1
|
Global Interactomics Connect Nuclear Mitotic Apparatus Protein NUMA1 to Influenza Virus Maturation. Viruses 2018; 10:v10120731. [PMID: 30572664 PMCID: PMC6316800 DOI: 10.3390/v10120731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 11/17/2022] Open
Abstract
Influenza A virus (IAV) infections remain a major human health threat. IAV has enormous genetic plasticity and can rapidly escape virus-targeted anti-viral strategies. Thus, there is increasing interest to identify host proteins and processes the virus requires for replication and maturation. The IAV non-structural protein 1 (NS1) is a critical multifunctional protein that is expressed to high levels in infected cells. Host proteins that interact with NS1 may serve as ideal targets for attenuating IAV replication. We previously developed and characterized broadly cross-reactive anti-NS1 monoclonal antibodies. For the current study, we used these mAbs to co-immunoprecipitate native IAV NS1 and interacting host proteins; 183 proteins were consistently identified in this NS1 interactome study, 124 of which have not been previously reported. RNAi screens identified 11 NS1-interacting host factors as vital for IAV replication. Knocking down one of these, nuclear mitotic apparatus protein 1 (NUMA1), dramatically reduced IAV replication. IAV genomic transcription and translation were not inhibited but transport of viral structural proteins to the cell membrane was hindered during maturation steps in NUMA1 knockdown (KD) cells.
Collapse
|
2
|
Jayaraman S, Chittiboyina S, Bai Y, Abad PC, Vidi PA, Stauffacher CV, Lelièvre SA. The nuclear mitotic apparatus protein NuMA controls rDNA transcription and mediates the nucleolar stress response in a p53-independent manner. Nucleic Acids Res 2017; 45:11725-11742. [PMID: 28981686 PMCID: PMC5714241 DOI: 10.1093/nar/gkx782] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022] Open
Abstract
The nuclear mitotic apparatus protein, NuMA, is involved in major cellular events such as DNA damage response, apoptosis and p53-mediated growth-arrest, all of which are under the control of the nucleolus upon stress. Proteomic investigation has identified NuMA among hundreds of nucleolar proteins. Yet, the precise link between NuMA and nucleolar function remains undetermined. We confirm that NuMA is present in the nucleolus and reveal redistribution of NuMA upon actinomycin D or doxorubicin-induced nucleolar stress. NuMA coimmunoprecipitates with RNA polymerase I, with ribosomal proteins RPL26 and RPL24, and with components of B-WICH, an ATP-dependent chromatin remodeling complex associated with rDNA transcription. NuMA also binds to 18S and 28S rRNAs and localizes to rDNA promoter regions. Downregulation of NuMA expression triggers nucleolar stress, as shown by decreased nascent pre-rRNA synthesis, fibrillarin perinucleolar cap formation and upregulation of p27kip1, but not p53. Physiologically relevant nucleolar stress induction with reactive oxygen species reaffirms a p53-independent p27kip1 response pathway and leads to nascent pre-rRNA reduction. It also promotes the decrease in the amount of NuMA. This previously uncharacterized function of NuMA in rDNA transcription and p53-independent nucleolar stress response supports a central role for this nuclear structural protein in cellular homeostasis.
Collapse
Affiliation(s)
- Swaathi Jayaraman
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907-2026, USA.,Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-2026, USA
| | - Shirisha Chittiboyina
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907-2026, USA
| | - Yunfeng Bai
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907-2026, USA
| | - Patricia C Abad
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907-2026, USA
| | - Pierre-Alexandre Vidi
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907-2026, USA
| | - Cynthia V Stauffacher
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-2026, USA.,Center for Cancer Research, Purdue University, West Lafayette, IN 47907-2026, USA
| | - Sophie A Lelièvre
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907-2026, USA.,Center for Cancer Research, Purdue University, West Lafayette, IN 47907-2026, USA
| |
Collapse
|
3
|
Spindle pole cohesion requires glycosylation-mediated localization of NuMA. Sci Rep 2017; 7:1474. [PMID: 28469279 PMCID: PMC5431095 DOI: 10.1038/s41598-017-01614-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/03/2017] [Indexed: 12/16/2022] Open
Abstract
Glycosylation is critical for the regulation of several cellular processes. One glycosylation pathway, the unusual O-linked β-N-acetylglucosamine glycosylation (O-GlcNAcylation) has been shown to be required for proper mitosis, likely through a subset of proteins that are O-GlcNAcylated during metaphase. As lectins bind glycosylated proteins, we asked if specific lectins interact with mitotic O-GlcNAcylated proteins during metaphase to ensure correct cell division. Galectin-3, a small soluble lectin of the Galectin family, is an excellent candidate, as it has been previously described as a transient centrosomal component in interphase and mitotic epithelial cells. In addition, it has recently been shown to associate with basal bodies in motile cilia, where it stabilizes the microtubule-organizing center (MTOC). Using an experimental mouse model of chronic kidney disease and human epithelial cell lines, we investigate the role of Galectin-3 in dividing epithelial cells. Here we find that Galectin-3 is essential for metaphase where it associates with NuMA in an O-GlcNAcylation-dependent manner. We provide evidence that the NuMA-Galectin-3 interaction is important for mitotic spindle cohesion and for stable NuMA localization to the spindle pole, thus revealing that Galectin-3 is a novel contributor to epithelial mitotic progress.
Collapse
|
4
|
Li X, Zhu Y, Cao Y, Wang Q, Du J, Tian J, Liang Y, Ma W. LIM kinase activity is required for microtubule organising centre positioning in mouse oocyte meiosis. Reprod Fertil Dev 2017; 29:791-804. [DOI: 10.1071/rd15406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/27/2015] [Indexed: 12/23/2022] Open
Abstract
LIM kinase 1 (LIMK1) activity is essential for cell migration and cell cycle progression. Little is known about LIMK1 expression and function in mammalian oocytes. In the present study we assessed LIMK1 protein expression, subcellular distribution and function during mouse oocyte meiosis. Western blot analysis revealed high and stable expression of LIMK1 from the germinal vesicle (GV) to MII stage. In contrast, activated LIMK1 (i.e. LIMK1 phosphorylated at threonine 508 (pLIMK1Thr508)) was only detected after GV breakdown, with levels increasing gradually to peak at MI and MII. Immunofluorescence showed pLIMK1Thr508 was colocalised with the microtubule organising centre (MTOC) components pericentrin and γ-tubulin at the spindle poles. A direct interaction between γ-tubulin and pLIMK1Thr508 was confirmed by co-immunoprecipitation. LIMK inhibition with 1 μM BMS3 damaged MTOC protein localisation to spindle poles, undermined the formation and positioning of functional MTOC and thus disrupted spindle formation and chromosome alignment. These effects were phenocopied by microinjection of LIMK1 antibody into mouse oocytes. In summary, the data demonstrate that LIMK activity is essential for MTOC organisation and distribution and so bipolar spindle formation and maintenance in mouse oocytes.
Collapse
|
5
|
Chen MH, Liu Y, Wang YL, Liu R, Xu BH, Zhang F, Li FP, Xu L, Lin YH, He SW, Liao BQ, Fu XP, Wang XX, Yang XJ, Wang HL. KIF2A regulates the spindle assembly and the metaphase I-anaphase I transition in mouse oocyte. Sci Rep 2016; 6:39337. [PMID: 27991556 PMCID: PMC5171862 DOI: 10.1038/srep39337] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/18/2016] [Indexed: 11/09/2022] Open
Abstract
KIF2A, a member of the kinesin-13 family, has been reported to play a role in spindle assembly in mitosis. However, its function in mammalian meiosis remains unknown. In this research, we examined the expression, localization and function of KIF2A during mouse oocyte meiosis. KIF2A was expressed in some key stages in mouse oocyte meiosis. Immunofluorescent staining showed that KIF2A distributed in the germinal vesicle at the germinal vesicle stage and as the spindle assembling after meiosis resumption, KIF2A gradually accumulated to the entire spindle. The treatment of oocytes with taxol and nocodazole demonstrated that KIF2A was co-localized with α-tubulin. Depletion of KIF2A by specific short interfering (si) RNA injection resulted in abnormal spindle assembly, failure of spindle migration, misaligned chromosomes and asymmetric cell division. Meanwhile, SKA1 expression level was decreased and the TACC3 localization was disrupted. Moreover, depletion of KIF2A disrupted the actin cap formation, arrested oocytes at metaphase I with spindle assembly checkpoint protein BubR1 activated and finally reduced the rate of the first polar body extrusion. Our data indicate that KIF2A regulates the spindle assembly, asymmetric cytokinesis and the metaphase I-anaphase I transition in mouse oocyte.
