1
|
Cadenas-Garrido P, Schonvandt-Alarcos A, Herrera-Quintana L, Vázquez-Lorente H, Santamaría-Quiles A, Ruiz de Francisco J, Moya-Escudero M, Martín-Oliva D, Martín-Guerrero SM, Rodríguez-Santana C, Aragón-Vela J, Plaza-Diaz J. Using Redox Proteomics to Gain New Insights into Neurodegenerative Disease and Protein Modification. Antioxidants (Basel) 2024; 13:127. [PMID: 38275652 PMCID: PMC10812581 DOI: 10.3390/antiox13010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Antioxidant defenses in biological systems ensure redox homeostasis, regulating baseline levels of reactive oxygen and nitrogen species (ROS and RNS). Oxidative stress (OS), characterized by a lack of antioxidant defenses or an elevation in ROS and RNS, may cause a modification of biomolecules, ROS being primarily absorbed by proteins. As a result of both genome and environment interactions, proteomics provides complete information about a cell's proteome, which changes continuously. Besides measuring protein expression levels, proteomics can also be used to identify protein modifications, localizations, the effects of added agents, and the interactions between proteins. Several oxidative processes are frequently used to modify proteins post-translationally, including carbonylation, oxidation of amino acid side chains, glycation, or lipid peroxidation, which produces highly reactive alkenals. Reactive alkenals, such as 4-hydroxy-2-nonenal, are added to cysteine (Cys), lysine (Lys), or histidine (His) residues by a Michael addition, and tyrosine (Tyr) residues are nitrated and Cys residues are nitrosylated by a Michael addition. Oxidative and nitrosative stress have been implicated in many neurodegenerative diseases as a result of oxidative damage to the brain, which may be especially vulnerable due to the large consumption of dioxygen. Therefore, the current methods applied for the detection, identification, and quantification in redox proteomics are of great interest. This review describes the main protein modifications classified as chemical reactions. Finally, we discuss the importance of redox proteomics to health and describe the analytical methods used in redox proteomics.
Collapse
Affiliation(s)
- Paula Cadenas-Garrido
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - Ailén Schonvandt-Alarcos
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - Lourdes Herrera-Quintana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.); (C.R.-S.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Héctor Vázquez-Lorente
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.); (C.R.-S.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Alicia Santamaría-Quiles
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - Jon Ruiz de Francisco
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - Marina Moya-Escudero
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - David Martín-Oliva
- Department of Cell Biology, Faculty of Science, University of Granada, 18071 Granada, Spain;
| | - Sandra M. Martín-Guerrero
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9RT, UK
| | - César Rodríguez-Santana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.); (C.R.-S.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Jerónimo Aragón-Vela
- Department of Health Sciences, Area of Physiology, Building B3, Campus s/n “Las Lagunillas”, University of Jaén, 23071 Jaén, Spain
| | - Julio Plaza-Diaz
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain
| |
Collapse
|
2
|
Scirè A, Casari G, Romaldi B, de Bari L, Antognelli C, Armeni T. Glutathionyl Hemoglobin and Its Emerging Role as a Clinical Biomarker of Chronic Oxidative Stress. Antioxidants (Basel) 2023; 12:1976. [PMID: 38001829 PMCID: PMC10669486 DOI: 10.3390/antiox12111976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Hemoglobin is one of the proteins that are more susceptible to S-glutathionylation and the levels of its modified form, glutathionyl hemoglobin (HbSSG), increase in several human pathological conditions. The scope of the present review is to provide knowledge about how hemoglobin is subjected to S-glutathionylation and how this modification affects its functionality. The different diseases that showed increased levels of HbSSG and the methods used for its quantification in clinical investigations will be also outlined. Since there is a growing need for precise and reliable methods for markers of oxidative stress in human blood, this review highlights how HbSSG is emerging more and more as a good indicator of severe oxidative stress but also as a key pathogenic factor in several diseases.
Collapse
Affiliation(s)
- Andrea Scirè
- Department of Life and Environmental Sciences (Di.S.V.A.), Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Giulia Casari
- Department of Odontostomatologic and Specialized Clinical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (G.C.); (B.R.); (T.A.)
| | - Brenda Romaldi
- Department of Odontostomatologic and Specialized Clinical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (G.C.); (B.R.); (T.A.)
| | - Lidia de Bari
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), 70126 Bari, Italy;
| | - Cinzia Antognelli
- Department of Medicine and Surgery, Università Degli Studi di Perugia, 06129 Perugia, Italy;
| | - Tatiana Armeni
- Department of Odontostomatologic and Specialized Clinical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (G.C.); (B.R.); (T.A.)
| |
Collapse
|
3
|
Hossain MS, Yao A, Qiao X, Shi W, Xie T, Chen C, Zhang YQ. Gbb glutathionylation promotes its proteasome-mediated degradation to inhibit synapse growth. J Cell Biol 2023; 222:e202202068. [PMID: 37389657 PMCID: PMC10316630 DOI: 10.1083/jcb.202202068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/20/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
Glutathionylation is a posttranslational modification involved in various molecular and cellular processes. However, it remains unknown whether and how glutathionylation regulates nervous system development. To identify critical regulators of synapse growth and development, we performed an RNAi screen and found that postsynaptic knockdown of glutathione transferase omega 1 (GstO1) caused significantly more synaptic boutons at the Drosophila neuromuscular junctions. Genetic and biochemical analysis revealed an increased level of glass boat bottom (Gbb), the Drosophila homolog of mammalian bone morphogenetic protein (BMP), in GstO1 mutants. Further experiments showed that GstO1 is a critical regulator of Gbb glutathionylation at cysteines 354 and 420, which promoted its degradation via the proteasome pathway. Moreover, the E3 ligase Ctrip negatively regulated the Gbb protein level by preferentially binding to glutathionylated Gbb. These results unveil a novel regulatory mechanism in which glutathionylation of Gbb facilitates its ubiquitin-mediated degradation. Taken together, our findings shed new light on the crosstalk between glutathionylation and ubiquitination of Gbb in synapse development.
Collapse
Affiliation(s)
- Md Shafayat Hossain
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Aiyu Yao
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xinhua Qiao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wenwen Shi
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ting Xie
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chang Chen
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Q. Zhang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Nava-Ramírez T, Gutiérrez-Terrazas S, Hansberg W. The Molecular Chaperone Mechanism of the C-Terminal Domain of Large-Size Subunit Catalases. Antioxidants (Basel) 2023; 12:antiox12040839. [PMID: 37107214 PMCID: PMC10135305 DOI: 10.3390/antiox12040839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/11/2023] [Accepted: 03/19/2023] [Indexed: 04/03/2023] Open
Abstract
Large-size subunit catalases (LSCs) have an additional C-terminal domain (CT) that is structurally similar to Hsp31 and DJ-1 proteins, which have molecular chaperone activity. The CT of LSCs derives from a bacterial Hsp31 protein. There are two CT dimers with inverted symmetry in LSCs, one dimer in each pole of the homotetrameric structure. We previously demonstrated the molecular chaperone activity of the CT of LSCs. Like other chaperones, LSCs are abundant proteins that are induced under stress conditions and during cell differentiation in bacteria and fungi. Here, we analyze the mechanism of the CT of LSCs as an unfolding enzyme. The dimeric form of catalase-3 (CAT-3) CT (TDC3) of Neurospora crassa presented the highest activity as compared to its monomeric form. A variant of the CAT-3 CT lacking the last 17 amino acid residues (TDC3Δ17aa), a loop containing hydrophobic and charged amino acid residues only, lost most of its unfolding activity. Substituting charged for hydrophobic residues or vice versa in this C-terminal loop diminished the molecular chaperone activity in all the mutant variants analyzed, indicating that these amino acid residues play a relevant role in its unfolding activity. These data suggest that the general unfolding mechanism of CAT-3 CT involves a dimer with an inverted symmetry, and hydrophobic and charged amino acid residues. Each tetramer has four sites of interaction with partially unfolded or misfolded proteins. LSCs preserve their catalase activity under different stress conditions and, at the same time, function as unfolding enzymes.
Collapse
|
5
|
Boyko KV, Rosenkranz EA, Smith DM, Miears HL, Oueld es cheikh M, Lund MZ, Young JC, Reardon PN, Okon M, Smirnov SL, Antos JM. Sortase-mediated segmental labeling: A method for segmental assignment of intrinsically disordered regions in proteins. PLoS One 2021; 16:e0258531. [PMID: 34710113 PMCID: PMC8553144 DOI: 10.1371/journal.pone.0258531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
A significant number of proteins possess sizable intrinsically disordered regions (IDRs). Due to the dynamic nature of IDRs, NMR spectroscopy is often the tool of choice for characterizing these segments. However, the application of NMR to IDRs is often hindered by their instability, spectral overlap and resonance assignment difficulties. Notably, these challenges increase considerably with the size of the IDR. In response to these issues, here we report the use of sortase-mediated ligation (SML) for segmental isotopic labeling of IDR-containing samples. Specifically, we have developed a ligation strategy involving a key segment of the large IDR and adjacent folded headpiece domain comprising the C-terminus of A. thaliana villin 4 (AtVLN4). This procedure significantly reduces the complexity of NMR spectra and enables group identification of signals arising from the labeled IDR fragment, a process we refer to as segmental assignment. The validity of our segmental assignment approach is corroborated by backbone residue-specific assignment of the IDR using a minimal set of standard heteronuclear NMR methods. Using segmental assignment, we further demonstrate that the IDR region adjacent to the headpiece exhibits nonuniform spectral alterations in response to temperature. Subsequent residue-specific characterization revealed two segments within the IDR that responded to temperature in markedly different ways. Overall, this study represents an important step toward the selective labeling and probing of target segments within much larger IDR contexts. Additionally, the approach described offers significant savings in NMR recording time, a valuable advantage for the study of unstable IDRs, their binding interfaces, and functional mechanisms.
