding inhibitor characterized for this enzyme. Leukotriene C4 was competitive with respect to glutathione and non-competitive toward the second substrate, CDNB. Analysis of stoichiometry supports binding of one molecule of inhibitor per homotrimer. Leukotrienes A4, D4, and E4 were much weaker inhibitors of the purified enzyme (by at least 3 orders of magnitude). Leukotriene C4 analogues, which have been developed as antagonists of leukotriene receptors, were found to display varying degrees of inhibition of MGST-1. In particular, the cysteinyl-leukotriene analogues SKF 104,353, ONO-1078, and BAYu9773 were strong inhibitors (IC50 values: 0.13, 3. 7, and 7.6 microM, respectively). In view of the partial structural similarity between MGST-1, leukotriene C4 synthase, and 5-lipoxygenase activating protein (FLAP), it was of interest that leukotriene C4 synthesis inhibitors (which antagonize FLAP) also displayed significant inhibition (e.g. IC50 for BAYx1005 was 58 microM). In contrast, selective 5-lipoxygenase inhibitors such as zileuton only marginally inhibited activity at high concentrations (500 microM). Our discovery that leukotriene C4 and drugs developed based on its structure are potent inhibitors of MGST-1 raises the possibility that MGST-1 influences the cellular processing of leukotrienes. These findings may also have implications for the effects and side-effects of drugs developed to manipulate leukotrienes.
Collapse
Affiliation(s)
- G Bannenberg
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-17177 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
30
|
Ranson H, Collins F, Hemingway J. The role of alternative mRNA splicing in generating heterogeneity within the Anopheles gambiae class I glutathione S-transferase family. Proc Natl Acad Sci U S A 1998; 95:14284-9. [PMID: 9826692 PMCID: PMC24365 DOI: 10.1073/pnas.95.24.14284] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/1998] [Indexed: 11/18/2022] Open
Abstract
The class I glutathione S-transferases (GSTs) of Anopheles gambiae are encoded by a complex gene family. We describe the genomic organization of three members of this family, which are sequentially arranged on the chromosome in divergent orientations. One of these genes, aggst1-2, is intronless and has been described. In contrast, the two A. gambiae GST genes (aggst1alpha and aggst1beta) reported within are interrupted by introns. The gene aggst1alpha contains five coding exons that are alternatively spliced to produce four mature GST transcripts, each of which contains a common 5' exon encoding the N termini of the GST protein spliced to one of four distinct 3' exons encoding the carboxyl termini. All four of the alternative transcripts of aggst1alpha are expressed in A. gambiae larvae, pupae, and adults. We report on the involvement of alternative RNA splicing in generating multiple functional GST transcripts. A cDNA from the aggst1beta gene was detected in adult mosquitoes, demonstrating that this GST gene is actively transcribed. The percentage similarity of the six cDNAs transcribed from the three GST genes range from 49.5% to 83.1% at the nucleotide level.
Collapse
Affiliation(s)
- H Ranson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | |
Collapse
|
31
|
van der Aar EM, Tan KT, Commandeur JN, Vermeulen NP. Strategies to characterize the mechanisms of action and the active sites of glutathione S-transferases: a review. Drug Metab Rev 1998; 30:569-643. [PMID: 9710706 DOI: 10.3109/03602539808996325] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- E M van der Aar
- Leiden/Amsterdam Center for Drug Research Department of Pharmacochemistry, Vrije Universiteit, The Netherlands
| | | | | | | |
Collapse
|
32
|
Abstract
Several halogenated alkenes are nephrotoxic in rodents. A mechanism for the organ-specific toxicity of these compounds to the kidney has been elucidated. The mechanism involves hepatic glutathione conjugation to dihaloalkenyl or 1,1-difluoroalkyl glutathione S-conjugates, which are cleaved by gamma-glutamyltransferase and dipeptidases to cysteine S-conjugates. Haloalkene-derived cysteine S-conjugates may have four fates in the organism: (a) They may be substrates for renal cysteine conjugate beta-lyases, which cleave them to form reactive intermediates identified as thioketenes (chloroalkene-derived S-conjugates), thionoacyl halides (fluoroalkene-derived S-conjugates not containing bromide), thiiranes, and thiolactones (fluoroalkene-derived S-conjugates containing bromine); (b) cysteine S-conjugates may be N-acetylated to excretable mercapturic acids; (c) they may undergo transamination or oxidation to the corresponding 3-mercaptopyruvic acid S-conjugate; (d) finally, oxidation of the sulfur atom in halovinyl cysteine S-conjugates and corresponding mercapturic acids forms Michael acceptors and may also represent a bioactivation reaction. The formation of reactive intermediates by cysteine conjugate beta-lyase may play a role in the target-organ toxicity and in the possible renal tumorigenicity of several chlorinated olefins widely used in many chemical processes.