Collapse
Affiliation(s)
- Ming-Huang Chen
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen 361000, Fujian, China.,Department of Gynaecology and Obstetrics, Zhongshan Hospital, Xiamen University, Xiamen 361000, Fujian, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen 361000, Fujian, China
| | - Yu Liu
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen 361000, Fujian, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen 361000, Fujian, China
| | - Ya-Long Wang
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen 361000, Fujian, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen 361000, Fujian, China
| | - Rui Liu
- Department of Gynaecology and Obstetrics, Zhongshan Hospital, Xiamen University, Xiamen 361000, Fujian, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen 361000, Fujian, China.,Department of Gynaecology and Obstetrics, Zhongxin Hospital, Qingdao 266000, Shandong, China
| | - Bai-Hui Xu
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen 361000, Fujian, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen 361000, Fujian, China
| | - Fei Zhang
- Department of Gynaecology and Obstetrics, Zhongshan Hospital, Xiamen University, Xiamen 361000, Fujian, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen 361000, Fujian, China
| | - Fei-Ping Li
- Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen 361000, Fujian, China.,Biological College, Southwest Forestry University, Kunming 650000, Yunnan, China
| | - Lin Xu
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen 361000, Fujian, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen 361000, Fujian, China
| | - Yan-Hong Lin
- Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen 361000, Fujian, China.,Department of Gynaecology and Obstetrics, The First Clinical Medical College, Fujian Medical University, Fuzhou 350000, Fujian, China
| | - Shu-Wen He
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen 361000, Fujian, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen 361000, Fujian, China
| | - Bao-Qiong Liao
- Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen 361000, Fujian, China.,Department of Gynaecology and Obstetrics, Dongfang Hospital, Xiamen University, Fuzhou 350000, Fujian, China
| | - Xian-Pei Fu
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen 361000, Fujian, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen 361000, Fujian, China
| | - Xiao-Xue Wang
- Department of Gynaecology and Obstetrics, Zhongshan Hospital, Xiamen University, Xiamen 361000, Fujian, China
| | - Xiang-Jun Yang
- Department of Gynaecology and Obstetrics, Zhongshan Hospital, Xiamen University, Xiamen 361000, Fujian, China
| | - Hai-Long Wang
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen 361000, Fujian, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen 361000, Fujian, China
| |
Collapse
|
6
|
Sharif SR, Islam A, Moon IS. N-Acetyl-D-Glucosamine Kinase Interacts with Dynein-Lis1-NudE1 Complex and Regulates Cell Division. Mol Cells 2016; 39:669-79. [PMID: 27646688 PMCID: PMC5050531 DOI: 10.14348/molcells.2016.0119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/02/2016] [Accepted: 08/09/2016] [Indexed: 01/30/2023] Open
Abstract
N-acetyl-D-glucosamine kinase (GlcNAc kinase or NAGK) primarily catalyzes phosphoryl transfer to GlcNAc during amino sugar metabolism. Recently, it was shown NAGK interacts with dynein light chain roadblock type 1 (DYNLRB1) and upregulates axo-dendritic growth, which is an enzyme activity-independent, non-canonical structural role. The authors examined the distributions of NAGK and NAGK-dynein complexes during the cell cycle in HEK293T cells. NAGK was expressed throughout different stages of cell division and immunocytochemistry (ICC) showed NAGK was localized at nuclear envelope, spindle microtubules (MTs), and kinetochores (KTs). A proximity ligation assay (PLA) for NAGK and DYNLRB1 revealed NAGK-dynein complex on nuclear envelopes in prophase cells and on chromosomes in metaphase cells. NAGK-DYNLRB1 PLA followed by Lis1/NudE1 immunostaining showed NAGK-dynein complexes were colocalized with Lis1 and NudE1 signals, and PLA for NAGK-Lis1 showed similar signal patterns, suggesting a functional link between NAGK and dynein-Lis1 complex. Subsequently, NAGK-dynein complexes were found in KTs and on nuclear membranes where KTs were marked with CENP-B ICC and nuclear membrane with lamin ICC. Furthermore, knockdown of NAGK by small hairpin (sh) RNA was found to delay cell division. These results indicate that the NAGK-dynein interaction with the involvements of Lis1 and NudE1 plays an important role in prophase nuclear envelope breakdown (NEB) and metaphase MT-KT attachment during eukaryotic cell division.
Collapse
Affiliation(s)
- Syeda Ridita Sharif
- Department of Anatomy, Dongguk Medical Institute, Dongguk University Graduate School of Medicine, Gyeongju 38066,
Korea
| | - Ariful Islam
- Department of Anatomy, Dongguk Medical Institute, Dongguk University Graduate School of Medicine, Gyeongju 38066,
Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk Medical Institute, Dongguk University Graduate School of Medicine, Gyeongju 38066,
Korea
- Section of Neuroscience, Dongguk Medical Institute, Dongguk University Graduate School of Medicine, Gyeongju 38066,
Korea
| |
Collapse
|
7
|
Chu X, Chen X, Wan Q, Zheng Z, Du Q. Nuclear Mitotic Apparatus (NuMA) Interacts with and Regulates Astrin at the Mitotic Spindle. J Biol Chem 2016; 291:20055-67. [PMID: 27462074 DOI: 10.1074/jbc.m116.724831] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Indexed: 11/06/2022] Open
Abstract
The large nuclear mitotic apparatus (NuMA) protein is an essential player in mitotic spindle assembly and maintenance. We report here the identification of Astrin, a spindle- and kinetochore-associated protein, as a novel interactor of NuMA. We show that the C-terminal tail of NuMA can directly bind to the C terminus of Astrin and that this interaction helps to recruit Astrin to microtubules. Knockdown of NuMA by RNA interference dramatically impaired Astrin recruitment to the mitotic spindle. Overexpression of the N terminus of mammalian homologue of Drosophila Pins (LGN), which blocks the microtubule binding of NuMA and competes with Astrin for NuMA binding, also led to similar results. Furthermore, we found that cytoplasmic dynein is required for the spindle pole accumulation of Astrin, and dynein-mediated transport is important for balanced distribution of Astrin between spindle poles and kinetochores. On the other hand, if Astrin levels are reduced, then NuMA could not efficiently concentrate at the spindle poles. Our findings reveal a direct physical link between two important regulators of mitotic progression and demonstrate the critical role of the NuMA-Astrin interaction for accurate cell division.
Collapse
Affiliation(s)
- Xiaogang Chu
- From the Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Xuanyu Chen
- From the Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Qingwen Wan
- From the Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Zhen Zheng
- From the Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Quansheng Du
- From the Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| |
Collapse
|
8
|
Yan K, Li L, Wang X, Hong R, Zhang Y, Yang H, Lin M, Zhang S, He Q, Zheng D, Tang J, Yin Y, Shao G. The deubiquitinating enzyme complex BRISC is required for proper mitotic spindle assembly in mammalian cells. J Cell Biol 2016. [PMID: 26195665 PMCID: PMC4508884 DOI: 10.1083/jcb.201503039] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The microtubule-associated protein BRISC regulates the interaction of NuMA with dynein and importin-β by removing K63-linked polyubiquitin chains from NuMA, thereby promoting proper bipolar spindle assembly. Deubiquitinating enzymes (DUBs) negatively regulate protein ubiquitination and play an important role in diverse physiological processes, including mitotic division. The BRCC36 isopeptidase complex (BRISC) is a DUB that is specific for lysine 63–linked ubiquitin hydrolysis; however, its biological function remains largely undefined. Here, we identify a critical role for BRISC in the control of mitotic spindle assembly in cultured mammalian cells. BRISC is a microtubule (MT)-associated protein complex that predominantly localizes to the minus ends of K-fibers and spindle poles and directly binds to MTs; importantly, BRISC promotes the assembly of functional bipolar spindle by deubiquitinating the essential spindle assembly factor nuclear mitotic apparatus (NuMA). The deubiquitination of NuMA regulates its interaction with dynein and importin-β, which are required for its function in spindle assembly. Collectively, these results uncover BRISC as an important regulator of the mitotic spindle assembly and cell division, and have important implications for the development of anticancer drugs targeting BRISC.
