1
|
Sun L, Feng K, Bai D, Yu Y, Shen WT, Zhang JA, Fang RH, Gao W, Zhang L. Hepatic endoplasmic reticulum-derived nanodiscs for broad-spectrum drug detoxification. Biomaterials 2025; 318:123188. [PMID: 39954312 DOI: 10.1016/j.biomaterials.2025.123188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Drug overdose is a pressing global public health challenge, with current detoxification treatments often lacking the broad-spectrum efficacy needed for emergency applications. Inspired by the unique advantages of cell membrane-derived nanodiscs (CNDs), including their compact size, rapid distribution, and preservation of native cell membrane functions, we developed endoplasmic reticulum (ER)-derived nanodiscs (ER-NDs) from the ER membranes of mouse hepatic cells for broad-spectrum drug detoxification. ER-NDs retain natural cytochrome P450 (CYP) enzymes, enabling effective detoxification of three model drugs: bupropion, haloperidol, and propranolol. Cell-based assays demonstrated ER-NDs' ability to mitigate drug-induced cytotoxicity, reduce oxidative stress, and restore antioxidant defenses. In mouse models of drug intoxication, ER-ND treatment significantly improved survival rates and alleviated drug-induced oxidative damage. Importantly, ER-NDs showed no evidence of acute toxicity in vivo. These findings underscore the potential of ER-NDs as a versatile platform for broad-spectrum drug detoxification and as a promising tool for managing drug intoxication in emergency and clinical settings.
Collapse
Affiliation(s)
- Lei Sun
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kailin Feng
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dean Bai
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yiyan Yu
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Wei-Ting Shen
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jiayuan Alex Zhang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Weiwei Gao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Liangfang Zhang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
2
|
Cheng L, Li F, Luo Y, Shi C, Cao R, Huang C, Zhang Y, Gao Y, Zhang H, Geng N, Chen J. Medium-Chain Chlorinated Paraffins Induced Reproductive Toxicity in Female Rats by Interfering with Oocyte Meiosis and Triggering DNA Damage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:11455-11467. [PMID: 40080447 DOI: 10.1021/acs.est.4c12668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Medium-chain chlorinated paraffins (MCCPs) are among the most prevalent chemicals detected in human serum. As an emerging persistent organic pollutant, their toxicity mechanisms, particularly concerning the female reproductive system, remain poorly understood. In this study, we present both in vivo and in vitro evidence of ovarian toxicity induced by MCCPs and insights into their underlying molecular mechanisms. MCCP exposure induced chromatin condensation in the nucleus and mitochondria vacuolization of ovarian granulosa cells in rats and significantly increased the levels of serum gonadotropins and sex hormones, while reducing gonadotropin-releasing hormone levels. Transcriptomics analysis of ovaries revealed a predominant effect of MCCPs on the cell cycle, oocyte meiosis, and DNA damage repair pathways. Moreover, dual-omics integrative analysis indicated significant disturbance of steroid hormone biosynthesis caused by MCCPs, as well as amino acid metabolism related to TCA cycle. Furthermore, in vitro assays demonstrated that MCCP exposure disrupts intracellular Ca2+ homeostasis and generates reactive oxygen species, ultimately leading to DNA damage. In conclusion, this study revealed potential mechanisms by which MCCPs affect ovary function. These findings can provide valuable insights for the mechanism-based risk assessment of MCCPs on female reproduction.
Collapse
Affiliation(s)
- Lin Cheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Fang Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yun Luo
- College of Medicine, Linyi University, Linyi, Shandong 276005, China
| | - Chengcheng Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Rong Cao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Chenhao Huang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Yichi Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Yuan Gao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Haijun Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Ningbo Geng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| |
Collapse
|
3
|
Ács V, Szeli N, Nagy J, Áprily S, Tischler A, Csötönyi O, Jócsák I, Benedek I, Petneházy Ö, Turbók J, Enyezdi J, Halas V. Effects of early feeding technologies providing methionine supplementation on performance, lipid oxidation, and some immune-related gene expression in broiler chicken. Poult Sci 2025; 104:105335. [PMID: 40449108 PMCID: PMC12166885 DOI: 10.1016/j.psj.2025.105335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 05/21/2025] [Accepted: 05/25/2025] [Indexed: 06/02/2025] Open
Abstract
In ovo administration of DL-methionine and post-hatch Hydrogel® supplements were tested to examine the impact of early feeding on performance and immune-related traits in a commercial broiler stock. One thousand one hundred and twenty Ross 308 eggs were incubated and assigned to seven treatment groups: intact (no in ovo administration) and immediate feed access (C1), in ovo saline treatment and immediate feed access (C2), intact and delayed feeding (ID), in ovo saline treatment and delayed feeding (IoS), in ovo DL-Methionine treatment and delayed feeding (IoM), intact and delayed access to feed, but immediate access to commercial Hydrogel® without (Hyd) or with 5mg/kg (HydM) DL-methionine post-hatch. The results showed, that the in-ovo methionine may have positive effects on the weight gain of the birds (p < 0.001) compared to the commercial Hydrogel® however, it cannot compete with the immediate feeding. The number of heterophils decreased significantly (p < 0.001) by day 21 in ID and IoS compared to the immediately fed control (C1). The number of lymphocytes, monocytes, and eosinophils, increased in treatments supplemented with methionine (p < 0.05) (IoM,HydM) indicating enhanced immune protection. There were no differences in the total antioxidant capacity (FRAP) and malonaldehyde concentration (MDA) (p = 0.07) in the examined groups. The Cytochrome P450 H1 (CYP2H1) gene was downregulated in all treatment groups (on days 21 and 35) indicating a slower metabolism, particularly in the ID group compared to C1 and C2 (p < 0.001). The HydM treatment could upregulate the IL2 expression as the immediate feeding, while only IoM treatment resulted in significant downregulation by day 35 (p < 0.001). IL6 was upregulated in all treatment groups (p < 0.001) except for HydM, where the gene expression did not differ from the housekeeping gene. Early administration of dietary methionine has a positive effect on performance and the immune system, however, none of the early feeding methods can compete with immediate feed access. The possible positive effects of early nutrition and its epigenetic impact should be examined in further studies.
Collapse
Affiliation(s)
- Virág Ács
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Guba Sándor Street, Kaposvár H-7400, Hungary; Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Kaposvár H-7400, Hungary.
| | - Nóra Szeli
- Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Kaposvár H-7400, Hungary
| | | | - Szilvia Áprily
- Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Kaposvár H-7400, Hungary
| | - Annamária Tischler
- Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Kaposvár H-7400, Hungary
| | - Orsolya Csötönyi
- Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Kaposvár H-7400, Hungary
| | - Ildikó Jócsák
- Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Kaposvár H-7400, Hungary
| | - Ildikó Benedek
- Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Kaposvár H-7400, Hungary
| | - Örs Petneházy
- Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Kaposvár H-7400, Hungary; Medicopus Nonprofit Ltd., Kaposvár H-7400, Hungary
| | - Janka Turbók
- Animal Health Diagnostic Department, National Food Chain Safety Office, Animal Health Diagnostic Directorate, Kaposvár H-7400, Hungary
| | | | - Veronika Halas
- Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Kaposvár H-7400, Hungary
| |
Collapse
|
4
|
Elksne E, Lace B, Stavusis J, Tvoronovica A, Zayakin P, Elksnis E, Ozolins A, Micule I, Valeina S, Inashkina I. Genetic Analysis of CYP1B1 and Other Anterior Segment Dysgenesis-Associated Genes in Latvian Cohort of Primary Congenital Glaucoma. Biomedicines 2025; 13:1222. [PMID: 40427049 PMCID: PMC12108771 DOI: 10.3390/biomedicines13051222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/30/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Primary congenital glaucoma (PCG) is a rare disease with an incidence of 1 in 12,000 to 18,000 in Europeans. The scarcity of the disease and limited access to genetic testing have hindered research, particularly within the Latvian population. Objectives: This study aims to present the preliminary results of a molecular genetic investigation into PCG in a Latvian cohort and to compare the prevalence of gene CYP1B1 variants with other European studies as well as to the general population in Latvia. Methods: Twenty probands with clinically diagnosed PCG and 36 family members enrolled in the study. Genetic testing was conducted using genomic DNA from peripheral blood using next generation sequencing (NGS) of seven selected genes: CYP1B1, FOXC1, FOXE3, PXDN, PITX2, PITX3, PAX6, and CPAMD8. Four probands had whole-genome sequencing (WGS). Results: All participants were of European ancestry, with no family history of PCG. Most probands were diagnosed in their first year of life, with a female to male ratio of 1:1.2 and with 80.0% of cases being unilateral. No CYP1B1 pathogenic variants were identified in the screened subjects. However, a heterozygous missense variant c.4357C>A (p.Pro4357Thr) in the PXDN gene was found in one proband and one of her parents that was classified as a variant of uncertain significance. Conclusions: This study represents the first genetic characterization of PCG in the Latvian population. Using NGS, we identified no pathogenic variants in the CYP1B1 gene among affected individuals. Preliminary evidence from this cohort does not support CYP1B1 variants as a predominant cause of PCG, though larger studies are needed to confirm this observation. Comprehensive genetic screening using whole-exome or whole-genome sequencing will be essential to identify the underlying genetic etiology of PCG in Latvia.
Collapse
Affiliation(s)
- Eva Elksne
- Department of Ophthalmology, Children’s Clinical University Hospital, Vienibas gatve 45, LV-1004 Riga, Latvia
- Department of Doctoral Studies, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia
- European Reference Network on Rare Eye Diseases (ERN-EYE), 67000 Strasbourg, France
| | - Baiba Lace
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067 Riga, Latvia (P.Z.); (I.I.)
- Riga East Clinical University Hospital, Hipokrata 2, LV-1038 Riga, Latvia
| | - Janis Stavusis
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067 Riga, Latvia (P.Z.); (I.I.)
| | - Anastasija Tvoronovica
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067 Riga, Latvia (P.Z.); (I.I.)
| | - Pawel Zayakin
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067 Riga, Latvia (P.Z.); (I.I.)
| | - Eriks Elksnis
- Latvian American Eye Centre, A.Deglava 12a, LV-1009 Riga, Latvia
- Department of Ophthalmology, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia
| | - Arturs Ozolins
- Department of Surgery, Pauls Stradins Clinical University Hospital, Pilsonu 13, LV-1002 Riga, Latvia
- Faculty of Medicine, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia
| | - Ieva Micule
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067 Riga, Latvia (P.Z.); (I.I.)
- Department of Medical Genetics and Prenatal Diagnostics, Children’s University Hospital, Vienibas gatve 45, LV-1004 Riga, Latvia
| | - Sandra Valeina
- Department of Ophthalmology, Children’s Clinical University Hospital, Vienibas gatve 45, LV-1004 Riga, Latvia
- European Reference Network on Rare Eye Diseases (ERN-EYE), 67000 Strasbourg, France
| | - Inna Inashkina
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067 Riga, Latvia (P.Z.); (I.I.)
| |
Collapse
|
5
|
Jeong E, Su Y, Li L, Chen Y. Discovering Severe Adverse Reactions From Pharmacokinetic Drug-Drug Interactions Through Literature Analysis and Electronic Health Record Verification. Clin Pharmacol Ther 2025; 117:1078-1087. [PMID: 39585167 PMCID: PMC11924148 DOI: 10.1002/cpt.3500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024]
Abstract
While drug-drug interactions (DDIs) and their pharmacokinetic (PK) mechanisms are well-studied prior to drug approval, severe adverse drug reactions (SADRs) caused by DDIs often remain underrecognized due to limitations in pre-marketing clinical trials. To address this gap, our study utilized a literature database, applied natural language processing (NLP) techniques, and conducted multi-source electronic health record (EHR) validation to uncover underrecognized DDI-SADR signals that warrant further investigation. PubMed abstracts related to DDIs from January 1962 to December 2023 were retrieved. We utilized PubTator Central for Named Entity Recognition (NER) to identify drugs and SADRs and employed SciFive for Relation Extraction (RE) to extract DDI-SADR signals. The extracted signals were cross-referenced with the DrugBank database and validated using logistic regression, considering risk factors including patient demographics, drug usage, and comorbidities, based on EHRs from Vanderbilt University Medical Center (VUMC) and the All of Us research program. From 160,321 abstracts, we identified 111 DDI-SADR signals. Seventeen were statistically significant (13 by one EHR and 4 by both EHR databases), with 9 being previously not recorded in the DrugBank. These included methadone-ciprofloxacin-respiratory depression, oxycodone-fluvoxamine-clonus, tramadol-fluconazole-hallucination, simvastatin-fluconazole-rhabdomyolysis, ibrutinib-amiodarone-atrial fibrillation, fentanyl-diltiazem-delirium, clarithromycin-voriconazole-acute kidney injury, colchicine-cyclosporine-rhabdomyolysis, and methadone-voriconazole-arrhythmia (odds ratios (ORs) ranged from 1.9 to 35.83, with P-values ranging from < 0.001 to 0.017). Utilizing NLP to extract DDI-SADRs from Biomedical Literature and validating these findings through multiple-source EHRs represents a pioneering approach in pharmacovigilance. This method uncovers clinically relevant SADRs resulting from DDIs that were not evident in pre-marketing trials or the existing DDI knowledge base.
Collapse
Affiliation(s)
- Eugene Jeong
- Department of Biomedical Informatics, School of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Yu Su
- Department of Computer Science and EngineeringCollege of Engineering, The Ohio State UniversityColumbusOhioUSA
| | - Lang Li
- Department of Biomedical InformaticsCollege of Medicine, The Ohio State UniversityColumbusOhioUSA
| | - You Chen
- Department of Biomedical Informatics, School of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Computer ScienceSchool of Engineering, Vanderbilt UniversityNashvilleTennesseeUSA
| |
Collapse
|
6
|
Ozen MB, Gazioglu I, Ozgun Acar O, Guner H, Semiz G, Sen A. Possible Drug-Drug Interactions Between Mesalamine and Tricyclic Antidepressants Through CYP2D6 Metabolism - In silico and In vitro Analyses. Drug Res (Stuttg) 2025. [PMID: 40169140 DOI: 10.1055/a-2551-2418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Mesalamine (mesalazine, 5-aminosalicylic acid, 5-ASA) is an essential anti-inflammatory agent both used for therapy and as a remission control in patients with inflammatory bowel diseases (IBD) such as ulcerative colitis (UC). Tricyclic antidepressants (TCAs) are used to alleviate remaining symptoms in patients already receiving IBD therapy or with quiescent inflammation. The cytochrome P4502D6 enzyme is involved in the metabolism of TCAs. Hence, it is crucial to investigate the role of CYP2D6 in 5-ASA metabolism. Initially, in silico analysis involving the docking of 5-ASA to CYP2D6 and molecular dynamics simulations was conducted. Next, the rate of O-demethylation of a nonfluorescent probe 3-[2-(N,N-diethyl-N-methylammonium)-ethyl]-7-methoxy-4-methylcoumarin (AMMC) into a fluorescent metabolite AMHC (3-[2-(N,N-diethyl-N-methylammonium)ethyl]-7-hydroxy-4-methylcoumarin) was optimized with baculosomes co-expressing human CYP2D6 and human P450 oxidoreductase (hCPR) to monitor CYP2D6 activity in a microtiter plate assay. The apparent Km and Vmax were found to be 1.30 μM and 32.68 pmol/min/mg of protein for the O-demethylation of AMMC to AMHC, and the reaction was linear for 40 min. Then, nonselective inhibition of CYP2D6 activity with various concentrations of 5-ASA was detected. Finally, the conversion of AMMC to metabolites was analyzed by HPLC-ESI-MS/MS spectrometry, and none were identified. Thus, this study suggests that concurrent use of mesalamine with TCA may lead to adverse effects, and CYP2D6 genotyping should be routinely performed on these patients to eliminate possible threats.