Collapse
Affiliation(s)
- M W Anders
- Department of Pharmacology and Physiology, University of Rochester, New York 14642, USA
| | | |
Collapse
|
33
|
Sun TH, Ling X, Persson B, Morgenstern R. A highly active microsomal glutathione transferase from frog (Xenopus laevis) liver that is not activated by N-ethylmaleimide. Biochem Biophys Res Commun 1998; 246:466-9. [PMID: 9610385 DOI: 10.1006/bbrc.1998.8623] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microsomal glutathione transferase has hitherto only been purified from mammalian species. N-ethylmaleimide and trypsin activation (discriminating features of this enzyme) has only been observed in microsomes from mammals. In this paper we describe the first isolation and characterization of a non-mammalian microsomal glutathione transferase from frog (Xenopus laevis) liver. This protein has a molecular weight similar to that of the mammalian enzyme (approximately 17 kDa), but cannot be activated by N-ethylmaleimide or trypsin. In fact the enzyme is rapidly inactivated by this sulfhydryl reagent and protease. It thus appears that N-ethylmaleimide activation is not an obligatory property of microsomal glutathione transferase. The frog liver microsomal glutathione transferase has one of the highest specific activities towards the second substrate 1-chloro-2,4-dinitrobenzene (CDNB) (200 mumol/min mg) obtained with any glutathione transferase and accounts for the high activity found in frog liver microsomes. The kcat/K(m) for glutathione and CDNB are 0.017 and 1.1 x 10(6) M-1 s-1, respectively. The enzyme also functions as a glutathione peroxidase (dilinoleoyl phosphatidylcholine hydroperoxide is reduced (5.2 mumol/min mg)). It is now evident that a highly active microsomal glutathione transferase, with a molecular weight similar to that of the mammalian enzymes also exists in a non-mammal species.
Collapse
Affiliation(s)
- T H Sun
- Institute of Environmental Medicine, Division of Biochemical Toxicology, Stockholm, Sweden
| | | | | | | |
Collapse
|
34
|
|
35
|
Abstract
The glutathione-S-transferase (GST) protein superfamily is currently composed of nearly 100 sequences. This study documents a greater phylogenetic diversity of GSTs than previously realized. Parsimony and distance phylogenetic methods of GST amino acid sequences yielded virtually the same results. There appear to be at least 25 groups (families) of GST-like proteins, as different from one another as are the currently recognized classes. This diversity will require the design of a new nomenclature for this large protein superfamily. There is one well-supported large clade containing the mammalian mu, pi, and alpha classes as well as GSTs from molluscs, helminths, nematodes, and arthropods.
Collapse
Affiliation(s)
- M J Snyder
- Bodega Marine Laboratory, University of California, Bodega Bay 94923, USA
| | | |
Collapse
|
36
|
Penrose JF, Baldasaro MH, Webster M, Xu K, Austen KF, Lam BK. Molecular cloning of the gene for mouse leukotriene-C4 synthase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:807-13. [PMID: 9342232 DOI: 10.1111/j.1432-1033.1997.00807.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Leukotriene C4 (LTC4) synthase (LTC4S), an integral membrane protein, catalyzes the conjugation of leukotriene A4 with reduced glutathione to form LTC4, the biosynthetic parent of the additional cysteinyl leukotriene metabolites. An XmnI-digested fragment of a P1 clone from a 129 mouse ES library contained the full-length gene of 2.01 kb for mouse LTC4S. The mouse LTC4S gene is comprised of 5 exons of 122, 100, 71, 82 and 241 nucleotides, with intron sizes that range from 76 nucleotides to 937 nucleotides. The intron/exon boundaries are identical to those of the human genes for LTC4S and 5-lipoxygenase-activating protein (FLAP). Primer extension demonstrated a single transcription-initiation site 64 bp 5' of the ATG translation-start site. Nucleotide sequencing of 1.2 kb of the 5' flanking region revealed multiple putative sites for activating protein-2, CCAAT/enhancer-binding protein, and polyoma virus enhancer-3. Fluorescent in situ hybridization mapped the mouse LTC4S gene to mouse chromosome 11, in a region containing the genes for interleukin 13 and granulocyte/macrophage-colony-stimulating factor, and orthologous to the chromosomal location of 5q35 for the human LTC4S gene. Thus, the mouse LTC4S gene is similar in size, intron/exon organization and chromosomal localization to the human LTC4S gene. Recent mutagenic analysis of the conjugation function of human LTC4S has identified R51 and Y93 as critical for acid and base catalysis of LTA4 and reduced glutathione, respectively. A comparison across species for proteins that possess LTC4S activity reveals conservation of both of these residues, whereas R51 is absent in the FLAP molecules. Thus, within the glutathione S-transferase superfamily of genes, alignment of specific residues allows the separation of LTC4S family members from their most structurally similar counterparts, the FLAP molecules.