Collapse
Affiliation(s)
- Kristina V. Boyko
- Department of Chemistry, Western Washington University, Bellingham, Washington, United States of America
| | - Erin A. Rosenkranz
- Department of Chemistry, Western Washington University, Bellingham, Washington, United States of America
| | - Derrick M. Smith
- Department of Chemistry, Western Washington University, Bellingham, Washington, United States of America
| | - Heather L. Miears
- Department of Chemistry, Western Washington University, Bellingham, Washington, United States of America
| | - Melissa Oueld es cheikh
- Department of Chemistry, Western Washington University, Bellingham, Washington, United States of America
| | - Micah Z. Lund
- Department of Chemistry, Western Washington University, Bellingham, Washington, United States of America
| | - Jeffery C. Young
- Department of Biology, Western Washington University, Bellingham, Washington, United States of America
| | - Patrick N. Reardon
- Oregon State University NMR Facility, Oregon State University, Corvallis, Oregon, United States of America
| | - Mark Okon
- Department of Biochemistry and Molecular Biology, Department of Chemistry, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Serge L. Smirnov
- Department of Chemistry, Western Washington University, Bellingham, Washington, United States of America
| | - John M. Antos
- Department of Chemistry, Western Washington University, Bellingham, Washington, United States of America
| |
Collapse
|
6
|
Branco V, Matos B, Mourato C, Diniz M, Carvalho C, Martins M. Synthesis of glutathione as a central aspect of PAH toxicity in liver cells: A comparison between phenanthrene, Benzo[b]Fluoranthene and their mixtures. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111637. [PMID: 33396157 DOI: 10.1016/j.ecoenv.2020.111637] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
Polycyclic Aromatic Hydrocarbons (PAH) are a class of organic pollutants normally found as mixtures with effects often hard to predict, which poses a major challenge for risk assessment. In this study, we address the effects of Phenanthrene (Phe), benzo[b]fluoranthene (B[b]F) and their mixtures (2 Phe:1 B[b]F; 1 Phe: 1 B[b]F; 1 Phe: 2 B[b]F) over glutathione (GSH) synthesis and function in HepG2 cells. We analyzed the effects on cellular viability, ROS production, glutathione (GSH) levels, protein-S-glutathionylation (PSSG), the activity of glutathione peroxidase (GPx), glutathione-S-transferases (GST) and glutathione reductase (GR). Transcript (mRNA) levels of glutathione synthesis enzymes - glutathione cysteine ligase catalytical (GCLC) and modifying (GCLM) sub-units and glutathione synthetase (GS) - and Nrf2 translocation to the nucleus were analyzed. Phe showed a higher cytotoxicity (IC50 = 130 µM after 24 h) than B[b]F related to a higher ROS production (up-to 50% for Phe). In agreement, GSH levels were significantly increased (up-to 3-fold) by B[b]F and were accompanied by an increase in the levels of PSSG, which is a mechanism that protect proteins from oxidative damage. The upregulation of GSH was the consequence of Nrf2 signaling activation and increased levels of GCLC, GCLM and GS mRNA observed after exposure to B[b]F, but not during exposure to Phe. Most interestingly, all mixtures showed higher cytotoxicity than individual compounds, but intriguingly it was the 1 Phe: 1B[b]F mixture showing the highest cytotoxicity and ROS production. GSH levels were not significantly upregulated not even in the mixture enriched in B[b]F. These results point to the role of GSH as a central modulator of PAH toxicity and demonstrate the idiosyncratic behavior of PAH mixtures even when considering only two compounds in varying ratios.
Collapse
Affiliation(s)
- Vasco Branco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Beatriz Matos
- MARE - Marine and Environmental Sciences Centre, Departament of Environmental Sciences and Engineering, NOVA School of Science and Technology (FCT NOVA), 2829-516 Caparica, Portugal
| | - Carolina Mourato
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Mário Diniz
- UCIBIO - Applied Molecular Biosciences Unit, Departament of Chemistry, NOVA School of Science and Technology (FCT NOVA), 2829-516 Caparica, Portugal
| | - Cristina Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Marta Martins
- MARE - Marine and Environmental Sciences Centre, Departament of Environmental Sciences and Engineering, NOVA School of Science and Technology (FCT NOVA), 2829-516 Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Departament of Chemistry, NOVA School of Science and Technology (FCT NOVA), 2829-516 Caparica, Portugal.
| |
Collapse
|
7
|
Putra M, Gage M, Sharma S, Gardner C, Gasser G, Anantharam V, Thippeswamy T. Diapocynin, an NADPH oxidase inhibitor, counteracts diisopropylfluorophosphate-induced long-term neurotoxicity in the rat model. Ann N Y Acad Sci 2020; 1479:75-93. [PMID: 32037612 PMCID: PMC7415478 DOI: 10.1111/nyas.14314] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/14/2020] [Accepted: 01/25/2020] [Indexed: 12/18/2022]
Abstract
Organophosphate (OP) nerve agents are a threat to both the military and civilians. OP exposure causes cholinergic crisis and status epilepticus (SE) because of irreversible inhibition of acetylcholinesterase that can be life-threatening if left untreated. OP survivors develop long-term morbidity, such as cognitive impairment and motor dysfunction, because of oxidative stress and progressive neuroinflammation and neurodegeneration, which act as disease promoters. Current medical countermeasures (MCMs) do not mitigate these pathologies. Therefore, our goal was to target these disease promoters using diapocynin (DPO), an NADPH oxidase inhibitor, in addition to MCMs, in a rat diisopropylfluorophosphate (DFP) model. The DFP-intoxicated rats were treated with DPO (300 mg/kg, oral, six doses, 12-h intervals) or vehicle 2 h following behavioral SE termination with diazepam. The DPO treatment significantly rescued DFP-induced motor impairment and attenuated epileptiform spiking during the first 72 h after DFP exposure in severely seizing rats despite no difference in epileptiform spike rate between the vehicle and DPO groups in mild SE rats. DPO significantly reduced DFP-induced reactive astrogliosis, neurodegeneration, GP91phox , glutathiolated protein, serum nitrite, and proinflammatory cytokines and chemokines, such as interleukins (ILs) IL-1α, IL-6, IL-2, IL-17A, leptin, and IP-10, in the hippocampus. Collectively, these data support a neuroprotective role of DPO in an OP-induced neurotoxicity model.
Collapse
Affiliation(s)
- Marson Putra
- Neuroscience Graduate Program, Iowa State University, Ames, IA 50011
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Meghan Gage
- Neuroscience Graduate Program, Iowa State University, Ames, IA 50011
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Shaunik Sharma
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Cara Gardner
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | | | | | - Thimmasettappa Thippeswamy
- Neuroscience Graduate Program, Iowa State University, Ames, IA 50011
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| |
Collapse
|
8
|
Bourdeaux F, Kopp Y, Lautenschläger J, Gößner I, Besir H, Vabulas RM, Grininger M. Dodecin as carrier protein for immunizations and bioengineering applications. Sci Rep 2020; 10:13297. [PMID: 32764653 PMCID: PMC7414021 DOI: 10.1038/s41598-020-69990-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/13/2020] [Indexed: 11/29/2022] Open
Abstract
In bioengineering, scaffold proteins have been increasingly used to recruit molecules to parts of a cell, or to enhance the efficacy of biosynthetic or signalling pathways. For example, scaffolds can be used to make weak or non-immunogenic small molecules immunogenic by attaching them to the scaffold, in this role called carrier. Here, we present the dodecin from Mycobacterium tuberculosis (mtDod) as a new scaffold protein. MtDod is a homododecameric complex of spherical shape, high stability and robust assembly, which allows the attachment of cargo at its surface. We show that mtDod, either directly loaded with cargo or equipped with domains for non-covalent and covalent loading of cargo, can be produced recombinantly in high quantity and quality in Escherichia coli. Fusions of mtDod with proteins of up to four times the size of mtDod, e.g. with monomeric superfolder green fluorescent protein creating a 437 kDa large dodecamer, were successfully purified, showing mtDod's ability to function as recruitment hub. Further, mtDod equipped with SYNZIP and SpyCatcher domains for post-translational recruitment of cargo was prepared of which the mtDod/SpyCatcher system proved to be particularly useful. In a case study, we finally show that mtDod-peptide fusions allow producing antibodies against human heat shock proteins and the C-terminus of heat shock cognate 70 interacting protein (CHIP).