Collapse
Affiliation(s)
- Melek B Ozen
- Department of Biology, Faculty of Sciences, Pamukkale University, Denizli, Turkey
| | - Isil Gazioglu
- Department of Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, Food and Environmental Toxicology Laboratory, University of Florida, Gainesville, FL, USA
| | - Ozden Ozgun Acar
- Vocational School of Health Services, Pamukkale University, Denizli, Turkey
| | - Huseyin Guner
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, University of Abdullah Gul, Kayseri, Turkey
| | - Gurkan Semiz
- Department of Biology, Faculty of Sciences, Pamukkale University, Denizli, Turkey
| | - Alaattin Sen
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, University of Abdullah Gul, Kayseri, Turkey
- Department of Biology, Faculty of Sciences, Pamukkale University, Denizli, Turkey
| |
Collapse
|
7
|
Bolton EM, Drackley A, Williams AL, Bohnsack BL. Insights into CYP1B1-Related Ocular Diseases Through Genetics and Animal Studies. Life (Basel) 2025; 15:395. [PMID: 40141740 PMCID: PMC11943492 DOI: 10.3390/life15030395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
The CYP1B1 gene encodes a cytochrome p450 monooxygenase enzyme, and over 150 variants have been associated with a spectrum of eye diseases, including primary congenital glaucoma, anterior segment dysgenesis, juvenile open-angle glaucoma, and primary open-angle glaucoma. Clinical genetics has yielded insights into the functions of the various CYP1B1 gene domains; however, animal studies are required to investigate the molecular role of CYP1B1 in the eye. While both zebrafish and mice express CYP1B1 in the developing eye, embryonic studies have shown disparate species-specific functions. In zebrafish, CYP1B1 regulates ocular fissure closure such that overexpression causes a remarkable phenotype consisting of the absence of the posterior eye wall. Adult CYP1B1 null zebrafish lack an ocular phenotype but show mild craniofacial abnormalities. In contrast, CYP1B1-/- mice display post-natal mild to severe trabecular meshwork degeneration due to increased oxidative stress damage. Interestingly, the retinal ganglion cells in CYP1B1 null mice may be more susceptible to damage secondary to increased intraocular pressure. Future studies, including detailed genotype-phenotype information and animal work elucidating the regulation, substrates, and downstream effects of CYP1B1, will yield important insights for developing molecularly targeted therapies that will aim to prevent vision loss in CYP1B1-related eye diseases.
Collapse
Affiliation(s)
- Elizabeth M. Bolton
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave, Chicago, IL 60611, USA; (E.M.B.); (A.L.W.)
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, 645 N. Michigan Ave, Chicago, IL 60611, USA
| | - Andy Drackley
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave, Chicago, IL 60611, USA;
| | - Antionette L. Williams
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave, Chicago, IL 60611, USA; (E.M.B.); (A.L.W.)
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, 645 N. Michigan Ave, Chicago, IL 60611, USA
| | - Brenda L. Bohnsack
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave, Chicago, IL 60611, USA; (E.M.B.); (A.L.W.)
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, 645 N. Michigan Ave, Chicago, IL 60611, USA
| |
Collapse
|
8
|
Molina-Ortiz D, Torres-Zárate C, Cárdenas-Cardós R, Hernández-Arrazola D, Aguilar-Ortiz MR, Palacios-Acosta J, Shalkow-Klincovstein J, Dorado-González V, Santes-Palacios R, Hernández-Urzúa E, Vences-Mejía A. Aberrant Expression of CYP2W1 in Pediatric Soft Tissue Sarcomas: Clinical Significance and Potential as a Therapeutic Target. Curr Oncol 2025; 32:131. [PMID: 40136335 PMCID: PMC11941694 DOI: 10.3390/curroncol32030131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Pediatric soft-tissue sarcomas (STSs) are aggressive malignancies with poor prognoses, particularly in recurrent and metastatic cases. Standard therapies, such as cytotoxic chemotherapy, offer limited survival benefits and carry significant toxicities, underscoring the urgent need for innovative therapeutic approaches. CYP2W1, a tumor-specific monooxygenase enzyme, has emerged as a promising therapeutic target due to its aberrant expression in various cancers. However, its role in pediatric STSs remains poorly understood. This study evaluated CYP2W1 expression in 42 pediatric STS samples across seven histological subtypes using qPCR and Western blot analyses. High CYP2W1 expression was detected in 69% of tumor samples at the mRNA level and in 40.5% at the protein level, compared to absent or negligible expression in matched normal tissues (p < 0.001). Synovial sarcoma and rhabdomyosarcoma subtypes exhibited the highest CYP2W1 protein expression, at 70% and 62.5%, respectively. Furthermore, CYP2W1 expression was significantly associated with higher histological grade, advanced tumor stage, and a trend toward reduced overall survival (p = 0.082). These findings indicate that CYP2W1 is aberrantly expressed in a subset of pediatric STSs, contributing to tumor aggressiveness and highlighting its potential as a novel therapeutic target for these challenging malignancies.
Collapse
Affiliation(s)
- Dora Molina-Ortiz
- Laboratory of Genetic Toxicology, National Institute of Pediatrics, Mexico City 04530, Mexico; (D.M.-O.); (C.T.-Z.); (V.D.-G.); (R.S.-P.); (E.H.-U.)
| | - Carmen Torres-Zárate
- Laboratory of Genetic Toxicology, National Institute of Pediatrics, Mexico City 04530, Mexico; (D.M.-O.); (C.T.-Z.); (V.D.-G.); (R.S.-P.); (E.H.-U.)
| | - Rocío Cárdenas-Cardós
- Department of Pediatric Oncology, National Institute of Pediatrics, Mexico City 04530, Mexico; (R.C.-C.)
| | - Daniel Hernández-Arrazola
- Department of Oncological Surgery, National Institute of Pediatrics, Mexico City 04530, Mexico; (D.H.-A.); (J.P.-A.); (J.S.-K.)
| | - Marco R. Aguilar-Ortiz
- Department of Pediatric Oncology, National Institute of Pediatrics, Mexico City 04530, Mexico; (R.C.-C.)
| | - José Palacios-Acosta
- Department of Oncological Surgery, National Institute of Pediatrics, Mexico City 04530, Mexico; (D.H.-A.); (J.P.-A.); (J.S.-K.)
| | - Jaime Shalkow-Klincovstein
- Department of Oncological Surgery, National Institute of Pediatrics, Mexico City 04530, Mexico; (D.H.-A.); (J.P.-A.); (J.S.-K.)
| | - Víctor Dorado-González
- Laboratory of Genetic Toxicology, National Institute of Pediatrics, Mexico City 04530, Mexico; (D.M.-O.); (C.T.-Z.); (V.D.-G.); (R.S.-P.); (E.H.-U.)
| | - Rebeca Santes-Palacios
- Laboratory of Genetic Toxicology, National Institute of Pediatrics, Mexico City 04530, Mexico; (D.M.-O.); (C.T.-Z.); (V.D.-G.); (R.S.-P.); (E.H.-U.)
| | - Elizabeth Hernández-Urzúa
- Laboratory of Genetic Toxicology, National Institute of Pediatrics, Mexico City 04530, Mexico; (D.M.-O.); (C.T.-Z.); (V.D.-G.); (R.S.-P.); (E.H.-U.)
| | - Araceli Vences-Mejía
- Laboratory of Genetic Toxicology, National Institute of Pediatrics, Mexico City 04530, Mexico; (D.M.-O.); (C.T.-Z.); (V.D.-G.); (R.S.-P.); (E.H.-U.)
| |
Collapse
|
9
|
Kim S, Kim H, Hong I, Lee M, Kim H, Kwak H, Kim CJ, Kang D, Ahn T, Baek M, Jeong D. CYP4X1 Expression Is Associated with Metastasis and Poor Prognosis in Patients with Colorectal Cancer. Int J Mol Sci 2025; 26:1867. [PMID: 40076494 PMCID: PMC11899201 DOI: 10.3390/ijms26051867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 03/14/2025] Open
Abstract
Globally, the mortality rate of colorectal cancer (CRC) remains high. Despite the development of various treatments, such as targeted therapy and immunotherapy, colorectal cancer continues to be a serious health issue worldwide. Identifying new biomarkers is essential for improving prognosis and tailoring targeted therapies for CRC. This study aims to elucidate the role of CYP4X1 in CRC and its association with patient survival and clinicopathological parameters. Using TCGA databases like GENT2, UALCAN, and GEPIA, we analyzed CYP4X1 expression in CRC and normal tissues. Our analysis revealed a significant increase in CYP4X1 expression in CRC tissues compared to normal tissues. And CYP4X1 high expression was strongly associated with advanced TNM stage, poor tumor differentiation, deeper invasion, and lymph node metastasis. Kaplan-Meier analysis revealed that high CYP4X1 expression correlated with shorter survival times. To investigate the relationship between CYP4X1 expression and colon cancer, WST-1, Transwell, and colony formation assays were performed using colon cancer cells with siRNA-mediated CYP4X1 downregulation. CYP4X1 downregulation significantly inhibited cell proliferation, invasion, migration, and colony formation in vitro. Furthermore, the tumor-forming ability in mice injected with cell lines where CYP4X1 expression was suppressed decreased. In conclusion, CYP4X1 overexpression is closely linked to CRC progression as an independent prognostic marker and potential therapeutic target.
Collapse
Affiliation(s)
- Sooyoun Kim
- Department of Pathology, College of Medicine, Soonchunhyang University, 31 Soonchunhyang 6-gil, Dongnam-gu, Cheonan 31151, Chungcheongnam-do, Republic of Korea; (S.K.); (I.H.); (M.L.)
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Hakchun Kim
- Soonchunhyang Medical Science Research Institute, College of Medicine, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan 31151, Chungcheongnam-do, Republic of Korea;
| | - Inpyo Hong
- Department of Pathology, College of Medicine, Soonchunhyang University, 31 Soonchunhyang 6-gil, Dongnam-gu, Cheonan 31151, Chungcheongnam-do, Republic of Korea; (S.K.); (I.H.); (M.L.)
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Minho Lee
- Department of Pathology, College of Medicine, Soonchunhyang University, 31 Soonchunhyang 6-gil, Dongnam-gu, Cheonan 31151, Chungcheongnam-do, Republic of Korea; (S.K.); (I.H.); (M.L.)
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Hyeongjoo Kim
- R&D Center Pharmaceutical Laboratory, Korean Drug Co., Ltd., 34, Nonhyeon-ro 28-gil, Gangnam-gu, Seoul 06300, Republic of Korea;
| | - Hyoungjong Kwak
- Research Institute of Clinical Medicine, Woori Madi Medical Center, 111 Baekjedae-ro, Wansan-gu, Jeonju 55082, Jeollabuk-do, Republic of Korea; (H.K.); (C.-J.K.)
| | - Chang-Jin Kim
- Research Institute of Clinical Medicine, Woori Madi Medical Center, 111 Baekjedae-ro, Wansan-gu, Jeonju 55082, Jeollabuk-do, Republic of Korea; (H.K.); (C.-J.K.)
| | - Donghyun Kang
- Department of Surgery, College of Medicine, Soonchunhyang University, 31 Soonchunhyang 6-gil, Dongnam-gu, Cheonan 31151, Chungcheongnam-do, Republic of Korea; (D.K.); (T.A.); (M.B.)
| | - Taesung Ahn
- Department of Surgery, College of Medicine, Soonchunhyang University, 31 Soonchunhyang 6-gil, Dongnam-gu, Cheonan 31151, Chungcheongnam-do, Republic of Korea; (D.K.); (T.A.); (M.B.)
| | - Moojun Baek
- Department of Surgery, College of Medicine, Soonchunhyang University, 31 Soonchunhyang 6-gil, Dongnam-gu, Cheonan 31151, Chungcheongnam-do, Republic of Korea; (D.K.); (T.A.); (M.B.)
| | - Dongjun Jeong
- Department of Pathology, College of Medicine, Soonchunhyang University, 31 Soonchunhyang 6-gil, Dongnam-gu, Cheonan 31151, Chungcheongnam-do, Republic of Korea; (S.K.); (I.H.); (M.L.)
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
10
|
Choi JJ, Kang S, Lee Y, Lee DH, Jang Y, Goo JI, Choi Y, Lee D, Yun CW. The fluoroquinolone compounds potentiate the antifungal activity of the echinocandins against Aspergillus fumigatus. Biosci Rep 2025; 45:BSR20250001. [PMID: 39831789 PMCID: PMC12096952 DOI: 10.1042/bsr20250001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025] Open
Abstract
The antifungal drugs of the echinocandin family show high efficacy against Aspergillus fumigatus. However, their paradoxical effect, which restores fungal growth at high drug concentrations, and the emergence of resistant strains necessitate improvements. We identified 13 fluoroquinolone compounds from a chemical library containing 10,000 compounds that potentiate the antifungal activity of caspofungin. Among them, NE-E07 significantly enhanced the efficacy of echinocandins against A. fumigatus, including resistant strains, without potentiating other antifungal families like voriconazole or amphotericin B. Specifically, NE-E07 demonstrated a unique ability to potentiate caspofungin's activity against the echinocandin-resistant strain USHM-M0051 isolated from patients. Our experiments revealed that NE-E07, in combination with caspofungin, affected ergosterol biosynthesis in a manner consistent with azole drugs. Docking tests suggest that NE-E07 has a high binding affinity with CYP51, which affects ergosterol biosynthesis similarly to azole drugs. Interestingly, known fluoroquinolones like ciprofloxacin, nalidixic acid, and norfloxacin did not show this potentiating effect, suggesting that NE-E07's unique structure is critical for its activity. Moreover, NE-E07 did not enhance echinocandin activity against Candida albicans or Cryptococcus neoformans, highlighting its specific action against A. fumigatus. In vivo studies demonstrated that co-treatment with NE-E07 and caspofungin increased the survival rate of mice infected with A. fumigatus. This significant improvement in survival underscores the potential clinical relevance of NE-E07 as a co-administered drug with echinocandins for treating fungal infections, particularly those resistant to echinocandins.
