1
|
Sato Y, Chibana K, Horigane Y, Uchida N, Masawa M, Koike R, Nakamura Y, Watanabe T, Shiobara T, Arai R, Shimizu Y, Takemasa A, Ishii Y. Comparison of inducible nitric oxide synthase mRNA expression in different airway portions and association with nitric oxide parameters from patients with asthma. Clin Exp Allergy 2019; 49:582-590. [PMID: 30667100 PMCID: PMC6850274 DOI: 10.1111/cea.13344] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 11/26/2018] [Accepted: 12/29/2018] [Indexed: 11/27/2022]
Abstract
Background Fractional exhaled nitric oxide concentration (FeNO) is widely used to support diagnosis and monitoring of bronchial asthma (BA). Tsoukias and George proposed a two‐compartment model (2CM) for assessing the alveolar concentration of NO, referred to as CANO(2CM), while Condorelli et al proposed a model based on the trumpet shape of the airway tree and axial diffusion (TMAD), referred to as CANO(TMAD). In addition, Högman et al proposed non‐linear model, referred to as CANO(non‐linear). Objective We examined associations between the expression of inducible nitric oxide synthase (iNOS) mRNA in airway cells (ACs) by bronchoscopy and NO‐parameters calculated by the three methods and identified which of them accurately reflected expression of iNOSmRNA from different airway portions. Methods We retrospectively analysed data of 18 patients with stable, mild‐moderate asthma, including 10 steroid‐naïve BA (snBA) patients. Samples were obtained from airway brushings and bronchoalveolar lavage (BAL). Expressions of iNOS protein in tissue samples were evaluated by immunostaining. The iNOSmRNA in ACs was measured by qPCR. NO‐parameters calculated by the three methods above and evaluated whether they were associated with iNOSmRNA in ACs derived from proximal (2nd carina), distal (10‐15th) airways and alveolar regions. Results Immunostaining revealed expression of iNOS proteins mainly in epithelial cells in the airways, while it was mainly expressed in macrophages in the alveolar region in the snBA group. The iNOSmRNA expression was increased in both proximal and distal ACs in the snBA group compared with steroid‐treated BA group (stBA). CANO(2CM) negatively associated with FEV1 (%predicted) and also associated with iNOSmRNA in distal ACs significantly. However, CANO(TMAD) and CANO(non‐linear) showed no correlation with lung function nor iNOSmRNA expression in any portions of ACs. Conclusions These results suggested that CANO(2CM) reflected distal airway inflammation in steroid‐naïve asthma.
Collapse
Affiliation(s)
- Yoko Sato
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Mibumachi, Tochigi, Japan.,Tomishiro Central Hospital, Tomishiro, Okinawa, Japan
| | - Kazuyuki Chibana
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Mibumachi, Tochigi, Japan
| | - Yukiko Horigane
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Mibumachi, Tochigi, Japan
| | - Nobuhiko Uchida
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Mibumachi, Tochigi, Japan
| | - Meitetsu Masawa
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Mibumachi, Tochigi, Japan
| | - Ryosuke Koike
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Mibumachi, Tochigi, Japan
| | - Yusuke Nakamura
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Mibumachi, Tochigi, Japan
| | - Taiji Watanabe
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Mibumachi, Tochigi, Japan
| | - Taichi Shiobara
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Mibumachi, Tochigi, Japan
| | - Ryo Arai
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Mibumachi, Tochigi, Japan
| | - Yasuo Shimizu
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Mibumachi, Tochigi, Japan
| | - Akihiro Takemasa
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Mibumachi, Tochigi, Japan
| | - Yoshiki Ishii
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Mibumachi, Tochigi, Japan
| |
Collapse
|
2
|
Radiochemical high-performance liquid chromatography detection of arginine metabolism in human endothelial cells. Anal Biochem 2012; 424:156-61. [DOI: 10.1016/j.ab.2012.02.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 02/08/2012] [Accepted: 02/21/2012] [Indexed: 11/23/2022]
|
3
|
Engelmann M, Wolf G, Putzke J, Bloom FE, Raber J, Landgraf R, Spina MG, Horn TFW. Nitric oxide is not involved in the control of vasopressin release during acute forced swimming in rats. Amino Acids 2003; 26:37-43. [PMID: 14752614 DOI: 10.1007/s00726-003-0040-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2003] [Accepted: 06/25/2003] [Indexed: 10/26/2022]
Abstract
Neurons of the hypothalamo-neurohypophyseal system (HNS) are known to contain high amounts of neuronal nitric oxide (NO) synthase (nNOS). NO produced by those neurons is commonly supposed to be involved as modulator in the release of the two nonapeptides vasopressin (AVP) and oxytocin into the blood stream. Previous studies showed that forced swimming fails to increase the release of AVP into the blood stream while its secretion into the hypothalamus is triggered. We investigated here whether hypothalamically acting NO contributes to the control of the AVP release into blood under forced swimming conditions. Intracerebral microdialysis and in situ hybridization were employed to analyze the activity of the nitrergic system within the supraoptic nucleus (SON), the hypothalamic origin of the HNS. A 10-min forced swimming session failed to significantly alter the local NO release as indicated both by nitrite and, the main by-product of NO synthesis, citrulline levels in microdialysis samples collected from the SON. Microdialysis administration of NO directly into the SON increased the concentration of AVP in plasma samples collected during simultaneous forced swimming. In an additional experiment the effect of the defined stressor exposure on the concentration of mRNA coding for nNOS within the SON was investigated by in situ hybridization. Forced swimming increased the expression of nNOS mRNA at two and four hours after onset of the stressor compared to untreated controls. Taken together, our results imply that NO within the SON does not contribute to the regulation of the secretory activity of HNS neurons during acute forced swimming. Increased nNOS mRNA in the SON after forced swimming and the increase in AVP release in the presence of exogenous NO under forced swimming points to a possible role of NO in the regulation of the HNS under repeated stressor exposure.