Collapse
Affiliation(s)
- Kaowen Yan
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing 100191, China Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing 100191, China
| | - Li Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xiaojian Wang
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ruisha Hong
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing 100191, China School of Medicine, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Ying Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Hua Yang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Ming Lin
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Sha Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Qihua He
- Center of Medical and Health Analysis, Peking University, Beijing 100191, China
| | - Duo Zheng
- School of Medicine, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Jun Tang
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing 100191, China
| | - Genze Shao
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing 100191, China Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing 100191, China
| |
Collapse
|
9
|
Joukov V, Walter JC, De Nicolo A. Assays to Study Mitotic Centrosome and Spindle Pole Assembly and Regulation. Methods Mol Biol 2016; 1413:207-235. [PMID: 27193852 DOI: 10.1007/978-1-4939-3542-0_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Faithful chromosome segregation during cell division requires proper bipolar spindle assembly and critically depends on spindle pole integrity. In most animal cells, spindle poles form as the result of the concerted action of various factors operating in two independent pathways of microtubule assembly mediated by chromatin/RanGTP and by centrosomes. Mutation or deregulation of a number of spindle pole-organizing proteins has been linked to human diseases, including cancer and microcephaly. Our knowledge on how the spindle pole-organizing factors function at the molecular level and cooperate with one another is still quite limited. As the list of these factors expands, so does the need for the development of experimental approaches to study their function. Cell-free extracts from Xenopus laevis eggs have played an instrumental role in the dissection of the mechanisms of bipolar spindle assembly and have recently allowed the reconstitution of the key steps of the centrosome-driven microtubule nucleation pathway (Joukov et al., Mol Cell 55:578-591, 2014). Here we describe assays to study both centrosome-dependent and centrosome-independent spindle pole formation in Xenopus egg extracts. We also provide experimental procedures for the use of artificial centrosomes, such as microbeads coated with an anti-Aurora A antibody or a recombinant fragment of the Cep192 protein, to model and study centrosome maturation in egg extract. In addition, we detail the protocol for a microtubule regrowth assay that allows assessment of the centrosome-driven spindle microtubule assembly in mammalian cells.
Collapse
Affiliation(s)
- Vladimir Joukov
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Room C1-226A, 240 Longwood Ave., Boston, MA, 02115, USA.
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Arcangela De Nicolo
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
10
|
Bizzotto S, Francis F. Morphological and functional aspects of progenitors perturbed in cortical malformations. Front Cell Neurosci 2015; 9:30. [PMID: 25729350 PMCID: PMC4325918 DOI: 10.3389/fncel.2015.00030] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 01/18/2015] [Indexed: 11/13/2022] Open
Abstract
In this review, we discuss molecular and cellular mechanisms important for the function of neuronal progenitors during development, revealed by their perturbation in different cortical malformations. We focus on a class of neuronal progenitors, radial glial cells (RGCs), which are renowned for their unique morphological and behavioral characteristics, constituting a key element during the development of the mammalian cerebral cortex. We describe how the particular morphology of these cells is related to their roles in the orchestration of cortical development and their influence on other progenitor types and post-mitotic neurons. Important for disease mechanisms, we overview what is currently known about RGC cellular components, cytoskeletal mechanisms, signaling pathways and cell cycle characteristics, focusing on how defects lead to abnormal development and cortical malformation phenotypes. The multiple recent entry points from human genetics and animal models are contributing to our understanding of this important cell type. Combining data from phenotypes in the mouse reveals molecules which potentially act in common pathways. Going beyond this, we discuss future directions that may provide new data in this expanding area.
Collapse
Affiliation(s)
- Sara Bizzotto
- INSERM UMRS 839 Paris, France ; Sorbonne Universités, Université Pierre et Marie Curie Paris, France ; Institut du Fer à Moulin Paris, France
| | - Fiona Francis
- INSERM UMRS 839 Paris, France ; Sorbonne Universités, Université Pierre et Marie Curie Paris, France ; Institut du Fer à Moulin Paris, France
| |
Collapse
|
11
|
Raaijmakers JA, Medema RH. Function and regulation of dynein in mitotic chromosome segregation. Chromosoma 2014; 123:407-22. [PMID: 24871939 DOI: 10.1007/s00412-014-0468-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 12/23/2022]
Abstract
Cytoplasmic dynein is a large minus-end-directed microtubule motor complex, involved in many different cellular processes including intracellular trafficking, organelle positioning, and microtubule organization. Furthermore, dynein plays essential roles during cell division where it is implicated in multiple processes including centrosome separation, chromosome movements, spindle organization, spindle positioning, and mitotic checkpoint silencing. How is a single motor able to fulfill this large array of functions and how are these activities temporally and spatially regulated? The answer lies in the unique composition of the dynein motor and in the interactions it makes with multiple regulatory proteins that define the time and place where dynein becomes active. Here, we will focus on the different mitotic processes that dynein is involved in, and how its regulatory proteins act to support dynein. Although dynein is highly conserved amongst eukaryotes (with the exception of plants), there is significant variability in the cellular processes that depend on dynein in different species. In this review, we concentrate on the functions of cytoplasmic dynein in mammals but will also refer to data obtained in other model organisms that have contributed to our understanding of dynein function in higher eukaryotes.
Collapse
Affiliation(s)
- J A Raaijmakers
- Department of Cell Biology and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands
| | | |
Collapse
|
12
|
Centrosomes and the Art of Mitotic Spindle Maintenance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 313:179-217. [DOI: 10.1016/b978-0-12-800177-6.00006-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Interaction of NuMA protein with the kinesin Eg5: its possible role in bipolar spindle assembly and chromosome alignment. Biochem J 2013; 451:195-204. [DOI: 10.1042/bj20121447] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bipolar spindle assembly in mitotic cells is a prerequisite to ensure correct alignment of chromosomes for their segregation to each daughter cell; spindle microtubules are tethered at plus ends to chromosomes and focused at minus ends to either of the two spindle poles. NuMA (nuclear mitotic apparatus protein) is present solely in the nucleus in interphase cells, but relocalizes during mitosis to the spindle poles to play a crucial role in spindle assembly via focusing spindle microtubules to each pole. In the present study we show that the kinesin-5 family motor Eg5 is a protein that directly interacts with NuMA, using a proteomics approach and various binding assays both in vivo and in vitro. During mitosis Eg5 appears to interact with NuMA in the vicinity of the spindle poles, whereas the interaction does not occur in interphase cells, where Eg5 is distributed throughout the cytoplasm but NuMA exclusively localizes to the nucleus. Slight, but significant, depletion of Eg5 in HeLa cells by RNA interference results in formation of less-focused spindle poles with misaligned chromosomes in metaphase; these phenotypes are similar to those induced by depletion of NuMA. Since NuMA is less accumulated at the spindle poles in Eg5-depleted cells, Eg5 probably contributes to spindle assembly via regulating NuMA localization. Furthermore, depletion of cytoplasmic dynein induces mislocalization of NuMA and phenotypes similar to those observed in NuMA-depleted cells, without affecting Eg5 localization to the spindles. Thus dynein appears to control NuMA function in conjunction with Eg5.
Collapse
|
14
|
Yang SW, Huang H, Gao C, Chen L, Qi ST, Lin F, Wang JX, Hou Y, Xing FQ, Sun QY. The distribution and possible role of ERK8 in mouse oocyte meiotic maturation and early embryo cleavage. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:190-200. [PMID: 23351492 DOI: 10.1017/s1431927612013918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
It is well known that extracellular signal-regulated kinase 8 (ERK8) plays pivotal roles in various mitotic events. But its physiological roles in oocyte meiotic maturation remain unclear. In this study, we found that although no specific ERK8 signal was detected in oocyte at the germinal vesicle stage, ERK8 began to migrate to the periphery of chromosomes shortly after germinal vesicle breakdown. At prometaphase I, metaphase I (MI), anaphase I, telophase I, and metaphase II (MII) stages, ERK8 was stably detected at the spindles. By taxol treatment, we clarified that the ERK8 signal was stained on the spindle fibers as well as microtubule asters in MI and MII oocytes. In fertilized eggs, the ERK8 signal was not observed in the two pronuclei stages. At prometaphase, metaphase, and anaphase of the first mitosis, ERK8 was detected on the mitotic spindle. ERK8 knock down by antibody microinjection and specific siRNA caused abnormal spindles, failed chromosome congression, and decreased first polar body extrusion. Taken together, our results suggest that ERK8 plays an important role in spindle organization during mouse oocyte meiotic maturation and early embryo cleavage.
