1
|
Timofeeva AM, Sedykh SE, Litvinova EA, Dolgushin SA, Matveev AL, Tikunova NV, Nevinsky GA. Binding of Natural Antibodies Generated after COVID-19 and Vaccination with Individual Peptides Corresponding to the SARS-CoV-2 S-Protein. Vaccines (Basel) 2024; 12:426. [PMID: 38675808 PMCID: PMC11053827 DOI: 10.3390/vaccines12040426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The rapid development of vaccines is a crucial objective in modern biotechnology and molecular pharmacology. In this context, conducting research to expedite the selection of a potent immunogen is imperative. The candidate vaccine should induce the production of antibodies that can recognize the immunogenic epitopes of the target protein, resembling the ones found in recovered patients. One major challenge in vaccine development is the absence of straightforward and reliable techniques to determine the extent to which the spectrum of antibodies produced after vaccination corresponds to antibodies found after recovery. This paper describes a newly developed method to detect antibodies specific to immunogenic epitopes of the target protein in blood plasma and to compare them with antibody spectra generated post vaccination. Comparing the antibody pool generated in the human body after recovering from an infectious disease with the pool formed through vaccination can become a universal method for screening candidate vaccines. This method will enable the identification of candidate vaccines that can induce the production of antibodies similar to those generated in response to a natural infection. Implementing this approach will facilitate the rapid development of new vaccines, even when faced with a pandemic.
Collapse
Affiliation(s)
- Anna M. Timofeeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (S.E.S.); (A.L.M.); (N.V.T.)
- Advanced Engineering School, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Sergey E. Sedykh
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (S.E.S.); (A.L.M.); (N.V.T.)
- Advanced Engineering School, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Ekaterina A. Litvinova
- Physical Engineering Faculty, Novosibirsk State Technical University, Novosibirsk 630073, Russia
| | | | - Andrey L. Matveev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (S.E.S.); (A.L.M.); (N.V.T.)
| | - Nina V. Tikunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (S.E.S.); (A.L.M.); (N.V.T.)
- Advanced Engineering School, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Georgy A. Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (S.E.S.); (A.L.M.); (N.V.T.)
- Advanced Engineering School, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
2
|
van Noort JM, Baker D, Kipp M, Amor S. The pathogenesis of multiple sclerosis: a series of unfortunate events. Clin Exp Immunol 2023; 214:1-17. [PMID: 37410892 PMCID: PMC10711360 DOI: 10.1093/cei/uxad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/10/2023] [Accepted: 07/04/2023] [Indexed: 07/08/2023] Open
Abstract
Multiple sclerosis (MS) is characterized by the chronic inflammatory destruction of myelinated axons in the central nervous system. Several ideas have been put forward to clarify the roles of the peripheral immune system and neurodegenerative events in such destruction. Yet, none of the resulting models appears to be consistent with all the experimental evidence. They also do not answer the question of why MS is exclusively seen in humans, how Epstein-Barr virus contributes to its development but does not immediately trigger it, and why optic neuritis is such a frequent early manifestation in MS. Here we describe a scenario for the development of MS that unifies existing experimental evidence as well as answers the above questions. We propose that all manifestations of MS are caused by a series of unfortunate events that usually unfold over a longer period of time after a primary EBV infection and involve periodic weakening of the blood-brain barrier, antibody-mediated CNS disturbances, accumulation of the oligodendrocyte stress protein αB-crystallin and self-sustaining inflammatory damage.
Collapse
Affiliation(s)
- Johannes M van Noort
- Department of Pathology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - David Baker
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Sandra Amor
- Department of Pathology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
3
|
Jaiswal D, Verma S, Nair DT, Salunke DM. Antibody multispecificity: A necessary evil? Mol Immunol 2022; 152:153-161. [DOI: 10.1016/j.molimm.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
|
4
|
Baral P, Pavadai E, Zhou Z, Xu Y, Tison CK, Pokhrel R, Gerstman BS, Chapagain PP. Immunoinformatic screening of Marburgvirus epitopes and computational investigations of epitope-allele complexes. Int Immunopharmacol 2022; 111:109109. [PMID: 35926269 DOI: 10.1016/j.intimp.2022.109109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/14/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
Marburgvirus (MARV), a member of the Filovirus family, causes severe hemorrhagic fever in humans. Currently, there are no approved vaccines or post exposure treatment methods available against MARV. With the aim of identifying vaccine candidates against MARV, we employ different sequence-based computational methods to predict the MHC-I and MHC-II T-cell epitopes as well as B-cell epitopes for the complete MARV genome. We analyzed the variations in the predicted epitopes among four MARV variants, the Lake Victoria, Angola, Musoke, and Ravn. We used a consensus approach to identify several epitopes, including novel epitopes, and narrowed down the selection based on different parameters such as antigenicity and IC50 values. The selected epitopes can be used in various vaccine constructs that give effective antibody responses. The MHC-I epitope-allele complexes for GP and NP with favorably low IC50 values were investigated using molecular dynamics computations to determine the molecular details of the epitope-allele complexes. This study provides information for further experimental validation of the potential epitopes and the design and development of MARV vaccines.
Collapse
Affiliation(s)
- Prabin Baral
- Department of Physics, Florida International University, Miami, FL 33199, USA
| | - Elumalai Pavadai
- Department of Physics, Florida International University, Miami, FL 33199, USA
| | - Ziyou Zhou
- Biotech Group, Luna Labs USA, Charlottesville, VA 22903, USA
| | - Yang Xu
- Biotech Group, Luna Labs USA, Charlottesville, VA 22903, USA
| | | | - Rudramani Pokhrel
- Department of Physics, Florida International University, Miami, FL 33199, USA
| | - Bernard S Gerstman
- Department of Physics, Florida International University, Miami, FL 33199, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Prem P Chapagain
- Department of Physics, Florida International University, Miami, FL 33199, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
5
|
Bar L, Nguyen C, Galibert M, Santos-Schneider F, Aldrian G, Dejeu J, Lartia R, Coche-Guérente L, Molina F, Boturyn D. Determination of the Rituximab Binding Site to the CD20 Epitope Using SPOT Synthesis and Surface Plasmon Resonance Analyses. Anal Chem 2021; 93:6865-6872. [PMID: 33881841 DOI: 10.1021/acs.analchem.1c00960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antibodies not only play a major role in clinical diagnostics and biopharmaceutical analysis but also are a class of drugs that are regularly used to treat numerous diseases. The identification of antibody-epitope binding sites is then of great interest to many emerging medical and bioanalytical applications, particularly to design monoclonal antibodies (mAb) mimics taking advantage of amino acid residues involved in the binding. Among relevant antibodies, the monoclonal antibody rituximab has received significant attention as it is exploited to treat several cancers including non-Hodgkin's lymphoma and chronic lymphocytic leukemia, as well as some autoimmune disorders such as rheumatoid arthritis. The binding of rituximab to the targeted cells occurs via the recognition of the CD20 epitope. A crystallographic study has shown that the binding area, named paratope, is located at the surface of rituximab. Combining the SPOT method and the complementary surface plasmon resonance technique allowed us to detect an extended recognition domain buried in the pocket of the rituximab Fab formed by four β-sheets. More generally, the present study offers a comprehensive approach to identify antibody-epitope binding sites.
Collapse
Affiliation(s)
- Laure Bar
- Université Grenoble-Alpes, CNRS, DCM UMR 5250, 570 rue de la chimie, CS 40700, 38058 Grenoble Cedex 9, France
| | - Christophe Nguyen
- Sys2Diag, CNRS-ALCEDIAG, Cap delta/Parc Euromédecine, 1682 rue de la Valsière, CS 61003, 34184 Montpellier Cedex 4, France
| | - Mathieu Galibert
- Université Grenoble-Alpes, CNRS, DCM UMR 5250, 570 rue de la chimie, CS 40700, 38058 Grenoble Cedex 9, France
| | - Francisco Santos-Schneider
- Sys2Diag, CNRS-ALCEDIAG, Cap delta/Parc Euromédecine, 1682 rue de la Valsière, CS 61003, 34184 Montpellier Cedex 4, France
| | - Gudrun Aldrian
- Sys2Diag, CNRS-ALCEDIAG, Cap delta/Parc Euromédecine, 1682 rue de la Valsière, CS 61003, 34184 Montpellier Cedex 4, France
| | - Jérôme Dejeu
- Université Grenoble-Alpes, CNRS, DCM UMR 5250, 570 rue de la chimie, CS 40700, 38058 Grenoble Cedex 9, France
| | - Rémy Lartia
- Université Grenoble-Alpes, CNRS, DCM UMR 5250, 570 rue de la chimie, CS 40700, 38058 Grenoble Cedex 9, France
| | - Liliane Coche-Guérente
- Université Grenoble-Alpes, CNRS, DCM UMR 5250, 570 rue de la chimie, CS 40700, 38058 Grenoble Cedex 9, France
| | - Franck Molina
- Sys2Diag, CNRS-ALCEDIAG, Cap delta/Parc Euromédecine, 1682 rue de la Valsière, CS 61003, 34184 Montpellier Cedex 4, France
| | - Didier Boturyn
- Université Grenoble-Alpes, CNRS, DCM UMR 5250, 570 rue de la chimie, CS 40700, 38058 Grenoble Cedex 9, France
| |
Collapse
|
6
|
Qi H, Ma M, Hu C, Xu ZW, Wu FL, Wang N, Lai DY, Li Y, Zhang H, Jiang HW, Meng QF, Guo S, Kang Y, Zhao X, Li H, Tao SC. Antibody Binding Epitope Mapping (AbMap) of Hundred Antibodies in a Single Run. Mol Cell Proteomics 2021; 20:100059. [PMID: 33109704 PMCID: PMC8027275 DOI: 10.1074/mcp.ra120.002314] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Antibodies play essential roles in both diagnostics and therapeutics. Epitope mapping is essential to understand how an antibody works and to protect intellectual property. Given the millions of antibodies for which epitope information is lacking, there is a need for high-throughput epitope mapping. To address this, we developed a strategy, Antibody binding epitope Mapping (AbMap), by combining a phage displayed peptide library with next-generation sequencing. Using AbMap, profiles of the peptides bound by 202 antibodies were determined in a single test, and linear epitopes were identified for >50% of the antibodies. Using spike protein (S1 and S2)-enriched antibodies from the convalescent serum of one COVID-19 patient as the input, both linear and potentially conformational epitopes of spike protein specific antibodies were identified. We defined peptide-binding profile of an antibody as the binding capacity (BiC). Conceptually, the BiC could serve as a systematic and functional descriptor of any antibody. Requiring at least one order of magnitude less time and money to map linear epitopes than traditional technologies, AbMap allows for high-throughput epitope mapping and creates many possibilities.