Collapse
Affiliation(s)
- Jin-Ju Choi
- School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-gu, Seoul, Republic of Korea
| | - Suzie Kang
- School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-gu, Seoul, Republic of Korea
- EsgelBio Co, Anam-dong, Sungbuk-gu, Seoul, Republic of Korea
| | - Yoonseo Lee
- School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-gu, Seoul, Republic of Korea
| | - Dong-Hyun Lee
- School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-gu, Seoul, Republic of Korea
| | - Yuju Jang
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Ja-Il Goo
- School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-gu, Seoul, Republic of Korea
| | - Yongseok Choi
- School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-gu, Seoul, Republic of Korea
| | - Dongho Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Cheol-Won Yun
- School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-gu, Seoul, Republic of Korea
- EsgelBio Co, Anam-dong, Sungbuk-gu, Seoul, Republic of Korea
| |
Collapse
|
11
|
Er-Rajy M, El Fadili M, Alnajjar R, Zarougui S, Mujwar S, Azzaoui K, Abuelizz HA, Hammouti B, Elhallaoui M. An in-depth study of indolone derivatives as potential lung cancer treatment. Sci Rep 2025; 15:2199. [PMID: 39820391 PMCID: PMC11739386 DOI: 10.1038/s41598-025-85707-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025] Open
Abstract
Lung cancer is a type of cancer that begins in the lungs and is one of the leading causes of cancer-related deaths worldwide. Herein an attempt to explore the relationship between the properties of indolone derivatives and their anticancer activity was investigated, implementing in silico approaches. Four indolone derivatives with the highest anticancer potential were selected to evaluate their pharmacological properties. The ADMET analysis revealed that these compounds exhibited favourable drug-like properties, meeting nearly all the key pharmacological criteria required for potential therapeutic agents. Molecular docking studies of the most active compounds revealed strong interactions with critical amino acid residues in the PDK1 receptor's binding site, underscoring their potential as effective PDK1 inhibitors. In addition, 200 ns molecular dynamics (MD) simulations of two R and S configurations validated the stability of the ligand-receptor complexes, with minimal structural deviations observed throughout the simulation period. These comprehensive results highlight the potential of the selected indolone derivatives as viable drug candidates and provide a solid foundation for future optimization efforts aimed at developing novel PDK1 inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Mohammed Er-Rajy
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco.
- Euromed University of Fes, UMF, 30000, Fes, Morocco.
| | - Mohamed El Fadili
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Radwan Alnajjar
- Department of Chemistry, Faculty of Science, University of Benghazi, Benghazi, Libya
| | - Sara Zarougui
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Khalil Azzaoui
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences, Sidi Mohammed Ben Abdellah University, 30000, Fez, Morocco
- Euromed University of Fes, UMF, 30000, Fes, Morocco
| | - Hatem A Abuelizz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh, 11451, Saudi Arabia
| | - Belkheir Hammouti
- Euromed University of Fes, UMF, 30000, Fes, Morocco
- Laboratory of Industrial Engineering, Energy and the Environment (LI3E) SUPMTI, Rabat, Morocco
| | - Menana Elhallaoui
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
12
|
Downie CG, Highland HM, Alotaibi M, Welch BM, Howard AG, Cheng S, Miller N, Jain M, Kaplan RC, Lilly AG, Long T, Sofer T, Thyagarajan B, Yu B, North KE, Avery CL. Genome-wide association study reveals shared and distinct genetic architecture of fatty acids and oxylipins in the Hispanic Community Health Study/Study of Latinos. HGG ADVANCES 2025; 6:100390. [PMID: 39644095 PMCID: PMC11751521 DOI: 10.1016/j.xhgg.2024.100390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024] Open
Abstract
Bioactive fatty acid-derived oxylipin molecules play key roles mediating inflammation and oxidative stress. Circulating levels of fatty acids and oxylipins are influenced by environmental and genetic factors; characterizing the genetic architecture of bioactive lipids could yield new insights into underlying biology. We performed a genome-wide association study (GWAS) of 81 fatty acids and oxylipins in 11,584 Hispanic Community Health Study/Study of Latinos (HCHS/SOL) participants with genetic and lipidomic data measured at study baseline (58.6% female, mean age = 46.1 years (standard deviation 13.8)). Additionally, given the effects of central obesity on inflammation, we examined interactions with waist circumference using two-degree-of-freedom joint tests. Thirty-three of the 81 oxylipins and fatty acids were significantly heritable (heritability range: 0-32.7%). Forty (49.4%) oxylipins and fatty acids had at least one genome-wide significant (p < 6.94E-11) variant resulting in 19 independent genetic loci. Six loci (lead variant minor allele frequency [MAF] range: 0.08-0.50), including desaturase-encoding FADS and OATP1B1 transporter protein-encoding SLCO1B1, exhibited associations with two or more fatty acids and oxylipins. At several of these loci, there was evidence of colocalization of the top variant across fatty acids and oxylipins. The remaining loci were only associated with one oxylipin or fatty acid and included several CYP loci. We also identified an additional rare variant (MAF = 0.002) near CARS2 in two-degree-of-freedom tests. Our analyses revealed shared and distinct genetic architecture underlying fatty acids and oxylipins, providing insights into genetic factors and motivating work to characterize these compounds and elucidate their roles in disease.
Collapse
Affiliation(s)
- Carolina G Downie
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Heather M Highland
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mona Alotaibi
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, San Diego, CA, USA
| | - Barrett M Welch
- School of Public Health, University of Nevada, Reno, Reno, NV, USA
| | - Annie Green Howard
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Susan Cheng
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Mohit Jain
- Sapient Bioanalytics, San Diego, CA, USA; Departments of Medicine and Pharmacology, University of California, San Diego, San Diego, CA, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA; Public Health Sciences Division, Fred Hutchison Cancer Center, Seattle, WA, USA
| | - Adam G Lilly
- Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tao Long
- Sapient Bioanalytics, San Diego, CA, USA
| | - Tamar Sofer
- CardioVascular Institute (CVI), Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center, Minneapolis, MN, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston, School of Public Health, Houston, TX, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christy L Avery
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
13
|
Sadowski M, Thompson M, Mefford J, Haldar T, Oni-Orisan A, Border R, Pazokitoroudi A, Cai N, Ayroles JF, Sankararaman S, Dahl AW, Zaitlen N. Characterizing the genetic architecture of drug response using gene-context interaction methods. CELL GENOMICS 2024; 4:100722. [PMID: 39637863 DOI: 10.1016/j.xgen.2024.100722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/24/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
Identifying factors that affect treatment response is a central objective of clinical research, yet the role of common genetic variation remains largely unknown. Here, we develop a framework to study the genetic architecture of response to commonly prescribed drugs in large biobanks. We quantify treatment response heritability for statins, metformin, warfarin, and methotrexate in the UK Biobank. We find that genetic variation modifies the primary effect of statins on LDL cholesterol (9% heritable) as well as their side effects on hemoglobin A1c and blood glucose (10% and 11% heritable, respectively). We identify dozens of genes that modify drug response, which we replicate in a retrospective pharmacogenomic study. Finally, we find that polygenic score (PGS) accuracy varies up to 2-fold depending on treatment status, showing that standard PGSs are likely to underperform in clinical contexts.
Collapse
Affiliation(s)
- Michal Sadowski
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Mike Thompson
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Joel Mefford
- Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Tanushree Haldar
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA; Department of Clinical Pharmacy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Akinyemi Oni-Orisan
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA; Department of Clinical Pharmacy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Richard Border
- Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Computer Science, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ali Pazokitoroudi
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Na Cai
- Helmholtz Pioneer Campus, Helmholtz Munich, 85764 Neuherberg, Germany; Computational Health Centre, Helmholtz Munich, 85764 Neuherberg, Germany; School of Medicine and Health, Technical University of Munich, 80333 Munich, Germany
| | - Julien F Ayroles
- Department of Ecology and Evolution, Princeton University, Princeton, NJ 08544, USA; Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Sriram Sankararaman
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Computer Science, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Andy W Dahl
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Noah Zaitlen
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
14
|
Sergejevs N, Avci D, van de Weijer ML, Corey RA, Lemberg MK, Carvalho P. Topology surveillance of the lanosterol demethylase CYP51A1 by signal peptide peptidase. J Cell Sci 2024; 137:jcs262333. [PMID: 39513424 PMCID: PMC11827857 DOI: 10.1242/jcs.262333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024] Open
Abstract
Cleavage of transmembrane segments on target proteins by the aspartyl intramembrane protease signal peptide peptidase (SPP, encoded by HM13) has been linked to immunity, viral infection and protein quality control. How SPP recognizes its various substrates and specifies their fate remains elusive. Here, we identify the lanosterol demethylase CYP51A1 as an SPP substrate and show that SPP-catalysed cleavage triggers CYP51A1 clearance by endoplasmic reticulum-associated degradation (ERAD). We observe that SPP targets only a fraction of CYP51A1 molecules, and we identify an amphipathic helix in the CYP51A1 N terminus as a key determinant for SPP recognition. SPP recognition is remarkably specific to CYP51A1 molecules with the amphipathic helix aberrantly inserted in the membrane with a type II orientation. Thus, our data are consistent with a role for SPP in topology surveillance, triggering the clearance of certain potentially non-functional conformers.
Collapse
Affiliation(s)
- Nikita Sergejevs
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Dönem Avci
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Michael L. van de Weijer
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Robin A. Corey
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Marius K. Lemberg
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
15
|
Goździk P, Smolarz K, Hallmann A. Antidepressants as new endocrine disruptors? - transcriptomic profiling in gonads of Mytilus trossulus exposed to norfluoxetine. MARINE POLLUTION BULLETIN 2024; 208:117015. [PMID: 39305840 DOI: 10.1016/j.marpolbul.2024.117015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/25/2024] [Accepted: 09/15/2024] [Indexed: 10/23/2024]
Abstract
In this study an impact of norfluoxetine (NFLU) on Mytilus trossulus gonads was investigated focusing on sex-related differences in hormonal changes, gene expression, and transcriptomic profiling. Sex-specific differences in gonadal serotonin levels were found. NFLU stimulates serotonin synthesis and/or transport in female gonads, potentially accelerating oocyte maturation and gamete release. In males, NFLU decreases serotonin level what likely leads to impeding sperm maturation and thus spawning delay. Transcriptomic analyses highlighted the presence of NFLU-induced changes in gene expression related to gametogenesis and neurotransmission. In females, NFLU upregulated genes associated with oocyte development and downregulated those involved in sperm maturation. NFLU-treated males exhibited mixed effects in their genes in relation to spermatogenesis. Additionally, sex-related differences in the expression of the CYP450 genes responsible for detoxification were found. Overall, norfluoxetine acts as an endocrine-disrupting chemical and impacts gonadal serotonin levels and gene expression, potentially disrupting reproductive success of M. trossulus.
Collapse
Affiliation(s)
- Paulina Goździk
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Debinki 1, 80-211 Gdańsk, Poland
| | - Katarzyna Smolarz
- Department of Marine Ecosystem Functioning, University of Gdańsk, Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Anna Hallmann
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Debinki 1, 80-211 Gdańsk, Poland.
| |
Collapse
|
16
|
Joshi J, Wang-Pruski G. De novo transcriptome assembly and differential gene expression analysis in different developmental stages of Agriotes sputator (click beetle). Sci Rep 2024; 14:24451. [PMID: 39424855 PMCID: PMC11489763 DOI: 10.1038/s41598-024-74495-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/26/2024] [Indexed: 10/21/2024] Open
Abstract
Wireworms, the larva of click beetle (Agriotes species), are one of the most destructive pests of horticultural crops in North America, responsible for considerable economic losses in Canada. Agriotes sputator (A. sputator) species is a predominant wireworm pest attacking potato fields in Eastern Canada. However, no information about its genome-wide gene expression profile, specifically for the genes involved with development is available to date. Therefore, we generated the transcriptome profile of A. sputator during five developmental stages, including the three larval stages and adult male and female click beetle. Out of 714.7 million raw reads, de novo assembly generated 564,561 transcripts. The data were subjected to differential expression analysis using DESeq2, gene ontology, annotation, and pathway analyses. A total of 34,709 differentially expressed genes (DEGs) were significant (log2 fold change > 2, padj < 0.05) across the developmental stages. Functional analysis of DEGs identified development signaling, metabolism, transport, cellular mechanisms, and drug metabolism (cytochrome p450) pathways. This study provides comprehensive sequence resources and potential gene differences at different developmental stages of A. sputator. These findings will represent a major step towards developing sustainable methods to control this widely distributed pest in agricultural fields.
Collapse
Affiliation(s)
- Jyoti Joshi
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Gefu Wang-Pruski
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada.
| |
Collapse
|
17
|
Ning J, Tian Z, Wang J, Yan F, Shi C, Zhang S, Feng L, Shu X, Cui J, James TD, Ma X. Rational Molecular Design of a Fluorescent Probe for Selectively Sensing Human Cytochrome P450 2D6. Angew Chem Int Ed Engl 2024; 63:e202409217. [PMID: 38989537 DOI: 10.1002/anie.202409217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024]
Abstract
Cytochrome P450 2D6 (CYP2D6) is a key enzyme that mediates the metabolism of various drugs and endogenous substances in humans. However, its biological role in drug-drug interactions especially mechanism-based inactivation (MBI), and various diseases remains poorly understood, owing to the lack of molecular tools suitable for selectively monitoring CYP2D6 in complex biological systems. Herein, using a tailored molecular strategy, we developed a fluorescent probe BDPM for CYP2D6. BDPM exhibits excellent specificity and imaging capability for CYP2D6, making it suitable for the real-time monitoring of endogenous CYP2D6 activity in living bio-samples. Therefore, our tailored strategy proved useful for constructing the highly selective and enzyme-activated fluorescent probes. BDPM as a molecular tool to explore the critical roles of CYP2D6 in the pathogenesis of diseases, high-throughput screening of inhibitors and intensive investigation of CYP2D6-induced MBI in natural systems.
Collapse
Affiliation(s)
- Jing Ning
- The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Zhenhao Tian
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jiayue Wang
- The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
- Beijing DP Technology Co., Ltd., Beijing, 100080, China
| | - Fei Yan
- The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Chao Shi
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Shujing Zhang
- The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Lei Feng
- The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Xiaohong Shu
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Jingnan Cui
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Tony D James
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Xiaochi Ma
- The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| |
Collapse
|
18
|
Wu Y, Liu W, Jiang Y, Lv H, Lu Y, Zhang Y, Wang S. Long-Term Casein-Bound Lactulosyllysine Consumption Induced Nonobese Nonalcoholic Fatty Liver Disease by Promoting Carbonyl Glycation in the Liver of C57BL/6 Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39356723 DOI: 10.1021/acs.jafc.4c05588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Lactulosyllysine (LL) is abundant in thermally processed dairy products, with its concentration increasing in response to more intense heat treatment. However, there are limited studies on the potential harmful effects of LL on human health. This study investigated the negative impact of casein-bound LL on liver health by feeding healthy C57BL/6 mice diets containing varying levels of casein-bound LL. After 16 weeks of LL diet administration, mice exhibited a nonobese nonalcoholic fatty liver disease (NONAFLD) phenotype, characterized by reduced body weight gain, hypolipidemia, and intrahepatic lipid accumulation. Nontarget metabolomic analysis showed that casein-bound LL induced alterations in plasma levels of compounds associated with lipid degradation. Mechanistically, casein-bound LL may impair the function of 5'-adenosine monophosphate-activated protein kinase and apolipoprotein B100 by inducing dicarbonyl stress, thereby promoting carbonyl glycation in the liver. Consequently, the long-term consumption of LL-rich dairy products may be a contributing factor to the risk of developing NONAFLD.