Collapse
Affiliation(s)
- J F Penrose
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Weinander R, Ekström L, Andersson C, Raza H, Bergman T, Morgenstern R. Structural and functional aspects of rat microsomal glutathione transferase. The roles of cysteine 49, arginine 107, lysine 67, histidine, and tyrosine residues. J Biol Chem 1997; 272:8871-7. [PMID: 9083005 DOI: 10.1074/jbc.272.14.8871] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Rat liver microsomal glutathione transferase is rapidly inactivated upon treatment with the arginine-selective reagent phenylglyoxal or the lysine-selective 1,3,5-trinitrobenzenesulfonate. Glutathione sulfonate, an inhibitor of the enzyme, gives nearly complete protection against inactivation and prevents modification, indicating that these residues form part of or reside close to the active site. Sequence analysis of peptides from peptic and tryptic digests of [7-14C]phenylglyoxal- and 1,3,5-trinitrobenzenesulfonate-treated microsomal glutathione transferase indicated arginine 107 and lysine 67 as the sites of modification. A set of mutant forms of microsomal glutathione transferase was constructed by site-directed mutagenesis and heterologously expressed in Escherichia coli BL21(DE3). Arginine 107 was exchanged for alanine and lysine residues. The alanine mutant (R107A) exhibited an activity and inhibition profile similar to that of the wild type enzyme but displayed a decreased thermostability. Thus, arginine 107 does not appear to participate in catalysis or substrate binding; instead, an important structural role is suggested for this residue. Lysine 67 was mutated to alanine and arginine with no effect on activity. All three histidines were replaced by glutamine, and the resulting mutant proteins had activities comparable with that of the wild type. It can thus be concluded that the chemical modification experiments indicating that arginine 107, lysine 67, and one of the histidines partake in catalysis can be disproved. However, protection from modification by a competitive inhibitor indicates that these residues could be close to the glutathione binding site. All tyrosine to phenylalanine substitutions resulted in mutants with activities similar to that of the wild type. Interestingly, the exchange of tyrosine 137 appears to result in activation of the enzyme. Thus, the microsomal glutathione transferase must display an alternate stabilization of the thiolate anion of glutathione other than through interaction with the phenolic hydroxyl group of a tyrosine residue. Substitution of cysteine 49 with alanine resulted in a semiactivated mutant enzyme with enzymatic properties partly resembling the activated form of microsomal glutathione transferase. The function of this mutant was not altered upon reaction with N-ethylmaleimide, and cysteine 49 is thus demonstrated as the site of modification that results in activation of microsomal glutathione transferase.
