1
|
Lessard LER, Robert M, Fenouil T, Mounier R, Landel V, Carlesimo M, Hot A, Chazaud B, Laumonier T, Streichenberger N, Gallay L. Contribution of major histocompatibility complex class II immunostaining in distinguishing idiopathic inflammatory myopathy subgroups: A histopathological cohort study. J Neuropathol Exp Neurol 2024; 83:1060-1075. [PMID: 39283714 DOI: 10.1093/jnen/nlae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Idiopathic inflammatory myopathies (IIM) are rare, acquired muscle diseases; their diagnosis of is based on clinical, serological, and histological criteria. MHC-I-positive immunostaining, although non-specific, is used as a marker for IIM diagnosis; however, the significance of major histocompatibility complex (MHC)-II immunostaining in IIM remains debated. We investigated patterns of MHC-II immunostaining in myofibers and capillaries in muscle biopsies from 103 patients with dermatomyositis ([DM], n = 31), inclusion body myositis ([IBM], n = 24), anti-synthetase syndrome ([ASyS], n = 10), immune-mediated necrotizing myopathy ([IMNM], n = 18), or overlap myositis ([OM], n = 20). MHC-II immunostaining of myofibers was abnormal in 63/103 of patients (61%) but the patterns differed according to the IIM subgroup. They were diffuse in IBM (96%), negative in IMNM (83%), perifascicular in ASyS (70%), negative (61%) or perifascicular (32%) in DM, and either clustered (40%), perifascicular (30%), or diffuse heterogeneous (15%) in OM. Capillary MHC-II immunostaining also identified quantitative (capillary dropout, n = 47/88, 53%) and qualitative abnormalities, that is, architectural abnormalities, including dilated and leaky capillaries, (n = 79/98, 81%) in all IIM subgroups. Thus, MHC-II myofiber expression patterns allow distinguishing among IIM subgroups. We suggest the addition of MHC-II immunostaining to routine histological panels for IIM diagnosis.
Collapse
Affiliation(s)
- Lola E R Lessard
- Service d'Electroneuromyographie et de pathologies neuromusculaires, Hôpital Neurologique, GHE, Hospices Civils de Lyon, Lyon, France
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, CNRS UMR 5261, Inserm U1315, Université Claude Bernard Lyon 1, Lyon, France
| | - Marie Robert
- Service de Médecine interne et immunologie clinique, Centre Hospitalier Universitaire Édouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Tanguy Fenouil
- Institut de Pathologie Multisite des Hospices Civils de Lyon-Site Est, GHE, Hospices Civils de Lyon, Lyon, France
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Lyon, France
| | - Rémi Mounier
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, CNRS UMR 5261, Inserm U1315, Université Claude Bernard Lyon 1, Lyon, France
| | - Véréna Landel
- Direction de la Recherche en Santé, Hospices Civils de Lyon, Lyon, France
| | - Marie Carlesimo
- Institut de Pathologie Multisite des Hospices Civils de Lyon-Site Est, GHE, Hospices Civils de Lyon, Lyon, France
| | - Arnaud Hot
- Service de Médecine interne et immunologie clinique, Centre Hospitalier Universitaire Édouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, CNRS UMR 5261, Inserm U1315, Université Claude Bernard Lyon 1, Lyon, France
| | - Thomas Laumonier
- Laboratoire "Cell Therapy & Musculoskeletal Disorders", Département de Chirurgie Orthopédique, Hôpital Universitaire et Faculté de Médecine, Genève, Switzerland
| | - Nathalie Streichenberger
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, CNRS UMR 5261, Inserm U1315, Université Claude Bernard Lyon 1, Lyon, France
- Institut de Pathologie Multisite des Hospices Civils de Lyon-Site Est, GHE, Hospices Civils de Lyon, Lyon, France
| | - Laure Gallay
- Service de Médecine interne et immunologie clinique, Centre Hospitalier Universitaire Édouard Herriot, Hospices Civils de Lyon, Lyon, France
- Laboratoire "Cell Therapy & Musculoskeletal Disorders", Département de Chirurgie Orthopédique, Hôpital Universitaire et Faculté de Médecine, Genève, Switzerland
| |
Collapse
|
2
|
Wang D, Liu XY, He QF, Zheng FZ, Chen L, Zheng Y, Zeng MH, Lin YH, Lin X, Chen HZ, Lin MT, Wang N, Wang ZQ, Lin F. Comprehensive Proteomic Analysis of Dysferlinopathy Unveiling Molecular Mechanisms and Biomarkers Linked to Pathological Progression. CNS Neurosci Ther 2024; 30:e70065. [PMID: 39350328 PMCID: PMC11442333 DOI: 10.1111/cns.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
AIMS Previous proteomics studies in dysferlinopathy muscle have been limited in scope, often utilizing 2D-electrophoresis and yielding only a small number of differential expression calls. To address this gap, this study aimed to employ high-resolution proteomics to explore the proteomic landscapes of dysferlinopathy and analyze the correlation between muscle pathological changes and alterations in protein expression in muscle biopsies. METHODS We conducted a comprehensive approach to investigate the proteomic profile and disease-associated changes in the muscle tissue proteome from 15 patients with dysferlinopathy, exhibiting varying degrees of dystrophic pathology, alongside age-matched controls. Our methodology encompasses tandem mass tag (TMT)-labeled liquid chromatography-mass spectrometry (LC-MS/MS)-based proteomics, protein-protein interaction (PPI) network analysis, weighted gene co-expression network analysis, and differential expression analysis. Subsequently, we examined the correlation between the expression of key proteins and the clinical characteristics of the patients to identify pathogenic targets associated with DYSF mutations in dysferlinopathy. RESULTS A total of 1600 differentially expressed proteins were identified, with 1321 showing high expression levels and 279 expressed at lower levels. Our investigation yields a molecular profile delineating the altered protein networks in dysferlinopathy-afflicted skeletal muscle, uncovering dysregulation across numerous cellular pathways and molecular processes, including mRNA metabolic processes, regulated exocytosis, immune response, muscle system processes, energy metabolic processes, and calcium transmembrane transport. Moreover, we observe significant associations between the protein expression of ANXA1, ANXA2, ANXA4, ANXA5, LMNA, PYGM, and the extent of histopathologic changes in muscle biopsies from patients with dysferlinopathy, validated through immunoblotting and immunofluorescence assays. CONCLUSIONS Through the aggregation of expression data from dysferlinopathy-impacted muscles exhibiting a range of pathological alterations, we identified multiple key proteins associated with the dystrophic pathology of patients with dysferlinopathy. These findings provide novel insights into the pathogenesis of dysferlinopathy and propose promising targets for future therapeutic endeavors.
Collapse
Affiliation(s)
- Di Wang
- Department of Molecular Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Center for Bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-Yi Liu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Qi-Fang He
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Fu-Ze Zheng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Long Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Ying Zheng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Ming-Hui Zeng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yu-Hua Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xin Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Hai-Zhu Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Min-Ting Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhi-Qiang Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Feng Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
3
|
Ngo DQ, Le ST, Phan KHP, Doan TTP, Nguyen LNK, Dang MH, Ly TT, Phan TDA. Immunohistochemical expression in idiopathic inflammatory myopathies at a single center in Vietnam. J Pathol Transl Med 2024; 58:174-181. [PMID: 38910358 PMCID: PMC11261171 DOI: 10.4132/jptm.2024.05.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND The identification of idiopathic inflammatory myopathies (IIMs) requires a comprehensive analysis involving clinical manifestations and histological findings. This study aims to provide insights into the histopathological and immunohistochemical aspects of IIMs. METHODS This retrospective case series involved 56 patients diagnosed with IIMs at the Department of Pathology, University of Medicine and Pharmacy at Ho Chi Minh City, from 2019 to 2023. The histology and immunohistochemical expression of HLA-ABC, HLA-DR, C5b-9, Mx1/2/3, and p62 were detected. RESULTS We examined six categories of inflammatory myopathy, including immunemediated necrotizing myopathy (58.9%), dermatomyositis (DM; 23.2%), overlap myositis (8.9%), antisynthetase syndrome (5.4%), inclusion body myositis (IBM; 1.8%), and polymyositis (1.8%). The average age of the patients was 49.7 ± 16.1 years, with a female-to-male ratio of 3:1. Inflammatory cell infiltration in the endomysium was present in 62.5% of cases, perifascicular atrophy was found in 17.8%, and fiber necrosis was observed in 42 cases (75.0%). Rimmed vacuoles were present in 100% of cases in the IBM group. Immunohistochemistry showed the following positivity rates: HLA-ABC (89.2%), HLA-DR (19.6%), C5b-9 (57.1%), and Mx1/2/3 (10.7%). Mx1/2/3 expression was high in DM cases. p62 vacuole deposits were noted in the IBM case. The combination of membrane attack complex and major histocompatibility complex I helped detect IIMs in 96% of cases. CONCLUSIONS The diagnosis of IIMs and their subtypes should be based on clinical features and histopathological characteristics. Immunohistochemistry plays a crucial role in the diagnosis and differentiation of these subgroups.
Collapse
Affiliation(s)
- Dat Quoc Ngo
- Department of Pathology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Si Tri Le
- Neurology Center, University Medical Center Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | - Thao Thi Phuong Doan
- Department of Pathology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Linh Ngoc Khanh Nguyen
- Department of Pathology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Minh Hoang Dang
- Department of Pathology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thien Thanh Ly
- Department of Pathology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thu Dang Anh Phan
- Department of Pathology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
4
|
Bardakov SN, Titova AA, Nikitin SS, Nikitins V, Sokolova MO, Tsargush VA, Yuhno EA, Vetrovoj OV, Carlier PG, Sofronova YV, Isaev АА, Deev RV. Miyoshi myopathy associated with spine rigidity and multiple contractures: a case report. BMC Musculoskelet Disord 2024; 25:146. [PMID: 38365661 PMCID: PMC10870593 DOI: 10.1186/s12891-024-07270-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 02/08/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Dysferlinopathy is a phenotypically heterogeneous group of hereditary diseases caused by mutations in the DYSF gene. Early contractures are considered rare, and rigid spine syndrome in dysferlinopathy has been previously reported only once. CASE PRESENTATION We describe a 23-year-old patient with Miyoshi myopathy with a rigid spine and multiple contractures, a rare phenotypic variant. The disease first manifested when the patient was 13 years old, with fatigue of the gastrocnemius muscles and the development of pronounced contractures of the Achilles tendons, flexors of the fingers, and extensors of the toes, followed by the involvement of large joints and the spine. Magnetic resonance imaging revealed signs of connective tissue and fatty replacement of the posterior muscles of the thighs and lower legs. Edema was noted in the anterior and medial muscle groups of the thighs, lower legs, and the multifidus muscle of the back. Whole genome sequencing revealed previously described mutations in the DYSF gene in exon 39 (c.4282 C > T) and intron 51 (c.5785-824 C > T). An immunohistochemical analysis and Western blot showed the complete absence of dysferlin protein expression in the muscle fibers. CONCLUSIONS This case expands the range of clinical and phenotypic correlations of dysferlinopathy and complements the diagnostic search for spine rigidity.