Collapse
Affiliation(s)
- Yuekun Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Weiye Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yu Jiang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Huan Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yingshuang Lu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
19
|
Asmare MM, Yun SI. E-pharmacophore and deep learning based high throughput virtual screening for identification of CDPK1 inhibitors of Cryptosporidium parvum. Comput Biol Chem 2024; 112:108172. [PMID: 39191165 DOI: 10.1016/j.compbiolchem.2024.108172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
Cryptosporidiosis, a prevalent gastrointestinal illness worldwide, is caused by the protozoan parasite Cryptosporidium parvum. Calcium-dependent protein kinase 1 (CpCDPK1), crucial for the parasite's life cycle, serves as a promising drug target due to its role in regulating invasion and egress from host cells. While potent Pyrazolopyrimidine analogs have been identified as candidate hit molecules, they exhibit limitations in inhibiting Cryptosporidium growth in cell culture, prompting exploration of alternative scaffolds. Leveraging the most potent compound, RM-1-95, co-crystallized with CpCDPK1, an E-pharmacophore model was generated and validated alongside a deep learning model trained on known CpCDPK1 compounds. These models facilitated screening Enamine's 2 million HTS compound library for novel CpCDPK1 inhibitors. Subsequent hierarchical docking prioritized hits, with final selections subjected to Quantum polarized docking for accurate ranking. Results from docking studies and MD simulations highlighted similarities in interactions between the cocrystallized ligand RM-1-95 and identified hit molecules, indicating comparable inhibitory potential against CpCDPK1. Furthermore, assessing metabolic stability through Cytochrome 450 site of metabolism prediction offered crucial insights for drug design, optimization, and regulatory approval processes.
Collapse
Affiliation(s)
- Misgana Mengistu Asmare
- Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea.
| | - Soon-Il Yun
- Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea; Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea.
| |
Collapse
|
20
|
Li X. Notable drug-drug interaction between omeprazole and voriconazole in CYP2C19 *1 and *2 (rs4244285, 681G>A) alleles in vitro. Xenobiotica 2024; 54:847-854. [PMID: 39445918 DOI: 10.1080/00498254.2024.2421513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
The drug-drug interaction (DDI) and CYP2C19 genetic variation can lead to a high blood concentration of voriconazole. CYP2C19 is a highly genetically polymorphic enzyme, and CYP2C19*2 is more frequent among Asians associated with reduced metabolism of drugs. Clinical study found that co-administration with omeprazole significantly increased voriconazole concentrations and there was an additive effect in CYP2C19*2 allele.CYP2C19 rs4244285 (681G>A) is the key polymorphism of CYP2C19*2 allele. This study aims to describe the in vitro effects of omeprazole on CYP2C19*1 and *2 (681G>A), and determine how CYP2C19 polymorphisms influence the DDI between omeprazole and voriconazole.Using the lentiviral expression system, we successfully generated HepG2-derived cell lines stably expressing CYP2C19*1 and *2 (681G>A). The results showed that the CYP2C19 mRNA level, protein level, and enzymatic activity were lower in HepG2-CYP2C19*2 (681G>A) than HepG2-CYP2C19*1 cells. Our study also showed that the inhibition rates of omeprazole on voriconazole had no significantly differences between CYP2C19*1 and *2 (681G>A). But the IC50 of omeprazole on CYP2C19*1 slightly lower than CYP2C19*2 (681G>A).Moreover, omeprazole inhibited CYP2C19 protein level in cells carrying CYP2C19*1 and CYP2C19*2 (681G>A). Our study demonstrated that omeprazole could inhibit voriconazole metabolism in both CYP2C19*1 and CYP2C19*2 (681G>A).
Collapse
Affiliation(s)
- Xue Li
- Department of Pharmacy, The First People's Hospital of Yunnan Province, Kunming, China
- Clinical Pharmacy Center of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
21
|
Ouellette V, Bouzriba C, Chavez Alvarez AC, Bruxelles Q, Hamel-Côté G, Fortin S. Pyridinyl 4-(2-oxoalkylimidazolidin-1-yl)benzenesulfonates and their hydrochloride salts as novel water soluble antimitotic prodrugs bioactivated by cytochrome P450 1A1 in breast cancer cells. RSC Med Chem 2024:d4md00476k. [PMID: 39281801 PMCID: PMC11393734 DOI: 10.1039/d4md00476k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
We developed first-in-class antimitotic prodrugs phenyl 4-(2-oxo-alkylimidazolidin-1-yl)benzenesulfonates (PAIB-SOs) bioactivated by cytochrome P450 (CYP) 1A1 that are highly selective toward several breast cancer cells. However, they show sparingly water solubility. Therefore, we replaced their phenyl ring B with a substituted pyridinyl group preparing novel pyridinyl 4-(2-oxo-3-alkylimidazolidin-1-yl)benzenesulfonates (PYRAIB-SOs) and their hydrochloride salts. Our results evidence that PYRAIB-SO hydrochloride salts show higher water solubility compared to their neutral and PAIB-SO counterparts by up to 625-fold. PYRAIB-SOs with a nitrogen atom at position 3 of the pyridinyl ring exhibited strong antiproliferative activity (IC50: 0.03-3.3 μM) and high selectivity (8->1250) toward sensitive CYP1A1-positive breast cancer cells and cells stably transfected with CYP1A1. They induce cell cycle arrest in the G2/M phase and disrupt microtubule dynamic assembly. Enzymatic assays confirmed that CYP1A1 metabolizes PYRAIB-SOs into their active form with in vitro hepatic half-lives (55-120 min) in rodent and human liver microsomes. Overall, this will allow to increase drug concentration for in vivo studies.
Collapse
Affiliation(s)
- Vincent Ouellette
- Hôpital Saint-François d'Assise, Centre de recherche du CHU de Québec - Université Laval, Axe Oncologie 10 Rue de l'Espinay Québec QC G1L 3L5 Canada (418) 525 4444 ext. 52364
- Faculté de pharmacie, Université Laval Québec QC G1V 0A6 Canada
| | - Chahrazed Bouzriba
- Hôpital Saint-François d'Assise, Centre de recherche du CHU de Québec - Université Laval, Axe Oncologie 10 Rue de l'Espinay Québec QC G1L 3L5 Canada (418) 525 4444 ext. 52364
- Faculté de pharmacie, Université Laval Québec QC G1V 0A6 Canada
| | - Atziri Corin Chavez Alvarez
- Hôpital Saint-François d'Assise, Centre de recherche du CHU de Québec - Université Laval, Axe Oncologie 10 Rue de l'Espinay Québec QC G1L 3L5 Canada (418) 525 4444 ext. 52364
- Faculté de pharmacie, Université Laval Québec QC G1V 0A6 Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval 2725 Ch Ste-Foy Québec QC G1V 4G5 Canada
| | - Quentin Bruxelles
- Hôpital Saint-François d'Assise, Centre de recherche du CHU de Québec - Université Laval, Axe Oncologie 10 Rue de l'Espinay Québec QC G1L 3L5 Canada (418) 525 4444 ext. 52364
- Faculté de pharmacie, Université Laval Québec QC G1V 0A6 Canada
| | - Geneviève Hamel-Côté
- Hôpital Saint-François d'Assise, Centre de recherche du CHU de Québec - Université Laval, Axe Oncologie 10 Rue de l'Espinay Québec QC G1L 3L5 Canada (418) 525 4444 ext. 52364
| | - Sébastien Fortin
- Hôpital Saint-François d'Assise, Centre de recherche du CHU de Québec - Université Laval, Axe Oncologie 10 Rue de l'Espinay Québec QC G1L 3L5 Canada (418) 525 4444 ext. 52364
- Faculté de pharmacie, Université Laval Québec QC G1V 0A6 Canada
| |
Collapse
|
22
|
Uno Y, Tsukiyama-Kohara K, Ishizuka M, Mizukawa H, Murayama N, Yamazaki H. Investigation of Functional Cytochrome P450 4A Enzymes in Liver and Kidney of Pigs, Cats, Tree Shrews, and Dogs in Comparison with the Metabolic Capacity of Human P450 4A11. Drug Metab Dispos 2024; 52:1009-1019. [PMID: 38951034 DOI: 10.1124/dmd.124.001780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024] Open
Abstract
Pigs are sometimes used in preclinical drug metabolism studies, with growing interest, and thus their drug-metabolizing enzymes, including the cytochromes P450 (P450 or CYP; EC 1.14.14.1), need to be examined. In the present study, novel CYP4A cDNAs were isolated and characterized, namely, pig CYP4A23 and CYP4A90; cat CYP4A37 and CYP4A106; and tree shrew CYP4A11a, CYP4A11d, CYP4A11e, CYP4A11f, and CYP4A11g. For comparison, the following known CYP4A cDNAs were also analyzed: pig CYP4A21 and dog CYP4A37, CYP4A38, and CYP4A39. These CYP4A cDNAs all contained open reading frames of 504-513 amino acids and had high amino acid sequence identity (74%-80%) with human CYP4As. Phylogenetic analysis of amino acid sequences revealed that these CYP4As were clustered in each species. All CYP4A genes contained 12 coding exons and formed a gene cluster in the corresponding genomic regions. A range of tissue types were analyzed, and these CYP4A mRNAs were preferentially expressed in liver and/or kidney, except for pig CYP4A90, which showed preferential expression in lung and duodenum. CYP4A enzymes, heterologously expressed in Escherichia coli, preferentially catalyzed lauric acid 12-hydroxylation and arachidonic acid 20-hydroxylation, just as human CYP4A11 does, with the same regioselectivity (i.e., at the ω-position of fatty acids). These results imply that dog, cat, pig, and tree shrew CYP4As have functional characteristics similar to those of human CYP4A11, with minor differences in lauric acid 12-hydroxylation. SIGNIFICANCE STATEMENT: Cytochrome P450 (P450, CYP) 4As are important P450s in human biological processes because of their fatty acid-metabolizing ability. Pig CYP4A21, CYP4A23, and CYP4A90; cat CYP4A37 and CYP4A106; tree shrew CYP4A11a, CYP4A11d, CYP4A11e, CYP4A11f, and CYP4A11g; and dog CYP4A37, CYP4A38, and CYP4A39 cDNAs were isolated and analyzed. These CYP4A cDNAs shared relatively high sequence identities with human CYP4A11 and CYP4A22. Pig, cat, tree shrew, and dog CYP4As in the liver and kidneys are likely to catalyze the ω-hydroxylation of fatty acids.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima City, Kagoshima, Japan (Y.U., K.T.-K.); Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan (M.I.); Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan (H.M.); and Showa Pharmaceutical University, Machida, Tokyo, Japan (N.M., H.Y.)
| | - Kyoko Tsukiyama-Kohara
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima City, Kagoshima, Japan (Y.U., K.T.-K.); Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan (M.I.); Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan (H.M.); and Showa Pharmaceutical University, Machida, Tokyo, Japan (N.M., H.Y.)
| | - Mayumi Ishizuka
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima City, Kagoshima, Japan (Y.U., K.T.-K.); Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan (M.I.); Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan (H.M.); and Showa Pharmaceutical University, Machida, Tokyo, Japan (N.M., H.Y.)
| | - Hazuki Mizukawa
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima City, Kagoshima, Japan (Y.U., K.T.-K.); Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan (M.I.); Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan (H.M.); and Showa Pharmaceutical University, Machida, Tokyo, Japan (N.M., H.Y.)
| | - Norie Murayama
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima City, Kagoshima, Japan (Y.U., K.T.-K.); Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan (M.I.); Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan (H.M.); and Showa Pharmaceutical University, Machida, Tokyo, Japan (N.M., H.Y.)
| | - Hiroshi Yamazaki
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima City, Kagoshima, Japan (Y.U., K.T.-K.); Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan (M.I.); Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan (H.M.); and Showa Pharmaceutical University, Machida, Tokyo, Japan (N.M., H.Y.)
| |
Collapse
|
23
|
Becker D, Bharatam PV, Gohlke H. Molecular Mechanisms Underlying Single Nucleotide Polymorphism-Induced Reactivity Decrease in CYP2D6. J Chem Inf Model 2024; 64:6026-6040. [PMID: 38994927 DOI: 10.1021/acs.jcim.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Cytochrome P450 2D6 (CYP2D6) is one of the most important enzymes involved in drug metabolism. Genetic polymorphism can influence drug metabolism by CYP2D6 such that a therapy is seriously affected by under- or overdosing of drugs. However, a general explanation at the atomistic level for poor activity is missing so far. Here we show for the 20 most common single nucleotide polymorphisms (SNPs) of CYP2D6 that poor metabolism is driven by four mechanisms. We found in extensive all-atom molecular dynamics simulations that the rigidity of the I-helix (central helix), distance between central phenylalanines (stabilizing bound substrate), availability of basic residues on the surface of CYP2D6 (binding of cytochrome P450 reductase), and position of arginine 132 (electron transfer to heme) are essential for an extensive function of the enzyme. These results were applied to SNPs with unknown effects, and potential SNPs that may lead to poor drug metabolism were identified. The revealed molecular mechanisms might be important for other drug-metabolizing cytochrome P450 enzymes.
Collapse
Affiliation(s)
- Daniel Becker
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Mohali, Punjab 160 062, India
| | - Holger Gohlke
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
24
|
Stout CN, Renata H. Total Synthesis Facilitates In Vitro Reconstitution of the C-S Bond-Forming P450 in Griseoviridin Biosynthesis. J Am Chem Soc 2024; 146:21815-21823. [PMID: 39042396 DOI: 10.1021/jacs.4c06080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Griseoviridin is a group A streptogramin natural product from Streptomyces with broad-spectrum antibacterial activity. A hybrid polyketide-nonribosomal peptide, it comprises a 23-membered macrocycle, an embedded oxazole motif, and a macrolactone with a unique ene-thiol linkage. Recent analysis of the griseoviridin biosynthetic gene cluster implicated SgvP, a cytochrome P450 monooxygenase, in late-stage installation of the critical C-S bond. While genetic and crystallographic experiments provided indirect evidence to support this hypothesis, the exact function of SgvP has never been confirmed biochemically. Herein, we report a convergent total synthesis of pre-griseoviridin, the putative substrate of P450 SgvP and precursor to griseoviridin. Our strategy features concise and rapid assembly of two fragments joined via sequential peptide coupling and Stille macrocyclization. Access to pre-griseoviridin then enabled in vitro validation of SgvP as the C-S bond-forming P450 during griseoviridin biosynthesis, culminating in a nine-step chemoenzymatic synthesis of griseoviridin.
