1
|
Costa RA, Hubbard PC, Manchado M, Power DM, Velez Z. Olfactory specialization in the Senegalese sole (Solea senegalensis): CO 2 acidified water triggers nostril-specific immune processes. Comp Biochem Physiol A Mol Integr Physiol 2025; 302:111820. [PMID: 39914697 DOI: 10.1016/j.cbpa.2025.111820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/18/2025] [Accepted: 02/03/2025] [Indexed: 03/01/2025]
Abstract
Increased carbon dioxide (CO2) in the ocean is changing seawater chemistry. Behavioural alterations in CO2 exposed fish have been linked to changes in the central nervous system (CNS). However, we hypothesise that receptor cells in direct contact with the environment are more susceptible to changes in water chemistry than the CNS. Electrophysiology, histology, and transcriptomics were used to explore the effect of exposure to CO2 acidified water on the olfactory epithelium (OE) of the Senegalese sole (Solea senegalensis). The upper and lower OE of this flatfish detect different odorants and are in contact with different environments. Acute exposure to acidified water decreased olfactory sensitivity more in the upper than in the lower OE. After chronic exposure to high CO2 there were no histological changes in the upper OE; however, in the lower OE, there was a massive infiltration of melanomacrophage (MMC) and tissue disorganization. In addition, in the upper OE, differential expressed gene transcripts (DETs) were related to inflammation and innate immune processes whereas in the lower OE, DETs were related to the adaptative immune response. Differential regulation of genes related to neurogenesis and plasticity occurred in both epithelia. The effects of ocean acidification in sole OE depends on the nostril; however, the occurrence of an exacerbated immune response, OE remodelling and reduced sensitivity indicate that ocean acidification is likely to have significant and unpredictable consequences for behaviour.
Collapse
Affiliation(s)
- Rita A Costa
- Comparative Endocrinology and Integrative Biology Group, Centre for Marine Sciences, University of Algarve, Campus of Gambelas, Building 7, 8005-139 Faro, Portugal
| | - Peter C Hubbard
- Comparative Endocrinology and Integrative Biology Group, Centre for Marine Sciences, University of Algarve, Campus of Gambelas, Building 7, 8005-139 Faro, Portugal
| | - Manuel Manchado
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain. https://twitter.com/Manchado_M
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology Group, Centre for Marine Sciences, University of Algarve, Campus of Gambelas, Building 7, 8005-139 Faro, Portugal
| | - Zélia Velez
- Comparative Endocrinology and Integrative Biology Group, Centre for Marine Sciences, University of Algarve, Campus of Gambelas, Building 7, 8005-139 Faro, Portugal.
| |
Collapse
|
2
|
Dong X, Lv M, Zeng M, Chen X, Wang J, Liang XF. Genome-Wide Identification, Characterization of the ORA (Olfactory Receptor Class A) Gene Family, and Potential Roles in Bile Acid and Pheromone Recognition in Mandarin Fish ( Siniperca chuatsi). Cells 2025; 14:189. [PMID: 39936981 PMCID: PMC11817882 DOI: 10.3390/cells14030189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/17/2025] [Accepted: 01/24/2025] [Indexed: 02/13/2025] Open
Abstract
The ORA (olfactory receptor class A) gene family in teleosts is related to the V1R (vomeronasal 1 receptors) family in mammals and plays a key role in odor detection. Although ORA genes have been identified in several teleosts, their characteristics in mandarin fish (Siniperca chuatsi) have not been explored. In this study, we conducted a comprehensive genomic analysis of the mandarin fish and discovered a complete ORA gene family consisting of five members located on chromosome 2 (ORA1, ORA2, ORA3, ORA4) and chromosome 16 (ORA6). Phylogenetic, synteny, and gene structure analyses revealed typical exon-intron conservation with strong evidence of purifying selection. Tissue expression analysis showed distinct expression profiles for each ORA gene, with some showing sexual dimorphism in specific tissues. The expression of ORA1 and ORA2 in the olfactory epithelium exhibits sexual dimorphism, while ORA3 shows sexual dimorphism in the brain. In situ hybridization confirmed that ORA1, ORA2, ORA3, and ORA6 are expressed in the microvillar sensory neurons of the olfactory epithelium, while ORA4 is expressed in crypt cells. Additionally, molecular docking simulations indicated that the five ORA proteins have a high binding affinity with seven bile acids (LAC, GLAC, CA, TLCA, 3-KLCA, 7-KLCA, and 12-KLCA), with ORAs showing stronger binding affinity with LCA and CA. This study comprehensively characterizes the ORA gene family in mandarin fish, examining its phylogeny, synteny, gene structure, and selection pressure. Furthermore, we found that each ORA displays a distinct expression pattern across multiple tissues, with notable sexual dimorphism, and shows potential binding interactions with specific bile acids and pheromones. Our findings provide valuable insights that enhance the overall understanding of fish ORAs and their potential functions.
Collapse
Affiliation(s)
- Xiaoru Dong
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (X.D.); (M.Z.); (X.C.); (J.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Maolin Lv
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
| | - Ming Zeng
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (X.D.); (M.Z.); (X.C.); (J.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Xiaochuan Chen
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (X.D.); (M.Z.); (X.C.); (J.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Jiale Wang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (X.D.); (M.Z.); (X.C.); (J.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (X.D.); (M.Z.); (X.C.); (J.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
3
|
Tigert LR, Hubbard PC, Porteus CS. Effects of hypoxia on the olfactory sensitivity of gilt-head seabream (Sparus aurata). J Exp Biol 2025; 228:jeb249771. [PMID: 39555894 PMCID: PMC11744318 DOI: 10.1242/jeb.249771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024]
Abstract
Coastal environments around the world are becoming increasingly hypoxic owing to anthropogenic effects. We hypothesized that, because the olfactory epithelium is in contact with the external environment, decreased external oxygen will impair olfaction. We performed electro-olfactograms on juvenile gilt-head seabream (Sparus aurata) and measured the response to three amino acids at five different concentrations (1×10-7 to 1×10-3 mol l-1) in normoxic (20 kPa O2) and two hypoxic conditions (12.5 and 5.7 kPa O2). For the first time, we show that both mild and moderate hypoxia decreased the olfactory response to two out of three odorants. As more coastal areas become hypoxic, it is important to understand how hypoxia may impair the sensory systems of fishes, which can have individual- and population-level effects and important implications for our food supply.
Collapse
Affiliation(s)
- Liam R. Tigert
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
- Cells and Systems Biology, University of Toronto, ON M5S 1A1, Canada
| | - Peter C. Hubbard
- CCMAR-CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Cosima S. Porteus
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
- Cells and Systems Biology, University of Toronto, ON M5S 1A1, Canada
| |
Collapse
|
4
|
Lu L, Shan C, Tong D, Yu Y, Zhang W, Zhang X, Shu Y, Li W, Liu G, Shi W. Olfactory toxicity of tetrabromobisphenol A to the goldfish Carassius auratus. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135661. [PMID: 39213767 DOI: 10.1016/j.jhazmat.2024.135661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Tetrabromobisphenol A (TBBPA) is one of the most extensively used brominated flame retardants and its increasing use in consumer products has raised concerns about its ecotoxicity. Given the ubiquity of TBBPA in aquatic environments, it is inevitable that these chemicals will enter the olfactory chambers of fish via water currents. Nevertheless, the olfactory toxicity of TBBPA to aquatic organisms and the underlying toxic mechanisms have yet to be elucidated. Therefore, we investigated the olfactory toxicity of TBBPA in the goldfish Carassius auratus, a model organism widely used in sensory biology. Results showed that exposure to TBBPA resulted in abnormal olfactory-mediated behaviors and diminished electro-olfactogram (EOG) responses, indicating reduced olfactory acuity. To uncover the underlying mechanisms of action, we examined the structural integrity of the olfactory epithelium (OE), expression levels of olfactory G protein-coupled receptors (GPCRs), enzymatic activities of ion transporters, and fluctuations in neurotransmitters. Additionally, comparative transcriptomic analysis was employed to investigate the molecular mechanisms further. Our study demonstrates for the first time that TBBPA at environmentally relevant levels can adversely affect the olfactory sensitivity of aquatic organisms by interfering with the transmission of aqueous stimuli to olfactory receptors, impeding the binding of odorants to their receptors, disrupting the olfactory signal transduction pathway, and ultimately affecting the generation of action potentials.
Collapse
Affiliation(s)
- Lingzheng Lu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Conghui Shan
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Difei Tong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xunyi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yang Shu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Weifeng Li
- College of Marine Sciences, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou 535011, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
5
|
Sourisse JM, Semmelhack JL, Schunter C. Parental thermal conditions affect the brain activity response to alarm cue in larval zebrafish. PeerJ 2024; 12:e18241. [PMID: 39399440 PMCID: PMC11471146 DOI: 10.7717/peerj.18241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/15/2024] [Indexed: 10/15/2024] Open
Abstract
Temperature is a crucial factor affecting the physiology of ectothermic animals, but exposure to elevated temperature during specific life stages and across generations may confer fish resilience through phenotypic plasticity. In this study, we investigate the effects of developmental and parental temperature on brain activity response to an olfactory cue in the larval zebrafish, Danio rerio. We exposed parents during reproduction and their offspring during development to control (28 °C) or elevated temperature (30 °C) and observed the response of the larval telencephalon to an alarm cue using live calcium imaging. Parental exposure to elevated temperature decreased the time till maximum brain activity response regardless of the offspring's developmental temperature, revealing that parental thermal conditions can affect the excitability of the offspring's neural circuitry. Furthermore, brain activity duration was affected by the interaction between parental and offspring thermal conditions, where longer brain activity duration was seen when either parents or offspring were exposed to elevated temperature. Conversely, we found shorter brain activity duration when the offspring were exposed to the same temperature as their parents, in both control and elevated temperature. This could represent an anticipatory parental effect influencing the offspring's brain response to match the parental environment, or an early developmental effect occurring within a susceptible short time window post-fertilization. Overall, our results suggest that warming can alter processes involved in brain transmission and show that parental conditions could aid in the preparation of their offspring to respond to olfactory stimuli in a warming environment.
Collapse
Affiliation(s)
- Jade M. Sourisse
- The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
- Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Cascais, Portugal
| | - Julie L. Semmelhack
- The Division of Life Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong
| | - Celia Schunter
- The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
6
|
Axelrod CJ, Urquhart EM, Mahabir PN, Carlson BA, Gordon SP. Diversity of Intraspecific Patterns of Brain Region Size Covariation in Fish. Integr Comp Biol 2024; 64:506-519. [PMID: 38886128 DOI: 10.1093/icb/icae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Traits often do not evolve in isolation or vary independently of other traits. Instead, they can be affected by covariation, both within and across species. However, the importance of within-species trait covariation and, critically, the degree to which it varies between species has yet to be thoroughly studied. Brain morphology is a trait of great ecological and behavioral importance, with regions that are hypothesized to vary in size based on behavioral and cognitive demands. Sizes of brain regions have also been shown to covary with each other across various taxa. Here, we test the degree to which covariation in brain region sizes within species has been conserved across 10 teleost fish species. These 10 species span five orders, allowing us to examine how phylogenetic proximity influences similarities in intraspecific trait covariation. Our results showed a trend that similar patterns of brain region size covariation occur in more closely related species. Interestingly, there were certain brain region pairs that showed similar levels of covariation across all species regardless of phylogenetic distance, such as the telencephalon and optic tectum, while others, such as the olfactory bulb and the hypothalamus, varied more independently. Ultimately, the patterns of brain region covariation shown here suggest that evolutionary mechanisms or constraints can act on specific brain regions independently, and that these constraints can change over evolutionary time.
Collapse
Affiliation(s)
- Caleb J Axelrod
- Department of Ecology and Evolution, Cornell University, E145, 215 Tower Rd Dale R. Corson Hall, Ithaca, NY 14853, USA
| | - Ellen M Urquhart
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63105, USA
| | - Pria N Mahabir
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bruce A Carlson
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63105, USA
| | - Swanne P Gordon
- Department of Ecology and Evolution, Cornell University, E145, 215 Tower Rd Dale R. Corson Hall, Ithaca, NY 14853, USA
| |
Collapse
|
7
|
Torres D, Villamayor PR, Román A, García P, Martínez P, Sanchez-Quinteiro P. In-depth histological, lectin-histochemical, immunohistochemical and ultrastructural description of the olfactory rosettes and olfactory bulbs of turbot (Scophthalmus maximus). Cell Tissue Res 2024; 397:215-239. [PMID: 39112611 DOI: 10.1007/s00441-024-03906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/18/2024] [Indexed: 09/05/2024]
Abstract
Chemical communication through olfaction is crucial for fish behaviours, mediating in socio-sexual behaviours as reproduction. Turbot, a flatfish with significant aquaculture production, possesses a well-developed olfactory system from early developmental stages. After metamorphosis, flatfish acquire their characteristic bilateral asymmetry with an ocular side facing the open water column, housing the dorsal olfactory rosette, and a blind side in contact with the sea bottom where the ventral rosette is located. This study aimed to address the existing gap in specific histological, ultrastructural, lectin-histochemical and immunohistochemical studies of the turbot olfactory rosettes and olfactory bulbs. We examined microdissected olfactory organs of adult turbots and premetamorphic larvae by using routine histological staining techniques, and a wide array of lectins and primary antibodies against G-proteins and calcium-binding proteins. We observed no discernible structural variations in the olfactory epithelium between rosettes, except for the dorsal rosette being larger in size compared to the ventral rosette. Additionally, the use of transmission electron microscopy significantly improved the characterization of the adult olfactory epithelium, exhibiting high cell density, small cell size, and a wide diversity of cell types. Moreover, specific immunopositivity in sensory and non-sensory cells provided us of essential information regarding their olfactory roles. The results obtained significantly enriched the scarce morphological and neurochemical information available on the turbot olfactory system, revealing a highly complex olfactory epithelium with distinct features compared to other teleost species, especially with regard to olfactory cell distribution and immunolabelling patterns.