Collapse
Affiliation(s)
- Shang-Wu Yang
- Center for Reproductive Medicine, Department of Ob/Gy, Nanfang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Error-prone mammalian female meiosis from silencing the spindle assembly checkpoint without normal interkinetochore tension. Proc Natl Acad Sci U S A 2012; 109:E1858-67. [PMID: 22552228 DOI: 10.1073/pnas.1204686109] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is well established that chromosome segregation in female meiosis I (MI) is error-prone. The acentrosomal meiotic spindle poles do not have centrioles and are not anchored to the cortex via astral microtubules. By Cre recombinase-mediated removal in oocytes of the microtubule binding site of nuclear mitotic apparatus protein (NuMA), which is implicated in anchoring microtubules at poles, we determine that without functional NuMA, microtubules lose connection to MI spindle poles, resulting in highly disorganized early spindle assembly. Subsequently, very long spindles form with hyperfocused poles. The kinetochores of homologs make attachments to microtubules in these spindles but with reduced tension between them and accompanied by alignment defects. Despite this, the spindle assembly checkpoint is normally silenced and the advance to anaphase I and first polar body extrusion takes place without delay. Females without functional NuMA in oocytes are sterile, producing aneuploid eggs with altered chromosome number. These findings establish that in mammalian MI, the spindle assembly checkpoint is unable to sustain meiotic arrest in the presence of one or few misaligned and/or misattached kinetochores with reduced interkinetochore tension, thereby offering an explanation for why MI in mammals is so error-prone.
Collapse
|
16
|
Narasimhachar Y, Webster DR, Gard DL, Coué M. Cdc6 is required for meiotic spindle assembly in Xenopus oocytes. Cell Cycle 2012; 11:524-31. [PMID: 22262174 DOI: 10.4161/cc.11.3.19033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
During the maturation of Xenopus oocytes, Cdc6 expression is necessary to establish replication competence to support early embryonic DNA replication. However, Cdc6 is expressed before the completion of MI, at a time when its function as a replication factor is not required, suggesting additional roles for Cdc6 in meiosis. Confocal immunofluorescence microscopy revealed that Cdc6 protein was distributed around the spindle precursor at the time of germinal vesicle breakdown (GVBD), and localized to the margin of the nascent spindle early in prometaphase. Cdc6 subsequently localized to spindle poles in late prometaphase, where it remained until metaphase arrest. Microinjection of antisense oligonucleotides specific for Cdc6 mRNA disrupted spindle assembly, resulting in defects including delayed spindle assembly, misoriented and unattached anaphase spindles, monasters, multiple spindles, microtubule aggregates associated with condensed chromosomes, or the absence of recognizable spindle-like structures, depending on the level of residual Cdc6 expression. Furthermore, Cdc6 co-localized with γ-tubulin in centrosomes during interphase in all somatic cells analyzed, and associated with spindle poles in mitotic COS cells. Our data suggest a role for Cdc6 in spindle formation in addition to its role as a DNA replication factor.
Collapse
Affiliation(s)
- Yadushyla Narasimhachar
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | | | | | | |
Collapse
|
17
|
Spindle assembly defects leading to the formation of a monopolar mitotic apparatus. Biol Cell 2012; 101:1-11. [DOI: 10.1042/bc20070162] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Gómez-Flores E, Sánchez-Guzmán E, Castro-Muñozledo F. Asymmetrical cell division and differentiation are not dependent upon stratification in a corneal epithelial cell line. J Cell Physiol 2011; 226:700-9. [PMID: 20717959 DOI: 10.1002/jcp.22380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To determine whether asymmetrical cell division takes place during growth and differentiation of corneal epithelial cells, we analyzed the expression of some proteins required for the correct execution of the asymmetric division in cultured RCE1-(5T5) cells, which mimic the differentiation of corneal epithelial cells. RT-PCR and immunostaining showed that Par-3, LGN (GPSM2), NuMA, and the mammalian homolog of inscuteable (Insc) are expressed by the cultured cells. Semi-quantitative RT-PCR demonstrated that Insc mRNA levels were stable throughout the experiment. Conversely, LGN and NuMA mRNAs increased slightly and steadily in proliferative cells, reaching a peak of about 20% above basal levels when cells were confluent. At later times, LGN and NuMA mRNAs decreased to become barely detectable when cells organized into a four-layered epithelium and expressed terminal phenotype as indicated by the highest expression of LDH-H mRNA. Cultivation under low Ca2+ conditions (0.09 mM) reduced about 50% Insc mRNA expression both in proliferating and confluent cultures, but did not affect the levels of LGN and NuMA mRNAs. Hence, asymmetric cell division seems to take place with a lower frequency in cells grown with low Ca2+ concentrations, in spite of the absence of stratification. Immunostaining experiments raise the possibility of an interaction between k3/K12 keratin cytoskeleton and Par-3. The results show for the first time the coordination between the expression of corneal epithelial cell differentiation and the expression of cell polarity machinery. They also suggest that asymmetric division does not depend on stratification; instead, it seems to be part of the differentiation program.
Collapse
Affiliation(s)
- Eber Gómez-Flores
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN, Apdo, México City, Mexico
| | | | | |
Collapse
|
19
|
Huntingtin Is Required for Mitotic Spindle Orientation and Mammalian Neurogenesis. Neuron 2010; 67:392-406. [DOI: 10.1016/j.neuron.2010.06.027] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2010] [Indexed: 01/06/2023]
|
20
|
Abstract
Eukaryotic cell division uses morphologically different forms of mitosis, referred to as open, partially open and closed mitosis, for accurate chromosome segregation and proper partitioning of other cellular components such as endomembranes and cell fate determinants. Recent studies suggest that the spindle matrix provides a conserved strategy to coordinate the segregation of genetic material and the partitioning of the rest of the cellular contents in all three forms of mitosis.
Collapse
Affiliation(s)
- Yixian Zheng
- Department of Embryology, Carnegie Institute for Science, Baltimore, Maryland 21218, USA.
| |
Collapse
|
21
|
Soubry A, Staes K, Parthoens E, Noppen S, Stove C, Bogaert P, van Hengel J, van Roy F. The transcriptional repressor Kaiso localizes at the mitotic spindle and is a constituent of the pericentriolar material. PLoS One 2010; 5:e9203. [PMID: 20169156 PMCID: PMC2821401 DOI: 10.1371/journal.pone.0009203] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 01/26/2010] [Indexed: 11/18/2022] Open
Abstract
Kaiso is a BTB/POZ zinc finger protein known as a transcriptional repressor. It was originally identified through its in vitro association with the Armadillo protein p120ctn. Subcellular localization of Kaiso in cell lines and in normal and cancerous human tissues revealed that its expression is not restricted to the nucleus. In the present study we monitored Kaiso's subcellular localization during the cell cycle and found the following: (1) during interphase, Kaiso is located not only in the nucleus, but also on microtubular structures, including the centrosome; (2) at metaphase, it is present at the centrosomes and on the spindle microtubules; (3) during telophase, it accumulates at the midbody. We found that Kaiso is a genuine PCM component that belongs to a pericentrin molecular complex. We analyzed the functions of different domains of Kaiso by visualizing the subcellular distribution of GFP-tagged Kaiso fragments throughout the cell cycle. Our results indicate that two domains are responsible for targeting Kaiso to the centrosomes and microtubules. The first domain, designated SA1 for spindle-associated domain 1, is located in the center of the Kaiso protein and localizes at the spindle microtubules and centrosomes; the second domain, SA2, is an evolutionarily conserved domain situated just before the zinc finger domain and might be responsible for localizing Kaiso towards the centrosomal region. Constructs containing both SA domains and Kaiso's aminoterminal BTB/POZ domain triggered the formation of abnormal centrosomes. We also observed that overexpression of longer or full-length Kaiso constructs led to mitotic cell arrest and frequent cell death. Knockdown of Kaiso accelerated cell proliferation. Our data reveal a new target for Kaiso at the centrosomes and spindle microtubules during mitosis. They also strongly imply that Kaiso's function as a transcriptional regulator might be linked to the control of the cell cycle and to cell proliferation in cancer.