Collapse
Affiliation(s)
- Carter N Stout
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, Texas 77005, United States
- Skaggs Doctoral Program in the Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Hans Renata
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
25
|
Adapa SR, Meshram P, Sami A, Jiang RHY. Harnessing Porphyrin Accumulation in Liver Cancer: Combining Genomic Data and Drug Targeting. Biomolecules 2024; 14:959. [PMID: 39199347 PMCID: PMC11352895 DOI: 10.3390/biom14080959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
The liver, a pivotal organ in human metabolism, serves as a primary site for heme biosynthesis, alongside bone marrow. Maintaining precise control over heme production is paramount in healthy livers to meet high metabolic demands while averting potential toxicity from intermediate metabolites, notably protoporphyrin IX. Intriguingly, our recent research uncovers a disrupted heme biosynthesis process termed 'porphyrin overdrive' in cancers that fosters the accumulation of heme intermediates, potentially bolstering tumor survival. Here, we investigate heme and porphyrin metabolism in both healthy and oncogenic human livers, utilizing primary human liver transcriptomics and single-cell RNA sequencing (scRNAseq). Our investigations unveil robust gene expression patterns in heme biosynthesis in healthy livers, supporting electron transport chain (ETC) and cytochrome P450 function without intermediate accumulation. Conversely, liver cancers exhibit rewired heme biosynthesis and a massive downregulation of cytochrome P450 gene expression. Notably, despite diminished drug metabolism, gene expression analysis shows that heme supply to the ETC remains largely unaltered or even elevated with patient cancer progression, suggesting a metabolic priority shift. Liver cancers selectively accumulate intermediates, which are absent in normal tissues, implicating their role in disease advancement as inferred by expression analysis. Furthermore, our findings in genomics establish a link between the aberrant gene expression of porphyrin metabolism and inferior overall survival in aggressive cancers, indicating potential targets for clinical therapy development. We provide in vitro proof-of-concept data on targeting porphyrin overdrive with a drug synergy strategy.
Collapse
Affiliation(s)
- Swamy R. Adapa
- USF Genomics Program, Center for Global Health and Infectious Diseases, College of Public Health, University of South Florida, Tampa, FL 33612, USA;
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA;
| | - Pravin Meshram
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA;
| | - Abdus Sami
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Rays H. Y. Jiang
- USF Genomics Program, Center for Global Health and Infectious Diseases, College of Public Health, University of South Florida, Tampa, FL 33612, USA;
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA;
| |
Collapse
|
26
|
Gagnon DJ. Antiseizure Drugs and Pharmacogenetics-Is There Signal in the Noise? JAMA Netw Open 2024; 7:e2425600. [PMID: 39115850 PMCID: PMC11612691 DOI: 10.1001/jamanetworkopen.2024.25600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2025] Open
Affiliation(s)
- David J. Gagnon
- Department of Pharmacy, Maine Medical Center, Portland, ME USA 04102
- Tufts University School of Medicine, Boston, MA, USA 02111
| |
Collapse
|
27
|
Szuman M, Kaczmarek-Ryś M, Hryhorowicz S, Kryszczyńska A, Grot N, Pławski A. Low-Penetrance Susceptibility Variants in Colorectal Cancer-Current Outlook in the Field. Int J Mol Sci 2024; 25:8338. [PMID: 39125905 PMCID: PMC11313073 DOI: 10.3390/ijms25158338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most frequent and mortality-causing neoplasia, with various distributions between populations. Strong hereditary predispositions are the causatives of a small percentage of CRC, and most cases have no transparent genetic background. This is a vast arena for exploring cancer low-susceptibility genetic variants. Nonetheless, the research that has been conducted to date has failed to deliver consistent conclusions and often features conflicting messages, causing chaos in this field. Therefore, we decided to organize the existing knowledge on this topic. We screened the PubMed and Google Scholar databases. We drew up markers by gene locus gathered by hallmark: oncogenes, tumor suppressor genes, genes involved in DNA damage repair, genes involved in metabolic pathways, genes involved in methylation, genes that modify the colonic microenvironment, and genes involved in the immune response. Low-penetration genetic variants increasing the risk of cancer are often population-specific, hence the urgent need for large-scale testing. Such endeavors can be successful only when financial decision-makers are united with social educators, medical specialists, genetic consultants, and the scientific community. Countries' policies should prioritize research on this subject regardless of cost because it is the best investment. In this review, we listed potential low-penetrance CRC susceptibility alleles whose role remains to be established.
Collapse
Affiliation(s)
- Marcin Szuman
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (M.S.); (M.K.-R.); (S.H.); (A.K.); (N.G.)
| | - Marta Kaczmarek-Ryś
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (M.S.); (M.K.-R.); (S.H.); (A.K.); (N.G.)
- University Clinical Hospital, Przybyszewskiego 49, 60-355 Poznań, Poland
| | - Szymon Hryhorowicz
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (M.S.); (M.K.-R.); (S.H.); (A.K.); (N.G.)
| | - Alicja Kryszczyńska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (M.S.); (M.K.-R.); (S.H.); (A.K.); (N.G.)
| | - Natalia Grot
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (M.S.); (M.K.-R.); (S.H.); (A.K.); (N.G.)
| | - Andrzej Pławski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (M.S.); (M.K.-R.); (S.H.); (A.K.); (N.G.)
- Department of General and Endocrine Surgery and Gastroenterological Oncology, Poznań University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland
| |
Collapse
|
28
|
Huang Y, Fu L, Gan Y, Qi G, Hao L, Xin T, Xu W, Song J. Analysis of Whole-Genome for Identification of Seven Penicillium Species with Significant Economic Value. Int J Mol Sci 2024; 25:8172. [PMID: 39125741 PMCID: PMC11312406 DOI: 10.3390/ijms25158172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The Penicillium genus exhibits a broad global distribution and holds substantial economic value in sectors including agriculture, industry, and medicine. Particularly in agriculture, Penicillium species significantly impact plants, causing diseases and contamination that adversely affect crop yields and quality. Timely detection of Penicillium species is crucial for controlling disease and preventing mycotoxins from entering the food chain. To tackle this issue, we implement a novel species identification approach called Analysis of whole GEnome (AGE). Here, we initially applied bioinformatics analysis to construct specific target sequence libraries from the whole genomes of seven Penicillium species with significant economic impact: P. canescens, P. citrinum, P. oxalicum, P. polonicum, P. paneum, P. rubens, and P. roqueforti. We successfully identified seven Penicillium species using the target we screened combined with Sanger sequencing and CRISPR-Cas12a technologies. Notably, based on CRISPR-Cas12a technology, AGE can achieve rapid and accurate identification of genomic DNA samples at a concentration as low as 0.01 ng/µL within 30 min. This method features high sensitivity and portability, making it suitable for on-site detection. This robust molecular approach provides precise fungal species identification with broad implications for agricultural control, industrial production, clinical diagnostics, and food safety.
Collapse
Affiliation(s)
- Yuanhao Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Lianguo Fu
- School of Life and Science, Southwest Jiaotong University, Chengdu 610031, China
| | - Yutong Gan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Guihong Qi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Lijun Hao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Tianyi Xin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Wenjie Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jingyuan Song
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| |
Collapse
|
29
|
Volkova Y, Scherbakov A, Dzichenka Y, Komkov A, Bogdanov F, Salnikova D, Dmitrenok A, Sachanka A, Sorokin D, Zavarzin I. Design and synthesis of phosphoryl-substituted steroidal pyridazines (Pho-STPYRs) as potent estrogen receptor alpha inhibitors: targeted treatment of hormone-dependent breast cancer cells. RSC Med Chem 2024; 15:2380-2399. [PMID: 39026643 PMCID: PMC11253874 DOI: 10.1039/d4md00153b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/30/2024] [Indexed: 07/20/2024] Open
Abstract
Estrogen receptor alpha (ERα) is an important target for the discovery of new therapeutic drugs against hormone-dependent breast cancer. A series of phosphoryl-substituted steroidal pyridazines (Pho-STPYRs) were synthesized and biologically evaluated as potent ERα inhibitors. Pho-STPYRs showed cytotoxicity against breast cancer cells with IC50 values of 5.9 μM and higher. Pho-STPYRs 33 and 34 [IC50 (MCF7) = 6.5 and 5.9 μM, respectively] were found to block the expression of ERα, the main driver of breast cancer growth, and modulate the ERK, cyclin D1, and CDK4 pathways. Compound 34 showed selectivity, anti-estrogenic potency and high antiproliferative efficacy in combination with the AKT inhibitor. Molecular docking was used to more accurately define the binding mode of lead compounds 33 and 34 to ERα. The selectivity analysis showed that lead compounds 33 and 34 produce no effects on cytochromes P450, including CYP7A1, CYP7B1, CYP17A1, CYP19A1, and CYP21A2. In a word, Pho-STPYRs 33 and 34 are promising ERα inhibitors for the treatment of hormone-dependent breast cancer.
Collapse
Affiliation(s)
- Yulia Volkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp 119991 Moscow Russia
| | - Alexander Scherbakov
- Department of Experimental Tumor Biology, N. N. Blokhin National Medical Research Center of Oncology 24 Kashirskoe shosse 115522 Moscow Russia
- Gause Institute of New Antibiotics 11 Bol'shaya Pirogovskaya ulitsa 119021 Moscow Russia
| | - Yaraslau Dzichenka
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus 5/2 Kuprevich Str 220141 Minsk Belarus
| | - Alexander Komkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp 119991 Moscow Russia
| | - Fedor Bogdanov
- Department of Experimental Tumor Biology, N. N. Blokhin National Medical Research Center of Oncology 24 Kashirskoe shosse 115522 Moscow Russia
- Faculty of Medicine, Moscow State University 27-1 Lomonosovsky prosp 119192 Moscow Russia
| | - Diana Salnikova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp 119991 Moscow Russia
- Department of Experimental Tumor Biology, N. N. Blokhin National Medical Research Center of Oncology 24 Kashirskoe shosse 115522 Moscow Russia
| | - Andrey Dmitrenok
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp 119991 Moscow Russia
| | - Antos Sachanka
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus 5/2 Kuprevich Str 220141 Minsk Belarus
| | - Danila Sorokin
- Department of Experimental Tumor Biology, N. N. Blokhin National Medical Research Center of Oncology 24 Kashirskoe shosse 115522 Moscow Russia
| | - Igor Zavarzin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp 119991 Moscow Russia
| |
Collapse
|
30
|
Zhang J, Li W, Liu Y, He Y, Cheng Z, Li X, Chen Y, Zhang A, Peng Y, Zheng J. Arsenite-Induced Drug-Drug Interactions in Rats. Drug Metab Dispos 2024; 52:911-918. [PMID: 38849209 DOI: 10.1124/dmd.124.001772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
Arsenite is an important heavy metal. Some Chinese traditional medicines contain significant amounts of arsenite. The aim of this study was to investigate subacute exposure of arsenite on activities of cytochrome P450 enzymes and pharmacokinetic behaviors of drugs in rats. Midazolam, tolbutamide, metoprolol, omeprazole, caffeine, and chlorzoxazone, the probe substrates for cytochrome P450 (CYP) s3A, 2C6, 2D, 2C11, 1A, and 2E, were selected as probe drugs for the pharmacokinetic study. Significant decreases in areas under the curves of probe substrates were observed in rats after consecutive 30-day exposure to As at 12 mg/kg. Microsomal incubation study showed that the subacute exposure to arsenite resulted in little change in effects on the activities of P450 enzymes examined. However, everted gut sac study demonstrated that such exposure induced significant decreases in intestinal absorption of these drugs by both passive diffusion and carrier-mediated transport. In addition, in vivo study showed that the arsenite exposure decreased the rate of peristaltic propulsion. The decreases in intestinal permeability of the probe drugs and peristaltic propulsion rate most likely resulted in the observed decreases in the internal exposure of the probe drugs. Exposure to arsenite may lead to the reduction of the efficiencies of pharmaceutical agents coadministered resulting from the observed drug-drug interactions. SIGNIFICANCE STATEMENT: Exposure to arsenite may lead to the reduction of the efficiencies of pharmaceutical agents coadministered resulting from the observed drug-drug interactions. The present study, we found that P450 enzyme probe drug exposure was reduced in arsenic-exposed animals (areas under the curve) and the intestinal absorption of the drug was reduced in the animals. Subacute arsenic exposure tends to cause damage to intestinal function, which leads to reduced drug absorption.
Collapse
Affiliation(s)
- Jingyu Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), School of Pharmacy (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), Guizhou Medical University, Guiyang, Guizhou, P. R. China; State Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, P. R. China (A.Z.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China (Y.P., J.Z.)
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), School of Pharmacy (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), Guizhou Medical University, Guiyang, Guizhou, P. R. China; State Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, P. R. China (A.Z.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China (Y.P., J.Z.)
| | - Ying Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), School of Pharmacy (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), Guizhou Medical University, Guiyang, Guizhou, P. R. China; State Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, P. R. China (A.Z.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China (Y.P., J.Z.)
| | - Yan He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), School of Pharmacy (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), Guizhou Medical University, Guiyang, Guizhou, P. R. China; State Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, P. R. China (A.Z.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China (Y.P., J.Z.)
| | - Zihao Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), School of Pharmacy (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), Guizhou Medical University, Guiyang, Guizhou, P. R. China; State Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, P. R. China (A.Z.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China (Y.P., J.Z.)
| | - Ximei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), School of Pharmacy (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), Guizhou Medical University, Guiyang, Guizhou, P. R. China; State Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, P. R. China (A.Z.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China (Y.P., J.Z.)
| | - Yu Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), School of Pharmacy (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), Guizhou Medical University, Guiyang, Guizhou, P. R. China; State Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, P. R. China (A.Z.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China (Y.P., J.Z.)
| | - Aihua Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), School of Pharmacy (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), Guizhou Medical University, Guiyang, Guizhou, P. R. China; State Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, P. R. China (A.Z.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China (Y.P., J.Z.)
| | - Ying Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), School of Pharmacy (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), Guizhou Medical University, Guiyang, Guizhou, P. R. China; State Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, P. R. China (A.Z.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China (Y.P., J.Z.)
| | - Jiang Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), School of Pharmacy (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), Guizhou Medical University, Guiyang, Guizhou, P. R. China; State Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, P. R. China (A.Z.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China (Y.P., J.Z.)
| |
Collapse
|
31
|
Wolf ME, Eltis LD. Preparation of reductases for multicomponent oxygenases. Methods Enzymol 2024; 703:65-85. [PMID: 39261004 DOI: 10.1016/bs.mie.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Oxygenases catalyze crucial reactions throughout all domains of life, cleaving molecular oxygen (O2) and inserting one or two of its atoms into organic substrates. Many oxygenases, including those in the cytochrome P450 (P450) and Rieske oxygenase enzyme families, function as multicomponent systems, which require one or more redox partners to transfer electrons to the catalytic center. As the identity of the reductase can change the reactivity of the oxygenase, characterization of the latter with its cognate redox partners is critical. However, the isolation of the native redox partner or partners is often challenging. Here, we report the preparation and characterization of PbdB, the native reductase partner of PbdA, a bacterial P450 enzyme that catalyzes the O-demethylation of para-methoxylated benzoates. Through production in a rhodoccocal host, codon optimization, and anaerobic purification, this procedure overcomes conventional challenges in redox partner production and allows for robust oxygenase characterization with its native redox partner. Key lessons learned here, including the value of production in a related host and rare codon effects are applicable to a broad range of Fe-dependent oxygenases and their components.