Collapse
Affiliation(s)
- R Weinander
- Institute of Environmental Medicine, Division of Biochemical Toxicology, Karolinska Institutet, Box 210, S-171 77 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
38
|
Kunze T. Purification and characterization of class alpha and Mu glutathione S-transferases from porcine liver. Comp Biochem Physiol B Biochem Mol Biol 1997; 116:397-406. [PMID: 9149393 DOI: 10.1016/s0305-0491(96)00272-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Six cytosolic GSTs from porcine liver were purified by a combination of glutathione affinity chromatography and ion-exchange HPLC. The isoenzymes were characterized by SDS-PAGE, gel filtration, isoelectric focusing, immunoblotting analysis and determination of substrate specificities and inhibition characteristics. The purified GSTs belong to the alpha and mu classes, respectively. No class pi isoenzyme was isolated or detected. The class alpha GST pA1-1* exists as a homodimer (M(r) = 25.3 kDa), whereas GST pA2-3* consists of two subunits with different M(r) values (27.0 and 25.3 kDa). The estimated pI values were 9.5 and 8.8, respectively. Furthermore, four class mu porcine GSTs, pM1-1*, pM1-2*, pM3-?* and pM4-?*, were isolated. The isoenzyme pM1-1* possesses a relative molecular mass of 27.2 kDa and a pI value of 6.2. Additional pM1 isoenzymes hybridize with the subunit pM2* (M(r) = 25.2) to furnish a heterodimer, which shows a pI value of 5.8. The other class mu isoenzymes are heterodimers with pI values of 5.45 and 5.05. Substrate specificities and inhibition characteristics correlate very well with those of the corresponding human isoenzymes. The results are discussed with regard to the usefulness of porcine GSTs as an in vitro testing model.
Collapse
Affiliation(s)
- T Kunze
- Pharmazeutisches Institut, Christian Albrechts Universität, Kiel, Germany.
| |
Collapse
|
39
|
Kunze T. Phosphono analogues of glutathione as new inhibitors of glutathione S-transferases. Arch Pharm (Weinheim) 1996; 329:503-9. [PMID: 8997900 DOI: 10.1002/ardp.19963291106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Phosphono-analogues of glutathione containing the O = P(OR)2 moiety in place of the cysteinyl residue CH2SH 1a-1d were prepared by solution phase peptide synthesis. Benzyl, benzyloxy-carbonyl, and tert-butyl protecting groups were used to mask the individual amino acid functional groups. The formation of peptide bonds was achieved by the usual peptide synthesis via activation of carboxylic functions with cyclohexylcarbodiimide and subsequent reaction with free amino groups. The thus obtained, fully-protected peptides were each purified by normal phase column chromatography. Deprotection was accomplished by hydrogenolysis and by treatment with HBr/acetic acid yielding the desired phosphonic acid diester 1a-1d. The inhibition of the glutathione conjugation of 1-chloro-2,4-dinitrobenzene by human placental glutathione S-transferase was studied by determining the IC50 values of the new glutathione analogues. The IC50 values were 291 microM, 139 microM, 64 microM, and 21 microM for the dimethyl, diethyl, diisopropyl, and di-n-butyl esters, respectively. The results clearly show that the formal substitution of the glutathione thiol function by phosphonic acid esters leads to a new class of glutathione S-transferase inhibitors. Further investigations directed at the question of whether or not these glutathione analogues are suitable for a modulation in chemotherapy are in progress.
Collapse
Affiliation(s)
- T Kunze
- Pharmazeutisches Institut, Christian-Albrechts-Universität, Kiel, Germany
| |
Collapse
|
40
|
Jakobsson PJ, Mancini JA, Ford-Hutchinson AW. Identification and characterization of a novel human microsomal glutathione S-transferase with leukotriene C4 synthase activity and significant sequence identity to 5-lipoxygenase-activating protein and leukotriene C4 synthase. J Biol Chem 1996; 271:22203-10. [PMID: 8703034 DOI: 10.1074/jbc.271.36.22203] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
5-Lipoxygenase-activating protein (FLAP) and leukotriene C4 (LTC4) synthase, two proteins involved in leukotriene biosynthesis, have been demonstrated to be 31% identical at the amino acid level. We have recently identified and characterized a novel member of the FLAP/LTC4 synthase gene family termed microsomal glutathione S-transferase II (microsomal GST-II). The open reading frame encodes a 16.6-kDa protein with a calculated pI of 10.4. Microsomal GST-II has 33% amino acid identity to FLAP, 44% amino acid identity to LTC4 synthase, and 11% amino acid identity to the previously characterized human microsomal GST (microsomal GST-I). Microsomal GST-II also has a similar hydrophobicity pattern to FLAP, LTC4 synthase, and microsomal GST-I. Fluorescent in situ hybridization mapped microsomal GST-II to chromosomal localization 4q28-31. Microsomal GST-II has a wide tissue distribution (at the mRNA level) and was specifically expressed in human liver, spleen, skeletal muscle, heart, adrenals, pancreas, prostate, testis, fetal liver, and fetal spleen. In contrast, microsomal GST-II mRNA expression was very low (when present) in lung, brain, placenta, and bone marrow. This differs from FLAP mRNA, which was detected in lung, various organs of the immune system, and peripheral blood leukocytes, and LTC4 synthase mRNA, which could not be detected in any tissues by Northern blot analysis. Microsomal GST-II and LTC4 synthase were expressed in a baculovirus insect cell system, and microsomes from Sf9 cells containing microsomal GST-II or LTC4 synthase were both found to catalyze the production of LTC4 from LTA4 and reduced glutathione. Microsomal GST-II also catalyzed the formation of another product, displaying a conjugated triene UV absorption spectra with a maximum at 283 nm, suggesting less catalytic stereospecificity compared with LTC4 synthase. Also, the apparent Km for LTA4 was higher for microsomal GST-II (41 microM) than LTC4 synthase (7 microM). In addition, unlike LTC4 synthase, microsomal GST-II was able to catalyze the conjugation of 1-chloro-2, 4-dinitrobenzene with reduced glutathione. Therefore, it is proposed that this novel membrane protein is a member of the microsomal glutathione S-transferase family, also including LTC4 synthase, with significant sequence identities to both LTC4 synthase and FLAP.
