1
|
Theophanous S, Sargiannidou I, Kleopa KA. Glial Cells as Key Regulators in Neuroinflammatory Mechanisms Associated with Multiple Sclerosis. Int J Mol Sci 2024; 25:9588. [PMID: 39273535 PMCID: PMC11395575 DOI: 10.3390/ijms25179588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Even though several highly effective treatments have been developed for multiple sclerosis (MS), the underlying pathological mechanisms and drivers of the disease have not been fully elucidated. In recent years, there has been a growing interest in studying neuroinflammation in the context of glial cell involvement as there is increasing evidence of their central role in disease progression. Although glial cell communication and proper function underlies brain homeostasis and maintenance, their multiple effects in an MS brain remain complex and controversial. In this review, we aim to provide an overview of the contribution of glial cells, oligodendrocytes, astrocytes, and microglia in the pathology of MS during both the activation and orchestration of inflammatory mechanisms, as well as of their synergistic effects during the repair and restoration of function. Additionally, we discuss how the understanding of glial cell involvement in MS may provide new therapeutic targets either to limit disease progression or to facilitate repair.
Collapse
Affiliation(s)
- Styliani Theophanous
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | - Kleopas A Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
- Center for Multiple Sclerosis and Related Disorders, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| |
Collapse
|
2
|
Hendrix E, Vande Vyver M, Holt M, Smolders I. Regulatory T cells as a possible new target in epilepsy? Epilepsia 2024; 65:2227-2237. [PMID: 38888867 DOI: 10.1111/epi.18038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024]
Abstract
Epilepsy is a complex chronic brain disorder with diverse clinical features that can be caused by various triggering events, such as infections, head trauma, or stroke. During epileptogenesis, various abnormalities are observed, such as altered cellular homeostasis, imbalance of neurotransmitters, tissue changes, and the release of inflammatory mediators, which in combination lead to spontaneous recurrent seizures. Regulatory T cells (Tregs), a subtype of CD4+Foxp3+ T cells, best known for their key function in immune suppression, also seem to play a role in attenuating neurodegeneration and suppressing pathological inflammation in several brain disease states. Considering that epilepsy is also highly associated with neuronal damage and neuroinflammation, modulation of Tregs may be an interesting way to modify the disease course of epilepsy and needs further investigation. In this review, we will describe the currently available information on Tregs in epilepsy.
Collapse
Affiliation(s)
- Evelien Hendrix
- Department of Pharmaceutical Chemistry, Drug Analysis, and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Maxime Vande Vyver
- Department of Pharmaceutical Chemistry, Drug Analysis, and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Neurology and Bru-BRAIN, Universitair Ziekenhuis Brussel, Brussels, Belgium
- NEUR Research Group, Center of Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Matthew Holt
- Instituto de Investigação e Inovação Em Saúde, Porto, Portugal
| | - Ilse Smolders
- Department of Pharmaceutical Chemistry, Drug Analysis, and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
3
|
Fernández-Albarral JA, Ramírez AI, de Hoz R, Matamoros JA, Salobrar-García E, Elvira-Hurtado L, López-Cuenca I, Sánchez-Puebla L, Salazar JJ, Ramírez JM. Glaucoma: from pathogenic mechanisms to retinal glial cell response to damage. Front Cell Neurosci 2024; 18:1354569. [PMID: 38333055 PMCID: PMC10850296 DOI: 10.3389/fncel.2024.1354569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Glaucoma is a neurodegenerative disease of the retina characterized by the irreversible loss of retinal ganglion cells (RGCs) leading to visual loss. Degeneration of RGCs and loss of their axons, as well as damage and remodeling of the lamina cribrosa are the main events in the pathogenesis of glaucoma. Different molecular pathways are involved in RGC death, which are triggered and exacerbated as a consequence of a number of risk factors such as elevated intraocular pressure (IOP), age, ocular biomechanics, or low ocular perfusion pressure. Increased IOP is one of the most important risk factors associated with this pathology and the only one for which treatment is currently available, nevertheless, on many cases the progression of the disease continues, despite IOP control. Thus, the IOP elevation is not the only trigger of glaucomatous damage, showing the evidence that other factors can induce RGCs death in this pathology, would be involved in the advance of glaucomatous neurodegeneration. The underlying mechanisms driving the neurodegenerative process in glaucoma include ischemia/hypoxia, mitochondrial dysfunction, oxidative stress and neuroinflammation. In glaucoma, like as other neurodegenerative disorders, the immune system is involved and immunoregulation is conducted mainly by glial cells, microglia, astrocytes, and Müller cells. The increase in IOP produces the activation of glial cells in the retinal tissue. Chronic activation of glial cells in glaucoma may provoke a proinflammatory state at the retinal level inducing blood retinal barrier disruption and RGCs death. The modulation of the immune response in glaucoma as well as the activation of glial cells constitute an interesting new approach in the treatment of glaucoma.
Collapse
Affiliation(s)
- Jose A. Fernández-Albarral
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
| | - Ana I. Ramírez
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Rosa de Hoz
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - José A. Matamoros
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Elena Salobrar-García
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Lorena Elvira-Hurtado
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
| | - Inés López-Cuenca
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Lidia Sánchez-Puebla
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Juan J. Salazar
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - José M. Ramírez
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
4
|
Gonzalez Caldito N. Role of tumor necrosis factor-alpha in the central nervous system: a focus on autoimmune disorders. Front Immunol 2023; 14:1213448. [PMID: 37483590 PMCID: PMC10360935 DOI: 10.3389/fimmu.2023.1213448] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023] Open
Abstract
Tumor necrosis factor-alpha (TNF-α) is a pleiotropic immune cytokine that belongs to the TNF superfamily of receptor ligands. The cytokine exists as either a transmembrane or a soluble molecule, and targets two distinct receptors, TNF-α receptor 1 (TNFR1) and TNF-α receptor 2 (TNFR2), which activate different signaling cascades and downstream genes. TNF-α cellular responses depend on its molecular form, targeted receptor, and concentration levels. TNF-α plays a multifaceted role in normal physiology that is highly relevant to human health and disease. In the central nervous system (CNS), this cytokine regulates homeostatic functions, such as neurogenesis, myelination, blood-brain barrier permeability and synaptic plasticity. However, it can also potentiate neuronal excitotoxicity and CNS inflammation. The pleiotropism of TNF-α and its various roles in the CNS, whether homeostatic or deleterious, only emphasizes the functional complexity of this cytokine. Anti-TNF-α therapy has demonstrated effectiveness in treating various autoimmune inflammatory diseases and has emerged as a significant treatment option for CNS autoimmune diseases. Nevertheless, it is crucial to recognize that the effects of this therapeutic target are diverse and complex. Contrary to initial expectations, anti-TNF-α therapy has been found to have detrimental effects in multiple sclerosis. This article focuses on describing the various roles, both physiological and pathological, of TNF-α in the CNS. Additionally, it discusses the specific disease processes that are dependent or regulated by TNF-α and the rationale of its use as a therapeutic target.
Collapse
Affiliation(s)
- Natalia Gonzalez Caldito
- Department of Neurology, Northwestern Memorial Hospital, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
5
|
Quilapi AM, Vargas-Lagos C, Martínez D, Muñoz JL, Spies J, Esperguel I, Tapia J, Oyarzún-Salazar R, Vargas-Chacoff L. Brain immunity response of fish Eleginops maclovinus to infection with Francisella noatunensis. FISH & SHELLFISH IMMUNOLOGY 2022; 120:695-705. [PMID: 34808359 DOI: 10.1016/j.fsi.2021.11.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
The brain's immune system is selective and hermetic in most species, including fish, favoring immune responses mediated by soluble immunomodulatory factors such as serotonin and the availability of nutrients against infectious processes. Francisella noatunensis coexist with fish such as Eleginops maclovinus, which raises questions about the susceptibility and immune response of the brain of E. maclovinus against Francisella. In this study, we inoculated fish with different doses of Francisella and took samples for 28 days. We detected bacteria in the brain of fish injected with a high concentration of Francisella at all time points. qPCR analysis of immune genes indicated a response mainly in the medium-dose and early expression of genes involved in iron metabolism. Finally, brain serotonin levels were higher than in uninfected fish in all conditions, suggesting possible immunomodulatory participation in an infectious process.
Collapse
Affiliation(s)
- Ana María Quilapi
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Universidad Santo Tomás, Osorno, Chile; Magister en Ciencias Mención Microbiología, Universidad Austral de Chile, Valdivia, Chile.
| | - Carolina Vargas-Lagos
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP-IDEAL, Universidad Austral de Chile, Valdivia, Chile
| | - Danixa Martínez
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Jose Luis Muñoz
- Centro de Investigación y Desarrollo i ∼ mar, Universidad de los Lagos, Casilla 557, Puerto Montt, Chile
| | - Johana Spies
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Ivan Esperguel
- Magister en Ciencias Mención Microbiología, Universidad Austral de Chile, Valdivia, Chile
| | - Jaime Tapia
- Institute of Chemistry and Natural Resources, Universidad de Talca, Chile
| | | | - Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP-IDEAL, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
6
|
Abstract
Activated CD8+ lymphocytes infiltrate the brain in response to many viral infections; where some remain stationed long term as memory T cells. Brain-resident memory T cells (bTRM) are positioned to impart immediate defense against recurrent or reactivated infection. The cytokine and chemokine milieu present within a tissue is critical for TRM generation and retention; and reciprocal interactions exist between brain-resident glia and bTRM. High concentrations of TGF-β are found within brain and this cytokine has been shown to induce CD103 (integrin αeβ7) expression. The majority of T cells persisting within brain express CD103, which aids in retention through interaction with E-cadherin. Likewise, cytokines produced by T cells also modulate microglia. The anti-inflammatory cytokine IL-4 has been shown to preferentially polarize microglial cells toward an M2 phenotype, with a corresponding increase in E-cadherin expression. These findings demonstrate that the brain microenvironment, both during and following inflammation, prominently contributes to the role of CD103 in T cell persistence. Further evidence shows that microglia, and astrocytes, upregulate programmed death (PD) ligand 1 during neuroinflammation, likely to limit neuropathology, and the PD-1: PD-L1 pathway also aids in bTRM generation and retention. Upon reactivation of quiescent neurotropic viruses, bTRM may respond to small amounts of de novo-produced viral antigen by rapidly releasing IFN-γ, resulting in interferon-stimulated gene expression in surrounding glia, thereby amplifying activation of a small number of adaptive immune cells into an organ-wide innate antiviral response. While advantageous from an antiviral perspective; over time, recall response-driven, organ-wide innate immune activation likely has cumulative neurotoxic and neurocognitive consequences.
