1
|
Castagnoli R, Pala F, Subramanian P, Oguz C, Schwarz B, Lim AI, Burns AS, Fontana E, Bosticardo M, Corsino C, Angelova A, Delmonte OM, Kenney H, Riley D, Smith G, Ott de Bruin L, Oikonomou V, Dos Santos Dias L, Fink D, Bohrnsen E, Kimzey CD, Marseglia GL, Alva-Lozada G, Bergerson JR, Brett A, Brigatti KW, Dimitrova D, Dutmer CM, Freeman AF, Ale H, Holland SM, Licciardi F, Pasic S, Poskitt LE, Potts DE, Dasso JF, Sharapova SO, Strauss KA, Ward BR, Yilmaz M, Kuhns DB, Lionakis MS, Daley SR, Kong HH, Segre JA, Villa A, Pittaluga S, Walter JE, Vujkovic-Cvijin I, Belkaid Y, Notarangelo LD. Immunopathological and microbial signatures of inflammatory bowel disease in partial RAG deficiency. J Exp Med 2025; 222:e20241993. [PMID: 40314722 PMCID: PMC12047384 DOI: 10.1084/jem.20241993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/16/2025] [Accepted: 04/10/2025] [Indexed: 05/03/2025] Open
Abstract
Partial RAG deficiency (pRD) can manifest with systemic and tissue-specific immune dysregulation, with inflammatory bowel disease (IBD) in 15% of the patients. We aimed at identifying the immunopathological and microbial signatures associated with IBD in patients with pRD and in a mouse model of pRD (Rag1w/w) with spontaneous development of colitis. pRD patients with IBD and Rag1w/w mice showed a systemic and colonic Th1/Th17 inflammatory signature. Restriction of fecal microbial diversity, abundance of pathogenic bacteria, and depletion of microbial species producing short-chain fatty acid were observed, which were associated with impaired induction of lamina propria peripheral Treg cells in Rag1w/w mice. The use of vedolizumab in Rag1w/w mice and of ustekinumab in a pRD patient were ineffective. Antibiotics ameliorated gut inflammation in Rag1w/w mice, but only bone marrow transplantation (BMT) rescued the immunopathological and microbial signatures. Our findings shed new light in the pathophysiology of gut inflammation in pRD and establish a curative role for BMT to resolve the disease phenotype.
Collapse
Affiliation(s)
- Riccardo Castagnoli
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Poorani Subramanian
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cihan Oguz
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Schwarz
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Ai Ing Lim
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrew S. Burns
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cristina Corsino
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Angelina Angelova
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Heather Kenney
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Deanna Riley
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Grace Smith
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa Ott de Bruin
- Willem-Alexander Children’s Hospital, Department of Pediatrics, Pediatric Stem Cell Transplantation Program, Leiden University Medical Center, Leiden, Netherlands
| | - Vasileios Oikonomou
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lucas Dos Santos Dias
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Danielle Fink
- Neutrophil Monitoring Lab, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Eric Bohrnsen
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Cole D. Kimzey
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Gian Luigi Marseglia
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Guisela Alva-Lozada
- Allergy and Immunology Division Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru
| | - Jenna R.E. Bergerson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ana Brett
- Hospital Pediátrico, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
- Clínica Universitária de Pediatria, Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
| | | | - Dimana Dimitrova
- Experimental Transplantation and Immunotherapy Branch, National Cancer Institute of the National Institutes of Health, Bethesda, MD, USA
| | - Cullen M. Dutmer
- Allergy and Immunology, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexandra F. Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hanadys Ale
- Division of Immunology, Allergy and Rheumatology, Joe DiMaggio Children’s Hospital, Memorial Healthcare System, Hollywood, FL, USA
| | - Steven M. Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Francesco Licciardi
- Immuno-reumatologia, Pediatria Specialistica Universitaria, Ospedale Infantile Regina Margherita, Torino, Italy
| | - Srdjan Pasic
- Department of Pediatric Immunology, Mother and Child Health Institute, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | | | - David E. Potts
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
| | - Joseph F. Dasso
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
| | - Svetlana O. Sharapova
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | | | - Brant R. Ward
- Division of Allergy and Immunology, Children’s National Hospital, Washington, DC, USA
| | - Melis Yilmaz
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
| | - Douglas B. Kuhns
- Neutrophil Monitoring Lab, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Michail S. Lionakis
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stephen R. Daley
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Heidi H. Kong
- Cutaneous Microbiome and Inflammation Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julia A. Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anna Villa
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Stefania Pittaluga
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jolan E. Walter
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
| | - Ivan Vujkovic-Cvijin
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Immunology, Institut Pasteur, Paris, France
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Lei Y, Deng Y, Xia R, Xie B, Yang Z, Xi S, Chen P, Tao R. Full-length 16S rRNA-based exploration of body site-specific bacterial signatures for origin determination and individual identification. Forensic Sci Int 2025; 371:112475. [PMID: 40286757 DOI: 10.1016/j.forsciint.2025.112475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/13/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
When the available human-derived information at a crime scene is limited, it poses challenges in determining the origin of the biological materials and identifying their donors. In this context, microorganisms have gradually emerged as a valuable complementary tool. Nowadays, the application of third-generation sequencing technology for full-length 16S rRNA sequencing to explore the specific bacterial biomarkers in various biological materials holds significant research and practical value. In this study, we performed full-length 16S rRNA gene sequencing on sterile swabs from palmar skin, oral mucosa, and nasal cavity using the PacBio single-molecule real-time sequencing (SMRT) platform. Alongside identifying specific bacterial biomarkers for these biological materials from different body sites, the study also preliminarily explored the specific bacterial taxa in 19 individuals at the phylum, genus, and species levels. The results showed that the palmar skin bacteria primarily consist of Cutibacterium, Staphylococcus, and Streptococcus, the oral mucosal bacteria are dominated by Streptococcus, Neisseria, and Haemophilus, while the dominant bacteria in nasal cavity are Staphylococcus and Cutibacterium. Beta diversity analysis revealed significant differences in the bacterial community composition across the three origins of biological materials. Furthermore, classification models based on the bacterial species were constructed using the Random Forest, XGBoost, and KNN algorithms. The results showed that both Random Forest and XGBoost models achieved an accuracy of 97 %, significantly outperforming the KNN model (79 %). The prediction accuracy at the OTU level was comparable to that at the species level. In addition, bacterial community differences between individuals were observed at both the genus and species levels. Overall, this study further explores the potential of classification prediction methods based on bacterial features for distinguishing the body site origins of different biological materials and enabling individual traceability, thereby providing valuable data to support the application of microbiological techniques in forensic practice.
Collapse
Affiliation(s)
- Yinlei Lei
- Key Laboratory of Cell Engineering of Guizhou Province, Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563099, China; Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai 200063, China
| | - Yu Deng
- Key Laboratory of Cell Engineering of Guizhou Province, Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563099, China; Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai 200063, China
| | - Ruocheng Xia
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai 200063, China
| | - Baoyan Xie
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai 200063, China
| | - Zhenchen Yang
- Criminal Science and Technology Research Institute, Fengxian Branch of Shanghai Municipal Public Security Bureau, Shanghai 201499, China
| | - Shuangyun Xi
- School of Forensic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Pengyu Chen
- Key Laboratory of Cell Engineering of Guizhou Province, Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563099, China.
| | - Ruiyang Tao
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai 200063, China.
| |
Collapse
|
3
|
Langer-Gould AM, Cepon-Robins TJ, Benn Torres J, Yeh EA, Gildner TE. Embodiment of structural racism and multiple sclerosis risk and outcomes in the USA. Nat Rev Neurol 2025:10.1038/s41582-025-01096-5. [PMID: 40425864 DOI: 10.1038/s41582-025-01096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2025] [Indexed: 05/29/2025]
Abstract
Disparities in the incidence, prevalence and outcomes of multiple sclerosis (MS) exist in the USA, often to the detriment of Black and Hispanic people. Despite the common misconception that MS is a disease of white people, the incidence is highest in Black people. Disability accumulates faster and at younger ages in Black and Hispanic people with MS than in their white counterparts, and MS-related mortality in early and mid-adulthood is highest in Black people. These differences are often erroneously interpreted as evidence of innate racial or ethnic variations. In this Perspective, we demonstrate how race and ethnicity - social constructs with a limited biological basis that are often assigned by systems of power - can influence biology through lived experiences, a phenomenon termed 'embodiment'. We review how downstream consequences of structural racism can lead to biological outcomes strongly associated with MS susceptibility, such as imbalanced immune system development, dysregulated immune responses to the Epstein-Barr virus and childhood obesity. We also consider how inequitable health-care access and quality, combined with the younger age of onset and higher comorbidity burdens, might explain racial and ethnic disparities in MS prognosis. Our proposed conceptual model offers a roadmap for generating knowledge and implementing interventions to narrow racial and ethnic disparities in MS susceptibility and outcomes.
Collapse
Affiliation(s)
- Annette M Langer-Gould
- Department of Neurology, Los Angeles Medical Center, Southern California Permanente Medical Group, Los Angeles, CA, USA.
- Department of Clinical Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA, USA.
| | - Tara J Cepon-Robins
- Department of Anthropology, University of Colorado Colorado Springs, Colorado Springs, CO, USA
| | - Jada Benn Torres
- Department of Anthropology, Genetic Anthropology and Biocultural Studies Laboratory, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - E Ann Yeh
- Department of Paediatrics Neurology, University of Toronto, Toronto, Ontario, Canada
- Paediatric MS and Neuroinflammatory Disorders Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario, Canada
| | - Theresa E Gildner
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
4
|
Lee A, Iordanova RT, Smith JB, Li BH, Schwarzmann KB, Alsalek S, Habeshian TS, Budhathoki S, Hernandez-Lopez V, Torres F, Langer-Gould AM. Incidence and prevalence of neuromyelitis optica spectrum disorder in a contemporary, multi-ethnic cohort. Mult Scler 2025; 31:642-657. [PMID: 40156304 DOI: 10.1177/13524585251328554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
BACKGROUND Ecological comparisons suggest that neuromyelitis optic spectrum disorder (NMOSD) is more common in African Caribbean and Asian compared to White people. OBJECTIVE The aim is to rigorously assess susceptibility across multiple racial and ethnic groups from the same cohort. METHODS We conducted a retrospective cohort study of > 39 million person-years of observation from members of Kaiser Permanente Southern California. The electronic health records of individuals with at least one International Classification of Diseases (ICD) code for NMOSD were reviewed to identify persons who met 2015 diagnostic criteria for NMOSD. RESULTS We identified 153 NMOSD cases, 105 incident and 105 prevalent. The age- and sex-standardized incidence (2013-2022) and prevalence (2019) according to the 2020 US Census per 100,000 person-years was significantly higher in Black persons (incidence = 0.90, 95% confidence interval (CI) = 0.59-1.21; prevalence = 8.44, 95% CI = 5.52-11.36) compared to all other racial and ethnic groups. The incidence was similar among Asian/Pacific Islander (0.32, 95% CI = 0.16-0.48) compared to Hispanic people (0.19, 95% CI = 0.13-0.25) and lowest in White people (incidence = 0.13, 95% CI = 0.07-0.19). DISCUSSION NMOSD susceptibility is highest in Black people, followed by Asian/Pacific Islands, then Hispanic people, and lowest in White people. Studies in diverse groups of minoritized people are needed to determine whether this increased susceptibility is due to shared genetic ancestry, the ill-health consequences of racism, or both.
Collapse
Affiliation(s)
- Angus Lee
- Department of Neurology Residency Program, Los Angeles Medical Center, Southern California Permanente Medical Group, Los Angeles, CA, USA
| | - Radostina T Iordanova
- Department of Neurology Residency Program, Los Angeles Medical Center, Southern California Permanente Medical Group, Los Angeles, CA, USA
| | - Jessica B Smith
- Department of Research & Evaluation, Southern California Permanente Medical Group, Pasadena, CA, USA
| | - Bonnie H Li
- Department of Research & Evaluation, Southern California Permanente Medical Group, Pasadena, CA, USA
| | | | - Samir Alsalek
- Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA, USA
| | - Talar S Habeshian
- Department of Research & Evaluation, Southern California Permanente Medical Group, Pasadena, CA, USA
| | - Sakar Budhathoki
- Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA, USA
| | | | - Fernando Torres
- Department of Diagnostic Imaging, Los Angeles Medical Center, Southern California Permanente Medical Group, Los Angeles, CA, USA
- Department of Clinical Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA, USA
| | - Annette M Langer-Gould
- Department of Neurology, Los Angeles Medical Center, Southern California Permanente Medical Group, Los Angeles, CA, USA
- Department of Clinical Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA, USA
| |
Collapse
|
5
|
Melero-Jiménez IJ, Sorokin Y, Merlin A, Li J, Couce A, Friedman J. Mutualism breakdown underpins evolutionary rescue in an obligate cross-feeding bacterial consortium. Nat Commun 2025; 16:3482. [PMID: 40216843 PMCID: PMC11992082 DOI: 10.1038/s41467-025-58742-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Populations facing lethal environmental change can escape extinction through rapid genetic adaptation, a process known as evolutionary rescue. Despite extensive study, evolutionary rescue is largely unexplored in mutualistic communities, where it is likely constrained by the less adaptable partner. Here, we explored empirically the likelihood, population dynamics, and genetic mechanisms underpinning evolutionary rescue in an obligate mutualism involving cross-feeding of amino acids between auxotrophic Escherichia coli strains. We found that over 80% of populations overcame a severe decline when exposed to two distinct types of abrupt, lethal stress. Of note, in all cases only one of the strains survived by metabolically bypassing the auxotrophy. Crucially, the mutualistic consortium exhibited greater sensitivity to both stressors than a prototrophic control strain, such that reversion to autonomy was sufficient to alleviate stress below lethal levels. This sensitivity was common across other stresses, suggesting it may be a general feature of amino acid-dependent obligate mutualisms. Our results reveal that evolutionary rescue may depend critically on the specific genetic and physiological details of the interacting partners, adding rich layers of complexity to the endeavor of predicting the fate of microbial communities facing intense environmental deterioration.