Collapse
Affiliation(s)
- P J Jakobsson
- Merck Frosst Centre for Therapeutic Research, Kirkland, Quebec, Canada H9H 3L1
| | | | | |
Collapse
|
41
|
Marrs KA. THE FUNCTIONS AND REGULATION OF GLUTATHIONE S-TRANSFERASES IN PLANTS. ACTA ACUST UNITED AC 1996; 47:127-158. [PMID: 15012285 DOI: 10.1146/annurev.arplant.47.1.127] [Citation(s) in RCA: 738] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glutathione S-transferases (GSTs) play roles in both normal cellular metabolism as well as in the detoxification of a wide variety of xenobiotic compounds, and they have been intensively studied with regard to herbicide detoxification in plants. A newly discovered plant GST subclass has been implicated in numerous stress responses, including those arising from pathogen attack, oxidative stress, and heavy-metal toxicity. In addition, plant GSTs play a role in the cellular response to auxins and during the normal metabolism of plant secondary products like anthocyanins and cinnamic acid. This review presents the current knowledge about the functions of GSTs in regard to both herbicides and endogenous substrates. The catalytic mechanism of GST activity as well as the fate of glutathione S-conjugates are reviewed. Finally, a summary of what is known about the gene structure and regulation of plant GSTs is presented.
Collapse
Affiliation(s)
- Kathleen A. Marrs
- Department of Biological Sciences, Stanford University, Stanford California 94305-5020
| |
Collapse
|
42
|
Affiliation(s)
- A Raha
- Department of Pharmacology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | |
Collapse
|
43
|
Aravinda S, Gopalakrishnan B, Dey CS, Totey SM, Pawshe CH, Salunke D, Kaur K, Shaha C. A testicular protein important for fertility has glutathione S-transferase activity and is localized extracellularly in the seminiferous tubules. J Biol Chem 1995; 270:15675-85. [PMID: 7797568 DOI: 10.1074/jbc.270.26.15675] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A 24-kDa protein isolated by preparative gel electrophoresis from rat testes was reported by us as an active immunogen in rats. Anti-24-kDa antibodies inhibited murine sperm-oocyte binding in vitro. Here, we show similarity at the NH2 terminus shared by this protein purified on Sephadex G-75 followed by anion exchange high performance liquid chromatography with glutathione S-transferase (GST)-mu subunits. This protein purified by glutathione affinity chromatography also demonstrated similarity to GST-mu NH2 terminus in a 30-amino-acid overlap. Both proteins showed activity toward the GST substrate 1-chloro-2,4-dinitrobenzene (Km of 33 microM and 50 microM) which was inhibited by 17 beta-estradiol 3-sulfate. Antisera against both proteins recognized liver GST-mu on Western blots and sperm acrosome of multiple species immunocytochemically. Both antisera significantly inhibited in vitro fertilization of goat oocytes by sperm preincubated with them while anti-liver GST sera did not. GST activity was localized on rat sperm, seminiferous tubular fluid, and Sertoli cells. Seminiferous tubular fluid 24-kDa protein shared similarity to the NH2 terminus of GST-mu subunits in a 20-amino-acid overlap. Time-dependent accumulation of GST was detected in the spent culture medium of seminiferous tubules from rats of different ages suggesting secretion.