Collapse
Affiliation(s)
- Florian Bourdeaux
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Yannick Kopp
- Institute of Biophysical Chemistry, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Lauer Str. 15, 60438, Frankfurt am Main, Germany
| | - Julia Lautenschläger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Ines Gößner
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Hüseyin Besir
- European Molecular Biology Laboratory, 69117, Heidelberg, Germany
- PROGEN Biotechnik GmbH, 69123, Heidelberg, Germany
| | - R Martin Vabulas
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
9
|
Matsui R, Ferran B, Oh A, Croteau D, Shao D, Han J, Pimentel DR, Bachschmid MM. Redox Regulation via Glutaredoxin-1 and Protein S-Glutathionylation. Antioxid Redox Signal 2020; 32:677-700. [PMID: 31813265 PMCID: PMC7047114 DOI: 10.1089/ars.2019.7963] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Significance: Over the past several years, oxidative post-translational modifications of protein cysteines have been recognized for their critical roles in physiology and pathophysiology. Cells have harnessed thiol modifications involving both oxidative and reductive steps for signaling and protein processing. One of these stages requires oxidation of cysteine to sulfenic acid, followed by two reduction reactions. First, glutathione (reduced glutathione [GSH]) forms a S-glutathionylated protein, and second, enzymatic or chemical reduction removes the modification. Under physiological conditions, these steps confer redox signaling and protect cysteines from irreversible oxidation. However, oxidative stress can overwhelm protein S-glutathionylation and irreversibly modify cysteine residues, disrupting redox signaling. Critical Issues: Glutaredoxins mainly catalyze the removal of protein-bound GSH and help maintain protein thiols in a highly reduced state without exerting direct antioxidant properties. Conversely, glutathione S-transferase (GST), peroxiredoxins, and occasionally glutaredoxins can also catalyze protein S-glutathionylation, thus promoting a dynamic redox environment. Recent Advances: The latest studies of glutaredoxin-1 (Glrx) transgenic or knockout mice demonstrate important distinct roles of Glrx in a variety of pathologies. Endogenous Glrx is essential to maintain normal hepatic lipid homeostasis and prevent fatty liver disease. Further, in vivo deletion of Glrx protects lungs from inflammation and bacterial pneumonia-induced damage, attenuates angiotensin II-induced cardiovascular hypertrophy, and improves ischemic limb vascularization. Meanwhile, exogenous Glrx administration can reverse pathological lung fibrosis. Future Directions: Although S-glutathionylation modifies many proteins, these studies suggest that S-glutathionylation and Glrx regulate specific pathways in vivo, and they implicate Glrx as a potential novel therapeutic target to treat diverse disease conditions. Antioxid. Redox Signal. 32, 677-700.
Collapse
Affiliation(s)
- Reiko Matsui
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Beatriz Ferran
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Albin Oh
- Cardiology, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Dominique Croteau
- Cardiology, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Di Shao
- Helens Clinical Research Center, Chongqing, China
| | - Jingyan Han
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - David Richard Pimentel
- Cardiology, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Markus Michael Bachschmid
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
10
|
Chowdhury SAK, Warren CM, Simon JN, Ryba DM, Batra A, Varga P, Kranias EG, Tardiff JC, Solaro RJ, Wolska BM. Modifications of Sarcoplasmic Reticulum Function Prevent Progression of Sarcomere-Linked Hypertrophic Cardiomyopathy Despite a Persistent Increase in Myofilament Calcium Response. Front Physiol 2020; 11:107. [PMID: 32210830 PMCID: PMC7075858 DOI: 10.3389/fphys.2020.00107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/30/2020] [Indexed: 01/12/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetic disorder caused by mutations in different genes mainly encoding myofilament proteins and therefore called a “disease of the sarcomere.” Despite the discovery of sarcomere protein mutations linked to HCM almost 30 years ago, the cellular mechanisms responsible for the development of this disease are not completely understood and likely vary among different mutations. Moreover, despite many efforts to develop effective treatments for HCM, these have largely been unsuccessful, and more studies are needed to better understand the cellular mechanisms of the disease. In experiments reported here, we investigated a mouse model expressing the mutant cTnT-R92Q, which is linked to HCM and induces an increase in myofilament Ca2+ sensitivity and diastolic dysfunction. We found that early correction of the diastolic dysfunction by phospholamban knockout (PLNKO) was able to prevent the development of the HCM phenotype in troponin T (TnT)-R92Q transgenic (TG) mice. Four groups of mice in FVB/N background were generated and used for the experiments: (1) non-transgenic (NTG)/PLN mice, which express wild-type TnT and normal level of PLN; (2) NTG/PLNKO mice, which express wild-type TnT and no PLN; (3) TG/PLN mice, which express TnT-R92Q and normal level of PLN; (4) TG/PLNKO mice, which express TnT-R92Q and no PLN. Cardiac function was determined using both standard echocardiographic parameters and speckle tracking strain measurements. We found that both atrial morphology and diastolic function were altered in TG/PLN mice but normal in TG/PLNKO mice. Histological analysis showed a disarray of myocytes and increased collagen deposition only in TG/PLN hearts. We also observed increased Ca2+/calmodulin-dependent protein kinase II (CaMKII) phosphorylation only in TG/PLN hearts but not in TG/PLNKO hearts. The rescue of the HCM phenotype was not associated with differences in myofilament Ca2+ sensitivity between TG/PLN and TG/PLNKO mice. Moreover, compared to standard systolic echo parameters, such as ejection fraction (EF), speckle strain measurements provided a more sensitive approach to detect early systolic dysfunction in TG/PLN mice. In summary, our results indicate that targeting diastolic dysfunction through altering Ca2+ fluxes with no change in myofilament response to Ca2+ was able to prevent the development of the HCM phenotype and should be considered as a potential additional treatment for HCM patients.
Collapse
Affiliation(s)
- Shamim A K Chowdhury
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Chad M Warren
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jillian N Simon
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - David M Ryba
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Ashley Batra
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Peter Varga
- Department of Pediatrics, Section of Cardiology, University of Illinois at Chicago, Chicago, IL, United States
| | - Evangelia G Kranias
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
| | - Jil C Tardiff
- Department of Medicine, Division of Cardiology, The University of Arizona, Tucson, AZ, United States
| | - R John Solaro
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Beata M Wolska
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States.,Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
11
|
|
12
|
Bolotta A, Visconti P, Fedrizzi G, Ghezzo A, Marini M, Manunta P, Messaggio E, Posar A, Vignini A, Abruzzo PM. Na + , K + -ATPase activity in children with autism spectrum disorder: Searching for the reason(s) of its decrease in blood cells. Autism Res 2018; 11:1388-1403. [PMID: 30120881 PMCID: PMC6221099 DOI: 10.1002/aur.2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/24/2018] [Accepted: 06/03/2018] [Indexed: 12/27/2022]
Abstract
Na+ , K+ -ATPase (NKA) activity, which establishes the sodium and potassium gradient across the cell membrane and is instrumental in the propagation of the nerve impulses, is altered in a number of neurological and neuropsychiatric disorders, including autism spectrum disorders (ASD). In the present work, we examined a wide range of biochemical and cellular parameters in the attempt to understand the reason(s) for the severe decrease in NKA activity in erythrocytes of ASD children that we reported previously. NKA activity in leukocytes was found to be decreased independently from alteration in plasma membrane fluidity. The different subunits were evaluated for gene expression in leukocytes and for protein expression in erythrocytes: small differences in gene expression between ASD and typically developing children were not apparently paralleled by differences in protein expression. Moreover, no gross difference in erythrocyte plasma membrane oxidative modifications was detectable, although oxidative stress in blood samples from ASD children was confirmed by increased expression of NRF2 mRNA. Interestingly, gene expression of some NKA subunits correlated with clinical features. Excess inhibitory metals or ouabain-like activities, which might account for NKA activity decrease, were ruled out. Plasma membrane cholesterol, but not phosphatidylcholine and phosphatidlserine, was slighty decreased in erythrocytes from ASD children. Although no compelling results were obtained, our data suggest that alteration in the erytrocyte lipid moiety or subtle oxidative modifications in NKA structure are likely candidates for the observed decrease in NKA activity. These findings are discussed in the light of the relevance of NKA in ASD. Autism Res 2018, 11: 1388-1403. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: The activity of the cell membrane enzyme NKA, which is instrumental in the propagation of the nerve impulses, is severely decreased in erythrocytes from ASD children and in other brain disorders, yet no explanation has been provided for this observation. We strived to find a biological/biochemical cause of such alteration, but most queries went unsolved because of the complexity of NKA regulation. As NKA activity is altered in many brain disorders, we stress the relevance of studies aimed at understanding its regulation in ASD.