Collapse
Affiliation(s)
- M Engelmann
- Institut für Medizinische Neurobiologie, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Roychowdhury S, Luthe A, Keilhoff G, Wolf G, Horn TFW. Oxidative stress in glial cultures: detection by DAF-2 fluorescence used as a tool to measure peroxynitrite rather than nitric oxide. Glia 2002; 38:103-14. [PMID: 11948804 DOI: 10.1002/glia.10024] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
4,5-diaminofluorescein diacetate (DAF-2DA) is widely used as a fluorescent probe to detect endogenously produced nitric oxide (NO). Recent reports that refer to the high sensitivity of DAF-2 toward NO prompted us to test its efficiency and specificity in a mixed murine primary glial culture model, in which the NO-synthesizing enzyme inducible nitric oxide synthase (iNOS) is expressed by stimulation with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma). Cultures were loaded with DAF-2DA and the fluorescence was measured using confocal microscopy. NO production in the cultures was determined using the ozone/chemiluminescence technique. Due to the extremely high photosensitivity of DAF-2, low laser intensities were used to avoid artifacts. No difference in DAF-2 fluorescence was observed in NO-producing cultures compared to control cultures, whereas the NO/peroxynitrite-sensitive dye 2,7-dihydrodichlorofluorescein (DCF) showed a significant fluorescence increase specifically in microglia cells. A detectable gain in fluorescence was seen when NO-containing buffer was added to the DAF-2DA-loaded cells with a minimum NO concentration at 7.7 microM. An additional gain of DAF-2 fluorescence was obtained when the cells were depleted of glutathione (GSH) with L-buthionine S,R-sulfoximine (BSO). Hence, we monitored the change in DAF-2 fluorescence intensity in the presence of NO and O(-*)(2) in a cell-free solution. The fluorescence due to NO was indeed larger when O(-*)(2) was added, implying a higher sensitivity of DAF-2 for peroxynitrite. Nevertheless, our results also indicate that measurement of DCF fluorescence is a better tool for monitoring intracellular changes in the levels of NO and/or peroxynitrite than DAF-2.
Collapse
Affiliation(s)
- Sanjoy Roychowdhury
- Otto-von-Guericke University, Institute for Medical Neurobiology, Magdeburg, Germany
| | | | | | | | | |
Collapse
|
5
|
Moali C, Brollo M, Custot J, Sari MA, Boucher JL, Stuehr DJ, Mansuy D. Recognition of alpha-amino acids bearing various C=NOH functions by nitric oxide synthase and arginase involves very different structural determinants. Biochemistry 2000; 39:8208-18. [PMID: 10889028 DOI: 10.1021/bi992992v] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several alpha-amino acids bearing a C=NOH function separated from the Calpha carbon by two to five atoms have been synthesized and tested as substrates or inhibitors of recombinant nitric oxide synthases (NOS) I and II and as inhibitors of rat liver arginase (RLA). These include four N-hydroxyguanidines, N(omega)-hydroxy-L-arginine (NOHA) and its analogues homo-NOHA, nor-NOHA, and dinor-NOHA, two amidoximes bearing the -NH-C(CH(3))=NOH group, and two amidoximes bearing the -CH(2)-C(NH(2))=NOH group. Their behavior toward NOS and RLA was compared to that of the corresponding compounds bearing a C=NH function instead of the C=NOH function. The results obtained clearly show that efficient recognition of these alpha-amino acids by NOS and RLA involves very different structural determinants. NOS favors molecules bearing a -NH-C(R)=NH motif separated from Calpha by three or four CH(2) groups, such as arginine itself, with the necessary presence of delta-NH and omega-NH groups and a more variable R substituent. The corresponding molecules with a C=NOH function exhibit a much lower affinity for NOS. On the contrary, RLA best recognizes molecules bearing a C=NOH function separated from Calpha by three or four atoms, the highest affinity being observed in the case of three atoms. The presence of two omega-nitrogen atoms is important for efficient recognition, as in the two best RLA inhibitors, N(omega)-hydroxynorarginine and N(omega)-hydroxynorindospicine, which exhibit IC(50) values at the micromolar level. However, contrary to what was observed in the case of NOS, the presence of a delta-NH group is not important. These different structural requirements of NOS and RLA may be directly linked to the position of crucial residues that have been identified from crystallographic data in the active sites of both enzymes. Thus, binding of arginine analogues to NOS particularly relies on strong interactions of their delta-NH and omega-NH(2) groups with glutamate 371 (of NOS II), whereas binding of C=NOH molecules to RLA is mainly based on interactions of their terminal OH group with the binuclear Mn(II).Mn(II) cluster of the enzyme and on possible additional bonds between their omega-NH(2) group with histidine 141, glutamate 277, and one Mn(II) ion. The different modes of interaction displayed by both enzymes depend on their different catalytic functions and give interesting opportunities to design useful molecules to selectively regulate NOS and arginase.