Collapse
Affiliation(s)
- Sergey N Bardakov
- Department of Neurology, S.M. Kirov Military Medical Academy, 6 Lebedeva str., St. Petersburg, 194044, Russia.
| | - Angelina A Titova
- Kazan (Volga Region) Federal University, 18 Kremlyevskaya str., Kazan, 420008, Russia
| | - Sergey S Nikitin
- Research Centre for Medical Genetics, 1 Moskvorechye str., Moscow, 115522, Russia
| | - Valentin Nikitins
- North-Western State Medical University named after I.I. Mechnikov, 47 Piskarevskij prospect, St. Petersburg, 191015, Russia
| | - Margarita O Sokolova
- Department of Neurology, S.M. Kirov Military Medical Academy, 6 Lebedeva str., St. Petersburg, 194044, Russia
| | - Vadim A Tsargush
- Department of Neurology, S.M. Kirov Military Medical Academy, 6 Lebedeva str., St. Petersburg, 194044, Russia
| | - Elena A Yuhno
- FSBI All-Russian Center for Emergency and Radiation Medicine named after A.M. Nikiforov EMERCOM of Russia, 4/2 Lebedev str., St. Petersburg, 194044, Russia
| | - Oleg V Vetrovoj
- Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarova emb, St. Petersburg, 199034, Russia
| | - Pierre G Carlier
- Neuromuscular Disease Reference Center, University of Liege, and Department of Neurology, St Luc University Hospital, Avenue Hippocrate 10, Brussels, 1200, Belgium
| | | | - Аrtur А Isaev
- Artgen Biotech PJSC, 3 Gubkina str., Moscow, 119333, Russia
| | - Roman V Deev
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 3 Tsyurupy str., Moscow, 117418, Russia
- Artgen Biotech PJSC, 3 Gubkina str., Moscow, 119333, Russia
| |
Collapse
|
5
|
Nelke C, Schmid S, Kleefeld F, Schroeter CB, Goebel HH, Hoffmann S, Preuße C, Kölbel H, Meuth SG, Ruck T, Stenzel W. Complement and MHC patterns can provide the diagnostic framework for inflammatory neuromuscular diseases. Acta Neuropathol 2024; 147:15. [PMID: 38214778 PMCID: PMC10786976 DOI: 10.1007/s00401-023-02669-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024]
Abstract
Histopathological analysis stands as the gold standard for the identification and differentiation of inflammatory neuromuscular diseases. These disorders continue to constitute a diagnostic challenge due to their clinical heterogeneity, rarity and overlapping features. To establish standardized protocols for the diagnosis of inflammatory neuromuscular diseases, the development of cost-effective and widely applicable tools is crucial, especially in settings constrained by limited resources. The focus of this review is to emphasize the diagnostic value of major histocompatibility complex (MHC) and complement patterns in the immunohistochemical analysis of these diseases. We explore the immunological background of MHC and complement signatures that characterize inflammatory features, with a specific focus on idiopathic inflammatory myopathies. With this approach, we aim to provide a diagnostic algorithm that may improve and simplify the diagnostic workup based on a limited panel of stainings. Our approach acknowledges the current limitations in the field of inflammatory neuromuscular diseases, particularly the scarcity of large-scale, prospective studies that validate the diagnostic potential of these markers. Further efforts are needed to establish a consensus on the diagnostic protocol to effectively distinguish these diseases.
Collapse
Affiliation(s)
- Christopher Nelke
- Department of Neurology, Medical Faculty, Heinrich Heine University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Simone Schmid
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Charitéplatz 1, 10117, Berlin, Germany
| | - Felix Kleefeld
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Charitéplatz 1, 10117, Berlin, Germany
| | - Christina B Schroeter
- Department of Neurology, Medical Faculty, Heinrich Heine University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Hans-Hilmar Goebel
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Charitéplatz 1, 10117, Berlin, Germany
| | - Sarah Hoffmann
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Charitéplatz 1, 10117, Berlin, Germany
| | - Corinna Preuße
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Charitéplatz 1, 10117, Berlin, Germany
- Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Heike Kölbel
- Department of Neuropaediatrics, Klinik für Kinderheilkunde I, Universitätsklinikum Essen, Essen, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Charitéplatz 1, 10117, Berlin, Germany.
- Leibniz Science Campus Chronic Inflammation, Berlin, Germany.
| |
Collapse
|
6
|
Farini A, Tripodi L, Villa C, Strati F, Facoetti A, Baselli G, Troisi J, Landolfi A, Lonati C, Molinaro D, Wintzinger M, Gatti S, Cassani B, Caprioli F, Facciotti F, Quattrocelli M, Torrente Y. Microbiota dysbiosis influences immune system and muscle pathophysiology of dystrophin-deficient mice. EMBO Mol Med 2023; 15:e16244. [PMID: 36533294 PMCID: PMC9994487 DOI: 10.15252/emmm.202216244] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive severe muscle-wasting disease caused by mutations in DMD, encoding dystrophin, that leads to loss of muscle function with cardiac/respiratory failure and premature death. Since dystrophic muscles are sensed by infiltrating inflammatory cells and gut microbial communities can cause immune dysregulation and metabolic syndrome, we sought to investigate whether intestinal bacteria support the muscle immune response in mdx dystrophic murine model. We highlighted a strong correlation between DMD disease features and the relative abundance of Prevotella. Furthermore, the absence of gut microbes through the generation of mdx germ-free animal model, as well as modulation of the microbial community structure by antibiotic treatment, influenced muscle immunity and fibrosis. Intestinal colonization of mdx mice with eubiotic microbiota was sufficient to reduce inflammation and improve muscle pathology and function. This work identifies a potential role for the gut microbiota in the pathogenesis of DMD.
Collapse
Affiliation(s)
- Andrea Farini
- Neurology UnitFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Luana Tripodi
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Dino Ferrari CenterUniversity of MilanMilanItaly
| | - Chiara Villa
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Dino Ferrari CenterUniversity of MilanMilanItaly
| | - Francesco Strati
- Mucosal Immunology Lab, Department of Experimental OncologyIEO‐European Institute of OncologyMilanItaly
| | - Amanda Facoetti
- Humanitas UniversityMilanItaly
- Humanitas Clinical and Research Center IRCCSMilanItaly
| | - Guido Baselli
- Translational Medicine – Department of Transfusion Medicine and HematologyFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
- Present address:
SciLifeLab, Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetSolnaSweden
| | - Jacopo Troisi
- Department of Medicine, Surgery and Dentistry, Scuola Medica SalernitanaUniversity of SalernoBaronissiItaly
- Theoreo Srl, Spinoff Company of the University of SalernoMontecorvino PuglianoItaly
| | - Annamaria Landolfi
- Department of Medicine, Surgery and Dentistry, Scuola Medica SalernitanaUniversity of SalernoBaronissiItaly
- Theoreo Srl, Spinoff Company of the University of SalernoMontecorvino PuglianoItaly
| | - Caterina Lonati
- Center for Surgical ResearchFondazione IRCCS Ca' Granda, Ospedale Maggiore PoliclinicoMilanItaly
| | - Davide Molinaro
- Neurology UnitFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Dino Ferrari CenterUniversity of MilanMilanItaly
| | - Michelle Wintzinger
- Molecular Cardiovascular Biology Division, Heart InstituteCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOHUSA
| | - Stefano Gatti
- Center for Surgical ResearchFondazione IRCCS Ca' Granda, Ospedale Maggiore PoliclinicoMilanItaly
| | - Barbara Cassani
- Humanitas Clinical and Research Center IRCCSMilanItaly
- Department of Medical Biotechnologies and Translational MedicineUniversità Degli Studi di MilanoMilanItaly
| | - Flavio Caprioli
- Unit of Gastroenterology and Endoscopy, Department of Pathophysiology and TransplantationUniversità degli Studi di Milano, Fondazione IRCCS Ca' Granda, Ospedale Policlinico di MilanoMilanItaly
| | - Federica Facciotti
- Unit of Gastroenterology and Endoscopy, Department of Pathophysiology and TransplantationUniversità degli Studi di Milano, Fondazione IRCCS Ca' Granda, Ospedale Policlinico di MilanoMilanItaly
| | - Mattia Quattrocelli
- Molecular Cardiovascular Biology Division, Heart InstituteCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOHUSA
| | - Yvan Torrente
- Neurology UnitFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Dino Ferrari CenterUniversity of MilanMilanItaly
| |
Collapse
|
7
|
Inhibition of the immunoproteasome modulates innate immunity to ameliorate muscle pathology of dysferlin-deficient BlAJ mice. Cell Death Dis 2022; 13:975. [PMID: 36402750 PMCID: PMC9675822 DOI: 10.1038/s41419-022-05416-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022]
Abstract
Muscle repair in dysferlinopathies is defective. Although macrophage (Mø)-rich infiltrates are prominent in damaged skeletal muscles of patients with dysferlinopathy, the contribution of the immune system to the disease pathology remains to be fully explored. Numbers of both pro-inflammatory M1 Mø and effector T cells are increased in muscle of dysferlin-deficient BlAJ mice. In addition, symptomatic BlAJ mice have increased muscle production of immunoproteasome. In vitro analyses using bone marrow-derived Mø of BlAJ mice show that immunoproteasome inhibition results in C3aR1 and C5aR1 downregulation and upregulation of M2-associated signaling. Administration of immunoproteasome inhibitor ONX-0914 to BlAJ mice rescues muscle function by reducing muscle infiltrates and fibro-adipogenesis. These findings reveal an important role of immunoproteasome in the progression of muscular dystrophy in BlAJ mouse and suggest that inhibition of immunoproteasome may produce therapeutic benefit in dysferlinopathy.