Collapse
Affiliation(s)
- Adelheid Soubry
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Katrien Staes
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Eef Parthoens
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sam Noppen
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Christophe Stove
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Pieter Bogaert
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolanda van Hengel
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Frans van Roy
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
22
|
Chang P, Coughlin M, Mitchison TJ. Interaction between Poly(ADP-ribose) and NuMA contributes to mitotic spindle pole assembly. Mol Biol Cell 2009; 20:4575-85. [PMID: 19759176 DOI: 10.1091/mbc.e09-06-0477] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Poly(ADP-ribose) (pADPr), made by PARP-5a/tankyrase-1, localizes to the poles of mitotic spindles and is required for bipolar spindle assembly, but its molecular function in the spindle is poorly understood. To investigate this, we localized pADPr at spindle poles by immuno-EM. We then developed a concentrated mitotic lysate system from HeLa cells to probe spindle pole assembly in vitro. Microtubule asters assembled in response to centrosomes and Ran-GTP in this system. Magnetic beads coated with pADPr, extended from PARP-5a, also triggered aster assembly, suggesting a functional role of the pADPr in spindle pole assembly. We found that PARP-5a is much more active in mitosis than interphase. We used mitotic PARP-5a, self-modified with pADPr chains, to capture mitosis-specific pADPr-binding proteins. Candidate binding proteins included the spindle pole protein NuMA previously shown to bind to PARP-5a directly. The rod domain of NuMA, expressed in bacteria, bound directly to pADPr. We propose that pADPr provides a dynamic cross-linking function at spindle poles by extending from covalent modification sites on PARP-5a and NuMA and binding noncovalently to NuMA and that this function helps promote assembly of exactly two poles.
Collapse
Affiliation(s)
- Paul Chang
- Koch Institute for Integrative Cancer Research, and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
23
|
Dessolle L, de Larouzière V, Ravel C, Berthaut I, Antoine JM, Mandelbaum J. Congélation lente et vitrification des ovocytes humains matures et immatures. ACTA ACUST UNITED AC 2009; 37:712-9. [DOI: 10.1016/j.gyobfe.2009.04.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 04/02/2009] [Indexed: 10/20/2022]
|
24
|
Wainman A, Creque J, Williams B, Williams EV, Bonaccorsi S, Gatti M, Goldberg ML. Roles of the Drosophila NudE protein in kinetochore function and centrosome migration. J Cell Sci 2009; 122:1747-58. [PMID: 19417004 DOI: 10.1242/jcs.041798] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined the distribution of the dynein-associated protein NudE in Drosophila larval brain neuroblasts and spermatocytes, and analyzed the phenotypic consequences of a nudE null mutation. NudE can associate with kinetochores, spindles and the nuclear envelope. In nudE mutant brain mitotic cells, centrosomes are often detached from the poles. Moreover, the centrosomes of mutant primary spermatocytes do not migrate from the cell cortex to the nuclear envelope, establishing a new role for NudE. In mutant neuroblasts, chromosomes fail to congress to a tight metaphase plate, and cell division arrests because of spindle assembly checkpoint (SAC) activation. The targeting of NudE to mitotic kinetochores requires the dynein-interacting protein Lis1, and surprisingly Cenp-meta, a Drosophila CENP-E homolog. NudE is non-essential for the targeting of all mitotic kinetochore components tested. However, in the absence of NudE, the 'shedding' of proteins off the kinetochore is abrogated and the SAC cannot be turned off, implying that NudE regulates dynein function at the kinetochore.
Collapse
Affiliation(s)
- Alan Wainman
- Instituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Genetica e Biologia Molecolare, Sapienza, Università di Roma, 00185 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
Haren L, Gnadt N, Wright M, Merdes A. NuMA is required for proper spindle assembly and chromosome alignment in prometaphase. BMC Res Notes 2009; 2:64. [PMID: 19400937 PMCID: PMC2686716 DOI: 10.1186/1756-0500-2-64] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 04/28/2009] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND NuMA is a protein that has been previously shown to play a role in focusing microtubules at the mitotic spindle poles. However, most previous work relies on experimental methods that might cause dominant side effects on spindle formation, such as microinjection of antibodies, overexpression of mutant protein, or immunodepletion of NuMA-containing protein complexes. FINDINGS To circumvent these technical problems, we performed siRNA experiments in which we depleted the majority of NuMA in human cultured cells. Depleted mitotic cells show a prolonged duration of prometaphase, with spindle pole defects and with unattached, unaligned chromosomes. CONCLUSION Our data confirm that NuMA is important for spindle pole formation, and for cohesion of centrosome-derived microtubules with the bulk of spindle microtubules. Our findings of NuMA-dependent defects in chromosome alignment suggest that NuMA is involved in stabilizing kinetochore fibres.
Collapse
Affiliation(s)
- Laurence Haren
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, UK
- Centre National de la Recherche Scientifique/Pierre Fabre UMR 2587, 3 rue des Satellites, 31400 Toulouse, France
| | - Nicole Gnadt
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, UK
| | - Michel Wright
- Centre National de la Recherche Scientifique/Pierre Fabre UMR 2587, 3 rue des Satellites, 31400 Toulouse, France
| | - Andreas Merdes
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, UK
- Centre National de la Recherche Scientifique/Pierre Fabre UMR 2587, 3 rue des Satellites, 31400 Toulouse, France
| |
Collapse
|
26
|
Hornick JE, Bader JR, Tribble EK, Trimble K, Breunig JS, Halpin ES, Vaughan KT, Hinchcliffe EH. Live-cell analysis of mitotic spindle formation in taxol-treated cells. ACTA ACUST UNITED AC 2008; 65:595-613. [PMID: 18481305 DOI: 10.1002/cm.20283] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Taxol functions to suppress the dynamic behavior of individual microtubules, and induces multipolar mitotic spindles. However, little is known about the mechanisms by which taxol disrupts normal bipolar spindle assembly in vivo. Using live imaging of GFP-alpha tubulin expressing cells, we examined spindle assembly after taxol treatment. We find that as taxol-treated cells enter mitosis, there is a dramatic re-distribution of the microtubule network from the centrosomes to the cell cortex. As they align there, the cortical microtubules recruit NuMA to their embedded ends, followed by the kinesin motor HSET. These cortical microtubules then bud off to form cytasters, which fuse into multipolar spindles. Cytoplasmic dynein and dynactin do not re-localize to cortical microtubules, and disruption of dynein/dynactin interactions by over-expression of p50 "dynamitin" does not prevent cytaster formation. Taxol added well before spindle poles begin to form induces multipolarity, but taxol added after nascent spindle poles are visible-but before NEB is complete-results in bipolar spindles. Our results suggest that taxol prevents rapid transport of key components, such as NuMA, to the nascent spindle poles. The net result is loss of mitotic spindle pole cohesion, microtubule re-distribution, and cytaster formation.
Collapse
Affiliation(s)
- Jessica E Hornick
- Department of Biological Sciences and Notre Dame Integrated Imaging Facility, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang L, Zhu G, Yang D, Li Q, Li Y, Xu X, He D, Zeng C. The spindle function of CDCA4. ACTA ACUST UNITED AC 2008; 65:581-93. [PMID: 18498124 DOI: 10.1002/cm.20286] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In an attempt to discover novel proteins functioning in both interphase nucleus and mitotic spindle as NuMA does, we carried out cDNA library screening with pooled autoimmune antibodies. Among positive clones we found a recently identified transcription regulatory protein (CDCA4) with the distinctive nuclear-mitotic apparatus distribution. CDCA4 localizes at metaphase spindle poles and the midzone in later stages. Additionally, an intensive CDCA4 accumulation parallel to spindle was observed in half of metaphase cells but not in later stages, implying a transient form of CDCA4 binding to midzone from anaphase. Mitotic arrest dissolved CDCA4 from centrosomes but during the spindle recovery, CDCA4 invariably colocalized with the microtubule nucleation foci as a component of microtubule organization center. RNA interference of CDCA4 resulted in significant increase of multinuclei and multipolar spindles, suggesting impaired function in chromosome segregation or cytokinesis. However, the spindle checkpoint and the centrosome cycle appeared not to be affected by such interference. Furthermore, CDCA4 depletion resulted in accelerated cell proliferation, perhaps due to the disruption of CDCA4 nuclear function as a transcription suppressor. Interphase CDCA4 is localized in nucleoli by immunofluorescence, although GFP-CDCA4 expressed in the nucleoplasm. An N-terminal KRKC domain appears to be the nuclear localization signal as identified by sequence alignment and the expression of truncated mutants. Taken together, our results suggested that as a novel nuclearmitotic apparatus protein, CDCA4 is involved in spindle organization from prometaphase. When anaphase begins, CDCA4 may play a different role as a midzone factor involved in chromosome segregation or cytokinesis.