Collapse
Affiliation(s)
- S Aravinda
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Hayes JD, Strange RC. Potential contribution of the glutathione S-transferase supergene family to resistance to oxidative stress. Free Radic Res 1995; 22:193-207. [PMID: 7757196 DOI: 10.3109/10715769509147539] [Citation(s) in RCA: 273] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The glutathione S-transferase (GST) supergene family comprises gene families that encode isoenzymes that are widely expressed in mammalian tissue cytosols and membranes. Both cytosolic (particularly the isoenzymes encoded by the alpha, mu and theta gene families) and microsomal GST catalyse the conjugation of reduced glutathione (GSH) with a wide variety of electrophiles which include known carcinogens as well as various compounds that are products of oxidative stress including oxidised DNA and lipid. Indeed, several lines of evidence suggest certain of these isoenzymes play a pivotal role in protecting cells from the consequences of such stress. An assessment of the importance of these GST in humans is presently difficult however, because the number of alpha and theta class genes is not known and, the catalytic preferences of even identified isoforms is not always clear.
Collapse
Affiliation(s)
- J D Hayes
- Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, Scotland
| | | |
Collapse
|
45
|
Shore LJ, Odell GB, Fenselau C. Identification of an N-acetylated microsomal glutathione S-transferase by mass spectrometry. Biochem Pharmacol 1995; 49:181-6. [PMID: 7840795 DOI: 10.1016/s0006-2952(94)00488-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Microsomal glutathione S-transferase (mGST) was purified to homogeneity from male Sprague-Dawley rat liver, as determined by SDS-PAGE. Removal of Triton X-100 and further separation by reversed phase HPLC revealed two proteins, mGST 1 and mGST 2, in a 1:3 ratio. Analysis of mGST 1 and mGST 2 by electrospray ionization mass spectrometry determined their molecular weights to be 17,354.2 +/- 6.6 and 17,397.9 +/- 6.6, respectively. mGST 1 was in close agreement with the calculated molecular weight of 17,348, as predicted by the previously reported cDNA sequence. Cyanogen bromide digestion and peptide mapping by fast atom bombardment mass spectrometry (FAB-MS) localized the mass increase to the N-terminal peptide, 1-7. FAB-tandem mass spectrometry of this peptide in conjunction with Edman reactions on the intact protein demonstrated the N-terminal alanine to be acetylated.
Collapse
Affiliation(s)
- L J Shore
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County 21228
| | | | | |
Collapse
|
46
|
Lee HC, Toung YP, Tu YS, Tu CP. A molecular genetic approach for the identification of essential residues in human glutathione S-transferase function in Escherichia coli. J Biol Chem 1995; 270:99-109. [PMID: 7814427 DOI: 10.1074/jbc.270.1.99] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The common substrate for glutathione S-transferases (GSTs), 1-chloro-2,4-dinitrobenzene (CDNB), is an inhibitor of Escherichia coli growth. This growth inhibition by CDNB is enhanced when E. coli expresses a functional GST. Cells under growth inhibition have reduced intracellular GSH levels and form filaments when they resume growth. Based on this differential growth inhibition by CDNB we have developed a simple procedure to select for null-mutants of a human GST in E. coli. Null mutations in the human GST gene from hydroxylamine mutagenesis or oligonucleotide-directed mutagenesis can be selected for on agar plates containing CDNB after transformation. The molecular nature of each mutation can be identified by DNA sequence analysis of the mutant GST gene. We have identified three essential amino acid residues in an alpha class human GST at Glu31, Glu96, and Gly97. Single substitution at each of these residues, E31K, E96K, G97D, resulted in mutant GST proteins with loss of CDNB conjugation activity and failure in binding to the S-hexyl GSH affinity matrix. In contrast, a mutant GST (Y8F) resulting from substitution of the conserved tyrosine near the N terminus has much reduced CDNB conjugation activity but was still capable of binding to the S-hexyl GSH-agarose. Additional mutant GSTs with substitutions at position 96 (E96F, E96Y) and 97 (G97P, G97T, G97S) resulted in changes in both Km and kcat to different extents. The in vitro CDNB conjugation activity of the purified mutant enzymes correlate negatively with the plating efficiencies of strains encoding them in the presence of CDNB. Based on the x-ray structure model of human GST 1-1, two of these residues are involved in salt bridges (Arg19-Glu31, Arg68-Glu96) and the third Gly97 is in the middle of the helix alpha 4. Our results provide evidence in vivo that Tyr8, Gly97, and the two salt bridges are important for GST structure-function. This molecular genetic approach for the identification of essential amino acids in GSTs should be applicable to any GSTs with CDNB conjugation activity. It should also complement the x-ray crystallographic approach in understanding the structure and function of GSTs.