Collapse
Affiliation(s)
- Megan E Wolf
- Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Lindsay D Eltis
- Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
32
|
Leow JWH, Chan ECY. CYP2J2-mediated metabolism of arachidonic acid in heart: A review of its kinetics, inhibition and role in heart rhythm control. Pharmacol Ther 2024; 258:108637. [PMID: 38521247 DOI: 10.1016/j.pharmthera.2024.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 02/06/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Cytochrome P450 2 J2 (CYP2J2) is primarily expressed extrahepatically and is the predominant epoxygenase in human cardiac tissues. This highlights its key role in the metabolism of endogenous substrates. Significant scientific interest lies in cardiac CYP2J2 metabolism of arachidonic acid (AA), an omega-6 polyunsaturated fatty acid, to regioisomeric bioactive epoxyeicosatrienoic acid (EET) metabolites that show cardioprotective effects including regulation of cardiac electrophysiology. From an in vitro perspective, the accurate characterization of the kinetics of CYP2J2 metabolism of AA including its inhibition and inactivation by drugs could be useful in facilitating in vitro-in vivo extrapolations to predict drug-AA interactions in drug discovery and development. In this review, background information on the structure, regulation and expression of CYP2J2 in human heart is presented alongside AA and EETs as its endogenous substrate and metabolites. The in vitro and in vivo implications of the kinetics of this endogenous metabolic pathway as well as its perturbation via inhibition and inactivation by drugs are elaborated. Additionally, the role of CYP2J2-mediated metabolism of AA to EETs in cardiac electrophysiology will be expounded.
Collapse
Affiliation(s)
- Jacqueline Wen Hui Leow
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
33
|
Zhao A, Yang J, Ran R, Zhao S, Cui Y, Hu F, Zhou Y. Resonance of fatty acid metabolism and immune infiltration in anti-PD-1 monotherapy for breast cancer. Transl Oncol 2024; 44:101960. [PMID: 38604109 PMCID: PMC11024218 DOI: 10.1016/j.tranon.2024.101960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024] Open
Abstract
The interaction between tumor fatty acid metabolism and immune microenvironment is a novel topic in oncology research, and the relationship of lipid-derived factors with immune editing in tumor is unclear. The breast cancer samples from the TCGA database were used as the training set, and samples from GSE42568 were employed as the validation set for constructing a model to identify a signature associated with fatty acid metabolism through Lasso Cox regression. And the changes in immune related signatures and risk score before and after anti-PD-1 monotherapy were caught by the differential analysis in GSE225078. A 14-gene prognostic risk scoring model identifying by fatty acid metabolism relevant signature was conducted, and the high risk group had shorter overall survival and progression free survival than low risk group. Many metabolism-related pathways were enriched in the high risk group, and many immune-related pathways were enriched in low risk group. The crucial differentially expressed genes between the high/low risk groups, CYP4F8 and CD52, were found to be strongly associated with SUCLA2 and ACOT4 of 14-gene model, and strongly related to immune infiltration. Immune related signatures, fatty acid metabolism-risk score and the expression level of ALDH1A1 (in 14-gene-model) changed after anti-PD-1 monotherapy. And the mice model results also showed anti-PD-1 mAb could significantly reduce the expression level of ALDH1A1 (p < 0.01). These results brought up the crosstalk between immune components and fatty acid metabolism in breast cancer microenvironment, which provided a new possibility of targeting fatty acid metabolism for combination therapy in breast cancer immunotherapy.
Collapse
Affiliation(s)
- Andi Zhao
- Cancer Center, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Medical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jin Yang
- Cancer Center, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Precision Medicine Center, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Medical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Phase I Clinical Trial Ward, The First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Ran Ran
- Cancer Center, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Medical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shidi Zhao
- Cancer Center, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Medical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuxin Cui
- Cancer Center, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Phase I Clinical Trial Ward, The First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Fang Hu
- Precision Medicine Center, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Phase I Clinical Trial Ward, The First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Yan Zhou
- Cancer Center, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Precision Medicine Center, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Phase I Clinical Trial Ward, The First Affiliated Hospital of Xi'an Jiaotong University, China.
| |
Collapse
|
34
|
Downie CG, Highland HM, Alotaibi M, Welch BM, Howard AG, Cheng S, Miller N, Jain M, Kaplan RC, Lilly AG, Long T, Sofer T, Thyagarajan B, Yu B, North KE, Avery CL. Genome-wide association study reveals shared and distinct genetic architecture underlying fatty acid and bioactive oxylipin metabolites in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.21.24307719. [PMID: 38826448 PMCID: PMC11142272 DOI: 10.1101/2024.05.21.24307719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Bioactive fatty acid-derived oxylipin molecules play key roles in mediating inflammation and oxidative stress, which underlie many chronic diseases. Circulating levels of fatty acids and oxylipins are influenced by both environmental and genetic factors; characterizing the genetic architecture of bioactive lipids could yield new insights into underlying biological pathways. Thus, we performed a genome wide association study (GWAS) of n=81 fatty acids and oxylipins in n=11,584 Hispanic Community Health Study/Study of Latinos (HCHS/SOL) participants with genetic and lipidomic data measured at study baseline (58.6% female, mean age = 46.1 years, standard deviation = 13.8 years). Additionally, given the effects of central obesity on inflammation, we examined interactions with waist circumference using two-degree-of-freedom joint tests. Heritability estimates ranged from 0% to 47.9%, and 48 of the 81oxylipins and fatty acids were significantly heritable. Moreover, 40 (49.4%) of the 81 oxylipins and fatty acids had at least one genome-wide significant (p< 6.94E-11) variant resulting in 19 independent genetic loci involved in fatty acid and oxylipin synthesis, as well as downstream pathways. Four loci (lead variant minor allele frequency [MAF] range: 0.08-0.50), including the desaturase-encoding FADS and the OATP1B1 transporter protein-encoding SLCO1B1, exhibited associations with four or more fatty acids and oxylipins. The majority of the 15 remaining loci (87.5%) (lead variant MAF range = 0.03-0.45, mean = 0.23) were only associated with one oxylipin or fatty acid, demonstrating evidence of distinct genetic effects. Finally, while most loci identified in two-degree-of-freedom tests were previously identified in our main effects analyses, we also identified an additional rare variant (MAF = 0.002) near CARS2, a locus previously implicated in inflammation. Our analyses revealed shared and distinct genetic architecture underlying fatty acids and oxylipins, providing insights into genetic factors and motivating future multi-omics work to characterize these compounds and elucidate their roles in disease pathways.
Collapse
Affiliation(s)
- Carolina G Downie
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Heather M Highland
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Mona Alotaibi
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, San Diego, CA
| | - Barrett M Welch
- School of Public Health, University of Nevada, Reno, Reno, NV
| | - Annie Green Howard
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Susan Cheng
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | | | - Mohit Jain
- Sapient Bioanalytics, San Diego, CA
- Departments of Medicine and Pharmacology, University of California, San Diego, San Diego, CA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY; Public Health Sciences Division, Fred Hutchison Cancer Center, Seattle, WA
| | - Adam G Lilly
- Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Tao Long
- Sapient Bioanalytics, San Diego, CA
| | - Tamar Sofer
- CardioVascular Institute (CVI), Beth Israel Deaconess Medical Center, Boston, MA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center, Minneapolis, MN
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston School of Public Health, Houston, TX
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Christy L Avery
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
35
|
Yang H, Liu J, Chen K, Cong S, Cai S, Li Y, Jia Z, Wu H, Lou T, Wei Z, Yang X, Xiao H. D-CyPre: a machine learning-based tool for accurate prediction of human CYP450 enzyme metabolic sites. PeerJ Comput Sci 2024; 10:e2040. [PMID: 38855237 PMCID: PMC11157575 DOI: 10.7717/peerj-cs.2040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/15/2024] [Indexed: 06/11/2024]
Abstract
The advancement of graph neural networks (GNNs) has made it possible to accurately predict metabolic sites. Despite the combination of GNNs with XGBOOST showing impressive performance, this technology has not yet been applied in the realm of metabolic site prediction. Previous metabolic site prediction tools focused on bonds and atoms, regardless of the overall molecular skeleton. This study introduces a novel tool, named D-CyPre, that amalgamates atom, bond, and molecular skeleton information via two directed message-passing neural networks (D-MPNN) to predict the metabolic sites of the nine cytochrome P450 enzymes using XGBOOST. In D-CyPre Precision Mode, the model produces fewer, but more accurate results (Jaccard score: 0.497, F1: 0.660, and precision: 0.737 in the test set). In D-CyPre Recall Mode, the model produces less accurate, but more comprehensive results (Jaccard score: 0.506, F1: 0.669, and recall: 0.720 in the test set). In the test set of 68 reactants, D-CyPre outperformed BioTransformer on all isoenzymes and CyProduct on most isoenzymes (5/9). For the subtypes where D-CyPre outperformed CyProducts, the Jaccard score and F1 scores increased by 24% and 16% in Precision Mode (4/9) and 19% and 12% in Recall Mode (5/9), respectively, relative to the second-best CyProduct. Overall, D-CyPre provides more accurate prediction results for human CYP450 enzyme metabolic sites.
Collapse
Affiliation(s)
- Haolan Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Research Center of Chinese Medicine Analysis and Transformation, Beijing, China
| | - Jie Liu
- Beijing University of Chinese Medicine, Research Center of Chinese Medicine Analysis and Transformation, Beijing, China
| | - Kui Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Research Center of Chinese Medicine Analysis and Transformation, Beijing, China
| | - Shiyu Cong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Research Center of Chinese Medicine Analysis and Transformation, Beijing, China
| | - Shengnan Cai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Research Center of Chinese Medicine Analysis and Transformation, Beijing, China
| | - Yueting Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Research Center of Chinese Medicine Analysis and Transformation, Beijing, China
| | - Zhixin Jia
- Beijing University of Chinese Medicine, Research Center of Chinese Medicine Analysis and Transformation, Beijing, China
| | - Hao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Research Center of Chinese Medicine Analysis and Transformation, Beijing, China
| | - Tianyu Lou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Research Center of Chinese Medicine Analysis and Transformation, Beijing, China
| | - Zuying Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Research Center of Chinese Medicine Analysis and Transformation, Beijing, China
| | - Xiaoqin Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Research Center of Chinese Medicine Analysis and Transformation, Beijing, China
| | - Hongbin Xiao
- Beijing University of Chinese Medicine, Research Center of Chinese Medicine Analysis and Transformation, Beijing, China
| |
Collapse
|
36
|
Jeong E, Su Y, Li L, Chen Y. Discovering clinical drug-drug interactions with known pharmacokinetics mechanisms using spontaneous reporting systems and electronic health records. J Biomed Inform 2024; 153:104639. [PMID: 38583580 DOI: 10.1016/j.jbi.2024.104639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/17/2024] [Accepted: 04/05/2024] [Indexed: 04/09/2024]
Abstract
OBJECTIVE Although the mechanisms behind pharmacokinetic (PK) drug-drug interactions (DDIs) are well-documented, bridging the gap between this knowledge and clinical evidence of DDIs, especially for serious adverse drug reactions (SADRs), remains challenging. While leveraging the FDA Adverse Event Reporting System (FAERS) database along with disproportionality analysis tends to detect a vast number of DDI signals, this abundance complicates further investigation, such as validation through clinical trials. Our study proposed a framework to efficiently prioritize these signals and assessed their reliability using multi-source Electronic Health Records (EHR) to identify top candidates for further investigation. METHODS We analyzed FAERS data spanning from January 2004 to March 2023, employing four established disproportionality methods: Proportional Reporting Ratio (PRR), Reporting Odds Ratio (ROR), Multi-item Gamma Poisson Shrinker (MGPS), and Bayesian Confidence Propagating Neural Network (BCPNN). Building upon these models, we developed four ranking models to prioritize DDI-SADR signals and cross-referenced signals with DrugBank. To validate the top-ranked signals, we employed longitudinal EHRs from Vanderbilt University Medical Center and the All of Us research program. The performance of each model was assessed by counting how many of the top-ranked signals were confirmed by EHRs and calculating the average ranking of these confirmed signals. RESULTS Out of 189 DDI-SADR signals identified by all four disproportionality methods, only two were documented in the DrugBank database. By prioritizing the top 20 signals as determined by each of the four disproportionality methods and our four ranking models, 58 unique DDI-SADR signals were selected for EHR validations. Of these, five signals were confirmed. The ranking model, which integrated the MGPS and BCPNN, demonstrated superior performance by assigning the highest priority to those five EHR-confirmed signals. CONCLUSION The fusion of disproportionality analysis with ranking models, validated through multi-source EHRs, presents a groundbreaking approach to pharmacovigilance. Our study's confirmation of five significant DDI-SADRs, previously unrecorded in the DrugBank database, highlights the essential role of advanced data analysis techniques in identifying ADRs.
Collapse
Affiliation(s)
- Eugene Jeong
- Department of Biomedical Informatics, School of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Yu Su
- Department of Computer Science and Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | - Lang Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - You Chen
- Department of Biomedical Informatics, School of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Computer Science, School of Engineering, Vanderbilt University, Nashville, TN, United States.
| |
Collapse
|
37
|
Barata IS, Rueff J, Kranendonk M, Esteves F. Pleiotropy of Progesterone Receptor Membrane Component 1 in Modulation of Cytochrome P450 Activity. J Xenobiot 2024; 14:575-603. [PMID: 38804287 PMCID: PMC11130977 DOI: 10.3390/jox14020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Progesterone receptor membrane component 1 (PGRMC1) is one of few proteins that have been recently described as direct modulators of the activity of human cytochrome P450 enzymes (CYP)s. These enzymes form a superfamily of membrane-bound hemoproteins that metabolize a wide variety of physiological, dietary, environmental, and pharmacological compounds. Modulation of CYP activity impacts the detoxification of xenobiotics as well as endogenous pathways such as steroid and fatty acid metabolism, thus playing a central role in homeostasis. This review is focused on nine main topics that include the most relevant aspects of past and current PGRMC1 research, focusing on its role in CYP-mediated drug metabolism. Firstly, a general overview of the main aspects of xenobiotic metabolism is presented (I), followed by an overview of the role of the CYP enzymatic complex (IIa), a section on human disorders associated with defects in CYP enzyme complex activity (IIb), and a brief account of cytochrome b5 (cyt b5)'s effect on CYP activity (IIc). Subsequently, we present a background overview of the history of the molecular characterization of PGRMC1 (III), regarding its structure, expression, and intracellular location (IIIa), and its heme-binding capability and dimerization (IIIb). The next section reflects the different effects PGRMC1 may have on CYP activity (IV), presenting a description of studies on the direct effects on CYP activity (IVa), and a summary of pathways in which PGRMC1's involvement may indirectly affect CYP activity (IVb). The last section of the review is focused on the current challenges of research on the effect of PGRMC1 on CYP activity (V), presenting some future perspectives of research in the field (VI).
Collapse
Affiliation(s)
- Isabel S. Barata
- Department of Pediatrics, Division of Endocrinology, Diabetology and Metabolism, University Children’s Hospital, University of Bern, 3010 Bern, Switzerland;
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - José Rueff
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| | - Michel Kranendonk
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| | - Francisco Esteves
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| |
Collapse
|
38
|
Wang Y, Lv B, Wang H, Ren T, Jiang Q, Qu X, Ni D, Qiu J, Hua K. Ultrasound-Triggered Azo Free Radicals for Cervical Cancer Immunotherapy. ACS NANO 2024; 18:11042-11057. [PMID: 38627898 DOI: 10.1021/acsnano.3c10625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
PD-1 blockade is a first-line treatment for recurrent/metastatic cervical cancer but benefits only a small number of patients due to low preexisting tumor immunogenicity. Using immunogenic cell death (ICD) inducers is a promising strategy for improving immunotherapy, but these compounds are limited by the hypoxic environment of solid tumors. To overcome this issue, the nanosensitizer AIBA@MSNs were designed based on sonodynamic therapy (SDT), which induces tumor cell death under hypoxic conditions through azo free radicals in a method of nonoxygen radicals. Mechanistically, the azo free radicals disrupt both the structure and function of tumor mitochondria by reversing the mitochondrial membrane potential and facilitating the collapse of electron transport chain complexes. More importantly, the AIBA@MSN-based SDT serves as an effective ICD inducer and improves the antitumor immune capacity. The combination of an AIBA@MSN-based SDT with a PD-1 blockade has the potential to improve response rates and provide protection against relapse. This study provides insights into the use of azo free radicals as a promising SDT strategy for cancer treatment and establishes a basic foundation for nonoxygen-dependent SDT-triggered immunotherapy in cervical cancer treatment.