Collapse
|
8
|
Xie Y, Li YH, Chen K, Zhu CY, Bai JY, Xiao F, Tan S, Zeng L. Key biomarkers and latent pathways of dysferlinopathy: Bioinformatics analysis and in vivo validation. Front Neurol 2022; 13:998251. [PMID: 36203997 PMCID: PMC9530905 DOI: 10.3389/fneur.2022.998251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background Dysferlinopathy refers to a group of muscle diseases with progressive muscle weakness and atrophy caused by pathogenic mutations of the DYSF gene. The pathogenesis remains unknown, and currently no specific treatment is available to alter the disease progression. This research aims to investigate important biomarkers and their latent biological pathways participating in dysferlinopathy and reveal the association with immune cell infiltration. Methods GSE3307 and GSE109178 were obtained from the Gene Expression Omnibus (GEO) database. Based on weighted gene co-expression network analysis (WGCNA) and differential expression analysis, coupled with least absolute shrinkage and selection operator (LASSO), the key genes for dysferlinopathy were identified. Functional enrichment analysis Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were applied to disclose the hidden biological pathways. Following that, the key genes were approved for diagnostic accuracy of dysferlinopathy based on another dataset GSE109178, and quantitative real-time polymerase chain reaction (qRT-PCR) were executed to confirm their expression. Furthermore, the 28 immune cell abundance patterns in dysferlinopathy were determined with single-sample GSEA (ssGSEA). Results 1,579 differentially expressed genes (DEGs) were screened out. Based on WGCNA, three co-expression modules were obtained, with the MEskyblue module most strongly correlated with dysferlinopathy. 44 intersecting genes were recognized from the DEGs and the MEskyblue module. The six key genes MVP, GRN, ERP29, RNF128, NFYB and KPNA3 were discovered through LASSO analysis and experimentally verified later. In a receiver operating characteristic analysis (ROC) curve, the six hub genes were shown to be highly valuable for diagnostic purposes. Furthermore, functional enrichment analysis highlighted that these genes were enriched mainly along the ubiquitin-proteasome pathway (UPP). Ultimately, ssGSEA showed a significant immune-cell infiltrative microenvironment in dysferlinopathy patients, especially T cell, macrophage, and activated dendritic cell (DC). Conclusion Six key genes are identified in dysferlinopathy with a bioinformatic approach used for the first time. The key genes are believed to be involved in protein degradation pathways and the activation of muscular inflammation. And several immune cells, such as T cell, macrophage and DC, are considered to be implicated in the progression of dysferlinopathy.
Collapse
Affiliation(s)
- Yan Xie
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Ying-hui Li
- Department of Neurology, People's Hospital of Yilong County, Nanchong, China
| | - Kai Chen
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Chun-yan Zhu
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Jia-ying Bai
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Feng Xiao
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Song Tan
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Li Zeng
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Li Zeng
| |
Collapse
|
9
|
Becker N, Moore SA, Jones KA. The inflammatory pathology of dysferlinopathy is distinct from calpainopathy, Becker muscular dystrophy, and inflammatory myopathies. Acta Neuropathol Commun 2022; 10:17. [PMID: 35135626 PMCID: PMC8822795 DOI: 10.1186/s40478-022-01320-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/19/2022] [Indexed: 12/25/2022] Open
Abstract
The descriptions of muscle pathology in dysferlinopathy patients have classically included an inflammatory infiltrate that can mimic inflammatory myopathies. Based on over 20 years of institutional experience in evaluating dystrophic and inflammatory myopathy muscle biopsies at the University of Iowa, we hypothesized the inflammatory histopathology of dysferlinopathy is more similar to limb-girdle pattern muscular dystrophies such as calpainopathy and Becker muscular dystrophy, and distinct from true inflammatory myopathies. Muscle biopsies from 32 dysferlinopathy, 30 calpainopathy, 30 Becker muscular dystrophy, and 30 inflammatory myopathies (15 each of dermatomyositis and inclusion body myositis) were analyzed through digital quantitation of CD3, CD4, CD8, CD20, and PU.1 immunostaining. The expression of MHC class I and deposition of complement C5b-9 was also evaluated. Dysferlinopathy, calpainopathy, and Becker muscular dystrophy muscle biopsies had similar numbers of inflammatory cell infiltrates and significantly fewer CD3+ T-lymphocytes than dermatomyositis (p = 0.05) and inclusion body myositis (p < 0.0001) biopsies. There was no statistically significant difference in the number of PU.1+ macrophages identified in any diagnostic group. MHC class I expression was significantly lower in the limb-girdle pattern muscular dystrophies compared to the inflammatory myopathies (p < 0.0001). In contrast, complement C5b-9 deposition was similar among dysferlinopathy, dermatomyositis, and inclusion body myositis biopsies but significantly greater than calpainopathy and Becker muscular dystrophy biopsies (p = 0.05). Compared to calpainopathy, Becker muscular dystrophy, and inflammatory myopathies, the unique profile of minimal inflammatory cell infiltrates, absent to focal MHC class I, and diffuse myofiber complement C5b-9 deposition is the pathologic signature of dysferlinopathy muscle biopsies.
Collapse
|
10
|
Merlonghi G, Antonini G, Garibaldi M. Immune-mediated necrotizing myopathy (IMNM): A myopathological challenge. Autoimmun Rev 2021; 21:102993. [PMID: 34798316 DOI: 10.1016/j.autrev.2021.102993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/14/2021] [Indexed: 02/07/2023]
Abstract
This review is focused on the myopathological spectrum of immune mediated necrotizing myopathies (IMNMs) and its differentiation with other, potentially mimicking, inflammatory and non-inflammatory myopathies. IMNMs are a subgroup of idiopathic inflammatory myopathies (IIMs) characterized by severe clinical presentation with rapidly progressive muscular weakness and creatine kinase elevation, often requiring early aggressive immunotherapy, associated to the presence of muscle specific autoantibodies (MSA) against signal recognition particle (SRP) or 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR). Muscle biopsy usually shows unspecific features consisting in prominent necrosis and regeneration of muscle fibres with mild or absent inflammatory infiltrates, inconstant and faint expression of major histocompatibility complex (MHC) class I and variable deposition of C5b-9 on sarcolemma. Several conditions could present similar histopathological findings leading to possible misdiagnosis of IMNM with other IIMs or non-inflammatory myopathies (nIMs) and viceversa. This review analyses the muscle biopsy data in IMNMs through a systematic revision of the literature from the last five decades. Several histopathological variables have been considered in both SRP- and HMGCR-IMNM, and compared to other IIMs - as dermatomyositis (DM) and anti-synthethase syndrome (ASS) - or other nIMs -as toxic myopathies (TM), critical illness myopathy (CIM) and muscular dystrophy (MD) - to elucidate similarities and differences among these potentially mimicking conditions. The major histopathological findings of IMNMs were: very frequent necrosis and regeneration of muscle fibres (93%), mild inflammatory component mainly constituted by scattered isolated (65%) CD68-prevalent (68%) cells, without CD8 invading/surrounding non-necrotic fibres, variable expression of MHC-I in non-necrotic fibres (56%) and constant expression of sarcoplasmic p62, confirming those that are widely considered the major histological characteristics of IMNMs. Conversely, only 42% of biopsies showed a sarcolemmal deposition of C5b-9 component. Few differences between SRP and HMGCR IMNMs consisted in more severe necrosis and regeneration in SRP than in HMGCR (p = 0.01); more frequent inflammatory infiltrates (p = 0.007) with perivascular localization (p = 0.01) and clustered expression of MHC-I (p = 0.007) in HMGCR; very low expression of sarcolemmal C5b-9 in SRP (18%) compared to HMGCR (56%) (p = 0.0001). Milder necrosis and regeneration, detection of perifascicular pathology, presence of lymphocytic inflammatory infiltrates and myofibre expression of MxA help to distinguish DM or ASS from IMNM. nIMs can present signs of inflammation at muscle biopsy. Low fibre size variability with overexpression of both MHC-I and II, associated with C5b-9 deposition, could could be observed in CIM, while increased connective tissue should lead to consider MD, or TM in absence of C5b-9 deposition. Nevertheless, these features are not constantly detected and muscle biopsy could not be diriment. For this reason, muscle biopsy should always be critically considered in light of the clinical context before concluding for a definite diagnosis of IMNM, only based on histopathological findings. More rigorous collection and analysis of muscle biopsy is warranted to obtain a higher quality and more homogeneous histopathological data in inflammatory myopathies.
Collapse
Affiliation(s)
- Gioia Merlonghi
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Giovanni Antonini
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Matteo Garibaldi
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, Rome, Italy.
| |
Collapse
|
11
|
Tanboon J, Uruha A, Arahata Y, Dittmayer C, Schweizer L, Goebel HH, Nishino I, Stenzel W. Inflammatory features in sporadic late-onset nemaline myopathy are independent from monoclonal gammopathy. Brain Pathol 2021; 31:e12962. [PMID: 34043258 PMCID: PMC8412091 DOI: 10.1111/bpa.12962] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/23/2021] [Indexed: 11/30/2022] Open
Abstract
Sporadic late-onset nemaline myopathy (SLONM) is a rare adult-onset non-hereditary disease with subacute proximal muscle and often axial muscle weakness, characterized by the presence of nemaline bodies in skeletal muscle biopsies. Considering its association with concurrent monoclonal gammopathy of undetermined significance (MGUS), the disease is classified into two major subtypes (1) SLONM without MGUS (SLONM-noMGUS) and (2) with MGUS (SLONM-MGUS) association. SLONM associated with HIV infection (SLONM-HIV) is also reported. SLONM-MGUS has been shown to be associated with poorer prognosis and required aggressive treatment including high-dose melphalan and autologous stem cell transplantation. The approach is currently debatable as recent reports suggested effectiveness of intravenous immunoglobulin as initial treatment with indifference of overall survival despite the presence of MGUS. Our study aimed to find an underlying basis by review of pathological features in 49 muscle biopsy proven-SLONM from two large tertiary centers in Japan and Germany (n = 49: SLONM-noMGUS = 34, SLONM-MGUS = 13, SLONM-HIV = 2). We compared pathological findings in SLONM-noMGUS and SLONM-MGUS and focused on the presence of any detectable inflammatory features by immunohistochemistry. The clinical and histological features in SLONM-noMGUS and SLONM-MGUS were not distinctively different except for more common regenerating fibers (>5% of myofibers) present in SLONM-MGUS (p < 0.01). HLA-ABC expression and fine granular p62 were observed in 66.7% and 78.3% of SLONM, respectively. The predominant inflammatory cells were CD68+ cells. The inflammatory cells showed positive correlations with the percentage of nemaline-containing fibers (p < 0.001). In conclusion, inflammatory features are present although rather mild in SLONM. This finding contributes to the hypothesis of an acquired inflammatory disease pathogenesis and opens the possibility to offer immunotherapy in SLONM with inflammatory features regardless of the monoclonal gammopathy status.