Collapse
Affiliation(s)
- Sujata Prasad
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - James R Lokensgard
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
7
|
Prasad S, Hu S, Sheng WS, Chauhan P, Lokensgard JR. Reactive glia promote development of CD103 + CD69 + CD8 + T-cells through programmed cell death-ligand 1 (PD-L1). IMMUNITY INFLAMMATION AND DISEASE 2018; 6:332-344. [PMID: 29602245 PMCID: PMC5946148 DOI: 10.1002/iid3.221] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/21/2018] [Accepted: 03/05/2018] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Previous work from our laboratory has demonstrated in vivo persistence of CD103+ CD69+ brain resident memory CD8+ T-cells (bTRM ) following viral infection, and that the PD-1: PD-L1 pathway promotes development of these TRM cells within the brain. Although glial cells express low basal levels of PD-L1, its expression is upregulated upon IFN-γ-treatment, and they have been shown to modulate antiviral T-cell effector responses through the PD-1: PD-L1 pathway. METHODS We performed flow cytometric analysis of cells from co-cultures of mixed glia and CD8+ T-cells obtained from wild type mice to investigate the role of glial cells in the development of bTRM . RESULTS In this study, we show that interactions between reactive glia and anti-CD3 Ab-stimulated CD8+ T-cells promote development of CD103+ CD69+ CD8+ T-cells through engagement of the PD-1: PD-L1 pathway. These studies used co-cultures of primary murine glial cells obtained from WT animals along with CD8+ T-cells obtained from either WT or PD-1 KO mice. We found that αCD3 Ab-stimulated CD8+ T-cells from WT animals increased expression of CD103 and CD69 when co-cultured with primary murine glial cells. In contrast, significantly reduced expression of CD103 and CD69 was observed using CD8+ T-cells from PD-1 KO mice. We also observed that reactive glia promoted high levels of CD127, a marker of memory precursor effector cells (MPEC), on CD69+ CD8+ T-cells, which promotes development of TRM cells. Interestingly, results obtained using T-cells from PD-1 KO animals showed significantly reduced expression of CD127 on CD69+ CD8+ cells. Additionally, blocking of glial PD-L1 resulted in decreased expression of CD103, along with reduced CD127 on CD69+ CD8+ T-cells. CONCLUSIONS Taken together, these results demonstrate a role for activated glia in promoting development of bTRM through the PD-1: PD-L1 pathway.
Collapse
Affiliation(s)
- Sujata Prasad
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, Minnesota, USA
| | - Shuxian Hu
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, Minnesota, USA
| | - Wen S Sheng
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, Minnesota, USA
| | - Priyanka Chauhan
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, Minnesota, USA
| | - James R Lokensgard
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, Minnesota, USA
| |
Collapse
|
8
|
Ferretti MT, Merlini M, Späni C, Gericke C, Schweizer N, Enzmann G, Engelhardt B, Kulic L, Suter T, Nitsch RM. T-cell brain infiltration and immature antigen-presenting cells in transgenic models of Alzheimer's disease-like cerebral amyloidosis. Brain Behav Immun 2016; 54:211-225. [PMID: 26872418 DOI: 10.1016/j.bbi.2016.02.009] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/26/2016] [Accepted: 02/09/2016] [Indexed: 11/18/2022] Open
Abstract
Cerebral beta-amyloidosis, one of the pathological hallmarks of Alzheimer's disease (AD), elicits a well-characterised, microglia-mediated local innate immune response. In contrast, it is not clear whether cells of the adaptive immune system, in particular T-cells, react to cerebral amyloidosis in AD. Even though parenchymal T-cells have been described in post-mortem brains of AD patients, it is not known whether infiltrating T-cells are specifically recruited to the extracellular deposits of beta-amyloid, and whether they are locally activated into proliferating, effector cells upon interaction with antigen-presenting cells (APCs). To address these issues we have analysed by confocal microscopy and flow-cytometry the localisation and activation status of both T-cells and APCs in transgenic (tg) mice models of AD-like cerebral amyloidosis. Increased numbers of infiltrating T-cells were found in amyloid-burdened brain regions of tg mice, with concomitant up-regulation of endothelial adhesion molecules ICAM-1 and VCAM-1, compared to non-tg littermates. The infiltrating T-cells in tg brains did not co-localise with amyloid plaques, produced less interferon-gamma than those in controls and did not proliferate locally. Bona-fide dendritic cells were virtually absent from the brain parenchyma of both non-tg and tg mice, and APCs from tg brains showed an immature phenotype, with accumulation of MHC-II in intracellular compartments. These results indicate that cerebral amyloidosis promotes T-cell infiltration but interferes with local antigen presentation and T-cell activation. The inability of the brain immune surveillance to orchestrate a protective immune response to amyloid-beta peptide might contribute to the accumulation of amyloid in the progression of the disease.
Collapse
Affiliation(s)
- M T Ferretti
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Wagistrasse 12, 8952, Switzerland.
| | - M Merlini
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Wagistrasse 12, 8952, Switzerland
| | - C Späni
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Wagistrasse 12, 8952, Switzerland
| | - C Gericke
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Wagistrasse 12, 8952, Switzerland
| | - N Schweizer
- Neurology, Neuroimmunology and Multiple Sclerosis Research, University Hospital Zurich, Sternwartstrasse 14, 8006 Zurich, Switzerland
| | - G Enzmann
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - B Engelhardt
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - L Kulic
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Wagistrasse 12, 8952, Switzerland
| | - T Suter
- Neurology, Neuroimmunology and Multiple Sclerosis Research, University Hospital Zurich, Sternwartstrasse 14, 8006 Zurich, Switzerland
| | - R M Nitsch
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Wagistrasse 12, 8952, Switzerland
| |
Collapse
|
9
|
Cuenca N, Fernández-Sánchez L, Campello L, Maneu V, De la Villa P, Lax P, Pinilla I. Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases. Prog Retin Eye Res 2014; 43:17-75. [PMID: 25038518 DOI: 10.1016/j.preteyeres.2014.07.001] [Citation(s) in RCA: 313] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 01/17/2023]
Abstract
Retinal neurodegenerative diseases like age-related macular degeneration, glaucoma, diabetic retinopathy and retinitis pigmentosa each have a different etiology and pathogenesis. However, at the cellular and molecular level, the response to retinal injury is similar in all of them, and results in morphological and functional impairment of retinal cells. This retinal degeneration may be triggered by gene defects, increased intraocular pressure, high levels of blood glucose, other types of stress or aging, but they all frequently induce a set of cell signals that lead to well-established and similar morphological and functional changes, including controlled cell death and retinal remodeling. Interestingly, an inflammatory response, oxidative stress and activation of apoptotic pathways are common features in all these diseases. Furthermore, it is important to note the relevant role of glial cells, including astrocytes, Müller cells and microglia, because their response to injury is decisive for maintaining the health of the retina or its degeneration. Several therapeutic approaches have been developed to preserve retinal function or restore eyesight in pathological conditions. In this context, neuroprotective compounds, gene therapy, cell transplantation or artificial devices should be applied at the appropriate stage of retinal degeneration to obtain successful results. This review provides an overview of the common and distinctive features of retinal neurodegenerative diseases, including the molecular, anatomical and functional changes caused by the cellular response to damage, in order to establish appropriate treatments for these pathologies.
Collapse
Affiliation(s)
- Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain; Multidisciplinary Institute for Environmental Studies "Ramon Margalef", University of Alicante, Alicante, Spain.
| | - Laura Fernández-Sánchez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Laura Campello
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, Alicante, Spain
| | - Pedro De la Villa
- Department of Systems Biology, University of Alcalá, Alcalá de Henares, Spain
| | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Isabel Pinilla
- Department of Ophthalmology, Lozano Blesa University Hospital, Aragon Institute of Health Sciences, Zaragoza, Spain
| |
Collapse
|
10
|
Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity. Mediators Inflamm 2014; 2014:861231. [PMID: 24966471 PMCID: PMC4055424 DOI: 10.1155/2014/861231] [Citation(s) in RCA: 481] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/07/2014] [Indexed: 02/08/2023] Open
Abstract
Tumor necrosis factor alpha (TNF-α) is a proinflammatory cytokine that exerts both homeostatic and pathophysiological roles in the central nervous system. In pathological conditions, microglia release large amounts of TNF-α; this de novo production of TNF-α is an important component of the so-called neuroinflammatory response that is associated with several neurological disorders. In addition, TNF-α can potentiate glutamate-mediated cytotoxicity by two complementary mechanisms: indirectly, by inhibiting glutamate transport on astrocytes, and directly, by rapidly triggering the surface expression of Ca+2 permeable-AMPA receptors and NMDA receptors, while decreasing inhibitory GABAA receptors on neurons. Thus, the net effect of TNF-α is to alter the balance of excitation and inhibition resulting in a higher synaptic excitatory/inhibitory ratio. This review summarizes the current knowledge of the cellular and molecular mechanisms by which TNF-α links the neuroinflammatory and excitotoxic processes that occur in several neurodegenerative diseases, but with a special emphasis on amyotrophic lateral sclerosis (ALS). As microglial activation and upregulation of TNF-α expression is a common feature of several CNS diseases, as well as chronic opioid exposure and neuropathic pain, modulating TNF-α signaling may represent a valuable target for intervention.
Collapse
|
11
|
Kodavali CV, Watson AM, Prasad KM, Celik C, Mansour H, Yolken RH, Nimgaonkar VL. HLA associations in schizophrenia: are we re-discovering the wheel? Am J Med Genet B Neuropsychiatr Genet 2014; 165B:19-27. [PMID: 24142843 DOI: 10.1002/ajmg.b.32195] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 08/02/2013] [Indexed: 01/18/2023]
Abstract
Associations between human leukocyte antigen (HLA) polymorphisms on chromosome 6p and schizophrenia (SZ) risk have been evaluated for over five decades. Numerous case-control studies from the candidate gene era analyzed moderately sized samples and reported nominally significant associations with several loci in the HLA region (sample sizes, n = 100-400). The risk conferred by individual alleles was modest (odds ratios < 2.0). The basis for the associations could not be determined, though connections with known immune and auto-immune abnormalities in SZ were postulated. Interest in the HLA associations has re-emerged following several recent genome-wide association studies (GWAS); which utilized 10- to 100-fold larger samples and also identified associations on the short arm of chromosome 6. Unlike the earlier candidate gene studies, the associations are statistically significant following correction for multiple comparisons. Like the earlier studies; they have modest effect sizes, raising questions about their utility in risk prediction or pathogenesis research. In this review, we summarize the GWAS and reflect on possible bases for the associations. Suggestions for future research are discussed. We favor, in particular; efforts to evaluate local population sub-structure as well as further evaluation of immune-related variables in future studies.