Collapse
Affiliation(s)
- H C Lee
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park 16802
| | | | | | | |
Collapse
|
47
|
Luquita MG, Catania VA, Sánchez Pozzi EJ, Mottino AD. Enhancement of cytosolic and microsomal glutathione S-transferase activities in liver and small intestine from female rats during lactation. PHARMACOLOGY & TOXICOLOGY 1995; 76:72-5. [PMID: 7753762 DOI: 10.1111/j.1600-0773.1995.tb00106.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The influence of lactation on hepatic and intestinal glutathione S-transferase activities in mother rats was studied. Cytosolic and microsomal activities were assessed 7, 14 and 21 days after delivery, using 1-chloro-2,4-dinitrobenzene as substrate. Cytosolic and microsomal activities from liver and small intestine determined 7 days post partum did not differ from those of virgin female rats. The hepatic cytosolic activity was significantly increased with respect to that of virgin females 14 days after delivery and tended to revert to the control value on day 21 of lactation, whereas the intestinal activity was increased on day 14 and remained augmented even 21 days post partum. Although the respective microsomal activities showed percent increases higher than those of the cytosolic enzymes, they both exhibited a similar pattern of stimulation in response to lactation.
Collapse
Affiliation(s)
- M G Luquita
- Institute of Experimental Physiology CONICET-U.N.R., Faculty of Biochemical and Pharmaceutical Sciences, Rosario, Argentina
| | | | | | | |
Collapse
|
48
|
Hayes JD, Pulford DJ. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 1995; 30:445-600. [PMID: 8770536 DOI: 10.3109/10409239509083491] [Citation(s) in RCA: 2415] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The glutathione S-transferases (GST) represent a major group of detoxification enzymes. All eukaryotic species possess multiple cytosolic and membrane-bound GST isoenzymes, each of which displays distinct catalytic as well as noncatalytic binding properties: the cytosolic enzymes are encoded by at least five distantly related gene families (designated class alpha, mu, pi, sigma, and theta GST), whereas the membrane-bound enzymes, microsomal GST and leukotriene C4 synthetase, are encoded by single genes and both have arisen separately from the soluble GST. Evidence suggests that the level of expression of GST is a crucial factor in determining the sensitivity of cells to a broad spectrum of toxic chemicals. In this article the biochemical functions of GST are described to show how individual isoenzymes contribute to resistance to carcinogens, antitumor drugs, environmental pollutants, and products of oxidative stress. A description of the mechanisms of transcriptional and posttranscriptional regulation of GST isoenzymes is provided to allow identification of factors that may modulate resistance to specific noxious chemicals. The most abundant mammalian GST are the class alpha, mu, and pi enzymes and their regulation has been studied in detail. The biological control of these families is complex as they exhibit sex-, age-, tissue-, species-, and tumor-specific patterns of expression. In addition, GST are regulated by a structurally diverse range of xenobiotics and, to date, at least 100 chemicals have been identified that induce GST; a significant number of these chemical inducers occur naturally and, as they are found as nonnutrient components in vegetables and citrus fruits, it is apparent that humans are likely to be exposed regularly to such compounds. Many inducers, but not all, effect transcriptional activation of GST genes through either the antioxidant-responsive element (ARE), the xenobiotic-responsive element (XRE), the GST P enhancer 1(GPE), or the glucocorticoid-responsive element (GRE). Barbiturates may transcriptionally activate GST through a Barbie box element. The involvement of the Ah-receptor, Maf, Nrl, Jun, Fos, and NF-kappa B in GST induction is discussed. Many of the compounds that induce GST are themselves substrates for these enzymes, or are metabolized (by cytochrome P-450 monooxygenases) to compounds that can serve as GST substrates, suggesting that GST induction represents part of an adaptive response mechanism to chemical stress caused by electrophiles. It also appears probable that GST are regulated in vivo by reactive oxygen species (ROS), because not only are some of the most potent inducers capable of generating free radicals by redox-cycling, but H2O2 has been shown to induce GST in plant and mammalian cells: induction of GST by ROS would appear to represent an adaptive response as these enzymes detoxify some of the toxic carbonyl-, peroxide-, and epoxide-containing metabolites