Collapse
Affiliation(s)
- Jantima Tanboon
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan.,Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Akinori Uruha
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yukie Arahata
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan.,Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Carsten Dittmayer
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leonille Schweizer
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hans-Hilmar Goebel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Neuropathology, Universitätsmedizin Mainz, Mainz, Germany
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan.,Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Werner Stenzel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Leibniz ScienceCampus Chronic Inflammation, Berlin, Germany
| |
Collapse
|
12
|
Dexamethasone accelerates muscle regeneration by modulating kinesin-1-mediated focal adhesion signals. Cell Death Discov 2021; 7:35. [PMID: 33597503 PMCID: PMC7889929 DOI: 10.1038/s41420-021-00412-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 01/11/2023] Open
Abstract
During differentiation, skeletal muscle develops mature multinucleated muscle fibers, which could contract to exert force on a substrate. Muscle dysfunction occurs progressively in patients with muscular dystrophy, leading to a loss of the ability to walk and eventually to death. The synthetic glucocorticoid dexamethasone (Dex) has been used therapeutically to treat muscular dystrophy by an inhibition of inflammation, followed by slowing muscle degeneration and stabilizing muscle strength. Here, in mice with muscle injury, we found that Dex significantly promotes muscle regeneration via promoting kinesin-1 motor activity. Nevertheless, how Dex promotes myogenesis through kinesin-1 motors remains unclear. We found that Dex directly increases kinesin-1 motor activity, which is required for the expression of a myogenic marker (muscle myosin heavy chain 1/2), and also for the process of myoblast fusion and the formation of polarized myotubes. Upon differentiation, kinesin-1 mediates the recruitment of integrin β1 onto microtubules allowing delivery of the protein into focal adhesions. Integrin β1-mediated focal adhesion signaling then guides myoblast fusion towards a polarized morphology. By imposing geometric constrains via micropatterns, we have proved that cell adhesion is able to rescue the defects caused by kinesin-1 inhibition during the process of myogenesis. These discoveries reveal a mechanism by which Dex is able to promote myogenesis, and lead us towards approaches that are more efficient in improving skeletal muscle regeneration.
Collapse
|
13
|
Verma R, Paliwal V. Idiopathic inflammatory myopathy: From muscle biopsy to serology. INDIAN JOURNAL OF RHEUMATOLOGY 2020. [DOI: 10.4103/injr.injr_165_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
14
|
Xiao Y, Zhu H, Li L, Gao S, Liu D, Dai B, Li Q, Duan H, Yang H, Li Q, Zhang H, Luo H, Zuo X. Global analysis of protein expression in muscle tissues of dermatomyositis/polymyosisits patients demonstrated an association between dysferlin and human leucocyte antigen A. Rheumatology (Oxford) 2019; 58:kez085. [PMID: 30907425 DOI: 10.1093/rheumatology/kez085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/04/2019] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES DM and PM are characterized by myofibre damage with inflammatory cell infiltration due to the strong expressions of MHC class I HLA-A and monocyte chemoattractant protein-1 (MCP-1). Dysferlin (DYSF) is a transmembrane glycoprotein that anchors in the sarcolemma of myofibres. DYSF mutation is closely associated with inherited myopathies. This study aimed to determine the role of DYSF in the development of DM/PM. METHODS Mass spectrometry was performed in muscle tissues from DM/PM patients and controls. The DYSF levels in muscle tissue, peripheral blood cells and serum were detected by Western blotting, IF, flow cytometry or ELISA. Double IF and co-immunoprecipitation were used to investigate the relationship between DYSF and HLA-A. RESULTS Mass spectrometry and bioinformatics analysis findings suggested the dysregulated proteins in DM/PM patients participated in common biological processes and pathways, such as the generation of precursor metabolites and energy. DYSF was upregulated in the muscle tissue and serum of DM/PM patients. DYSF was mainly expressed in myofibres and co-localized with HLA-A and MCP-1. DYSF and HLA-A expressions were elevated in myocytes and endothelial cells after being stimulated by patient serum and IFN-β. However, no direct interactions were found between DYSF and HLA-A by co-immunoprecipitation. CONCLUSION Our study revealed the dysregulated proteins involved in common and specific biological processes in DM/PM patient samples. DYSF is upregulated and exhibits a potential role along with that of HLA-A and MCP-1 in inflammatory cell infiltration and muscle damage during the development of DM/PM.
Collapse
Affiliation(s)
- Yizhi Xiao
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Rheumatology and Immunology, Central South University, Changsha, China
| | - Honglin Zhu
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Rheumatology and Immunology, Central South University, Changsha, China
| | - Liya Li
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Rheumatology and Immunology, Central South University, Changsha, China
| | - Siming Gao
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Rheumatology and Immunology, Central South University, Changsha, China
| | - Di Liu
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Rheumatology and Immunology, Central South University, Changsha, China
| | - Bingying Dai
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Rheumatology and Immunology, Central South University, Changsha, China
| | - Qiuxiang Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Huiqian Duan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Quanzhen Li
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Huali Zhang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Hui Luo
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Rheumatology and Immunology, Central South University, Changsha, China
| | - Xiaoxia Zuo
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Rheumatology and Immunology, Central South University, Changsha, China
| |
Collapse
|
15
|
Milone M, Liewluck T. The unfolding spectrum of inherited distal myopathies. Muscle Nerve 2018; 59:283-294. [PMID: 30171629 DOI: 10.1002/mus.26332] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/26/2018] [Accepted: 08/28/2018] [Indexed: 12/30/2022]
Abstract
Distal myopathies are a group of rare muscle diseases characterized by distal weakness at onset. Although acquired myopathies can occasionally present with distal weakness, the majority of distal myopathies have a genetic etiology. Their age of onset varies from early-childhood to late-adulthood while the predominant muscle weakness can affect calf, ankle dorsiflexor, or distal upper limb muscles. A spectrum of muscle pathological changes, varying from nonspecific myopathic changes to rimmed vacuoles to myofibrillar pathology to nuclei centralization, have been noted. Likewise, the underlying molecular defect is heterogeneous. In addition, there is emerging evidence that distal myopathies can result from defective proteins encoded by genes causative of neurogenic disorders, be manifestation of multisystem proteinopathies or the result of the altered interplay between different genes. In this review, we provide an overview on the clinical, electrophysiological, pathological, and molecular aspects of distal myopathies, focusing on the most recent developments in the field. Muscle Nerve 59:283-294, 2019.
Collapse
Affiliation(s)
| | - Teerin Liewluck
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
16
|
Abstract
The endoplasmic reticulum (ER) is critical in protein processing and particularly in ensuring that proteins undergo their correct folding to exert their functionality. What is becoming increasingly clear is that the ER may undergo increasing stress brought about by nutrient deprivation, hypoxia, oxidized lipids, point mutations in secreted proteins, cellular differentiation or significant deviation from metabolic set points, and loss of Ca2+ homeostasis, with detrimental effects on ER-resident calcium-dependent chaperones, alone or in combination. This results in the unfolded protein response (UPR) that is a repair mechanism to limit the formation of newly damaged proteins until ER homeostasis is restored, though may result in increased cell death. ER stress has been shown to be implicated in a variety of diseases. Statins are well-known cholesterol-lowering drugs and have been extensively reported to possess beneficial cholesterol-independent effects in a variety of human diseases. This review focuses on the concept of ER stress, the underlying molecular mechanisms and their relationship to the pathophysiology and, finally, the role of statins in moderating ER stress and UPR.
Collapse
|
17
|
Abstract
The immune response to acute muscle damage is important for normal repair. However, in chronic diseases such as many muscular dystrophies, the immune response can amplify pathology and play a major role in determining disease severity. Muscular dystrophies are inheritable diseases that vary tremendously in severity, but share the progressive loss of muscle mass and function that can be debilitating and lethal. Mutations in diverse genes cause muscular dystrophy, including genes that encode proteins that maintain membrane strength, participate in membrane repair, or are components of the extracellular matrix or the nuclear envelope. In this article, we explore the hypothesis that an important feature of many muscular dystrophies is an immune response adapted to acute, infrequent muscle damage that is misapplied in the context of chronic injury. We discuss the involvement of the immune system in the most common muscular dystrophy, Duchenne muscular dystrophy, and show that the immune system influences muscle death and fibrosis as disease progresses. We then present information on immune cell function in other muscular dystrophies and show that for many muscular dystrophies, release of cytosolic proteins into the extracellular space may provide an initial signal, leading to an immune response that is typically dominated by macrophages, neutrophils, helper T-lymphocytes, and cytotoxic T-lymphocytes. Although those features are similar in many muscular dystrophies, each muscular dystrophy shows distinguishing features in the magnitude and type of inflammatory response. These differences indicate that there are disease-specific immunomodulatory molecules that determine response to muscle cell damage caused by diverse genetic mutations. © 2018 American Physiological Society. Compr Physiol 8:1313-1356, 2018.
Collapse
Affiliation(s)
- James G. Tidball
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, California, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| | - Steven S. Welc
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| | - Michelle Wehling-Henricks
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| |
Collapse
|
18
|
Urao N, Mirza RE, Corbiere TF, Hollander Z, Borchers CH, Koh TJ. Thrombospondin-1 and disease progression in dysferlinopathy. Hum Mol Genet 2018; 26:4951-4960. [PMID: 29206970 DOI: 10.1093/hmg/ddx378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/05/2017] [Indexed: 01/30/2023] Open
Abstract
The purpose of this study was to determine whether thrombospondin (TSP)-1 promotes macrophage activity and disease progression in dysferlinopathy. First, we found that levels of TSP-1 are elevated in blood of non-ambulant dysferlinopathy patients compared with ambulant patients and healthy controls, supporting the idea that TSP-1 levels are correlated with disease progression. We then crossed dysferlinopathic BlaJ mice with TSP-1 knockout mice and assessed disease progression longitudinally with magnetic resonance imaging (MRI). In these mice, deletion of TSP-1 ameliorated loss in volume and mass of the moderately affected gluteal muscle but not of the severely affected psoas muscle. T2 MRI parameters revealed that loss of TSP-1 modestly inhibited inflammation only in gluteal muscle of male mice. Histological assessment indicated that deletion of TSP-1 reduced inflammatory cell infiltration of muscle fibers, but only early in disease progression. In addition, flow cytometry analysis revealed that, in males, TSP-1 knockout reduced macrophage infiltration and phagocytic activity, which is consistent with TSP-1-enhanced phagocytosis and pro-inflammatory cytokine induction in cultured macrophages. In summary, TSP-1 appears to play an accessory role in modulating Mp activity in BlaJ mice in a gender, age and muscle-dependent manner, but is unlikely a primary driver of disease progression of dysferlinopathy.