Collapse
Affiliation(s)
- C Moali
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université Paris V, 45 Rue des Saints-Pères, 75270 Paris Cedex 06, France
| | | | | | | | | | | | | |
Collapse
|
6
|
Tenu JP, Lepoivre M, Moali C, Brollo M, Mansuy D, Boucher JL. Effects of the new arginase inhibitor N(omega)-hydroxy-nor-L-arginine on NO synthase activity in murine macrophages. Nitric Oxide 1999; 3:427-38. [PMID: 10637120 DOI: 10.1006/niox.1999.0255] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In stimulated murine macrophage, arginase and nitric oxide synthase (NOS) compete for their common substrate, l-arginine. The objectives of this study were (i) to test the new alpha-amino acid N(omega)-hydroxy-nor-l-arginine (nor-NOHA) as a new selective arginase inhibitor and (ii) to elucidate the effects of arginase inhibition on l-arginine utilization by an inducible NOS. Nor-NOHA is about 40-fold more potent than N(omega)-hydroxy-l-arginine (NOHA), an intermediate in the l-arginine/NO pathway, to inhibit the hydrolysis of l-arginine to l-ornithine catalyzed by unstimulated murine macrophages (IC(50) values 12 +/- 5 and 400 +/- 50 microM, respectively). Stimulation of murine macrophages with interferon-gamma and lipopolysaccharide (IFN-gamma + LPS) results in clear expression of an inducible NOS (iNOS) and to an increase in arginase activity. Nor-NOHA is also a potent inhibitor of arginase in IFN-gamma + LPS-stimulated macrophage (IC(50) value 10 +/- 3 microM). In contrast to NOHA, nor-NOHA is neither a substrate nor an inhibitor for iNOS and it appears as a useful tool to study the interplays between arginase and NOS. Inhibition of arginase by nor-NOHA increases nitrite and l-citrulline accumulation for incubation times higher than 12 h, under our conditions. Our results allow the determination of the kinetic parameters of the two competitive pathways and the proposal of a simple model which readily explains the differences observed between experiments. This model readily accounts for the observed effects and should be useful to predict the consequences of arginase inhibition in the presence of an active NOS on l-arginine availability.
Collapse
Affiliation(s)
- J P Tenu
- UMR 8619 CNRS, Batiment 430, Universite Paris-Sud XI, Orsay Cedex, F-91405, France
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
In the immunosuppression accompanying the lethal systemic graft-versus-host reaction (GVHR) directed against minor histocompatibility antigens in irradiated adult mice, we previously determined that non-T, non-B, L-leucine methyl ester (LME)-sensitive cells were implicated via two different mechanisms: one, which is interferon-γ (IFN-γ)–dependent and affects both T-cell proliferative responses and thymus-independent antibody production by CD5+ B cells; and a second, which is IFN-γ–independent and affects B-cell proliferative responses. Because IFN-γ induces the production of nitric oxide (NO), a potent immunosuppressive molecule, we investigated the involvement of NO in the suppression mediated by the LME-sensitive cells. Inducible NO synthase (iNOS) mRNA, iNOS protein, and the stable end products of iNOS pathway, L-citrulline and nitrite, were detected early in GVHR in LME-sensitive spleen cells taken ex vivo and could be amplified in vitro by T and B mitogens. Inhibition of NO production with arginine analogs (aminoguanidine, NG-monomethyl-L-arginine [LMMA]), like anti–IFN-γ antibodies, reversed suppression of both T-cell responses to concanavalin A and CD5+ B-cell responses, but not of B-cell response to lipopolysaccharides (LPS). The GVHR-associated, IFN-γ–dependent immunosuppression of T-cell proliferation and of antibody synthesis by CD5+ B cells is the consequence of NO production by LME-sensitive cells. Immunohistochemical analyses indicate that these cells belong to the macrophage lineage.
Collapse
|
8
|
Abstract
Hydroxyguanidines (OHGs), including the endogenously formed NG-hydroxy-L-arginine (OH-arg), can react with nitric oxide (NO) and nitrogen oxides (NOx) in vitro. Therefore, we have tested OHGs and related compounds for their ability to scavenge peroxynitrite and to protect against peroxynitrite-induced oxidative processes in cells. Hydroxyguanidine, NG-hydroxy-L-arginine and other N-substituted OHGs, dose-dependently inhibited the in vitro oxidation of dihydrorhodamine (DHR) by peroxynitrite (PN), with similar or better efficacy than glutathione or cysteine. Amidoximes, aminoguanidines and O-substituted OHGs were less effective, and guanidines were without effect. In contrast to their effects on DHR oxidation, OHGs exerted only minimal inhibitory effects on the hydroxylation of benzoate by PN, suggesting that OHGs do not react with the activated isomer of peroxynitrous acid. Selected compounds were tested for protection against PN-induced suppression of mitochondrial respiration and protein oxidation in cultured J774 murine macrophages. Aminoguanidines afforded some protection against the effects of PN, but substituted-phenyl OHGs were considerably more effective. Analysis of the products of the reaction of 4-methoxybenzyl-OHG with PN showed rapid formation of nitrosated derivatives, as well as 4-methoxybenzylcyanamide and a small amount of 4-methoxybenzylurea. Nitric oxide and nitrous oxide were also evolved, but indirectly, arising from the decomposition of one of the nitrosation products. The current results demonstrate that hydroxyguanidines react with PN to protect cells against PN-mediated injury and may be more effective than the endogenous antioxidants cysteine and glutathione.