Collapse
Affiliation(s)
- Chowdari V Kodavali
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, Pittsburgh, Pennsylvania
| | | | | | | | | | | | | |
Collapse
|
12
|
PGE2/EP4 signaling in peripheral immune cells promotes development of experimental autoimmune encephalomyelitis. Biochem Pharmacol 2013; 87:625-35. [PMID: 24355567 DOI: 10.1016/j.bcp.2013.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 01/16/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a T cell-mediated inflammatory autoimmune disease model of multiple sclerosis (MS). The inflammatory process is initiated by activation and proliferation of T cells and monocytes and by their subsequent migration into the central nervous system (CNS), where they induce demyelination and neurodegeneration. Prostaglandin E2 (PGE2) - synthesized by cyclooxygenase 2 (COX-2) - has both pro- and anti-inflammatory potential, which is translated via four different EP receptors. We hypothesized that PGE2 synthesized in the preclinical phase by peripheral immune cells exerts pro-inflammatory properties in the EAE model. To investigate this, we used a bone marrow transplantation model, which enables PGE2 synthesis or EP receptor expression to be blocked specifically in peripheral murine immune cells. Our results reveal that deletion of COX-2 or its EP4 receptor in bone marrow-derived cells leads to a significant delay in the onset of EAE. This effect is due to an impaired preclinical inflammatory process indicated by a reduced level of the T cell activating interleukin-6 (IL-6), reduced numbers of T cells and of the T cell secreted interleukin-17 (IL-17) in the blood of mice lacking COX-2 or EP4 in peripheral immune cells. Moreover, mice lacking COX-2 or EP4 in bone marrow-derived cells show a reduced expression of matrix metalloproteinase 9 (MMP9), which results in decreased infiltration of monocytes and T cells into the CNS. In conclusion, our data demonstrate that PGE2 synthesized by monocytes in the early preclinical phase promotes the development of EAE in an EP4 receptor dependent manner.
Collapse
|
13
|
MHCII is required for α-synuclein-induced activation of microglia, CD4 T cell proliferation, and dopaminergic neurodegeneration. J Neurosci 2013; 33:9592-600. [PMID: 23739956 DOI: 10.1523/jneurosci.5610-12.2013] [Citation(s) in RCA: 303] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Accumulation of α-synuclein (α-syn) in the brain is a core feature of Parkinson disease (PD) and leads to microglial activation, production of inflammatory cytokines and chemokines, T-cell infiltration, and neurodegeneration. Here, we have used both an in vivo mouse model induced by viral overexpression of α-syn as well as in vitro systems to study the role of the MHCII complex in α-syn-induced neuroinflammation and neurodegeneration. We find that in vivo, expression of full-length human α-syn causes striking induction of MHCII expression by microglia, while knock-out of MHCII prevents α-syn-induced microglial activation, antigen presentation, IgG deposition, and the degeneration of dopaminergic neurons. In vitro, treatment of microglia with aggregated α-syn leads to activation of antigen processing and presentation of antigen sufficient to drive CD4 T-cell proliferation and to trigger cytokine release. These results indicate a central role for microglial MHCII in the activation of both the innate and adaptive immune responses to α-syn in PD and suggest that the MHCII signaling complex may be a target of neuroprotective therapies for the disease.
Collapse
|
14
|
Blood-brain barrier alterations in the cerebral cortex in experimental autoimmune encephalomyelitis. J Neuropathol Exp Neurol 2012; 71:840-54. [PMID: 23001217 DOI: 10.1097/nen.0b013e31826ac110] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The pathophysiology of cerebral cortical lesions in multiple sclerosis (MS) is not understood. We investigated cerebral cortex microvessels during immune-mediated demyelination in the MS model chronic murine experimental autoimmune encephalomyelitis (EAE) by immunolocalization of the endothelial cell tight junction (TJ) integral proteins claudin-5 and occludin, a structural protein of caveolae, caveolin-1, and the blood-brain barrier-specific endothelial transporter, Glut 1. In EAE-affected mice, there were areas of extensive subpial demyelination and well-demarcated lesions that extended to deeper cortical layers. Activation of microglia and absence of perivascular inflammatory infiltrates were common in these areas. Microvascular endothelial cells showed increased expression of caveolin-1 and a coincident loss of both claudin-5 and occludin normal junctional staining patterns. At a very early disease stage, claudin-5 molecules tended to cluster and form vacuoles that were also Glut 1 positive; the initially preserved occludin pattern became diffusely cytoplasmic at more advanced stages. Possible internalization of claudin-5 on TJ dismantling was suggested by its coexpression with the autophagosomal marker MAP1LC3A. Loss of TJ integrity was confirmed by fluorescein isothiocyanate-dextran experiments that showed leakage of the tracer into the perivascular neuropil. These observations indicate that, in the cerebral cortex of EAE-affected mice, there is a microvascular disease that differentially targets claudin-5 and occludin during ongoing demyelination despite only minimal inflammation.
Collapse
|
15
|
Abstract
Demyelinating diseases such as multiple sclerosis are chronic inflammatory autoimmune diseases with a heterogeneous clinical presentation and course. Both the adaptive and the innate immune systems have been suggested to contribute to their pathogenesis and recovery. In this review, we discuss the role of the innate immune system in mediating demyelinating diseases. In particular, we provide an overview of the anti-inflammatory or pro-inflammatory functions of dendritic cells, mast cells, natural killer (NK) cells, NK-T cells, γδ T cells, microglial cells, and astrocytes. We emphasize the interaction of astroctyes with the immune system and how this interaction relates to the demyelinating pathologies. Given the pivotal role of the innate immune system, it is possible that targeting these cells may provide an effective therapeutic approach for demyelinating diseases.
Collapse
Affiliation(s)
- Lior Mayo
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
16
|
Aronica E, Ravizza T, Zurolo E, Vezzani A. Astrocyte immune responses in epilepsy. Glia 2012; 60:1258-68. [PMID: 22331574 DOI: 10.1002/glia.22312] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/27/2012] [Indexed: 12/25/2022]
Abstract
Astrocytes, the major glial cell type of the central nervous system (CNS), are known to play a major role in the regulation of the immune/inflammatory response in several human CNS diseases. In epilepsy-associated pathologies, the presence of astrogliosis has stimulated extensive research focused on the role of reactive astrocytes in the pathophysiological processes that underlie the development of epilepsy. In brain tissue from patients with epilepsy, astrocytes undergo significant changes in their physiological properties, including the activation of inflammatory pathways. Accumulating experimental evidence suggests that proinflammatory molecules can alter glio-neuronal communications contributing to the generation of seizures and seizure-related neuronal damage. In particular, both in vitro and in vivo data point to the role of astrocytes as both major source and target of epileptogenic inflammatory signaling. In this context, understanding the astroglial inflammatory response occurring in epileptic brain tissue may provide new strategies for targeting astrocyte-mediated epileptogenesis. This article reviews current evidence regarding the role of astrocytes in the regulation of the innate immune responses in epilepsy. Both clinical observations in drug-resistant human epilepsies and experimental findings in clinically relevant models will be discussed and elaborated, highlighting specific inflammatory pathways (such as interleukin-1β/toll-like receptor 4) that could be potential targets for antiepileptic, disease-modifying therapeutic strategies.
Collapse
Affiliation(s)
- Eleonora Aronica
- Department of (Neuro)Pathology, Academisch Medisch Centrum, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
17
|
Ayoub SS, Wood EG, Hassan SU, Bolton C. Cyclooxygenase expression and prostaglandin levels in central nervous system tissues during the course of chronic relapsing experimental autoimmune encephalomyelitis (EAE). Inflamm Res 2011; 60:919-28. [PMID: 21667309 DOI: 10.1007/s00011-011-0352-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 04/27/2011] [Accepted: 05/27/2011] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE Multiple sclerosis (MS) and its animal counterpart experimental autoimmune encephalomyelitis (EAE) have a major inflammatory component that drives and orchestrates both diseases. One particular group of mediators are the prostaglandins (PGs), which we have previously shown, through quantitation and pharmacological intervention, to be closely involved in the pathology of MS and EAE. The aim of the current study was to determine the expression of the PG-generating cyclooxygenase (COX) enzymes and the profile of PGE(2) and PGD(2), in selected central nervous system (CNS) tissues, with the development of the chronic relapsing (CR) form of EAE. In particular, the work investigates the possible relationship between the expression of COX isoenzymes and PG levels during the neurological phases of CR EAE. METHODS CR EAE was induced in Biozzi mice with inoculum containing lyophilised, syngeneic spinal cord emulsified in complete Freund's adjuvant. The cerebral cortex, cerebellum and spinal cord were dissected from mice during the acute, remission and relapse stages of disease with a minimum of five animals per treatment. The expression of COX-1, COX-1b variant and COX-2, in pooled samples, was determined by Western blotting. PGE(2) and PGD(2) levels in extracted samples were measured using commercial enzyme immunoassay kits. RESULTS COX-2 expression in spinal cords during acute disease remained unaltered and was in contrast to an enhancement of the enzyme, together with COX-1 and COX-1b, in all other sampled areas. PGE(2) and PGD(2) levels remained unchanged during the acute phase and the subsequent remission of symptoms. COX-1 and COX-1b expression was elevated in tissues during the relapse stage of CR EAE and concentrations of the prostanoids were markedly increased. CONCLUSIONS The study examines the implications of COX isoenzyme expression over the course of CR EAE and discusses the reported relationship between PGE(2) and PGD(2) in the instigation and resolution of CNS inflammation. Consideration is also given to the treatment of CR EAE and suggests that drugs designed to limit the inflammatory effects of the PGs should be administered prior to or during the relapse phase of the disease.
Collapse
Affiliation(s)
- Samir S Ayoub
- Centre for Biochemical Pharmacology, William Harvey Research Institute, St. Bartholomew's and London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | | | | | | |
Collapse
|
18
|
Early influx of macrophages determines susceptibility to experimental allergic encephalomyelitis in Dark Agouti (DA) rats. J Neuroimmunol 2010; 232:68-74. [PMID: 21109309 DOI: 10.1016/j.jneuroim.2010.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 09/20/2010] [Accepted: 10/07/2010] [Indexed: 12/24/2022]
Abstract
Experimental allergic encephalomyelitis (EAE) is characterized by inflammatory infiltrates of myelin antigen(s) specific T cells and consecutive demyelination. Injection of encephalitogen into the footpads induces disease in genetically susceptible Dark Agouti rats (DA) but not in Albino Oxford (AO) rats although mild inflammatory infiltrates are observed in both strains early after disease induction. In addition, only DA rats develop disease when cells from (AO×DA) F(1) hybrids are passively transferred into sub-lethally radiated AO and DA parent hosts. The aim of the study was therefore to examine the participation of accessory cells, macrophages, dendritic cells and microglia in EAE development at the level of the target tissue in these two strains using specific membrane markers. We demonstrate here that in the induction phase of EAE in DA rats, macrophages (CD68(+); CD45(hi)CD11b(+)) are the first detectable infiltrating cells in the subpial regions of the spinal cord but were not found in AO rats. During the same period, resident microglial cells which are of the ramified variety are observed in both DA and AO rats. In DA rats at the peak of disease, when profuse influx of T cells is seen, macrophages and dendritic cells appear in the parenchyma of the CNS. In addition, at that time, microglial cells are activated. FACS analyses also reveal a significant increase in CD45(hi)CD11c(+) dendritic cells and CD45(hi)D11b(+) macrophages compared with levels in naïve and immunized AO rats. During resolution of disease in DA rats, the expression of microglia and macrophage markers is comparable with those in naïve non-immunized DA and immunized AO rats. We conclude that an initial influx of macrophages is indispensible for the development of EAE in DA rats. The presence of dendritic cells and myeloid dendritic cells at the peak of disease supports the role of these cells in EAE especially in relapses and chronicity. The activation pattern of microglia in DA rats does not indicate their role as antigen presenting cells in disease induction since they are ramified at the induction phase and only become activated after the overwhelming influx of T cells.