Collapse
Affiliation(s)
- Norifumi Urao
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA.,Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Rita E Mirza
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Thomas F Corbiere
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Zsuzsanna Hollander
- PROOF Center of Excellence, Vancouver, BC, Canada.,UBC James Hogg Research Centre, Vancouver, BC, Canada
| | - Christoph H Borchers
- University of Victoria - Genome British Columbia Proteomics Centre, University of Victoria, Victoria, BC, Canada.,Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada.,Proteomics Centre, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada.,Gerald Bronfman Department of Oncology, Jewish General Hospital, Montreal, QC, Canada
| | - Timothy J Koh
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA.,Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
19
|
Defour A, Medikayala S, Van der Meulen JH, Hogarth MW, Holdreith N, Malatras A, Duddy W, Boehler J, Nagaraju K, Jaiswal JK. Annexin A2 links poor myofiber repair with inflammation and adipogenic replacement of the injured muscle. Hum Mol Genet 2017; 26:1979-1991. [PMID: 28334824 DOI: 10.1093/hmg/ddx065] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/17/2017] [Indexed: 01/12/2023] Open
Abstract
Repair of skeletal muscle after sarcolemmal damage involves dysferlin and dysferlin-interacting proteins such as annexins. Mice and patient lacking dysferlin exhibit chronic muscle inflammation and adipogenic replacement of the myofibers. Here, we show that similar to dysferlin, lack of annexin A2 (AnxA2) also results in poor myofiber repair and progressive muscle weakening with age. By longitudinal analysis of AnxA2-deficient muscle we find that poor myofiber repair due to the lack of AnxA2 does not result in chronic inflammation or adipogenic replacement of the myofibers. Further, deletion of AnxA2 in dysferlin deficient mice reduced muscle inflammation, adipogenic replacement of myofibers, and improved muscle function. These results identify multiple roles of AnxA2 in muscle repair, which includes facilitating myofiber repair, chronic muscle inflammation and adipogenic replacement of dysferlinopathic muscle. It also identifies inhibition of AnxA2-mediated inflammation as a novel therapeutic avenue for treating muscle loss in dysferlinopathy.
Collapse
Affiliation(s)
- Aurelia Defour
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
| | - Sushma Medikayala
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
| | - Jack H Van der Meulen
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
| | - Marshall W Hogarth
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
| | - Nicholas Holdreith
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
| | - Apostolos Malatras
- Center for Research in Myology 75013, Sorbonne Universités, UPMC University Paris 06, INSERM UMRS975, CNRS FRE3617, GH Pitié Salpêtrière, Paris 13, Paris, France
| | - William Duddy
- Center for Research in Myology 75013, Sorbonne Universités, UPMC University Paris 06, INSERM UMRS975, CNRS FRE3617, GH Pitié Salpêtrière, Paris 13, Paris, France
- Northern Ireland Centre for Stratified Medicine, Altnagelvin Hospital Campus, Ulster University, Londonderry, Northern Ireland, BT52 1SJ UK
| | - Jessica Boehler
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
| | - Kanneboyina Nagaraju
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
- Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, 20052 USA
| | - Jyoti K Jaiswal
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
- Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, 20052 USA
| |
Collapse
|
20
|
Milone M. Diagnosis and Management of Immune-Mediated Myopathies. Mayo Clin Proc 2017; 92:826-837. [PMID: 28473041 DOI: 10.1016/j.mayocp.2016.12.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/17/2016] [Accepted: 12/28/2016] [Indexed: 01/02/2023]
Abstract
Immune-mediated myopathies (IMMs) are a heterogeneous group of acquired muscle disorders characterized by muscle weakness, elevated creatine kinase levels, and myopathic electromyographic findings. Most IMMs feature the presence of inflammatory infiltrates in muscle. However, the inflammatory exudate may be absent. Indeed, necrotizing autoimmune myopathy (NAM), also called immune-mediated necrotizing myopathy, is characterized by a necrotizing pathologic process with no or minimal inflammation in muscle. The recent discovery of antibodies associated with specific subtypes of autoimmune myopathies has played a major role in characterizing these diseases. Although diagnostic criteria and classification of IMMs currently are under revision, on the basis of the clinical and muscle histopathologic findings, IMMs can be differentiated as NAM, inclusion body myositis (IBM), dermatomyositis, polymyositis, and nonspecific myositis. Because of recent developments in the field of NAM and IBM and the controversies around polymyositis, this review will focus on NAM, IBM, and dermatomyositis.
Collapse
Affiliation(s)
- Margherita Milone
- Neuromuscular Medicine Division, Department of Neurology, Mayo Clinic, Rochester, MN.
| |
Collapse
|
21
|
Song Y, Yao S, Liu Y, Long L, Yang H, Li Q, Liang J, Li X, Lu Y, Zhu H, Zhang N. Expression levels of TGF-β1 and CTGF are associated with the severity of Duchenne muscular dystrophy. Exp Ther Med 2017; 13:1209-1214. [PMID: 28413459 PMCID: PMC5377242 DOI: 10.3892/etm.2017.4105] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/26/2016] [Indexed: 12/20/2022] Open
Abstract
The present study aimed to analyze the association of transforming growth factor-β1 (TGF-β1) and connective tissue growth factor (CTGF) expression levels in skeletal muscle with the clinical manifestation of Duchenne muscular dystrophy (DMD). A total of 18 cases of DMD, which were confirmed by routine pathological diagnosis were recruited into the present study, along with 8 subjects who suffered from acute trauma but did not present any neuromuscular diseases and were enrolled as the healthy controls. Immunohistochemical staining was used to detect the expression levels of CTGF and TGF-β1 in muscle biopsy specimens. Furthermore, Spearman rank correlation analysis was conducted among the expression levels of CTGF and TGF-β1, age, clinical severity and pathological severity in DMD patients. The immunohistochemical staining results revealed that the expression levels of CTGF and TGF-β1 were significantly increased in the DMD group compared with those in the control group (P<0.05). These levels were not found to be significantly correlated with the onset age (P>0.05), but there was a significant correlation with the degree of pathology and clinical severity (P<0.05). In conclusion, an upregulated expression of CTGF and TGF-β1 was revealed in the skeletal muscle of DMD patients, which were in positive correlation with the degree of pathology and clinical severity. These two factors may be involved in the pathophysiology of fibrosis in DMD.
Collapse
Affiliation(s)
- Yanmin Song
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Shuai Yao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China.,Department of Rehabilitation Medicine, Mental Health Centre of Wuxi, Wuxi, Jiangsu 214151, P.R. China
| | - Yunhai Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Qiuxiang Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jinghui Liang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xinxin Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yuling Lu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Haoran Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ning Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
22
|
Abstract
In horses, immune-mediated muscle disorders can arise from an overzealous immune response to concurrent infections or potentially from an inherent immune response to host muscle antigens. Streptococcus equi ss. equi infection or vaccination can result in infarctive purpura hemorrhagica (IPH) in which vascular deposition of IgA-streptococcal M protein complexes produces ischemia and complete focal infarction of skeletal muscle and internal organs. In Quarter Horse–related breeds with immune-mediated myositis, an apparent abnormal immune response to muscle antigens results in upregulation of major histocompatibility complex class (MHC) I and II on muscle cell membranes, lymphocytic infiltration of lumbar and gluteal myofibers, and subsequent gross muscle atrophy. Rarely, an inflammatory event results in myositis with subsequent systemic calcinosis characterized by a pathognomonic hyperphosphatemia and high fatality rate. This review presents an overview of these immune-mediated myopathies and highlights clinical and pathological features as well as the suspected pathophysiology.
Collapse
Affiliation(s)
- S. A. Durward-Akhurst
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, MN, USA
| | - S. J. Valberg
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
23
|
Wan Z, Zhang X, Peng A, He M, Lei Z, Wang Y. TLR4-HMGB1 signaling pathway affects the inflammatory reaction of autoimmune myositis by regulating MHC-I. Int Immunopharmacol 2016; 41:74-81. [PMID: 27816788 DOI: 10.1016/j.intimp.2016.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/13/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022]
Abstract
OBJECTIVES To analyze the effects of TLR4 on the expression of the HMGB1, MHC-I and downstream cytokines IL-6 and TNF-α, and to investigate the biological role of the TLR4-HMGB1 signaling pathway in the development of the autoimmune myositis. METHODS We built mice models with experimental autoimmune myositis (EAM) and used the inverted screen experiment to measure their muscle endurance; we also examined inflammatory infiltration of muscle tissues after HE staining; and we assessed the expression of MHC-I using immunohistochemistry. In addition, peripheral blood mononuclear cells (PBMC) were extracted and flow cytometry was utilized to detect the effect of IFN-γ on the expression of MHC-I. Furthermore, PBMCs were treated with IFN-γ, anti-TLR4, anti-HMGB1 and anti-MHC-I. Real-time PCR and western blotting were employed to examine the expressions of TLR4, HMGB1 and MHC-I in different groups. The ELISA method was also utilized to detect the expression of the downstream cytokines TNF-α and IL-6. RESULTS The expressions of TLR4, HMGB1 and MHC-I in muscle tissues from mice with EAM were significantly higher than those in the control group (all P<0.05). After IFN-γ treatment, the expressions of TLR4, HMGB1, MHC-I, TNF-α and IL-6 in PBMCs significantly increased (all P<0.05). The treatment of anti-TLR4, anti-HMGB1 and anti-MHC-I could significantly downregulate the expression of MHC-I (all P<0.05). In addition, anti-TLR4 and anti-HMGB1 significantly reduced the expression of TNF-α and IL-6 (all P<0.05). CONCLUSIONS The TLR4-HMGB1 signaling pathway affects the process of autoimmune myositis inflammation by regulating the expression of MHC-I and other pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Zemin Wan
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, Guangdong, China.