Collapse
Affiliation(s)
- Huan Qi
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mingliang Ma
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chuansheng Hu
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhao-Wei Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fan-Lin Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China; School of Agriculture, Lu Dong University, Yantai, China
| | - Nan Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China; Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, China
| | - Dan-Yun Lai
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hainan Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - He-Wei Jiang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing-Feng Meng
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shujuan Guo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yani Kang
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaodong Zhao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Hua Li
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Sheng-Ce Tao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory for Oncogenes, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Ulitzka M, Carrara S, Grzeschik J, Kornmann H, Hock B, Kolmar H. Engineering therapeutic antibodies for patient safety: tackling the immunogenicity problem. Protein Eng Des Sel 2021; 33:5944198. [PMID: 33128053 DOI: 10.1093/protein/gzaa025] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/21/2022] Open
Abstract
Established monoclonal antibodies (mAbs) allow treatment of cancers, autoimmune diseases and other severe illnesses. Side effects either arise due to interaction with the target protein and its biology or result from of the patient's immune system reacting to the foreign protein. This immunogenic reaction against therapeutic antibodies is dependent on various factors. The presence of non-human sequences can trigger immune responses as well as chemical and post-translational modifications of the antibody. However, even fully human antibodies can induce immune response through T cell epitopes or aggregates. In this review, we briefly describe, how therapeutic antibodies can interact with the patient's immune system and summarize recent advancements in protein engineering and in silico methods to reduce immunogenicity of therapeutic monoclonal antibodies.
Collapse
Affiliation(s)
- Michael Ulitzka
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany.,Ferring Darmstadt Labs, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Stefania Carrara
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany.,Ferring Darmstadt Labs, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Julius Grzeschik
- Ferring Darmstadt Labs, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Henri Kornmann
- Ferring International Center S.A., Chemin de la Vergognausaz 50, CH-1162 Saint-Prex, Switzerland
| | - Björn Hock
- Ferring International Center S.A., Chemin de la Vergognausaz 50, CH-1162 Saint-Prex, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| |
Collapse
|
8
|
Gray A, Bradbury ARM, Knappik A, Plückthun A, Borrebaeck CAK, Dübel S. Animal-free alternatives and the antibody iceberg. Nat Biotechnol 2020; 38:1234-1239. [DOI: 10.1038/s41587-020-0687-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Brehm M, Heissler S, Afonin S, Levkin PA. Nanomolar Synthesis in Droplet Microarrays with UV-Triggered On-Chip Cell Screening. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905971. [PMID: 31985878 DOI: 10.1002/smll.201905971] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Miniaturization and parallelization of combinatorial organic synthesis is important to accelerate the process of drug discovery while reducing the consumption of reagents and solvents. This work presents a miniaturized platform for on-chip solid-phase combinatorial library synthesis with UV-triggered on-chip cell screening. The platform is based on a nanoporous polymer coating on a glass slide, which is modified via photolithography to yield arrays of hydrophilic (HL) spots surrounded by superhydrophobic (SH) surface. The combination of HL spots and SH background enables confinement of nanoliter droplets, functioning as miniaturized reactors for the solid-phase synthesis. The polymer serves as support for nanomolar solid-phase synthesis, while a photocleavable linker enables the release of the synthesized compounds into the droplets containing live cells. A 588 compound library of bisamides is synthesized via a four-component Ugi reaction on the chip and products are detected via stamping of the droplet array onto a conductive substrate and subsequent matrix-assisted laser desorption ionization mass spectrometry. The light-induced cleavage shows high flexibility in screening conditions by spatial, temporal, and quantitative control.
Collapse
Affiliation(s)
- Marius Brehm
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics, Hermann-von Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Heissler
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, Hermann-von Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Sergii Afonin
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), POB 3640, 76021, Karlsruhe, Germany
| | - Pavel A Levkin
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics, Hermann-von Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| |
Collapse
|
10
|
Wang Z, Li Y, Hou B, Pronobis MI, Wang M, Wang Y, Cheng G, Weng W, Wang Y, Tang Y, Xu X, Pan R, Lin F, Wang N, Chen Z, Wang S, Ma LZ, Li Y, Huang D, Jiang L, Wang Z, Zeng W, Zhang Y, Du X, Lin Y, Li Z, Xia Q, Geng J, Dai H, Yu Y, Zhao XD, Yuan Z, Yan J, Nie Q, Zhang X, Wang K, Chen F, Zhang Q, Zhu Y, Zheng S, Poss KD, Tao SC, Meng X. An array of 60,000 antibodies for proteome-scale antibody generation and target discovery. SCIENCE ADVANCES 2020; 6:eaax2271. [PMID: 32195335 PMCID: PMC7065887 DOI: 10.1126/sciadv.aax2271] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 12/13/2019] [Indexed: 05/28/2023]
Abstract
Antibodies are essential for elucidating gene function. However, affordable technology for proteome-scale antibody generation does not exist. To address this, we developed Proteome Epitope Tag Antibody Library (PETAL) and its array. PETAL consists of 62,208 monoclonal antibodies (mAbs) against 15,199 peptides from diverse proteomes. PETAL harbors binders for a great multitude of proteins in nature due to antibody multispecificity, an intrinsic antibody feature. Distinctive combinations of 10,000 to 20,000 mAbs were found to target specific proteomes by array screening. Phenotype-specific mAb-protein pairs were found for maize and zebrafish samples. Immunofluorescence and flow cytometry mAbs for membrane proteins and chromatin immunoprecipitation-sequencing mAbs for transcription factors were identified from respective proteome-binding PETAL mAbs. Differential screening of cell surface proteomes of tumor and normal tissues identified internalizing tumor antigens for antibody-drug conjugates. By finding high-affinity mAbs at a fraction of current time and cost, PETAL enables proteome-scale antibody generation and target discovery.