Collapse
Affiliation(s)
- Dorinda Torres
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, Universidade de Santiago de Compostela, Av Carballo Calero S/N, 27002, Lugo, Spain
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Paula R Villamayor
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Albina Román
- Electron Microscopy Unit, Research Infrastructures Area, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Pablo García
- Pescanova Biomarine Center, 36980 O Grove, Pontevedra, Spain
| | - Paulino Martínez
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Pablo Sanchez-Quinteiro
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, Universidade de Santiago de Compostela, Av Carballo Calero S/N, 27002, Lugo, Spain.
| |
Collapse
|
8
|
Simonis C, Zink L, Johnston SE, Bogard M, Pyle GG. Effects of water quality on palladium-induced olfactory toxicity and bioaccumulation in rainbow trout (Oncorhynchus mykiss). INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1407-1419. [PMID: 38329152 DOI: 10.1002/ieam.4900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 02/09/2024]
Abstract
Through emission processes, palladium (Pd) particulates from industrial sources are introduced into a range of ecosystems including freshwater environments. Despite this, research on Pd-induced bioaccumulation, uptake, and toxicity is limited for freshwater fishes. Unlike other metals, there are currently no regulations or protective guidelines to limit Pd release into aquatic systems, indicating a global absence of measures addressing its environmental impact. To assess the olfactory toxicity potential of Pd, the present study aimed to explore Pd accumulation in olfactory tissues, olfactory disruption, and oxidative stress in rainbow trout (Oncorhynchus mykiss) following waterborne Pd exposure. Olfactory sensitivity, measured by electro-olfactography, demonstrated that Pd inhibits multiple pathways of the olfactory system following 96 h of Pd exposure. In this study, the concentrations of Pd for inhibition of olfactory function by 20% (2.5 μg/L; IC20) and 50% (19 μg/L; IC50) were established. Rainbow trout were then exposed to IC20 and IC50 Pd concentrations in combination with varying exposure conditions, as changes in water quality alter the toxicity of metals. Independent to Pd, increased water hardness resulted in decreased olfactory perception owing to ion competition at the olfactory epithelium. No other environmental parameter in this study significantly influenced Pd-induced olfactory toxicity. Membrane-associated Pd was measured at the olfactory rosette and gill following exposure; however, this accumulation did not translate to oxidative stress as measured by the production of malondialdehyde. Our data suggest that Pd is toxic to rainbow trout via waterborne contamination near field-measured levels. This study further demonstrated Pd bioavailability and uptake at water-adjacent tissues, adding to our collective understanding of the toxicological profile of Pd. Taken together, our results provide novel insights into the olfactory toxicity in fish following Pd exposure. Integr Environ Assess Manag 2024;20:1407-1419. © 2024 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Carolyn Simonis
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Lauren Zink
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Sarah E Johnston
- Department of Chemistry and Biochemistry, University of Alaska, Fairbanks, Alaska, USA
| | - Matthew Bogard
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Gregory G Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
9
|
Ward RH, Quinn TP, Dittman AH, Yopak KE. The Effects of Rearing Environment on Organization of the Olfactory System and Brain of Juvenile Sockeye Salmon, Oncorhynchus nerka. Integr Comp Biol 2024; 64:92-106. [PMID: 38373826 DOI: 10.1093/icb/icae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 02/21/2024] Open
Abstract
Pacific salmon (Oncorhynchus spp.) hatch and feed in freshwater habitats, migrate to sea to mature, and return to spawn at natal sites. The final, riverine stages of the return migrations are mediated by chemical properties of the natal stream that they learned as juveniles. Like some other fish, salmon growth is asymptotic; they grow continuously throughout life toward a maximum size. The continued growth of the nervous system may be plastic in response to environmental variables. Due to the ecological, cultural, and economic importance of Pacific salmon, individuals are often reared in hatcheries and released into the wild as juveniles to supplement natural populations. However, hatchery-reared individuals display lower survivorship and may also stray (i.e., spawn in a non-natal stream) at higher rates than their wild counterparts. Hatchery environments may lack stimuli needed to promote normal development of the nervous system, thus leading to behavioral deficits and a higher incidence of straying. This study compared the peripheral olfactory system and brain organization of hatchery-reared and wild-origin sockeye salmon fry (Oncorhynchus nerka). Surface area of the olfactory rosette, diameter of the olfactory nerve, total brain size, and size of major brain regions were measured from histological sections and compared between wild and hatchery-origin individuals. Hatchery-origin fish had significantly larger optic tecta, and marginally insignificant, yet noteworthy trends, existed in the valvula cerebelli (hatchery > wild) and olfactory bulbs (hatchery < wild). We also found a putative difference in olfactory nerve diameter (dmin) (hatchery > wild), but the validity of this finding needs further analyses with higher resolution methods. Overall, these results provide insight into the potential effects of hatchery rearing on nervous system development in salmonids, and may explain behavioral deficits displayed by hatchery-origin individuals post-release.
Collapse
Affiliation(s)
- Russell H Ward
- Department of Biology and Marine Biology, University of North Carolina, Wilmington, NC 28403, USA
| | - Thomas P Quinn
- School of Aquatic and Fishery Sciences, University of Washington, Seattle WA 98195, USA
| | - Andrew H Dittman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. East, Seattle, WA 98112, USA
| | - Kara E Yopak
- School of Aquatic and Fishery Sciences, University of Washington, Seattle WA 98195, USA
| |
Collapse
|
10
|
Velez Z, Hubbard PC, Alves A, Costa RA, Guerreiro PM. Environmental salinity modulates olfactory sensitivity in the euryhaline European seabass, Dicentrarchus labrax, acclimated to seawater and brackish water. J Exp Biol 2024; 227:jeb246448. [PMID: 38197261 DOI: 10.1242/jeb.246448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024]
Abstract
The olfactory epithelium of fish is - of necessity - in intimate contact with the surrounding water. In euryhaline fish, movement from seawater to freshwater (and vice versa) exposes the epithelium to massive changes in salinity and ionic concentrations. How does the olfactory system function in the face of such changes? The current study compared olfactory sensitivity in seawater- (35‰) and brackish water-adapted seabass (5‰) using extracellular multi-unit recording from the olfactory nerve. Seawater-adapted bass had higher olfactory sensitivity to amino acid odorants when delivered in seawater than in freshwater. Conversely, brackish water-adapted bass had largely similar sensitivities to the same odorants when delivered in seawater or freshwater, although sensitivity was still slightly higher in seawater. The olfactory system of seawater-adapted bass was sensitive to decreases in external [Ca2+], whereas brackish water-adapted bass responded to increases in [Ca2+]; both seawater- and brackish water-adapted bass responded to increases in external [Na+] but the sensitivity was markedly higher in brackish water-adapted bass. In seawater-adapted bass, olfactory sensitivity to l-alanine depended on external Ca2+ ions, but not Na+; brackish water-adapted bass did respond to l-alanine in the absence of Ca2+, albeit with lower sensitivity, whereas sensitivity was unaffected by removal of Na+ ions. A possible adaptation of the olfactory epithelium was the higher number of mucous cells in brackish water-adapted bass. The olfactory system of seabass is able to adapt to low salinities, but this is not immediate; further studies are needed to identify the processes involved.
Collapse
Affiliation(s)
- Zélia Velez
- Comparative Endocrinology and Integrative Biology Group, Centre for Marine Sciences, University of Algarve, Campus of Gambelas, Building 7, 8005-139 Faro, Portugal
| | - Peter C Hubbard
- Comparative Endocrinology and Integrative Biology Group, Centre for Marine Sciences, University of Algarve, Campus of Gambelas, Building 7, 8005-139 Faro, Portugal
| | - Alexandra Alves
- Comparative Endocrinology and Integrative Biology Group, Centre for Marine Sciences, University of Algarve, Campus of Gambelas, Building 7, 8005-139 Faro, Portugal
| | - Rita A Costa
- Comparative Endocrinology and Integrative Biology Group, Centre for Marine Sciences, University of Algarve, Campus of Gambelas, Building 7, 8005-139 Faro, Portugal
| | - Pedro M Guerreiro
- Comparative Endocrinology and Integrative Biology Group, Centre for Marine Sciences, University of Algarve, Campus of Gambelas, Building 7, 8005-139 Faro, Portugal
| |
Collapse
|
11
|
Sourisse JM, Bonzi LC, Semmelhack J, Schunter C. Warming affects routine swimming activity and novel odour response in larval zebrafish. Sci Rep 2023; 13:21075. [PMID: 38030737 PMCID: PMC10687225 DOI: 10.1038/s41598-023-48287-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023] Open
Abstract
Temperature is a primary factor affecting the physiology of ectothermic animals and global warming of water bodies may therefore impact aquatic life. Understanding the effects of near-future predicted temperature changes on the behaviour and underlying molecular mechanisms of aquatic animals is of particular importance, since behaviour mediates survival. In this study, we investigate the effects of developmental temperature on locomotory behaviour and olfactory learning in the zebrafish, Danio rerio. We exposed zebrafish from embryonic stage to either control (28 °C) or elevated temperature (30 °C) for seven days. Overall, warming reduced routine swimming activity and caused upregulation of metabolism and neuron development genes. When exposed to olfactory cues, namely catfish cue, a non-alarming but novel odour, and conspecifics alarming cue, warming differently affected the larvae response to the two cues. An increase in locomotory activity and a large transcriptional reprogramming was observed at elevated temperature in response to novel odour, with upregulation of cell signalling, neuron development and neuron functioning genes. As this response was coupled with the downregulation of genes involved in protein translation and ATP metabolism, novel odour recognition in future-predicted thermal conditions would require energetic trade-offs between expensive baseline processes and responsive functions. To evaluate their learning abilities at both temperatures, larvae were conditioned with a mixture of conspecifics alarm cue and catfish cue. Regardless of temperature, no behavioural nor gene expression changes were detected, reinforcing our findings that warming mainly affects zebrafish molecular response to novel odours. Overall, our results show that future thermal conditions will likely impact developing stages, causing trade-offs following novel olfactory detection in the environment.
Collapse
Affiliation(s)
- Jade M Sourisse
- The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR, China
| | - Lucrezia C Bonzi
- The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR, China
| | - Julie Semmelhack
- The Division of Life Science, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong SAR, China
| | - Celia Schunter
- The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
12
|
Jing X, Lyu L, Gong Y, Wen H, Li Y, Wang X, Li J, Yao Y, Zuo C, Xie S, Yan S, Qi X. Olfactory receptor OR52N2 for PGE 2 in mediation of guppy courtship behaviors. Int J Biol Macromol 2023; 241:124518. [PMID: 37088189 DOI: 10.1016/j.ijbiomac.2023.124518] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 01/19/2023] [Accepted: 04/15/2023] [Indexed: 04/25/2023]
Abstract
Prostaglandins (PGs) are a type of physiologically active unsaturated fatty acids. As an important sex pheromone, PGs play a vital role in regulating the reproductive behaviors of species by mediating nerve and endocrine responses. In this study, guppy (Poecilia reticulate) was used as the model specie to detect the function of PGE2 in inducing the onset of courtship behaviors. Our results showed that adding PGE2 into the water environment could activate the courtship behavior of male guppy, indicating that the peripheral olfactory system mediated the PGE2 function. Thereafter, the open reading frame (ORF) of olfactory receptor or52n2 was cloned, which was 936 bp in length, coding 311 amino acids. As a typical G protein-coupled receptor, OR52N2 had a conservative seven α-helix transmembrane domains. To confirm the regulatory relationship between OR52N2 and PGE2, dual-luciferase reporter assay was employed to verify the activation of downstream CREB signaling pathways. Results showed that PGE2 significantly enhanced CRE promoter activity in or52n2 ORF transient transfected HEK-293 T cells. Finally, localization of or52n2 mRNA were observed in ciliated receptor cells of the olfactory epithelium using in situ hybridization. Our results provide a novel insight into sex pheromone signaling transduction in reproductive behavior.