| | - Xiujuan Zhang
- Department of Liver Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Anping Peng
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Min He
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Zhenhua Lei
- Department of Urology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Yunxiu Wang
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| |
Collapse
|
24
|
Fanin M, Angelini C. Progress and challenges in diagnosis of dysferlinopathy. Muscle Nerve 2016; 54:821-835. [DOI: 10.1002/mus.25367] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Marina Fanin
- Department of Neurosciences; University of Padova; Biomedical Campus “Pietro d'Abano”, via Giuseppe Orus 2B 35129 Padova Italy
| | | |
Collapse
|
25
|
Jin S, Du J, Wang Z, Zhang W, Lv H, Meng L, Xiao J, Yuan Y. Heterogeneous characteristics of MRI changes of thigh muscles in patients with dysferlinopathy. Muscle Nerve 2016; 54:1072-1079. [PMID: 27251469 DOI: 10.1002/mus.25207] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 05/18/2016] [Accepted: 05/31/2016] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The aim of this study was to evaluate the pattern of thigh muscle MRI changes in a large cohort of patients with dysferlinopathy. METHODS MRI of the thigh was performed in 60 patients. We correlated the scale of muscle involvement on MRI with the modified Gardner-Medwin and Walton (GM-W) scale and disease duration. We also analyzed the relationship between muscle changes and genetic mutations. RESULTS Fatty infiltration and edema were observed in 95.50% and 86.67% of patients, respectively. The hamstring muscles had the highest frequency and mean score of fatty infiltration, although a posterior-dominant pattern was found in only 56%. Edema most commonly and severely affected the quadriceps and adductor magnus muscles. Fatty infiltration score correlated positively with disease duration and GM-W scale. CONCLUSIONS The pattern of fatty infiltration was heterogeneous in dysferlinopathy patients. Muscle edema was common. Fatty infiltration can be used to assess disease progression. Muscle Nerve 54: 1072-1079, 2016.
Collapse
Affiliation(s)
- Suqin Jin
- Department of Neurology, Peking University First Hospital, 8 Xishiku St, Xicheng District, Beijing, 100034, PR. China
| | - Jing Du
- Department of Radiology, Peking University First Hospital, Beijing, 100034, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, 8 Xishiku St, Xicheng District, Beijing, 100034, PR. China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, 8 Xishiku St, Xicheng District, Beijing, 100034, PR. China
| | - He Lv
- Department of Neurology, Peking University First Hospital, 8 Xishiku St, Xicheng District, Beijing, 100034, PR. China
| | - Lingchao Meng
- Department of Neurology, Peking University First Hospital, 8 Xishiku St, Xicheng District, Beijing, 100034, PR. China
| | - Jiangxi Xiao
- Department of Radiology, Peking University First Hospital, Beijing, 100034, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, 8 Xishiku St, Xicheng District, Beijing, 100034, PR. China
| |
Collapse
|
26
|
Durward-Akhurst SA, Finno CJ, Barnes N, Shivers J, Guo LT, Shelton GD, Valberg SJ. Major Histocompatibility Complex I and II Expression and Lymphocytic Subtypes in Muscle of Horses with Immune-Mediated Myositis. J Vet Intern Med 2016; 30:1313-21. [PMID: 27352021 PMCID: PMC5094553 DOI: 10.1111/jvim.14371] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/25/2016] [Accepted: 06/11/2016] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Major histocompatibility complex (MHC) I and II expression is not normally detected on sarcolemma, but is detected with lymphocytic infiltrates in immune-mediated myositis (IMM) of humans and dogs and in dysferlin-deficient muscular dystrophy. HYPOTHESIS/OBJECTIVES To determine if sarcolemmal MHC is expressed in active IMM in horses, if MHC expression is associated with lymphocytic subtype, and if dysferlin is expressed in IMM. ANIMALS Twenty-one IMM horses of Quarter Horse-related breeds, 3 healthy and 6 disease controls (3 pasture myopathy, 3 amylase-resistant polysaccharide storage myopathy [PSSM]). METHODS Immunohistochemical staining for MHC I, II, and CD4+, CD8+, CD20+ lymphocytes was performed on archived muscle of IMM and control horses. Scores were given for MHC I, II, and lymphocytic subtypes. Immunofluorescent staining for dysferlin, dystrophin, and a-sarcoglycan was performed. RESULTS Sarcolemmal MHC I and II expression was detected in 17/21 and 15/21 of IMM horses, respectively, and in specific fibers of PSSM horses, but not healthy or pasture myopathy controls. The CD4+, CD8+, and CD20+ cells were present in 20/21 IMM muscles with CD4+ predominance in 10/21 and CD8+ predominance in 6/21 of IMM horses. Dysferlin, dystrophin, and a-sarcoglycan staining were similar in IMM and control muscles. CONCLUSIONS AND CLINICAL IMPORTANCE Deficiencies of dysferlin, dystrophin, and a-sarcoglycan are not associated with IMM. Sarcolemmal MHC I and II expression in a proportion of myofibers of IMM horses in conjunction with lymphocytic infiltration supports an immune-mediated etiology for IMM. The MHC expression also occured in specific myofibers in PSSM horses in the absence of lymphocytic infiltrates.
Collapse
Affiliation(s)
- S A Durward-Akhurst
- Department of Veterinary Population Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN
| | - C J Finno
- Department of Population Health and Reproduction, University of California-Davis, Davis, CA
| | - N Barnes
- Department of Veterinary Population Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN
| | - J Shivers
- Department of Veterinary Population Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN
| | - L T Guo
- Department of Pathology, University of California, San Diego, La Jolla, CA
| | - G D Shelton
- Department of Pathology, University of California, San Diego, La Jolla, CA
| | - S J Valberg
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI
| |
Collapse
|
27
|
Demonbreun AR, Allen MV, Warner JL, Barefield DY, Krishnan S, Swanson KE, Earley JU, McNally EM. Enhanced Muscular Dystrophy from Loss of Dysferlin Is Accompanied by Impaired Annexin A6 Translocation after Sarcolemmal Disruption. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1610-22. [PMID: 27070822 DOI: 10.1016/j.ajpath.2016.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 01/20/2016] [Accepted: 02/11/2016] [Indexed: 02/03/2023]
Abstract
Dysferlin is a membrane-associated protein implicated in membrane resealing; loss of dysferlin leads to muscular dystrophy. We examined the same loss-of-function Dysf mutation in two different mouse strains, 129T2/SvEmsJ (Dysf(129)) and C57BL/6J (Dysf(B6)). Although there are many genetic differences between these two strains, we focused on polymorphisms in Anxa6 because these variants were previously associated with modifying a pathologically distinct form of muscular dystrophy and increased the production of a truncated annexin A6 protein. Dysferlin deficiency in the C57BL/6J background was associated with increased Evan's Blue dye uptake into muscle and increased serum creatine kinase compared to the 129T2/SvEmsJ background. In the C57BL/6J background, dysferlin loss was associated with enhanced pathologic severity, characterized by decreased mean fiber cross-sectional area, increased internalized nuclei, and increased fibrosis, compared to that in Dysf(129) mice. Macrophage infiltrate was also increased in Dysf(B6) muscle. High-resolution imaging of live myofibers demonstrated that fibers from Dysf(B6) mice displayed reduced translocation of full-length annexin A6 to the site of laser-induced sarcolemmal disruption compared to Dysf(129) myofibers, and impaired translocation of annexin A6 associated with impaired resealing of the sarcolemma. These results provide one mechanism by which the C57BL/6J background intensifies dysferlinopathy, giving rise to a more severe form of muscular dystrophy in the Dysf(B6) mouse model through increased membrane leak and inflammation.
Collapse
Affiliation(s)
| | - Madison V Allen
- Center for Genetic Medicine, Northwestern University, Chicago, Illinois
| | - James L Warner
- Center for Genetic Medicine, Northwestern University, Chicago, Illinois
| | - David Y Barefield
- Center for Genetic Medicine, Northwestern University, Chicago, Illinois
| | - Swathi Krishnan
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Kaitlin E Swanson
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | - Judy U Earley
- Center for Genetic Medicine, Northwestern University, Chicago, Illinois
| | | |
Collapse
|
28
|
Tieu J, Lundberg IE, Limaye V. Idiopathic inflammatory myositis. Best Pract Res Clin Rheumatol 2016; 30:149-68. [DOI: 10.1016/j.berh.2016.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/12/2016] [Accepted: 04/18/2016] [Indexed: 12/11/2022]
|
29
|
Urao N, Mirza RE, Heydemann A, Garcia J, Koh TJ. Thrombospondin-1 levels correlate with macrophage activity and disease progression in dysferlin deficient mice. Neuromuscul Disord 2016; 26:240-51. [PMID: 26927626 DOI: 10.1016/j.nmd.2016.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/24/2015] [Accepted: 01/14/2016] [Indexed: 10/22/2022]
Abstract
Dysferlinopathy is associated with accumulation of thrombospondin (TSP)-1 and macrophages, both of which may contribute to the pathogenesis of the disease. The purpose of this study was to determine whether TSP-1 levels can predict macrophage activity and disease progression in dysferlin deficient BlaJ mice, focusing on the early disease process. In 3 month-old BlaJ mice, muscle TSP-1 levels exhibited strong positive correlations with both accumulation of F4/80hi macrophages and with their in vivo phagocytic activity in psoas muscles as measured by magnetic resonance imaging and flow cytometry. Muscle TSP-1 levels also exhibited a strong negative correlation with muscle mass and strong positive correlations with histological measurements of muscle fiber infiltration and regeneration. Over the course of disease progression from 3 to 12 months of age, muscle TSP-1 levels showed more complicated relationships with macrophage activity and an inverse relationship with muscle mass. Importantly, blood TSP-1 levels showed strong correlations with macrophage activity and muscle degeneration, particularly early in disease progression in BlaJ mice. These data indicate that TSP-1 may contribute to a destructive macrophage response in dysferlinopathy and pose the intriguing possibility that TSP-1 levels may serve as a biomarker for disease progression.