Collapse
Affiliation(s)
- Limin Wang
- Key Laboratory for Cell Proliferation and Regulation of the Ministry of Education, Beijing Normal University, Beijing China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Henson JH, Fried CA, McClellan MK, Ader J, Davis JE, Oldenbourg R, Simerly CR. Bipolar, anastral spindle development in artificially activated sea urchin eggs. Dev Dyn 2008; 237:1348-58. [PMID: 18393308 PMCID: PMC2386260 DOI: 10.1002/dvdy.21533] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The mitotic apparatus of the early sea urchin embryo is the archetype example of a centrosome-dominated, large aster spindle organized by means of the centriole of the fertilizing sperm. In this study, we tested the hypothesis that artificially activated sea urchin eggs possess the capacity to assemble the anastral, bipolar spindles present in many acentrosomal systems. Control fertilized Lytechinus pictus embryos and ammonia-activated eggs were immunolabeled for tubulin, centrosomal material, the spindle pole structuring protein NuMA and the mitotic kinesins MKLP1/Kinesin-6, Eg5/Kinesin-5, and KinI/Kinesin-13. Confocal imaging showed that a subset of ammonia-activated eggs contained bipolar "mini-spindles" that were anastral; displayed metaphase and anaphase-like stages; labeled for centrosomal material, NuMA, and the three mitotic kinesins; and were observed in living eggs using polarization optics. These results suggest that spindle structural and motor proteins have the ability to organize bipolar, anastral spindles in sea urchin eggs activated in the absence of the paternal centriole.
Collapse
Affiliation(s)
- John H Henson
- Department of Biology, Dickinson College, Carlisle, Pennsylvania 17013, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Kaposi's sarcoma-associated herpesvirus-encoded LANA can interact with the nuclear mitotic apparatus protein to regulate genome maintenance and segregation. J Virol 2008; 82:6734-46. [PMID: 18417561 DOI: 10.1128/jvi.00342-08] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) genomes are tethered to the host chromosomes and partitioned faithfully into daughter cells with the host chromosomes. The latency-associated nuclear antigen (LANA) is important for segregation of the newly synthesized viral genomes to the daughter nuclei. Here, we report that the nuclear mitotic apparatus protein (NuMA) and LANA can associate in KSHV-infected cells. In synchronized cells, NuMA and LANA are colocalized in interphase cells and separate during mitosis at the beginning of prophase, reassociating again at the end of telophase and cytokinesis. Silencing of NuMA expression by small interfering RNA and expression of LGN and a dominant-negative of dynactin (P150-CC1), which disrupts the association of NuMA with microtubules, resulted in the loss of KSHV terminal-repeat plasmids containing the major latent origin. Thus, NuMA is required for persistence of the KSHV episomes in daughter cells. This interaction between NuMA and LANA is critical for segregation and maintenance of the KSHV episomes through a temporally controlled mechanism of binding and release during specific phases of mitosis.
Collapse
|
30
|
Walczak CE, Heald R. Mechanisms of mitotic spindle assembly and function. INTERNATIONAL REVIEW OF CYTOLOGY 2008; 265:111-58. [PMID: 18275887 DOI: 10.1016/s0074-7696(07)65003-7] [Citation(s) in RCA: 281] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mitotic spindle is the macromolecular machine that segregates chromosomes to two daughter cells during mitosis. The major structural elements of the spindle are microtubule polymers, whose intrinsic polarity and dynamic properties are critical for bipolar spindle organization and function. In most cell types, spindle microtubule nucleation occurs primarily at two centrosomes, which define the spindle poles, but microtubules can also be generated by the chromosomes and within the spindle itself. Many associated factors help organize the spindle, including molecular motors and regulators of microtubule dynamics. The past decade has provided a wealth of information on the molecular players that are critical for spindle assembly as well as a high-resolution view of the intricate movements and dynamics of the spindle microtubules and the chromosomes. In this chapter we provide a historical account of the key observations leading to current models of spindle assembly, as well as an up-to-date status report on this exciting field.
Collapse
Affiliation(s)
- Claire E Walczak
- Medical Sciences Program, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
31
|
Hsiao SJ, Smith S. Tankyrase function at telomeres, spindle poles, and beyond. Biochimie 2007; 90:83-92. [PMID: 17825467 DOI: 10.1016/j.biochi.2007.07.012] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 07/14/2007] [Indexed: 11/18/2022]
Abstract
Telomeres have special needs; they require distinct mechanisms for their protection, replication, and separation at mitosis. A dedicated six-subunit protein complex termed shelterin attends to these needs. But shelterin cannot do it alone and often relies on recruits from other cellular locales. One such recruit is tankyrase 1, a poly(ADP-ribose) polymerase that is brought to telomeres by the shelterin DNA binding subunit TRF1, where it functions in telomere length regulation and sister chromatid separation. An understanding of how tankyrase 1 functions at telomeres has been confounded by its complexity; it localizes to multiple subcellular sites, it has many diverse binding partners, and it has a closely related homolog (tankyrase 2) with which it may functionally overlap. This review summarizes our current knowledge of tankyrases focusing on their localization, binding partners, and function.
Collapse
Affiliation(s)
- Susan J Hsiao
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, 2nd Floor, New York, NY 10016, United States
| | | |
Collapse
|
32
|
Manning AL, Ganem NJ, Bakhoum SF, Wagenbach M, Wordeman L, Compton DA. The kinesin-13 proteins Kif2a, Kif2b, and Kif2c/MCAK have distinct roles during mitosis in human cells. Mol Biol Cell 2007; 18:2970-9. [PMID: 17538014 PMCID: PMC1949365 DOI: 10.1091/mbc.e07-02-0110] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The human genome has three unique genes coding for kinesin-13 proteins called Kif2a, Kif2b, and MCAK (Kif2c). Kif2a and MCAK have documented roles in mitosis, but the function of Kif2b has not been defined. Here, we show that Kif2b is expressed at very low levels in cultured cells and that GFP-Kif2b localizes predominately to centrosomes and midbodies, but also to spindle microtubules and transiently to kinetochores. Kif2b-deficient cells assemble monopolar or disorganized spindles. Chromosomes in Kif2b-deficient cells show typical kinetochore-microtubule attachments, but the velocity of movement is reduced approximately 80% compared with control cells. Some Kif2b-deficient cells attempt anaphase, but the cleavage furrow regresses and cytokinesis fails. Like Kif2a-deficient cells, bipolar spindle assembly can be restored to Kif2b-deficient cells by simultaneous deficiency of MCAK or Nuf2 or treatment with low doses of nocodazole. However, Kif2b-deficient cells are unique in that they assemble bipolar spindles when the pole focusing activities of NuMA and HSET are perturbed. These data demonstrate that Kif2b function is required for spindle assembly and chromosome movement and that the microtubule depolymerase activities of Kif2a, Kif2b, and MCAK fulfill distinct functions during mitosis in human cells.
Collapse
Affiliation(s)
- Amity L. Manning
- *Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755; and
| | - Neil J. Ganem
- *Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755; and
| | - Samuel F. Bakhoum
- *Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755; and
| | - Michael Wagenbach
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195
| | - Linda Wordeman
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195
| | - Duane A. Compton
- *Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755; and
| |
Collapse
|
33
|
Salim K, Guest PC, Skynner HA, Bilsland JG, Bonnert TP, McAllister G, Munoz-Sanjuan I. Identification of Proteomic Changes during Differentiation of Adult Mouse Subventricular Zone Progenitor Cells. Stem Cells Dev 2007; 16:143-65. [PMID: 17233554 DOI: 10.1089/scd.2006.00100] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The use of neural precursor cells (NPCs) represents a promising repair strategy for many neurological disorders. However, the molecular events and biological features that control NPC proliferation and their differentiation into neurons, astrocytes, and oligodendrocytes are unclear. In the present study, we used a comparative proteomics approach to identify proteins that were differentially regulated in NPCs after short-term differentiation. We also used a subcellular fractionation technique for enrichment of nuclei and other dense organelles to identify proteins that were not readily detected in whole cell extracts. In total, 115 distinct proteins underwent expression changes during NPC differentiation. Forty one of these were only identified following subcellular fractionation. These included transcription factors, RNA-processing factors, cell cycle proteins, and proteins that translocate between the nucleus and cytoplasm. Biological network analysis showed that the differentiation of NPCs was associated with significant changes in cell cycle and protein synthesis machinery. Further characterization of these proteins could provide greater insight into the mechanisms involved in regulation of neurogenesis in the adult central nervous system (CNS) and potentially identify points of therapeutic intervention.