Collapse
Affiliation(s)
- Ignacio J Melero-Jiménez
- Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel.
- Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain.
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM), 28223, Madrid, Spain.
| | - Yael Sorokin
- Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ami Merlin
- Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jiawei Li
- Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alejandro Couce
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM), 28223, Madrid, Spain.
| | - Jonathan Friedman
- Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
6
|
Saad MJA, Santos A. The Microbiota and Evolution of Obesity. Endocr Rev 2025; 46:300-316. [PMID: 39673174 PMCID: PMC11894537 DOI: 10.1210/endrev/bnae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/03/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024]
Abstract
Obesity is a major global concern and is generally attributed to a combination of genetic and environmental factors. Several hypotheses have been proposed to explain the evolutionary origins of obesity epidemic, including thrifty and drifty genotypes, and changes in thermogenesis. Here, we put forward the hypothesis of metaflammation, which proposes that due to intense selection pressures exerted by environmental pathogens, specific genes that help develop a robust defense mechanism against infectious diseases have had evolutionary advantages and that this may contribute to obesity in modern times due to connections between the immune and energy storage systems. Indeed, incorporating the genetic variations of gut microbiota into the complex genetic framework of obesity makes it more polygenic than previously believed. Thus, uncovering the evolutionary origins of obesity requires a multifaceted approach that considers the complexity of human history, the unique genetic makeup of different populations, and the influence of gut microbiome on host genetics.
Collapse
Affiliation(s)
- Mario J A Saad
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, CEP 13083-887 Campinas, SP, Brazil
| | - Andrey Santos
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, CEP 13083-887 Campinas, SP, Brazil
| |
Collapse
|
7
|
Elahi Z, Mokhtaryan M, Mahmoodi S, Shahroodian S, Darbandi T, Ghasemi F, Ghanavati R, Darbandi A. All Properties of Infertility Microbiome in a Review Article. J Clin Lab Anal 2025; 39:e25158. [PMID: 40059472 PMCID: PMC11937179 DOI: 10.1002/jcla.25158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/28/2024] [Accepted: 01/16/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND The microbiome is crucial for many physiological processes, including immunity, metabolism, and reproduction. AIMS This review aims to contribute to a detailed understanding of the microbiome of the genital tract, which can lead to better management of dysbiosis and reproductive disorders. METHODS Data from the four international information databases Medline, Scopus, Embase, and Google Scholar. The search strategy was based on the combination of the following terms: "microbiota," "microbiome," "microfilm," "microflora," "fertility," or "infertility." RESULT The advent of next-generation sequencing-based technologies during the last decade has revealed the presence of microbial communities in nearly every part of the human body, including the reproductive system. Several studies have shown significant differences between the microbiota of the vagina and endometrium, as well as other parts of the upper genital tract. DISCUSSION The human microbiome plays a critical role in determining a person's health state, and the microbiome of the genital tract may impact fertility potential before and after assisted reproductive treatments (ARTs). CONCLUSION To completely understand the role of the microbiome, future research should focus not only on the description of microbiota but also on the interaction between bacteria, the production of biofilms, and the interaction of microorganisms with human cells.
Collapse
Affiliation(s)
- Zahra Elahi
- Department of Microbiology, School of MedicineIran University of Medical SciencesTehranIran
- Vice Chancellery of Education and ResearchTorbat Heydariyeh University of Medical SciencesTorbat HeydariyehIran
| | - Maryam Mokhtaryan
- Departman of Internal MedicineShiraz University of Medical SciencesShirazIran
| | - Shiva Mahmoodi
- School of MedicineKermanshah University of Medical SciencesKermanshahIran
| | - Soheila Shahroodian
- Department of Microbiology, School of MedicineIran University of Medical SciencesTehranIran
| | - Taleih Darbandi
- Department of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Fatemeh Ghasemi
- Medical Microbiology Research CenterQazvin University of Medical scienceQazvinIran
| | | | - Atieh Darbandi
- Molecular Microbiology Research CenterShahed UniversityTehranIran
| |
Collapse
|
8
|
Pan C, Jiang X, Wei J, Liu C, Zhang M, Gao C, Chen R, Yang C, Wang B, Yu M, Gan Y. Ameba-inspired strategy enhances probiotic efficacy via prebound nutrient supply. Nat Commun 2025; 16:1827. [PMID: 39979278 PMCID: PMC11842784 DOI: 10.1038/s41467-025-57071-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025] Open
Abstract
Nutrient competition with indigenous microbes or pathogens presents a significant challenge for oral probiotic efficacy. To address this issue, we develop an ameba-inspired food-carrying strategy (AIFS) by prebinding ginger-derived exosome-like nanoparticles (GELNs) onto probiotics as food depots. AIFS enables probiotics to efficiently and exclusively consume GELNs in situ, even in the presence of competing bacteria. This results in up to 21 times higher uptake efficiency compared to unengineered probiotics, dramatically accelerating probiotic proliferation. Meanwhile, AIFS potentiates probiotics' resistance to multiple GI stressors. In a murine model of colitis, AIFS can improve the abundance of probiotics and inhibit pathogens, maintaining intestinal flora homeostasis. Additionally, it can upregulate the anti-inflammatory IL-10, reduce the proinflammatory IL-1β, and repair damaged intestinal mucus. Thereby, AIFS displays potently elevated prophylactic and therapeutic efficacy for colitis mice. This work provides a method for microbial engineering, with broad implications for microbiotherapy and gut health.
Collapse
Affiliation(s)
- Chao Pan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Xiuxian Jiang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Junchao Wei
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
- School of Pharmacy, Henan University, Kaifeng, PR China
| | - Chang Liu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Min Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Chuan Gao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Rongrong Chen
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Canyu Yang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Bingqi Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Miaorong Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Yong Gan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China.
- University of Chinese Academy of Sciences, Beijing, PR China.
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, PR China.
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing, PR China.
| |
Collapse
|
9
|
Wu H, Forslund S, Wang Z, Zhao G. Human Gut Microbiome Researches Over the Last Decade: Current Challenges and Future Directions. PHENOMICS (CHAM, SWITZERLAND) 2025; 5:1-7. [PMID: 40313604 PMCID: PMC12040780 DOI: 10.1007/s43657-023-00131-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Affiliation(s)
- Hao Wu
- Fudan Microbiome Center, Human Phenome Institute, and State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 201203 China
- Department of Bariatric and Metabolic Surgery, Huashan Hospital, Fudan University, Shanghai, 201203 China
| | - Sofia Forslund
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, 13092 Germany
| | - Zeneng Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195 USA
| | - Guoping Zhao
- Fudan Microbiome Center, Human Phenome Institute, and State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 201203 China
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200032 China
| |
Collapse
|
10
|
Hintikka T, Andersson MA, Marik T, Mikkola R, Andersson M, Kredics L, Kurnitski J, Salonen H. Revealing Stachybotrys-like fungal growth in buildings - Possible exposure highlighted through three case studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 961:178408. [PMID: 39793137 DOI: 10.1016/j.scitotenv.2025.178408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/22/2024] [Accepted: 01/04/2025] [Indexed: 01/13/2025]
Abstract
Genus Stachybotrys (Stachybotryaceae, Hypocreales) requires high humidity to grow and represents one of the most notorious fungi associated with suspected illness in moist buildings. If Stachybotrys conidia are found in settled indoor dusts, their presence may indicate water intrusion and mold infestation revealed after dismantling the building structures. This study describes detection of Stachybotrys growth hidden inside the structures of three buildings in Finland. First, a novel microscopic screening method concentrating Stachybotrys conidia from settled dust was developed. The method is based on enrichment of conidia floating in the solution of saturated NaCl, separating them from sinking dust particles. Captured conidia were identified based on morphology and cultivated isolates were identified to species or genus level. The second part of the study describes the records of two persons sickened with asthma after exposure to long lasting growth of Stachybotrys in two of the buildings. After 38 years of the diagnosis the one person's asthma was declared cured in a medical report. The asthma of the other person developed into chronic illness, diagnosed by The Insurance Court as occupational asthma caused by a moisture-damaged workplace. Diversity and the metabolic activity of the microbes exposing the two persons in rural versus urban environments after their asthma diagnosis is offered as a preliminary and hypothetical explanation of the different outcome of the illnesses.
Collapse
Affiliation(s)
- Tuomas Hintikka
- Department of Civil Engineering, Aalto University, 00076 Espoo, Finland.
| | - Maria A Andersson
- Department of Civil Engineering, Aalto University, 00076 Espoo, Finland.
| | - Tamás Marik
- Department of Biotechnology and Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Raimo Mikkola
- Department of Civil Engineering, Aalto University, 00076 Espoo, Finland.
| | - Magnus Andersson
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, 04920 Saarentaus, Finland.
| | - László Kredics
- Department of Biotechnology and Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary.
| | - Jarek Kurnitski
- Department of Civil Engineering, Aalto University, 00076 Espoo, Finland; Department of Civil Engineering and Architecture, Tallinn University of Technology, 19086 Tallinn, Estonia.
| | - Heidi Salonen
- Department of Civil Engineering, Aalto University, 00076 Espoo, Finland; International Laboratory for Air Quality and Health, Faculty of Science, School of Earth & Atmospheric Sciences, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia.
| |
Collapse
|
11
|
Xu Q, Wang W, Li Y, Cui J, Zhu M, Liu Y, Liu Y. The oral-gut microbiota axis: a link in cardiometabolic diseases. NPJ Biofilms Microbiomes 2025; 11:11. [PMID: 39794340 PMCID: PMC11723975 DOI: 10.1038/s41522-025-00646-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
The oral-gut microbiota axis plays a crucial role in cardiometabolic health. This review explores the interactions between these microbiomes through enteric, hematogenous, and immune pathways, resulting in disruptions in microbial balance and metabolic processes. These disruptions contribute to systemic inflammation, metabolic disorders, and endothelial dysfunction, which are closely associated with cardiometabolic diseases. Understanding these interactions provides insights for innovative therapeutic strategies to prevent and manage cardiometabolic diseases.
Collapse
Affiliation(s)
- Qian Xu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China
| | - Wenting Wang
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China
| | - Yiwen Li
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China
| | - Jing Cui
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China
| | - Mengmeng Zhu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China
| | - Yanfei Liu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China
- The Second Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China
- Key Laboratory of Disease and Syndrome Integration Prevention and Treatment of Vascular Aging, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China
| | - Yue Liu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China.
- Key Laboratory of Disease and Syndrome Integration Prevention and Treatment of Vascular Aging, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China.
| |
Collapse
|
12
|
Li C, Liu K, Gu C, Li M, Zhou P, Chen L, Sun S, Li X, Wang L, Ni W, Li M, Hu S. Gastrointestinal jumbo phages possess independent synthesis and utilization systems of NAD . MICROBIOME 2024; 12:268. [PMID: 39707494 DOI: 10.1186/s40168-024-01984-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/20/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Jumbo phages, phages with genomes > 200 kbp, contain some unique genes for successful reproduction in their bacterial hosts. Due to complex and massive genomes analogous to those of small-celled bacteria, how jumbo phages complete their life cycle remains largely undefined. RESULTS In this study, we assembled 668 high-quality jumbo phage genomes from over 15 terabytes (TB) of intestinal metagenomic data from 955 samples of 5 animal species (cow, sheep, pig, horse, and deer). Within them, we obtained a complete genome of 716 kbp in length, which is the largest phage genome so far reported in the gut environments. Interestingly, 174 out of the 668 jumbo phages were found to encode all genes required for the synthesis of NAD+ by the salvage pathway or Preiss-Handler pathway, referred to as NAD-jumbo phage. Besides synthesis genes of NAD+, these NAD-jumbo phages also encode at least 15 types of NAD+-consuming enzyme genes involved in DNA replication, DNA repair, and counterdefense, suggesting that these phages not only have the capacity to synthesize NAD+ but also redirect NAD+ metabolism towards phage propagation need in hosts. Phylogenetic analysis and environmental survey indicated NAD-jumbo phages are widely present in the Earth's ecosystems, including the human gut, lakes, salt ponds, mine tailings, and seawater. CONCLUSION In summary, this study expands our understanding of the diversity and survival strategies of phages, and an in-depth study of the NAD-jumbo phages is crucial for understanding their role in ecological regulation. Video Abstract.