Collapse
Affiliation(s)
- Norifumi Urao
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA; Center for Tissue Repair and Regeneration, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Rita E Mirza
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ahlke Heydemann
- Department of Physiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jesus Garcia
- Department of Physiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Timothy J Koh
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA; Center for Tissue Repair and Regeneration, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
30
|
Xiao J, Huang C, Shi D, Zhu R, Gu R, Wang H, Wu G, Liao H. Inflammatory and immuno-reactivity in mice induced by intramuscular implants of HSNGLPL peptide grafted-polyurethane. J Mater Chem B 2016; 4:1898-1907. [DOI: 10.1039/c5tb02567b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthetic peptide-based polyurethanes (PUs), introduced as bioactive agents and possessing impressive properties, have emerged as attractive functional biomaterials for tissue regeneration.
Collapse
Affiliation(s)
- Jiangwei Xiao
- Department of Anatomy
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering
- Southern Medical University
- GuangZhou
- China
| | - Cao Huang
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- China
| | - Dandan Shi
- Department of Anatomy
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering
- Southern Medical University
- GuangZhou
- China
| | - Rong Zhu
- Department of Anatomy
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering
- Southern Medical University
- GuangZhou
- China
| | - Ruicai Gu
- Department of Anatomy
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering
- Southern Medical University
- GuangZhou
- China
| | - Huan Wang
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- China
| | - Gang Wu
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- China
| | - Hua Liao
- Department of Anatomy
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering
- Southern Medical University
- GuangZhou
- China
| |
Collapse
|
31
|
|
32
|
Roche JA, Tulapurkar ME, Mueller AL, van Rooijen N, Hasday JD, Lovering RM, Bloch RJ. Myofiber damage precedes macrophage infiltration after in vivo injury in dysferlin-deficient A/J mouse skeletal muscle. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1686-98. [PMID: 25920768 PMCID: PMC4450316 DOI: 10.1016/j.ajpath.2015.02.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 12/31/2014] [Accepted: 02/12/2015] [Indexed: 12/16/2022]
Abstract
Mutations in the dysferlin gene (DYSF) lead to human muscular dystrophies known as dysferlinopathies. The dysferlin-deficient A/J mouse develops a mild myopathy after 6 months of age, and when younger models the subclinical phase of the human disease. We subjected the tibialis anterior muscle of 3- to 4-month-old A/J mice to in vivo large-strain injury (LSI) from lengthening contractions and studied the progression of torque loss, myofiber damage, and inflammation afterward. We report that myofiber damage in A/J mice occurs before inflammatory cell infiltration. Peak edema and inflammation, monitored by magnetic resonance imaging and by immunofluorescence labeling of neutrophils and macrophages, respectively, develop 24 to 72 hours after LSI, well after the appearance of damaged myofibers. Cytokine profiles 72 hours after injury are consistent with extensive macrophage infiltration. Dysferlin-sufficient A/WySnJ mice show much less myofiber damage and inflammation and lesser cytokine levels after LSI than do A/J mice. Partial suppression of macrophage infiltration by systemic administration of clodronate-incorporated liposomes fails to suppress LSI-induced damage or to accelerate torque recovery in A/J mice. The findings from our studies suggest that, although macrophage infiltration is prominent in dysferlin-deficient A/J muscle after LSI, it is the consequence and not the cause of progressive myofiber damage.
Collapse
Affiliation(s)
- Joseph A Roche
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland.
| | - Mohan E Tulapurkar
- Department of Medicine, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Amber L Mueller
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Nico van Rooijen
- Clodronateliposomes.com, Amsterdam, the Netherlands; Department of Molecular Cell Biology, Faculty of Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Jeffrey D Hasday
- Department of Medicine, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Richard M Lovering
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Robert J Bloch
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland
| |
Collapse
|
33
|
Karri SB, Kannan MAM, Rajashekhar L, Uppin MS, Challa S. Clinico pathological study of adult dermatomyositis: Importance of muscle histology in the diagnosis. Ann Indian Acad Neurol 2015; 18:194-9. [PMID: 26019418 PMCID: PMC4445196 DOI: 10.4103/0972-2327.150603] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 11/20/2014] [Accepted: 11/25/2014] [Indexed: 12/31/2022] Open
Abstract
AIMS To study the histological features on muscle biopsy and correlate them with clinical features, other laboratory data in adult patients to make a diagnosis of dermatomyositis (DM), applying the European Neuromuscular center (ENMC) criteria. MATERIALS AND METHODS Adult patients who fulfilled clinical, laboratory, and muscle biopsy findings according to ENMC criteria for DM during the period 2010-2013 were included in the study. Cryostat sections of muscle biopsy were reviewed with emphasis on Perifascicular atrophy (PFA), perivascular/endomysial inflammation. Muscular dystrophies and metabolic myopathies were excluded by appropriate immunohistochemistry and special stains. RESULTS The diagnosis of adult DM was made in 45 patients out of 170 clinically suspected idiopathic inflammatory myopathies. These included 33 definite, 4 probable, 7 possible sine dermatitis, and 1 amyopathic DM. All patients with definite DM had typical rash and proximal muscle weakness and muscle biopsy showed PFA with or without inflammation. Thirteen patients had quadriparesis, neck muscle weakness, dysphagia/dysphonia at presentation. Patients with probable DM had rash and showed perivascular/endomysial inflammation with no PFA. Possible DM sine dermatitis showed PFA with perivascular/endomysial infiltrates. One patient of amyopathic DM had typical heliotrope rash and characteristic skin biopsy. CONCLUSIONS Histological features are important for the diagnosis of DM. Relying on PFA for diagnosis of definite DM underestimates the true frequency of DM.
Collapse
Affiliation(s)
- Sudhir Babu Karri
- Department of Pathology, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| | | | - Liza Rajashekhar
- Department of Rheumatology, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Megha S Uppin
- Department of Pathology, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Sundaram Challa
- Department of Pathology, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| |
Collapse
|
34
|
Chung T, Christopher-Stine L, Paik JJ, Corse A, Mammen AL. The composition of cellular infiltrates in anti-HMG-CoA reductase-associated myopathy. Muscle Nerve 2015; 52:189-95. [PMID: 25737145 DOI: 10.1002/mus.24642] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/23/2015] [Accepted: 02/28/2015] [Indexed: 11/05/2022]
Abstract
INTRODUCTION To characterize cellular infiltrates in muscle biopsies from patients with anti-3-hydroxy-3-methyl-gulatryl-CoA reductase (HMGCR)-associated myopathy. METHODS Biopsies from 18 anti-HMGCR myopathy and 7 control dermatomyositis patients were analyzed. RESULTS CD4+ and CD8+ T-cells were scattered within the endomysium in 50% of anti-HMGCR biopsies. All anti-HMGCR biopsies included increased endomysial and/or perivascular CD163+ M2 macrophages; CD11c+ M1 macrophages were present in 18.8%. CD123+ plasmacytoid dendritic (PD) cells were observed within the endomysium and perivascular spaces in 62.5% of anti-HMGCR biopsies. Membrane attack complex was deposited on endothelial cells in 50% and on the sarcolemma of nonnecrotic muscle fibers in 85.7% of anti-HMGCR cases. Major histocompatibility complex class I antigen was up-regulated in 87.5% of the anti-HMGCR cases. CONCLUSIONS In addition to necrosis, scattered CD4+, CD8+, and PD cells are characteristic of anti-HMGCR myopathy. Predominant M2 polarization suggests infiltrating macrophages are more likely to be involved with tissue repair than destruction.
Collapse
Affiliation(s)
- Tae Chung
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lisa Christopher-Stine
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Julie J Paik
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrea Corse
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew L Mammen
- Muscle Disease Unit, Laboratory of Muscle Stem Cells and Gene Expression, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Drive, Room 1146, Building 50, MSC 8024, Bethesda, Maryland, 20892, USA
| |
Collapse
|
35
|
Graça CR, Kouyoumdjian JA. Expressão de antígenos MHC classe I e de células CD4 e CD8 na polimiosite e dermatomiosite. REVISTA BRASILEIRA DE REUMATOLOGIA 2015; 55:203-8. [DOI: 10.1016/j.rbr.2014.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/21/2014] [Accepted: 10/06/2014] [Indexed: 10/24/2022] Open
|
36
|
Liu X, Wu G, Shi D, Zhu R, Zeng H, Cao B, Huang M, Liao H. Effects of nitric oxide on notexin-induced muscle inflammatory responses. Int J Biol Sci 2015; 11:156-67. [PMID: 25561898 PMCID: PMC4279091 DOI: 10.7150/ijbs.10283] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/25/2014] [Indexed: 11/29/2022] Open
Abstract
Excessive inflammatory response may delay the regeneration and damage the normal muscle fibers upon myoinjury. It would be important to be able to attenuate the inflammatory response and decrease inflammatory cells infiltration in order to improve muscle regeneration formation, resulting in better muscle functional recovery after myoinjury. This study was undertaken to explore the role of Nitric oxide (NO) during skeletal muscle inflammatory process, using a mouse model of Notexin induced myoinjury. Intramuscular injection (tibialis anterior, TA) of Notexin was performed for preparing mice myoinjury. NO synthase inhibitor (L-NAME) or NO donor (SNP) was intraperitoneally injected into model mice. On day 4 and 7 post-injury, expression of muscle-autoantigens and toll-like receptors (TLRs) was evaluated from muscle tissue by qRT-PCR and Western Blot; the intramuscular infiltration of monocytes/macrophage (CD11b+ or F4/80+ cells), CD8+ T cell (CD3ε+CD8α+), apoptotic cell (CD11b+caspase3+), and MHC-I molecule H-2Kb-expressing myofibers in damaged muscle were assessed by imunoflourecence analysis; the mRNAs expression of cytokines and chemokines associated with the preferential biological role during the muscle damage-induced inflammation response, were assessed by qRT-PCR. We detected the reduced monocytes/macrophages infiltration, and increased apoptotic cells in the damaged muscle treated with SNP comparing to untreatment. As well, SNP treatment down-regulated mRNA and protein levels of muscle autoantigens, TLR3, and mRNA levels of TNF-α, IL-6, MCP-1, MCP-3, and MIP-1α in damaged muscle. On the contrary, L-NAME induced more severe intramuscular infiltration of inflammatory cells, and mRNA level elevation of the above inflammatory mediators. Notably, we observed an increased number of MHC-I (H2-Kb) positive new myofibers, and of the infiltrated CD8+ T cells in damaged muscle at the day 7 after L-NAME treatment. The result herein shows that, NO can act as an endogenous anti-inflammatory molecule during the ongoing muscle inflammation. Our finding may provide new insight to optimize NO-based therapies for improving muscle regeneration after myoinjury.