Collapse
Affiliation(s)
- Kamran Salim
- Merck Sharp & Dohme Research Laboratories, The Neuroscience Research Centre, Terlings Park, Harlow, Essex, CM20 2QR, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
34
|
Goodman B, Zheng Y. Mitotic spindle morphogenesis: Ran on the microtubule cytoskeleton and beyond. Biochem Soc Trans 2007; 34:716-21. [PMID: 17052181 DOI: 10.1042/bst0340716] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Assembly and disassembly of the mitotic spindle are essential for both chromosome segregation and cell division. The small G-protein Ran has emerged as an important regulator of spindle assembly. In this review, we look at the role of Ran in different aspects of spindle assembly, including its effects on microtubule assembly dynamics and microtubule organization. In addition, we examine the possibility of a spindle matrix and the role Ran might play in such a structure.
Collapse
Affiliation(s)
- B Goodman
- Department of Embryology, Carnegie Institution of Washington, Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|
35
|
Salim K, Guest PC, Skynner HA, Bilsland JG, Bonnert TP, McAllister G, Munoz-Sanjuan I. Identification of Proteomic Changes During Differentiation of Adult Mouse Subventricular Zone Progenitor Cells. Stem Cells Dev 2007. [DOI: 10.1089/scd.2007.16.ft-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
36
|
Joukov V, Groen AC, Prokhorova T, Gerson R, White E, Rodriguez A, Walter JC, Livingston DM. The BRCA1/BARD1 heterodimer modulates ran-dependent mitotic spindle assembly. Cell 2006; 127:539-52. [PMID: 17081976 DOI: 10.1016/j.cell.2006.08.053] [Citation(s) in RCA: 226] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Revised: 06/23/2006] [Accepted: 08/31/2006] [Indexed: 11/20/2022]
Abstract
The heterodimeric tumor-suppressor complex BRCA1/BARD1 exhibits E3 ubiquitin ligase activity and participates in cell proliferation and chromosome stability control by incompletely defined mechanisms. Here we show that, in both mammalian cells and Xenopus egg extracts, BRCA1/BARD1 is required for mitotic spindle-pole assembly and for accumulation of TPX2, a major spindle organizer and Ran target, on spindle poles. This function is centrosome independent, operates downstream of Ran GTPase, and depends upon BRCA1/BARD1 E3 ubiquitin ligase activity. Xenopus BRCA1/BARD1 forms endogenous complexes with three spindle-pole proteins, TPX2, NuMA, and XRHAMM--a known TPX2 partner--and specifically attenuates XRHAMM function. These observations reveal a previously unrecognized function of BRCA1/BARD1 in mitotic spindle assembly that likely contributes to its role in chromosome stability control and tumor suppression.
Collapse
Affiliation(s)
- Vladimir Joukov
- Dana-Farber Cancer Institute and Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Voronina E, Wessel GM. Activator of G-protein signaling in asymmetric cell divisions of the sea urchin embryo. Dev Growth Differ 2006; 48:549-57. [PMID: 17118010 DOI: 10.1111/j.1440-169x.2006.00895.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An asymmetric fourth cell division in the sea urchin embryo results in formation of daughter cells, macromeres and micromeres, with distinct sizes and fates. Several lines of functional evidence presented here, including pharmacological interference and dominant negative protein expression, indicate that heterotrimeric G protein Gi and its interaction partner, activator of G-protein signaling (AGS), are necessary for this asymmetric cell division. Inhibition of Gi signaling by pertussis toxin interferes with micromere formation and leads to defects in embryogenesis. AGS was isolated in a yeast two-hybrid screen with G alpha i as bait and was expressed in embryos localized to the cell cortex at the time of asymmetric divisions. Introduction of exogenous dominant-negative AGS protein, containing only G-protein regulatory (GPR) domains, selectively prevented the asymmetric division in normal micromere formation. These results support the growing evidence that AGS is a universal regulator of asymmetric cell divisions in embryos.
Collapse
Affiliation(s)
- Ekaterina Voronina
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | | |
Collapse
|
38
|
Abstract
Progeroid syndromes (PSs) constitute a group of disorders characterized by clinical features mimicking physiological aging at an early age. In some of these syndromes, biological hallmarks of aging are also present, whereas in others, a link with physiological aging, if any, remains to be elucidated. These syndromes are clinically and genetically heterogeneous and most of them, including Werner syndrome and Hutchinson-Gilford progeria, are known as 'segmental aging syndromes', as they do not feature all aspects usually associated to physiological aging. However, all the characterized PSs enter in the field of rare monogenic disorders and several causative genes have been identified. These can be separated in subcategories corresponding to (i) genes encoding DNA repair factors, in particular, DNA helicases, and (ii) genes affecting the structure or post-translational maturation of lamin A, a major nuclear component. In addition, several animal models featuring premature aging have abnormal mitochondrial function or signal transduction between membrane receptors, nuclear regulatory proteins and mitochondria: no human pathological counterpart of these alterations has been found to date. In recent years, identification of mutations and their functional characterization have helped to unravel the cellular processes associated to segmental PSs. Recently, several studies allowed to establish a functional link between DNA repair and A-type lamins-associated syndromes, evidencing a relation between these syndromes, physiological aging and cancer. Here, we review recent data on molecular and cellular bases of PSs and discuss the mechanisms involved, with a special emphasis on lamin A-associated progeria and related disorders, for which therapeutic approaches have started to be developed.
Collapse
Affiliation(s)
- Claire L Navarro
- Inserm U491, Génétique Médicale et Développement, Université de la Méditerranée, Faculté de Médecine, 13385 Marseille Cedex 05, France
| | | | | |
Collapse
|
39
|
Burakov AV, Nadezhdina ES. Dynein and dynactin as organizers of the system of cell microtubules. Russ J Dev Biol 2006. [DOI: 10.1134/s1062360406050018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Bowman SK, Neumüller RA, Novatchkova M, Du Q, Knoblich JA. The Drosophila NuMA Homolog Mud Regulates Spindle Orientation in Asymmetric Cell Division. Dev Cell 2006; 10:731-42. [PMID: 16740476 DOI: 10.1016/j.devcel.2006.05.005] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 04/26/2006] [Accepted: 05/17/2006] [Indexed: 12/26/2022]
Abstract
During asymmetric cell division, the mitotic spindle must be properly oriented to ensure the asymmetric segregation of cell fate determinants into only one of the two daughter cells. In Drosophila neuroblasts, spindle orientation requires heterotrimeric G proteins and the G alpha binding partner Pins, but how the Pins-G alphai complex interacts with the mitotic spindle is unclear. Here, we show that Pins binds directly to the microtubule binding protein Mud, the Drosophila homolog of NuMA. Like NuMA, Mud can bind to microtubules and enhance microtubule polymerization. In the absence of Mud, mitotic spindles in Drosophila neuroblasts fail to align with the polarity axis. This can lead to symmetric segregation of the cell fate determinants Brat and Prospero, resulting in the mis-specification of daughter cell fates and tumor-like over proliferation in the Drosophila nervous system. Our data suggest a model in which asymmetrically localized Pins-G alphai complexes regulate spindle orientation by directly binding to Mud.
Collapse
Affiliation(s)
- Sarah K Bowman
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3-5, 1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
41
|
Li Y, Feng HL, Cao YJ, Zheng GJ, Yang Y, Mullen S, Critser JK, Chen ZJ. Confocal microscopic analysis of the spindle and chromosome configurations of human oocytes matured in vitro. Fertil Steril 2006; 85:827-32. [PMID: 16580356 DOI: 10.1016/j.fertnstert.2005.06.064] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Accepted: 06/03/2005] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To assess the potential effects of in vitro maturation (IVM) of human oocytes on the meiotic spindle and associated chromosome configuration. DESIGN Prospective study. SETTING Hospital-based IVF center. PATIENT(S) Patients with polycystic ovary syndrome (PCOS) undergoing unstimulated and stimulated cycles of oocyte retrieval. INTERVENTION(S) Immature (germinal vesicle and metaphase I) and mature (metaphase II) oocytes were collected from PCOS patients. The meiotic spindle and chromosome configurations in oocytes matured in vitro and in vivo were studied by confocal microscopy, with fluorescent labeling techniques for visualization of both microtubules and chromatin. MAIN OUTCOME MEASURE(S) Meiotic spindle and associated chromosome configurations. RESULT(S) Oocytes can develop to the metaphase II stage after IVM. Confocal microscopic observations revealed that the oocytes matured in vitro had a higher frequency of abnormal meiotic spindle and chromosomal alignment morphology than in vivo-matured oocytes. These abnormalities included a partial or total disorganization of the meiotic spindle microtubules. Abnormal chromosome organization included dispersal of chromosomes or chromosomes with an aberrant, less-condensed appearance. The proportions of abnormality in spindle and chromosome configurations in oocytes matured in vitro were 43.7% and 33.3%, respectively, which was significantly higher than in those oocytes matured in vivo (13.6% and 9.1%). CONCLUSION(S) In vitro maturation can have deleterious effects on the organization of the meiotic spindle and chromosome alignment of human oocytes. This result suggests one possible explanation for the reduced developmental potential of oocytes matured in vitro compared with those matured in vivo. This is likely a contributing factor to the overall lower clinical outcomes observed after IVM and ET.