Collapse
Affiliation(s)
- Cunyuan Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang, 832003, China
| | - Kaiping Liu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Chengxiang Gu
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Guangdong Higher Education Institutes, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study Shenzhen University, Shenzhen, China
| | - Ming Li
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstrasse 10, Constance, 78457, Germany
| | - Ping Zhou
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang, 832003, China
| | - Linxing Chen
- Department of Earth and Planetary Sciences, University of California, Berkeley, CA, USA
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Shize Sun
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Xiaoyue Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Limin Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang, 832003, China
| | - Wei Ni
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China.
| | - Meng Li
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Guangdong Higher Education Institutes, Shenzhen University, Shenzhen, China.
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study Shenzhen University, Shenzhen, China.
| | - Shengwei Hu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China.
| |
Collapse
|
13
|
Niu MM, Li Y, Su Q, Chen SY, Li QH, Guo HX, Meng XC, Liu F. A mannose-rich exopolysaccharide-1 isolated from Bifidobacterium breve mitigates ovalbumin-induced intestinal damage in mice by modulation CD4 + T cell differentiation and inhibiting NF-κB signaling pathway. Int J Biol Macromol 2024; 280:135850. [PMID: 39326613 DOI: 10.1016/j.ijbiomac.2024.135850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Ovalbumin (OVA)-induced intestinal injury is a recurrent and potentially fatal condition. Previous studies have highlighted the roles of exopolysaccharides, particularly a mannose-rich (89.59 %) exopolysaccharide-1 (EPS-1) with a molecular weight of 39.9 kDa, isolated from Bifidobacterium breve H4-2, in repairing intestinal barriers and regulating immune responses. In this study, a mouse model of OVA-induced intestinal injury was used to investigate the effects of EPS-1 on intestinal barrier restoration. The results demonstrated that EPS-1 treatment (400 mg/kg. d) significantly reduced the allergic index (3.25 ± 0.43) in OVA-challenged mice (p < 0.05), improved the physical integrity of the intestinal barrier by increasing mucin content and goblet cell number in the ileum (p < 0.05). EPS-1 treatment (400 mg/kg. d) also maintained immune barrier integrity by restoring imbalanced CD4 + T/CD8 + T ratios from 0.86 ± 0.02 to 1.04 ± 0.06, regulating Th1/Th2 and Th17/Treg cells balance, as well as inhibited the NF-κB signaling pathway. Furthermore, EPS-1 maintained microbiota homeostasis by increasing the abundances of Ruminococcus, Butyricicoccus, and Muribaculaceae, while reducing Streptococcus and Candidatus arthromitus. This microbiota modulation enhanced the levels of metabolites such as tyrosine, methionine, tryptophan, triglycerides, and salidroside. In conclusion, EPS-1 shows promise as a functional polysaccharide for therapeutic use.
Collapse
Affiliation(s)
- Meng-Meng Niu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Yan Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Qian Su
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Si-Yuan Chen
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Qiao-Hui Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Huan-Xin Guo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Xiang-Chen Meng
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Fei Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
14
|
Ma Z, Zuo T, Frey N, Rangrez AY. A systematic framework for understanding the microbiome in human health and disease: from basic principles to clinical translation. Signal Transduct Target Ther 2024; 9:237. [PMID: 39307902 PMCID: PMC11418828 DOI: 10.1038/s41392-024-01946-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024] Open
Abstract
The human microbiome is a complex and dynamic system that plays important roles in human health and disease. However, there remain limitations and theoretical gaps in our current understanding of the intricate relationship between microbes and humans. In this narrative review, we integrate the knowledge and insights from various fields, including anatomy, physiology, immunology, histology, genetics, and evolution, to propose a systematic framework. It introduces key concepts such as the 'innate and adaptive genomes', which enhance genetic and evolutionary comprehension of the human genome. The 'germ-free syndrome' challenges the traditional 'microbes as pathogens' view, advocating for the necessity of microbes for health. The 'slave tissue' concept underscores the symbiotic intricacies between human tissues and their microbial counterparts, highlighting the dynamic health implications of microbial interactions. 'Acquired microbial immunity' positions the microbiome as an adjunct to human immune systems, providing a rationale for probiotic therapies and prudent antibiotic use. The 'homeostatic reprogramming hypothesis' integrates the microbiome into the internal environment theory, potentially explaining the change in homeostatic indicators post-industrialization. The 'cell-microbe co-ecology model' elucidates the symbiotic regulation affecting cellular balance, while the 'meta-host model' broadens the host definition to include symbiotic microbes. The 'health-illness conversion model' encapsulates the innate and adaptive genomes' interplay and dysbiosis patterns. The aim here is to provide a more focused and coherent understanding of microbiome and highlight future research avenues that could lead to a more effective and efficient healthcare system.
Collapse
Affiliation(s)
- Ziqi Ma
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Ashraf Yusuf Rangrez
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
15
|
Li J, Zhang Z, Xu Y, Li W, Jiang S, Zhang J, Xue H. Limosilactobacillus fermentum HNU312 alleviates lipid accumulation and inflammation induced by a high-fat diet: improves lipid metabolism pathways and increases short-chain fatty acids in the gut microbiome. Food Funct 2024; 15:8878-8892. [PMID: 39129481 DOI: 10.1039/d4fo02390k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
A high-fat diet can cause health problems, such as hyperlipidemia, obesity, cardiovascular disease, and metabolic disorders. Dietary supplementation with beneficial microbes might reduce the detrimental effects of a high-fat diet by modulating the gut microbiome, metabolic pathways and metabolites. This study assessed the effects of Limosilactobacillus fermentum HNU312 (L. fermentum HNU312) on blood lipid levels, fat accumulation, inflammation and the gut microbiome in mice on a high-fat diet. The results indicate that L. fermentum HNU312 supplementation to high-fat diet-fed mice led to decreases of 7.52% in the final body weight, 22.30% in total triglyceride, 24.87% in total cholesterol, and 27.3% in low-density lipoprotein cholesterol. Furthermore, the addition of L. fermentum HNU312 significantly reduced the fat accumulation in the liver and adipose tissue by 18.99% and 32.55%, respectively, and decreased chronic inflammation induced by a high-fat diet. Further analysis of the gut microbiome revealed that on the one hand, L. fermentum HNU312 changed the structure of the intestinal microbiota, increased the abundance of beneficial intestinal bacteria related to lipid metabolism, and reversed the enrichment of lipid-related metabolic pathways. On the other hand, L. fermentum HNU312 increased the production of short-chain fatty acids, which can reduce liver inflammation and chronic inflammation induced by a high-fat diet. In summary, by regulating gut microbiota, L. fermentum HNU312 improved lipid metabolism pathways and increased short-chain fatty acids, which reduced body weight, blood lipids, fat accumulation and chronic inflammation caused by high-fat diets. Therefore, L. fermentum HNU312 could be a good candidate probiotic for ameliorating metabolic syndrome.
Collapse
Affiliation(s)
- Jiahe Li
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, China.
- Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Zeng Zhang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, China.
- Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Yuan Xu
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, China.
- Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Wanggao Li
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, China.
- Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Shuaiming Jiang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, China.
- Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Jiachao Zhang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, China.
- Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Hui Xue
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, China.
- Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| |
Collapse
|
16
|
Yang J, Ge S, Tan S, Liu H, Yang M, Liu W, Zhang K, Zhang Z, Liu J, Shi J, Wang ZH, Li J. Modified montmorillonite armed probiotics with enhanced on-site mucus-depleted intestinal colonization and H 2S scavenging for colitis treatment. J Control Release 2024; 374:140-153. [PMID: 39117113 DOI: 10.1016/j.jconrel.2024.07.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Inflammatory bowel diseases (IBD) are often associated with dysregulated gut microbiota and excessive inflammatory microenvironment. Probiotic therapy combined with inflammation management is a promising approach to alleviate IBD, but the efficacy is hindered by the inferior colonization of probiotics in mucus-depleted inflammatory bowel segments. Here, we present modified montmorillonite armed probiotic Escherichia coli Nissle 1917 (MMT-Fe@EcN) with enhanced intestinal colonization and hydrogen sulfide (H2S) scavenging for synergistic alleviation of IBD. The montmorillonite layer that can protect EcN against environmental assaults in oral delivery and improve on-site colonization of EcN in the mucus-depleted intestinal segment due to its strong adhesive capability and electronegativity, with a 22.6-fold increase in colonization efficiency compared to EcN. Meanwhile, MMT-Fe@EcN can manage inflammation by scavenging H2S, which allows for enhancing probiotic viability and colonization for restoring the gut microbiota. As a result, MMT-Fe@EcN exhibits extraordinary therapeutic effects in the dextran sulfate sodium-induced mouse colitis models, including alleviating intestinal inflammation and restoring disrupted intestinal barrier function, and gut microbiota. These findings provide a promising strategy for clinical IBD treatment and potentially other mucus-depletion-related diseases.
Collapse
Affiliation(s)
- Jiali Yang
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao 266021, PR China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Shengchan Ge
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Shaochong Tan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hua Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Mingzhu Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Wei Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Zhi-Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Jitian Li
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), 100 Yongping Road, Zhengzhou 450000, China.
| |
Collapse
|
17
|
Wisniewski A, DeLouize AM, Walker T, Chatterji S, Naidoo N, Kowal P, Snodgrass JJ. Sustained metabolic dysregulation and the emergence of diabetes: associations between HbA1c and metabolic syndrome components in Tunisian diabetic and nondiabetic groups. J Physiol Anthropol 2024; 43:18. [PMID: 39033292 PMCID: PMC11264782 DOI: 10.1186/s40101-024-00365-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/29/2024] [Indexed: 07/23/2024] Open
Abstract
INTRODUCTION Metabolic Syndrome (MetS), diabetes, and other noncommunicable diseases (NCDs) have been a major focus of research in recent decades as the prevalence of these conditions continues to rapidly increase globally. However, the timing and patterns of development from metabolic risk factors to disease states are less well understood and are especially critical to understand in low- and middle-income countries (LMICs) and populations undergoing epidemiological transitions. METHODS Nationally representative sociodemographic, anthropometric, and point-of-care biomarker data from the 2016 Tunisian Health Examination Survey (n = 8170) were used to determine the prevalence of diabetes and MetS components in Tunisia and to investigate associations between glycated hemoglobin (HbA1c) and MetS components (blood pressure [BP], HDL cholesterol [HDL], triglycerides [TG], and waist circumference [WC]) in participants aged 15-97 years old. To better understand how sustained metabolic dysregulation and disease states impact these associations, diabetic and nondiabetic groups were analyzed separately. RESULTS The overall prevalence of diabetes based on measured HbA1c was 18.2%. The diabetic groups had a higher prevalence of each individual MetS component, and significantly higher (BP, TG, WC, and HbA1c) and lower (HDL) values than the nondiabetic groups. Yet, there were a higher number of significant associations between HbA1c and MetS components found in nondiabetic women and men when compared to diabetic women and men. HbA1c was positively associated with the cumulative number of MetS components, irrespective of diabetes status in men and women. CONCLUSIONS The prevalence of both diabetes and MetS components (particularly low HDL cholesterol and elevated TG) is high among the Tunisian population. More MetS components were associated with HbA1c in nondiabetic individuals, showing a strong connection between the development of MetS components and diabetes. However, once the diabetes disease state manifests, there is more variability in the relationships. These results show the potential for HbA1c to be an indicator of metabolic health below clinical disease cutoffs, which may allow insights into the physiological changes that precipitate the emergence of diabetes.