Collapse
|
19
|
Gunsolly C, Nicholson JD, Listwak SJ, Ledee D, Zelenka P, Verthelyi D, Chapoval S, Keegan A, Tonelli LH. Expression and regulation in the brain of the chemokine CCL27 gene locus. J Neuroimmunol 2010; 225:82-90. [PMID: 20605223 DOI: 10.1016/j.jneuroim.2010.04.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 03/31/2010] [Accepted: 04/28/2010] [Indexed: 11/16/2022]
Abstract
The chemokine CCL27 has chemoattractant properties for memory T cells and has been implicated in skin allergic reactions. The present study reports the expression in the brain of two CCL27 splice variants localized in the cerebral cortex and limbic regions. CCL27-like immunoreactivity was identified mainly in neurons. Variant 1 was found elevated in the olfactory bulbs during allergic inflammation induced by intranasal challenge with allergen. This was accompanied by the presence of T cells in the olfactory bulbs. Intranasal administration of neutralizing antibodies against CCL27 reduced the presence of T cells in the olfactory bulbs suggesting a function in T cell activity in the brain.
Collapse
Affiliation(s)
- Chad Gunsolly
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201-1549, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Pinheiro A, Costa S, Freire S, Ribeiro C, Tardy M, El-Bachá R, Costa M. Neospora caninum: Early immune response of rat mixed glial cultures after tachyzoites infection. Exp Parasitol 2010; 124:442-7. [DOI: 10.1016/j.exppara.2009.12.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 10/21/2009] [Accepted: 12/24/2009] [Indexed: 11/24/2022]
|
21
|
Ghosh A, Chaudhuri S. Microglial action in glioma: a boon turns bane. Immunol Lett 2010; 131:3-9. [PMID: 20338195 DOI: 10.1016/j.imlet.2010.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/13/2010] [Accepted: 03/16/2010] [Indexed: 12/25/2022]
Abstract
Microglia has the potential to shape the neuroimmune defense with vast array of functional attributes. The cells prime infiltrated lymphocytes to retain their effector functions, play crucial role in controlling microenvironmental milieu and significantly participate in glioma. Reports demonstrate microglial accumulation in glioma and predict their assistance in glioma growth and spreading. Clarification of the 'double-edged' appearance of microglia is necessary to unfold its role in glioma biology. In this article the interpretation of microglial activities has been attempted to reveal their actual function in glioma. Contrary to the trendy acceptance of its glioma promoting infamy, accumulated evidences make an effort to view the state of affairs in favor of the cell. Critical scrutiny indicates that microglial immune assaults are intended to demolish the neoplastic cells in brain. But the weaponry of microglia has been tactically utilized by glioma in their favor as the survival strategy. Hence the defender appears as enemy in advanced glioma.
Collapse
Affiliation(s)
- Anirban Ghosh
- Immunobiology Lab, Department of Zoology, Panihati Mahavidyalaya (West Bengal State University), Barasat Road, Sodepur, Kolkata, West Bengal, India.
| | | |
Collapse
|
22
|
Acute in vivo exposure to interferon-gamma enables resident brain dendritic cells to become effective antigen presenting cells. Proc Natl Acad Sci U S A 2009; 106:20918-23. [PMID: 19906988 DOI: 10.1073/pnas.0911509106] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DC) are the professional antigen presenting cells (APC) that bridge the innate and adaptive immune system. Previously, in a CD11c/EYFP transgenic mouse developed to study DC functions, we anatomically mapped and phenotypically characterized a discrete population of EYFP(+) cells within the microglia that we termed brain dendritic cells (bDC). In this study, we advanced our knowledge of the function of these cells in the CD11c/EYFP transgenic mouse and its chimeras, using acute stimuli of stereotaxically inoculated IFNgamma or IL-4 into the CNS. The administration of IFNgamma increased the number of EYFP(+)bDC but did not recruit peripheral DC into the CNS. IFNgamma, but not IL-4, upregulated the expression levels of major histocompatibility class II (MHC-II). In addition, IFNgamma-activated EYFP(+)bDC induced antigen-specific naïve CD4 T cells to proliferate and secrete Th1/Th17 cytokines. Activated bDC were also able to stimulate naïve CD8 T cells. Collectively, these data reveal the Th1 cytokine IFNgamma, but not the Th2 cytokine IL4, induces bDC to up-regulate MHC-II and become competent APC.
Collapse
|
23
|
Two-photon laser scanning microscopy imaging of intact spinal cord and cerebral cortex reveals requirement for CXCR6 and neuroinflammation in immune cell infiltration of cortical injury sites. J Immunol Methods 2009; 352:89-100. [PMID: 19800886 DOI: 10.1016/j.jim.2009.09.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 09/22/2009] [Accepted: 09/24/2009] [Indexed: 01/10/2023]
Abstract
The mouse spinal cord is an important site for autoimmune and injury models. Skull thinning surgery provides a minimally invasive window for microscopy of the mouse cerebral cortex, but there are no parallel methods for the spinal cord. We introduce a novel, facile and inexpensive method for two-photon laser scanning microscopy of the intact spinal cord in the mouse by taking advantage of the naturally accessible intervertebral space. These are powerful methods when combined with gene-targeted mice in which endogenous immune cells are labeled with green fluorescent protein (GFP). We first demonstrate that generation of the intervertebral window does not elicit a reaction of GFP(+) microglial cells in CX3CR1(gfp/+) mice. We next demonstrate a distinct rostrocaudal migration of GFP(+) immune cells in the spinal cord of CXCR6(gfp/+) mice during active experimental autoimmune encephalomyelitis (EAE). Interestingly, infiltration of the cerebral cortex by GFP(+) cells in these mice required three conditions: EAE induction, cortical injury and expression of CXCR6 on immune cells.
Collapse
|
24
|
Kompass KS, Agapova OA, Li W, Kaufman PL, Rasmussen CA, Hernandez MR. Bioinformatic and statistical analysis of the optic nerve head in a primate model of ocular hypertension. BMC Neurosci 2008; 9:93. [PMID: 18822132 PMCID: PMC2567987 DOI: 10.1186/1471-2202-9-93] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 09/26/2008] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The nonhuman primate model of glaucomatous optic neuropathy most faithfully reproduces the human disease. We used high-density oligonucleotide arrays to investigate whole genome transcriptional changes occurring at the optic nerve head during primate experimental glaucoma. RESULTS Laser scarification of the trabecular meshwork of cynomolgus macaques produced elevated intraocular pressure that was monitored over time and led to varying degrees of damage in different samples. The macaques were examined clinically before enucleation and the myelinated optic nerves were processed post-mortem to determine the degree of neuronal loss. Global gene expression was examined in dissected optic nerve heads with Affymetrix GeneChip microarrays. We validated a subset of differentially expressed genes using qRT-PCR, immunohistochemistry, and immuno-enriched astrocytes from healthy and glaucomatous human donors. These genes have previously defined roles in axonal outgrowth, immune response, cell motility, neuroprotection, and extracellular matrix remodeling. CONCLUSION Our findings show that glaucoma is associated with increased expression of genes that mediate axonal outgrowth, immune response, cell motility, neuroprotection, and ECM remodeling. These studies also reveal that, as glaucoma progresses, retinal ganglion cell axons may make a regenerative attempt to restore lost nerve cell contact.
Collapse
Affiliation(s)
- Kenneth S Kompass
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Olga A Agapova
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wenjun Li
- Department of Ophthalmology, Northwestern University, Chicago, IL 60611, USA
| | - Paul L Kaufman
- Department of Ophthalmology and Visual Sciences, University of Wisconsin Medical School, Madison, WI 53792, USA
| | - Carol A Rasmussen
- Department of Ophthalmology and Visual Sciences, University of Wisconsin Medical School, Madison, WI 53792, USA
| | - M Rosario Hernandez
- Department of Ophthalmology, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
25
|
van Neerven S, Kampmann E, Mey J. RAR/RXR and PPAR/RXR signaling in neurological and psychiatric diseases. Prog Neurobiol 2008; 85:433-51. [PMID: 18554773 DOI: 10.1016/j.pneurobio.2008.04.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 02/12/2008] [Accepted: 04/28/2008] [Indexed: 01/09/2023]
Abstract
Retinoids are important signals in brain development. They regulate gene transcription by binding to retinoic acid receptors (RAR) and, as was discovered recently, a peroxisome proliferator-activated receptor (PPAR). Traditional ligands of PPAR are best known for their functions in lipid metabolism and inflammation. RAR and PPAR are ligand-activated transcription factors, which share members of the retinoid X receptor (RXR) family as heterodimeric partners. Both signal transduction pathways have recently been implicated in the progression of neurodegenerative and psychiatric diseases. Since inflammatory processes contribute to various neurodegenerative diseases, the anti-inflammatory activity of retinoids and PPARgamma agonists recommends them as potential therapeutic targets. In addition, genetic linkage studies, transgenic mouse models and experiments with vitamin A deprivation provide evidence that retinoic acid signaling is directly involved in physiology and pathology of motoneurons, of the basal ganglia and of cognitive functions. The activation of PPAR/RXR and RAR/RXR transcription factors has therefore been proposed as a therapeutic strategy in disorders of the central nervous system.
Collapse
|
26
|
Bjugstad KB, Redmond DE, Lampe KJ, Kern DS, Sladek JR, Mahoney MJ. Biocompatibility of PEG-Based Hydrogels in Primate Brain. Cell Transplant 2008. [DOI: 10.3727/096368908784423292] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Degradable polymers have been used successfully in a wide variety of peripheral applications from tissue regeneration to drug delivery. These polymers induce little inflammatory response and appear to be well accepted by the host environment. Their use in the brain, for neural tissue reconstruction or drug delivery, also could be advantageous in treating neurodegenerative disorders. Because the brain has a unique immune response, a polymer that is compatible in the body may not be so in the brain. In the present study, polyethylene glycol (PEG)-based hydrogels were implanted into the striatum and cerebral cortex of nonhuman primates. Four months after implantation, brains were processed to evaluate the extent of astrogliosis and scaring, the presence of microglia/macrophages, and the extent of T-cell infiltration. Hydrogels with 20% w/v PEG implanted into the brain stimulated a slight increase in astrocytic and microglial/macrophage presence, as indicated by a small increase in glial fibrillary acidic protein (GFAP) and CD68 staining intensity. This increase was not substantially different from that found in the sham-implanted hemispheres of the brain. Staining for CD3+ T cells indicated no presence of peripheral T-cell infiltration. No gliotic scarring was seen in any implanted hemisphere. The combination of low density of GFAP-positive cells and CD68-positive cells, the absence of T cells, and the lack of gliotic scarring suggest that this level of immune response is not indicative of immunorejection and that the PEG-based hydrogel has potential to be used in the primate brain for local drug delivery or neural tissue regeneration.