Collapse
Affiliation(s)
- Zhaohui Wang
- School of Life Sciences, Northwest University, Xi’an, Shanxi 710069, China
- Abmart, 333 Guiping Road, Shanghai 200033, China
| | - Yang Li
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bing Hou
- School of Life Sciences, Northwest University, Xi’an, Shanxi 710069, China
- Abmart, 333 Guiping Road, Shanghai 200033, China
| | - Mira I. Pronobis
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Yuemeng Wang
- Abmart, 333 Guiping Road, Shanghai 200033, China
| | | | - Weining Weng
- Abmart, 333 Guiping Road, Shanghai 200033, China
| | - Yiqiang Wang
- Abmart, 333 Guiping Road, Shanghai 200033, China
| | - Yanfang Tang
- Abmart, 333 Guiping Road, Shanghai 200033, China
| | - Xuefan Xu
- Abmart, 333 Guiping Road, Shanghai 200033, China
| | - Rong Pan
- Abmart, 333 Guiping Road, Shanghai 200033, China
| | - Fei Lin
- Abmart, 333 Guiping Road, Shanghai 200033, China
| | - Nan Wang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziqing Chen
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shiwei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Luyan zulie Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yangrui Li
- Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, Guangxi 530007, China
| | - Dongliang Huang
- Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, Guangxi 530007, China
| | - Li Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
| | - Wenfang Zeng
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
| | - Ying Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
| | - Xuemei Du
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100083, China
| | - Ying Lin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Zhiqing Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Jing Geng
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Beijing 100029, China
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Beijing 100029, China
| | - Yuan Yu
- School of Life Sciences, Northwest University, Xi’an, Shanxi 710069, China
| | - Xiao-dong Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zheng Yuan
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian Yan
- Ludwig Institute for Cancer Research, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Department of Medical Biochemistry and Biophysics, Division of Functional Genomics and Systems Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Qinghua Nie
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiquan Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Kun Wang
- Institute for Advanced Studies and College of Life Sciences, Wuhan University, Wuhan, China
| | - Fulin Chen
- School of Life Sciences, Northwest University, Xi’an, Shanxi 710069, China
| | - Qin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuxian Zhu
- Institute for Advanced Studies and College of Life Sciences, Wuhan University, Wuhan, China
| | - Susan Zheng
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kenneth D. Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sheng-ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai 200240, China
| | - Xun Meng
- School of Life Sciences, Northwest University, Xi’an, Shanxi 710069, China
- Abmart, 333 Guiping Road, Shanghai 200033, China
| |
Collapse
|
11
|
Li W, Wade JD, Reynolds E, O'Brien-Simpson NM. Chemical Modification of Cellulose Membranes for SPOT Synthesis. Aust J Chem 2020. [DOI: 10.1071/ch19335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Since the development of solid-phase peptide synthesis in the 1960s, many laboratories have modified the technology for the production of peptide arrays to facilitate the discovery of novel peptide mimetics and therapeutics. One of these, known as SPOT synthesis, enables parallel peptide synthesis on cellulose paper sheets and has several advantages over other peptide arrays methods. Today, the SPOT technique remains one of the most frequently used methods for synthesis and screening of peptides on arrays. Although polypropylene and glass can be used for the preparation of peptide arrays, the most commonly used material for SPOT membranes is cellulose. Critical to the success of the SPOT synthesis is the ability to modify a cellulose membrane to make it more suitable for solid-phase peptide synthesis of peptides and their analogues. In this review, we highlight the current range of chemical modifications of cellulose that have been developed to enable SPOT synthesis and further enhance its impact on peptide drug discovery. This will contribute to further chemical modifications and applications of SPOT synthesis for peptide arrays and peptide therapeutic screening.
Collapse
|
12
|
Simmons KJ, Eason TN, Curioso CL, Griffin SM, Ramudit MKD, Oshima KH, Sams EA, Wade TJ, Grimm A, Dufour A, Augustine SAJ. Visitors to a Tropical Marine Beach Show Evidence of Immunoconversions to Multiple Waterborne Pathogens. Front Public Health 2019; 7:231. [PMID: 31482082 PMCID: PMC6709658 DOI: 10.3389/fpubh.2019.00231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/02/2019] [Indexed: 12/16/2022] Open
Abstract
Determining infections from environmental exposures, particularly from waterborne pathogens is a challenging proposition. The study design must be rigorous and account for numerous factors including study population selection, sample collection, storage, and processing, as well as data processing and analysis. These challenges are magnified when it is suspected that individuals may potentially be infected by multiple pathogens at the same time. Previous work demonstrated the effectiveness of a salivary antibody multiplex immunoassay in detecting the prevalence of immunoglobulin G (IgG) antibodies to multiple waterborne pathogens and helped identify asymptomatic norovirus infections in visitors to Boquerón Beach, Puerto Rico. In this study, we applied the immunoassay to three serially collected samples from study participants within the same population to assess immunoconversions (incident infections) to six waterborne pathogens: Helicobacter pylori, Campylobacter jejuni, Toxoplasma gondii, hepatitis A virus, and noroviruses GI. I and GII.4. Further, we examined the impact of sampling on the detection of immunoconversions by comparing the traditional immunoconversion definition based on two samples to criteria developed to capture trends in three sequential samples collected from study participants. The expansion to three samples makes it possible to capture the IgG antibody responses within the survey population to more accurately assess the frequency of immunoconversions to target pathogens. Based on the criteria developed, results showed that when only two samples from each participant were used in the analysis, 25.9% of the beachgoers immunoconverted to at least one pathogen; however, the addition of the third sample reduced immunoconversions to 6.5%. Of these incident infections, the highest levels were to noroviruses followed by T. gondii. Moreover, many individuals displayed evidence of immunoconversions to multiple pathogens. This study suggests that detection of simultaneous infections is possible, with far reaching consequences for the population. The results may lead to further studies to understand the complex interactions that occur within the body as the immune system attempts to ward off these infections. Such an approach is critical to our understanding of medically important synergistic or antagonistic interactions and may provide valuable and critical information to public health officials, water treatment personnel, and environmental managers.
Collapse
Affiliation(s)
- Kaneatra J Simmons
- Department of Arts & Sciences/Learning Support, Fort Valley State University, Fort Valley, GA, United States
| | - Tarsha N Eason
- National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | | | - Shannon M Griffin
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | | | - Kevin H Oshima
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | - Elizabeth A Sams
- National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, United States
| | - Timothy J Wade
- National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, United States
| | - Ann Grimm
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | - Alfred Dufour
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | - Swinburne A J Augustine
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, OH, United States
| |
Collapse
|
13
|
|
14
|
ten Brummelhuis N, Wilke P, Börner HG. Identification of Functional Peptide Sequences to Lead the Design of Precision Polymers. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700632] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 09/26/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Niels ten Brummelhuis
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Patrick Wilke
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 D-12489 Berlin Germany
| |
Collapse
|
15
|
Mahmud MN, Oda M, Usui D, Inoshima Y, Ishiguro N, Kamatari YO. A multispecific monoclonal antibody G2 recognizes at least three completely different epitope sequences with high affinity. Protein Sci 2017; 26:2162-2169. [PMID: 28791742 DOI: 10.1002/pro.3263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/18/2017] [Accepted: 07/29/2017] [Indexed: 11/09/2022]
Abstract
A monoclonal antibody (mAb) G2 possesses an unusual characteristic of reacting with at least three proteins (ATP6V1C1, SEPT3, and C6H10orf76) other than its original antigen, chicken prion protein (ChPrP). The epitopes on ChPrP and ATP6V1C1 have been identified previously. In this study, we identified the epitope in the third protein, SEPT3. Interestingly, there was no amino acid sequence similarity among the epitopes on the three proteins. These epitopes had high binding affinities to G2 (KD = ∼10-7 M for monovalent binding and KD = ∼10-9 M for divalent binding), as determined using a SPR biosensor. This is the first report on a three-in-one mAb recognizing completely different epitope sequences with high affinity. Additionally, competitive ELISA indicated that the binding sites on G2, specific for the three different epitopes, overlapped, suggesting that the antigen-binding site may be flexible in the free form and capable of adapting to at least three different conformations to enable interactions with three different antigens.
Collapse
Affiliation(s)
- Md Nuruddin Mahmud
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu, 501-1193, Japan
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Daiki Usui
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Yasuo Inoshima
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu, 501-1193, Japan.,Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| | - Naotaka Ishiguro
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu, 501-1193, Japan.,Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| | - Yuji O Kamatari
- Life Science Research Center, Gifu University, Gifu, 501-1193, Japan
| |
Collapse
|
16
|
Augustine SAJ, Simmons KJ, Eason TN, Curioso CL, Griffin SM, Wade TJ, Dufour A, Fout GS, Grimm AC, Oshima KH, Sams EA, See MJ, Wymer LJ. Immunoprevalence to Six Waterborne Pathogens in Beachgoers at Boquerón Beach, Puerto Rico: Application of a Microsphere-Based Salivary Antibody Multiplex Immunoassay. Front Public Health 2017; 5:84. [PMID: 28507984 PMCID: PMC5410637 DOI: 10.3389/fpubh.2017.00084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 04/03/2017] [Indexed: 12/20/2022] Open
Abstract
Waterborne infectious diseases are a major public health concern worldwide. Few methods have been established that are capable of measuring human exposure to multiple waterborne pathogens simultaneously using non-invasive samples such as saliva. Most current methods measure exposure to only one pathogen at a time, require large volumes of individual samples collected using invasive procedures, and are very labor intensive. In this article, we applied a multiplex bead-based immunoassay capable of measuring IgG antibody responses to six waterborne pathogens simultaneously in human saliva to estimate immunoprevalence in beachgoers at Boquerón Beach, Puerto Rico. Further, we present approaches for determining cutoff points to assess immunoprevalence to the pathogens in the assay. For the six pathogens studied, our results show that IgG antibodies against antigens from noroviruses GI.I and GII.4 were more prevalent (60 and 51.6%, respectively) than Helicobacter pylori (21.4%), hepatitis A virus (20.2%), Campylobacter jejuni (8.7%), and Toxoplasma gondii (8%) in the saliva of the study participants. The salivary antibody multiplex immunoassay can be used to examine immunoprevalence of specific pathogens in human populations.