Collapse
Affiliation(s)
- Adriana Wisniewski
- Department of Anthropology, University of North Carolina at Chapel Hill, Chapel Hill, USA.
| | - Alicia M DeLouize
- Global Health Biomarker Lab, Department of Anthropology, University of Oregon, Eugene, USA
| | - Tian Walker
- Global Health Biomarker Lab, Department of Anthropology, University of Oregon, Eugene, USA
| | | | | | - Paul Kowal
- Centre for Women's Health Research, University of Newcastle, Callaghan, Australia
| | - J Josh Snodgrass
- Global Health Biomarker Lab, Department of Anthropology, University of Oregon, Eugene, USA
- Center for Global Health, University of Oregon, Eugene, USA
- Global Station for Indigenous Studies and Cultural Diversity, Hokkaido University, Sapporo, Japan
| |
Collapse
|
18
|
Liu L, Yi Y, Yan R, Hu R, Sun W, Zhou W, Zhou H, Si X, Ye Y, Li W, Chen J. Impact of age-related gut microbiota dysbiosis and reduced short-chain fatty acids on the autonomic nervous system and atrial fibrillation in rats. Front Cardiovasc Med 2024; 11:1394929. [PMID: 38932988 PMCID: PMC11199889 DOI: 10.3389/fcvm.2024.1394929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Objective Aging is the most significant contributor to the increasing prevalence of atrial fibrillation (AF). Dysbiosis of gut microbiota has been implicated in age-related diseases, but its role in AF development remains unclear. This study aimed to investigate the correlations between changes in the autonomic nervous system, short-chain fatty acids (SCFAs), and alterations in gut microbiota in aged rats with AF. Methods Electrophysiological experiments were conducted to assess AF induction rates and heart rate variability in rats. 16S rRNA gene sequences extracted from fecal samples were used to assess the gut microbial composition. Gas and liquid chromatography-mass spectroscopy was used to identify SCFAs in fecal samples. Results The study found that aged rats exhibited a higher incidence of AF and reduced heart rate variability compared to young rats. Omics research revealed disrupted gut microbiota in aged rats, specifically a decreased Firmicutes to Bacteroidetes ratio. Additionally, fecal SCFA levels were significantly lower in aged rats. Importantly, correlation analysis indicated a significant association between decreased SCFAs and declining heart rate variability in aged rats. Conclusions These findings suggest that SCFAs, as metabolites of gut microbiota, may play a regulatory role in autonomic nervous function and potentially influence the onset and progression of AF in aged rats. These results provide novel insights into the involvement of SCFAs and autonomic nervous system function in the pathogenesis of AF. These results provide novel insights into the involvement of SCFAs and autonomic nervous system function in the pathogenesis of AF.
Collapse
Affiliation(s)
- Li Liu
- Department of Cardiovascular Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yingqi Yi
- Department of Cardiovascular Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Rong Yan
- Department of Cardiovascular Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Rong Hu
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| | - Weihong Sun
- Department of Cardiovascular Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Zhou
- Department of Cardiovascular Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Haiyan Zhou
- Department of Cardiovascular Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaoyun Si
- Department of Cardiovascular Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yun Ye
- Department of Cardiovascular Medicine, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Wei Li
- Department of Cardiovascular Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jingjing Chen
- Department of Cardiovascular Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
19
|
Kallinich T, Mall MA. Immune-mediated inflammatory diseases (IMIDs) in children: key research questions and some answers. Mol Cell Pediatr 2024; 11:5. [PMID: 38837027 PMCID: PMC11153465 DOI: 10.1186/s40348-024-00177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Affiliation(s)
- Tilmann Kallinich
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Deutsches Rheuma-Forschungszentrum (DRFZ) Berlin, Institute of the Leibniz Association, Berlin, Germany.
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
20
|
Rook GAW. Evolution and the critical role of the microbiota in the reduced mental and physical health associated with low socioeconomic status (SES). Neurosci Biobehav Rev 2024; 161:105653. [PMID: 38582194 DOI: 10.1016/j.neubiorev.2024.105653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
The evolution of the gut-microbiota-brain axis in animals reveals that microbial inputs influence metabolism, the regulation of inflammation and the development of organs, including the brain. Inflammatory, neurodegenerative and psychiatric disorders are more prevalent in people of low socioeconomic status (SES). Many aspects of low SES reduce exposure to the microbial inputs on which we are in a state of evolved dependence, whereas the lifestyle of wealthy citizens maintains these exposures. This partially explains the health deficit of low SES, so focussing on our evolutionary history and on environmental and lifestyle factors that distort microbial exposures might help to mitigate that deficit. But the human microbiota is complex and we have poor understanding of its functions at the microbial and mechanistic levels, and in the brain. Perhaps its composition is more flexible than the microbiota of animals that have restricted habitats and less diverse diets? These uncertainties are discussed in relation to the encouraging but frustrating results of attempts to treat psychiatric disorders by modulating the microbiota.
Collapse
Affiliation(s)
- Graham A W Rook
- Centre for Clinical Microbiology, Department of infection, UCL (University College London), London, UK.
| |
Collapse
|
21
|
Chen R, Xie G, Lin Z, Gu G, Yu Y, Yu J, Liu Z. Predicting Microbe-Disease Associations Based on a Linear Neighborhood Label Propagation Method with Multi-order Similarity Fusion Learning. Interdiscip Sci 2024; 16:345-360. [PMID: 38436840 DOI: 10.1007/s12539-024-00607-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 03/05/2024]
Abstract
Computational approaches employed for predicting potential microbe-disease associations often rely on similarity information between microbes and diseases. Therefore, it is important to obtain reliable similarity information by integrating multiple types of similarity information. However, existing similarity fusion methods do not consider multi-order fusion of similarity networks. To address this problem, a novel method of linear neighborhood label propagation with multi-order similarity fusion learning (MOSFL-LNP) is proposed to predict potential microbe-disease associations. Multi-order fusion learning comprises two parts: low-order global learning and high-order feature learning. Low-order global learning is used to obtain common latent features from multiple similarity sources. High-order feature learning relies on the interactions between neighboring nodes to identify high-order similarities and learn deeper interactive network structures. Coefficients are assigned to different high-order feature learning modules to balance the similarities learned from different orders and enhance the robustness of the fusion network. Overall, by combining low-order global learning with high-order feature learning, multi-order fusion learning can capture both the shared and unique features of different similarity networks, leading to more accurate predictions of microbe-disease associations. In comparison to six other advanced methods, MOSFL-LNP exhibits superior prediction performance in the leave-one-out cross-validation and 5-fold validation frameworks. In the case study, the predicted 10 microbes associated with asthma and type 1 diabetes have an accuracy rate of up to 90% and 100%, respectively.
Collapse
Affiliation(s)
- Ruibin Chen
- School of Computer, Guangdong University of Technology, Guangzhou, 510000, China
| | - Guobo Xie
- School of Computer, Guangdong University of Technology, Guangzhou, 510000, China
| | - Zhiyi Lin
- School of Computer, Guangdong University of Technology, Guangzhou, 510000, China.
| | - Guosheng Gu
- School of Computer, Guangdong University of Technology, Guangzhou, 510000, China.
| | - Yi Yu
- School of Computer, Guangdong University of Technology, Guangzhou, 510000, China
| | - Junrui Yu
- School of Computer, Guangdong University of Technology, Guangzhou, 510000, China
| | - Zhenguo Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
22
|
Shadvar N, Akrami S, Mousavi Sagharchi SMA, Askandar RH, Merati A, Aghayari M, Kaviani N, Afkhami H, Kashfi M. A review for non-antibiotic treatment of Helicobacter pylori: new insight. Front Microbiol 2024; 15:1379209. [PMID: 38774508 PMCID: PMC11106852 DOI: 10.3389/fmicb.2024.1379209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/12/2024] [Indexed: 05/24/2024] Open
Abstract
Gastric ulcers and gastric cancer are brought on by the Helicobacter pylori bacteria, which colonizes under the stomach mucous membrane. Different medication regimens are used to remove it, but the illness returns and becomes more resistant, which lowers the treatment rates. Additionally, this bacterium now exhibits a skyrocketing level of multi-drug resistance, necessitating recurrent therapeutic treatments. The negative effects of synthetic medications in comparison to conventional therapies are another significant factor in favor of non-pharmacological therapy. The most significant side effects of popular anti-gastric ulcer medications include nausea, vomiting, and diarrhea. Stomach ulcers have previously been treated with herbal remedies and complementary treatments like probiotics. When probiotics are ingested, the host experiences several advantages that may be brought about by altering the bacterial flora in the digestive system. Additionally, stronger-acting chemical compounds and plant extracts can be employed to treat patients. In this article, we look at the substances and medications that are utilized in place of synthetic stomach ulcer-curing treatments.
Collapse
Affiliation(s)
- Neda Shadvar
- Department of Microbiology and Parasitology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sousan Akrami
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Alireza Merati
- Department of Psychology and Educational Sciences, Payame Noor University, Tehran, Iran
| | - Masoomeh Aghayari
- Department of Microbiology, Faculty of Sciences, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Nikki Kaviani
- School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Mojtaba Kashfi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Fellowship in Clinical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Chow L, Flaherty E, Pezzanite L, Williams M, Dow S, Wotman K. Impact of Equine Ocular Surface Squamous Neoplasia on Interactions between Ocular Transcriptome and Microbiome. Vet Sci 2024; 11:167. [PMID: 38668434 PMCID: PMC11054121 DOI: 10.3390/vetsci11040167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024] Open
Abstract
Ocular surface squamous neoplasia (OSSN) represents the most common conjunctival tumor in horses and frequently results in vision loss and surgical removal of the affected globe. Multiple etiologic factors have been identified as contributing to OSSN progression, including solar radiation exposure, genetic mutations, and a lack of periocular pigmentation. Response to conventional treatments has been highly variable, though our recent work indicates that these tumors are highly responsive to local immunotherapy. In the present study, we extended our investigation of OSSN in horses to better understand how the ocular transcriptome responds to the presence of the tumor and how the ocular surface microbiome may also be altered by the presence of cancer. Therefore, we collected swabs from the ventral conjunctival fornix from 22 eyes in this study (11 with cytologically or histologically confirmed OSSN and 11 healthy eyes from the same horses) and performed RNA sequencing and 16S microbial sequencing using the same samples. Microbial 16s DNA sequencing and bulk RNA sequencing were both conducted using an Illumina-based platform. In eyes with OSSN, we observed significantly upregulated expression of genes and pathways associated with inflammation, particularly interferon. Microbial diversity was significantly reduced in conjunctival swabs from horses with OSSN. We also performed interactome analysis and found that three bacterial taxa (Actinobacillus, Helcococcus and Parvimona) had significant correlations with more than 100 upregulated genes in samples from animals with OSSN. These findings highlight the inflammatory nature of OSSN in horses and provide important new insights into how the host ocular surface interacts with certain microbial populations. These findings suggest new strategies for the management of OSSN in horses, which may entail immunotherapy in combination with ocular surface probiotics or prebiotics to help normalize ocular cell and microbe interactions.
Collapse
Affiliation(s)
- Lyndah Chow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (L.C.); (E.F.); (L.P.); (M.W.)
| | - Edward Flaherty
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (L.C.); (E.F.); (L.P.); (M.W.)
| | - Lynn Pezzanite
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (L.C.); (E.F.); (L.P.); (M.W.)
| | - Maggie Williams
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (L.C.); (E.F.); (L.P.); (M.W.)
| | - Steven Dow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (L.C.); (E.F.); (L.P.); (M.W.)
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Kathryn Wotman
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (L.C.); (E.F.); (L.P.); (M.W.)
| |
Collapse
|
24
|
Mishra Y, Ranjan A, Mishra V, Chattaraj A, Aljabali AAA, El-Tanani M, Hromić-Jahjefendić A, Uversky VN, Tambuwala MM. The role of the gut microbiome in gastrointestinal cancers. Cell Signal 2024; 115:111013. [PMID: 38113978 DOI: 10.1016/j.cellsig.2023.111013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
The gut microbiota present in the human digestive system is incredibly varied and is home to trillions of microorganisms. The gut microbiome is shaped at birth, while numerous genetic, dietary, and environmental variables primarily influence the microbiome composition. The importance of gut microbiota on host health is becoming more widely acknowledged. Digestion, intestinal permeability, and immunological and metabolism responses can all be affected by changes in the composition and function of the gut microbiota. There is mounting evidence that the microbial population's complex traits are important biomarkers and indicators of patient outcomes in cancer and its therapies. Numerous studies have demonstrated that changed commensal gut microorganisms contribute to the development and spread of cancer through various routes. Despite the ongoing controversy surrounding the gut microbiome and gastrointestinal cancer, accumulating evidence points to a potentially far more intricate connection than a simple cause-and-effect relationship. SIMPLE SUMMARY: Due to their high frequency and fatality rate, gastrointestinal cancers are regarded as a severe public health issue with complex medical and economic burdens. The gut microbiota may directly or indirectly interact with existing therapies like immunotherapy and chemotherapy, affecting how well a treatment works. The gut microbiome influences the immune response's activity, function, and development. Generally, certain gut bacteria impact the antitumor actions during cancer by creating particular metabolites or triggering T-cell responses. Yet, certain bacterial species have been found to promote cellular proliferation and metastasis in cancer, and comprehending these interactions in the context of cancer may help identify possible treatment targets. Notwithstanding the improvements in the field, additional research is still required to comprehend the underlying processes, examine the effects on existing therapies, and pinpoint certain bacteria and immune cells that can cause this interaction.