Collapse
Affiliation(s)
- G J Southan
- Intramural Research Support Program, SAIC-Frederick, National Cancer Institute-Frederick Cancer Research and Development Center, MD, USA.
| | | | | |
Collapse
|
9
|
Rockett KA, Brookes R, Udalova I, Vidal V, Hill AV, Kwiatkowski D. 1,25-Dihydroxyvitamin D3 induces nitric oxide synthase and suppresses growth of Mycobacterium tuberculosis in a human macrophage-like cell line. Infect Immun 1998; 66:5314-21. [PMID: 9784538 PMCID: PMC108664 DOI: 10.1128/iai.66.11.5314-5321.1998] [Citation(s) in RCA: 225] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/1998] [Accepted: 07/29/1998] [Indexed: 11/20/2022] Open
Abstract
Inducible synthesis of nitric oxide (NO) by macrophages is an important mechanism of the host defense against intracellular infection in mice, but the evidence for significant levels of inducible NO production by human macrophages is controversial. Here we report that the human promyelocytic cell line HL-60, when differentiated to a macrophage-like phenotype, acquires the ability to produce substantial amounts of NO on stimulation with LPS or 1, 25-dihydroxyvitamin D3 (1,25-D3) in the absence of activating factors such as gamma interferon. Expression of the inducible nitric oxide synthase (NOS2) was confirmed by sequencing of the reverse transcription-PCR product from stimulated HL-60 cells. Kinetic studies after lipopolysaccharide stimulation show that NOS2 mRNA levels rise within 3 to 6 h, that conversion of [14C]arginine to [14C]citrulline is maximal at 5 to 6 days, and that levels of reactive nitrogen intermediates stabilize at around 20 microM at 7 to 8 days. We find that 1,25-D3 acts to suppress the growth of Mycobacterium tuberculosis in these cells and that this effect is inhibited by NG-monomethyl-L-arginine, suggesting that vitamin D-induced NO production may play a role in the host defense against human tuberculosis.
Collapse
Affiliation(s)
- K A Rockett
- Molecular Infectious Disease Group, Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom.
| | | | | | | | | | | |
Collapse
|
10
|
Sari MA, Moali C, Boucher JL, Jaouen M, Mansuy D. Detection of a nitric oxide synthase possibly involved in the regulation of the Rhodococcus sp R312 nitrile hydratase. Biochem Biophys Res Commun 1998; 250:364-8. [PMID: 9753635 DOI: 10.1006/bbrc.1998.9320] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Crude homogenates from Rhodococcus sp 312 catalyze the conversion of L-arginine into L-citrulline and NO2-, the usual oxidation product of NO under aerobic conditions. They also catalyze the conversion of N omega-hydroxy-L-arginine (NOHA) into L-citrulline and NO2- with similar rates (10-15 and 100-150 nmol of product.min-1.(mg of protein)-1 respectively for the crude homogenate and for a fraction obtained from ammonium sulfate precipitation). L-citrulline formation is strongly inhibited by classical inhibitors of mammalian nitric oxide synthases (NOSs) such as N omega-methyl-L-arginine (NMA) and thio-L-citrulline (TC). Finally, the lack of inhibitory effects of EGTA, a classical inhibitor of constitutive mammalian NOSs, and the specific immunodetection of a 100 kD protein from Rhodococcus cytosol by an antibody raised against human inducible NOS, is in favor of the presence of a NOS similar to inducible mammalian NOSs in Rhodococcus sp 312. This NOS should be responsible for the NO-dependent inactivation of Rhodococcus Nitrile Hydratase (NHase) in the absence of light; it could regulate the activity of the latter enzyme.
Collapse
Affiliation(s)
- M A Sari
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (URA 400 CNRS), Université René Descartes Paris V, France.
| | | | | | | | | |
Collapse
|
11
|
Reubsaet JL, Beijnen JH, Bult A, van Maanen RJ, Marchal JA, Underberg WJ. Analytical techniques used to study the degradation of proteins and peptides: chemical instability. J Pharm Biomed Anal 1998; 17:955-78. [PMID: 9884187 DOI: 10.1016/s0731-7085(98)00063-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Instability of peptides and proteins can be divided into two forms: chemical and physical instability. Chemical instability is due to modification/alteration of amino acid residues. There are several types of degradation reactions responsible for this instability. Most frequently described reactions are oxidation, reduction, deamidation, hydrolysis, arginine conversion, beta-elimination and racemisation. However, any study of the degradation of a chemical substance lacks reliability when the analytical methodology, that is used is not properly validated. Especially in the investigation, where degradation processes lead to their parent compounds, validation of the analysis is pivotal for the correct interpretation of the results. It is therefore appropriate and useful to assemble an overview of degradation processes in relation to the analytical methods to monitor them. An overview like this can help investigators to make the right choices in their analytical approach of stability problems. The degradation reactions involved in peptide/protein degradation as well as the methods to monitor them are summarized and discussed.
Collapse
Affiliation(s)
- J L Reubsaet
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Utrecht University, The Netherlands
| | | | | | | | | | | |
Collapse
|
12
|
Berkels R, Bertsch A, Zuther T, Dhein S, Stockklauser K, Rösen P, Rösen R. Evidence for a NO synthase in porcine platelets which is stimulated during activation/aggregation. Eur J Haematol 1997; 58:307-13. [PMID: 9222285 DOI: 10.1111/j.1600-0609.1997.tb01676.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We tried to characterize the porcine platelet nitric oxide (NO) synthase and its L-arginine (L-arg)/NO metabolism. Using RT-PCR we could show a constitutive endothelial NOS (ecNOS) and an inducible NOS (iNOS) similar mRNA in platelets. The NOS protein could be evidenced by an ecNOS specific antibody which also bound in platelets. This finding could be confirmed by Western blot showing an ecNOS in the membrane but not the cytosolic fraction; iNOS protein could not be detected. Using NADPH-diaphorase staining we could show NO synthase in preactivated platelets but not in resting platelets, indicating that the platelet NOS may be activated during platelet activation/aggregation. Porcine L-arg plasma levels (9.31 x 10(-5) mol/l +/- 10%) could be shown to be in the same range as human plasma levels. Moreover, we could show that the NO precursor L-arg and hydroxy-L-arginine (OHarg) concentration dependently inhibited collagen induced platelet aggregation. Summarizing these results confirm the existence of and further characterize porcine platelet NO synthases.