Collapse
Affiliation(s)
- Xiao Jing
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Likang Lyu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yu Gong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xiaojie Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jianshuang Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yijia Yao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Chenpeng Zuo
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Songyang Xie
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Shaojing Yan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| |
Collapse
|
13
|
Razmara P, Pyle GG. Impact of Copper Nanoparticles and Copper Ions on Transcripts Involved in Neural Repair Mechanisms in Rainbow Trout Olfactory Mucosa. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 84:18-31. [PMID: 36525054 DOI: 10.1007/s00244-022-00969-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Olfactory mucosa is well known for its lifelong ability for regeneration. Regeneration of neurons and regrowth of severed axons are the most common neural repair mechanisms in olfactory mucosa. Nonetheless, exposure to neurotoxic contaminants, such as copper nanoparticles (CuNPs) and copper ions (Cu2+), may alter the reparative capacity of olfactory mucosa. Here, using RNA-sequencing, we investigated the molecular basis of neural repair mechanisms that were affected by CuNPs and Cu2+ in rainbow trout olfactory mucosa. The transcript profile of olfactory mucosa suggested that regeneration of neurons was inhibited by CuNPs. Exposure to CuNPs reduced the transcript abundances of pro-inflammatory proteins which are required to initiate neuroregeneration. Moreover, the transcript of genes encoding regeneration promoters, including canonical Wnt/β-catenin signaling proteins and developmental transcription factors, were downregulated in the CuNP-treated fish. The mRNA levels of genes regulating axonal regrowth, including the growth-promoting signals secreted from olfactory ensheathing cells, were mainly increased in the CuNP treatment. However, the reduced transcript abundances of a few cell adhesion molecules and neural polarity genes may restrict axonogenesis in the CuNP-exposed olfactory mucosa. In the Cu2+-treated olfactory mucosa, both neural repair strategies were initiated at the transcript level. The stimulation of repair mechanisms can lead to the recovery of Cu2+-induced olfactory dysfunction. These results indicated CuNPs and Cu2+ differentially affected the neural repair mechanism in olfactory mucosa. Exposure to CuNP had greater effects on the expression of genes involved in olfactory repair mechanisms relative to Cu2+ and dysregulated the transcripts associated with stem cell proliferation and neural reconstitution.
Collapse
Affiliation(s)
- Parastoo Razmara
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada.
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Gregory G Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
14
|
Liu M, Jia J, Wang H, Wang L. Allometric model of brain morphology of Hemiculter leucisculus and its variation along climatic gradients. J Anat 2022; 241:259-271. [PMID: 35383914 PMCID: PMC9296032 DOI: 10.1111/joa.13664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 11/27/2022] Open
Abstract
Prior studies on Hemiculter leucisculus, which is a widespread native fish in China, mainly focused on its growth, feeding habits, and individual fecundity, but few have investigated the brain. In this research, we explored the developmental patterns of the Hemiculter leucisculus brain and found the brain showed allometry through sample time points and three age groups. At the same time, we found that the brain varied along climatic gradients. The volumes of the olfactory bulbs, telencephalic lobes, optic tectum, corpus cerebelli, and total brain in the south were larger than those in the north, while the volume of the hypothalamus in the north was larger than in the south. This study provides a view for the in-depth study of the acclimatized mechanism of the teleost brain, lays a foundation for the further study of evolutionary ecology, and provides a reference for the phenotypic plasticity of the teleost brain.
Collapse
Affiliation(s)
- Mengyu Liu
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxiChina
- Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Jia Jia
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxiChina
| | - He Wang
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxiChina
| | - Lihong Wang
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
15
|
Simonitis LE, Marshall CD. Microstructure of the Bonnethead Shark ( Sphyrna tiburo) Olfactory Rosette. Integr Org Biol 2022; 4:obac027. [PMID: 35860459 PMCID: PMC9293747 DOI: 10.1093/iob/obac027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/31/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Synopsis
The unusual shape of sphyrnid (hammerhead shark) heads has led to many functional hypotheses of potential sensory advantages and enhanced olfactory performance. Recent investigations into the flow of water within the sphyrnid olfactory chamber demonstrate that this complex structure exhibits a differential pressure system between the 2 nares that induces flow through the chamber. This leads to differential fluid velocities in different parts of the olfactory chamber. Particularly, lamellae at the medial end of the olfactory chamber experience a near-stagnant recirculation of water. The objectives of this study were to (1) describe the microstructure of the olfactory rosette of bonnethead sharks (Sphyrna tiburo) and (2) given the variability of water flow within the sphyrnid olfactory rosette, investigate differences of individual lamellae based on their positioning within the rosette. Specifically, we investigated degree of secondary folding, percent sensory area, and relative surface along the lateral-to-medial gradient. Both degree of secondary folding and percent sensory area may serve as proxies for olfactory sensitivity, providing connectivity between area devoted to sensitivity and water flow within the olfactory organ. We found that bonnethead sharks exhibited similar lamellar morphology to other shark species. We also described the projection of the olfactory nerve layer through an individual lamella. Additionally, we found that lamellae within the medial portion of the organ, which experience slower water velocities, had less secondary lamellar folds and less sensory area. These findings imply that these areas may be less sensitive. Future work should test for sensitivity differences within the rosette along the lateral-to-medial gradient.
Spanish
La forma inusual de las cabezas de los esfírnidos (tiburones martillo) ha llevado a muchas hipótesis funcionales de posibles ventajas sensoriales y unas mejores capacidades olfativas. Las investigaciones recientes sobre el flujo de agua dentro del órgano olfativo de los esfírnidos, demuestran que esta estructura compleja exhibe un sistema de presión diferente entre las dos fosas nasales que induce el flujo en el órgano. Esto conduce a velocidades de fluido diferentes en distintas partes del órgano olfativo. En particular, las láminas en el extremo medial del órgano olfativo experimentan una recirculación de agua casi estancada. Los objetivos de este estudio fueron 1) describir la microestructura de la roseta olfativa de los tiburones cabeza de pala (Sphyrna tiburo) y 2) considerando la variabilidad del flujo de agua dentro de la roseta olfativa de los esfírnidos, investigar las diferencias de las laminillas individuales, basadas en su posición dentro de la roseta. Específicamente, hemos investigado el grado de plegamiento secundario, el porcentaje del área sensorial y el área relativa de superficie a lo largo del gradiente de lateral a medial. El grado de plegamiento secundario y el porcentaje del área sensorial pueden servir como indicadores de la sensibilidad olfativa, proporcionando conectividad entre el área dedicada a la sensibilidad y el flujo de agua dentro del órgano olfativo. Descubrimos que los tiburones cabeza de pala exhibían una morfología laminar similar a la de otras especies de tiburones. También hemos descrito la proyección del estrato del nervio olfativo dentro de una lámina individual. Además, encontramos que las laminillas dentro de la porción medial del órgano que experimentan velocidades de agua más lentas, tenían menos pliegues laminares secundarios y una menor área sensorial. Estos hallazgos implican que estas áreas pueden ser menos sensitivas. El trabajo futuro debería evaluar las diferencias de sensibilidad dentro de la roseta a lo largo del gradiente de lateral a medial.
German
Die ungewöhnliche Kopfform der Sphyrniden (Hammerhaie) hat schon zu vielen funktionellen Hypothesen bezüglich möglicher sensorischer Vorteile und verbesserter olfaktorischer Leistung geführt. Kürzlich veröffentlichte Studien zur Wasserströmung innerhalb der olfaktorischen Kammern von Sphyrniden zeigen, dass diese komplexe Struktur unterschiedliche Drucksysteme zwischen den beiden Nasenlöchern erzeugt, welches eine Strömung durch die Nasenkammer erzeugt. Dies wiederum führt zu unterschiedlichen Flüssigkeitsströmungen in verschiedenen Abschnitten der olfaktorischen Kammer. Besonders bei den Lamellen am medialen Ende der olfaktorischen Kammer gibt es eine fast schon stillstehende Rezirkulation von Wasser. Die Ziele dieser Studie waren 1) das Beschreiben der Mikrostruktur der olfaktorischen Rosette des Schaufelnasen-Hammerhais (Sphyrna tiburo) und 2) wollten wir, aufgrund der Variabilität der Wasserströmung innerhalb der olfaktorischen Rosette der Sphyrniden, die Unterschiede von individuellen Lamellen basierend auf ihrer unterschiedlichen Position innerhalb der Rosette untersuchen. Wir untersuchten den Grad an sekundären Falten, den Prozentsatz an sensorischer Fläche und die relative Oberfläche entlang dem lateral-zu-medialem Gradienten. Sowohl der Grad an sekundären Falten wie auch der Prozentsatz an sensorischer Fläche mögen als Annäherung für die olfaktorische Sensibilität dienen, weil sie für eine Verbindung zwischen der Fläche, die dem Geruchssinn und der Strömung zwischen den olfaktorischen Organen sorgt. Wir fanden, dass die Schaufelnasen-Hammerhaie eine ähnliche lamellare Morphologie zeigen wie andere Hai-Arten. Wir beschreiben auch wie der Geruchsnerv durch eine individuelle Lamelle verläuft. Weiter fanden wir, dass die Lamellen innerhalb des mittleren Teils des Organs, welches geringe Strömungsgeschwindigkeiten erfährt, weniger sekundäre lamellare Falten enthält und weniger sensorische Fläche. Diese Entdeckungen implizieren, dass diese Bereiche weniger sensibel sind auf Gerüche. Zukünftige Arbeiten sollten die unterschiedlichen Sensibilitäten innerhalb der Rosette entlang des lateral-medialem Gradienten testen.
Collapse
Affiliation(s)
- Lauren E Simonitis
- Department of Marine Biology, Texas A&M University , Galveston Campus, Galveston, TX 77553 , USA
| | - Christopher D Marshall
- Department of Marine Biology, Texas A&M University , Galveston Campus, Galveston, TX 77553 , USA
- Department of Ecology and Conservation Biology, Texas A&M University , College Station, TX 77843 , USA
| |
Collapse
|
16
|
Rincón‐Camacho L, Jungblut LD, Pandolfi M, Pozzi AG. Ultrastructural and immunohistochemical characteristics of the olfactory organ Cardinal tetra,
Paracheirodon axelrodi
(Characiformes: Characidae). J Morphol 2022; 283:815-826. [DOI: 10.1002/jmor.21473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/19/2022] [Accepted: 03/27/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Laura Rincón‐Camacho
- Laboratorio de Neuroendocrinología y Comportamiento en Peces y Anfibios, Departamento de Biodiversidad y Biología experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada‐CONICET
| | - Lucas D. Jungblut
- Laboratorio de Neuroendocrinología y Comportamiento en Peces y Anfibios, Departamento de Biodiversidad y Biología experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada‐CONICET
| | - Matías Pandolfi
- Laboratorio de Neuroendocrinología y Comportamiento en Peces y Anfibios, Departamento de Biodiversidad y Biología experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada‐CONICET
| | - Andrea G. Pozzi
- Laboratorio de Neuroendocrinología y Comportamiento en Peces y Anfibios, Departamento de Biodiversidad y Biología experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada‐CONICET
| |
Collapse
|
17
|
Heraud C, Hirschinger T, Baranek E, Larroquet L, Surget A, Sandres F, Lanuque A, Terrier F, Roy J. Detection and Modulation of Olfactory Sensing Receptors in Carnivorous Rainbow Trout ( Oncorhynchus mykiss) Fed from First Feeding with Plant-Based Diet. Int J Mol Sci 2022; 23:ijms23042123. [PMID: 35216238 PMCID: PMC8876700 DOI: 10.3390/ijms23042123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 11/17/2022] Open
Abstract
Sense of smell is mediated by diverse families of olfactory sensing receptors, conveying important dietary information, fundamental for growth and survival. The aim of this study was to elucidate the role of the sensory olfactory pathways in the regulation of feeding behavior of carnivorous rainbow trout (RT, Oncorhynchus mykiss), from first feeding until 8 months. Compared to a commercial diet, RT fed with a total plant-based diet showed drastically altered growth performance associated with feed intake from an early stage. Exhaustive examination of an RT genome database identified three vomeronasal type 1 receptor-like (ORA), 10 vomeronasal type 2 receptor-like (OLFC) and 14 main olfactory receptor (MOR) genes, all highly expressed in sensory organs, indicating their potential functionality. Gene expression after feeding demonstrated the importance in olfactory sensing perception of some OLFC (olfcg6) and MOR (mor103, -107, -112, -113, -133) receptor family genes in RT. The gene ora1a showed evidence of involvement in olfactory sensing perception for fish fed with a commercial-like diet, while ora5b, mor118, mor124 and olfch1 showed evidence of involvement in fish fed with a plant-based diet. Results indicated an impact of a plant-based diet on the regulation of olfactory sensing pathways as well as influence on monoaminergic neurotransmission in brain areas related to olfactory-driven behaviors. The overall findings suggest that feeding behavior is mediated through olfactory sensing detection and olfactory-driven behavior pathways in RT.
Collapse
|
18
|
Lazzari M, Bettini S, Milani L, Maurizii MG, Franceschini V. Response of Olfactory Sensory Neurons to Mercury Ions in Zebrafish: An Immunohistochemical Study. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:227-242. [PMID: 35177137 DOI: 10.1017/s1431927621013763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Olfactory sensory neurons (OSNs) of fish belong to three main types: ciliated olfactory sensory neurons (cOSNs), microvillous olfactory sensory neurons (mOSNs), and crypt cells. Mercury is a toxic metal harmful for olfaction. We exposed the olfactory epithelium of zebrafish to three sublethal Hg2+ concentrations. Molecular markers specific for the different types of OSNs were immunohistochemically detected. Image analysis of treated sections enabled counting of marked cells and measurement of staining optical density indicative of the response of OSNs to Hg2+ exposure. The three types of OSNs reacted to mercury in a different way. Image analysis revealed that mOSNs are more susceptible to Hg2+ exposure than cOSNs and crypt cell density decreases. Moreover, while the ratio between sensory/nonsensory epithelium areas is unchanged, epithelium thickness drops, and dividing cells increase in the basal layer of the olfactory epithelium. Cell death but also reduction of apical processes and marker expression could account for changes in OSN immunostaining. Also, the differential results between dorsal and ventral halves of the olfactory rosette could derive from different water flows inside the olfactory chamber or different subpopulations in OSNs.