Collapse
Affiliation(s)
- Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Abhigyan Ranjan
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Aditi Chattaraj
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Alaa A A Aljabali
- Department of Pharmaceutical Sciences, Yarmouk University, Irbid, Jordan
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Alkhama Medical and Health Sciences University, United Arab Emirates
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, Sarajevo 71000, Bosnia and Herzegovina
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, England, United Kingdom.
| |
Collapse
|
25
|
Manthey C, Super M, Cepon-Robins TJ. Childhood developmental environment affects adult intestinal inflammation levels: preliminary evidence from older adults in the United States. Ann Hum Biol 2024; 51:2427593. [PMID: 39638766 DOI: 10.1080/03014460.2024.2427593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/24/2024] [Accepted: 09/23/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND The Old Friends Hypothesis suggests limited exposure to symbionts during development leads to immune system dysregulation (e.g. allergies, autoimmunity) and inflammatory conditions (e.g. inflammatory bowel disease), with likely sex-specific variation based on exposure risk and sex hormones. Limited research documents how variation in childhood exposures affect older adult health. AIM We tested relationships between current intestinal inflammation and childhood environment in 84 older adults (51-88 years) living in Colorado, USA. SUBJECTS AND METHODS Faecal calprotectin (FC), a biomarker of intestinal inflammation, was measured from stool samples. Structured interviews assessed farm animal exposure during childhood and childhood environments (urban, suburban, rural) at different age periods (0 to 5, 5 to 10, 10 to 20 years). RESULTS AND CONCLUSIONS Farm animal exposure was not significantly associated with FC. Females who grew up in suburban environments, especially between the ages of 5 and 10, had higher FC than females from urban or rural environments (p < 0.05). Males living in urban environments between the ages of 10 and 20 had the lowest FC compared to both other environments (p < 0.05). We found mixed, age- and sex-specific support for the idea that childhood exposures alter risk of inflammatory disease later in life.
Collapse
Affiliation(s)
- Courtney Manthey
- Anthropology Department, University of Colorado Colorado Springs, Colorado Springs, CO, USA
- Anthropology Department, University of Montana, Missoula, MT, USA
| | - Meg Super
- Biology Department, University of Colorado Colorado Springs, Colorado Springs, CO, USA
| | - Tara J Cepon-Robins
- Anthropology Department, University of Colorado Colorado Springs, Colorado Springs, CO, USA
| |
Collapse
|
26
|
Sarkar A, McInroy CJA, Harty S, Raulo A, Ibata NGO, Valles-Colomer M, Johnson KVA, Brito IL, Henrich J, Archie EA, Barreiro LB, Gazzaniga FS, Finlay BB, Koonin EV, Carmody RN, Moeller AH. Microbial transmission in the social microbiome and host health and disease. Cell 2024; 187:17-43. [PMID: 38181740 PMCID: PMC10958648 DOI: 10.1016/j.cell.2023.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/07/2024]
Abstract
Although social interactions are known to drive pathogen transmission, the contributions of socially transmissible host-associated mutualists and commensals to host health and disease remain poorly explored. We use the concept of the social microbiome-the microbial metacommunity of a social network of hosts-to analyze the implications of social microbial transmission for host health and disease. We investigate the contributions of socially transmissible microbes to both eco-evolutionary microbiome community processes (colonization resistance, the evolution of virulence, and reactions to ecological disturbance) and microbial transmission-based processes (transmission of microbes with metabolic and immune effects, inter-specific transmission, transmission of antibiotic-resistant microbes, and transmission of viruses). We consider the implications of social microbial transmission for communicable and non-communicable diseases and evaluate the importance of a socially transmissible component underlying canonically non-communicable diseases. The social transmission of mutualists and commensals may play a significant, under-appreciated role in the social determinants of health and may act as a hidden force in social evolution.
Collapse
Affiliation(s)
- Amar Sarkar
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Cameron J A McInroy
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Siobhán Harty
- Independent, Tandy Court, Spitalfields, Dublin, Ireland
| | - Aura Raulo
- Department of Biology, University of Oxford, Oxford, UK; Department of Computing, University of Turku, Turku, Finland
| | - Neil G O Ibata
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Mireia Valles-Colomer
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain; Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Katerina V-A Johnson
- Institute of Psychology, Leiden University, Leiden, the Netherlands; Department of Psychiatry, University of Oxford, Oxford, UK
| | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Joseph Henrich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Luis B Barreiro
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Medicine, University of Chicago, Chicago, IL, USA; Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Francesca S Gazzaniga
- Molecular Pathology Unit, Cancer Center, Massachusetts General Hospital Research Institute, Charlestown, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - B Brett Finlay
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada; Department of Biochemistry, University of British Columbia, Vancouver, BC, Canada
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Rachel N Carmody
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Andrew H Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
27
|
Montoya-Ciriaco N, Hereira-Pacheco S, Estrada-Torres A, Dendooven L, Méndez de la Cruz FR, Gómez-Acata ES, Díaz de la Vega-Pérez AH, Navarro-Noya YE. Maternal transmission of bacterial microbiota during embryonic development in a viviparous lizard. Microbiol Spectr 2023; 11:e0178023. [PMID: 37847033 PMCID: PMC10714757 DOI: 10.1128/spectrum.01780-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/08/2023] [Indexed: 10/18/2023] Open
Abstract
IMPORTANCE We investigated the presence and diversity of bacteria in the embryos of the viviparous lizard Sceloporus grammicus and their amniotic environment. We compared this diversity to that found in the maternal intestine, mouth, and cloaca. We detected bacterial DNA in the embryos, albeit with a lower bacterial species diversity than found in maternal tissues. Most of the bacterial species detected in the embryos were also found in the mother, although not all of them. Interestingly, we detected a high similarity in the composition of bacterial species among embryos from different mothers. These findings suggest that there may be a mechanism controlling the transmission of bacteria from the mother to the embryo. Our results highlight the possibility that the interaction between maternal bacteria and the embryo may affect the development of the lizards.
Collapse
Affiliation(s)
- Nina Montoya-Ciriaco
- Doctorado en Ciencias Biológicas, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Stephanie Hereira-Pacheco
- Estación Científica La Malinche, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Arturo Estrada-Torres
- Estación Científica La Malinche, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Luc Dendooven
- Laboratory of Soil Ecology, CINVESTAV, Mexico City, Mexico
| | - Fausto R. Méndez de la Cruz
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Elizabeth Selene Gómez-Acata
- Laboratorio de Interacciones Bióticas, Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Aníbal H. Díaz de la Vega-Pérez
- Consejo Nacional de Ciencia, Humanidades y Tecnología-Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala., Tlaxcala, Mexico
| | - Yendi E. Navarro-Noya
- Laboratorio de Interacciones Bióticas, Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| |
Collapse
|
28
|
White MP, Hartig T, Martin L, Pahl S, van den Berg AE, Wells NM, Costongs C, Dzhambov AM, Elliott LR, Godfrey A, Hartl A, Konijnendijk C, Litt JS, Lovell R, Lymeus F, O'Driscoll C, Pichler C, Pouso S, Razani N, Secco L, Steininger MO, Stigsdotter UK, Uyarra M, van den Bosch M. Nature-based biopsychosocial resilience: An integrative theoretical framework for research on nature and health. ENVIRONMENT INTERNATIONAL 2023; 181:108234. [PMID: 37832260 DOI: 10.1016/j.envint.2023.108234] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/09/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
Nature-based solutions including urban forests and wetlands can help communities cope better with climate change and other environmental stressors by enhancing social-ecological resilience. Natural ecosystems, settings, elements and affordances can also help individuals become more personally resilient to a variety of stressors, although the mechanisms underpinning individual-level nature-based resilience, and their relations to social-ecological resilience, are not well articulated. We propose 'nature-based biopsychosocial resilience theory' (NBRT) to address these gaps. Our framework begins by suggesting that individual-level resilience can refer to both: a) a person's set of adaptive resources; and b) the processes by which these resources are deployed. Drawing on existing nature-health perspectives, we argue that nature contact can support individuals build and maintain biological, psychological, and social (i.e. biopsychosocial) resilience-related resources. Together with nature-based social-ecological resilience, these biopsychosocial resilience resources can: i) reduce the risk of various stressors (preventive resilience); ii) enhance adaptive reactions to stressful circumstances (response resilience), and/or iii) facilitate more rapid and/or complete recovery from stress (recovery resilience). Reference to these three resilience processes supports integration across more familiar pathways involving harm reduction, capacity building, and restoration. Evidence in support of the theory, potential interventions to promote nature-based biopsychosocial resilience, and issues that require further consideration are discussed.
Collapse
Affiliation(s)
- Mathew P White
- Cognitive Science HUB, University of Vienna, Austria; European Centre for Environment & Human Health, University of Exeter, UK.
| | - Terry Hartig
- Institute for Housing and Urban Research, Uppsala University, Sweden; Department of Psychology, Uppsala University, Sweden
| | - Leanne Martin
- European Centre for Environment & Human Health, University of Exeter, UK
| | - Sabine Pahl
- Urban and Environmental Psychology Group, University of Vienna, Austria
| | | | - Nancy M Wells
- Department of Human Centered Design, College of Human Ecology, Cornell University, Ithaca, NY, United States
| | | | - Angel M Dzhambov
- Department of Hygiene, Faculty of Public Health, Medical University of Plovdiv, Plovdiv, Bulgaria; Environmental Health Division, Research Institute at Medical University of Plovdiv, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Lewis R Elliott
- European Centre for Environment & Human Health, University of Exeter, UK
| | | | - Arnulf Hartl
- Institute of Ecomedicine, Paracelsus Medical University, Salzburg, Austria
| | | | - Jill S Litt
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Ciber on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Rebecca Lovell
- European Centre for Environment & Human Health, University of Exeter, UK
| | - Freddie Lymeus
- Institute for Housing and Urban Research, Uppsala University, Sweden; Department of Psychology, Uppsala University, Sweden
| | | | - Christina Pichler
- Institute of Ecomedicine, Paracelsus Medical University, Salzburg, Austria
| | - Sarai Pouso
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110 Pasaia, Gipuzkoa, Spain
| | - Nooshin Razani
- University of California San Francisco, San Francisco, CA, United States
| | - Laura Secco
- Department of Territorio e Sistemi Agro-Forestali (TESAF), University of Padua, Padua, Italy
| | | | - Ulrika K Stigsdotter
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark
| | - Maria Uyarra
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110 Pasaia, Gipuzkoa, Spain
| | - Matilda van den Bosch
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Ciber on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
29
|
Freitas PLD, Barros MVC, Fróes RBL, França LM, Paes AMDA. Prebiotic effects of plant-derived (poly)phenols on host metabolism: Is there a role for short-chain fatty acids? Crit Rev Food Sci Nutr 2023; 63:12285-12293. [PMID: 35833476 DOI: 10.1080/10408398.2022.2100315] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The gut microbiota has been extensively investigated during the last decade because of its effects on host neuroendocrine pathways and other processes. The imbalance between beneficial and pathogenic bacteria, known as dysbiosis, may be a determining predisposing factor for many noncommunicable chronic diseases, such as obesity, type 2 diabetes mellitus, metabolic syndrome, and Alzheimer's disease. On the other hand, interventions aiming to reestablish the balance between microbiota components have been suggested as potential preventive therapeutic strategies against these disorders. Among these interventions, dietary supplementation with (poly)phenols has been highlighted due to the modulatory effects exerted by those compounds on the gut microbiota. In addition, (poly)phenol consumption is associated with increased production of short-chain fatty acids (SCFAs), a set of microbial metabolites whose actions are ascribed to improving the abovementioned metabolic disorders. Thus, this review discusses the modulation of the gut microbiota by prebiotic (poly)phenols based on in vivo studies performed with isolated (poly)phenolic compounds, their interaction with the gut microbiota and the production of SCFAs in pursuit of the molecular mechanisms underlying the health effects of (poly)phenols on host metabolism.
Collapse
Affiliation(s)
- Perla Lopes de Freitas
- Laboratory of Experimental Physiology (LeFisio), Department of Physiological Sciences, Biological and Health Sciences Center, Federal University of Maranhão, São Luís, Brazil
- Health Sciences Graduate Program, Biological and Health Sciences Center, Federal University of Maranhão, São Luís, Brazil
| | - Marcus Vinicius Câmara Barros
- Laboratory of Experimental Physiology (LeFisio), Department of Physiological Sciences, Biological and Health Sciences Center, Federal University of Maranhão, São Luís, Brazil
| | - Rômulo Brênno Lopes Fróes
- Laboratory of Experimental Physiology (LeFisio), Department of Physiological Sciences, Biological and Health Sciences Center, Federal University of Maranhão, São Luís, Brazil
| | - Lucas Martins França
- Laboratory of Experimental Physiology (LeFisio), Department of Physiological Sciences, Biological and Health Sciences Center, Federal University of Maranhão, São Luís, Brazil
- Health Sciences Graduate Program, Biological and Health Sciences Center, Federal University of Maranhão, São Luís, Brazil
| | - Antonio Marcus de Andrade Paes
- Laboratory of Experimental Physiology (LeFisio), Department of Physiological Sciences, Biological and Health Sciences Center, Federal University of Maranhão, São Luís, Brazil
- Health Sciences Graduate Program, Biological and Health Sciences Center, Federal University of Maranhão, São Luís, Brazil
| |
Collapse
|
30
|
Theilmann M, Geldsetzer P, Bärnighausen T, Sudharsanan N. Does Early Childhood BCG Vaccination Improve Survival to Midlife in a Population With a Low Tuberculosis Prevalence? Quasi-experimental Evidence on Nonspecific Effects From 32 Swedish Birth Cohorts. Demography 2023; 60:1607-1630. [PMID: 37732832 DOI: 10.1215/00703370-10970757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The Bacillus Calmette-Guérin (BCG) vaccine for tuberculosis (TB) is widely used globally. Many high-income countries discontinued nationwide vaccination policies starting in the 1980s as the TB prevalence decreased. However, there is continued scientific interest in whether the general childhood immunity boost conferred by the BCG vaccination impacts adult health and mortality in low-TB contexts (known as nonspecific effects). While recent studies have found evidence of an association between BCG vaccination and survival to ages 34-45, it is unclear whether these associations are causal or driven by the unobserved characteristics of those who chose to voluntarily vaccinate. We use the abrupt discontinuation of mandatory BCG vaccination in Sweden in 1975 as a natural experiment to estimate the causal nonspecific effect of the BCG vaccine on cohort survival to midlife. Applying two complementary study designs, we find no evidence that survival to age 40 was affected by the discontinuation of childhood BCG vaccination. The results are consistent among both males and females and are robust to several sensitivity tests. Overall, despite prior correlational studies suggesting large nonspecific effects, we do not find any population-level evidence for a nonspecific effect of the BCG vaccine discontinuation on survival to age 40 in Sweden.