Collapse
Affiliation(s)
- R Berkels
- Institut für Pharmakologia, Universität zu Köln, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Sekkaï D, Guittet O, Lemaire G, Tenu JP, Lepoivre M. Inhibition of nitric oxide synthase expression and activity in macrophages by 3-hydroxyanthranilic acid, a tryptophan metabolite. Arch Biochem Biophys 1997; 340:117-23. [PMID: 9126284 DOI: 10.1006/abbi.1997.9913] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Indoleamine 2,3-dioxygenase (IDO) and nitric oxide synthase (NOS) type II are induced in macrophages by interferon (IFN)-gamma and lipopolysaccharide (LPS). Nitric oxide has been previously shown to inhibit IDO activity. We studied whether metabolites of tryptophan via the IDO pathway could alter NOS II activity. In RAW 264.7 cells, the phenolic antioxidant 3-hydroxyanthranilic acid (OH-AA), but not anthranilic acid, inhibited citrulline synthesis by NOS II at sub-millimolar concentrations, when added 1 h before IFN-gamma and LPS. OH-AA inhibited NOS II activity in cytosolic extracts, suggesting a direct action of OH-AA on NOS II protein. Moreover, expression of NOS II mRNA and activation of the nuclear factor kappa B (NF-kappa B) in RAW 264.7 cells were decreased by a pretreatment with OH-AA, but not anthranilic acid, before addition of IFN-gamma and LPS. This pretreatment also inhibited activation of NF-kappa B in response to TNF-alpha in lymphoblastoid J.Jhan5-1 cells. Finally, expression of a long terminal repeat of the human immunodeficiency virus (HIV-LTR)-driven luciferase reporter gene, controlled by NF-kappa B activation, was severely decreased by OH-AA or 3-hydroxykynurenine in J.Jhan5-1 cells. Other tryptophan derivatives were inactive. These data identify OH-AA as an aminophenolic tryptophan derivative inhibiting NF-kappa B activation and impairing both NOS II expression and activity in a millimolar concentration range.
Collapse
Affiliation(s)
- D Sekkaï
- URA CNRS 1116, Université Paris XI, Orsay, France
| | | | | | | | | |
Collapse
|
14
|
Calaycay JR, Kelly TM, MacNaul KL, McCauley ED, Qi H, Grant SK, Griffin PR, Klatt T, Raju SM, Nussler AK, Shah S, Weidner JR, Williams HR, Wolfe GC, Geller DA, Billiar TR, MacCoss M, Mumford RA, Tocci MJ, Schmidt JA, Wong KK, Hutchinson NI. Expression and immunoaffinity purification of human inducible nitric-oxide synthase. Inhibition studies with 2-amino-5,6-dihydro-4H-1,3-thiazine. J Biol Chem 1996; 271:28212-28219. [PMID: 8910438 DOI: 10.1074/jbc.271.45.28212] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Recombinant human inducible nitric-oxide synthase (rH-iNOS) was expressed in the baculovirus system and purified by a novel immunoaffinity column. rH-iNOS and its native counterpart from cytokine-stimulated primary hepatocytes exhibited similar molecular mass of 130 kDa on SDS-polyacrylamide gel electrophoresis, recognition by antipeptide antibodies, specific activities, and IC50 values for inhibitors. The active dimeric form exhibited a specific activity range of 114-260 nmol/min/mg at 37 degrees C and contained 1.15 +/- 0.04 mol of calmodulin/monomer. The enzyme exhibited a Soret lambdamax at 396 nm with a shoulder at 460 nm and contained 0. 28-0.64 mol of heme/monomer. Dithionite reduction under CO yielded an absorbance maximum at 446 nm, indicating a P450-type heme. Imidazole induced a type II difference spectrum, reversible by L-Arg. 2-Amino-5,6-dihydro-4H-1,3-thiazine (ADT) was competitive versus L-Arg (Ki = 22.6 +/- 1.9 nM), reversed the type II difference spectrum induced by imidazole (Kd = 17.7 nM), and altered the CO-ferrous absorbance of rH-iNOS. L-Arg did not perturb the CO-ferrous adduct directly, but it partially reversed the ADT-induced absorbance shift, indicating that both bind similarly to the protein but interact differently with the heme.
Collapse
Affiliation(s)
- J R Calaycay
- Department of Molecular Design, Merck Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Rockett KA, Kwiatkowski D, Bate CA, Awburn MM, Rockett EJ, Clark IA. In vitro induction of nitric oxide by an extract of Plasmodium falciparum. J Infect 1996; 32:187-96. [PMID: 8793707 DOI: 10.1016/s0163-4453(96)80018-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Malarial illness and pathology is generally accepted to be caused by material released when the infected red cells burst at schizogony. The released material has been partially purified and shown to stimulate macrophages to make TNF. We have extended this work to show that these same preparations, isolated from parasitized erythrocytes, induce the mouse macrophage cell line RAW 264.7 to produce inducible nitric oxide synthase and release nitric oxide. By using cytokine-specific antisera we have found that this induction is independent of TNF and IL-1 alpha and partly independent of IL-1 beta.