Collapse
Affiliation(s)
- Maurizio Lazzari
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna40126, Italy
| | - Simone Bettini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna40126, Italy
| | - Liliana Milani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna40126, Italy
| | - Maria G Maurizii
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna40126, Italy
| | - Valeria Franceschini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna40126, Italy
| |
Collapse
|
19
|
Cruz-Méndez JS, Herrera-Sánchez MP, Céspedes-Rubio ÁE, Rondón-Barragán IS. Oxidative stress response biomarker gene expression in Piaractus brachypomus (Characiformes: Serrasalmidae). NEW ZEALAND JOURNAL OF ZOOLOGY 2022. [DOI: 10.1080/03014223.2021.2017985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Juan Sebastian Cruz-Méndez
- Research Group in Immunobiology and Pathogenesis, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Ibagué-Tolima, Colombia
| | - María Paula Herrera-Sánchez
- Research Group in Immunobiology and Pathogenesis, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Ibagué-Tolima, Colombia
| | - Ángel Enrique Céspedes-Rubio
- Research Group in Neurodegenerative Diseases, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Ibagué-Tolima, Colombia
| | - Iang Schroniltgen Rondón-Barragán
- Research Group in Immunobiology and Pathogenesis, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Ibagué-Tolima, Colombia
- Research Group in Neurodegenerative Diseases, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Ibagué-Tolima, Colombia
| |
Collapse
|
20
|
Razmara P, Imbery JJ, Koide E, Helbing CC, Wiseman SB, Gauthier PT, Bray DF, Needham M, Haight T, Zovoilis A, Pyle GG. Mechanism of copper nanoparticle toxicity in rainbow trout olfactory mucosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117141. [PMID: 33901984 DOI: 10.1016/j.envpol.2021.117141] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Chemosensory perception is crucial for fish reproduction and survival. Direct contact of olfactory neuroepithelium to the surrounding environment makes it vulnerable to contaminants in aquatic ecosystems. Copper nanoparticles (CuNPs), which are increasingly used in commercial and domestic applications due their exceptional properties, can impair fish olfactory function. However, the molecular events underlying olfactory toxicity of CuNPs are largely unexplored. Our results suggested that CuNPs were bioavailable to olfactory mucosal cells. Using RNA-seq, we compared the effect of CuNPs and copper ions (Cu2+) on gene transcript profiles of rainbow trout (Oncorhynchus mykiss) olfactory mucosa. The narrow overlap in differential gene expression between the CuNP- and Cu2+-exposed fish revealed that these two contaminants exert their effects through distinct mechanisms. We propose a transcript-based conceptual model that shows that olfactory signal transduction, calcium homeostasis, and synaptic vesicular signaling were affected by CuNPs in the olfactory sensory neurons (OSNs). Neuroregenerative pathways were also impaired by CuNPs. In contrast, Cu2+ did not induce toxicity pathways and rather upregulated regeneration pathways. Both Cu treatments reduced immune system pathway transcripts. However, suppression of transcripts that were associated with inflammatory signaling was only observed with CuNPs. Neither oxidative stress nor apoptosis were triggered by Cu2+ or CuNPs in mucosal cells. Dysregulation of transcripts that regulate function, maintenance, and reestablishment of damaged olfactory mucosa represents critical mechanisms of toxicity of CuNPs. The loss of olfaction by CuNPs may impact survival of rainbow trout and impose an ecological risk to fish populations in contaminated environments.
Collapse
Affiliation(s)
- Parastoo Razmara
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada.
| | - Jacob J Imbery
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Emily Koide
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Caren C Helbing
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Steve B Wiseman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Patrick T Gauthier
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Douglas F Bray
- Canadian Center for Behavioral Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Maurice Needham
- Canadian Center for Behavioral Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Travis Haight
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Athanasios Zovoilis
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Gregory G Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
21
|
Campos SM, Belkasim SS. Chemical Communication in Lizards and a Potential Role for Vasotocin in Modulating Social Interactions. Integr Comp Biol 2021; 61:205-220. [PMID: 33940600 DOI: 10.1093/icb/icab044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lizards use chemical communication to mediate many reproductive, competitive, and social behaviors, but the neuroendocrine mechanisms underlying chemical communication in lizards are not well understood and understudied. By implementing a neuroendocrine approach to the study of chemical communication in reptiles, we can address a major gap in our knowledge of the evolutionary mechanisms shaping chemical communication in vertebrates. The neuropeptide arginine vasotocin (AVT) and its mammalian homolog vasopressin are responsible for a broad spectrum of diversity in competitive and reproductive strategies in many vertebrates, mediating social behavior through the chemosensory modality. In this review, we posit that, though limited, the available data on AVT-mediated chemical communication in lizards reveal intriguing patterns that suggest AVT plays a more prominent role in lizard chemosensory behavior than previously appreciated. We argue that these results warrant more research into the mechanisms used by AVT to modify the performance of chemosensory behavior and responses to conspecific chemical signals. We first provide a broad overview of the known social functions of chemical signals in lizards, the glandular sources of chemical signal production in lizards (e.g., epidermal secretory glands), and the chemosensory detection methods and mechanisms used by lizards. Then, we review the locations of vasotocinergic populations and neuronal projections in lizard brains, as well as sites of peripheral receptors for AVT in lizards. Finally, we end with a case study in green anoles (Anolis carolinensis), discussing findings from recently published work on the impact of AVT in adult males on chemosensory communication during social interactions, adding new data from a similar study in which we tested the impact of AVT on chemosensory behavior of adult females. We offer concluding remarks on addressing several fundamental questions regarding the role of AVT in chemosensory communication and social behavior in lizards.
Collapse
Affiliation(s)
- Stephanie M Campos
- Department of Biology, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303, USA
| | - Selma S Belkasim
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303, USA
| |
Collapse
|
22
|
Salinity-dependent expression of calcium-sensing receptors in Atlantic salmon (Salmo salar) tissues. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:505-522. [PMID: 34114081 DOI: 10.1007/s00359-021-01493-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Multiple reports suggest that calcium-sensing receptors (CaSRs) are involved in calcium homeostasis, osmoregulation, and/or salinity sensing in fish (Loretz 2008, Herberger and Loretz 2013). We have isolated three unique full-length CaSR cDNAs from Atlantic salmon (Salmo salar) kidney that share many features with other reported CaSRs. Using anti-CaSR antibodies and PCR primers specific for individual salmon CaSR transcripts we show expression in osmoregulatory, neuroendocrine and sensory tissues. Furthermore, CaSRs are expressed in different patterns in salmon tissues where mRNA and protein expression are modified by freshwater or seawater acclimation. For example, in seawater, CaSR mRNA and protein expression is increased significantly in kidney as compared to freshwater. Electrophysiological recordings of olfactory responses produced upon exposure of salmon olfactory epithelium to CaSR agonists suggest a role for CaSRs in chemoreception in this species consistent with other freshwater, anadromous, and marine species where similar olfactory responses to divalent and polyvalent cations have been reported. These data provide further support for a role of CaSR proteins in osmoregulatory and sensory functions in Atlantic salmon, an anadromous species that experiences a broad range of environmental salinities in its life history.
Collapse
|
23
|
Liu H, Chen C, Lv M, Liu N, Hu Y, Zhang H, Enbody ED, Gao Z, Andersson L, Wang W. A chromosome-level assembly of blunt snout bream (Megalobrama amblycephala) reveals an expansion of olfactory receptor genes in freshwater fish. Mol Biol Evol 2021; 38:4238-4251. [PMID: 34003267 PMCID: PMC8476165 DOI: 10.1093/molbev/msab152] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The number of olfactory receptor genes (ORs), which are responsible for detecting diverse odor molecules varies extensively among mammals as a result of frequent gene gains and losses that contribute to olfactory specialization. However, how OR expansions/contractions in fish are influenced by habitat and feeding habit and which OR subfamilies are important in each ecological niche is unknown. Here, we report a major OR expansion in a freshwater herbivorous fish, Megalobrama amblycephala, using a highly contiguous, chromosome-level assembly. We evaluate the possible contribution of OR expansion to habitat and feeding specialization by comparing the OR repertoire in 28 phylogenetically and ecologically diverse teleosts. In total, we analyzed > 4,000 ORs including 3,253 intact, 122 truncated, and 913 pseudogenes. The number of intact ORs is highly variable ranging from 20 to 279. We estimate that the most recent common ancestor of Osteichthyes had 62 intact ORs, which declined in most lineages except the freshwater Otophysa clade that has a substantial expansion in subfamily β and ε ORs. Across teleosts, we found a strong association between duplications of β and ε ORs and freshwater habitat. Nearly, all ORs were expressed in the olfactory epithelium (OE) in three tested fish species. Specifically, all the expanded β and ε ORs were highly expressed in OE of M. amblycephala. Together, we provide molecular and functional evidence for how OR repertoires in fish have undergone gain and loss with respect to ecological factors and highlight the role of β and ε OR in freshwater adaptation.
Collapse
Affiliation(s)
- Han Liu
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China.,Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, Wuhan, 430070, China
| | - Chunhai Chen
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Maolin Lv
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ning Liu
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yafei Hu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Hailin Zhang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Erik D Enbody
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, SE75237, Sweden
| | - Zexia Gao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China.,Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, Wuhan, 430070, China
| | - Leif Andersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, SE75237, Sweden.,Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, USA.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Weimin Wang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
24
|
Axelrod CJ, Laberge F, Robinson BW. Interspecific and intraspecific comparisons reveal the importance of evolutionary context in sunfish brain form divergence. J Evol Biol 2021; 34:639-652. [PMID: 33484022 DOI: 10.1111/jeb.13763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 01/03/2023]
Abstract
Habitats can select for specialized phenotypic characteristics in animals. However, the consistency of evolutionary responses to particular environmental conditions remains difficult to predict. One trait of great ecological importance is brain form, which is expected to vary between habitats that differ in their cognitive requirements. Here, we compared divergence in brain form and oral jaw size across a common littoral-pelagic ecological axis in two sunfishes at both the intraspecific and interspecific levels. Brain form differed between habitats at every level of comparison; however, divergence was inconsistent, despite consistent differences in oral jaw size. Pumpkinseed and bluegill species differed in cerebellum, optic tectum and olfactory bulb size. These differences are consistent with a historical ecological divergence because they did not manifest between littoral and pelagic ecotypes within either species, suggesting constraints on changes to these regions over short evolutionary time scales. There were also differences in brain form between conspecific ecotypes, but they were inconsistent between species. Littoral pumpkinseed had larger brains than their pelagic counterpart, and littoral bluegill had smaller telencephalons than their pelagic counterpart. Inconsistent brain form divergence between conspecific ecotypes of pumpkinseed and bluegill sharing a common littoral-pelagic habitat axis suggests that contemporary ecological conditions and historic evolutionary context interact to influence evolutionary changes in brain form in fishes.
Collapse
Affiliation(s)
- Caleb J Axelrod
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Frédéric Laberge
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Beren W Robinson
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
25
|
Camilieri-Asch V, Caddy HT, Hubbard A, Rigby P, Doyle B, Shaw JA, Mehnert A, Partridge JC, Yopak KE, Collin SP. Multimodal Imaging and Analysis of the Neuroanatomical Organization of the Primary Olfactory Inputs in the Brownbanded Bamboo Shark, Chiloscyllium punctatum. Front Neuroanat 2020; 14:560534. [PMID: 33324175 PMCID: PMC7726474 DOI: 10.3389/fnana.2020.560534] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/23/2020] [Indexed: 11/22/2022] Open
Abstract
There is currently a limited understanding of the morphological and functional organization of the olfactory system in cartilaginous fishes, particularly when compared to bony fishes and terrestrial vertebrates. In this fish group, there is a clear paucity of information on the characterization, density, and distribution of olfactory receptor neurons (ORNs) within the sensory olfactory epithelium lining the paired olfactory rosettes, and their functional implications with respect to the hydrodynamics of incurrent water flow into the nares. This imaging study examines the brownbanded bamboo shark Chiloscyllium punctatum (Elasmobranchii) and combines immunohistochemical labeling using antisera raised against five G-protein α-subunits (Gαs/olf, Gαq/11/14, Gαi–1/2/3, Gαi–3, Gαo) with light and electron microscopy, to characterize the morphological ORN types present. Three main ORNs (“long”, “microvillous” and “crypt-like”) are confirmed and up to three additional microvilli-bearing types are also described; “Kappe-like” (potential or homologous “Kappe” as in teleosts), “pear-shaped” and “teardrop-shaped” cells. These morphotypes will need to be confirmed molecularly in the future. Using X-ray diffusible iodine-based contrast-enhanced computed tomography (diceCT), high-resolution scans of the olfactory rosettes, olfactory bulbs (OBs), peduncles, and telencephalon reveal a lateral segregation of primary olfactory inputs within the OBs, with distinct medial and lateral clusters of glomeruli, suggesting a potential somatotopic organization. However, most ORN morphotypes are found to be ubiquitously distributed within the medial and lateral regions of the olfactory rosette, with at least three microvilli-bearing ORNs labeled with anti-Gαo found in significantly higher densities in lateral lamellae [in lateral lamellae] and on the anterior portion of lamellae (facing the olfactory cavity). These microvilli-bearing ORN morphotypes (microvillous, “Kappe-like,” “pear-shaped,” and “teardrop-shaped”) are the most abundant across the olfactory rosette of this species, while ciliated ORNs are less common and crypt cells are rare. Spatial simulations of the fluid dynamics of the incurrent water flow into the nares and within the olfactory cavities indicate that the high densities of microvilli-bearing ORNs located within the lateral region of the rosette are important for sampling incoming odorants during swimming and may determine subsequent tracking behavior.