Collapse
Affiliation(s)
- Michaela Theilmann
- Heidelberg Institute of Global Health, Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
- Professorship of Behavioral Science for Disease Prevention and Health Care and Institute for Advanced Study, Technical University of Munich, Munich, Germany
| | - Pascal Geldsetzer
- Division of Primary Care and Population Health, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA
| | - Till Bärnighausen
- Heidelberg Institute of Global Health, Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
- Harvard Center for Population and Development Studies, Cambridge, MA, USA
- Africa Health Research Institute, KwaZulu-Natal, South Africa
| | - Nikkil Sudharsanan
- Heidelberg Institute of Global Health, Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
- Professorship of Behavioral Science for Disease Prevention and Health Care and Institute for Advanced Study, Technical University of Munich, Munich, Germany
| |
Collapse
|
31
|
Barbieri ARM, Suzin A, Rezende LM, Tognolli MH, Vogliotti A, Nunes PH, Pascoli GT, Ramos VDN, Yokosawa J, Azevedo Serpa MCD, Adami SF, Labruna MB, Szabó MPJ. Rickettsia communities and their relationship with tick species within and around the national park of Iguaçu, Brazil. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 91:339-358. [PMID: 37768388 DOI: 10.1007/s10493-023-00839-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
We report Rickettsia species from 2,334 ticks collected from environment (1,939 ticks) and animals (395 ticks) in the largest inland fragment of the Atlantic rainforest of southern Brazil and its fragments. Additionally, the DNA infection rates of Amblyomma ovale tick populations in the Neotropics with Rickettsia bellii and Rickettsia parkeri strain Atlantic rainforest were calculated using data from scientific publications, and their correlation was evaluated. From 11 tick species Rickettsia DNA was detected in seven (Amblyomma brasiliense, Amblyomma coelebs, Amblyomma incisum, Amblyomma longirostre, A. ovale, Haemaphysalis juxtakochi, Ixodes fuscipes) and was not detected in four species (Amblyomma dubitatum, Ixodes loricatus, Rhipicephalus microplus and Rhipicephalus sanguineus sensu lato). DNA of five Rickettsia species was detected (R. bellii, Rickettsia amblyommatis, Rickettsia rhipicephali, Rickettsia felis and Rickettsia sp. Aragaoi). To determine the prevalence of Rickettsia DNA positivity according to vector species, ticks were processed individually or in pools of 2-10 individuals (samples). The most prevalent Rickettsia species was R. bellii, found in 112 samples, followed by R. amblyommatis, R. rhipicephali, R. felis and Rickettsia sp. Aragaoi, found in 16, five, two and one sample, respectively. Rickettsia bellii DNA was found in five tick species with the highest infection rate in A. ovale and A. brasiliense. Absence of R. parkeri strain Atlantic rainforest in A. ovale ticks was an unexpected result. Furthermore, a negative correlation was identified between the infection rates (DNA) of R. bellii and/or R. parkeri strain Atlantic rainforest within A. ovale tick populations in the Neotropics. Putting together current knowledge, it can be proposed that, within natural settings, the diversity of rickettsiae and ticks creates a buffering effect on the overgrowth of rickettsiae and episodes of bacteremia in the hosts.
Collapse
Affiliation(s)
- Amália Regina Mar Barbieri
- Companhia integrada de desenvolvimento agrícola de Santa Catarina, Iomerê, Santa Catarina, Brazil
- Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Adriane Suzin
- Laboratory of Ixodology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Lais Miguel Rezende
- Laboratory of Ixodology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Matheus Henrique Tognolli
- Postgraduate Program in Environment and Society at the State University of Campinas, São Paulo, Brazil
| | - Alexandre Vogliotti
- Latin American Institute of Life and Nature Sciences, Federal University of Latin American Integration, Foz do Iguaçu, Paraná, Brazil
| | - Pablo Henrique Nunes
- Latin American Institute of Life and Nature Sciences, Federal University of Latin American Integration, Foz do Iguaçu, Paraná, Brazil
| | | | | | - Jonny Yokosawa
- Institute of Biomedical Sciences of the Federal University of Uberlândia, Minas Gerais, Brazil
| | | | - Samuel Fernando Adami
- Latin American Institute of Technology, Infrastructure and Territory, Federal University of Latin American Integration, Foz do Iguaçu, Paraná, Brazil
| | - Marcelo B Labruna
- Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Matias Pablo Juan Szabó
- Laboratory of Ixodology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
32
|
Pinnow N, Chibani CM, Güllert S, Weiland-Bräuer N. Microbial community changes correlate with impaired host fitness of Aurelia aurita after environmental challenge. Anim Microbiome 2023; 5:45. [PMID: 37735458 PMCID: PMC10515101 DOI: 10.1186/s42523-023-00266-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023] Open
Abstract
Climate change globally endangers certain marine species, but at the same time, such changes may promote species that can tolerate and adapt to varying environmental conditions. Such acclimatization can be accompanied or possibly even be enabled by a host's microbiome; however, few studies have so far directly addressed this process. Here we show that acute, individual rises in seawater temperature and salinity to sub-lethal levels diminished host fitness of the benthic Aurelia aurita polyp, demonstrated by up to 34% reduced survival rate, shrinking of the animals, and almost halted asexual reproduction. Changes in the fitness of the polyps to environmental stressors coincided with microbiome changes, mainly within the phyla Proteobacteria and Bacteroidota. The absence of bacteria amplified these effects, pointing to the benefit of a balanced microbiota to cope with a changing environment. In a future ocean scenario, mimicked by a combined but milder rise of temperature and salinity, the fitness of polyps was severely less impaired, together with condition-specific changes in the microbiome composition. Our results show that the effects on host fitness correlate with the strength of environmental stress, while salt-conveyed thermotolerance might be involved. Further, a specific, balanced microbiome of A. aurita polyps supports the host's acclimatization. Microbiomes may provide a means for acclimatization, and microbiome flexibility can be a fundamental strategy for marine animals to adapt to future ocean scenarios and maintain biodiversity and ecosystem functioning.
Collapse
Affiliation(s)
- Nicole Pinnow
- General Microbiology, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Cynthia M Chibani
- General Microbiology, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Simon Güllert
- General Microbiology, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany
- Current address: Sysmex Inostics GmbH, Falkenried 88, 20251, Hamburg, Germany
| | - Nancy Weiland-Bräuer
- General Microbiology, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany.
| |
Collapse
|
33
|
Rook GAW. The old friends hypothesis: evolution, immunoregulation and essential microbial inputs. FRONTIERS IN ALLERGY 2023; 4:1220481. [PMID: 37772259 PMCID: PMC10524266 DOI: 10.3389/falgy.2023.1220481] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/18/2023] [Indexed: 09/30/2023] Open
Abstract
In wealthy urbanised societies there have been striking increases in chronic inflammatory disorders such as allergies, autoimmunity and inflammatory bowel diseases. There has also been an increase in the prevalence of individuals with systemically raised levels of inflammatory biomarkers correlating with increased risk of metabolic, cardiovascular and psychiatric problems. These changing disease patterns indicate a broad failure of the mechanisms that should stop the immune system from attacking harmless allergens, components of self or gut contents, and that should terminate inappropriate inflammation. The Old Friends Hypothesis postulates that this broad failure of immunoregulation is due to inadequate exposures to the microorganisms that drive development of the immune system, and drive the expansion of components such as regulatory T cells (Treg) that mediate immunoregulatory mechanisms. An evolutionary approach helps us to identify the organisms on which we are in a state of evolved dependence for this function (Old Friends). The bottom line is that most of the organisms that drive the regulatory arm of the immune system come from our mothers and family and from the natural environment (including animals) and many of these organisms are symbiotic components of a healthy microbiota. Lifestyle changes that are interrupting our exposure to these organisms can now be identified, and many are closely associated with low socioeconomic status (SES) in wealthy countries. These insights will facilitate the development of education, diets and urban planning that can correct the immunoregulatory deficit, while simultaneously reducing other contributory factors such as epithelial damage.
Collapse
Affiliation(s)
- Graham A. W. Rook
- Centre for Clinical Microbiology, Department of Infection, UCL (University College London), London, United Kingdom
| |
Collapse
|
34
|
Yoo JS, Oh SF. Unconventional immune cells in the gut mucosal barrier: regulation by symbiotic microbiota. Exp Mol Med 2023; 55:1905-1912. [PMID: 37696893 PMCID: PMC10545787 DOI: 10.1038/s12276-023-01088-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/19/2023] [Accepted: 08/08/2023] [Indexed: 09/13/2023] Open
Abstract
The mammalian gut is the most densely colonized organ by microbial species, which are in constant contact with the host throughout life. Hosts have developed multifaceted cellular and molecular mechanisms to distinguish and respond to benign and pathogenic bacteria. In addition to relatively well-characterized innate and adaptive immune cells, a growing body of evidence shows additional important players in gut mucosal immunity. Among them, unconventional immune cells, including innate lymphoid cells (ILCs) and unconventional T cells, are essential for maintaining homeostasis. These cells rapidly respond to bacterial signals and bridge the innate immunity and adaptive immunity in the mucosal barrier. Here, we focus on the types and roles of these immune cells in physiological and pathological conditions as prominent mechanisms by which the host immune system communicates with the gut microbiota in health and diseases.
Collapse
Affiliation(s)
- Ji-Sun Yoo
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Sungwhan F Oh
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Graduate Program in Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
35
|
Arnesen H, Markussen T, Birchenough G, Birkeland S, Nyström EEL, Hansson GC, Carlsen H, Boysen P. Microbial experience through housing in a farmyard-type environment alters intestinal barrier properties in mouse colons. Sci Rep 2023; 13:13701. [PMID: 37607995 PMCID: PMC10444815 DOI: 10.1038/s41598-023-40640-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023] Open
Abstract
To close the gap between ultra-hygienic research mouse models and the much more environmentally exposed conditions of humans, we have established a system where laboratory mice are raised under a full set of environmental factors present in a naturalistic, farmyard-type habitat-a process we have called feralization. In previous studies we have shown that feralized (Fer) mice were protected against colorectal cancer when compared to conventionally reared laboratory mice (Lab). However, the protective mechanisms remain to be elucidated. Disruption of the protective intestinal barrier is an acknowledged player in colorectal carcinogenesis, and in the current study we assessed colonic mucosal barrier properties in healthy, feralized C57BL/6JRj male mice. While we found no effect of feralization on mucus layer properties, higher expression of genes encoding the mucus components Fcgbp and Clca1 still suggested mucus enforcement due to feralization. Genes encoding other proteins known to be involved in bacterial defense (Itln1, Ang1, Retnlb) and inflammatory mechanisms (Zbp1, Gsdmc2) were also higher expressed in feralized mice, further suggesting that the Fer mice have an altered intestinal mucosal barrier. These findings demonstrate that microbial experience conferred by housing in a farmyard-type environment alters the intestinal barrier properties in mice possibly leading to a more robust protection against disease. Future studies to unravel regulatory roles of feralization on intestinal barrier should aim to conduct proteomic analyses and in vivo performance of the feralized mice intestinal barrier.