Collapse
Affiliation(s)
- K A Rockett
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | | | | | | | | | |
Collapse
|
16
|
Laurent M, Lepoivre M, Tenu JP. Kinetic modelling of the nitric oxide gradient generated in vitro by adherent cells expressing inducible nitric oxide synthase. Biochem J 1996; 314 ( Pt 1):109-13. [PMID: 8660270 PMCID: PMC1217012 DOI: 10.1042/bj3140109] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Inducible nitric oxide (NO) synthase produces a long-lasting NO flux which can exert cytotoxic effects on target cells. A prerequisite for the understanding of the molecular basis of NO action is quantitative data on the availability of this small neutral radical molecule at both the spatial and temporal levels. The limits of NO availability depend on the respective rates of NO production, diffusion and autoxidation by molecular oxygen. Kinetic modeling of these processes has been performed for a widely used experimental system consisting of a monolayer of adherent cells cultured in vitro for hours in unstirred culture medium. It appears that: (i) the maximal NO concentration in the culture is in the immediate vicinity of the monolayer, where target cells will sediment; (ii) the steady-state NO concentration in this area is lower than 4 to 5 microM; and (iii) measurements of nitrite/nitrate or citrulline accumulation in the bulk cell medium culture during a given time period significantly underestimate (by a factor of up to 3 to 4) the true rate of NO synthesis at the level of the producer cell. This rate can be, nevertheless, easily estimated from the rate of production of the stable NO synthase products.
Collapse
Affiliation(s)
- M Laurent
- Service d'Imagerie Cellulaire, URA 1116, Université Paris-Sud, Centre d'Orsay, France
| | | | | |
Collapse
|
17
|
Tzeng E, Billiar TR, Robbins PD, Loftus M, Stuehr DJ. Expression of human inducible nitric oxide synthase in a tetrahydrobiopterin (H4B)-deficient cell line: H4B promotes assembly of enzyme subunits into an active dimer. Proc Natl Acad Sci U S A 1995; 92:11771-5. [PMID: 8524846 PMCID: PMC40484 DOI: 10.1073/pnas.92.25.11771] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Murine inducible nitric oxide (NO) synthase (iNOS) is catalytically active only in dimeric form. Assembly of its purified subunits into a dimer requires H4B. To understand the structure-activity relationships of human iNOS, we constitutively expressed recombinant human iNOS in NIH 3T3 cells by using a retroviral vector. These cells are deficient in de novo H4B biosynthesis and the role of H4B in the expression and assembly of active iNOS in an intact cell system could be studied. In the absence of added H4B, NO synthesis by the cells was minimal, whereas cells grown with supplemental H4B or the H4B precursor sepiapterin generated NO (74.1 and 63.3 nmol of nitrite per 10(6) cells per 24 h, respectively). NO synthesis correlated with an increase in intracellular H4B but no increase in iNOS protein. Instead, an increased percentage of dimeric iNOS was observed, rising from 20% in cytosols from unsupplemented cells to 66% in H4B-supplemented cell cytosols. In all cases, only dimeric iNOS displayed catalytic activity. Cytosols prepared from H4B-deficient cells exhibited little iNOS activity but acquired activity during a 60- to 120-min incubation with H4B, reaching final activities of 60-72 pmol of citrulline per mg of protein per min. Reconstitution of cytosolic NO synthesis activity was associated with conversion of monomers into dimeric iNOS during the incubation. Thus, human iNOS subunits dimerize to form an active enzyme, and H4B plays a critical role in promoting dimerization in intact cells. This reveals a post-translational mechanism by which intracellular H4B can regulate iNOS expression.
Collapse
Affiliation(s)
- E Tzeng
- Department of Surgery, University of Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
18
|
Campos KL, Giovanelli J, Kaufman S. Characteristics of the nitric oxide synthase-catalyzed conversion of arginine to N-hydroxyarginine, the first oxygenation step in the enzymic synthesis of nitric oxide. J Biol Chem 1995; 270:1721-8. [PMID: 7530247 DOI: 10.1074/jbc.270.4.1721] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The nitric oxide synthase-catalyzed conversion of L-arginine to L-citrulline and nitric oxide is known to be the sum of two partial reactions: oxygenation of arginine to N-hydroxyarginine, followed by oxygenation of N-hydroxyarginine to citrulline and nitric oxide. Whereas the conversion of N-hydroxyarginine to citrulline and nitric oxide has been the subject of a number of studies, the oxygenation of arginine to N-hydroxyarginine has received little attention. Here we show that substrate amounts of rat cerebellar nitric oxide synthase, in the absence of added NADPH, catalyze the conversion of arginine to N-hydroxyarginine as the dominant product. The product appears not to be tightly bound to the enzyme. A maximum of 0.16 mol of N-hydroxyarginine/mol of nitric oxide synthase subunit was formed. The reaction requires oxygen and the addition of Ca2+/calmodulin and is stimulated 3-fold by tetrahydrobiopterin. Upon addition of NADPH, citrulline is formed exclusively. Conversion of N-hydroxyarginine to citrulline, like the first partial reaction, requires Ca2+/calmodulin and is stimulated by tetrahydrobiopterin but differs from the first partial reaction in being completely dependent upon addition of NADPH. These results indicate that brain nitric oxide synthase contains an endogenous reductant that can support oxygenation of arginine but not of N-hydroxyarginine. The reductant is not NADPH, since the amount of nitric oxide synthase-bound NADPH is appreciably less than the amount required for N-hydroxyarginine synthesis. Possible candidates for this role are discussed in relation to proposed mechanisms of action of nitric oxide synthase.