Collapse
Affiliation(s)
- K. B. Bjugstad
- Department Pediatrics, University Colorado Denver and Health Sciences Center, Aurora, CO, USA
| | - D. E. Redmond
- Departments Psychiatry and Neurosurgery, Yale University, New Haven, CT, USA
| | - K. J. Lampe
- Department Chemical and Biological Engineering, University Colorado, Boulder, CO, USA
| | - D. S. Kern
- Department Pediatrics, University Colorado Denver and Health Sciences Center, Aurora, CO, USA
| | - J. R. Sladek
- Department Pediatrics, University Colorado Denver and Health Sciences Center, Aurora, CO, USA
| | - M. J. Mahoney
- Department Chemical and Biological Engineering, University Colorado, Boulder, CO, USA
| |
Collapse
|
27
|
't Hart BA, Hintzen RQ, Laman JD. Preclinical assessment of therapeutic antibodies against human CD40 and human interleukin-12/23p40 in a nonhuman primate model of multiple sclerosis. NEURODEGENER DIS 2008; 5:38-52. [PMID: 18075274 DOI: 10.1159/000109937] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 01/11/2007] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Proinflammatory cytokines, such as interleukin (IL)-12 and IL-23, and costimulatory molecules on antigen-presenting cells (APC), such as CD40, are critical to autoreactive T cell activation by APC, and hence, are considered relevant targets of therapy for immune-mediated inflammatory diseases (IMID). OBJECTIVE The current review discusses the preclinical evaluation of two novel immunotherapeutic monoclonal antibodies (mAbs), one directed against human IL-12/23p40 and the other against CD40. As the antibodies only recognize their target molecule in primates, the efficacy could not be tested in rodent models. RESULTS As a preclinical IMID model for the in vivo evaluation of both mAbs, we have used the experimental autoimmune/allergic encephalomyelitis (EAE) model in common marmoset monkeys (Callithrix jacchus). Both mAbs show beneficial activities in the EAE model when administered early in disease development as well as after the onset of brain inflammation. The treatment effects were evaluated using a combination of quantitative magnetic resonance imaging and a series of ex vivo and immunopathological evaluations. CONCLUSION The promising effects during ongoing disease in a relevant preclinical IMID model illustrate the potential of these two antibodies as treatment of IMID, in particular for multiple sclerosis on which disease EAE has been modeled.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands.
| | | | | |
Collapse
|
28
|
Miljkovic D, Momcilovic M, Stojanovic I, Stosic-Grujicic S, Ramic Z, Mostarica-Stojkovic M. Astrocytes stimulate interleukin-17 and interferon-gamma production in vitro. J Neurosci Res 2008; 85:3598-606. [PMID: 17969033 DOI: 10.1002/jnr.21453] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Astrocytes play important roles in the complex and as yet not very well understood net of interactions among resident and infiltrating cells during central nervous system (CNS) inflammation. In such an intricate network, cytokines represent an essential means for intercellular communication, and astrocytes are able to affect their generation and/or release. Among various cytokines produced by infiltrating cells, interferon (IFN)-gamma and interleukin (IL)-17 are the focus of this research, because they are pivotal cytokines of helper T-cell type 1 (Th1) and helper T-cell type 17 (Th17), respectively. Importantly, both Th1 and Th17 cells, as well as their cytokines, have been shown to be of importance for the pathogenesis of experimental autoimmune encephalomyelitis (EAE), an animal model of a prototypical CNS disease with inflammatory pathogenesis, multiple sclerosis. Therefore, the influence of astrocytes on the generation of IFN-gamma and IL-17 in concanavalin A- and myelin basic protein-stimulated lymph node cells of healthy rats and rats with developing EAE, respectively, was investigated in vitro. Astrocytes up-regulated IL-17 and IFN-gamma gene expression and protein synthesis in T cells, which coincided with astrocytes' ability to express IL-23 subunit p19 and common IL-12/IL-23 subunit p40 but not IL-12 subunit p35 in the co-cultivations. These results suggest one more way in which astrocytes could contribute to the complex interactions during CNS inflammation.
Collapse
Affiliation(s)
- Djordje Miljkovic
- Department of Immunology, Institute for Biological Research Sinisa Stankovic, Despota Stefana 142, Belgrade, Serbia.
| | | | | | | | | | | |
Collapse
|
29
|
Tansey MG, McCoy MK, Frank-Cannon TC. Neuroinflammatory mechanisms in Parkinson's disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol 2007; 208:1-25. [PMID: 17720159 PMCID: PMC3707134 DOI: 10.1016/j.expneurol.2007.07.004] [Citation(s) in RCA: 437] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 07/02/2007] [Accepted: 07/05/2007] [Indexed: 12/11/2022]
Abstract
Most acute and chronic neurodegenerative conditions are accompanied by neuroinflammation; yet the exact nature of the inflammatory processes and whether they modify disease progression is not well understood. In this review, we discuss the key epidemiological, clinical, and experimental evidence implicating inflammatory processes in the progressive degeneration of the dopaminergic (DA) nigrostriatal pathway and their potential contribution to the pathophysiology of Parkinson's disease (PD). Given that interplay between genetics and environment are likely to contribute to risk for development of idiopathic PD, recent data showing interactions between products of genes linked to heritable PD that function to protect DA neurons against oxidative or proteolytic stress and inflammation pathways will be discussed. Cellular mechanisms activated or enhanced by inflammatory processes that may contribute to mitochondrial dysfunction, oxidative stress, or apoptosis of dopaminergic (DA) neurons will be reviewed, with special emphasis on tumor necrosis factor (TNF) and interleukin-1-beta (IL-1beta) signaling pathways. Epigenetic factors which have the potential to trigger neuroinflammation, including environmental exposures and age-associated chronic inflammatory conditions, will be discussed as possible 'second-hit' triggers that may affect disease onset or progression of idiopathic PD. If inflammatory processes have an active role in nigrostriatal pathway degeneration, then evidence should exist to indicate that such processes begin in the early stages of disease and that they contribute to neuronal dysfunction and/or hasten neurodegeneration of the nigrostriatal pathway. Therapeutically, if anti-inflammatory interventions can be shown to rescue nigral DA neurons from degeneration and lower PD risk, then timely use of anti-inflammatory therapies should be investigated further in well-designed clinical trials for their ability to prevent or delay the progressive loss of nigral DA neurons in genetically susceptible populations.
Collapse
Affiliation(s)
- Malú G Tansey
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.
| | | | | |
Collapse
|
30
|
Abstract
This manuscript deals with whether immune-mediated mechanisms of inflammation contribute to the pathogenesis of schizophrenia. A model is presented which integrates psychoneuroimmunologic findings and actual results from pharmacological, neurochemical, and genetic studies in schizophrenia. A pivotal role in the neurobiology of schizophrenia is played by dopaminergic neurotransmission, which is modulated by influences of the glutamatergic system. The decreased function of the glutamate system described in schizophrenia seems primarily mediated by N-methyl-D-aspartate (NMDA) receptor antagonism. Kynurenine acid is the only known endogenous NMDA receptor antagonist. In higher concentrations it blocks the NMDA receptor, but in lower concentrations it blocks the nicotinergic acetylcholin receptor, which has a prominent role in cognitive functions. Therefore, higher levels of kynurenine acid may explain psychotic symptoms and cognitive dysfunction. Several findings point out that prenatal infection, associated with an early sensitisation of the immune system, may result in an imbalance of the immune response (type 1 vs type 2) in schizophrenia. This immune constellation leads to inhibition of the enzyme indoleamin dioxigenase (IDO). It and tryptophane 2,3-dioxygenase (TDO) both catalyse the degradation from tryptophan to kynurenine. Due to the inhibition of IDO, tryptophan is metabolised to kynurenine primarily by TDO. In the CNS, TDO is located only in astrocytes, which are in particular activated in schizophrenia and in which kynurenine acid is the final product and can not be further metabolised. Therefore kynurenine acid accumulates in the CNS of schizophrenics and - due to its NMDA-antagonistic properties - leads to cognitive dysfunction and psychotic symptoms. This model describes the pathway of immune-mediated glutamatergic-dopaminergic dysregulation, which may lead to the clinical symptoms of schizophrenia. Therapeutic consequences (e.g. cyclo-oxygenase-2 inhibitors) are discussed.
Collapse
Affiliation(s)
- N Müller
- Klinik für Psychiatrie und Psychotherapie, Ludwig-Maximilians-Universität, Nussbaumstrasse 7, 80336 München.
| | | |
Collapse
|
31
|
Hamo L, Stohlman SA, Otto‐Duessel M, Bergmann CC. Distinct regulation of MHC molecule expression on astrocytes and microglia during viral encephalomyelitis. Glia 2007; 55:1169-77. [PMID: 17600339 PMCID: PMC7165879 DOI: 10.1002/glia.20538] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The potential interplay of glial cells with T cells during viral induced inflammation was assessed by comparing major histocompatibility complex molecule upregulation and retention on astrocytes and microglia. Transgenic mice expressing green fluorescent protein under control of the astrocyte‐specific glial fibrillary acidic protein promoter were infected with a neurotropic coronavirus to facilitate phenotypic characterization of astrocytes and microglia using flow cytometry. Astrocytes in the adult central nervous system up‐regulated class I surface expression, albeit delayed compared with microglia. Class II was barely detectable on astrocytes, in contrast to potent up‐regulation on microglia. Maximal MHC expression in both glial cell types correlated with IFN‐γ levels and lymphocyte accumulation. Despite a decline of IFN‐γ concomitant to virus clearance, MHC molecule expression on glia was sustained. These data demonstrate distinct regulation of both class I and class II expression by microglia and astrocytes in vivo following viral induced inflammation. Furthermore, prolonged MHC expression subsequent to viral clearance implies a potential for ongoing presentation. © 2007 Wiley‐Liss, Inc.
Collapse
Affiliation(s)
- Ludwig Hamo
- Department of Neuroscience, University of Southern California Keck School of Medicine, Los Angeles, California
| | - Stephen A. Stohlman
- Department of Neuroscience, University of Southern California Keck School of Medicine, Los Angeles, California
- Department of Neurology, University of Southern California Keck School of Medicine, Los Angeles, California
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California
- Present address:
Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH 44195
| | - Maya Otto‐Duessel
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California
- Present address:
Department of Radiology, Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, CA 90027
| | - Cornelia C. Bergmann
- Department of Neurology, University of Southern California Keck School of Medicine, Los Angeles, California
| |
Collapse
|
32
|
Mazzola S, Lira MG, Benedetti MD, Salviati A, Ottaviani S, Malerba G, Ortombina M, Pignatti PF. COX-2 promoter region polymorphisms in multiple sclerosis: lack of association of ?765G>C with disease risk. Int J Immunogenet 2007; 34:71-4. [PMID: 17373929 DOI: 10.1111/j.1744-313x.2007.00675.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cyclooxygenase-2 (COX-2) is extensively expressed in multiple sclerosis lesions suggesting that regulatory variants of the COX-2 gene could be implicated in multiple sclerosis (MS). Screening of the proximal 5' regulatory region and genotyping of -765G>C and -62C>G showed that polymorphisms in this COX-2 region are unlikely to be involved in MS susceptibility.