Collapse
Affiliation(s)
- Henriette Arnesen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Turhan Markussen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - George Birchenough
- Mucin Biology Group, Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Signe Birkeland
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Elisabeth E L Nyström
- Mucin Biology Group, Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Gunnar C Hansson
- Mucin Biology Group, Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Harald Carlsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Preben Boysen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| |
Collapse
|
36
|
Weiland-Bräuer N, Koutsouveli V, Langfeldt D, Schmitz RA. First insights into the Aurelia aurita transcriptome response upon manipulation of its microbiome. Front Microbiol 2023; 14:1183627. [PMID: 37637120 PMCID: PMC10448538 DOI: 10.3389/fmicb.2023.1183627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction The associated diverse microbiome contributes to the overall fitness of Aurelia aurita, particularly to asexual reproduction. However, how A. aurita maintains this specific microbiome or reacts to manipulations is unknown. Methods In this report, the response of A. aurita to manipulations of its native microbiome was studied by a transcriptomics approach. Microbiome-manipulated polyps were generated by antibiotic treatment and challenging polyps with a non-native, native, and potentially pathogenic bacterium. Total RNA extraction followed by RNAseq resulted in over 155 million reads used for a de novo assembly. Results The transcriptome analysis showed that the antibiotic-induced change and resulting reduction of the microbiome significantly affected the host transcriptome, e.g., genes involved in processes related to immune response and defense mechanisms were highly upregulated. Similarly, manipulating the microbiome by challenging the polyp with a high load of bacteria (2 × 107 cells/polyp) resulted in induced transcription of apoptosis-, defense-, and immune response genes. A second focus was on host-derived quorum sensing interference as a potential defense strategy. Quorum Quenching (QQ) activities and the respective encoding QQ-ORFs of A. aurita were identified by functional screening a cDNA-based expression library generated in Escherichia coli. Corresponding sequences were identified in the transcriptome assembly. Moreover, gene expression analysis revealed differential expression of QQ genes depending on the treatment, strongly suggesting QQ as an additional defense strategy. Discussion Overall, this study allows first insights into A. aurita's response to manipulating its microbiome, thus paving the way for an in-depth analysis of the basal immune system and additional fundamental defense strategies.
Collapse
Affiliation(s)
| | - Vasiliki Koutsouveli
- GEOMAR Helmholtz Center for Ocean Research Kiel, Düsternbrooker Weg, Kiel, Germany
| | | | - Ruth A. Schmitz
- Institute of General Microbiology, Kiel University, Kiel, Germany
| |
Collapse
|
37
|
Deng Y, You L, Wang X, Wu W, Kuca K, Wu Q, Wei W. Deoxynivalenol: Emerging Toxic Mechanisms and Control Strategies, Current and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37437258 DOI: 10.1021/acs.jafc.3c02020] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Deoxynivalenol (DON) is the most frequently present mycotoxin contaminant in food and feed, causing a variety of toxic effects in humans and animals. Currently, a series of mechanisms involved in DON toxicity have been identified. In addition to the activation of oxidative stress and the MAPK signaling pathway, DON can activate hypoxia-inducible factor-1α, which further regulates reactive oxygen species production and cancer cell apoptosis. Noncoding RNA and signaling pathways including Wnt/β-catenin, FOXO, and TLR4/NF-κB also participate in DON toxicity. The intestinal microbiota and the brain-gut axis play a crucial role in DON-induced growth inhibition. In view of the synergistic toxic effect of DON and other mycotoxins, strategies to detect DON and control it biologically and the development of enzymes for the biodegradation of various mycotoxins and their introduction in the market are the current and future research hotspots.
Collapse
Affiliation(s)
- Ying Deng
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing 401520, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, Hubei 430070, China
| | - Wenda Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada 18071, Spain
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
| | - Wei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
38
|
Ferrinho P, Viveiros M, Fronteira I. Antimicrobial resistance, society and environment: A glocal syndemic. One Health 2023; 16:100512. [PMID: 36875890 PMCID: PMC9978844 DOI: 10.1016/j.onehlt.2023.100512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
•Multidimensionality of AMR determination argues in favour of considering it a glocal syndemic.•Lack of attention to syndemic nature of AMR limits the effectiveness of measures taken so far.•The syndemic approach provides policy makers with conceptual tools to design effective responses.
Collapse
Affiliation(s)
- Paulo Ferrinho
- GHTM, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisbon, Portugal
| | - Miguel Viveiros
- GHTM, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisbon, Portugal
| | - Inês Fronteira
- GHTM, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisbon, Portugal
| |
Collapse
|
39
|
Chen F, Yang J, Guo Y, Su D, Sheng Y, Wu Y. Integrating bulk and single-cell RNA sequencing data reveals the relationship between intratumor microbiome signature and host metabolic heterogeneity in breast cancer. Front Immunol 2023; 14:1140995. [PMID: 36999009 PMCID: PMC10049788 DOI: 10.3389/fimmu.2023.1140995] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
IntroductionNowadays, it has been recognized that gut microbiome can indirectly modulate cancer susceptibility or progression. However, whether intratumor microbes are parasitic, symbiotic, or merely bystanders in breast cancer is not fully understood. Microbial metabolite plays a pivotal role in the interaction of host and microbe via regulating mitochondrial and other metabolic pathways. And the relationship between tumor-resident microbiota and cancer metabolism remains an open question.Methods1085 breast cancer patients with normalized intratumor microbial abundance data and 32 single-cell RNA sequencing samples were retrieved from public datasets. We used the gene set variation analysis to evaluate the various metabolic activities of breast cancer samples. Furthermore, we applied Scissor method to identify microbe-associated cell subpopulations from single-cell data. Then, we conducted comprehensive bioinformatic analyses to explore the association between host and microbe in breast cancer.ResultsHere, we found that the metabolic status of breast cancer cells was highly plastic, and some microbial genera were significantly correlated with cancer metabolic activity. We identified two distinct clusters based on microbial abundance and tumor metabolism data. And dysregulation of the metabolic pathway was observed among different cell types. Metabolism-related microbial scores were calculated to predict overall survival in patients with breast cancer. Furthermore, the microbial abundance of the specific genus was associated with gene mutation due to possible microbe-mediated mutagenesis. The infiltrating immune cell compositions, including regulatory T cells and activated NK cells, were significantly associated with the metabolism-related intratumor microbes, as indicated in the Mantel test analysis. Moreover, the mammary metabolism-related microbes were related to T cell exclusion and response to immunotherapy.ConclusionsOverall, the exploratory study shed light on the potential role of the metabolism-related microbiome in breast cancer patients. And the novel treatment will be realized by further investigating the metabolic disturbance in host and intratumor microbial cells.
Collapse
Affiliation(s)
- Fangyue Chen
- Department of General Surgery, Changhai Hospital, Navy Military Medical University, Shanghai, China
| | - Jun Yang
- Department of General Surgery, 63650 Military Hospital, Urumqi, China
| | - Youxiang Guo
- Department of General Surgery, 63650 Military Hospital, Urumqi, China
| | - Dongwei Su
- Department of General Surgery, Changhai Hospital, Navy Military Medical University, Shanghai, China
| | - Yuan Sheng
- Department of General Surgery, Changhai Hospital, Navy Military Medical University, Shanghai, China
- *Correspondence: Yuan Sheng, ; Yanmei Wu,
| | - Yanmei Wu
- Department of General Surgery, Changhai Hospital, Navy Military Medical University, Shanghai, China
- *Correspondence: Yuan Sheng, ; Yanmei Wu,
| |
Collapse
|
40
|
Slavich GM, Roos LG, Mengelkoch S, Webb CA, Shattuck EC, Moriarity DP, Alley JC. Social Safety Theory: Conceptual foundation, underlying mechanisms, and future directions. Health Psychol Rev 2023; 17:5-59. [PMID: 36718584 PMCID: PMC10161928 DOI: 10.1080/17437199.2023.2171900] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/19/2023] [Indexed: 02/01/2023]
Abstract
Classic theories of stress and health are largely based on assumptions regarding how different psychosocial stressors influence biological processes that, in turn, affect human health and behavior. Although theoretically rich, this work has yielded little consensus and led to numerous conceptual, measurement, and reproducibility issues. Social Safety Theory aims to address these issues by using the primary goal and regulatory logic of the human brain and immune system as the basis for specifying the social-environmental situations to which these systems should respond most strongly to maximize reproductive success and survival. This analysis gave rise to the integrated, multi-level formulation described herein, which transforms thinking about stress biology and provides a biologically based, evolutionary account for how and why experiences of social safety and social threat are strongly related to health, well-being, aging, and longevity. In doing so, the theory advances a testable framework for investigating the biopsychosocial roots of health disparities as well as how health-relevant biopsychosocial processes crystalize over time and how perceptions of the social environment interact with childhood microbial environment, birth cohort, culture, air pollution, genetics, sleep, diet, personality, and self-harm to affect health. The theory also highlights several interventions for reducing social threat and promoting resilience.
Collapse
Affiliation(s)
- George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Lydia G Roos
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Summer Mengelkoch
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Christian A Webb
- McLean Hospital, Belmont, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Eric C Shattuck
- Institute for Health Disparities Research and Department of Public Health, University of Texas at San Antonio, San Antonio, TX, USA
| | - Daniel P Moriarity
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Jenna C Alley
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
41
|
Roderburg C, Loosen SH, Joerdens MS, Demir M, Luedde T, Kostev K. Antibiotic therapy is associated with an increased incidence of cancer. J Cancer Res Clin Oncol 2023; 149:1285-1293. [PMID: 35441344 PMCID: PMC9984516 DOI: 10.1007/s00432-022-03998-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/26/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE There is a growing body of evidence suggesting the decisive involvement of the human microbiome in cancer development. The consumption of antibiotics may fundamentally change the microbiome and thereby create a precancerous environment promoting cancer development and growth. However, clinical data on the association between the consumption of antibiotics and cancer incidence have remained inconclusive. In this study, we quantified the association between the intake of different antibiotics and various cancer entities among outpatients from Germany. METHODS This retrospective case-control study based on the IQVIA Disease Analyzer database included 111,828 cancer patients and 111,828 non-cancer controls who were matched to cancer cases using propensity scores. Patients were categorized as non-users, low-consumption (up to 50th percentile), and high-consumption (above 50th percentile) users of antibiotics overall and for each antibiotic class. Multivariable logistic conditional regression models were used to study the association between antibiotic intake within 5 years prior to the index date (first cancer diagnosis for cases or randomly selected date for controls) and cancer incidence. RESULTS The probability of cancer was significantly higher among patients with a history of antibiotic intake than in matched controls. Patients using penicillin or cephalosporins displayed a higher incidence of cancer, while the intake of tetracyclines and macrolides actually reduced the risk of cancer development slightly. A complex picture was observed in our cancer site-stratified analyses. Most notably, the consumption of penicillin was significantly and positively associated with cancer development in the respiratory organs only (low consumption OR: 1.33, 95% CI 1.20-1.47; high consumption OR 1.42, 95% CI 1.22-1.64) and cephalosporin consumption was significantly associated with respiratory organ cancer (low consumption OR: 1.32, 95% CI 1.17-1.48, high consumption OR: 1.47, 95% CI 1.29-1.66), breast cancer (high consumption OR: 1.40, 95% CI 1.25-1.56), and lymphoid and hematopoietic tissue cancer (high consumption OR: 1.50, 95% CI 1.35-1.66). CONCLUSION Our data strongly support the hypothesis that the intake of antibiotics is positively associated with the risk of cancer development.
Collapse
Affiliation(s)
- Christoph Roderburg
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, 40225, Düsseldorf, Germany.
| | - Sven H Loosen
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, 40225, Düsseldorf, Germany
| | - Markus S Joerdens
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, 40225, Düsseldorf, Germany
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, 40225, Düsseldorf, Germany.
| | | |
Collapse
|
42
|
Vernet-Crua A, Cruz DM, Mostafavi E, Truong LB, Barabadi H, Cholula-Díaz JL, Guisbiers G, Webster TJ. Green-synthesized metallic nanoparticles for antimicrobial applications. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00014-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
43
|
Zhang L, Zhao M, Fu X. Gastric microbiota dysbiosis and Helicobacter pylori infection. Front Microbiol 2023; 14:1153269. [PMID: 37065152 PMCID: PMC10098173 DOI: 10.3389/fmicb.2023.1153269] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/14/2023] [Indexed: 04/18/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is one of the most common causes of gastric disease. The persistent increase in antibiotic resistance worldwide has made H. pylori eradication challenging for clinicians. The stomach is unsterile and characterized by a unique niche. Communication among microorganisms in the stomach results in diverse microbial fitness, population dynamics, and functional capacities, which may be positive, negative, or neutral. Here, we review gastric microecology, its imbalance, and gastric diseases. Moreover, we summarize the relationship between H. pylori and gastric microecology, including non-H. pylori bacteria, fungi, and viruses and the possibility of facilitating H. pylori eradication by gastric microecology modulation, including probiotics, prebiotics, postbiotics, synbiotics, and microbiota transplantation.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Gastroenterology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Ming Zhao
- Department of Gastroenterology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Xiangsheng Fu
- Department of Gastroenterology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
44
|
Luo H, Chen Y, Kuang X, Wang X, Yang F, Cao Z, Wang L, Lin S, Wu F, Liu J. Chemical reaction-mediated covalent localization of bacteria. Nat Commun 2022; 13:7808. [PMID: 36528693 PMCID: PMC9759558 DOI: 10.1038/s41467-022-35579-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Methods capable of manipulating bacterial colonization are of great significance for modulating host-microbiota relationships. Here, we describe a strategy of in-situ chemical reaction-mediated covalent localization of bacteria. Through a simple one-step imidoester reaction, primary amino groups on bacterial surface can be converted to free thiols under cytocompatible conditions. Surface thiolation is applicable to modify diverse strains and the number of introduced thiols per bacterium can be easily tuned by varying feed ratios. These chemically reactive bacteria are able to spontaneously bond with mucous layer by catalyst-free thiol-disulfide exchange between mucin-associated disulfides and newly converted thiols on bacterial surface and show thiolation level-dependent attachment. Bacteria optimized with 9.3 × 107 thiols per cell achieve 170-fold higher attachment in mucin-enriched jejunum, a challenging location for gut microbiota to colonize. As a proof-of-concept application for microbiota transplantation, covalent bonding-assisted localization of an oral probiotic in the jejunum generates an improved remission of jejunal mucositis. Our findings demonstrate that transforming bacteria with a reactive surface provides an approach to chemically control bacterial localization, which is highly desirable for developing next-generation bacterial living bioagents.