Collapse
Affiliation(s)
- Yumeng Wang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
| | - Bin Lv
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
| | - Han Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Tingting Ren
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
| | - Qian Jiang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
| | - Xinyu Qu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, PR China
| | - Junjun Qiu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
| | - Keqin Hua
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
| |
Collapse
|
39
|
Roy P, Maturano J, Hasdemir H, Lopez A, Xu F, Hellman J, Tajkhorshid E, Sarlah D, Das A. Elucidating the Mechanism of Metabolism of Cannabichromene by Human Cytochrome P450s. JOURNAL OF NATURAL PRODUCTS 2024; 87:639-651. [PMID: 38477310 PMCID: PMC11061835 DOI: 10.1021/acs.jnatprod.3c00336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024]
Abstract
Cannabichromene (CBC) is a nonpsychoactive phytocannabinoid well-known for its wide-ranging health advantages. However, there is limited knowledge regarding its human metabolism following CBC consumption. This research aimed to explore the metabolic pathways of CBC by various human liver cytochrome P450 (CYP) enzymes and support the outcomes using in vivo data from mice. The results unveiled two principal CBC metabolites generated by CYPs: 8'-hydroxy-CBC and 6',7'-epoxy-CBC, along with a minor quantity of 1″-hydroxy-CBC. Notably, among the examined CYPs, CYP2C9 demonstrated the highest efficiency in producing these metabolites. Moreover, through a molecular dynamics simulation spanning 1 μs, it was observed that CBC attains stability at the active site of CYP2J2 by forming hydrogen bonds with I487 and N379, facilitated by water molecules, which specifically promotes the hydroxy metabolite's formation. Additionally, the presence of cytochrome P450 reductase (CPR) amplified CBC's binding affinity to CYPs, particularly with CYP2C8 and CYP3A4. Furthermore, the metabolites derived from CBC reduced cytokine levels, such as IL6 and NO, by approximately 50% in microglia cells. This investigation offers valuable insights into the biotransformation of CBC, underscoring the physiological importance and the potential significance of these metabolites.
Collapse
Affiliation(s)
- Pritam Roy
- School
of Chemistry and Biochemistry, College of Sciences, and Parker H.
Petit Institute for Bioengineering and Biosciences (IBB), Georgia Institute of Technology (GaTech), Atlanta, Georgia 30332, United States
| | - Jonathan Maturano
- Roger
Adams Laboratory, Department of Chemistry, Cancer Center at Illinois, University of Illinois, Urbana, Illinois 61801, United States
| | - Hale Hasdemir
- Theoretical
and Computational Biophysics Group, NIH Center for Macromolecular
Modeling and Visualization, Beckman Institute for Advanced Science
and Technology, Department of Biochemistry, and Center for Biophysics
and Quantitative Biology, University of
Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Angel Lopez
- School
of Chemistry and Biochemistry, College of Sciences, and Parker H.
Petit Institute for Bioengineering and Biosciences (IBB), Georgia Institute of Technology (GaTech), Atlanta, Georgia 30332, United States
| | - Fengyun Xu
- Judith
Hellman Department of Anesthesia and Perioperative Care, University of California, San Francisco, California 94143, United States
| | - Judith Hellman
- Department
of Anesthesia and Perioperative Care, University
of California, San Francisco, California 94143, United States
| | - Emad Tajkhorshid
- Theoretical
and Computational Biophysics Group, NIH Center for Macromolecular
Modeling and Visualization, Beckman Institute for Advanced Science
and Technology, Department of Biochemistry, and Center for Biophysics
and Quantitative Biology, University of
Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - David Sarlah
- Roger
Adams Laboratory, Department of Chemistry, Cancer Center at Illinois, University of Illinois, Urbana, Illinois 61801, United States
| | - Aditi Das
- School
of Chemistry and Biochemistry, College of Sciences, and Parker H.
Petit Institute for Bioengineering and Biosciences (IBB), Georgia Institute of Technology (GaTech), Atlanta, Georgia 30332, United States
| |
Collapse
|
40
|
Chang J, Fan X, Tian B. DeepP450: Predicting Human P450 Activities of Small Molecules by Integrating Pretrained Protein Language Model and Molecular Representation. J Chem Inf Model 2024; 64:3149-3160. [PMID: 38587937 DOI: 10.1021/acs.jcim.4c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Cytochrome P450 enzymes (CYPs) play a crucial role in Phase I drug metabolism in the human body, and CYP activity toward compounds can significantly affect druggability, making early prediction of CYP activity and substrate identification essential for therapeutic development. Here, we established a deep learning model for assessing potential CYP substrates, DeepP450, by fine-tuning protein and molecule pretrained models through feature integration with cross-attention and self-attention layers. This model exhibited high prediction accuracy (0.92) on the test set, with area under the receiver operating characteristic curve (AUROC) values ranging from 0.89 to 0.98 in substrate/nonsubstrate predictions across the nine major human CYPs, surpassing current benchmarks for CYP activity prediction. Notably, DeepP450 uses only one model to predict substrates/nonsubstrates for any of the nine CYPs and exhibits certain generalizability on novel compounds and different categories of human CYPs, which could greatly facilitate early stage drug design by avoiding CYP-reactive compounds.
Collapse
Affiliation(s)
- Jiamin Chang
- MOE Key Laboratory of Bioinformatics, State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaoyu Fan
- MOE Key Laboratory of Bioinformatics, State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Boxue Tian
- MOE Key Laboratory of Bioinformatics, State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
41
|
Liu J, Curtin C, Lall R, Lane S, Wieke J, Ariza A, Sejour L, Vlachos I, Zordoky BN, Peterson RT, Asnani A. Inhibition of Cyp1a Protects Mice against Anthracycline Cardiomyopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588915. [PMID: 38645084 PMCID: PMC11030370 DOI: 10.1101/2024.04.10.588915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background Anthracyclines such as doxorubicin (Dox) are highly effective anti-tumor agents, but their use is limited by dose-dependent cardiomyopathy and heart failure. Our laboratory previously reported that induction of cytochrome P450 family 1 (Cyp1) enzymes contributes to acute Dox cardiotoxicity in zebrafish and in mice, and that potent Cyp1 inhibitors prevent cardiotoxicity. However, the role of Cyp1 enzymes in chronic Dox cardiomyopathy, as well as the mechanisms underlying cardioprotection associated with Cyp1 inhibition, have not been fully elucidated. Methods The Cyp1 pathway was evaluated using a small molecule Cyp1 inhibitor in wild-type (WT) mice, or Cyp1-null mice ( Cyp1a1/1a2 -/- , Cyp1b1 -/- , and Cyp1a1/1a2/1b1 -/- ). Low-dose Dox was administered by serial intraperitoneal or intravenous injections, respectively. Expression of Cyp1 isoforms was measured by RT-qPCR, and myocardial tissue was isolated from the left ventricle for RNA sequencing. Cardiac function was evaluated by transthoracic echocardiography. Results In WT mice, Dox treatment was associated with a decrease in Cyp1a2 and increase in Cyp1b1 expression in the heart and in the liver. Co-treatment of WT mice with Dox and the novel Cyp1 inhibitor YW-130 protected against cardiac dysfunction compared to Dox treatment alone. Cyp1a1/1a2 -/- and Cyp1a1/1a2/1b1 -/- mice were protected from Dox cardiomyopathy compared to WT mice. Male, but not female, Cyp1b1 -/- mice had increased cardiac dysfunction following Dox treatment compared to WT mice. RNA sequencing of myocardial tissue showed upregulation of Fundc1 and downregulation of Ccl21c in Cyp1a1/1a2 -/- mice treated with Dox, implicating changes in mitophagy and chemokine-mediated inflammation as possible mechanisms of Cyp1a-mediated cardioprotection. Conclusions Taken together, this study highlights the potential therapeutic value of Cyp1a inhibition in mitigating anthracycline cardiomyopathy.
Collapse
|
42
|
Jiang YJ, Cao YM, Cao YB, Yan TH, Jia CL, He P. A Review: Cytochrome P450 in Alcoholic and Non-Alcoholic Fatty Liver Disease. Diabetes Metab Syndr Obes 2024; 17:1511-1521. [PMID: 38586542 PMCID: PMC10997053 DOI: 10.2147/dmso.s449494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/16/2024] [Indexed: 04/09/2024] Open
Abstract
Alcoholic fatty liver disease (FALD) and non-alcoholic fatty liver disease (NAFLD) have similar pathological spectra, both of which are associated with a series of symptoms, including steatosis, inflammation, and fibrosis. These clinical manifestations are caused by hepatic lipid synthesis and metabolism dysregulation and affect human health. Despite having been studied extensively, targeted therapies remain elusive. The Cytochrome P450 (CYP450) family is the most important drug-metabolising enzyme in the body, primarily in the liver. It is responsible for the metabolism of endogenous and exogenous compounds, completing biological transformation. This process is relevant to the occurrence and development of AFLD and NAFLD. In this review, the correlation between CYP450 and liver lipid metabolic diseases is summarised, providing new insights for the treatment of AFLD and NAFLD.
Collapse
Affiliation(s)
- Yu-Jie Jiang
- Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200082, People’s Republic of China
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211100, People’s Republic of China
| | - Ye-Ming Cao
- Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200082, People’s Republic of China
| | - Yong-Bing Cao
- Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200082, People’s Republic of China
| | - Tian-Hua Yan
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211100, People’s Republic of China
| | - Cheng-Lin Jia
- Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200082, People’s Republic of China
| | - Ping He
- Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200082, People’s Republic of China
| |
Collapse
|
43
|
Li X, Liu Y. Multiscale Study on the Intramolecular C-S Bond Formation Catalyzed by P450 Monooxygenase CxnD Involved in the Biosynthesis of Chuangxinmycin: The Critical Roles of Noncrystal Water Molecule and Conformational Change. Inorg Chem 2024; 63:4086-4098. [PMID: 38376137 DOI: 10.1021/acs.inorgchem.3c03748] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Cytochrome P450 monooxygenase CxnD catalyzes intramolecular C-S bond formation in the biosynthesis of chuangxinmycin, which is representative of the synthesis of sulfur-containing natural heterocyclic compounds. The intramolecular cyclization usually requires the activation of two reaction sites and a large conformational change; thus, illuminating its detailed reaction mechanism remains challengeable. Here, the reaction pathway of CxnD-catalyzed C-S bond formation was clarified by a series of calculations, including Gaussian accelerated molecular dynamics simulations and quantum mechanical-molecular mechanical calculations. Our results revealed that the C-S formation follows a diradical coupling mechanism. CxnD first employs Cpd I to abstract the hydrogen atom from the imino group of the indole ring, and then, the resulted Cpd II further extracts another hydrogen atom from the thiol group of the side chain to afford a diradical intermediate, in which a noncrystal water molecule entering into the active site after the formation of Cpd I was proved to play an indispensable role. Moreover, the diradical intermediate cannot directly perform the coupling reaction. It should first undergo a series of conformational changes leading to the proximity of two reaction sites. It is the flexibility of the active site of the enzyme and the side chain of the substrate that makes the diradical coupling to be successful.
Collapse
Affiliation(s)
- Xinyi Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
44
|
Russo T, Coppola F, Paris D, De Marchi L, Meucci V, Motta A, Carbone M, Di Cosmo A, Soares AMVM, Pretti C, Mollo E, Freitas R, Polese G. Exploring toxicological interactions in a changing sea: The case of the alkaloids caffeine and caulerpin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169190. [PMID: 38092204 DOI: 10.1016/j.scitotenv.2023.169190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023]
Abstract
The bisindolic alkaloid caulerpin (CAU) is a bioactive compound isolated from green algae of the genus Caulerpa that are highly invasive in the Mediterranean Sea. On the other side, the purine alkaloid caffeine (CAF) is one of the most globally consumed psychoactive substances and a widespread anthropogenic water pollutant. Both compounds display a large panel of biological properties and are well known to accumulate in the tissues of aquatic organisms and, in certain circumstances, co-occur in the human diet. On this premise, the present study aimed to investigate possible synergistic interactions between CAU and CAF by using the bivalve Mytilus galloprovincialis as a model organism. Mussels were exposed to CAF via medium while they were fed with food enriched with CAU. After treatments, biochemical analysis confirmed the toxic potential of CAF, with increased AChE activity and lipid peroxidation. Also, histopathological alterations were observed in the gills and digestive tubules. The NMR-based metabolomics analysis detected higher levels of free amino acids under CAF treatments. Conversely, the food administration of CAU did not affect the above toxicological biomarkers. In addition, we did not observe any cumulative effect between CAF and CAU toward increased cellular damage and neurotoxicity. On the other hand, a possible action of CAU in decreasing CAF toxicity could be hypothesized based on our results. This hypothesis is supported by the activity of CAU as an agonist of peroxisome proliferator-activated receptors (PPARs). PPARs mediate xenobiotic detoxification via cytochromes P450, which is involved in CAF metabolism. Overall, the results obtained not only rule out any cumulative adverse effects of CAF and CAU but also encourage further research to evaluate the possible use of CAU, a compound easily obtained through the valorization of biomass from invasive species, as a food additive to improve the clearance of xenobiotics.
Collapse
Affiliation(s)
- Tania Russo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Francesca Coppola
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Debora Paris
- Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli, NA, Italy
| | - Lucia De Marchi
- Department of Veterinary Sciences, University of Pisa, 56122 San Piero a Grado, PI, Italy
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, 56122 San Piero a Grado, PI, Italy
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli, NA, Italy
| | - Marianna Carbone
- Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli, NA, Italy
| | - Anna Di Cosmo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, 56122 San Piero a Grado, PI, Italy
| | - Ernesto Mollo
- Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli, NA, Italy
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy.
| |
Collapse
|
45
|
Zhang M, Rottschäfer V, C M de Lange E. The potential impact of CYP and UGT drug-metabolizing enzymes on brain target site drug exposure. Drug Metab Rev 2024; 56:1-30. [PMID: 38126313 DOI: 10.1080/03602532.2023.2297154] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Drug metabolism is one of the critical determinants of drug disposition throughout the body. While traditionally associated with the liver, recent research has unveiled the presence and functional significance of drug-metabolizing enzymes (DMEs) within the brain. Specifically, cytochrome P-450 enzymes (CYPs) and UDP-glucuronosyltransferases (UGTs) enzymes have emerged as key players in drug biotransformation within the central nervous system (CNS). This comprehensive review explores the cellular and subcellular distribution of CYPs and UGTs within the CNS, emphasizing regional expression and contrasting profiles between the liver and brain, humans and rats. Moreover, we discuss the impact of species and sex differences on CYPs and UGTs within the CNS. This review also provides an overview of methodologies for identifying and quantifying enzyme activities in the brain. Additionally, we present factors influencing CYPs and UGTs activities in the brain, including genetic polymorphisms, physiological variables, pathophysiological conditions, and environmental factors. Examples of CYP- and UGT-mediated drug metabolism within the brain are presented at the end, illustrating the pivotal role of these enzymes in drug therapy and potential toxicity. In conclusion, this review enhances our understanding of drug metabolism's significance in the brain, with a specific focus on CYPs and UGTs. Insights into the expression, activity, and influential factors of these enzymes within the CNS have crucial implications for drug development, the design of safe drug treatment strategies, and the comprehension of drug actions within the CNS. To that end, CNS pharmacokinetic (PK) models can be improved to further advance drug development and personalized therapy.