Collapse
Affiliation(s)
- Swinburne A J Augustine
- National Exposure Research Laboratory, United States Environmental Protection Agency, Cincinnati, OH, USA
| | | | - Tarsha N Eason
- National Risk Management Research Laboratory, United States Environmental Protection Agency, Cincinnati, OH, USA
| | | | - Shannon M Griffin
- National Exposure Research Laboratory, United States Environmental Protection Agency, Cincinnati, OH, USA
| | - Timothy J Wade
- National Health and Environmental Effects Laboratory, Research Triangle Park, NC, USA
| | - Alfred Dufour
- National Exposure Research Laboratory, United States Environmental Protection Agency, Cincinnati, OH, USA
| | - G Shay Fout
- National Exposure Research Laboratory, United States Environmental Protection Agency, Cincinnati, OH, USA
| | - Ann C Grimm
- National Exposure Research Laboratory, United States Environmental Protection Agency, Cincinnati, OH, USA
| | - Kevin H Oshima
- National Exposure Research Laboratory, United States Environmental Protection Agency, Cincinnati, OH, USA
| | - Elizabeth A Sams
- National Health and Environmental Effects Laboratory, Research Triangle Park, NC, USA
| | - Mary Jean See
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Larry J Wymer
- National Exposure Research Laboratory, United States Environmental Protection Agency, Cincinnati, OH, USA
| |
Collapse
|
17
|
Molecular Mechanism and Energy Basis of Conformational Diversity of Antibody SPE7 Revealed by Molecular Dynamics Simulation and Principal Component Analysis. Sci Rep 2016; 6:36900. [PMID: 27830740 PMCID: PMC5103278 DOI: 10.1038/srep36900] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/21/2016] [Indexed: 01/12/2023] Open
Abstract
More and more researchers are interested in and focused on how a limited repertoire of antibodies can bind and correspondingly protect against an almost limitless diversity of invading antigens. In this work, a series of 200-ns molecular dynamics (MD) simulations followed by principal component (PC) analysis and free energy calculations were performed to probe potential mechanism of conformational diversity of antibody SPE7. The results show that the motion direction of loops H3 and L3 is different relative to each other, implying that a big structural difference exists between these two loops. The calculated energy landscapes suggest that the changes in the backbone angles ψ and φ of H-Y101 and H-Y105 provide significant contributions to the conformational diversity of SPE7. The dihedral angle analyses based on MD trajectories show that the side-chain conformational changes of several key residues H-W33, H-Y105, L-Y34 and L-W93 around binding site of SPE7 play a key role in the conformational diversity of SPE7, which gives a reasonable explanation for potential mechanism of cross-reactivity of single antibody toward multiple antigens.
Collapse
|
18
|
Godzwon M, Levin M, Säll A, Ohlin M. A microarray-based reaction rate analysis platform. Is there evidence of validity? J Immunol Methods 2015; 426:144-6. [PMID: 26168708 DOI: 10.1016/j.jim.2015.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/08/2015] [Indexed: 10/23/2022]
Affiliation(s)
| | | | - Anna Säll
- Dept. of Immunotechnology, Lund University, Sweden
| | - Mats Ohlin
- Dept. of Immunotechnology, Lund University, Sweden.
| |
Collapse
|
19
|
Vernet T, Choulier L, Nominé Y, Bellard L, Baltzinger M, Travé G, Altschuh D. Spot peptide arrays and SPR measurements: throughput and quantification in antibody selectivity studies. J Mol Recognit 2015; 28:635-44. [PMID: 25960426 DOI: 10.1002/jmr.2477] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/31/2015] [Accepted: 03/31/2015] [Indexed: 11/07/2022]
Abstract
Antibody selectivity represents a major issue in the development of efficient immuno-therapeutics and detection assays. Its description requires a comparison of the affinities of the antibody for a significant number of antigen variants. In the case of peptide antigens, this task can now be addressed to a significant level of details owing to improvements in spot peptide array technologies. They allow the high-throughput mutational analysis of peptides with, depending on assay design, an evaluation of binding stabilities. Here, we examine the cross-reactive capacity of an antibody fragment using the PEPperCHIP(®) technology platform (PEPperPRINT GmbH, Heidelberg, Germany; >8800 peptides per microarray) combined with the surface plasmon resonance characterization (Biacore(®) technology; GE-Healthcare Biacore, Uppsala, Sweden) of a subset of interactions. ScFv1F4 recognizes the N-terminal end of oncoprotein E6 of human papilloma virus 16. The spot permutation analysis (i.e. each position substituted by all amino acids except cysteine) of the wild type decapeptide (sequence (6)TAMFQDPQER(15)) and of 15 variants thereof defined the optimal epitope and provided a ranking for variant recognition. The SPR affinity measurements mostly validated the ranking of complex stabilities deduced from array data and defined the sensitivity of spot fluorescence intensities, bringing further insight into the conditions for cross-reactivity. Our data demonstrate the importance of throughput and quantification in the assessment of antibody selectivity.
Collapse
Affiliation(s)
- Thierry Vernet
- IBS, Université Grenoble Alpes, F-38044, Grenoble, France.,IBS, CNRS, F-38044, Grenoble, France.,IBS, CEA, F-38044, Grenoble, France
| | - Laurence Choulier
- Biotechnologie et signalisation cellulaire, Université de Strasbourg, CNRS, ESBS, Boulevard Sébastien Brant BP10413, 67412, Illkirch, France.,Faculté de Pharmacie, CNRS UMR 7213, Université de Strasbourg, 74 route du Rhin, 67401, Illkirch, France
| | - Yves Nominé
- Biotechnologie et signalisation cellulaire, Université de Strasbourg, CNRS, ESBS, Boulevard Sébastien Brant BP10413, 67412, Illkirch, France
| | - Laure Bellard
- IBS, Université Grenoble Alpes, F-38044, Grenoble, France.,IBS, CNRS, F-38044, Grenoble, France.,IBS, CEA, F-38044, Grenoble, France
| | - Mireille Baltzinger
- Biotechnologie et signalisation cellulaire, Université de Strasbourg, CNRS, ESBS, Boulevard Sébastien Brant BP10413, 67412, Illkirch, France.,IBMC, CNRS UPR 9002 - ARN, Université de Strasbourg, 15 rue René Descartes, 67084, Strasbourg Cedex, France
| | - Gilles Travé
- Biotechnologie et signalisation cellulaire, Université de Strasbourg, CNRS, ESBS, Boulevard Sébastien Brant BP10413, 67412, Illkirch, France
| | - Danièle Altschuh
- Biotechnologie et signalisation cellulaire, Université de Strasbourg, CNRS, ESBS, Boulevard Sébastien Brant BP10413, 67412, Illkirch, France
| |
Collapse
|
20
|
Podolnikova NP, Podolnikov AV, Haas TA, Lishko VK, Ugarova TP. Ligand recognition specificity of leukocyte integrin αMβ2 (Mac-1, CD11b/CD18) and its functional consequences. Biochemistry 2015; 54:1408-20. [PMID: 25613106 DOI: 10.1021/bi5013782] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The broad recognition specificity exhibited by integrin α(M)β2 (Mac-1, CD11b/CD18) has allowed this adhesion receptor to play innumerable roles in leukocyte biology, yet we know little about how and why α(M)β2 binds its multiple ligands. Within α(M)β2, the α(M)I-domain is responsible for integrin's multiligand binding properties. To identify its recognition motif, we screened peptide libraries spanning sequences of many known protein ligands for α(M)I-domain binding and also selected the α(M)I-domain recognition sequences by phage display. Analyses of >1400 binding and nonbinding peptides derived from peptide libraries showed that a key feature of the α(M)I-domain recognition motif is a small core consisting of basic amino acids flanked by hydrophobic residues. Furthermore, the peptides selected by phage display conformed to a similar pattern. Identification of the recognition motif allowed the construction of an algorithm that reliably predicts the α(M)I-domain binding sites in the α(M)β2 ligands. The recognition specificity of the α(M)I-domain resembles that of some chaperones, which allows it to bind segments exposed in unfolded proteins. The disclosure of the α(M)β2 binding preferences allowed the prediction that cationic host defense peptides, which are strikingly enriched in the α(M)I-domain recognition motifs, represent a new class of α(M)β2 ligands. This prediction has been tested by examining the interaction of α(M)β2 with the human cathelicidin peptide LL-37. LL-37 induced a potent α(M)β2-dependent cell migratory response and caused activation of α(M)β2 on neutrophils. The newly revealed recognition specificity of α(M)β2 toward unfolded protein segments and cationic proteins and peptides suggests that α(M)β2 may serve as a previously proposed "alarmin" receptor with important roles in innate host defense.