Collapse
Affiliation(s)
- Victoria Camilieri-Asch
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia.,The Neuroecology Group, UWA Oceans Institute, The University of Western Australia, Perth, WA, Australia
| | - Harrison T Caddy
- Vascular Engineering Laboratory, Centre for Medical Research, Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, WA, Australia.,School of Engineering, The University of Western Australia, Perth, WA, Australia
| | - Alysia Hubbard
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA, Australia
| | - Paul Rigby
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA, Australia
| | - Barry Doyle
- Vascular Engineering Laboratory, Centre for Medical Research, Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, WA, Australia.,School of Engineering, The University of Western Australia, Perth, WA, Australia.,Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia.,BHF Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jeremy A Shaw
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA, Australia
| | - Andrew Mehnert
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA, Australia.,National Imaging Facility, Brisbane, QLD, Australia
| | - Julian C Partridge
- The Neuroecology Group, UWA Oceans Institute, The University of Western Australia, Perth, WA, Australia
| | - Kara E Yopak
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Shaun P Collin
- The Neuroecology Group, UWA Oceans Institute, The University of Western Australia, Perth, WA, Australia.,School of Life Sciences, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
26
|
Camilieri-Asch V, Yopak KE, Rea A, Mitchell JD, Partridge JC, Collin SP. Convergence of Olfactory Inputs within the Central Nervous System of a Cartilaginous and a Bony Fish: An Anatomical Indicator of Olfactory Sensitivity. BRAIN, BEHAVIOR AND EVOLUTION 2020; 95:139-161. [PMID: 33171468 DOI: 10.1159/000510688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/05/2020] [Indexed: 11/19/2022]
Abstract
The volume of the olfactory bulbs (OBs) relative to the brain has been used previously as a proxy for olfactory capabilities in many vertebrate taxa, including fishes. Although this gross approach has predictive power, a more accurate assessment of the number of afferent olfactory inputs and the convergence of this information at the level of the telencephalon is critical to our understanding of the role of olfaction in the behaviour of fishes. In this study, we used transmission electron microscopy to assess the number of first-order axons within the olfactory nerve (ON) and the number of second-order axons in the olfactory peduncle (OP) in established model species within cartilaginous (brownbanded bamboo shark, Chiloscyllium punctatum [CP]) and bony (common goldfish, Carassius auratus [CA]) fishes. The total number of axons varied from a mean of 18.12 ± 7.50 million in the ON to a mean of 0.38 ± 0.21 million in the OP of CP, versus 0.48 ± 0.16 million in the ON and 0.09 ± 0.02 million in the OP of CA. This resulted in a convergence ratio of approximately 50:1 and 5:1, respectively, for these two species. Based on astroglial ensheathing, axon type (unmyelinated [UM] and myelinated [M]) and axon size, we found no differentiated tracts in the OP of CP, whereas a lateral and a medial tract (both of which could be subdivided into two bundles or areas) were identified for CA, as previously described. Linear regression analyses revealed significant differences not only in axon density between species and locations (nerves and peduncles), but also in axon type and axon diameter (p < 0.05). However, UM axon diameter was larger in the OPs than in the nerve in both species (p = 0.005), with no significant differences in UM axon diameter in the ON (p = 0.06) between species. This study provides an in-depth analysis of the neuroanatomical organisation of the ascending olfactory pathway in two fish taxa and a quantitative anatomical comparison of the summation of olfactory information. Our results support the assertion that relative OB volume is a good indicator of the level of olfactory input and thereby a proxy for olfactory capabilities.
Collapse
Affiliation(s)
- Victoria Camilieri-Asch
- School of Biological Sciences, The University of Western Australia, Perth, Washington, Australia, .,Oceans Institute, The University of Western Australia, Perth, Washington, Australia,
| | - Kara E Yopak
- Department of Biology and Marine Biology and Center for Marine Science, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Alethea Rea
- Centre for Applied Statistics, The University of Western Australia, Perth, Washington, Australia
| | - Jonathan D Mitchell
- School of Biological Sciences, The University of Western Australia, Perth, Washington, Australia.,Oceans Institute, The University of Western Australia, Perth, Washington, Australia
| | - Julian C Partridge
- Oceans Institute, The University of Western Australia, Perth, Washington, Australia
| | - Shaun P Collin
- Oceans Institute, The University of Western Australia, Perth, Washington, Australia.,Ocean Graduate School, The University of Western Australia, Perth, Washington, Australia.,School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
27
|
Hosseinzadeh M, Amiri BM, Poorbagher H, Perelló-Amorós M, Schlenk D. The effects of diazinon on the cell types and gene expression of the olfactory epithelium and whole-body hormone concentrations in the Persian sturgeon (Acipenser persicus). Comp Biochem Physiol A Mol Integr Physiol 2020; 250:110809. [PMID: 32971289 DOI: 10.1016/j.cbpa.2020.110809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/07/2022]
Abstract
The olfactory function and imprinting of odorant information of the native stream play a critical role during the homing migration in fish. Pesticides may impair olfactory imprinting by altering olfaction and hormone functions. The present study aimed to determine how diazinon impacts olfactory epithelium morphology and cell composition, as well as hormone concentrations in Persian sturgeon (Acipenser persicus) during their lifetime in freshwater and, also during diazinon-free saltwater acclimation. Fingerlings were exposed to 0, 150, 300, and 450 μg·L-1 of diazinon in freshwater for 7 days and then were transferred to diazinon-free saltwater by gradually increasing salinity up to 12 ppt. After diazinon exposure, the number of olfactory receptor cells (ORCs) and goblet cells (GCs) decreased and increased, respectively, and the expression of G-protein αolf (GPαolf) and calmodulin-dependent kinase II delta (CAMKIId) was down-regulated and up-regulated, respectively. Transferring the fish to diazinon-free saltwater (8 and 12 ppt) raised the number of ORCs, supporting cells (SCs), GCs, and GPαolf expression, and down-regulated CAMKIId without any significant differences among treatments. Exposure to diazinon increased whole-body cortisol at the high concentration, while decreased whole-body thyroxin (T4) and triiodothyronine (T3) in a dose-dependent manner. Although whole-body T4 and T3 increased in all the treatments after saltwater acclimation (8 and 12 ppt), the level of these hormones was lower in fish that had been exposed to diazinon than in the control. These results showed that diazinon can disrupt olfactory epithelium morphology and cell composition as well as hormone concentrations, which in turn may affect the olfactory imprinting in Persian sturgeon fingerlings.
Collapse
Affiliation(s)
- Mahboubeh Hosseinzadeh
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, 31585-4314 Karaj, Iran
| | - Bagher Mojazi Amiri
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, 31585-4314 Karaj, Iran.
| | - Hadi Poorbagher
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, 31585-4314 Karaj, Iran
| | - Miquel Perelló-Amorós
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
28
|
Camilieri-Asch V, Shaw JA, Yopak KE, Chapuis L, Partridge JC, Collin SP. Volumetric analysis and morphological assessment of the ascending olfactory pathway in an elasmobranch and a teleost using diceCT. Brain Struct Funct 2020; 225:2347-2375. [PMID: 32870419 DOI: 10.1007/s00429-020-02127-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/31/2020] [Indexed: 11/26/2022]
Abstract
The size (volume or mass) of the olfactory bulbs in relation to the whole brain has been used as a neuroanatomical proxy for olfactory capability in a range of vertebrates, including fishes. Here, we use diffusible iodine-based contrast-enhanced computed tomography (diceCT) to test the value of this novel bioimaging technique for generating accurate measurements of the relative volume of the main olfactory brain areas (olfactory bulbs, peduncles, and telencephalon) and to describe the morphological organisation of the ascending olfactory pathway in model fish species from two taxa, the brownbanded bamboo shark Chiloscyllium punctatum and the common goldfish Carassius auratus. We also describe the arrangement of primary projections to the olfactory bulb and secondary projections to the telencephalon in both species. Our results identified substantially larger olfactory bulbs and telencephalon in C. punctatum compared to C. auratus (comprising approximately 5.2% vs. 1.8%, and 51.8% vs. 11.8% of the total brain volume, respectively), reflecting differences between taxa, but also possibly in the role of olfaction in the sensory ecology of these species. We identified segregated primary projections to the bulbs, associated with a compartmentalised olfactory bulb in C. punctatum, which supports previous findings in elasmobranch fishes. DiceCT imaging has been crucial for visualising differences in the morphological organisation of the olfactory system of both model species. We consider comparative neuroanatomical studies between representative species of both elasmobranch and teleost fish groups are fundamental to further our understanding of the evolution of the olfactory system in early vertebrates and the neural basis of olfactory abilities.
Collapse
Affiliation(s)
- Victoria Camilieri-Asch
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
- Oceans Institute, Indian Ocean Marine Research Centre (IOMRC), The University of Western Australia, Cnr Fairway and Service Road 4, Crawley, WA, 6009, Australia.
- Centre for Transformative Biomimetics in Bioengineering, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Q Block Level 7, 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia.
| | - Jeremy A Shaw
- Centre for Microscopy, Characterisation and Analysis (CMCA), The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Kara E Yopak
- Department of Biology and Marine Biology and the Center for Marine Science, University of North Carolina Wilmington, 5600 Marvin K Moss Lane, Wilmington, NC, 28409, USA
| | - Lucille Chapuis
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, EX4 4QD, UK
| | - Julian C Partridge
- Oceans Institute, Indian Ocean Marine Research Centre (IOMRC), The University of Western Australia, Cnr Fairway and Service Road 4, Crawley, WA, 6009, Australia
| | - Shaun P Collin
- Oceans Institute, Indian Ocean Marine Research Centre (IOMRC), The University of Western Australia, Cnr Fairway and Service Road 4, Crawley, WA, 6009, Australia
- Ocean Graduate School, IOMRC, The University of Western Australia, Cnr Fairway and Service Entrance 4, Crawley, WA, 6009, Australia
- School of Life Sciences, La Trobe University, Plenty Road and Kingsbury Drive, Bundoora, VIC, 3086, Australia
| |
Collapse
|
29
|
Klimenkov IV, Sudakov NP, Pastukhov MV, Kositsyn NS. The Phenomenon of Compensatory Cell Proliferation in Olfactory Epithelium in Fish Caused by Prolonged Exposure to Natural Odorants. Sci Rep 2020; 10:8908. [PMID: 32483178 PMCID: PMC7264137 DOI: 10.1038/s41598-020-65854-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
It was previously shown that activation of the processes of neurogenesis in the olfactory epithelium (OE) can be caused after intranasal administration of toxic or neurotrophic factors, after axon transection, or as a result of bulbectomy. Our study showed for the first time that a significant increase in olfactory cell renewal can also occur in animals due to periodic chemostimulation with natural odorants (amino acids and peptides) for 15 days. Using electron and laser confocal microscopy in fish (Paracottus knerii (Cottidae), Dybowski, 1874) from Lake Baikal, we showed that periodic stimulation of aquatic organisms with a water-soluble mixture of amino acids and peptides causes stress in OE, which leads to programmed death cells and compensatory intensification of their renewal. We estimated the level of reactive oxygen species, number of functionally active mitochondria, intensity of apoptosis processes, and mitosis activity of cells in the OE of fish in the control group and after periodic natural odorants exposure. This study showed that new stem cells are activated during enhanced odor stimulation and subsequent degenerative changes in the cells of the sensory apparatus. Those new activated stem cells are located in previously proliferatively inactive regions of OE that become involved in compensatory processes for the formation of new cells.
Collapse
Affiliation(s)
- Igor V Klimenkov
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk, 664033, Russia. .,Irkutsk State University, 1 Karl Marx St., Irkutsk, 664003, Russia.
| | - Nikolay P Sudakov
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk, 664033, Russia
| | - Mikhail V Pastukhov
- Vinogradov Institute of Geochemistry, Siberian Branch, Russian Academy of Sciences, 1a Favorsky St., Irkutsk, 664033, Russia
| | - Nikolay S Kositsyn
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerova St., Moscow, 117485, Russia
| |
Collapse
|
30
|
Giroux M, Vliet SMF, Volz DC, Gan J, Schlenk D. Mechanisms behind interactive effects of temperature and bifenthrin on the predator avoidance behaviors in parr of chinook salmon (Oncorhynchus tshawytscha). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 216:105312. [PMID: 31563086 DOI: 10.1016/j.aquatox.2019.105312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/15/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Many coastal systems have been experiencing the effects of non-chemical and chemical anthropological stressors through respective increases in surface water temperatures and rainstorm-derived runoff events of pyrethroid pesticide movement into waterways such as the San Francisco Bay-Delta. Salmonid populations in the Bay-Delta have been dramatically declining in recent decades. Therefore, the aim of this study was to investigate the interactive effects of bifenthrin, a pyrethroid insecticide, and increasing water temperatures on targeted neuroendocrine and behavioral responses in Chinook salmon (Oncorhynchus tshawytscha) parr (10- month post-hatch). Parr were reared at 11 °C, 16.4 °C, or 19 °C for 14 days and, in the final 96 h of rearing, exposed to nominal concentrations of 0, 0.15, or 1.5 μg/L bifenthrin. A predatory avoidance Y-Maze behavioral assay was conducted immediately following exposures. Parr were presented a choice of clean or odorant zones, and locomotive behavior was recorded. Thyroid hormones (T3 and T4), estradiol, and testosterone were quantified within plasma using ELISAs, and the expression of brain hormone and dopamine receptor genes were also evaluated by qPCR. Brain dopamine levels were analyzed by LC/MS. No significant changes were observed in brain transcripts or plasma hormone concentrations with bifenthrin or increasing temperature. However, temperature did significantly lower brain dopamine levels in fish reared at 19 °C compared to 11 °C controls, but was unaltered by bifenthrin treatment. In contrast, parr reared at 11 °C and exposed to 1.5 μg/L bifenthrin spent significantly less time avoiding a predatory odorant compared to vehicle controls reared at 11 °C. The 16.4 °C and 1.5 μg/L-treated fish spent significantly more time in the neutral arm compared to the odorant and clean arms, as well as spending significantly less time in the clean arm compared to the 11 °C control fish. These results suggest that the interaction of temperature and bifenthrin may be adversely impacting predator-avoidance behavior, which may not be related to dopaminergic responses.