Collapse
Affiliation(s)
- K L Campos
- Laboratory of Neurochemistry, National Institute of Mental Health, Bethesda, Maryland 20895
| | | | | |
Collapse
|
19
|
Chénais B, Tenu JP. Involvement of nitric oxide synthase in antiproliferative activity of macrophages: induction of the enzyme requires two different kinds of signal acting synergistically. INTERNATIONAL JOURNAL OF IMMUNOPHARMACOLOGY 1994; 16:401-6. [PMID: 7523317 DOI: 10.1016/0192-0561(94)90028-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Activated rodent macrophages inhibit micro-organism and tumour cell growth through a high output of nitric oxide; generated by an isoform of nitric oxide synthase which is induced, for example, in murine macrophages, by concomitant stimulation with interferon-gamma (IFN-gamma) and lipopolysaccharide (LPS). We show here that LPS could be replaced as a co-stimulant by the mycobacterial derivative muramyl dipeptide (MDP) in macrophages, and by interleukin-1 (IL-1) in EMT-6 adenocarcinoma cells. Moreover, our results indicate that nitric oxide synthase RNA synthesis required either simultaneous or sequential exposure to IFN-gamma and MDP/IL-1; whereas exposure to MDP/IL-1 followed by exposure to IFN-gamma was ineffective. Thus, two kinds of signal could be distinguished: IFN-gamma on the one hand, acting first in an irreversible way, and LPS, MDP, IL-1 on the other hand, which seemed to be permanently required for continuous transcription of the nitric oxide synthase gene.
Collapse
Affiliation(s)
- B Chénais
- CNRS URA 1116, Bât. 432, Université Paris-XI, Orsay, France
| | | |
Collapse
|
20
|
Schott CA, Bogen CM, Vetrovsky P, Berton CC, Stoclet JC. Exogenous NG-hydroxyl-L-arginine causes nitrite production in vascular smooth muscle cells in the absence of nitric oxide synthase activity. FEBS Lett 1994; 341:203-7. [PMID: 7511114 DOI: 10.1016/0014-5793(94)80457-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nitric oxide (NO) production from exogenous NG-hydroxy-L-arginine (OH-L-Arg) was investigated in rat aortic smooth muscle cells in culture by measuring nitrite accumulation in the culture medium. As well, the interaction between OH-L-Arg and L-arginine uptake via the y+ cationic amino acid transporter was studied. In cells without NO-synthase activity, OH-L-Arg (1-1000 microM) induced a dose-dependent nitrite production with a half-maximal effective concentration (EC50) of 18.0 +/- 1.5 microM (n = 4-7). This nitrite accumulation was not inhibited by the NO-synthase inhibitor NG-nitro-L-arginine methyl ester, L-NAME (300 microM). In contrast, it was abolished by miconazole (100 microM), an inhibitor of cytochrome P450. Incubation of vascular smooth muscle cells with LPS (10 micrograms/ml) induced an L-NAME inhibited nitrite accumulation, but did not enhance the OH-L-Arg induced nitrite production. OH-L-Arg and other cationic amino acids, L-lysine and L-ornithine, competitively inhibited [3H]-L-arginine uptake in rat aortic smooth muscle cells, with inhibition constants of 195 +/- 23 microM (n = 12), 260 +/- 40 microM (n = 5) and 330 +/- 10 microM (n = 5), respectively. These results show that OH-L-Arg is recognized by the cationic L-amino acid carrier present in vascular smooth muscle cells can be oxidized to NO and nitrite in these cells in the absence of NO-synthase, probably by cytochrome P450 or by a reaction involving a cytochrome P450 by-product.
Collapse
MESH Headings
- Amino Acid Oxidoreductases/biosynthesis
- Amino Acid Oxidoreductases/metabolism
- Animals
- Arginine/analogs & derivatives
- Arginine/metabolism
- Arginine/pharmacology
- Carrier Proteins/metabolism
- Cells, Cultured
- Enzyme Induction
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Nitric Oxide Synthase
- Nitrites/metabolism
- Rats
- Rats, Wistar
Collapse
Affiliation(s)
- C A Schott
- Université Louis Pasteur de Strasbourg, Laboratoire de Pharmacologie Cellulaire et Moléculaire, CNRS URA600, Illkirch, France
| | | | | | | | | |
Collapse
|
21
|
Meulemans A. Continuous monitoring of N-nitroso-L-arginine using micro carbon electrode in rat brain. Neurosci Lett 1993; 157:7-12. [PMID: 7694192 DOI: 10.1016/0304-3940(93)90630-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Constitutive brain nitric oxide (NO) synthase is described as converting L-arginine into NO. NO is thought to be the cellular messenger released by endothelial cells, and was originally termed endothelial-derived relaxing factor (EDRF). The mechanisms of its synthesis remain unclear. Using microelectrode differential pulse voltammetry in the presence of cortical constitutive rat brain NO synthase, a peak was recorded at -1.66 V with respect to a Ag/AgCl reference electrode. This voltage peak, due to the reduction of N-nitroso-L-arginine, was increased in rat brain cortex after pharmacological stimulation with L-arginine or A-23187; whereas it was abolished following application of D-arginine, N-nitro-L-arginine or pure NO. Using laser doppler measurements, the secretion of N-nitroso-L-arginine was correlated to brain blood flow. These preliminary results suggest that N-nitroso-L-arginine is synthetized by constitutive brain NO synthase of vascular endothelial cells in rat brain cortex.