Collapse
Affiliation(s)
- Nataly P Podolnikova
- Center for Metabolic and Vascular Biology, School of Life Sciences, Arizona State University , Tempe, Arizona 85287, United States
| | | | | | | | | |
Collapse
|
21
|
Neutralization of Virus Infectivity by Antibodies: Old Problems in New Perspectives. ACTA ACUST UNITED AC 2014; 2014. [PMID: 27099867 DOI: 10.1155/2014/157895] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neutralizing antibodies (NAbs) can be both sufficient and necessary for protection against viral infections, although they sometimes act in concert with cellular immunity. Successful vaccines against viruses induce NAbs but vaccine candidates against some major viral pathogens, including HIV-1, have failed to induce potent and effective such responses. Theories of how antibodies neutralize virus infectivity have been formulated and experimentally tested since the 1930s; and controversies about the mechanistic and quantitative bases for neutralization have continually arisen. Soluble versions of native oligomeric viral proteins that mimic the functional targets of neutralizing antibodies now allow the measurement of the relevant affinities of NAbs. Thereby the neutralizing occupancies on virions can be estimated and related to the potency of the NAbs. Furthermore, the kinetics and stoichiometry of NAb binding can be compared with neutralizing efficacy. Recently, the fundamental discovery that the intracellular factor TRIM21 determines the degree of neutralization of adenovirus has provided new mechanistic and quantitative insights. Since TRIM21 resides in the cytoplasm, it would not affect the neutralization of enveloped viruses, but its range of activity against naked viruses will be important to uncover. These developments bring together the old problems of virus neutralization-mechanism, stoichiometry, kinetics, and efficacy-from surprising new angles.
Collapse
|
22
|
Kamatari YO, Ohta S, Inoshima Y, Oda M, Maruno T, Kobayashi Y, Ishiguro N. Identification and characterization of a multispecific monoclonal antibody G2 against chicken prion protein. Protein Sci 2014; 23:1050-9. [PMID: 24863561 DOI: 10.1002/pro.2491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/18/2014] [Accepted: 05/20/2014] [Indexed: 11/11/2022]
Abstract
We previously generated a monoclonal antibody (mAb), G2, by immunizing mice with Residues 174-247 of the chicken prion protein (ChPrP(C) ). In this study, we found that G2 possessed an extremely unusual characteristic for a mAb; in particular, it could react with at least three proteins other than ChPrP(C) , the original antigenic protein. We immunoscreened a complementary DNA library from chicken brain DNA and found three proteins (SEPT3, ATP6V1C1, and C6H10orf76) that reacts with G2. There were no regions of amino acid sequence similarity between ChPrP(C) and SEPT3, ATP6V1C1, or C6H10orf76. We selected ATP6V1C1 as a representative of the three proteins and identified the epitope within ATP6V1C1 that reacts with G2. The amino acid sequence of the G2 epitope within ATP6V1C1 (Pep8) was not related to the G2 epitope within ChPrP(C) (Pep18mer). However, enzyme-linked immunosorbent assay, surface plasmon resonance (SPR), and isothermal titration calorimetry (ITC) experiments indicated that these two peptides have similar binding affinity for G2. The apparent KD values of Pep18mer and Pep8 obtained from SPR experiments were 2.9 × 10(-8) and 1.6 × 10(-8) M, respectively. Antibody inhibition test using each peptide indicated that the binding sites of the two different peptides overlapped each other. We observed that these two peptides substantially differed in several binding characteristics. Based on the SPR experiments, the association and dissociation rate constants of Pep18mer were higher than those of Pep8. A clear difference was also observed in ITC experiments. These differences may be explained by G2 adopting different binding conformations and undergoing different binding pathways.
Collapse
Affiliation(s)
- Yuji O Kamatari
- Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Ismail AAA. Identifying and reducing potentially wrong immunoassay results even when plausible and "not-unreasonable". Adv Clin Chem 2014; 66:241-94. [PMID: 25344990 DOI: 10.1016/b978-0-12-801401-1.00007-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The primary role of the clinical laboratory is to report accurate results for diagnosis of disease and management of illnesses. This goal has, to a large extent been achieved for routine biochemical tests, but not for immunoassays which remained susceptible to interference from endogenous immunoglobulin antibodies, causing false, and clinically misleading results. Clinicians regard all abnormal results including false ones as "pathological" necessitating further investigations, or concluding iniquitous diagnosis. Even more seriously, "false-negative" results may wrongly exclude pathology, thus denying patients' necessary treatment. Analytical error rate in immunoassays is relatively high, ranging from 0.4% to 4.0%. Because analytical interference from endogenous antibodies is confined to individuals' sera, it can be inconspicuous, pernicious, sporadic, and insidious because it cannot be detected by internal or external quality assessment procedures. An approach based on Bayesian reasoning can enhance the robustness of clinical validation in highlighting potentially erroneous immunoassay results. When this rational clinical/statistical approach is followed by analytical affirmative follow-up tests, it can help identifying inaccurate and clinically misleading immunoassay data even when they appear plausible and "not-unreasonable." This chapter is largely based on peer reviewed articles associated with and related to this approach. The first section underlines (without mathematical equations) the dominance and misuse of conventional statistics and the underuse of Bayesian paradigm and shows that laboratorians are intuitively (albeit unwittingly) practicing Bayesians. Secondly, because interference from endogenous antibodies is method's dependent (with numerous formats and different reagents), it is almost impossible to accurately assess its incidence in all differently formulated immunoassays and for each analytes/biomarkers. However, reiterating the basic concepts underpinning interference from endogenous antibodies can highlight why interference will remain analytically pernicious, sporadic, and an inveterate problem. The following section discuses various stratagems to reduce this source of inaccuracy in current immunoassay results including the role of Bayesian reasoning. Finally, the role of three commonly used follow-up affirmative tests and their interpretation in confirming analytical interference is discussed.
Collapse
|
24
|
Sedykh MA, Buneva VN, Nevinsky GA. Polyreactivity of natural antibodies: Exchange by HL-fragments. BIOCHEMISTRY (MOSCOW) 2013; 78:1305-1320. [DOI: 10.1134/s0006297913120018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
25
|
Michel LV, Snyder J, Schmidt R, Milillo J, Grimaldi K, Kalmeta B, Khan MN, Sharma S, Wright LK, Pichichero ME. Dual orientation of the outer membrane lipoprotein P6 of nontypeable haemophilus influenzae. J Bacteriol 2013; 195:3252-9. [PMID: 23687267 PMCID: PMC3697637 DOI: 10.1128/jb.00185-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/12/2013] [Indexed: 11/20/2022] Open
Abstract
The majority of outer membrane (OM) lipoproteins in Gram-negative bacteria are tethered to the membrane via an attached lipid moiety and oriented facing in toward the periplasmic space; a few lipoproteins have been shown to be surface exposed. The outer membrane lipoprotein P6 from the Gram-negative pathogenic bacterium nontypeable Haemophilus influenzae (NTHi) is surface exposed and a leading vaccine candidate for prevention of NTHi infections. However, we recently found that P6 is not a transmembrane protein as previously thought (L. V. Michel, B. Kalmeta, M. McCreary, J. Snyder, P. Craig, M. E. Pichichero, Vaccine 29:1624-1627, 2011). Here we pursued studies to show that P6 has a dual orientation, existing infrequently as surface exposed and predominantly as internally oriented toward the periplasmic space. Flow cytometry using three monoclonal antibodies with specificity for P6 showed surface staining of whole NTHi cells. Confocal microscopy imaging confirmed that antibodies targeted surface-exposed P6 of intact NTHi cells and not internal P6 in membrane-compromised or dead cells. Western blots of two wild-type NTHi strains and a mutant NTHi strain that does not express P6 showed that P6 antibodies do not detect a promiscuous epitope on NTHi. Depletion of targets to nonlipidated P6 significantly decreased bactericidal activity of human serum. Protease digestion of surface-exposed P6 demonstrated that P6 is predominantly internally localized in a manner similar to its homologue Pal in Escherichia coli. We conclude that P6 of NTHi is likely inserted into the OM in two distinct orientations, with the predominant orientation facing in toward the periplasm.
Collapse
Affiliation(s)
- Lea Vacca Michel
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Tapryal S, Gaur V, Kaur KJ, Salunke DM. Structural evaluation of a mimicry-recognizing paratope: plasticity in antigen-antibody interactions manifests in molecular mimicry. THE JOURNAL OF IMMUNOLOGY 2013; 191:456-63. [PMID: 23733869 DOI: 10.4049/jimmunol.1203260] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Molecular mimicry manifests antagonistically with respect to the specificity of immune recognition. However, it often occurs because different Ags share surface topologies in terms of shape or chemical nature. It also occurs when a flexible paratope accommodates dissimilar Ags by adjusting structural features according to the antigenic epitopes or differential positioning in the Ag combining site. Toward deciphering the structural basis of molecular mimicry, mAb 2D10 was isolated from a maturing immune response elicited against methyl α-d-mannopyranoside and also bound equivalently to a dodecapeptide. The physicochemical evidence of this carbohydrate-peptide mimicry in the case of mAb 2D10 had been established earlier. These studies had strongly suggested direct involvement of a flexible paratope in the observed mimicry. Surprisingly, comparison of the Ag-free structure of single-chain variable fragment 2D10 with those bound to sugar and peptide Ags revealed a conformationally invariant state of the Ab while binding to chemically and structurally disparate Ags. This equivalent binding of the two dissimilar Ags was through mutually independent interactions, demonstrating functional equivalence in the absence of structural correlation. Thus, existence of a multispecific, mature Ab in the secondary immune response was evident, as was the plasticity in the interactions while accommodating topologically diverse Ags. Although our data highlight the structural basis of receptor multispecificity, they also illustrate mechanisms adopted by the immune system to neutralize the escape mutants generated during pathogenic insult.