Collapse
Affiliation(s)
- Huilong Luo
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Yanmei Chen
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Xiao Kuang
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Xinyue Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Fengmin Yang
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Zhenping Cao
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Lu Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Sisi Lin
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Feng Wu
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Jinyao Liu
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| |
Collapse
|
45
|
Momberg DJ, Voth-Gaeddert LE, Richter LM, Norris SA, Said-Mohamed R. Rethinking water, sanitation, and hygiene for human growth and development. Glob Public Health 2022; 17:3815-3824. [PMID: 35184678 DOI: 10.1080/17441692.2022.2036218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Life history theory emphasises plasticity in developmental and biological programming where conditions in early life, lead to long-term consequences for health and wellbeing. Studies linking water, sanitation, and hygiene, nutrition, and child growth and development have emphasised the optimisation of linear growth as a key metric for the evaluation of intervention efficacy. Life history characteristics pertaining to human growth and phenotypic plasticity, suggest that different developmental outcomes in early childhood may be responsive to different stimuli at different ages. Energy utilisation by the human brain, from birth through childhood, accounts for a disproportionate percentage of the resting metabolic rate. Undernutrition in early life, and its relative resultant energy deficiency, may trigger adaptive physiological mechanisms prioritising brain growth at the expense of body growth. Emphasis placed on linear growth may have impeded the significance of WASH due to excluding aspects of child development beyond height/weight. We propose that incorporating evolutionary public health and life history theory perspectives, allows for the identification of age-appropriate biological outcomes and WASH indicators, while anticipating the timing and life-course suitability of the interventions being operationalised. Finally, integrating reflections regarding context allows for the development of transformative WASH interventions.
Collapse
Affiliation(s)
- Douglas J Momberg
- Department of Archaeology, Biological Anthropology, University of Cambridge, Cambridge, UK.,SAMRC/Wits Developmental Pathways for Health Research Unit, Department of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lee E Voth-Gaeddert
- SAMRC/Wits Developmental Pathways for Health Research Unit, Department of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Linda M Richter
- DSI-NRF Centre of Excellence in Human Development, University of the Witwatersrand, Johannesburg, South Africa
| | - Shane A Norris
- SAMRC/Wits Developmental Pathways for Health Research Unit, Department of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,DSI-NRF Centre of Excellence in Human Development, University of the Witwatersrand, Johannesburg, South Africa
| | - Rihlat Said-Mohamed
- Department of Archaeology, Biological Anthropology, University of Cambridge, Cambridge, UK.,SAMRC/Wits Developmental Pathways for Health Research Unit, Department of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
46
|
Mavrogeni ME, Asadpoor M, Henricks PAJ, Keshavarzian A, Folkerts G, Braber S. Direct Action of Non-Digestible Oligosaccharides against a Leaky Gut. Nutrients 2022; 14:4699. [PMID: 36364961 PMCID: PMC9655944 DOI: 10.3390/nu14214699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 10/28/2023] Open
Abstract
The epithelial monolayer is the primary determinant of mucosal barrier function, and tight junction (TJ) complexes seal the paracellular space between the adjacent epithelial cells and represent the main "gate-keepers" of the paracellular route. Impaired TJ functionality results in increased permeation of the "pro-inflammatory" luminal contents to the circulation that induces local and systemic inflammatory and immune responses, ultimately triggering and/or perpetuating (chronic) systemic inflammatory disorders. Increased gut leakiness is associated with intestinal and systemic disease states such as inflammatory bowel disease and neurodegenerative diseases such as Parkinson's disease. Modulation of TJ dynamics is an appealing strategy aiming at inflammatory conditions associated with compromised intestinal epithelial function. Recently there has been a growing interest in nutraceuticals, particularly in non-digestible oligosaccharides (NDOs). NDOs confer innumerable health benefits via microbiome-shaping and gut microbiota-related immune responses, including enhancement of epithelial barrier integrity. Emerging evidence supports that NDOs also exert health-beneficial effects on microbiota independently via direct interactions with intestinal epithelial and immune cells. Among these valuable features, NDOs promote barrier function by directly regulating TJs via AMPK-, PKC-, MAPK-, and TLR-associated pathways. This review provides a comprehensive overview of the epithelial barrier-protective effects of different NDOs with a special focus on their microbiota-independent modulation of TJs.
Collapse
Affiliation(s)
- Maria Eleni Mavrogeni
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Mostafa Asadpoor
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Paul A. J. Henricks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Ali Keshavarzian
- Division of Gastroenterology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
47
|
Snodgrass JJ. Minimally invasive biomarkers in human population biology research, part 2: An introduction to the special issue. Am J Hum Biol 2022; 34:e23822. [PMID: 36256677 DOI: 10.1002/ajhb.23822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 01/25/2023] Open
Abstract
Over the past several decades, biomarkers have become indispensable tools in human biology, allowing researchers to investigate biocultural and evolutionary questions and to generate basic data on health and well-being. Human biologists are central players in biomarker methods development, pioneering the creation of "field friendly," minimally invasively collected biomarker approaches, as well as leading the innovative use of biomarkers, most notably to map the complex pathways from social and environmental conditions to altered physiology to health effects. This special issue, Part 2 of a collection focused on minimally invasively collected biomarkers, is comprised of nine papers that jointly contribute to driving the science of biomarker methods development and application. This compilation of papers engages with topics such as biological normalcy, ecoimmunology, and the ethics of working with vulnerable and underserved populations. It also focuses attention on research areas at present not emphasized in human biology such as bone turnover markers as a window onto osteoporosis and osteoarthritis and the use of cancer-related biomarkers in population screening and epidemiology. Taken together, these papers help draw the roadmap for future biomarker work, emphasizing: (1) the need for systematic and transparent approaches to assay validation, with open access publication; (2) simultaneous measurement of multiple biomarkers and expanded use of instrument platforms that increase the range of physiological, genomics, and omics markers available to researchers; and, (3) increased attention to ethics and researcher responsibilities, encouraging a mindset that recognizes our obligation to provide benefits to individuals and communities and to help redress past abuses.
Collapse
Affiliation(s)
- J Josh Snodgrass
- Global Health Biomarker Laboratory, Department of Anthropology, University of Oregon, Eugene, Oregon, USA.,Center for Global Health, University of Oregon, Eugene, Oregon, USA.,Global Station for Indigenous Studies and Cultural Diversity, Hokkaido University, Sapporo, Japan
| |
Collapse
|
48
|
DeLouize AM, Eick G, Karam SD, Snodgrass JJ. Current and future applications of biomarkers in samples collected through minimally invasive methods for cancer medicine and population-based research. Am J Hum Biol 2022; 34:e23665. [PMID: 34374148 PMCID: PMC9894104 DOI: 10.1002/ajhb.23665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 02/04/2023] Open
Abstract
Despite advances in cancer medicine and research, invasive and potentially risky procedures such as biopsies, venous blood tests, imaging, colonoscopy, and pap smear tests are still primarily used for screening, staging, and assessing response to therapy. The development and interdisciplinary use of biomarkers from urine, feces, saliva, scent, and capillary blood collected with minimally invasive methods represents a potential opportunity for integration with biomarker analysis for cancers, both in clinical practice (e.g., in screening, treatment, and disease monitoring, and improved quality of life for patients) and population-based research (e.g., in epidemiology/public health, studies of social and environmental determinants, and evolutionary medicine). In this article, we review the scientific rationale, benefits, challenges, and potential opportunities for measuring cancer-related biomarkers in samples collected through minimally invasive methods.
Collapse
Affiliation(s)
| | - Geeta Eick
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA
| | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - J. Josh Snodgrass
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA
- Center for Global Health, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
49
|
Metcalf CJE, Tepekule B, Bruijning M, Koskella B. Hosts, microbiomes, and the evolution of critical windows. Evol Lett 2022; 6:412-425. [PMID: 36579161 PMCID: PMC9783423 DOI: 10.1002/evl3.298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 12/31/2022] Open
Abstract
The absence of microbial exposure early in life leaves individuals vulnerable to immune overreaction later in life, manifesting as immunopathology, autoimmunity, or allergies. A key factor is thought to be a "critical window" during which the host's immune system can "learn" tolerance, and beyond which learning is no longer possible. Animal models indicate that many mechanisms have evolved to enable critical windows, and that their time limits are distinct and consistent. Such a variety of mechanisms, and precision in their manifestation suggest the outcome of strong evolutionary selection. To strengthen our understanding of critical windows, we explore their underlying evolutionary ecology using models encompassing demographic and epidemiological transitions, identifying the length of the critical window that would maximize fitness in different environments. We characterize how direct effects of microbes on host mortality, but also indirect effects via microbial ecology, will drive the optimal length of the critical window. We find that indirect effects such as magnitude of transmission, duration of infection, rates of reinfection, vertical transmission, host demography, and seasonality in transmission all have the effect of redistributing the timing and/or likelihood of encounters with microbial taxa across age, and thus increasing or decreasing the optimal length of the critical window. Declining microbial population abundance and diversity are predicted to result in increases in immune dysfunction later in life. We also make predictions for the length of the critical window across different taxa and environments. Overall, our modeling efforts demonstrate how critical windows will be impacted over evolution as a function of both host-microbiome/pathogen interactions and dispersal, raising central questions about potential mismatches between these evolved systems and the current loss of microbial diversity and/or increases in infectious disease.
Collapse
Affiliation(s)
- C. Jessica E. Metcalf
- Department of Ecology and EvolutionaryPrinceton UniversityPrincetonNew Jersey08544,Wissenschaftskolleg zu BerlinDE‐14193BerlinGermany
| | - Burcu Tepekule
- Department of Ecology and EvolutionaryPrinceton UniversityPrincetonNew Jersey08544
| | - Marjolein Bruijning
- Department of Ecology and EvolutionaryPrinceton UniversityPrincetonNew Jersey08544
| | - Britt Koskella
- Wissenschaftskolleg zu BerlinDE‐14193BerlinGermany,Department of Integrative BiologyUC BerkeleyBerkeleyCalifornia94720
| |
Collapse
|
50
|
Wojciechowski S, Majchrzak-Górecka M, Biernat P, Odrzywołek K, Pruss Ł, Zych K, Jan Majta, Milanowska-Zabel K. Machine learning on the road to unlocking microbiota's potential for boosting immune checkpoint therapy. Int J Med Microbiol 2022; 312:151560. [PMID: 36113358 DOI: 10.1016/j.ijmm.2022.151560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 07/15/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022] Open
Abstract
The intestinal microbiota is a complex and diverse ecological community that fulfills multiple functions and substantially impacts human health. Despite its plasticity, unfavorable conditions can cause perturbations leading to so-called dysbiosis, which have been connected to multiple diseases. Unfortunately, understanding the mechanisms underlying the crosstalk between those microorganisms and their host is proving to be difficult. Traditionally used bioinformatic tools have difficulties to fully exploit big data generated for this purpose by modern high throughput screens. Machine Learning (ML) may be a potential means of solving such problems, but it requires diligent application to allow for drawing valid conclusions. This is especially crucial as gaining insight into the mechanistic basis of microbial impact on human health is highly anticipated in numerous fields of study. This includes oncology, where growing amounts of studies implicate the gut ecosystems in both cancerogenesis and antineoplastic treatment outcomes. Based on these reports and first signs of clinical benefits related to microbiota modulation in human trials, hopes are rising for the development of microbiome-derived diagnostics and therapeutics. In this mini-review, we're inspecting analytical approaches used to uncover the role of gut microbiome in immune checkpoint therapy (ICT) with the use of shotgun metagenomic sequencing (SMS) data.
Collapse
Affiliation(s)
| | | | | | - Krzysztof Odrzywołek
- Ardigen, Podole 76, 30-394 Kraków, Poland; Institute of Computer Science, Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
| | - Łukasz Pruss
- Ardigen, Podole 76, 30-394 Kraków, Poland; Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-373 Wroclaw, Poland
| | | | - Jan Majta
- Ardigen, Podole 76, 30-394 Kraków, Poland; Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | |
Collapse
|