Collapse
Affiliation(s)
- Mengxu Zhang
- Division of Systems Pharmacology and Pharmacy, Predictive Pharmacology Group, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Vivi Rottschäfer
- Mathematical Institute, Leiden University, Leiden, The Netherlands
- Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Amsterdam, The Netherlands
| | - Elizabeth C M de Lange
- Division of Systems Pharmacology and Pharmacy, Predictive Pharmacology Group, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
46
|
Kumar N, Thorat ST, Chavhan SR. Multifunctional role of dietary copper to regulate stress-responsive gene for mitigation of multiple stresses in Pangasianodon hypophthalmus. Sci Rep 2024; 14:2252. [PMID: 38278845 PMCID: PMC10817903 DOI: 10.1038/s41598-024-51170-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/01/2024] [Indexed: 01/28/2024] Open
Abstract
It is an urgent needs to address climate change and pollution in aquatic systems using suitable mitigation measures to avoid the aquatic animals' extinction. The vulnerability and extinction of the aquatic animals in the current scenario must be addressed to enhance safe fish food production. Taking into consideration of such issues in fisheries and aquaculture, an experiment was designed to mitigate high temperature (T) and low pH stress, as well as arsenic (As) pollution in fish using copper (Cu) containing diets. In the present investigation, the Cu-containing diets graded with 0, 4, 8, and 12 mg kg-1 were prepared and fed to Pangasianodon hypophthalmus reared under As, low pH, and high-temperature stress. The gene expression was highly affected in terms of the primary, secondary, and tertiary stress response, whereas supplementation of Cu-containing diet mitigates the stress response. Oxidative stress genes such as catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) were significantly upregulated by stressors (As, As + T, and As + pH + T). Whereas, heat shock protein (HSP 70), inducible nitric oxide synthase (iNOS), metallothionine (MT), caspase 3a (Cas 3a), and cytochrome P450 (CYP 450) were highly upregulated by stressors, while dietary Cu at 8 mg kg-1 diet significantly downregulated these gene expressions. Indeed, the immunity-related genes viz. TNFα, Ig, TLR, and immune-related attributes viz. albumin, globulin, total protein, A:G ratio, blood glucose, NBT, and myeloperoxidase (MPO) were also improved with Cu-containing diets. Cu containing diets substantially improved neurotransmitter enzyme (AChE) and vitamin C (Vit C). DNA damage was also reduced with supplementation of Cu at 8 mg kg-1 diet. The growth index viz. final body weight gain (%), specific growth rate, protein efficiency ratio, food conversion ratio, relative feed intake, and daily growth index were noticeably enhanced by Cu diets (4 and 8 mg kg-1 diet). The growth-related genes expressions viz. growth hormone (GH), growth hormone regulator 1 (Ghr1), growth hormone regulator β (Ghrβ,) myostatin (MYST), and somatostatin (SMT) supported the growth enhancement with Cu at 8 mg kg-1 diet. The bioaccumulation of As was reduced with Cu-containing diets. The fish were infected with Aeromonas hydrophila at the end of the 105 days experimental trial. Cu at 8 mg kg-1 diet improved immunity, reduced the cumulative mortality, and enhanced the relative percentage survival of the fish. The results revealed that the innovative Cu diets could reduce the extinction of the fish against climate change and pollution era and produce the safest production that is safe to humans for consumption.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra, 413115, India.
| | - Supriya Tukaram Thorat
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra, 413115, India
| | - Samiksha R Chavhan
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra, 413115, India
| |
Collapse
|
47
|
Ali M, Farhat SM, Haleem A. Metabolic Carcinogenesis. Cancer Treat Res 2024; 191:33-55. [PMID: 39133403 DOI: 10.1007/978-3-031-55622-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Several types of environmental, chemical and metabolic carcinogens exist both exogenously and endogenously. Humans are daily exposed to aforementioned carcinogens through various sources such as through water, air and food or through metabolic and inflammatory products. This chapter will summarize the links between exogenous and endogenous carcinogen exposure and their metabolism with the cancer pathogenesis and associated risks. This chapter will also cover the carcinogens acquired through lifestyle factors like tobacco use and occupational exposures to different chemicals like asbestos, arsenic, chloroform, vinyl chloride, etc. Moreover, environmental carcinogens such as radiation, sunlight, diet, smoke, etc. will also be discussed in this chapter. Furthermore, there are certain carcinogens that require bio-activation and various human enzymes that play a vital role in the metabolic carcinogenesis will also be recapitulated. Necessary preventive measures against carcinogenic exposure from the exogenous environment are significant to be taken into account to reduce the risks associated with the carcinogens.
Collapse
Affiliation(s)
- Mahwish Ali
- National University of Medical Sciences, Rawalpindi, Pakistan.
| | | | | |
Collapse
|
48
|
Riffi R, Boughrara W, Chentouf A, Ilias W, Brahim NMT, Berrebbah AA, Belhoucine F. Pharmacogenetics of Carbamazepine: A Systematic Review on CYP3A4 and CYP3A5 Polymorphisms. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1463-1473. [PMID: 38859787 DOI: 10.2174/0118715273298953240529100325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND AND OBJECTIVE The association between carbamazepine (CBZ) metabolism and resistance in epilepsy and the genetic polymorphisms of CYP3A5 (rs776746 and rs15524) and CYP3A4 (rs2242480, rs2740574, rs35599367, rs12721627, and rs28371759) has been the subject of previous investigations with controversial results. Hence, we conducted a systematic review to assess the potential link between these polymorphisms and CBZ metabolism and resistance. METHODS Identifying relevant studies was carried out by searching PubMed, Scopus, PharmGKB, EPIGAD, and PHARMAADME databases up until June 2023. The studies included in our analysis investigated the connection between CYP3A5 (rs776746 and rs15524) and CYP3A4 (rs2242480, rs2740574, rs35599367, rs12721627, and rs28371759) polymorphisms and CBZ metabolism and resistance. RESULTS This review included a total of 23 studies and more than 2177 epilepsy patients. It was found that the CYP3A4 (rs12721627 and rs28371759) polymorphisms are associated with reduced catalytic activity, whereas the CYP3A4 (rs2740574) polymorphism is linked to lower levels of CBZ-diol and decreased activity. It was also observed that the CYP3A5 (rs776746) polymorphism influences the dose-adjusted plasma levels of CBZ. CONCLUSION Although these findings highlight the impact of genetic variations in the CYP3A4 and CYP3A5 genes on CBZ pharmacokinetics and pharmacodynamics, further studies across diverse populations are essential to enhance personalized epilepsy therapy in clinical settings.
Collapse
Affiliation(s)
- Rachda Riffi
- Ecole Supérieure en Sciences Biologiques d'Oran (ESSBO), BP 1042, Saim Mohamed 31003, Oran, Algeria
| | - Wefa Boughrara
- Ecole Supérieure en Sciences Biologiques d'Oran (ESSBO), BP 1042, Saim Mohamed 31003, Oran, Algeria
- Laboratoire de Toxicologie, Environnement et santé, LATES, USTO-MB, Algeria
| | - Amina Chentouf
- Service de Neurologie, Centre Hospitalo-Universitaire d'Oran, Oran, Algeria
- Laboratoire de Recherche ACCIPED, Faculté de Médecine, Université Oran1, Oran, Algeria
| | - Wassila Ilias
- Ecole Supérieure en Sciences Biologiques d'Oran (ESSBO), BP 1042, Saim Mohamed 31003, Oran, Algeria
| | | | | | - Fatma Belhoucine
- Laboratoire de Toxicologie, Environnement et santé, LATES, USTO-MB, Algeria
| |
Collapse
|
49
|
Akkulak M, Evin E, Durukan O, Celebioglu HU, Adali O. Modulation of Caco-2 Colon Cancer Cell Viability and CYP2W1 Gene Expression by Hesperidin-treated Lacticaseibacillus rhamnosus GG (LGG) Cell-free Supernatants. Anticancer Agents Med Chem 2024; 24:372-378. [PMID: 38058098 DOI: 10.2174/0118715206271514231124111026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Ensuring colon homeostasis is of significant influence on colon cancer and delicate balance is maintained by a healthy human gut microbiota. Probiotics can modulate the diversity of the gut microbiome and prevent colon cancer. Metabolites/byproducts generated by microbial metabolism significantly impact the healthy colonic environment. Hesperidin is a polyphenolic plant compound well known for its anticancer properties. However, low bioavailability of hesperidin after digestion impedes its effectiveness. CYP2W1 is a newly discovered oncofetal gene with an unknown function. CYP2W1 gene expression peaks during embryonic development and is suddenly silenced immediately after birth. Only in the case of some types of cancer, particularly colorectal and hepatocellular carcinomas, this gene is reactivated and its expression is correlated with the severity of the disease. This study aimed to investigate the effects of hesperidin-treated Lacticaseibacillus rhamnosus GG (LGG) cell-free supernatants on CaCo2 colon cancer cell viability and CYP2W1 gene expression. METHODS Alamar Blue cell viability assay was used to investigate the cytotoxic effect of cell-free supernatant of LGG grown in the presence of hesperidin on CaCo2 cells. To observe the effect of cell-free supernatants of LGG on the expression of CYP2W1 gene, qRT-PCR was performed. RESULTS Five times diluted hesperidin treated cell-free supernatant (CFS) concentration considerably reduced CaCo2 colon cancer cell viability. Furthermore, CYP2W1 gene expression was similarly reduced following CFS treatments and nearly silenced under probiotic bacteria CFS treatment. CONCLUSION The CYP2W1 gene expression was strongly reduced by cell-free supernatants derived from LGG culture, with or without hesperidin. This suggests that the suppression may be due to bacterial byproducts rather than hesperidin. Therefore, the CYP2W1 gene in the case of deregulation of these metabolites may cause CYP2W1-related colon cancer cell proliferation.
Collapse
Affiliation(s)
- Merve Akkulak
- Department of Biological Sciences, Faculty of Science, Middle East Technical University, Ankara, 06800, Turkey
| | - Emre Evin
- Department of Biological Sciences, Faculty of Science, Middle East Technical University, Ankara, 06800, Turkey
| | - Ozlem Durukan
- Department of Biological Sciences, Faculty of Science, Middle East Technical University, Ankara, 06800, Turkey
| | - Hasan Ufuk Celebioglu
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, 74100, Turkey
| | - Orhan Adali
- Department of Biological Sciences, Faculty of Science, Middle East Technical University, Ankara, 06800, Turkey
| |
Collapse
|
50
|
Ouellette V, Chavez Alvarez AC, Bouzriba C, Hamel-Côté G, Fortin S. 4-(3-Alkyl-2-oxoimidazolidin-1-yl)-N-phenylbenzenesulfonamide salts: Novel hydrosoluble prodrugs of antimitotics selectively bioactivated by the cytochrome P450 1A1 in breast cancer cells. Bioorg Chem 2023; 140:106820. [PMID: 37672952 DOI: 10.1016/j.bioorg.2023.106820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/09/2023] [Accepted: 08/27/2023] [Indexed: 09/08/2023]
Abstract
4-(3-Alkyl-2-oxoimidazolidin-1-yl)-N-phenylbenzenesulfonamides (PAIB-SAs) are members of a new family of prodrugs bioactivated by cytochrome P450 1A1 (CYP1A1) in breast cancer cells into their potent 4-(2-oxoimidazolidin-1-yl)-N-phenylbenzenesulfonamide metabolites (PIB-SAs). One of the predominant problems for the galenic formulation and administration of PAIB-SAs in animal studies is their poor hydrosolubility. To circumvent that difficulty, we report the design, the synthesis, the chemical characterization, the evaluation of the aqueous solubility, the antiproliferative activity and the mechanism of action of 18 new Na+, K+ and Li+ salts of PAIB-SAs. Our results evidenced that the latter exhibited highly selective antiproliferative activity toward MCF7 and MDA-MB-468 breast cancer cells expressing endogenously CYP1A1 compared to insensitive MDA-MB-231 and HaCaT cells. Moreover, PAIB-SA salts 1-18 are significantly more hydrosoluble (3.9-9.4 mg/mL) than their neutral counterparts (< 0.0001 mg/mL). In addition, the most potent PAIB-SA salts 1-3 and 10-12 arrested the cell cycle progression in the G2/M phase and disrupted the cytoskeleton's dynamic assembly. Finally, PAIB-SA salts are N-dealkylated by CYP1A1 into their corresponding PIB-SA metabolites, which are potent antimitotics. In summary, our results show that our water-soluble PAIB-SA salts, notably the sodium salts, still exhibit potent antiproliferative efficacy and remain prone to CYP1A1 bioactivation. In addition, these PAIB-SA salts will allow the development of galenic formulations suitable for further biopharmaceutical and pharmacodynamic studies.
Collapse
Affiliation(s)
- Vincent Ouellette
- Centre de recherche du CHU de Québec-Université Laval, Axe Oncologie, Hôpital Saint-François d'Assise, 10 rue de l'Espinay, Québec, Québec G1L 3L5, Canada; Faculté de pharmacie, Université Laval, Québec, Québec G1V 0A6, Canada.
| | - Atziri Corin Chavez Alvarez
- Centre de recherche du CHU de Québec-Université Laval, Axe Oncologie, Hôpital Saint-François d'Assise, 10 rue de l'Espinay, Québec, Québec G1L 3L5, Canada; Faculté de pharmacie, Université Laval, Québec, Québec G1V 0A6, Canada; Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval (IUCPQ), 2725 Chemin Ste-Foy, Québec, Québec G1V 4G5, Canada.
| | - Chahrazed Bouzriba
- Centre de recherche du CHU de Québec-Université Laval, Axe Oncologie, Hôpital Saint-François d'Assise, 10 rue de l'Espinay, Québec, Québec G1L 3L5, Canada; Faculté de pharmacie, Université Laval, Québec, Québec G1V 0A6, Canada.
| | - Geneviève Hamel-Côté
- Centre de recherche du CHU de Québec-Université Laval, Axe Oncologie, Hôpital Saint-François d'Assise, 10 rue de l'Espinay, Québec, Québec G1L 3L5, Canada.
| | - Sébastien Fortin
- Centre de recherche du CHU de Québec-Université Laval, Axe Oncologie, Hôpital Saint-François d'Assise, 10 rue de l'Espinay, Québec, Québec G1L 3L5, Canada; Faculté de pharmacie, Université Laval, Québec, Québec G1V 0A6, Canada.
| |
Collapse
|