Collapse
Affiliation(s)
- Suman Tapryal
- National Institute of Immunology, New Delhi 110067, India
| | | | | | | |
Collapse
|
27
|
Two-in-One antibodies with dual action Fabs. Curr Opin Chem Biol 2013; 17:400-5. [DOI: 10.1016/j.cbpa.2013.04.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/27/2013] [Accepted: 04/15/2013] [Indexed: 11/22/2022]
|
28
|
Wang W, Ye W, Yu Q, Jiang C, Zhang J, Luo R, Chen HF. Conformational Selection and Induced Fit in Specific Antibody and Antigen Recognition: SPE7 as a Case Study. J Phys Chem B 2013; 117:4912-23. [DOI: 10.1021/jp4010967] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wei Wang
- State Key Laboratory of Microbial
metabolism, Department of Bioinformatics and Biostatistics, College
of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wei Ye
- State Key Laboratory of Microbial
metabolism, Department of Bioinformatics and Biostatistics, College
of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qingfen Yu
- State Key Laboratory of Microbial
metabolism, Department of Bioinformatics and Biostatistics, College
of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Cheng Jiang
- State Key Laboratory of Microbial
metabolism, Department of Bioinformatics and Biostatistics, College
of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jian Zhang
- Department of Pathophysiology,
Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry
of Education, School of Medicine, Shanghai Jiaotong University, 280 Chongqing Road, Shanghai, 200025, China
| | - Ray Luo
- Departments of Molecular Biology
and Biochemistry and Biomedical Engineering, University of California, Irvine, California 92697-3900, United
States
| | - Hai-Feng Chen
- State Key Laboratory of Microbial
metabolism, Department of Bioinformatics and Biostatistics, College
of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
- Shanghai Center for Bioinformation Technology, 100 Qinzhou Road, Shanghai,
200235, China
| |
Collapse
|
29
|
Schweitzer MH, Zheng W, Cleland TP, Bern M. Molecular analyses of dinosaur osteocytes support the presence of endogenous molecules. Bone 2013; 52:414-23. [PMID: 23085295 DOI: 10.1016/j.bone.2012.10.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 10/05/2012] [Accepted: 10/06/2012] [Indexed: 11/15/2022]
Abstract
The discovery of soft, transparent microstructures in dinosaur bone consistent in morphology with osteocytes was controversial. We hypothesize that, if original, these microstructures will have molecular features in common with extant osteocytes. We present immunological and mass spectrometry evidence for preservation of proteins comprising extant osteocytes (Actin, Tubulin, PHEX, Histone H4) in osteocytes recovered from two non-avian dinosaurs. Furthermore, antibodies to DNA show localized binding to these microstructures, which also react positively with DNA intercalating stains propidium iodide (PI) and 4',6'-diamidino-2-phenylindole dihydrochloride (DAPI). Each antibody binds dinosaur cells in patterns similar to extant cells. These data are the first to support preservation of multiple proteins and to present multiple lines of evidence for material consistent with DNA in dinosaurs, supporting the hypothesis that these structures were part of the once living animals. We propose mechanisms for preservation of cells and component molecules, and discuss implications for dinosaurian cellular biology.
Collapse
Affiliation(s)
- Mary Higby Schweitzer
- Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | | | |
Collapse
|
30
|
Immunoglobulin function. Clin Immunol 2013. [DOI: 10.1016/b978-0-7234-3691-1.00038-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Olsson N, Wallin S, James P, Borrebaeck CAK, Wingren C. Epitope-specificity of recombinant antibodies reveals promiscuous peptide-binding properties. Protein Sci 2012; 21:1897-910. [PMID: 23034898 DOI: 10.1002/pro.2173] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 09/26/2012] [Indexed: 01/25/2023]
Abstract
Protein-peptide interactions are a common occurrence and essential for numerous cellular processes, and frequently explored in broad applications within biology, medicine, and proteomics. Therefore, understanding the molecular mechanism(s) of protein-peptide recognition, specificity, and binding interactions will be essential. In this study, we report the first detailed analysis of antibody-peptide interaction characteristics, by combining large-scale experimental peptide binding data with the structural analysis of eight human recombinant antibodies and numerous peptides, targeting tryptic mammalian and eukaryote proteomes. The results consistently revealed that promiscuous peptide-binding interactions, that is, both specific and degenerate binding, were exhibited by all antibodies, and the discovery was corroborated by orthogonal data, indicating that this might be a general phenomenon for low-affinity antibody-peptide interactions. The molecular mechanism for the degenerate peptide-binding specificity appeared to be executed through the use of 2-3 semi-conserved anchor residues in the C-terminal part of the peptides, in analogue to the mechanism utilized by the major histocompatibility complex-peptide complexes. In the long-term, this knowledge will be instrumental for advancing our fundamental understanding of protein-peptide interactions, as well as for designing, generating, and applying peptide specific antibodies, or peptide-binding proteins in general, in various biotechnical and medical applications.
Collapse
Affiliation(s)
- Niclas Olsson
- Department of Immunotechnology, Lund University, Lund, Sweden
| | | | | | | | | |
Collapse
|
32
|
Bhowmick A, Salunke DM. Limited conformational flexibility in the paratope may be responsible for degenerate specificity of HIV epitope recognition. Int Immunol 2012; 25:77-90. [DOI: 10.1093/intimm/dxs093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
33
|
Hernández T, Mateo de Acosta C, Pérez R. Immunopotentiating properties of a multispecific α-anti-idiotype antibody. MAbs 2012; 4:398-402. [DOI: 10.4161/mabs.19872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
34
|
Mouquet H, Nussenzweig MC. Polyreactive antibodies in adaptive immune responses to viruses. Cell Mol Life Sci 2012; 69:1435-45. [PMID: 22045557 PMCID: PMC11114792 DOI: 10.1007/s00018-011-0872-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 01/15/2023]
Abstract
B cells express immunoglobulins on their surface where they serve as antigen receptors. When secreted as antibodies, the same molecules are key elements of the humoral immune response against pathogens such as viruses. Although most antibodies are restricted to binding a specific antigen, some are polyreactive and have the ability to bind to several different ligands, usually with low affinity. Highly polyreactive antibodies are removed from the repertoire during B-cell development by physiologic tolerance mechanisms including deletion and receptor editing. However, a low level of antibody polyreactivity is tolerated and can confer additional binding properties to pathogen-specific antibodies. For example, high-affinity human antibodies to HIV are frequently polyreactive. Here we review the evidence suggesting that in the case of some pathogens like HIV, polyreactivity may confer a selective advantage to pathogen-specific antibodies.
Collapse
Affiliation(s)
- Hugo Mouquet
- Laboratory of Molecular Immunology, The Rockefeller University, New York City, NY 10021, USA.
| | | |
Collapse
|
35
|
Landegren U, Vänelid J, Hammond M, Nong RY, Wu D, Ullerås E, Kamali-Moghaddam M. Opportunities for sensitive plasma proteome analysis. Anal Chem 2012; 84:1824-30. [PMID: 22248085 DOI: 10.1021/ac2032222] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite great interest, investments, and efforts, the ongoing search for plasma protein biomarkers for disease so far has come up surprisingly empty-handed. Although discovery programs have revealed large numbers of biomarker candidates, the clinical utility has been validated for only a very small number of these. While this disappointing state of affairs may suggest that plasma protein biomarkers have little more to offer for diagnostics, we take the perspective that experimental conditions might not have been optimal and that analyses will be required that offer far greater sensitivity than currently available, in terms of numbers of molecules needed for unambiguous detection. Accordingly, techniques are needed to search deep and wide for protein biomarker candidates. The requirements and feasibility of such assays will be discussed.
Collapse
Affiliation(s)
- Ulf Landegren
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, The Rudbeck Laboratory, 75185 Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
36
|
Genetic elimination of α3(IV) collagen fails to rescue anti-collagen B cells. Immunol Lett 2011; 141:134-9. [PMID: 21963654 DOI: 10.1016/j.imlet.2011.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 09/14/2011] [Accepted: 09/19/2011] [Indexed: 11/22/2022]
Abstract
Organ deposition of autoantibodies against the noncollagenous-1 domain of the α3 chain of type IV collagen leads to severe kidney and lung injury in anti-glomerular basement membrane disease. The origin and regulation of these highly pathogenic autoantibodies remains unknown. Anti-α3(IV) collagen B lymphocytes are predicted to mature in vivo ignorant of target antigen because α3(IV) collagen expression is highly tissue restricted and pathogenic epitopes are cryptic. However, a recent analysis of an anti-α3(IV)NC1 collagen autoantibody transgenic mouse model revealed that developing B cells are rapidly silenced by deletion and editing in the bone marrow. To dissect the role of collagen as central tolerogen in this model, we determined B cell fate in autoantibody transgenic mice genetically lacking α3(IV) collagen. We found that absence of the tissue target autoantigen has little impact on the fate of anti-α3(IV)NC1 B cells. This implies a more complex regulatory mechanism for preventing anti-glomerular basement membrane disease than has been previously considered, including the possibility that a second antigen present in bone marrow engages and tolerizes anti-α3(IV)NC1 collagen B cells.