Collapse
Affiliation(s)
- Yuan Li
- Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, Jinan, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
White GE, Erickson HP. Sequence divergence of coiled coils--structural rods, myosin filament packing, and the extraordinary conservation of cohesins. J Struct Biol 2006; 154:111-21. [PMID: 16495084 DOI: 10.1016/j.jsb.2006.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 01/04/2006] [Accepted: 01/06/2006] [Indexed: 11/30/2022]
Abstract
The amino acid sequences of the long, anti-parallel coiled coils of the cohesin subunits SMC1 and SMC3 are almost totally conserved in mammals. To understand this exceptional conservation more broadly, we analyzed amino acid sequence variation for several groups of coiled-coil proteins. Some long coiled coils, including giantin, NuMA, and Ndc80p/Nuf2p diverge approximately 20% from humans to rodents, suggesting they function as spacer rods, whose sequence divergence is constrained only by the need to maintain the coiled-coil structure. Other coiled coils such as skeletal muscle myosin, intermediate filaments, and the lamins diverge only 1-3%. We suggest that this sequence divergence is constrained by the extensive packing contacts over the entire surface of the coiled-coil. The coiled coils of SMC5/6 and SMC2/4 (condensin) are slightly more constrained than the presumed spacer rods, diverging 10-15%. Conversely, the coiled coils of SMC1/3 (cohesin) diverge only 0.0-1.0%. This extreme constraint suggests that the entire surface of the coiled coil is intimately involved in the mechanism of sister chromatid cohesion. Direct binding of the coiled coils to chromatin, or perhaps the need to avoid such binding, are two possible mechanisms. Finally, analysis of the heptad repeat shows that the a and d positions are more constrained in spacer rods, and the bcefg positions more constrained in skeletal muscle myosin.
Collapse
Affiliation(s)
- Glenn E White
- School of Pharmacy, Wingate University, Wingate, NC 28174, USA
| | | |
Collapse
|
43
|
Chang W, Dynek J, Smith S. NuMA is a major acceptor of poly(ADP-ribosyl)ation by tankyrase 1 in mitosis. Biochem J 2006; 391:177-84. [PMID: 16076287 PMCID: PMC1276914 DOI: 10.1042/bj20050885] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tankyrase 1 is a PARP [poly(ADP-ribose) polymerase] that localizes to multiple subcellular sites, including telomeres and mitotic centrosomes. Previous studies demonstrated that cells deficient in tankyrase 1 suffered a block in resolution of sister telomeres and arrested in early anaphase [Dynek and Smith (2004) Science 304, 97-100]. This phenotype was dependent on the catalytic PARP activity of tankyrase 1. To identify critical acceptors of PARsylation [poly(ADP-ribosyl)ation] by tankyrase 1 in mitosis, tankyrase 1 immunoprecipitates were analysed for associated PARsylated proteins. We identified NuMA (nuclear mitotic apparatus protein) as a major acceptor of poly(ADP-ribose) from tankyrase 1 in mitosis. We showed by immunofluorescence and immunoprecipitation that association between tankyrase 1 and NuMA increases dramatically at the onset of mitosis, concomitant with PARsylation of NuMA. Knockdown of tankyrase 1 by siRNA (small interfering RNA) eliminates PARsylation of NuMA in mitosis, confirming tankyrase 1 as the PARP responsible for this modification. However, even in the absence of tankyrase 1 and PARsylation, NuMA localizes to spindle poles. By contrast, siRNA knockdown of NuMA results in complete loss of tankyrase 1 from spindle poles. We discuss our result in terms of a model where PARsylation of NuMA by tankyrase 1 in mitosis could play a role in sister telomere separation and/or mitotic progression.
Collapse
Affiliation(s)
- William Chang
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, U.S.A
| | - Jasmin N. Dynek
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, U.S.A
| | - Susan Smith
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
44
|
Abstract
The spindle is a dynamic, microtubule-based structure responsible for chromosome segregation during cell division. Spindles in mammalian cells contain several thousand microtubules that are arranged into highly symmetric bipolar arrays by the actions of numerous microtubule-associated motor and non-motor proteins. In addition to these protein constituents, recent work has demonstrated that poly(ADP-ribose) is a key spindle component. Of the multitude of poly(ADP-ribose) polymerase proteins encoded in the genome, tankyrase 1 appears to be the primary enzyme responsible for building poly(ADP-ribose) in spindles during mitosis. In this issue of the Biochemical Journal, Susan Smith and co-workers show that the primary target of tankyrase 1 in dividing cells is NuMA (nuclear mitotic apparatus protein), a protein that cross-links microtubule ends at spindle poles. The impact of poly(ADP-ribosyl)ation on the biochemical function of NuMA remains murky at this time, but these new results represent the first step to clearing the view as to how poly(ADP-ribosyl)ation regulates cell division.
Collapse
Affiliation(s)
- Duane A Compton
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA.
| |
Collapse
|
45
|
Ehrhardt DW, Shaw SL. Microtubule dynamics and organization in the plant cortical array. ANNUAL REVIEW OF PLANT BIOLOGY 2006; 57:859-75. [PMID: 16669785 DOI: 10.1146/annurev.arplant.57.032905.105329] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Live-cell studies have brought fresh insight into the organizational activities of the plant cortical array. Plant interphase arrays organize in the absence of a discrete microtubule organizing center, having plus and minus ends distributed throughout the cell cortex. Microtubule nucleation occurs at the cell cortex, frequently followed by minus-end detachment from origin sites. Microtubules associate tightly with the cell cortex, resisting lateral and axial translocation. Slow, intermitant loss of dimers from minus ends, coupled with growth-biased dynamic instability at the plus ends, results in the migration of cortically attached microtubules across the cell via polymer treadmilling. Microtubule-microtubule interactions, a direct consequence of treadmilling, result in polymer reorientation and creation of polymer bundles. The combined properties of microtubule dynamics and interactions among polymers constitute a system with predicted properties of self-organization.
Collapse
Affiliation(s)
- David W Ehrhardt
- Department of Plant Biology, Carnegie Institution, Stanford, California 94020, USA.
| | | |
Collapse
|
46
|
Hause G, Lischewski S, Wessjohann LA, Hause B. Epothilone D affects cell cycle and microtubular pattern in plant cells. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:2131-7. [PMID: 15967777 DOI: 10.1093/jxb/eri211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Epothilones, macrocyclic lactones from culture filtrates of the myxobacterium Sorangium cellulosum, are known as taxol-like microtubular drugs in human medicine. To date, nothing is known about the effect of epothilones on microtubules (MTs) in plant cells and/or on the plant cell cycle. As shown in this report, the treatment of tomato cell suspension cultures with epothilone D produced a continuous increase in the mitotic index. Dose-response curves revealed that epothilone D alters the mitotic index at concentrations as low as 1.5 microM. Mitotic arrest was already visible after only 2 h of treatment, and 55% of the cells were arrested after 24 h. As shown by immunocytological methods, abnormal spindles are formed during metaphase, which leads to a random distribution of chromosomes in the whole cell and prevents the formation of a metaphase plate. The process of chromosome decondensation does not seem to be affected, because micronuclei form at the same place with the distributed chromosomes. This suggests that epothilone D influences the stability of plant MTs mainly during metaphase of the mitotic cycle. In metaphase, the effects of epothilone D seem to be irreversible, because cells with an abnormal spindle could not be recovered after removal of the drug.
Collapse
Affiliation(s)
- Gerd Hause
- Biozentrum der Universität, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 22, D-06120 Halle (Saale), Germany
| | | | | | | |
Collapse
|