Collapse
Affiliation(s)
- S Mazzola
- Department of Mother and Child, Biology and Genetics, Section Biology and Genetics, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Effects of low dose GM-CSF on microglial inflammatory profiles to diverse pathogen-associated molecular patterns (PAMPs). J Neuroinflammation 2007; 4:10. [PMID: 17374157 PMCID: PMC1839084 DOI: 10.1186/1742-2094-4-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2007] [Accepted: 03/20/2007] [Indexed: 12/25/2022] Open
Abstract
Background It is well appreciated that obtaining sufficient numbers of primary microglia for in vitro experiments has always been a challenge for scientists studying the biological properties of these cells. Supplementing culture medium with granulocyte-macrophage colony-stimulating factor (GM-CSF) partially alleviates this problem by increasing microglial yield. However, GM-CSF has also been reported to transition microglia into a dendritic cell (DC)-like phenotype and consequently, affect their immune properties. Methods Although the concentration of GM-CSF used in our protocol for mouse microglial expansion (0.5 ng/ml) is at least 10-fold less compared to doses reported to affect microglial maturation and function (≥ 5 ng/ml), in this study we compared the responses of microglia derived from mixed glial cultures propagated in the presence/absence of low dose GM-CSF to establish whether this growth factor significantly altered the immune properties of microglia to diverse bacterial stimuli. These stimuli included the gram-positive pathogen Staphylococcus aureus (S. aureus) and its cell wall product peptidoglycan (PGN), a Toll-like receptor 2 (TLR2) agonist; the TLR3 ligand polyinosine-polycytidylic acid (polyI:C), a synthetic mimic of viral double-stranded RNA; lipopolysaccharide (LPS) a TLR4 agonist; and the TLR9 ligand CpG oligonucleotide (CpG-ODN), a synthetic form of bacteria/viral DNA. Results Interestingly, the relative numbers of microglia recovered from mixed glial cultures following the initial harvest were not influenced by GM-CSF. However, following the second and third collections of the same mixed cultures, the yield of microglia from GM-CSF-supplemented flasks was increased two-fold. Despite the ability of GM-CSF to expand microglial numbers, cells propagated in the presence/absence of GM-CSF demonstrated roughly equivalent responses following S. aureus and PGN stimulation. Specifically, the induction of tumor necrosis factor-α (TNF-α), macrophage inflammatory protein-2 (MIP-2/CXCL2), and major histocompatibility complex (MHC) class II, CD80, CD86 expression by microglia in response to S. aureus were similar regardless of whether cells had been exposed to GM-CSF during the mixed culture period. In addition, microglial phagocytosis of intact bacteria was unaffected by GM-CSF. In contrast, upon S. aureus stimulation, CD40 expression was induced more prominently in microglia expanded in GM-CSF. Analysis of microglial responses to additional pathogen-associate molecular patterns (PAMPs) revealed that low dose GM-CSF did not significantly alter TNF-α or MIP-2 production in response to the TLR3 and TLR4 agonists polyI:C or LPS, respectively; however, cells expanded in the presence of GM-CSF produced lower levels of both mediators following CpG-ODN stimulation. Conclusion We demonstrate that low levels of GM-CSF are sufficient to expand microglial numbers without significantly affecting their immunological responses following activation of TLR2, TLR4 or TLR3 signaling. Therefore, low dose GM-CSF can be considered as a reliable method to achieve higher microglial yields without introducing dramatic activation artifacts.
Collapse
|
34
|
Sanders P, De Keyser J. Janus faces of microglia in multiple sclerosis. ACTA ACUST UNITED AC 2007; 54:274-85. [PMID: 17383006 DOI: 10.1016/j.brainresrev.2007.03.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 03/02/2007] [Accepted: 03/02/2007] [Indexed: 12/25/2022]
Abstract
Multiple sclerosis (MS) is the most common cause of neurological disability in young adults. The disease is characterized by inflammatory reactions, demyelination and axonal loss in the brain, spinal cord and optic nerves. Microglia seem to play an important role in the inflammatory processes in MS, since they are found in actively demyelinating lesions. Their role in the differentiation of T cells could led to the expansion of inflammation and tissue destruction. However, microglia are also involved in the termination of an inflammatory response and produce protective factors. To be able to therapeutically manipulate microglia, their exact function in the onset and development of MS needs to be clarified. This review provides an overview of the functions of the most important microglia-associated molecules in MS, being CD40, B7-1 and B7-2, interferon-gamma, tumor necrosis factor-alpha, chemokines, prostanoids, and nitric oxide.
Collapse
Affiliation(s)
- Patricia Sanders
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | | |
Collapse
|
35
|
Bechmann I, Galea I, Perry VH. What is the blood-brain barrier (not)? Trends Immunol 2006; 28:5-11. [PMID: 17140851 DOI: 10.1016/j.it.2006.11.007] [Citation(s) in RCA: 358] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 10/30/2006] [Accepted: 11/16/2006] [Indexed: 12/22/2022]
Abstract
In 1900, summarizing his experiments with toxins and Ehrlich's earlier observations with intravital dyes, the Berlin physician Lewandowski concluded that "brain capillaries must hold back certain molecules". Illustrating this phenomenon with persuasive beauty, the subsequently evolving metaphor of a 'Bluthirnschranke' (blood-brain barrier, BBB) gained wide acceptance, but the extension of its meaning into the context of inhibiting leukocyte recruitment into the brain is imprecise. On the basis of the original work by Ehrlich, Lewandowski and Goldmann we re-define the BBB as a capillary barrier for solutes, and clarify that leukocyte recruitment requires two differentially regulated steps: (i) passage across postcapillary venules into Virchow-Robin spaces, and (ii) subsequent progression across the glia limitans into the neuropil. We propose that the second step frequently involves perivascular antigen-recognition and the induction of ectoenzymes, for example matrix metalloproteinases (MMPs).
Collapse
Affiliation(s)
- Ingo Bechmann
- Dr. Senckenbergische Anatomie, Institute of Clinical Neuroanatomy, Johann Wolfgang Goethe-University, 60 590 Frankfurt, Germany.
| | | | | |
Collapse
|
36
|
Harry GJ, Lawler C, Brunssen SH. Maternal infection and white matter toxicity. Neurotoxicology 2006; 27:658-70. [PMID: 16787664 PMCID: PMC1592133 DOI: 10.1016/j.neuro.2006.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 05/01/2006] [Accepted: 05/10/2006] [Indexed: 12/11/2022]
Abstract
Studies examining maternal infection as a risk factor for neurological disorders in the offspring have suggested that altered maternal immune status during pregnancy can be considered as an adverse event in prenatal development. Infection occurring in the mother during the gestational period has been implicated in multiple neurological effects. The current manuscript will consider the issue of immune/inflammatory conditions during prenatal development where adverse outcomes have been linked to maternal systemic infection. The discussions will focus primary on white matter and oligodendrocytes as they have been identified as target processes. This white matter damage occurs in very early preterm infants and in various other human diseases currently being examined for a linkage to maternal or early developmental immune status. The intent is to draw attention to the impact of altered immune status during pregnancy on the offspring for the consideration of such contributing factors to the general assessment of developmental neurotoxicology.
Collapse
Affiliation(s)
- G Jean Harry
- Neurotoxicology Group, Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health/DHHS, Research Triangle Park, NC 27709, USA.
| | | | | |
Collapse
|
37
|
Silva AMM, Silva AR, Pinheiro AM, Freitas SRVB, Silva VDA, Souza CS, Hughes JB, El-Bachá RS, Costa MFD, Velozo ES, Tardy M, Costa SL. Alkaloids from Prosopis juliflora leaves induce glial activation, cytotoxicity and stimulate NO production. Toxicon 2006; 49:601-14. [PMID: 17241650 DOI: 10.1016/j.toxicon.2006.07.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 07/21/2006] [Accepted: 07/25/2006] [Indexed: 11/19/2022]
Abstract
Prosopis juliflora is used for feeding cattle and humans. Intoxication with the plant has been reported, and is characterized by neuromuscular alterations and gliosis. Total alkaloidal extract (TAE) was obtained using acid/basic-modified extraction and was fractionated. TAE and seven alkaloidal fractions, at concentrations ranging 0.03-30 microg/ml, were tested for 24h on astrocyte primary cultures derived from the cortex of newborn Wistar rats. The MTT test and the measure of LDH activity on the culture medium, revealed that TAE and fractions F29/30, F31/33, F32 and F34/35 were cytotoxic to astrocytes. The EC(50) values for the most toxic compounds, TAE, F31/33 and F32 were 2.87 2.82 and 3.01 microg/ml, respectively. Morphological changes and glial cells activation were investigated through Rosenfeld's staining, by immunocytochemistry for the protein OX-42, specific of activated microglia, by immunocytochemistry and western immunoblot for GFAP, the marker of reactive and mature astrocytes, and by the production of nitric oxide (NO). We observed that astrocytes exposed to 3 microg/ml TAE, F29/30 or F31/33 developed compact cell body with many processes overexpressing GFAP. Treatment with 30 microg/ml TAE and fractions, induced cytotoxicity characterized by a strong cell body contraction, very thin and long processes and condensed chromatin. We also observed that when compared with the control (+/-1.34%), the proportion of OX-42 positive cells was increased in cultures treated with 30 microg/ml TAE or F29/30, F31/33, F32 and F34/35, with values raging from 7.27% to 28.74%. Moreover, incubation with 3 microg/ml F32, 30 microg/ml TAE, F29/30, F31/33 or F34/35 induced accumulation of nitrite in culture medium indicating induction of NO production. Taken together these results show that TAE and fractionated alkaloids from P. juliflora act directly on glial cells, inducing activation and/or cytotoxicity, stimulating NO production, and may have an impact on neuronal damages observed on intoxicated animals.