Collapse
Affiliation(s)
- Alessandra Bolotta
- From the Department of Experimental, Diagnostic, and Specialty MedicineUniversity of BolognaBolognaItaly
- IRCCS Fondazione Don Carlo GnocchiMilanItaly
| | - Paola Visconti
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| | - Giorgio Fedrizzi
- Chemical DepartmentIZSLER Zooprophylactic Experimental Institute for Lombardy and Emilia RomagnaBolognaItaly
| | - Alessandro Ghezzo
- From the Department of Experimental, Diagnostic, and Specialty MedicineUniversity of BolognaBolognaItaly
| | - Marina Marini
- From the Department of Experimental, Diagnostic, and Specialty MedicineUniversity of BolognaBolognaItaly
- IRCCS Fondazione Don Carlo GnocchiMilanItaly
| | - Paolo Manunta
- University and Hospital Vita‐SaluteMilanItaly
- Chair of NephrologyUniversity Vita Salute San Raffaele, IRCCS San Raffaele Scientific InstituteMilanItaly
| | | | - Annio Posar
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| | - Arianna Vignini
- Department of Clinical Sciences – Section of Biochemistry, Biology and PhysicsPolytechnic University of MarcheAnconaItaly
| | - Provvidenza Maria Abruzzo
- From the Department of Experimental, Diagnostic, and Specialty MedicineUniversity of BolognaBolognaItaly
- IRCCS Fondazione Don Carlo GnocchiMilanItaly
| |
Collapse
|
13
|
Suppression of External NADPH Dehydrogenase-NDB1 in Arabidopsis thaliana Confers Improved Tolerance to Ammonium Toxicity via Efficient Glutathione/Redox Metabolism. Int J Mol Sci 2018; 19:ijms19051412. [PMID: 29747392 PMCID: PMC5983774 DOI: 10.3390/ijms19051412] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 01/01/2023] Open
Abstract
Environmental stresses, including ammonium (NH4+) nourishment, can damage key mitochondrial components through the production of surplus reactive oxygen species (ROS) in the mitochondrial electron transport chain. However, alternative electron pathways are significant for efficient reductant dissipation in mitochondria during ammonium nutrition. The aim of this study was to define the role of external NADPH-dehydrogenase (NDB1) during oxidative metabolism of NH4+-fed plants. Most plant species grown with NH4+ as the sole nitrogen source experience a condition known as “ammonium toxicity syndrome”. Surprisingly, transgenic Arabidopsis thaliana plants suppressing NDB1 were more resistant to NH4+ treatment. The NDB1 knock-down line was characterized by milder oxidative stress symptoms in plant tissues when supplied with NH4+. Mitochondrial ROS accumulation, in particular, was attenuated in the NDB1 knock-down plants during NH4+ treatment. Enhanced antioxidant defense, primarily concerning the glutathione pool, may prevent ROS accumulation in NH4+-grown NDB1-suppressing plants. We found that induction of glutathione peroxidase-like enzymes and peroxiredoxins in the NDB1-surpressing line contributed to lower ammonium-toxicity stress. The major conclusion of this study was that NDB1 suppression in plants confers tolerance to changes in redox homeostasis that occur in response to prolonged ammonium nutrition, causing cross tolerance among plants.
Collapse
|
14
|
Giustarini D, Colombo G, Garavaglia ML, Astori E, Portinaro NM, Reggiani F, Badalamenti S, Aloisi AM, Santucci A, Rossi R, Milzani A, Dalle-Donne I. Assessment of glutathione/glutathione disulphide ratio and S-glutathionylated proteins in human blood, solid tissues, and cultured cells. Free Radic Biol Med 2017; 112:360-375. [PMID: 28807817 DOI: 10.1016/j.freeradbiomed.2017.08.008] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/04/2017] [Accepted: 08/09/2017] [Indexed: 12/24/2022]
Abstract
Glutathione (GSH) is the major non-protein thiol in humans and other mammals, which is present in millimolar concentrations within cells, but at much lower concentrations in the blood plasma. GSH and GSH-related enzymes act both to prevent oxidative damage and to detoxify electrophiles. Under oxidative stress, two GSH molecules become linked by a disulphide bridge to form glutathione disulphide (GSSG). Therefore, assessment of the GSH/GSSG ratio may provide an estimation of cellular redox metabolism. Current evidence resulting from studies in human blood, solid tissues, and cultured cells suggests that GSH also plays a prominent role in protein redox regulation via S -glutathionylation, i.e., the conjugation of GSH to reactive protein cysteine residues. A number of methodologies that enable quantitative analysis of GSH/GSSG ratio and S-glutathionylated proteins (PSSG), as well as identification and visualization of PSSG in tissue sections or cultured cells are currently available. Here, we have considered the main methodologies applied for GSH, GSSG and PSSG detection in biological samples. This review paper provides an up-to-date critical overview of the application of the most relevant analytical, morphological, and proteomics approaches to detect and analyse GSH, GSSG and PSSG in mammalian samples as well as discusses their current limitations.
Collapse
Affiliation(s)
- Daniela Giustarini
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Graziano Colombo
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | | | - Emanuela Astori
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Nicola Marcello Portinaro
- Clinica ortopedica e traumatologica, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Francesco Reggiani
- Nephrology and Dialysis Unit, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Salvatore Badalamenti
- Nephrology and Dialysis Unit, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Anna Maria Aloisi
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Ranieri Rossi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Aldo Milzani
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Isabella Dalle-Donne
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy.
| |
Collapse
|
15
|
Branco V, Coppo L, Solá S, Lu J, Rodrigues CMP, Holmgren A, Carvalho C. Impaired cross-talk between the thioredoxin and glutathione systems is related to ASK-1 mediated apoptosis in neuronal cells exposed to mercury. Redox Biol 2017; 13:278-287. [PMID: 28600984 PMCID: PMC5466585 DOI: 10.1016/j.redox.2017.05.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 12/22/2022] Open
Abstract
Mercury (Hg) compounds target both cysteine (Cys) and selenocysteine (Sec) residues in peptides and proteins. Thus, the components of the two major cellular antioxidant systems - glutathione (GSH) and thioredoxin (Trx) systems - are likely targets for mercurials. Hg exposure results in GSH depletion and Trx and thioredoxin reductase (TrxR) are prime targets for mercury. These systems have a wide-range of common functions and interaction between their components has been reported. However, toxic effects over both systems are normally treated as isolated events. To study how the interaction between the glutathione and thioredoxin systems is affected by Hg, human neuroblastoma (SH-SY5Y) cells were exposed to 1 and 5μM of inorganic mercury (Hg2+), methylmercury (MeHg) or ethylmercury (EtHg) and examined for TrxR, GSH and Grx levels and activities, as well as for Trx redox state. Phosphorylation of apoptosis signalling kinase 1 (ASK1), caspase-3 activity and the number of apoptotic cells were evaluated to investigate the induction of Trx-mediated apoptotic cell death. Additionally, primary cerebellar neurons from mice depleted of mitochondrial Grx2 (mGrx2D) were used to examine the link between Grx activity and Trx function. Results showed that Trx was affected at higher exposure levels than TrxR, especially for EtHg. GSH levels were only significantly affected by exposure to a high concentration of EtHg. Depletion of GSH with buthionine sulfoximine (BSO) severely increased Trx oxidation by Hg. Notably, EtHg-induced oxidation of Trx was significantly enhanced in primary neurons of mGrx2D mice. Our results suggest that GSH/Grx acts as backups for TrxR in neuronal cells to maintain Trx turnover during Hg exposure, thus linking different mechanisms of molecular and cellular toxicity. Finally, Trx oxidation by Hg compounds was associated to apoptotic hallmarks, including increased ASK-1 phosphorylation, caspase-3 activation and increased number of apoptotic cells.
Collapse
Affiliation(s)
- Vasco Branco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Lucia Coppo
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Susana Solá
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Jun Lu
- School of Pharmaceutical Sciences, Southwest University, 2# Tiansheng Road, Beibei District, Chongqing 400715, PR China
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Cristina Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
16
|
The Architecture of Thiol Antioxidant Systems among Invertebrate Parasites. Molecules 2017; 22:molecules22020259. [PMID: 28208651 PMCID: PMC6155587 DOI: 10.3390/molecules22020259] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/03/2017] [Indexed: 01/14/2023] Open
Abstract
The use of oxygen as the final electron acceptor in aerobic organisms results in an improvement in the energy metabolism. However, as a byproduct of the aerobic metabolism, reactive oxygen species are produced, leaving to the potential risk of an oxidative stress. To contend with such harmful compounds, living organisms have evolved antioxidant strategies. In this sense, the thiol-dependent antioxidant defense systems play a central role. In all cases, cysteine constitutes the major building block on which such systems are constructed, being present in redox substrates such as glutathione, thioredoxin, and trypanothione, as well as at the catalytic site of a variety of reductases and peroxidases. In some cases, the related selenocysteine was incorporated at selected proteins. In invertebrate parasites, antioxidant systems have evolved in a diversity of both substrates and enzymes, representing a potential area in the design of anti-parasite strategies. The present review focus on the organization of the thiol-based antioxidant systems in invertebrate parasites. Differences between these taxa and its final mammal host is stressed. An understanding of the antioxidant defense mechanisms in this kind of parasites, as well as their interactions with the specific host is crucial in the design of drugs targeting these organisms.