Collapse
|
37
|
Bumbaca D, Wong A, Drake E, Reyes AE, Lin BC, Stephan JP, Desnoyers L, Shen BQ, Dennis MS. Highly specific off-target binding identified and eliminated during the humanization of an antibody against FGF receptor 4. MAbs 2011; 3:376-86. [PMID: 21540647 DOI: 10.4161/mabs.3.4.15786] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Off-target binding can significantly affect the pharmacokinetics (PK), tissue distribution, efficacy and toxicity of a therapeutic antibody. Herein we describe the development of a humanized anti- fibroblast growth factor receptor 4 (FGFR4) antibody as a potential therapeutic for hepatocellular carcinoma (HCC). A chimeric anti FGFR4 monoclonal antibody (chLD1) was previously shown to block ligand binding and to inhibit FGFR4 mediated signaling as well as tumor growth in vivo. A humanized version of chLD1, hLD1.vB, had similar binding affinity and in vitro blocking activity, but it exhibited rapid clearance, poor target tissue biodistribution and limited efficacy when compared to chLD1 in a HUH7 human HCC xenograft mouse model. These problems were traced to instability of the molecule in rodent serum. Size exclusion high performance liquid chromatography, immunoprecipitation and mass spectral sequencing identified a specific interaction between hLD1.vB and mouse complement component 3 (C3). A PK study in C3 knock-out mice further confirmed this specific interaction. Subsequently, an affinity-matured variant derived from hLD1.vB (hLD1.v22), specifically selected for its lack of binding to mouse C3 was demonstrated to have a PK profile and in vivo efficacy similar to that of chLD1 in mice. Although reports of non-specific off-target binding have been observed for other antibodies, this represents the first report identifying a specific off-target interaction that affected disposition and biological activity. Screens developed to identify general non-specific interactions are likely to miss the rare and highly specific cross-reactivity identified in this study, thus highlighting the importance of animal models as a proxy for avoiding unexpected clinical outcomes.
Collapse
Affiliation(s)
- Daniela Bumbaca
- Early Development PKPD, Genentech, Inc., South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Larsson M, Morland C, Poblete-Naredo I, Biber J, Danbolt NC, Gundersen V. The sodium-dependent inorganic phosphate transporter SLC34A1 (NaPi-IIa) is not localized in the mouse brain: a case of tissue-specific antigenic cross-reactivity. J Histochem Cytochem 2011; 59:807-12. [PMID: 21606201 DOI: 10.1369/0022155411411713] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The sodium-dependent inorganic phosphate transporter NaPi-IIa is expressed in the kidney. Here, the authors used a polyclonal antiserum raised against NaPi-IIa- and NaPi-IIa-deficient mice to characterize its expression in nervous tissue. Western blots showed that a NaPi-IIa immunoreactive band (~90 kDa) was only present in wild-type kidney membranes and not in kidney knockout or wild-type brain membranes. In the water-soluble fraction of wild-type and knockout brains, another band (~50 kDa) was observed; this band was not detected in the kidney. Light and electron microscopic immunohistochemistry using the NaPi-IIa antibodies showed immunolabeling of kidney tubules in wild-type but not knockout mice. In the brain, labeling of presynaptic nerve terminals was present also in NaPi-IIa-deficient mice. This labeling pattern was also produced by the NaPi-IIa preimmune serum. The authors conclude that the polyclonal antiserum is specific toward NaPi-IIa in the kidney, but in the brain, immunolabeling is caused by a cross-reaction of the antiserum with an unknown cytosolic protein that is not present in the kidney. This tissue-specific cross-reactivity highlights a potential pitfall when validating antibody specificity using knockout mouse-derived tissue other than the specific tissue of interest and underlines the utility of specificity testing using preimmune sera.
Collapse
Affiliation(s)
- Max Larsson
- Department of Anatomy and Centre for Molecular Biology and Neuroscience, University of Oslo, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
39
|
Bostrom J, Haber L, Koenig P, Kelley RF, Fuh G. High affinity antigen recognition of the dual specific variants of herceptin is entropy-driven in spite of structural plasticity. PLoS One 2011; 6:e17887. [PMID: 21526167 PMCID: PMC3081289 DOI: 10.1371/journal.pone.0017887] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 02/16/2011] [Indexed: 12/25/2022] Open
Abstract
The antigen-binding site of Herceptin, an anti-human Epidermal Growth Factor Receptor 2 (HER2) antibody, was engineered to add a second specificity toward Vascular Endothelial Growth Factor (VEGF) to create a high affinity two-in-one antibody bH1. Crystal structures of bH1 in complex with either antigen showed that, in comparison to Herceptin, this antibody exhibited greater conformational variability, also called "structural plasticity". Here, we analyzed the biophysical and thermodynamic properties of the dual specific variants of Herceptin to understand how a single antibody binds two unrelated protein antigens. We showed that while bH1 and the affinity-improved bH1-44, in particular, maintained many properties of Herceptin including binding affinity, kinetics and the use of residues for antigen recognition, they differed in the binding thermodynamics. The interactions of bH1 and its variants with both antigens were characterized by large favorable entropy changes whereas the Herceptin/HER2 interaction involved a large favorable enthalpy change. By dissecting the total entropy change and the energy barrier for dual interaction, we determined that the significant structural plasticity of the bH1 antibodies demanded by the dual specificity did not translate into the expected increase of entropic penalty relative to Herceptin. Clearly, dual antigen recognition of the Herceptin variants involves divergent antibody conformations of nearly equivalent energetic states. Hence, increasing the structural plasticity of an antigen-binding site without increasing the entropic cost may play a role for antibodies to evolve multi-specificity. Our report represents the first comprehensive biophysical analysis of a high affinity dual specific antibody binding two unrelated protein antigens, furthering our understanding of the thermodynamics that drive the vast antigen recognition capacity of the antibody repertoire.
Collapse
Affiliation(s)
- Jenny Bostrom
- Department of Antibody Engineering, Genentech Inc., South San Francisco, California, United States of America
- Department of Protein Engineering, Genentech, Inc., South San Francisco, California, United States of America
| | - Lauric Haber
- Department of Antibody Engineering, Genentech Inc., South San Francisco, California, United States of America
- Department of Protein Engineering, Genentech, Inc., South San Francisco, California, United States of America
| | - Patrick Koenig
- Department of Antibody Engineering, Genentech Inc., South San Francisco, California, United States of America
- Department of Protein Engineering, Genentech, Inc., South San Francisco, California, United States of America
| | - Robert F. Kelley
- Department of Antibody Engineering, Genentech Inc., South San Francisco, California, United States of America
- Department of Protein Engineering, Genentech, Inc., South San Francisco, California, United States of America
| | - Germaine Fuh
- Department of Antibody Engineering, Genentech Inc., South San Francisco, California, United States of America
- Department of Protein Engineering, Genentech, Inc., South San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
40
|
Kalaycioglu AT, Russell PH, Howard CR. Peptide mimics of hapten DNP: the effect of affinity of anti-DNP monoclonal antibodies for the selection of phage-displayed mimotopes. J Immunol Methods 2011; 366:36-42. [PMID: 21262229 DOI: 10.1016/j.jim.2011.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 12/17/2010] [Accepted: 01/10/2011] [Indexed: 11/18/2022]
Abstract
Biopanning of two linear (6- and 15-mer) and two constrained (10- and 17-mer) phage-displayed peptide libraries with two anti-DNP monoclonal antibodies (mAbs) selected seven unique peptide sequences using only the low affinity anti-DNP monoclonal antibody. The selected peptides contained two of 6, one of 10, two of 15 and two of 17 amino acids in length. They were all rich in hydrophobic residues. Both 15-mer peptides had antigenic regions of eight amino acids as revealed by a spot scan assay. Two of the 17-mer and one of the 10-mer peptides displayed on phage competed with free DNP for the low affinity anti-DNP mAb. These findings highlight (i) the selective power of phage displayed peptide libraries to identify peptides that mimic the shape of a small hapten molecule such as DNP, (ii) the possible preferential bias of phage libraries towards low affinity antibodies, (iii) the importance of using a panel of phage libraries for selecting peptide mimics.
Collapse
Affiliation(s)
- Atila T Kalaycioglu
- Department of Pathology and Infectious Diseases, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK.
| | | | | |
Collapse
|
41
|
Edmonson P, Stubbs D, Hunt W. Detection of bacterial signaling molecules in liquid or gaseous environments. Methods Mol Biol 2011; 692:83-100. [PMID: 21031306 DOI: 10.1007/978-1-60761-971-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The detection of bacterial signaling molecules in liquid or gaseous environments has been occurring in nature for billions of years. More recently, man-made materials and systems has also allowed for the detection of small molecules in liquid or gaseous environments. This chapter will outline some examples of these man-made detection systems by detailing several acoustic-wave sensor systems applicable to quorum sensing. More importantly though, a comparison will be made between existing bacterial quorum sensing signaling systems, such as the Vibrio harveyi two-component system and that of man-made detection systems, such as acoustic-wave sensor systems and digital communication receivers similar to those used in simple cell phone technology. It will be demonstrated that the system block diagrams for either bacterial quorum sensing systems or man-made detection systems are all very similar, and that the established modeling techniques for digital communications and acoustic-wave sensors can also be transformed to quorum sensing systems.