produced within the cell by oxidative stress. Class alpha, mu, and pi GST isoenzymes are overexpressed in rat hepatic preneoplastic nodules and the increased levels of these enzymes are believed to contribute to the multidrug-resistant phenotype observed in these lesions. The majority of human tumors and human tumor cell lines express significant amounts of class pi GST. Cell lines selected in vitro for resistance to anticancer drugs frequently overexpress class pi GST, although overexpression of class alpha and mu isoenzymes is also often observed. The mechanisms responsible for overexpression of GST include transcriptional activation, stabilization of either mRNA or protein, and gene amplification. In humans, marked interindividual differences exist in the expression of class alpha, mu, and theta GST. The molecular basis for the variation in class alpha GST is not known. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- J D Hayes
- Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, Scotland, U.K
| | | |
Collapse
|
49
|
Daido A, Aniya Y. Alteration of liver glutathione S-transferase and protease activities by cobalt chloride treatment of rats. JAPANESE JOURNAL OF PHARMACOLOGY 1994; 66:357-62. [PMID: 7532736 DOI: 10.1254/jjp.66.357] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Effects of cobalt chloride on liver glutathione S-transferase and protease activities were studied. When cobalt chloride (60 mg/kg) was given to rats, liver microsomal glutathione S-transferase and protease activities were significantly increased 24 hr after the injection, whereas glutathione peroxidase activity in microsomes was decreased. The increase in glutathione S-transferase by N-ethylmaleimide was similar to that of the control, indicating that the increase in the transferase activity by cobalt chloride is not due to a modification of the sulfhydryl group of the enzyme. Immunochemical analysis of the liver microsomes did not detect any proteolytic product of microsomal glutathione S-transferase. In puromycin- or actinomycin D-treated rats, an increase in the transferase activity caused by cobalt chloride treatment was depressed. Thus it was suggested that liver microsomal glutathione S-transferase is induced by cobalt chloride treatment, but not activated by limited proteolysis via microsomal protease.
Collapse
Affiliation(s)
- A Daido
- Laboratory of Physiology and Pharmacology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | | |
Collapse
|
50
|
Liebau E, Wildenburg G, Walter RD, Henkle-Dührsen K. A novel type of glutathione S-transferase in Onchocerca volvulus. Infect Immun 1994; 62:4762-7. [PMID: 7927752 PMCID: PMC303184 DOI: 10.1128/iai.62.11.4762-4767.1994] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Onchocerca volvulus is a pathogenic human filarial parasite which, like other helminth parasites, is capable of evading the host's immune responses by a variety of defense mechanisms which are likely to include the detoxification and repair mechanisms of the enzyme glutathione S-transferase (GST). In this study, we show that one of the previously described GSTs from O. volvulus appears to possess the characteristics of a secreted enzyme. When the complete O. volvulus GST1 (OvGST1) sequence presented here is compared with those of other GSTs, 50 additional residues at the N terminus are observed, the first 25 showing characteristics of a signal peptide. This is consistent with the N-terminal sequence data on the native mature enzyme which begins at amino acid 26, based on the deduced protein sequence from the cDNA. The native protein, without the signal peptide sequence, possesses a 24-amino-acid extension not present in other GSTs. The deduced amino acid sequence of the OvGST1 cDNA clone was shown to possess four potential N-glycosylation sites. Digestion of O. volvulus homogenate with endoglycosidase, followed by detection of OvGST1 with specific antibody, indicated that the enzyme possesses at least two N-linked oligosaccharide chains. Gel filtration of the Escherichia coli-produced recombinant OvGST1 showed that it is enzymatically active as a nonglycosylated dimer. OvGST1 is found in the media surrounding adult worms maintained in culture, indicating that, in vitro, this enzyme is released from the worm. The strongest immunostaining for OvGST1 was observed in the outer cellular covering of the adult worm body, the syncytial hypodermis, especially in the interchordal hypodermis, where the peripheral membrane forms a series of lamellae which run into the outer zone of the hypodermal cytoplasm.
Collapse
Affiliation(s)
- E Liebau
- Department of Biochemistry, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | | |
Collapse
|