Collapse
|
17
|
Ullevig SL, Kim HS, Short JD, Tavakoli S, Weintraub ST, Downs K, Asmis R. Protein S-Glutathionylation Mediates Macrophage Responses to Metabolic Cues from the Extracellular Environment. Antioxid Redox Signal 2016; 25:836-851. [PMID: 26984580 PMCID: PMC5107721 DOI: 10.1089/ars.2015.6531] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS Protein S-glutathionylation, the formation of a mixed disulfide between glutathione and protein thiols, is an oxidative modification that has emerged as a new signaling paradigm, potentially linking oxidative stress to chronic inflammation associated with heart disease, diabetes, cancer, lung disease, and aging. Using a novel, highly sensitive, and selective proteomic approach to identify S-glutathionylated proteins, we tested the hypothesis that monocytes and macrophages sense changes in their microenvironment and respond to metabolic stress by altering their protein thiol S-glutathionylation status. RESULTS We identified over 130 S-glutathionylated proteins, which were associated with a variety of cellular functions, including metabolism, transcription and translation, protein folding, free radical scavenging, cell motility, and cell death. Over 90% of S-glutathionylated proteins identified in metabolically stressed THP-1 monocytes were also found in hydrogen peroxide (H2O2)-treated cells, suggesting that H2O2 mediates metabolic stress-induced protein S-glutathionylation in monocytes and macrophages. We validated our findings in mouse peritoneal macrophages isolated from both healthy and dyslipidemic atherosclerotic mice and found that 52% of the S-glutathionylated proteins found in THP-1 monocytes were also identified in vivo. Changes in macrophage protein S-glutathionylation induced by dyslipidemia were sexually dimorphic. INNOVATION We provide a novel mechanistic link between metabolic (and thiol oxidative) stress, macrophage dysfunction, and chronic inflammatory diseases associated with metabolic disorders. CONCLUSION Our data support the concept that changes in the extracellular metabolic microenvironment induce S-glutathionylation of proteins central to macrophage metabolism and a wide array of cellular signaling pathways and functions, which in turn initiate and promote functional and phenotypic changes in macrophages. Antioxid. Redox Signal. 25, 836-851.
Collapse
Affiliation(s)
- Sarah L Ullevig
- 1 Department of Kinesiology, Health, and Nutrition, University of Texas at San Antonio , San Antonio, Texas
| | - Hong Seok Kim
- 2 Department of Molecular Medicine, College of Medicine, Inha University , Incheon, Korea
| | - John D Short
- 3 Department of Pharmacology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Sina Tavakoli
- 4 Department of Radiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Susan T Weintraub
- 5 Institutional Mass Spectrometry Core Laboratory, University of Texas Health Science Center at San Antonio , San Antonio, Texas.,6 Department of Biochemistry, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Kevin Downs
- 7 Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Reto Asmis
- 4 Department of Radiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas.,6 Department of Biochemistry, University of Texas Health Science Center at San Antonio , San Antonio, Texas.,8 Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| |
Collapse
|
18
|
Short JD, Downs K, Tavakoli S, Asmis R. Protein Thiol Redox Signaling in Monocytes and Macrophages. Antioxid Redox Signal 2016; 25:816-835. [PMID: 27288099 PMCID: PMC5107717 DOI: 10.1089/ars.2016.6697] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE Monocyte and macrophage dysfunction plays a critical role in a wide range of inflammatory disease processes, including obesity, impaired wound healing diabetic complications, and atherosclerosis. Emerging evidence suggests that the earliest events in monocyte or macrophage dysregulation include elevated reactive oxygen species production, thiol modifications, and disruption of redox-sensitive signaling pathways. This review focuses on the current state of research in thiol redox signaling in monocytes and macrophages, including (i) the molecular mechanisms by which reversible protein-S-glutathionylation occurs, (ii) the identification of bona fide S-glutathionylated proteins that occur under physiological conditions, and (iii) how disruptions of thiol redox signaling affect monocyte and macrophage functions and contribute to atherosclerosis. Recent Advances: Recent advances in redox biochemistry and biology as well as redox proteomic techniques have led to the identification of many new thiol redox-regulated proteins and pathways. In addition, major advances have been made in expanding the list of S-glutathionylated proteins and assessing the role that protein-S-glutathionylation and S-glutathionylation-regulating enzymes play in monocyte and macrophage functions, including monocyte transmigration, macrophage polarization, foam cell formation, and macrophage cell death. CRITICAL ISSUES Protein-S-glutathionylation/deglutathionylation in monocytes and macrophages has emerged as a new and important signaling paradigm, which provides a molecular basis for the well-established relationship between metabolic disorders, oxidative stress, and cardiovascular diseases. FUTURE DIRECTIONS The identification of specific S-glutathionylated proteins as well as the mechanisms that control this post-translational protein modification in monocytes and macrophages will facilitate the development of new preventive and therapeutic strategies to combat atherosclerosis and other metabolic diseases. Antioxid. Redox Signal. 25, 816-835.
Collapse
Affiliation(s)
- John D Short
- 1 Department of Pharmacology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Kevin Downs
- 2 Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Sina Tavakoli
- 3 Department of Radiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Reto Asmis
- 4 Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio , San Antonio, Texas.,5 Department of Biochemistry, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| |
Collapse
|
19
|
Utter MS, Warren CM, Solaro RJ. Impact of anesthesia and storage on posttranslational modifications of cardiac myofilament proteins. Physiol Rep 2015; 3:3/5/e12393. [PMID: 25952935 PMCID: PMC4463824 DOI: 10.14814/phy2.12393] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Although high fidelity measurements of posttranslational modifications (PTMs) of cardiac myofilament proteins exist, important issues remain regarding basic techniques of sample acquisition and storage. We investigated the effects of anesthetic regimen and sample storage conditions on PTMs of major ventricular sarcomeric proteins. Mice were anesthetized with pentobarbital (Nembutal), ketamine/xylazine mixture (Ket/Xyl), or tribromoethanol (Avertin), and the ventricular tissue was prepared and stored for 1, 7, 30, 60, or 90 days at −80°C. Myofilament protein phosphorylation and glutathionylation were analyzed by Pro-Q Diamond stain and Western blotting, respectively. With up to 7 days of storage, phosphorylation of troponin T was stable for samples from mice anesthetized with either Nembutal or Ket/Xyl but not Avertin; while myosin-binding protein C (MyBP-C) phosphorylation was reduced at 7 days with Nembutal and Ket/Xyl, though generally not significant until 90 days. Tropomyosin and regulatory myosin light chain phosphorylation were stable for up to 7 days regardless of the anesthetic regimen employed. In the case of Troponin I, by 7 days of storage there was a significant fall in phosphorylation across all anesthetics. Storage of samples from 30 to 90 days resulted in a general decrease in myofilament phosphorylation independent of the anesthetic. S-glutathionylation of MyBP-C presented a trend in reduced glutathionylation from days 30–90 in all anesthetics, with only day 90 being statistically significant. Our findings suggest that there are alterations in PTMs of major myofilament proteins from both storage and anesthetic selection, and that storage beyond 30 days will likely result in distortion of data.
Collapse
Affiliation(s)
- Megan S Utter
- Department of Physiology and Biophysics, Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Chad M Warren
- Department of Physiology and Biophysics, Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - R John Solaro
- Department of Physiology and Biophysics, Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
20
|
Locato V, Uzal EN, Cimini S, Zonno MC, Evidente A, Micera A, Foyer CH, De Gara L. Low concentrations of the toxin ophiobolin A lead to an arrest of the cell cycle and alter the intracellular partitioning of glutathione between the nuclei and cytoplasm. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2991-3000. [PMID: 25890975 DOI: 10.1093/jxb/erv110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Ophiobolin A, a tetracyclic sesterpenoid produced by phytopathogenic fungi, is responsible for catastrophic losses in crop yield but its mechanism of action is not understood. The effects of ophiobolin A were therefore investigated on the growth and redox metabolism of Tobacco Bright Yellow-2 (TBY-2) cell cultures by applying concentrations of the toxin that did not promote cell death. At concentrations between 2 and 5 μM, ophiobolin A inhibited growth and proliferation of the TBY-2 cells, which remained viable. Microscopic and cytofluorimetric analyses showed that ophiobolin A treatment caused a rapid decrease in mitotic index, with a lower percentage of the cells at G1 and increased numbers of cells at the S/G2 phases. Cell size was not changed following treatment suggesting that the arrest of cell cycle progression was not the result of a block on cell growth. The characteristic glutathione redox state and the localization of glutathione in the nucleus during cell proliferation were not changed by ophiobolin A. However, subsequent decreases in glutathione and the re-distribution of glutathione between the cytoplasm and nuclei after mitosis occurring in control cells, as well as the profile of glutathionylated proteins, were changed in the presence of the toxin. The profile of poly ADP-ribosylated proteins were also modified by ophiobolin A. Taken together, these data provide evidence of the mechanism of ophiobolin A action as a cell cycle inhibitor and further demonstrate the link between nuclear glutathione and the cell cycle regulation, suggesting that glutathione-dependent redox controls in the nuclei prior to cell division are of pivotal importance.