Collapse
Affiliation(s)
- A M M Silva
- Laboratório de Neuroquímica e Biologia Celular, Departamento de Biofunção, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, BA, 40.110-100, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bechmann I. Failed central nervous system regeneration: a downside of immune privilege? Neuromolecular Med 2006; 7:217-28. [PMID: 16247182 DOI: 10.1385/nmm:7:3:217] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 07/07/2005] [Indexed: 12/25/2022]
Abstract
Immunity is required to eliminate dangerous or degenerated material and to support regeneration, but also causes significant parenchymal damage. In the eye and the brain, in which cornea and lens poorly regenerate and neurons are hardly replaceable, early transplantation experiments demonstrated remarkable tolerance to various grafts. This "immunologically privileged status" (Billingham and Boswell, 1953) may reflect evolutionary pressure to downmodulate certain actions of immune cells within particularly vulnerable tissues. As an example, tolerating certain "neurotrophic" viruses may often be a more successful strategy for survival than the elimination of all infected neurons. While several constitutive and inducible signals maintaining or re-establishing immune tolerance within the brain have been identified, it has also become evident that the resulting anti-inflammatory environment limits certain beneficial effects of neuroinflammation such as neurotrophin secretion or glutamate buffering by T-cells and the clearance of growth-inhibiting myelin or amyloid. Following spinal cord injury, the costs and benefits of neuroinflammation seem to come close because enhancing as well as suppressing innate or adaptive immunity caused amelioration and aggravation of functional regeneration in similar experiments. Evaluating such balances has also begun in (animal models of) Alzheimer's disease, central nervous system trauma, and stroke, and the appreciation of the beneficial side of neuroinflammation has caused a rethinking of the ill-defined use of immune suppressants. As dual roles for individual molecules have been recognized (Merrill and Benveniste, 1996), we are uncovering an already fine-tuned system, but the challenge remains to further support beneficial immune cascades without causing additional damage, and vice versa.
Collapse
Affiliation(s)
- Ingo Bechmann
- Center for Anatomy, Institute of Cell Biology and Neurobiology, Department of Experimental Neuroimmunology, Charité-Universitätsmedizin Berlin, Schumannstr, 20/21 10098 Berlin, Germany.
| |
Collapse
|
39
|
le Blanc LMP, van Lieshout AWT, Adema GJ, van Riel PLCM, Verbeek MM, Radstake TRDJ. CXCL16 is elevated in the cerebrospinal fluid versus serum and in inflammatory conditions with suspected and proved central nervous system involvement. Neurosci Lett 2006; 397:145-8. [PMID: 16406320 DOI: 10.1016/j.neulet.2005.12.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 12/02/2005] [Accepted: 12/04/2005] [Indexed: 12/12/2022]
Abstract
In neuro-inflammatory diseases, activated T cells are thought to drive the inflammatory process. In this study, we investigated the potential role of three T cell attracting chemokines (CK) in neuro-inflammation. For this purpose, we measured levels of CXCL16, CCL17 and CCL18 in matched serum and cerebrospinal fluid (CSF) samples of patients with different neurological diseases. Interestingly, CXCL16 levels were significantly elevated in the CSF and were higher in inflammatory disease than in controls, whereas CCL17 and CCL18 were absent in the CSF. CCL18 was only elevated in serum of SLE patients. These data suggest that attraction of activated memory type T cells by CXCL16 might play an important role in the orchestration of immune responses in the central nervous system.
Collapse
Affiliation(s)
- Linda M P le Blanc
- Department of Rheumatology, Radboud University Nijmegen Medical Centre, The Netherlands
| | | | | | | | | | | |
Collapse
|
40
|
Microglia Biology in Health and Disease. J Neuroimmune Pharmacol 2006; 1:127-37. [DOI: 10.1007/s11481-006-9015-5] [Citation(s) in RCA: 343] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 02/15/2006] [Indexed: 12/21/2022]
|
41
|
Dimayuga FO, Reed JL, Carnero GA, Wang C, Dimayuga ER, Dimayuga VM, Perger A, Wilson ME, Keller JN, Bruce-Keller AJ. Estrogen and brain inflammation: effects on microglial expression of MHC, costimulatory molecules and cytokines. J Neuroimmunol 2005; 161:123-36. [PMID: 15748951 DOI: 10.1016/j.jneuroim.2004.12.016] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 11/29/2004] [Accepted: 12/20/2004] [Indexed: 02/07/2023]
Abstract
To model the effects of estrogen on adaptive immunity in the brain, we examined the effects of 17beta-estradiol on microglial parameters related to antigen presentation and T cell activation. Specifically, the effects of 17beta-estradiol on basal and LPS-induced surface staining of Class I and II MHC, as well as CD40, CD80, CD86, CD152, CD28, CD8, CD11b, Fas, FasL, and also ERalpha and ERbeta, were examined in N9 microglial cells. Additionally, the effects of 17beta-estradiol on basal and LPS-induced release of cytokines (TNF-alpha, IFN-gamma, IL-2, IL-4, and IL-10) were determined. Data indicate that estrogen increases IL-10 while decreasing TNFalpha and IFNgamma release from resting and LPS-stimulated N9 cells. Additionally, LPS-induced surface staining of MHC Class I, CD40, and CD86 was significantly attenuated by estrogen pretreatment. The basal percentage of cells positive for MHC Class I and II, CD40, and CD152, Fas, and FasL was significantly decreased by estrogen exposure. However, CD8, CD86, CD11b, and CD28 were unaffected by estrogen, and CD80 cell surface staining significantly increased following estrogen exposure. Taken together, these data indicate that estrogen can significantly decrease components of adaptive immunity in microglial cells, and highlight the multi-faceted regulatory effects of estrogen on microglial parameters related to antigen presentation and T cell interaction.
Collapse
Affiliation(s)
- Filomena O Dimayuga
- Department of Anatomy and Neurobiology, University of Kentucky, MN 222 Chandler Medical Center, Lexington, KY 40536-0298, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Shaked I, Tchoresh D, Gersner R, Meiri G, Mordechai S, Xiao X, Hart RP, Schwartz M. Protective autoimmunity: interferon-gamma enables microglia to remove glutamate without evoking inflammatory mediators. J Neurochem 2005; 92:997-1009. [PMID: 15715651 DOI: 10.1111/j.1471-4159.2004.02954.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glutamate in excessive amounts is a major contributor to neuronal degeneration, and its removal is attributed mainly to astrocytes. Traumatic injury to the central nervous system (CNS) is often accompanied by disappearance of astrocytes from the lesion site and failure of the remaining cells to withstand the ensuing toxicity. Microglia that repopulate the lesion site are the usual suspects for causing redox imbalance and inflammation and thus further exacerbating the neurotoxicity. However, our group recently demonstrated that early post-injury activation of microglia as antigen-presenting cells correlates with an ability to withstand injurious conditions. Moreover, we found that T cells reactive to CNS-specific self-antigens protected neurons against glutamate toxicity. Here, we show that antigen-specific autoimmune T cells, by tailoring the microglial phenotype, can increase the ability of microglia-enriched cultures to remove glutamate. This T-cell-mediated effect could not be achieved by the potent microglia-activating agent lipopolysaccharide (LPS), but was dose-dependently reproduced by the Th1 cytokine interferon (IFN)-gamma and significantly reduced by neutralizing anti-IFN-gamma antibodies. Under the same conditions, IFN-gamma had no effect on cultured astrocytes. Up-regulation of glutamate uptake induced by IFN-gamma activation was not accompanied by the acute inflammatory response seen in LPS-activated cultures. These findings suggest that T cells or their cytokines can cause microglia to adopt a phenotype that facilitates rather than impairs glutamate clearance, possibly contributing to restoration of homeostasis.
Collapse
Affiliation(s)
- I Shaked
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Ponomarev ED, Novikova M, Maresz K, Shriver LP, Dittel BN. Development of a culture system that supports adult microglial cell proliferation and maintenance in the resting state. J Immunol Methods 2005; 300:32-46. [PMID: 15893321 DOI: 10.1016/j.jim.2005.02.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 02/12/2005] [Accepted: 02/13/2005] [Indexed: 12/25/2022]
Abstract
Microglial cells constitute what is considered to be a fixed macrophage population in the central nervous system (CNS), which are broadly implicated in the regulation of neuroinflammation. In the normal adult CNS, microglial cells exist in a resting state characterized by a minimal or negative expression of MHC class II and the co-stimulatory molecules CD80, CD86 and CD40 and exhibit a unique ramified morphology. Microglial cell activation is associated with many inflammatory and neurogenerative CNS pathologies and is characterized by the transformation of resting microglia into cells with a macrophage morphology and up-regulation of MHC class II and co-stimulatory molecules. The cellular and molecular mechanisms required for microglial cell activation and their immunological functions in the adult brain still remain enigmatic, primarily due to the lack of an appropriate culture system that both facilitates microglial survival and expansion in the resting state. Here, we describe a new M-CSF-dependent culture system that overcomes these barriers and allows the long-term proliferation and maintenance of resting adult microglial cells isolated from the CNS. These cultured microglial cells retain their plasticity as indicated by their ability to up-regulate MHC class II and differentiate into cells with a macrophage morphology following the addition of IFN-gamma and GM-CSF, or activated T cells, which produce both cytokines. By measuring the proliferation of the T cells, we were also able to demonstrate that the microglial cells differentiated into fully functional antigen presenting cells. In addition, the replacement of the M-CSF with GM-CSF resulted in the differentiation of microglial cells into cells morphologically and phenotypically similar to dendritic cells. Our microglial cell culture system is the first described that allows the expansion of adult cells in the resting state and will facilitate studies examining the specific mechanisms of microglial cell activation and functions involved in a variety of CNS pathologies.
Collapse
Affiliation(s)
- Eugene D Ponomarev
- Blood Research Institute, Blood Center of Southeastern Wisconsin, P.O. Box 2178, Milwaukee, WI 53201-2178, USA
| | | | | | | | | |
Collapse
|
44
|
Begum Z, Ghosh A, Sarkar S, Mukherjee J, Mazumdar M, Sarkar P, Chaudhuri S. Documentation of immune profile of microglia through cell surface marker study in glioma model primed by a novel cell surface glycopeptide T11TS/SLFA-3. Glycoconj J 2005; 20:515-23. [PMID: 15454689 DOI: 10.1023/b:glyc.0000043287.98081.15] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
STATEMENT OF THE PROBLEM The sheep erythrocyte membrane glycoprotein T11TS/SLFA-3 can form a ligand-receptor complex with CD2 present on immunocyte and exert stimuli for activation and proliferation. Regression of brain tumor with the application of T11TS indicates the probable role of microglia, the chief immunomodulatory cell within the brain compartment. In the present study microglial activation and immunophenotypic modulation were assessed in T11TS treated brain tumor-bearing animal models. Rat glioma models induced by chemical carcinogen ENU were treated with three consecutive doses of T11TS. Microglial cells from brain were isolated and assessed through E-rosette formation, SEM and FACS for CD2, MHC class II, CD25, and CD4. The preliminary indication of presence of CD2 on microglia through E-rosette formation was confirmed by SEM and FACS. MHC class II and CD2 single and double positive subpopulations exist, and their expression is also modulated in different doses of T11TS. A general trend of highest receptor saturation and microglial activation, measured through the activation marker CD25 and CD4 expression, was observed in 2nd dose of T11TS administration, which was then dampened via a complex immune feedback mechanism in the 3rd dose.