Collapse
Affiliation(s)
- Marissa Giroux
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA, USA; Department of Environmental Sciences, University of California Riverside, Riverside, CA, USA.
| | - Sara M F Vliet
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA, USA; Department of Environmental Sciences, University of California Riverside, Riverside, CA, USA
| | - David C Volz
- Department of Environmental Sciences, University of California Riverside, Riverside, CA, USA
| | - Jay Gan
- Department of Environmental Sciences, University of California Riverside, Riverside, CA, USA
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
31
|
Olivares J, Schmachtenberg O. An update on anatomy and function of the teleost olfactory system. PeerJ 2019; 7:e7808. [PMID: 31579633 PMCID: PMC6768218 DOI: 10.7717/peerj.7808] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/01/2019] [Indexed: 12/16/2022] Open
Abstract
About half of all extant vertebrates are teleost fishes. Although our knowledge about anatomy and function of their olfactory systems still lags behind that of mammals, recent advances in cellular and molecular biology have provided us with a wealth of novel information about the sense of smell in this important animal group. Its paired olfactory organs contain up to five types of olfactory receptor neurons expressing OR, TAAR, VR1- and VR2-class odorant receptors associated with individual transduction machineries. The different types of receptor neurons are preferentially tuned towards particular classes of odorants, that are associated with specific behaviors, such as feeding, mating or migration. We discuss the connections of the receptor neurons in the olfactory bulb, the differences in bulbar circuitry compared to mammals, and the characteristics of second order projections to telencephalic olfactory areas, considering the everted ontogeny of the teleost telencephalon. The review concludes with a brief overview of current theories about odor coding and the prominent neural oscillations observed in the teleost olfactory system.
Collapse
Affiliation(s)
- Jesús Olivares
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile.,Universidad de Valparaíso, PhD Program in Neuroscience, Valparaíso, Chile
| | - Oliver Schmachtenberg
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
32
|
Yang L, Jiang H, Wang Y, Lei Y, Chen J, Sun N, Lv W, Wang C, Near TJ, He S. Expansion of vomeronasal receptor genes ( OlfC) in the evolution of fright reaction in Ostariophysan fishes. Commun Biol 2019; 2:235. [PMID: 31263779 PMCID: PMC6588630 DOI: 10.1038/s42003-019-0479-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/28/2019] [Indexed: 12/15/2022] Open
Abstract
Ostariophysans are the most diverse group of freshwater fishes and feature a pheromone-elicited fright reaction. However, the genetic basis of fright reaction is unclear. Here, we compared vomeronasal type 2 receptor-like (OlfC) genes from fishes having and lacking fright reaction, to provide insight into evolution of pheromonal olfaction in fishes. We found OlfC genes expanded remarkably in ostariophysans having fright reaction compared with fishes lacking fright reaction. Phylogenetic analysis indicates OlfC subfamily 9 expanded specifically in ostariophysans having fright reaction. Principle component and phylogenetic logistic regression analysis partitioned fishes by ecotype (having or lacking fright reaction) and identified OlfC subfamily 9 as being an important factor for fright reaction. Expression levels of expanded OlfC subfamily genes after fright reaction in zebrafish changed more than did genes that had not expanded. Furthermore, evidence of positive selection was found in the expanded OlfC proteins in ostariophysan fishes having fright reaction. These results provide new insight into the genetic basis of fright reaction in ostariophysan fish and will enable future research into the mechanism of action of OlfC proteins.
Collapse
Affiliation(s)
- Liandong Yang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 People’s Republic of China
| | - Haifeng Jiang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 People’s Republic of China
- University of Chinese Academy of Sciences, 100049 Beijing, People’s Republic of China
| | - Ying Wang
- School of Life Sciences, Jianghan University, 430056 Wuhan, People’s Republic of China
| | - Yi Lei
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 People’s Republic of China
- University of Chinese Academy of Sciences, 100049 Beijing, People’s Republic of China
| | - Juan Chen
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 People’s Republic of China
- University of Chinese Academy of Sciences, 100049 Beijing, People’s Republic of China
| | - Ning Sun
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 People’s Republic of China
- University of Chinese Academy of Sciences, 100049 Beijing, People’s Republic of China
| | - Wenqi Lv
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 People’s Republic of China
- University of Chinese Academy of Sciences, 100049 Beijing, People’s Republic of China
| | - Cheng Wang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 People’s Republic of China
- University of Chinese Academy of Sciences, 100049 Beijing, People’s Republic of China
| | - Thomas J. Near
- Department of Ecology and Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, CT 06520 USA
| | - Shunping He
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 People’s Republic of China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223 Kunming, People’s Republic of China
| |
Collapse
|
33
|
Lazzari M, Bettini S, Milani L, Maurizii MG, Franceschini V. Differential nickel-induced responses of olfactory sensory neuron populations in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 206:14-23. [PMID: 30415017 DOI: 10.1016/j.aquatox.2018.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/15/2018] [Accepted: 10/19/2018] [Indexed: 06/09/2023]
Abstract
The olfactory epithelium of fish includes three main types of olfactory sensory neurons (OSNs). Whereas ciliated (cOSNs) and microvillous olfactory sensory neurons (mOSNs) are common to all vertebrates, a third, smaller group, the crypt cells, is exclusive for fish. Dissolved pollutants reach OSNs, thus resulting in impairment of the olfactory function with possible neurobehavioral damages, and nickel represents a diffuse olfactory toxicant. We studied the effects of three sublethal Ni2+ concentrations on the different OSN populations of zebrafish that is a widely used biological model. We applied image analysis with cell count and quantification of histochemically-detected markers of the different types of OSNs. The present study shows clear evidence of a differential responses of OSN populations to treatments. Densitometric values for Gα olf, a marker of cOSNs, decreased compared to control and showed a concentration-dependent effect in the ventral half of the olfactory rosette. The densitometric analysis of TRPC2, a marker of mOSNs, revealed a statistically significant reduction compared to control, smaller than the decrease for Gα olf and without concentration-dependent effects. After exposure, olfactory epithelium stained with anti-calretinin, a marker of c- and mOSNs, revealed a decrease in thickness while the sensory area appeared unchanged. The thickness reduction together with increased densitometric values for HuC/D, a marker of mature and immature neurons, suggests that the decrements in Gα olf and TRPC2 immunostaining may depend on cell death. However, reductions in the number of apical processes and of antigen expression could be a further explanation. We hypothesize that cOSNs are more sensitive than mOSNs to Ni2+ exposure. Difference between subpopulations of OSNs or differences in water flux throughout the olfactory cavity could account for the greater susceptibility of the OSNs located in the ventral half of the olfactory rosette. Cell count of anti-TrkA immunopositive cells reveals that Ni2+ exposure does not affect crypt cells. The results of this immunohistochemical study are not in line with those obtained by electro-olfactogram.
Collapse
Affiliation(s)
- Maurizio Lazzari
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy.
| | - Simone Bettini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Liliana Milani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Maria Gabriella Maurizii
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Valeria Franceschini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
34
|
Klemish JL, Bogart SJ, Luek A, Lannoo MJ, Pyle GG. Nickel toxicity in wood frog tadpoles: Bioaccumulation and sublethal effects on body condition, food consumption, activity, and chemosensory function. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2458-2466. [PMID: 29920776 DOI: 10.1002/etc.4210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/26/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
Nickel (Ni) concentrations in aquatic ecosystems can be amplified by anthropogenic activities including resource extraction. Compared with fish and invertebrates, knowledge of Ni toxicity in amphibians is limited, especially for northern species. We examined the effect of Ni on wood frog (Lithobates sylvaticus) tadpoles, the species with the widest and most northern distribution of any anuran in North America. Wood frog tadpoles were exposed to a Ni concentration gradient (0.02-5.5 mg/L of Ni at 164 mg/L as CaCO3 water hardness) for 8 d and examined for lethality, Ni bioaccumulation, and several sublethal endpoints including body condition, food consumption, activity, and chemosensory function. Nickel induced a sublethal effect on body condition (8-d 10 and 20% effect concentrations [EC10 and EC20] of 1.07 ± 0.38 and 2.44 ± 0.51 mg/L of Ni ± standard error [SE], respectively) but not on food consumption, activity, or chemosensory function. Nickel accumulation in tadpole tissues was positively related to an increase in aqueous Ni concentration but was not lethal. Both the acute and chronic US Environmental Protection Agency water quality guideline concentrations for Ni (0.71 and 0.08 mg/L at 164 mg/L as CaCO3 water hardness, respectively) were protective against lethal and sublethal effects in wood frog tadpoles. In the present study, wood frog tadpoles were protected by current water quality guidelines for Ni and are likely not as useful as other taxa for environmental effects monitoring for this particular metal. Environ Toxicol Chem 2018;37:2458-2466. © 2018 SETAC.
Collapse
Affiliation(s)
| | | | - Andreas Luek
- University of Lethbridge, Lethbridge, Alberta, Canada
| | - Michael J Lannoo
- Indiana University School of Medicine-Terre Haute, Terre Haute, Indiana, USA
| | - Greg G Pyle
- University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
35
|
Heerema JL, Jackman KW, Miliano RC, Li L, Zaborniak TSM, Veldhoen N, van Aggelen G, Parker WJ, Pyle GG, Helbing CC. Behavioral and molecular analyses of olfaction-mediated avoidance responses of Rana (Lithobates) catesbeiana tadpoles: Sensitivity to thyroid hormones, estrogen, and treated municipal wastewater effluent. Horm Behav 2018; 101:85-93. [PMID: 28964734 DOI: 10.1016/j.yhbeh.2017.09.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
Abstract
Olfaction is critical for survival, facilitating predator avoidance and food location. The nature of the olfactory system changes during amphibian metamorphosis as the aquatic herbivorous tadpole transitions to a terrestrial, carnivorous frog. Metamorphosis is principally dependent on the action of thyroid hormones (THs), l-thyroxine (T4) and 3,5,3'-triiodothyronine (T3), yet little is known about their influence on olfaction during this phase of postembryonic development. We exposed Taylor Kollros stage I-XIII Rana (Lithobates) catesbeiana tadpoles to physiological concentrations of T4, T3, or 17-beta-estradiol (E2) for 48h and evaluated a predator cue avoidance response. The avoidance response in T3-exposed tadpoles was abolished while T4- or E2-exposed tadpoles were unaffected compared to control tadpoles. qPCR analyses on classic TH-response gene transcripts (thra, thrb, and thibz) in the olfactory epithelium demonstrated that, while both THs produced molecular responses, T3 elicited greater responses than T4. Municipal wastewater feed stock was spiked with a defined pharmaceutical and personal care product (PPCP) cocktail and treated with an anaerobic membrane bioreactor (AnMBR). Despite substantially reduced PPCP levels, exposure to this effluent abolished avoidance behavior relative to AnMBR effluent whose feed stock was spiked with vehicle. Thibz transcript levels increased upon exposure to either effluent indicating TH mimic activity. The present work is the first to demonstrate differential TH responsiveness of the frog tadpole olfactory system with both behavioral and molecular alterations. A systems-based analysis is warranted to further elucidate the mechanism of action on the olfactory epithelium and identify further molecular bioindicators linked to behavioral response disruption.
Collapse
Affiliation(s)
- Jody L Heerema
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Kevin W Jackman
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Rachel C Miliano
- Environment Canada, Pacific Environmental Science Centre, 2645 Dollarton Highway, North Vancouver, British Columbia V7H 1V2, Canada
| | - Linda Li
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Tristan S M Zaborniak
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Nik Veldhoen
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Graham van Aggelen
- Environment Canada, Pacific Environmental Science Centre, 2645 Dollarton Highway, North Vancouver, British Columbia V7H 1V2, Canada
| | - Wayne J Parker
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Gregory G Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Caren C Helbing
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada.
| |
Collapse
|
36
|
Heerema JL, Helbing CC, Pyle GG. Use of electro-olfactography to measure olfactory acuity in the North American bullfrog (Lithobates (Rana) catesbeiana) tadpole. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:643-647. [PMID: 28926819 DOI: 10.1016/j.ecoenv.2017.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
Olfaction is an important sense for aquatic organisms because it provides information about their surroundings, including nearby food, mates, and predators. Electro-olfactography (EOG) is an electrophysiological technique that measures the response of olfactory tissue to olfactory stimuli, and responses are indicative of olfactory acuity. Previous studies have used this technique on a variety of species including frogs, salamanders, daphniids and, most extensively, fish. In the present study, we introduce a novel modified EOG method for use on Lithobates (Rana) catesbeiana tadpoles. Responses to a number of olfactory stimuli including amino acids, an algal extract (Spirulina), and taurocholic acid were tested, as measured by EOG. Tadpoles exhibited consistent and reliable responses to L-alanine and Spirulina extract. Tadpoles also exhibited concentration-dependent responses to Spirulina extract. These findings indicate that tadpole EOG is a viable electrophysiology technique that can be used in future research to study olfactory physiology and impairment in tadpoles.