Collapse
Affiliation(s)
- Vittoria Locato
- Centro Integrato di Ricerca, Università Campus Bio-Medico, Via Alvaro del Portillo, 00128 Roma, Italy
| | - Esther Novo Uzal
- Centro Integrato di Ricerca, Università Campus Bio-Medico, Via Alvaro del Portillo, 00128 Roma, Italy Departamento de Biología Vegetal, Universidad de Murcia, Campus Espinardo, Murcia, Spain
| | - Sara Cimini
- Centro Integrato di Ricerca, Università Campus Bio-Medico, Via Alvaro del Portillo, 00128 Roma, Italy
| | - Maria Chiara Zonno
- Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, Via Amendola 122/O, 70125 Bari, Italy
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Napoli, Italy
| | | | - Christine H Foyer
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Laura De Gara
- Centro Integrato di Ricerca, Università Campus Bio-Medico, Via Alvaro del Portillo, 00128 Roma, Italy
| |
Collapse
|
21
|
Kuru S, Kismet K, Barlas AM, Tuncal S, Celepli P, Surer H, Ogus E, Ertas E. The Effect of Montelukast on Liver Damage in an Experimental Obstructive Jaundice Model. VISZERALMEDIZIN 2015; 31:131-8. [PMID: 26989383 PMCID: PMC4789965 DOI: 10.1159/000375434] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Montelukast is a cysteinyl-leukotriene type 1 (CysLT1) selective receptor antagonist. In recent years, investigations have shown that montelukast possesses secondary anti-inflammatory activities and also antioxidant effects. For this reason, we aimed to determine the possible effects of montelukast on liver damage in experimental obstructive jaundice. Methods 30 Wistar-Albino male rats were randomized and divided into three groups of 10 animals each: group I, sham-operated; group II, ligation and division of the common bile duct (BDL) followed by daily intraperitoneal injection of 1 ml of saline; group III, BDL followed by daily intraperitoneal injection of 10 mg/kg montelukast dissolved in saline. The animals were killed on postoperative day 7 by high-dose diethyl ether inhalation. Blood and liver samples were taken for examination. Results In this study, liver malondialdehyde (MDA) (p = 0.001), myeloperoxidase (p = 0.003), and total sulfhydryl (SH) (p = 0.009) were found to be significantly different between the BDL + montelukast and the BDL groups. Plasma total SH (p = 0.002) and MDA (p = 0.027) values were also statistically different between these groups. Statistical analyses of histological activity index scores showed that the histopathological damage in the BDL + montelukast group was significantly less than the damage in the control group (p < 0.05 for all pathological parameters). Conclusion According to the results of this study, montelukast showed a significant hepatoprotective effect in this experimental obstructive jaundice model, which might be due to its antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Serdar Kuru
- Department of General Surgery, Ankara Training and Research Hospital, Ankara, Turkey
| | - Kemal Kismet
- Department of General Surgery, Ankara Training and Research Hospital, Ankara, Turkey
| | - Aziz M Barlas
- Department of General Surgery, Ankara Training and Research Hospital, Ankara, Turkey
| | - Salih Tuncal
- Department of General Surgery, Ankara Training and Research Hospital, Ankara, Turkey
| | - Pinar Celepli
- Department of Pathology, Aksaray State Hospital, Aksaray, Turkey
| | - Hatice Surer
- Department of Biochemistry, Ankara Training and Research Hospital, Ankara, Turkey
| | - Elmas Ogus
- Department of Biochemistry, Ankara Training and Research Hospital, Ankara, Turkey
| | - Ertugrul Ertas
- Department of General Surgery, Ankara Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
22
|
Quantitation of protein S-glutathionylation by liquid chromatography–tandem mass spectrometry: Correction for contaminating glutathione and glutathione disulfide. Anal Biochem 2015; 469:54-64. [DOI: 10.1016/j.ab.2014.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/30/2014] [Accepted: 10/03/2014] [Indexed: 01/16/2023]
|
23
|
Abstract
The interaction between antioxidant glutathione and the free thiol in susceptible cysteine residues of proteins leads to reversible protein S-glutathionylation. This reaction ensures cellular homeostasis control (as a common redox-dependent post-translational modification associated with signal transduction) and intervenes in oxidative stress-related cardiovascular pathology (as initiated by redox imbalance). The purpose of this review is to evaluate the recent knowledge on protein S-glutathionylation in terms of chemistry, broad cellular intervention, specific quantification, and potential for therapeutic exploitation. The data bases searched were Medline and PubMed, from 2009 to 2014 (term: glutathionylation). Protein S-glutathionylation ensures protection of protein thiols against irreversible over-oxidation, operates as a biological redox switch in both cell survival (influencing kinases and protein phosphatases pathways) and cell death (by potentiation of apoptosis), and cross-talks with phosphorylation and with S-nitrosylation. Collectively, protein S-glutathionylation appears as a valuable biomarker for oxidative stress, with potential for translation into novel therapeutic strategies.
Collapse
Affiliation(s)
- Doina Popov
- Institute of Cellular Biology and Pathology "N. Simionescu" of the Romanian Academy , 8, B.P. Hasdeu Street, Bucharest 050568 , Romania
| |
Collapse
|
24
|
Patel BG, Wilder T, Solaro RJ. Novel control of cardiac myofilament response to calcium by S-glutathionylation at specific sites of myosin binding protein C. Front Physiol 2013; 4:336. [PMID: 24312057 PMCID: PMC3834529 DOI: 10.3389/fphys.2013.00336] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/01/2013] [Indexed: 12/31/2022] Open
Abstract
Our previous studies demonstrated a relation between glutathionylation of cardiac myosin binding protein C (cMyBP-C) and diastolic dysfunction in a hypertensive mouse model stressed by treatment with salt, deoxycorticosterone acetate, and unilateral nephrectomy. Although these results strongly indicated an important role for S-glutathionylation of myosin binding protein C as a modifier of myofilament function, indirect effects of other post-translational modifications may have occurred. Moreover, we did not determine the sites of thiol modification by glutathionylation. To address these issues, we developed an in vitro method to mimic the in situ S-glutathionylation of myofilament proteins and determined direct functional effects and sites of oxidative modification employing Western blotting and mass spectrometry. We induced glutathionylation in vitro by treatment of isolated myofibrils and detergent extracted fiber bundles (skinned fibers) with oxidized glutathione (GSSG). Immuno-blotting results revealed increased glutathionylation with GSSG treatment of a protein band around 140 kDa. Using tandem mass spectrometry, we identified the 140 kDa band as cMyBP-C and determined the sites of glutathionylation to be at cysteines 655, 479, and 627. Determination of the relation between Ca2+-activation of myofibrillar acto-myosin ATPase rate demonstrated an increased Ca2+-sensitivity induced by the S-glutathionylation. Force generating skinned fiber bundles also showed an increase in Ca-sensitivity when treated with oxidized glutathione, which was reversed with the reducing agent, dithiothreitol (DTT). Our data demonstrate that a specific and direct effect of S-glutathionylation of myosin binding protein C is a significant increase in myofilament Ca2+-sensitivity. Our data also provide new insights into the functional significance of oxidative modification of myosin binding protein C and the potential role of domains not previously considered to be functionally significant as controllers of myofilament Ca2+-responsiveness and dynamics.
Collapse
Affiliation(s)
- Bindiya G Patel
- Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago Chicago, IL USA
| | | | | |
Collapse
|
25
|
Mitchell T, Johnson MS, Ouyang X, Chacko BK, Mitra K, Lei X, Gai Y, Moore DR, Barnes S, Zhang J, Koizumi A, Ramanadham S, Darley-Usmar VM. Dysfunctional mitochondrial bioenergetics and oxidative stress in Akita(+/Ins2)-derived β-cells. Am J Physiol Endocrinol Metab 2013; 305:E585-99. [PMID: 23820623 PMCID: PMC3761167 DOI: 10.1152/ajpendo.00093.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Insulin release from pancreatic β-cells plays a critical role in blood glucose homeostasis, and β-cell dysfunction leads to the development of diabetes mellitus. In cases of monogenic type 1 diabetes mellitus (T1DM) that involve mutations in the insulin gene, we hypothesized that misfolding of insulin could result in endoplasmic reticulum (ER) stress, oxidant production, and mitochondrial damage. To address this, we used the Akita(+/Ins2) T1DM model in which misfolding of the insulin 2 gene leads to ER stress-mediated β-cell death and thapsigargin to induce ER stress in two different β-cell lines and in intact mouse islets. Using transformed pancreatic β-cell lines generated from wild-type Ins2(+/+) (WT) and Akita(+/Ins2) mice, we evaluated cellular bioenergetics, oxidative stress, mitochondrial protein levels, and autophagic flux to determine whether changes in these processes contribute to β-cell dysfunction. In addition, we induced ER stress pharmacologically using thapsigargin in WT β-cells, INS-1 cells, and intact mouse islets to examine the effects of ER stress on mitochondrial function. Our data reveal that Akita(+/Ins2)-derived β-cells have increased mitochondrial dysfunction, oxidant production, mtDNA damage, and alterations in mitochondrial protein levels that are not corrected by autophagy. Together, these findings suggest that deterioration in mitochondrial function due to an oxidative environment and ER stress contributes to β-cell dysfunction and could contribute to T1DM in which mutations in insulin occur.