Collapse
Affiliation(s)
- Z Begum
- Cellular & Molecular Immunology Lab., Department of Physiology, Institute of Post Graduate Medical Education and Research (IPGME&R), 244B, A.J.C. Bose Road, Kolkata-700 020, India
| | | | | | | | | | | | | |
Collapse
|
45
|
Mensah-Brown EPK, Shahin A, Garey LJ, Lukic ML. Neuroglial response after induction of experimental allergic encephalomyelitis in susceptible and resistant rat strains. Cell Immunol 2005; 233:140-7. [PMID: 15963481 DOI: 10.1016/j.cellimm.2005.04.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 04/21/2005] [Indexed: 11/24/2022]
Abstract
Experimental allergic encephalomyelitis (EAE), the animal model for multiple sclerosis in humans, a T-cell mediated disease of the central nervous system is characterized by inflammatory infiltrates of myelin antigen(s)-specific T cells and consecutive demyelination. Spinal cord tissue emulsified in complete Freund's adjuvant clinical disease in the genetically susceptible Dark Agouti rats (DA) but not in Albino Oxford (AO) rats although similar inflammatory infiltrates in the CNS are observed in both strains 10-12 days after induction. We have shown that the resistance to clinical disease of AO rats is associated with rapid clearance of infiltrating mononuclear cells by a mechanism of apoptosis. Here, we demonstrate by immunohistochemical and FACS analyses of the expression of CD11b/c that microglial cells respond differently to disease induction in the two strains. Whereas microglial cells are activated throughout the period of day 10-28 days after EAE induction in AO rats they are only activated at the inception and resolution phases but not at the peak of clinical disease in DA rats when there is the highest level of CD4+ T cell infiltration. Our findings are compatible with the notion that microglia terminate effector T cells by apoptosis and that lack of this mechanism as evidenced by the lack of CD11b/c expression, support T cell survival and clinical expression of disease.
Collapse
Affiliation(s)
- E P K Mensah-Brown
- Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | | | | |
Collapse
|
46
|
Minghetti L. Cyclooxygenase-2 (COX-2) in Inflammatory and Degenerative Brain Diseases. J Neuropathol Exp Neurol 2004; 63:901-10. [PMID: 15453089 DOI: 10.1093/jnen/63.9.901] [Citation(s) in RCA: 587] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cyclooxygenase (COX) catalyses the first committed step in the synthesis of prostanoids, a large family of arachidonic acid metabolites comprising prostaglandins, prostacyclin, and thromboxanes, and is a major target of non-steroidal anti-inflammatory drugs (NSAIDs). COX exists as constitutive and inducible isoforms. COX-2 is the inducible isoform, rapidly expressed in several cell types in response to growth factors, cytokines, and pro-inflammatory molecules. Since its discovery in the early 1990s, COX-2 has emerged as a major player in inflammatory reactions in peripheral tissues. By extension, COX-2 expression in brain has been associated with pro-inflammatory activities, thought to be instrumental in neurodegenerative processes of several acute and chronic diseases. However, 2 major aspects should be borne in mind. First, in the central nervous system, COX-2 is expressed under normal conditions and contributes to fundamental brain functions, such as synaptic activity, memory consolidation, and functional hyperemia. Second, "neuroinflammation" is a much more controlled reaction than inflammation in peripheral tissues, and in many cases is triggered and sustained by activation of resident cells, particularly microglia. In spite of the intense research of the last decade, the evidence of a direct role of COX-2 in neurodegenerative events is still controversial. This article will review new data in this area, focusing on some major human neurological diseases, such as multiple sclerosis, amyotrophic lateral sclerosis, Parkinson disease, Creutzfeldt-Jakob disease, and Alzheimer disease. Furthermore, the emerging role of COX-2 in behavioral and cognitive functions will be discussed.
Collapse
Affiliation(s)
- Luisa Minghetti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
47
|
Giunta B, Ehrhart J, Townsend K, Sun N, Vendrame M, Shytle D, Tan J, Fernandez F. Galantamine and nicotine have a synergistic effect on inhibition of microglial activation induced by HIV-1 gp120. Brain Res Bull 2004; 64:165-70. [PMID: 15342104 DOI: 10.1016/j.brainresbull.2004.06.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2004] [Revised: 06/03/2004] [Accepted: 06/09/2004] [Indexed: 11/29/2022]
Abstract
Chronic brain inflammation is the common final pathway in the majority of neurodegenerative diseases and central to this phenomenon is the immunological activation of brain mononuclear phagocyte cells, called microglia. This inflammatory mechanism is a central component of HIV-associated dementia (HAD). In the healthy state, there are endogenous signals from neurons and astrocytes, which limit excessive central nervous system (CNS) inflammation. However, the signals controlling this process have not been fully elucidated. Studies on the peripheral nervous system suggest that a cholinergic anti-inflammatory pathway regulates systemic inflammatory response by way of acetylcholine acting at the alpha7 nicotinic acetylcholine receptor (alpha7nAChR) found on blood-borne macrophages. Recent data from our laboratory indicates that cultured microglial cells also express this same receptor and that microglial anti-inflammatory properties are mediated through it and the p44/42 mitogen-activated protein kinase (MAPK) system. Here we report for the first time the creation of an in vitro model of HAD composed of cultured microglial cells synergistically activated by the addition of IFN-gamma and the HIV-1 coat glycoprotein, gp120. Furthermore, this activation, as measured by TNF-alpha and nitric oxide (NO) release, is synergistically attenuated through the alpha7 nAChR and p44/42 MAPK system by pretreatment with nicotine, and the cholinesterase inhibitor, galantamine. Our findings suggest a novel therapeutic combination to treat or prevent the onset of HAD through this modulation of the microglia inflammatory mechanism.
Collapse
Affiliation(s)
- B Giunta
- Neuroimmunology Laboratory, College of Medicine, University of South Florida, 3515 E. Fletcher Avenue, Tampa, FL 33613, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Kipnis J, Avidan H, Markovich Y, Mizrahi T, Hauben E, Prigozhina TB, Slavin S, Schwartz M. Low-dose gamma-irradiation promotes survival of injured neurons in the central nervous system via homeostasis-driven proliferation of T cells. Eur J Neurosci 2004; 19:1191-8. [PMID: 15016077 DOI: 10.1111/j.1460-9568.2004.03207.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protective autoimmunity was only recently recognized as a mechanism for attenuating the progression of neurodegeneration. Using a rat model of optic nerve crush or contusive spinal cord injury, and a mouse model of neurodegenerative conditions caused by injection of a toxic dose of intraocular glutamate, we show that a single low dose of whole-body or lymphoid-organ gamma-irradiation significantly improved the spontaneous recovery. Animals with severe immune deficiency or deprived of mature T cells were unable to benefit from this treatment, suggesting that the irradiation-induced neuroprotection is immune mediated. This suggestion received further support from the findings that irradiation was accompanied by an increased incidence of activated T cells in the lymphoid organs and peripheral blood and an increase in mRNA encoding for the pro-inflammatory cytokines interleukin-12 and interferon-gamma, and that after irradiation, passive transfer of a subpopulation of suppressive T cells (naturally occurring regulatory CD4(+)CD25(+) T cells) wiped out the irradiation-induced protection. These results suggest that homeostasis-driven proliferation of T cells, induced by a single low-dose irradiation, leads to boosting of T cell-mediated neuroprotection and can be utilized clinically to fight off neurodegeneration and the threat of other diseases in which defense against toxic self-compounds is needed.
Collapse
Affiliation(s)
- Jonathan Kipnis
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Li J, Gran B, Zhang GX, Ventura ES, Siglienti I, Rostami A, Kamoun M. Differential expression and regulation of IL-23 and IL-12 subunits and receptors in adult mouse microglia. J Neurol Sci 2004; 215:95-103. [PMID: 14568135 DOI: 10.1016/s0022-510x(03)00203-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
IL-23 and IL-12 are functionally related heterodimeric cytokines that share the IL-12p40 subunit. IL-23 and IL-12 function through heterodimeric receptors, which share the IL-12Rbeta1 subunit. Production of IL-23, a heterodimer of IL-12p40 and IL-23p19, by CNS antigen-presenting cells (APC) is critical for susceptibility to experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis (MS). We report that the expression of IL-23p19 mRNA is highly induced by stimulation with IFN-gamma and LPS in adult mouse microglia and a microglia cell line, EOC13. Expression of the IL-12R subunits, IL-12Rbeta1 and IL-12Rbeta2, is upregulated in both microglia and splenic macrophages upon stimulation with LPS or IFN-gamma and LPS, whereas the IL-23R subunit is upregulated only in macrophages. In EAE, an early peak of IL-23p19 mRNA expression is found in CD11b(+) CNS APC, compared with peripheral macrophages. In contrast, IL-12p40 and IL-12p35 mRNA maximum levels in the CNS are detected at peak of disease. The expression of IL-12p35 mRNA is more sustained than that of IL-12p40 and IL-23p19. Thus, IL-23 produced by CNS microglia/macrophages may contribute to the early induction of EAE. In the CNS, IL-23 may preferentially target infiltrating mononuclear cells, which upregulate IL-23R, rather than parenchymal microglia.
Collapse
Affiliation(s)
- Jifen Li
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Kwidzinski E, Mutlu LK, Kovac AD, Bunse J, Goldmann J, Mahlo J, Aktas O, Zipp F, Kamradt T, Nitsch R, Bechmann I. Self-tolerance in the immune privileged CNS: lessons from the entorhinal cortex lesion model. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2003:29-49. [PMID: 12946047 DOI: 10.1007/978-3-7091-0643-3_2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Upon peripheral immunization with myelin epitopes, susceptible rats and mice develop T cell-mediated demyelination similar to that observed in the human autoimmune disease multiple sclerosis (MS). In the same animals, brain injury does not induce autoimmune encephalomyelitis despite massive release of myelin antigens and early expansion of myelin specific T cells in local lymph nodes, indicating that the self-specific T cell clones are kept under control. Using entorhinal cortex lesion (ECL) to induce axonal degeneration in the hippocampus, we identified possible mechanisms of immune tolerance after brain trauma. Following ECL, astrocytes upregulate the death ligand CD95L, allowing apoptotic elimination of infiltrating activated T cells. Myelin-phagocytosing microglia express MHC-II and the costimulatory molecule CD86, but lack CD80, which is found only on activated antigen presenting cells (APCs). Restimulation of invading T cells by such immature APCs (e.g. CD80 negative microglia) may lead to T cell anergy and/or differentiation of regulatory/Th3-like cells due to insufficient costimulation and presence of high levels of TGF-beta and IL-10 in the CNS. Thus, T cell -apoptosis, -anergy, and -suppression apparently maintain immune tolerance after initial expansion of myelin-specific T lymphocytes following brain injury. This view is supported by a previous metastatistical analysis which rejected the hypothesis that brain trauma is causative of MS (Goddin et al., 1999). However, concomitant trauma-independent proinflammatory signals, e.g., those evoked by clinically quiescent infections, may trigger maturation of APCs, thus shifting a delicate balance from immune tolerance and protective immune responses to destructive autoimmunity.
Collapse
Affiliation(s)
- E Kwidzinski
- Department of Cell, Institute of Anatomy, Charité, Medical Faculty, Humboldt-University, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|