Collapse
Affiliation(s)
- Jody L Heerema
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada T1K 6T5.
| | - Caren C Helbing
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada V8P 5C2.
| | - Greg G Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada T1K 6T5.
| |
Collapse
|
37
|
Green WW, Boyes K, McFadden C, Daghfous G, Auclair F, Zhang H, Li W, Dubuc R, Zielinski BS. Odorant organization in the olfactory bulb of the sea lamprey. ACTA ACUST UNITED AC 2017; 220:1350-1359. [PMID: 28183864 DOI: 10.1242/jeb.150466] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/27/2017] [Indexed: 11/20/2022]
Abstract
Olfactory sensory neurons innervate the olfactory bulb, where responses to different odorants generate a chemotopic map of increased neural activity within different bulbar regions. In this study, insight into the basal pattern of neural organization of the vertebrate olfactory bulb was gained by investigating the lamprey. Retrograde labelling established that lateral and dorsal bulbar territories receive the axons of sensory neurons broadly distributed in the main olfactory epithelium and that the medial region receives sensory neuron input only from neurons projecting from the accessory olfactory organ. The response duration for local field potential recordings was similar in the lateral and dorsal regions, and both were longer than medial responses. All three regions responded to amino acid odorants. The dorsal and medial regions, but not the lateral region, responded to steroids. These findings show evidence for olfactory streams in the sea lamprey olfactory bulb: the lateral region responds to amino acids from sensory input in the main olfactory epithelium, the dorsal region responds to steroids (taurocholic acid and pheromones) and to amino acids from sensory input in the main olfactory epithelium, and the medial bulbar region responds to amino acids and steroids stimulating the accessory olfactory organ. These findings indicate that olfactory subsystems are present at the base of vertebrate evolution and that regionality in the lamprey olfactory bulb has some aspects previously seen in other vertebrate species.
Collapse
Affiliation(s)
- Warren W Green
- Department of Biological Sciences, University of Windsor, Windsor, ON, Canada N9B3P4
| | - Karl Boyes
- Department of Biological Sciences, University of Windsor, Windsor, ON, Canada N9B3P4
| | - Charrie McFadden
- Department of Biological Sciences, University of Windsor, Windsor, ON, Canada N9B3P4
| | - Gheylen Daghfous
- Groupe de Recherche en Activité Physique Adaptée, Département des sciences de l'activité physique, Université du Québec à Montréal, Montréal, QC, Canada H3C3P8.,Groupe de Recherche sur le Système Nerveux Central, Département de neurosciences, Université de Montréal, Montréal, QC, Canada H3C3J7
| | - François Auclair
- Groupe de Recherche en Activité Physique Adaptée, Département des sciences de l'activité physique, Université du Québec à Montréal, Montréal, QC, Canada H3C3P8.,Groupe de Recherche sur le Système Nerveux Central, Département de neurosciences, Université de Montréal, Montréal, QC, Canada H3C3J7
| | - Huiming Zhang
- Department of Biological Sciences, University of Windsor, Windsor, ON, Canada N9B3P4
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Réjean Dubuc
- Groupe de Recherche en Activité Physique Adaptée, Département des sciences de l'activité physique, Université du Québec à Montréal, Montréal, QC, Canada H3C3P8.,Groupe de Recherche sur le Système Nerveux Central, Département de neurosciences, Université de Montréal, Montréal, QC, Canada H3C3J7
| | - Barbara S Zielinski
- Department of Biological Sciences, University of Windsor, Windsor, ON, Canada N9B3P4 .,Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada N9B3P4
| |
Collapse
|
38
|
Lazzari M, Bettini S, Milani L, Maurizii MG, Franceschini V. Differential response of olfactory sensory neuron populations to copper ion exposure in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 183:54-62. [PMID: 27992776 DOI: 10.1016/j.aquatox.2016.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/07/2016] [Accepted: 12/13/2016] [Indexed: 06/06/2023]
Abstract
The peripheral olfactory system of fish is in direct contact with the external aqueous environment, so dissolved contaminants can easily impair sensory functions and cause neurobehavioral injuries. The olfactory epithelium of fish is arranged in lamellae forming a rosette in the olfactory cavity and contains three main types of olfactory sensory neurons (OSNs): ciliated (cOSNs) and microvillous olfactory sensory neurons (mOSNs), common to all vertebrates, and a third minor group of olfactory neurons, crypt cells, absent in tetrapods. Since copper is a ubiquitously diffusing olfactory toxicant and a spreading contaminant in urban runoff, we investigated the effect of low copper concentration on the three different OSNs in the olfactory epithelium of zebrafish, a model system widely used in biological research. Image analysis was applied for morphometry and quantification of immunohistochemically detected OSNs. Copper exposure resulted in an evident decrease in olfactory epithelium thickness. Moreover, after exposure, the lamellae of the dorsal and ventral halves of the olfactory rosettes showed a different increase in their sensory areas, suggesting a lateral migration of new cells into non-sensory regions. The results of the present study provide clear evidence of a differential response of the three neural cell populations of zebrafish olfactory mucosa after 96h of exposure to copper ions at the sublethal concentration of 30μgL-1. Densitometric values of cONS, immunostained with anti-G αolf, decreased of about 60% compared to the control. When the fish were transferred to water without copper addition and examined after 3, 10 and 30days, we observed a partial restoration of anti-G αolf staining intensity to normal condition. The recovery of cOSNs appeared sustained by neuronal proliferation, quantified with anti-PCNA immunostaining, in particular in the early days after exposure. The densitometric analysis applied to mOSNs, immunostained with anti-TRPC2, revealed a statistically significant decrease of about 30% compared to the control. For cOSNs and mOSNs, the decrement in staining intensity may be indicative of cell death, but reduction in antigen expression may not be excluded. In the post-exposure period of 1 month we did not find recovery of mOSNs. We hypothesize that cOSNs are more sensitive than mOSNs to copper treatment, but also more prompted to tissue repair. Anti-TrkA-immunopositive crypt cells appeared not to be affected by copper exposure since statistical analysis excluded any significant difference between the control and treated fish. Comparative studies on OSNs would greatly enhance our understanding of the mechanisms of olfaction.
Collapse
Affiliation(s)
- Maurizio Lazzari
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy.
| | - Simone Bettini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Liliana Milani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Maria Gabriella Maurizii
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Valeria Franceschini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
39
|
Sepahi A, Casadei E, Tacchi L, Muñoz P, LaPatra SE, Salinas I. Tissue Microenvironments in the Nasal Epithelium of Rainbow Trout (Oncorhynchus mykiss) Define Two Distinct CD8α+ Cell Populations and Establish Regional Immunity. THE JOURNAL OF IMMUNOLOGY 2016; 197:4453-4463. [PMID: 27798156 DOI: 10.4049/jimmunol.1600678] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/29/2016] [Indexed: 12/17/2022]
Abstract
Mucosal surfaces require balancing different physiological roles and immune functions. To effectively achieve multifunctionality, mucosal epithelia have evolved unique microenvironments that create unique regional immune responses without impairing other normal physiological functions. Whereas examples of regional immunity are known in other mucosal epithelia, to date, no immune microenvironments have been described in the nasal mucosa, a site where the complex functions of olfaction and immunity need to be orchestrated. In this study we identified the presence of CD8α+ cells in the rainbow trout (Oncorhynchus mykiss) nasal epithelium. Nasal CD8α+ cells display a distinct phenotype suggestive of CD8+ T cells with high integrin β2 expression. Importantly, nasal CD8α+ cells are located in clusters at the mucosal tip of each olfactory lamella but scattered in the neuroepithelial region. The grouping of CD8α+ cells may be explained by the greater expression of CCL19, ICAM-1, and VCAM-1 in the mucosal tip compared with the neuroepithelium. Whereas viral Ag uptake occurred via both tip and lateral routes, tip-resident MHC class II+ cells are located significantly closer to the lumen of the nasal cavity than are their neuroepithelial counterparts, therefore having quicker access to invading pathogens. Our studies reveal compartmentalized mucosal immune responses within the nasal mucosa of a vertebrate species, a strategy that likely optimizes local immune responses while protecting olfactory sensory functions.
Collapse
Affiliation(s)
- Ali Sepahi
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131
| | - Elisa Casadei
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131
| | - Luca Tacchi
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131
| | - Pilar Muñoz
- Departamento de Sanidad Animal, Facultad de Veterinaria, Campus de Excelencia Internacional Regional Campus Mare Nostrum, Universidad de Murcia, 30100 Murcia, Spain; and
| | | | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131;
| |
Collapse
|
40
|
Edmunds NB, McCann KS, Laberge F. Food Web Structure Shapes the Morphology of Teleost Fish Brains. BRAIN, BEHAVIOR AND EVOLUTION 2016; 87:128-38. [PMID: 27216606 DOI: 10.1159/000445973] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/05/2016] [Indexed: 11/19/2022]
Abstract
Previous work showed that teleost fish brain size correlates with the flexible exploitation of habitats and predation abilities in an aquatic food web. Since it is unclear how regional brain changes contribute to these relationships, we quantitatively examined the effects of common food web attributes on the size of five brain regions in teleost fish at both within-species (plasticity or natural variation) and between-species (evolution) scales. Our results indicate that brain morphology is influenced by habitat use and trophic position, but not by the degree of littoral-pelagic habitat coupling, despite the fact that the total brain size was previously shown to increase with habitat coupling in Lake Huron. Intriguingly, the results revealed two potential evolutionary trade-offs: (i) relative olfactory bulb size increased, while relative optic tectum size decreased, across a trophic position gradient, and (ii) the telencephalon was relatively larger in fish using more littoral-based carbon, while the cerebellum was relatively larger in fish using more pelagic-based carbon. Additionally, evidence for a within-species effect on the telencephalon was found, where it increased in size with trophic position. Collectively, these results suggest that food web structure has fundamentally contributed to the shaping of teleost brain morphology.
Collapse
|
41
|
Zhu G, Tang W, Wang L, Wang C, Wang X. Identification of a uniquely expanded V1R (ORA) gene family in the Japanese grenadier anchovy ( Coilia nasus). MARINE BIOLOGY 2016; 163:126. [PMID: 27340293 PMCID: PMC4853444 DOI: 10.1007/s00227-016-2896-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 04/12/2016] [Indexed: 06/06/2023]
Abstract
A number of studies have suggested that olfaction plays an important role in fish migration. Fish use several distinct families of olfactory receptors to detect environmental odorants, including MORs (main olfactory receptors), V1Rs (vomeronasal type-1 receptors), V2Rs (vomeronasal type-2 receptors), TAARs (trace amine-associated receptors), and FPRs (formyl peptide receptors). The V1Rs have been reported to detect pheromones, and a pheromone hypothesis for the spawning migration of anadromous fish has been proposed. Examining whether Coilia nasus relies on V1R-mediated olfaction for spawning migration is important for understanding the molecular basis of spawning migration behavior. Here, we explored the V1R gene family in anadromous C. nasus. Six V1R genes previously reported in other teleost fish were successfully identified. Interestingly, we detected the largest V1R repertoire in teleost fish from C. nasus and identified a species-specific expansion event of V1R3 gene that has previously been detected as single-copy genes in other teleost fish. The V1R loci were found to be populated with repetitive sequences, especially in the expanded V1R3 genes. Additionally, the divergence of V1R3 genetic structures in different populations of C. nasus indicates the copy number variation (CNV) in V1R3 gene among individuals of C. nasus. Most of the putative C. nasus V1R genes were expressed primarily in the olfactory epithelium, consistent with the role of the gene products as functional olfactory receptors. Significant differences in the expression levels of V1R genes were detected between the anadromous and non-anadromous C. nasus. This study represents a first step in the elucidation of the olfactory communication system of C. nasus at the molecular level. Our results indicate that some V1R genes may be involved in the spawning migration of C. nasus, and the study provides new insights into the spawning migration and genome evolution of C. nasus.
Collapse
Affiliation(s)
- Guoli Zhu
- />College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Wenqiao Tang
- />College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Liangjiang Wang
- />Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina USA
| | - Cong Wang
- />College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xiaomei Wang
- />College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
42
|
Crypt cells are involved in kin recognition in larval zebrafish. Sci Rep 2016; 6:24590. [PMID: 27087508 PMCID: PMC4834543 DOI: 10.1038/srep24590] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/01/2016] [Indexed: 12/18/2022] Open
Abstract
Zebrafish larvae imprint on visual and olfactory kin cues at day 5 and 6 postfertilization, respectively, resulting in kin recognition later in life. Exposure to non-kin cues prevents imprinting and kin recognition. Imprinting depends on MHC class II related signals and only larvae sharing MHC class II alleles can imprint on each other. Here, we analyzed which type of olfactory sensory neuron (OSN) detects kin odor. The single teleost olfactory epithelium harbors ciliated OSNs carrying OR and TAAR gene family receptors (mammals: main olfactory epithelium) and microvillous OSNs with V1R and V2R gene family receptors (mammals: vomeronasal organ). Additionally, teleosts exhibit crypt cells which possess microvilli and cilia. We used the activity marker pERK (phosphorylated extracellular signal regulated kinase) after stimulating 9 day old zebrafish larvae with either non-kin conspecific or food odor. While food odor activated both ciliated and microvillous OSNs, only the latter were activated by conspecific odor, crypt cells showed no activation to both stimuli. Then, we tested imprinted and non-imprinted larvae (full siblings) for kin odor detection. We provide the first direct evidence that crypt cells, and likely a subpopulation of microvillous OSNs, but not ciliated OSNs, play a role in detecting a kin odor related signal.