Collapse
|
26
|
Ullevig S, Kim HS, Asmis R. S-glutathionylation in monocyte and macrophage (dys)function. Int J Mol Sci 2013; 14:15212-32. [PMID: 23887649 PMCID: PMC3759857 DOI: 10.3390/ijms140815212] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 06/15/2013] [Accepted: 06/18/2013] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease involving the accumulation of monocytes and macrophages in the vascular wall. Monocytes and macrophages play a central role in the initiation and progression of atherosclerotic lesion development. Oxidative stress, which occurs when reactive oxygen species (ROS) overwhelm cellular antioxidant systems, contributes to the pathophysiology of many chronic inflammatory diseases, including atherosclerosis. Major targets of ROS are reactive thiols on cysteine residues in proteins, which when oxidized can alter cellular processes, including signaling pathways, metabolic pathways, transcription, and translation. Protein-S-glutathionylation is the process of mixed disulfide formation between glutathione (GSH) and protein thiols. Until recently, protein-S-glutathionylation was associated with increased cellular oxidative stress, but S-glutathionylation of key protein targets has now emerged as a physiologically important redox signaling mechanism, which when dysregulated contributes to a variety of disease processes. In this review, we will explore the role of thiol oxidative stress and protein-S-glutathionylation in monocyte and macrophage dysfunction as a mechanistic link between oxidative stress associated with metabolic disorders and chronic inflammatory diseases, including atherosclerosis.
Collapse
Affiliation(s)
- Sarah Ullevig
- Department of Biochemistry, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; E-Mail:
| | - Hong Seok Kim
- Department of Clinical Laboratory Sciences, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; E-Mail:
| | - Reto Asmis
- Department of Biochemistry, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; E-Mail:
- Department of Clinical Laboratory Sciences, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-210-567-3411; Fax: +1-210-567-3719
| |
Collapse
|
27
|
Patil NK, Saba H, MacMillan-Crow LA. Effect of S-nitrosoglutathione on renal mitochondrial function: a new mechanism for reversible regulation of manganese superoxide dismutase activity? Free Radic Biol Med 2013; 56:54-63. [PMID: 23246566 PMCID: PMC4771374 DOI: 10.1016/j.freeradbiomed.2012.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 11/13/2012] [Accepted: 12/03/2012] [Indexed: 12/17/2022]
Abstract
Mitochondria are at the heart of all cellular processes as they provide the majority of the energy needed for various metabolic processes. Nitric oxide has been shown to have numerous roles in the regulation of mitochondrial function. Mitochondria have enormous pools of glutathione (GSH≈5-10 mM). Nitric oxide can react with glutathione to generate a physiological molecule, S-nitrosoglutathione (GSNO). The impact GSNO has on mitochondrial function has been intensively studied in recent years, and several mitochondrial electron transport chain complex proteins have been shown to be targeted by GSNO. In this study we investigated the effect of GSNO on mitochondrial function using normal rat proximal tubular kidney cells (NRK cells). GSNO treatment of NRK cells led to mitochondrial membrane depolarization and significant reduction in activities of mitochondrial complex IV and manganese superoxide dismutase enzyme (MnSOD). MnSOD is a critical endogenous antioxidant enzyme that scavenges excess superoxide radicals in the mitochondria. The decrease in MnSOD activity was not associated with a reduction in its protein levels and treatment of NRK cell lysate with dithiothreitol (a strong sulfhydryl-group-reducing agent) restored MnSOD activity to control values. GSNO is known to cause both S-nitrosylation and S-glutathionylation, which involve the addition of NO and GS groups, respectively, to protein sulfhydryl (SH) groups of cysteine residues. Endogenous GSH is an essential mediator in S-glutathionylation of cellular proteins, and the current studies revealed that GSH is required for MnSOD inactivation after GSNO or diamide treatment in rat kidney cells as well as in isolated kidneys. Further studies showed that GSNO led to glutathionylation of MnSOD; however, glutathionylated recombinant MnSOD was not inactivated. This suggests that a more complex pathway, possibly involving the participation of multiple proteins, leads to MnSOD inactivation after GSNO treatment. The major highlight of these studies is the fact that dithiothreitol can restore MnSOD activity after GSNO treatment. To our knowledge, this is the first study showing that MnSOD activity can be reversibly regulated in vivo, through a mechanism involving thiol residues.
Collapse
|
28
|
Jeong EM, Monasky MM, Gu L, Taglieri DM, Patel BG, Liu H, Wang Q, Greener I, Dudley SC, Solaro RJ. Tetrahydrobiopterin improves diastolic dysfunction by reversing changes in myofilament properties. J Mol Cell Cardiol 2013; 56:44-54. [PMID: 23247392 PMCID: PMC3666585 DOI: 10.1016/j.yjmcc.2012.12.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 10/22/2012] [Accepted: 12/05/2012] [Indexed: 01/13/2023]
Abstract
Despite the increasing prevalence of heart failure with preserved left ventricular function, there are no specific treatments, partially because the mechanism of impaired relaxation is incompletely understood. Evidence indicates that cardiac relaxation may depend on nitric oxide (NO), generated by NO synthase (NOS) requiring the co-factor tetrahydrobiopterin (BH(4)). Recently, we reported that hypertension-induced diastolic dysfunction was accompanied by cardiac BH(4) depletion, NOS uncoupling, a depression in myofilament cross-bridge kinetics, and S-glutathionylation of myosin binding protein C (MyBP-C). We hypothesized that the mechanism by which BH(4) ameliorates diastolic dysfunction is by preventing glutathionylation of MyBP-C and thus reversing changes of myofilament properties that occur during diastolic dysfunction. We used the deoxycorticosterone acetate (DOCA)-salt mouse model, which demonstrates mild hypertension, myocardial oxidative stress, and diastolic dysfunction. Mice were divided into two groups that received control diet and two groups that received BH(4) supplement for 7days after developing diastolic dysfunction at post-operative day 11. Mice were assessed by echocardiography. Left ventricular papillary detergent-extracted fiber bundles were isolated for simultaneous determination of force and ATPase activity. Sarcomeric protein glutathionylation was assessed by immunoblotting. DOCA-salt mice exhibited diastolic dysfunction that was reversed after BH(4) treatment. Diastolic sarcomere length (DOCA-salt 1.70±0.01 vs. DOCA-salt+BH(4) 1.77±0.01μm, P<0.001) and relengthening (relaxation constant, τ, DOCA-salt 0.28±0.02 vs. DOCA-salt+BH(4) 0.08±0.01, P<0.001) were also restored to control by BH(4) treatment. pCa(50) for tension increased in DOCA-salt compared to sham but reverted to sham levels after BH(4) treatment. Maximum ATPase rate and tension cost (ΔATPase/ΔTension) decreased in DOCA-salt compared to sham, but increased after BH(4) treatment. Cardiac MyBP-C glutathionylation increased in DOCA-salt compared to sham, but decreased with BH(4) treatment. MyBP-C glutathionylation correlated with the presence of diastolic dysfunction. Our results suggest that by depressing S-glutathionylation of MyBP-C, BH(4) ameliorates diastolic dysfunction by reversing a decrease in cross-bridge turnover kinetics. These data provide evidence for modulation of cardiac relaxation by post-translational modification of myofilament proteins.
Collapse
Affiliation(s)
- Euy-Myoung Jeong
- Department of Medicine, Section of Cardiology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Michelle M. Monasky
- Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Lianzhi Gu
- Department of Medicine, Section of Cardiology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Domenico M. Taglieri
- Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Bindiya G. Patel
- Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Hong Liu
- Department of Medicine, Section of Cardiology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Qiongying Wang
- Department of Medicine, Section of Cardiology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ian Greener
- Department of Medicine, Section of Cardiology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Samuel C. Dudley
- Department of Medicine, Section of Cardiology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - R. John Solaro
- Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
29
|
Seidler NW. Target for diverse chemical modifications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 985:179-206. [PMID: 22851450 DOI: 10.1007/978-94-007-4716-6_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The chapter begins with an historical perspective of GAPDH isozymes that is juxtaposed to the fact that there is only one somatic functional gene in humans that is virtually identical among the mammalian species. Over the many years of GAPDH research, dozens of labs have reported the existence of multiple forms of GAPDH, which mostly vary as a function of charge with an occasional report of truncated forms. These observations are in part due to GAPDH being a substrate for many enzymatically-controlled post-translational modifications. While target residues have been identified and predictive algorithms have implicated certain residues, this area of research appears to be in its infancy regarding GAPDH. Equally fascinating, the uniquely susceptible nature of GAPDH to non-enzymatic reactions, that typically are associated with cell stress, such as oxidation and nitration, is also discussed. Two metabolic gases, nitric oxide and hydrogen sulfide, which are enzymatically produced, appear to exert their signaling properties through non-enzymatic reaction with GAPDH. Models of cellular decline are also proposed, including the compelling hypothesis that states cell compromise occurs by the physically blocking the function of chaperonins (i.e. dual-ring multiple-subunit molecular chaperones) by the attachment of misfolded GAPDH.