Collapse
Affiliation(s)
- A Meulemans
- Faculté de médecine Xavier-Bichat, Laboratoire de Biophysique, Paris, France
| |
Collapse
|
22
|
McMillan K, Bredt DS, Hirsch DJ, Snyder SH, Clark JE, Masters BS. Cloned, expressed rat cerebellar nitric oxide synthase contains stoichiometric amounts of heme, which binds carbon monoxide. Proc Natl Acad Sci U S A 1992; 89:11141-5. [PMID: 1280819 PMCID: PMC50505 DOI: 10.1073/pnas.89.23.11141] [Citation(s) in RCA: 291] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The endogenous formation of nitric oxide (NO) has become an area of intense interest as evidence for its biological functions has been obtained in three distinct tissues: circulating macrophages, in which it exerts cytotoxic effects; blood vessels, in which it has been identified as endothelium-derived relaxing factor; and neuronal cells, in which it functions as a neurotransmitter. The formation of NO in brain extracts has been shown to be catalyzed by an enzyme, termed NO synthase, which generates the NO responsible for stimulation of cGMP formation, the highest levels of which occur in the cerebellum. NO synthase catalyzes the formation of citrulline from arginine with the coincident production of NO and has been shown to be a flavoprotein, containing 1 mol each of FAD and FMN, tetrahydrobiopterin, and iron. It is also reported to contain an alpha-helical, calmodulin-binding consensus sequence consistent with its stimulation by calmodulin in the presence of Ca2+. The formation of NO requires incorporation of one of the atoms of molecular oxygen into one of the guanidinium nitrogen atoms of arginine with the coincident formation of citrulline. This communication reports that rat cerebellar NO synthase, cloned and stably expressed in human kidney 293 cells, contains heme in amounts stoichiometric with the flavins FAD and FMN as evidenced by the appearance of a pyridine hemochrome and a reduced CO difference spectrum with an absorbance maximum at approximately 445 nm. The finding of a CO-binding heme moiety explains the presence of iron in the enzyme and suggests a role for prosthetic heme as an oxygenase reaction center. This report also presents evidence for incorporation of delta-[14C]aminolevulinate specifically into immunoprecipitable NO synthase in stably transfected human kidney 293 cells but not in nontransfected cells. Simultaneously, K. A. White and M. A. Marletta [(1992) Biochemistry 31, 6627-6631] have demonstrated a CO-binding heme prosthetic group in purified murine macrophage NO synthase and have suggested the identity of these reaction centers in both the constitutive (cerebellar) and inducible (macrophage) forms of NO synthase.
Collapse
Affiliation(s)
- K McMillan
- Department of Biochemistry, University of Texas Health Science Center, San Antonio 78284-7760
| | | | | | | | | | | |
Collapse
|
23
|
Early loss of the tyrosyl radical in ribonucleotide reductase of adenocarcinoma cells producing nitric oxide. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)50046-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
24
|
Boucher JL, Genet A, Vadon S, Delaforge M, Henry Y, Mansuy D. Cytochrome P450 catalyzes the oxidation of N omega-hydroxy-L-arginine by NADPH and O2 to nitric oxide and citrulline. Biochem Biophys Res Commun 1992; 187:880-6. [PMID: 1530643 DOI: 10.1016/0006-291x(92)91279-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Rat liver microsomes catalyze the oxidative denitration of N omega-hydroxy-L-arginine (NOHA) by NADPH and O2 with formation of citrulline and nitrogen oxides like NO and NO2-. Besides NO2- and citrulline, whose simultaneous formation is linear for at least 20 min, the formation of NO could be detected under the form of its P450 and P420-Fe(II) complexes by UV-visible and EPR spectroscopy. Classical inhibitors of NO-synthases, like N omega-methyl-and N omega-nitro-arginine, fail to inhibit the microsomal oxidation of NOHA to citrulline and NO2-. On the contrary classical inhibitors of hepatic cytochromes P450 like CO, miconazole, dihydroergotamine and troleandomycin, strongly inhibit this monooxygenase reaction. These results show that the oxygenation of NOHA by NADPH and O2 with formation of citrulline and NO can be efficiently catalyzed by cytochromes P450 (with rates up to 1.5 turnovers per min for the cytochromes of the 3A subfamily).
Collapse
Affiliation(s)
- J L Boucher
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université René Descartes, Paris, France
| | | | | | | | | | | |
Collapse
|
25
|
Boucher JL, Genet A, Vadon S, Delaforge M, Mansuy D. Formation of nitrogen oxides and citrulline upon oxidation of N omega-hydroxy-L-arginine by hemeproteins. Biochem Biophys Res Commun 1992; 184:1158-64. [PMID: 1590781 DOI: 10.1016/s0006-291x(05)80004-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
HRP catalyzes the oxidation of N omega-hydroxy-L-arginine (NOHA) by H2O2 with formation of citrulline and NO2- with initial rates of about 0.7 and 0.2 nmol per nmol HRP per min. In the same manner, cytochromes P450 from rat liver microsomes catalyze the oxidation of NOHA to citrulline and NO2- by cumylhydroperoxide. Inhibitors of these hemeproteins (N3- and CN- for HRP and miconazole for P450) strongly inhibit both citrulline and NO2- formation. Rates of NOHA oxidation by these hemeproteins markedly decrease with time presumably because of their denaturation by nitrogen oxides and of the formation of hemeprotein-iron-NO complexes. These results suggest that NO (and other nitrogen oxides) could be formed from oxidation of NOHA by other enzymes than NO-synthases.
Collapse
Affiliation(s)
- J L Boucher
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques URA 400 CNRS, Université René Descartes, Paris, France
| | | | | | | | | |
Collapse
|