Collapse
|
43
|
Mazzoni M, Bonaldo A, Gatta PP, Vallorani C, Latorre R, Canova M, Clavenzani P. α-Transducin and α-gustducin immunoreactive cells in the stomach of common sole (Solea solea) fed with mussel meal. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:603-612. [PMID: 25673424 DOI: 10.1007/s10695-015-0031-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 02/02/2015] [Indexed: 06/04/2023]
Abstract
Vertebrates perceive a variety of exogenous substances using two main chemosensory systems, taste and olfaction. The taste perception occurs through the interaction of taste receptors associated with specific G protein subunits such as α-transducin (Gαtran) and α-gustducin (Gαgust). Aquatic vertebrates are also provided with a chemosensory system consisting of solitary chemosensory cells distributed to the oropharynx and skin. In this study, we identified Gαtran and Gαgust-immunoreactive cells intermingled with non-labeled epithelial cells in the gastric mucosa of the common sole. A long-term diet with increasing concentrations of mussel meal in the protein component of a conventional fish meal-based diet induced a dose-dependent increase in the gastric epithelial area and density of Gαtran and Gαgust immunoreactive cells. These findings suggest that taste-related molecules are regulated by changes in diet formulation in common sole aquaculture.
Collapse
Affiliation(s)
- Maurizio Mazzoni
- Department of Veterinary Medical Science, University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano dell'emilia, Bologna, Italy,
| | | | | | | | | | | | | |
Collapse
|
44
|
Maryoung LA, Blunt B, Tierney KB, Schlenk D. Sublethal toxicity of chlorpyrifos to salmonid olfaction after hypersaline acclimation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 161:94-101. [PMID: 25697678 DOI: 10.1016/j.aquatox.2015.01.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/24/2015] [Accepted: 01/28/2015] [Indexed: 06/04/2023]
Abstract
Salmonid habitats can be impacted by several environmental factors, such as salinization, which can also affect salmonid tolerance to anthropogenic stressors, such as pesticides. Previous studies have shown that hypersaline acclimation enhances the acute toxicity of certain organophosphate and carbamate pesticides to euryhaline fish; however, sublethal impacts have been far less studied. The current study aims to determine how hypersaline acclimation and exposure to the organophosphate chlorpyrifos (CPF) impact salmonid olfaction. Combined acclimation and exposure to CPF was shown to impact rainbow trout olfaction at the molecular, physiological, and behavioral levels. Concurrent exposure to hypersalinity and 0.5μg/L CPF upregulated four genes (chloride intracellular channel 4, G protein zgc:101761, calcium calmodulin dependent protein kinase II delta, and adrenergic alpha 2C receptor) that inhibit olfactory signal transduction. At the physiological level, hypersalinity and chlorpyrifos caused a decrease in sensory response to the amino acid l-serine and the bile salt taurocholic acid. Combined acclimation and exposure also negatively impacted behavior and reduced the avoidance of a predator cue (l-serine). Thus, acclimation to hypersaline conditions and exposure to environmentally relevant concentrations of chlorpyrifos caused an inhibition of olfactory signal transduction leading to a decreased response to odorants and impairment of olfactory mediated behaviors.
Collapse
Affiliation(s)
- Lindley A Maryoung
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States.
| | - Brian Blunt
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Keith B Tierney
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| |
Collapse
|
45
|
Azizishirazi A, Dew WA, Bougas B, Bernatchez L, Pyle GG. Dietary sodium protects fish against copper-induced olfactory impairment. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 161:1-9. [PMID: 25646894 DOI: 10.1016/j.aquatox.2015.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 06/04/2023]
Abstract
Exposure to low concentrations of copper impairs olfaction in fish. To determine the transcriptional changes in the olfactory epithelium induced by copper exposure, wild yellow perch (Perca flavescens) were exposed to 20 μg/L of copper for 3 and 24h. A novel yellow perch microarray with 1000 candidate genes was used to measure differential gene transcription in the olfactory epithelium. While three hours of exposure to copper changed the transcription of only one gene, the transcriptions of 70 genes were changed after 24h of exposure to copper. Real-time PCR was utilized to determine the effect of exposure duration on two specific genes of interest, two sub-units of Na/K-ATPase. At 24 and 48 h, Na/K-ATPase transcription was down-regulated by copper at olfactory rosettes. As copper-induced impairment of Na/K-ATPase activity in gills can be ameliorated by increased dietary sodium, rainbow trout (Oncorhynchus mykiss) were used to determine if elevated dietary sodium was also protective against copper-induced olfactory impairment. Measurement of the olfactory response of rainbow trout using electro-olfactography demonstrated that sodium was protective of copper-induced olfactory dysfunction. This work demonstrates that the transcriptions of both subunits of Na/K-ATPase in the olfactory epithelium of fish are affected by Cu exposure, and that dietary Na protects against Cu-induced olfactory dysfunction.
Collapse
Affiliation(s)
- Ali Azizishirazi
- Department of Biology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada
| | - William A Dew
- Department of Biology, Brandon University, Brandon, Manitoba R7A 6A9, Canada; Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Berenice Bougas
- Institut National de la Recherche Scientifique, Centre INRS Eau Terre et Environnement, 490, rue de la Couronne, Québec City, Québec G1K 9A9, Canada
| | - Louis Bernatchez
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Québec G1V 0A6, Canada
| | - Greg G Pyle
- Department of Biology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada; Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada.
| |
Collapse
|
46
|
D'aniello B, Luongo L, Rastogi RK, Di Meglio M, Pinelli C. Tract-tracing study of the extrabulbar olfactory projections in the brain of some teleosts. Microsc Res Tech 2015; 78:268-76. [PMID: 25663434 DOI: 10.1002/jemt.22471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/15/2015] [Indexed: 11/09/2022]
Abstract
The extrabulbar olfactory projections (EBOP) is a collection of nerve fibers that originate from primary olfactory receptor neurons. These fibers penetrate into the brain, bypassing the olfactory bulbs (OBs). While the presence of an EBOP has been well established in teleosts, here we morphologically characterize the EBOP structure in four species each with a different morphological relationship of OB with the ventral telencephalic area. Tract-tracing methods (carbocyanine DiI/DIA and biocytin) were used. FMRFamide immunoreactive nervus terminalis (NT) components were also visualized to define any neuroanatomical relationship between the NT and EBOP. Unilateral DiI/DiA application to the olfactory chamber stained the entire olfactory epithelium, olfactory nerve fibers, and ipsilateral olfactory bulb. Labeled primary olfactory fibers running ventromedially as extrabulbar primary olfactory projections reached various regions of the secondary prosencephalon. Only in Moenkhausia sanctaefilomenae (no olfactory peduncle) did lipophilic tracer-labeled fibers reach the ipsilateral mesencephalon. The combination of tracing techniques and FMRFamide immunohistochemistry revealed a substantial overlap of the label along the olfactory pathways as well as in the anterior secondary prosencephalon. However, FMRFamide immunoreactivity was never colocalized in the same cellular or fiber component as visualized using tracer molecules. Our results showed a certain uniformity in the neuroanatomy and extension of EBOP in all four species, independent of the pedunculate feature of the OBs. The present study also provided additional evidence to support the view that EBOP and FMRFamide immunoreactive components of the NT are separate anatomical entities.
Collapse
Affiliation(s)
- Biagio D'aniello
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | | | | | | | | |
Collapse
|
47
|
|
48
|
Acid-sensing ion channel 2 (ASIC2) is selectively localized in the cilia of the non-sensory olfactory epithelium of adult zebrafish. Histochem Cell Biol 2014; 143:59-68. [PMID: 25161120 DOI: 10.1007/s00418-014-1264-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2014] [Indexed: 02/07/2023]
Abstract
Ionic channels play key roles in the sensory cells, such as transducing specific stimuli into electrical signals. The acid-sensing ion channel (ASIC) family is voltage-insensitive, amiloride-sensitive, proton-gated cation channels involved in several sensory functions. ASIC2, in particular, has a dual function as mechano- and chemo-sensor. In this study, we explored the possible role of zebrafish ASIC2 in olfaction. RT-PCR, Western blot, chromogenic in situ hybridization and immunohistochemistry, as well as ultrastructural analysis, were performed on the olfactory rosette of adult zebrafish. ASIC2 mRNA and protein were detected in homogenates of olfactory rosettes. Specific ASIC2 hybridization was observed in the luminal pole of the non-sensory epithelium, especially in the cilia basal bodies, and immunoreactivity for ASIC2 was restricted to the cilia of the non-sensory cells where it was co-localized with the cilia marker tubulin. ASIC2 expression was always absent in the olfactory cells. These findings demonstrate for the first time the expression of ASIC2 in the olfactory epithelium of adult zebrafish and suggest that it is not involved in olfaction. Since the cilium sense and transduce mechanical and chemical stimuli, ASIC2 expression in this location might be related to detection of aquatic environment pH variations or to detection of water movement through the nasal cavity.
Collapse
|
49
|
Azzouzi N, Barloy-Hubler F, Galibert F. Inventory of the cichlid olfactory receptor gene repertoires: identification of olfactory genes with more than one coding exon. BMC Genomics 2014; 15:586. [PMID: 25015101 PMCID: PMC4122780 DOI: 10.1186/1471-2164-15-586] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 07/01/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To help understand the molecular mechanisms underlying the remarkable phenotypic diversity displayed by cichlids, the genome sequences of O. niloticus, P. nyererei, H. burtoni, N. brichardi and M. zebra were recently determined. Here, we present the contents of the olfactory receptor (OR) repertoires in the genomes of these five fishes. RESULTS We performed an exhaustive TBLASTN search of the five cichlid genomes to identify their OR repertoires as completely as possible. We used as bait a set of ORs described in the literature. The cichlid repertoires thereby extracted contained large numbers of complete genes (O. niloticus 158; H. burtoni 90; M. zebra 102; N. brichardi 69; P. nyererei 88), a small numbers of pseudogenes and many "edge genes" corresponding to incomplete genes located at the ends of contigs. A phylogenetic tree was constructed and showed these repertoires include a large number of families and subfamilies. It also allowed the identification of a large number of OR analogues between cichlids with very high amino-acid identity (≥ 99%). Nearly 9% of the full-length cichlid OR genes are composed of several coding exons. This is very unusual for vertebrate OR genes. Nevertheless, the evidence is strong, and includes the donor and acceptor splice junction sequences; also, the positions of these genes in the phylogenetic tree indicate that they constitute subfamilies well apart from non-OR G protein-coupled receptor families. CONCLUSIONS Cichlid OR repertoires are made up of a larger number of genes and fewer pseudogenes than those in other teleosts except zebrafish. These ORs share all identified properties common to all fish ORs; however, the large number of families and subfamilies, each containing few ORs implies that they have evolved more rapidly. This high level of OR diversity is consistent with the substantial phenotypic diversity that characterizes cichlids.
Collapse
Affiliation(s)
| | | | - Francis Galibert
- Institut Génétique et Développement (UMR 6290) CNRS/Université de Rennes 1, Rennes, France.
| |
Collapse
|
50
|
Poulsen SB, Svendsen JC, Aarestrup K, Malte H. Calcium-dependent behavioural responses to acute copper exposure in Oncorhynchus mykiss. JOURNAL OF FISH BIOLOGY 2014; 84:1326-1339. [PMID: 24773536 DOI: 10.1111/jfb.12356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 01/27/2014] [Indexed: 06/03/2023]
Abstract
Using rainbow trout Oncorhynchus mykiss, the present study demonstrated that: (1) calcium (Ca) increased the range of copper (Cu) concentrations that O. mykiss avoided; (2) Ca conserved the maintenance of pre-exposure swimming activity during inescapable acute (10 min) Cu exposure. Data showed that when presented with a choice of Cu-contaminated water (ranging from 0 to 454 µg Cu l⁻¹ ) and uncontaminated water in a choice tank, O. mykiss acclimated and tested at low Ca concentration (3 mg Ca l⁻¹ avoided the 10 µg Cu l⁻¹ only. By contrast, O. mykiss acclimated and tested at high Ca concentration (158 mg Ca l⁻¹) avoided all the Cu concentrations ≥37 µg⁻¹. The Cu avoidance was connected with increased spontaneous swimming speed in the Cu-contaminated water. When subjected to inescapable Cu exposure (35 µg Cu l⁻¹), O. mykiss acclimated and tested at low Ca concentration reduced their spontaneous swimming speed, whereas no response was observed in O. mykiss acclimated and tested at high Ca concentration. Collectively, the data support the conclusion that in O. mykiss the behavioural responses to acute Cu exposure are Ca-dependent.
Collapse
Affiliation(s)
- S B Poulsen
- Department of Bioscience, Zoophysiology, Aarhus University, C.F.Møllers Allé 3, DK-8000, Aarhus C, Denmark
| | | | | | | |
Collapse
|