Collapse
Affiliation(s)
- Norbert W Seidler
- Department of Biochemistry, Kansas City University of Medicine and Biosciences, Kansas City, MO, USA
| |
Collapse
|
30
|
Chennasamudram SP, Kudugunti S, Boreddy PR, Moridani MY, Vasylyeva TL. Renoprotective effects of (+)-catechin in streptozotocin-induced diabetic rat model. Nutr Res 2012; 32:347-56. [PMID: 22652374 DOI: 10.1016/j.nutres.2012.03.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/11/2012] [Accepted: 03/23/2012] [Indexed: 01/05/2023]
Abstract
Diabetic nephropathy is a complication of diabetes mellitus leading to end-stage renal disease. Oxidative stress and inflammation play a major role in the pathogenesis of diabetic nephropathy. Green tea, known for its antioxidant and anti-inflammatory properties, has been shown to be renoprotective. We hypothesized that (+)-catechin (CTN), a component of green tea, is responsible for the renoprotection. Our investigation of the therapeutic potential of CTN in streptozotocin-induced diabetic rats demonstrated for the first time that the effects of CTN treatment were comparable with the effects of an angiotensin-converting enzyme inhibitor (ACEi) enalapril for the treatment of albumin excretion. After 12 weeks of CTN treatment with 35 mg/d in the drinking water, urinary albumin excretion and plasma creatinine concentrations in all the diabetic treatment groups were reduced, compared with the diabetic group with no treatment. Urine creatinine and creatinine clearance were higher in diabetic groups treated with CTN and ACEi compared with the diabetic group with no treatment. Endothelin 1, lipid peroxidation, concentration of alanine transferase enzyme, and expression of fibronectin were lower in all the treatment groups compared with the diabetic group with no treatment. Concentrations of free thiols were higher in the CTN-treated group compared with the diabetic rats with no treatment. Our findings suggest that CTN has renoprotective properties comparable with ACEi, and coadministration of CTN and enalapril might be useful in reducing albumin excretion as well as improving endothelial function. (+)-Catechin might be successfully used in the future for clinical situations where ACEi is poorly tolerated or contraindicated.
Collapse
Affiliation(s)
- Sudha P Chennasamudram
- Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | | | | | | | | |
Collapse
|
31
|
Pimentel D, Haeussler DJ, Matsui R, Burgoyne JR, Cohen RA, Bachschmid MM. Regulation of cell physiology and pathology by protein S-glutathionylation: lessons learned from the cardiovascular system. Antioxid Redox Signal 2012; 16:524-42. [PMID: 22010840 PMCID: PMC3270052 DOI: 10.1089/ars.2011.4336] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE Reactive oxygen and nitrogen species contributing to homeostatic regulation and the pathogenesis of various cardiovascular diseases, including atherosclerosis, hypertension, endothelial dysfunction, and cardiac hypertrophy, is well established. The ability of oxidant species to mediate such effects is in part dependent on their ability to induce specific modifications on particular amino acids, which alter protein function leading to changes in cell signaling and function. The thiol containing amino acids, methionine and cysteine, are the only oxidized amino acids that undergo reduction by cellular enzymes and are, therefore, prime candidates in regulating physiological signaling. Various reports illustrate the significance of reversible oxidative modifications on cysteine thiols and their importance in modulating cardiovascular function and physiology. RECENT ADVANCES The use of mass spectrometry, novel labeling techniques, and live cell imaging illustrate the emerging importance of reversible thiol modifications in cellular redox signaling and have advanced our analytical abilities. CRITICAL ISSUES Distinguishing redox signaling from oxidative stress remains unclear. S-nitrosylation as a precursor of S-glutathionylation is controversial and needs further clarification. Subcellular distribution of glutathione (GSH) may play an important role in local regulation, and targeted tools need to be developed. Furthermore, cellular redundancies of thiol metabolism complicate analysis and interpretation. FUTURE DIRECTIONS The development of novel pharmacological analogs that specifically target subcellular compartments of GSH to promote or prevent local protein S-glutathionylation as well as the establishment of conditional gene ablation and transgenic animal models are needed.
Collapse
Affiliation(s)
- David Pimentel
- Myocardial Biology Unit, Whitaker Cardiovascular Institute, Boston University School of Medicine, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
32
|
Monasky MM, Taglieri DM, Patel BG, Chernoff J, Wolska BM, Ke Y, Solaro RJ. p21-activated kinase improves cardiac contractility during ischemia-reperfusion concomitant with changes in troponin-T and myosin light chain 2 phosphorylation. Am J Physiol Heart Circ Physiol 2011; 302:H224-30. [PMID: 22037191 DOI: 10.1152/ajpheart.00612.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
p21-activated kinase 1 (Pak1) is a serine/threonine kinase that activates protein phosphatase 2a, resulting in the dephosphorylation of cardiac proteins and increased myofilament Ca(2+) sensitivity. Emerging evidence indirectly indicates a role for Pak1 in ischemia-reperfusion (I/R), but direct evidence is lacking. We hypothesize that activation of the Pak1 signaling pathway is a cardioprotective mechanism that prevents or reverses the detrimental effects of ischemic injury by inducing posttranslational modifications in myofilament proteins that ultimately improve cardiac contractility following ischemic insult. In the present study, we subjected ex vivo hearts from wild-type (WT) and Pak1-knockout (KO) mice to 20 min of global cardiac ischemia followed by 30 min of reperfusion. In the absence of Pak1, there was an exacerbation of the increased end-diastolic pressure and reduced left ventricular developed pressure occurring after I/R injury. ProQ analysis revealed an increase in troponin-T phosphorylation at baseline in Pak1-KO hearts compared with WT. Significantly decreased myosin light chain 2 (MLC2) phosphorylation in Pak1-KO hearts compared with WT after I/R injury was confirmed by Western immunoblotting. These data indicate that Pak1-KO hearts have reduced recovery of myocardial performance after global I/R injury concomitant with changes in troponin-T and MLC2 phosphorylation. Finally, a protein-protein association between Pak1 and MLC2, and Pak1 and troponin-T, was determined by coimmunoprecipitation. Thus, results of our study provide a basis for targeting a novel pathway, including Pak1, in the therapies for patients with ischemic events.
Collapse
Affiliation(s)
- Michelle M Monasky
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 60612-7342, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Hill BG, Bhatnagar A. Protein S-glutathiolation: redox-sensitive regulation of protein function. J Mol Cell Cardiol 2011; 52:559-67. [PMID: 21784079 DOI: 10.1016/j.yjmcc.2011.07.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 07/05/2011] [Accepted: 07/09/2011] [Indexed: 10/17/2022]
Abstract
Reversible protein S-glutathiolation has emerged as an important mechanism of post-translational modification. Under basal conditions several proteins remain adducted to glutathione, and physiological glutathiolation of proteins has been shown to regulate protein function. Enzymes that promote glutathiolation (e.g., glutathione-S-transferase-P) or those that remove glutathione from proteins (e.g., glutaredoxin) have been identified. Modification by glutathione has been shown to affect protein catalysis, ligand binding, oligomerization and protein-protein interactions. Conditions associated with oxidative or nitrosative stress, such as ischemia-reperfusion, hypertension and tachycardia increase protein glutathiolation via changes in the glutathione redox status (GSH/GSSG) or through the formation of sulfenic acid (SOH) or nitrosated (SNO) cysteine intermediates. These "activated" thiols promote reversible S-glutathiolation of key proteins involved in cell signaling, energy production, ion transport, and cell death. Hence, S-glutathiolation is ideally suited for integrating and mounting fine-tuned responses to changes in the redox state. S-glutathiolation also provides a temporary glutathione "cap" to protect protein thiols from irreversible oxidation and it could be an important mechanism of protein "encryption" to maintain proteins in a functionally silent state until they are needed during conditions of stress. Current evidence suggests that the glutathiolation-deglutathiolation cycle integrates and interacts with other post-translational mechanisms to regulate signal transduction, metabolism, inflammation, and apoptosis. This article is part of a Special Section entitled "Post-translational Modification."
Collapse
Affiliation(s)
- Bradford G Hill
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA
| | | |
Collapse
|
34
|
Finley JW, Kong AN, Hintze KJ, Jeffery EH, Ji LL, Lei XG. Antioxidants in foods: state of the science important to the food industry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:6837-6846. [PMID: 21627162 DOI: 10.1021/jf2013875] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Antioxidant foods and ingredients are an important component of the food industry. In the past, antioxidants were used primarily to control oxidation and retard spoilage, but today many are used because of putative health benefits. However, the traditional message that oxidative stress, which involves the production of reactive oxygen species (ROS), is the basis for chronic diseases and aging is being reexamined. Accumulating evidence suggests that ROS exert essential metabolic functions and that removal of too many ROS can upset cell signaling pathways and actually increase the risk of chronic disease. It is imperative that the food industry be aware of progress in this field to present the science relative to foods in a forthright and clear manner. This may mean reexamining the health implications of adding large amounts of antioxidants to foods.
Collapse
Affiliation(s)
- John W Finley
- Office of National Programs, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | | | | | | | | | | |
Collapse
|