Collapse
|
42
|
Abstract
Our goal is to provide a perspective on current understanding of the origins of specificity in immune reactions, a topic that has intrigued scientists for over a century. A fundamental property of adaptive immune responses is the ability to discriminate among an immense variety of substances by means of antibodies (Abs) and Ab-like receptors on T lymphocytes [T-cell receptors (TCRs)], each able to bind a particular chemical structure [the antigen (Ag)] and not, or only weakly, similar alternatives. Evidence has long existed, however, and has grown, especially recently, that while exhibiting remarkable specificity, many individual Abs and TCRs can also bind a variety of very different ligands. How can Ag recognition by these receptors exercise the great specificity for which they are renowned and yet react with a variety of different ligands (degeneracy)? We critically consider the mechanistic bases for this specificity/degeneracy enigma and also compare and contrast Ag recognition by Abs and TCRs.
Collapse
|
43
|
Helmreich EJ. Ways and means of coping with uncertainties of the relationship of the genetic blue print to protein structure and function in the cell. Cell Commun Signal 2010; 8:26. [PMID: 20849616 PMCID: PMC2954850 DOI: 10.1186/1478-811x-8-26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 09/17/2010] [Indexed: 11/24/2022] Open
Abstract
As one of the disciplines of systems biology, proteomics is central to enabling the elucidation of protein function within the cell; furthermore, the question of how to deduce protein structure and function from the genetic readout has gained new significance. This problem is of particular relevance for proteins engaged in cell signalling. In dealing with this question, I shall critically comment on the reliability and predictability of transmission and translation of the genetic blue print into the phenotype, the protein. Based on this information, I will then evaluate the intentions and goals of today's proteomics and gene-networking and appraise their chances of success. Some of the themes commented on in this publication are explored in greater detail with particular emphasis on the historical roots of concepts and techniques in my forthcoming book, published in German: Von Molekülen zu Zellen. 100 Jahre experimentelle Biologie. Betrachtungen eines Biochemikers.
Collapse
|
44
|
Greenspan NS. Cohen's Conjecture, Howard's Hypothesis, and Ptashne's Ptruth: an exploration of the relationship between affinity and specificity. Trends Immunol 2010; 31:138-43. [PMID: 20149744 DOI: 10.1016/j.it.2010.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/04/2010] [Accepted: 01/05/2010] [Indexed: 11/29/2022]
Abstract
Both affinity and specificity for ligands directly influence the functions of biological macromolecules. Some investigators assume that there is a consistent relationship between the affinity of a receptor molecule for its cognate ligand(s) and the specificity of that same receptor (affinity for cognate versus non-cognate ligands). However, analysis of the range of physical factors that account for changes in affinity, in any particular direction and to any particular degree, of a receptor for a cognate ligand suggests strongly that such factors can have disparate effects on the affinities of the receptor for different non-cognate ligands. Therefore, there can be no simple relationship between affinity and specificity as defined by relative binding of the receptor to cognate and non-cognate ligands.
Collapse
Affiliation(s)
- Neil S Greenspan
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.
| |
Collapse
|
45
|
Carducci M, Licata L, Peluso D, Castagnoli L, Cesareni G. Enriching the viral-host interactomes with interactions mediated by SH3 domains. Amino Acids 2009; 38:1541-7. [PMID: 19882298 DOI: 10.1007/s00726-009-0375-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 10/12/2009] [Indexed: 01/16/2023]
Abstract
Protein-protein interactions play an essential role in the regulation of most cellular processes. The process of viral infection is no exception and many viral pathogenic strategies involve targeting and perturbing host-protein interactions. The characterization of the host protein subnetworks disturbed by invading viruses is a major goal of viral research and may contribute to reveal fundamental biological mechanisms and to identify new therapeutic strategies. To assist in this approach, we have developed a database, VirusMINT, which stores in a structured format most of the published interactions between viral and host proteome. Although SH3 are the most ubiquitous and abundant class of protein binding modules, VirusMINT contains only a few interactions mediated by this domain class. To overcome this limitation, we have applied the whole interactome scanning experiment approach to identify interactions between 15 human SH3 domains and viral proline-rich peptides of two oncogenic viruses, human papillomavirus type 16 and human adenovirus A type 12. This approach identifies 114 new potential interactions between the human SH3 domains and proline-rich regions of the two viral proteomes.
Collapse
Affiliation(s)
- Martina Carducci
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | | | | | | | | |
Collapse
|
46
|
Abstract
Identification of antibody binding peptides may be based on the primary structure of the protein antigens used to raise the antibodies (knowledge- or sequence-based approach). This involves scanning the entire sequence of the antigen with overlapping peptides (peptide scan), which are then probed for binding to the respective antibody. If a natural protein binding partner is not known, one has to use combinatorial synthetic libraries with peptide mixtures, randomly generated chemically synthesized libraries of single individual sequences, or biologically produced libraries (e.g., phage display libraries, see Chapter "Epitope Mapping Using Phage Display Peptide Libraries"). This chapter describes chemically synthesized combinatorial, as well as randomly generated peptide libraries, collectively called de novo approaches, and their application for antibody epitope mapping.
Collapse
|
47
|
Breitling F, Nesterov A, Stadler V, Felgenhauer T, Bischoff FR. High-density peptide arrays. MOLECULAR BIOSYSTEMS 2009; 5:224-34. [PMID: 19225611 DOI: 10.1039/b819850k] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Arrays promise to advance biology by allowing parallel screening for many different binding partners. Meanwhile, lithographic methods enable combinatorial synthesis of > 50,000 oligonucleotides per cm(2), an advance that has revolutionized the whole field of genomics. A similar development is expected for the field of proteomics, provided that affordable, very high-density peptide arrays are available. However, peptide arrays lag behind oligonucleotide arrays. This review discusses recent developments in the field with an emphasis on methods that lead to very high-density peptide arrays.
Collapse
Affiliation(s)
- Frank Breitling
- German Cancer Research Center, Im Neuenheimer Feld 580, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
48
|
Kanduc D. Epitopic peptides with low similarity to the host proteome: towards biological therapies without side effects. Expert Opin Biol Ther 2008; 9:45-53. [DOI: 10.1517/14712590802614041] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
49
|
The spot technique: synthesis and screening of peptide macroarrays on cellulose membranes. Methods Mol Biol 2008; 494:47-70. [PMID: 18726568 DOI: 10.1007/978-1-59745-419-3_4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Peptide arrays are a widely used tool for drug development. For peptide-based drug design it is necessary to screen a large number of peptides. However, there are often difficulties with this approach. Most common peptide synthesis techniques are able to simultaneously synthesize only up to a few hundred single peptides. Spot synthesis is a positionally addressable, multiple synthesis technique offering the possibility of synthesizing and screening up to 10,000 peptides or peptide mixtures on cellulose or other membrane surfaces. In this chapter we present the basic procedures and screening methods related to spot synthesis and outline protocols for easy-to-use detection methods on these peptide arrays.
Collapse
|
50
|
Schofield DJ, Pope AR, Clementel V, Buckell J, Chapple SD, Clarke KF, Conquer JS, Crofts AM, Crowther SRE, Dyson MR, Flack G, Griffin GJ, Hooks Y, Howat WJ, Kolb-Kokocinski A, Kunze S, Martin CD, Maslen GL, Mitchell JN, O'Sullivan M, Perera RL, Roake W, Shadbolt SP, Vincent KJ, Warford A, Wilson WE, Xie J, Young JL, McCafferty J. Application of phage display to high throughput antibody generation and characterization. Genome Biol 2008; 8:R254. [PMID: 18047641 PMCID: PMC2258204 DOI: 10.1186/gb-2007-8-11-r254] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 07/30/2007] [Accepted: 11/29/2007] [Indexed: 12/16/2022] Open
Abstract
A phage display library has been constructed containing over 1010 human antibodies, allowing the large-scale generation of antibodies. Over 38,000 recombinant antibodies against 292 antigens were selected, screened and sequenced, and 4,400 resultant unique clones characterized further. We have created a high quality phage display library containing over 1010 human antibodies and describe its use in the generation of antibodies on an unprecedented scale. We have selected, screened and sequenced over 38,000 recombinant antibodies to 292 antigens, yielding over 7,200 unique clones. 4,400 antibodies were characterized by specificity testing and detailed sequence analysis and the data/clones are available online. Sensitive detection was demonstrated in a bead based flow cytometry assay. Furthermore, positive staining by immunohistochemistry on tissue microarrays was found for 37% (143/381) of antibodies. Thus, we have demonstrated the potential of and illuminated the issues associated with genome-wide monoclonal antibody generation.
Collapse
|