Collapse
Affiliation(s)
- XingHui Liu
- 1. Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515 China
| | - Gang Wu
- 2. Department of Emergency, NanFang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - DanDan Shi
- 1. Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515 China
| | - Rong Zhu
- 1. Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515 China
| | - HuiJun Zeng
- 1. Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515 China
| | - Biao Cao
- 1. Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515 China
| | - MeiXian Huang
- 1. Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515 China
| | - Hua Liao
- 1. Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515 China
| |
Collapse
|
37
|
Aouizerate J, De Antonio M, Bassez G, Gherardi RK, Berenbaum F, Guillevin L, Berezne A, Valeyre D, Maisonobe T, Dubourg O, Cosnes A, Benveniste O, Authier FJ. Myofiber HLA-DR expression is a distinctive biomarker for antisynthetase-associated myopathy. Acta Neuropathol Commun 2014; 2:154. [PMID: 25339355 PMCID: PMC4210467 DOI: 10.1186/s40478-014-0154-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 10/11/2014] [Indexed: 12/03/2022] Open
Abstract
Objectives To assess the value of major histocompatibility complex (MHC) class II antigen (HLA-DR) expression to distinguish anti-synthetase myopathy (ASM) from dermatomyositis (DM). Methods Muscle biopsies from patients with ASM (n = 33), DM without anti-synthetase antibodies (ASAb) (n = 17), and normal muscle biopsy (n = 10) were first reviewed. ASAb included anti-Jo1 (26/33), anti-PL12 (4/33), anti-PL7 (2/33), and anti-EJ (1/33). Immunohistochemistry was performed for MHC-I/HLA-ABC, MHC-II/HLA-DR, membrane attack complex (C5b-9), neural cell adhesion molecule (NCAM)/CD56 expression, and inflammatory cell subsets. Twenty-four ASM and 12 DM patients from another center were added for HLA-DR evaluation. Results Ubiquitous myofiber HLA-ABC expression was equally observed in ASM and DM (93.9% vs 100%, NS). In contrast, myofiber HLA-DR expression was found in 27/33 (81.8%) ASM (anti-Jo1: 23/26, 88.5%; others: 5/7, 71.4%) vs 4/17 (23.5%) DM patients (p < 0.001). HLA-DR was perifascicular in ASM, a pattern not observed in DM. In addition, C5b-9 deposition was observed on sarcolemma of non-necrotic perifascicular fibers in ASM, while, in DM, C5b-9was mainly detected in endomysial capillaries. CD8 cells were more abundant in ASM than in DM (p < 0.05), and electively located in perimysium or in perifascular endomysium. HLA-DR expression correlated positively with the CD8+ cells infiltrates. Strictly similar observations were made in the confirmatory study. Conclusion ASM is characterized by strong myofiber MHC-II/HLA-DR expression with a unique perifascicular pattern, not described so far. HLA-DR detection must be included for routine myopathological diagnosis of inflammatory/dysimmune myopathies. HLA-DR expression in ASM may indicate a specific immune mechanism, possibly involving IFNγ. Electronic supplementary material The online version of this article (doi:10.1186/s40478-014-0154-2) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Mahmood OA, Jiang X, Zhang Q. Limb-girdle muscular dystrophy subtypes: First-reported cohort from northeastern China. Neural Regen Res 2014; 8:1907-18. [PMID: 25206500 PMCID: PMC4145977 DOI: 10.3969/j.issn.1673-5374.2013.20.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 06/25/2013] [Indexed: 12/02/2022] Open
Abstract
The relative frequencies of different subtypes of limb-girdle muscular dystrophies vary widely among different populations. We estimated the percentage of limb-girdle muscular dystrophy subtypes in Chinese people based on 68 patients with limb-girdle muscular dystrophy from the Myology Clinic, Neurology Department, First Hospital of Jilin University, China. A diagnosis of calpainopathy was made in 12 cases (17%), and dysferlin deficiency in 10 cases (15%). Two biopsies revealed α-sarcoglycan deficiency (3%), and two others revealed a lack of caveolin-3 (3%). A diagnosis of unclassified limb-girdle muscular dystrophy was made in the remaining patients (62%). The appearances of calpain 3- and dysferlin-deficient biopsies were similar, though rimmed vacuoles were unique to dysferlinopathy, while inflammatory infiltrates were present in both these limb-girdle muscular dystrophy type 2D biopsies. Macrophages were detected in seven dysferlinopathy biopsies. The results of this study suggest that the distribution of limb-girdle muscular dystrophy subtypes in the Han Chinese population is similar to that reported in the West. The less necrotic, regenerating and inflammatory appearance of limb-girdle muscular dystrophy type 2A, but with more lobulated fibers, supports the idea that calpainopathy is a less active, but more chronic disease than dysferlinopathy. Unusual features indicated an extended limb-girdle muscular dystrophy disease spectrum. The use of acid phosphatase stain should be considered in suspected dysferlinopathies. To the best of our knowledge, this is the first report to define the relative proportions of the various forms of limb-girdle muscular dystrophy in China, based on protein testing.
Collapse
Affiliation(s)
- Omar Abdulmonem Mahmood
- Department of Neurology, Affiliated First Hospital of Jilin University, Changchun 130021, Jilin Province, China ; Department of Neuromedicine, Mosul Medical College, 41002, Mosul, Iraq
| | - Xinmei Jiang
- Department of Neurology, Affiliated First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Qi Zhang
- Department of Neurology, Affiliated First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
39
|
Rodríguez Cruz PM, Luo YB, Miller J, Junckerstorff RC, Mastaglia FL, Fabian V. An analysis of the sensitivity and specificity of MHC-I and MHC-II immunohistochemical staining in muscle biopsies for the diagnosis of inflammatory myopathies. Neuromuscul Disord 2014; 24:1025-35. [PMID: 25153265 DOI: 10.1016/j.nmd.2014.06.436] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/17/2014] [Accepted: 06/20/2014] [Indexed: 01/09/2023]
Abstract
Although there have been several previous reports of immunohistochemical staining for MHC antigens in muscle biopsies, there appears to be a lack of consensus about its routine use in the diagnostic evaluation of biopsies from patients with suspected inflammatory myopathy. Positive MHC-I staining is nonspecific but is widely used as a marker for inflammatory myopathy, whilst the role of MHC-II staining is not clearly defined. We investigated the sensitivity and specificity of MHC-I and MHC-II immunostaining for the diagnosis of inflammatory myopathy in a large group of biopsies from a single reference laboratory. Positive staining for MHC-I was found to have a high sensitivity in biopsies from patients with inflammatory myopathy but a very low specificity, as it was also common in other non-inflammatory myopathies and neurogenic disorders. On the other hand, MHC-II positivity had a much higher specificity in all major subgroups of inflammatory myopathy, especially inclusion body myositis. The findings indicate that the combination of MHC-I and MHC-II staining results in a higher degree of specificity for the diagnosis of inflammatory myopathy and that in biopsies with inflammation, positive MHC-II staining strongly supports the diagnosis of an immune-mediated myopathy. We recommend that immunohistochemical staining for both MHC-I and MHC-II should be included routinely in the diagnostic evaluation of muscle biopsies from patients with suspected inflammatory myopathy. However, as the sensitivity and interpretation of MHC staining may depend on the technique used, further studies are needed to compare procedures in different centres and develop standardised protocols.
Collapse
Affiliation(s)
- Pedro M Rodríguez Cruz
- Centre for Neuromuscular and Neurological Disorders, Western Australian Neuroscience Research Institute, Perth, Australia; Department of Neurology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Yue-Bei Luo
- Centre for Neuromuscular and Neurological Disorders, Western Australian Neuroscience Research Institute, Perth, Australia; Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - James Miller
- Department of Neurology, Royal Victoria Infirmary, Newcastle-upon-Tyne, United Kingdom
| | - Reimar C Junckerstorff
- Section of Neuropathology, Department of Anatomical Pathology, PathWest Laboratory Medicine WA, Royal Perth Hospital, Perth, Western Australia, Australia; School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Western Australia, Australia
| | - Frank L Mastaglia
- Centre for Neuromuscular and Neurological Disorders, Western Australian Neuroscience Research Institute, Perth, Australia; Institute for Immunology & Infectious Diseases, Murdoch University, Perth, Australia.
| | - Victoria Fabian
- Section of Neuropathology, Department of Anatomical Pathology, PathWest Laboratory Medicine WA, Royal Perth Hospital, Perth, Western Australia, Australia; School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
40
|
Mamyrova G, Katz JD, Jones RV, Targoff IN, Lachenbruch PA, Jones OY, Miller FW, Rider LG. Clinical and laboratory features distinguishing juvenile polymyositis and muscular dystrophy. Arthritis Care Res (Hoboken) 2014; 65:1969-75. [PMID: 23925923 DOI: 10.1002/acr.22088] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 07/26/2013] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To differentiate juvenile polymyositis (PM) and muscular dystrophy, both of which may present with chronic muscle weakness and inflammation. METHODS We studied 39 patients with probable or definite juvenile PM and 9 patients with muscular dystrophies who were initially misdiagnosed as having juvenile PM. Differences in demographic, clinical, and laboratory results; outcomes; and treatment responses were evaluated by Fisher's exact and rank sum tests. Random forests classification analysis and logistic regression were performed to examine significant differences in multivariable models. RESULTS Clinical features and serum muscle enzyme levels were similar between juvenile PM and dystrophy patients, except 89% of dystrophy patients had muscle atrophy compared with 46% of juvenile PM patients. Dystrophy patients had a longer delay to diagnosis (median 12 versus 4 months) and were less frequently hospitalized than juvenile PM patients (22% versus 74%). No dystrophy patients, but 54% of juvenile PM patients, had a myositis autoantibody. Dystrophy patients more frequently had myopathic features on muscle biopsy, including diffuse variation of myofiber size, fiber hypertrophy, and myofiber fibrosis (44-100% versus 8-53%). Juvenile PM patients more frequently had complex repetitive discharges on electromyography and a complete response to treatment with prednisone or other immunosuppressive agents than dystrophy patients (44% versus 0%). Random forests analysis revealed that the most important features in distinguishing juvenile PM from dystrophies were myositis autoantibodies, clinical muscle atrophy, and myofiber size variation on biopsy. Logistic regression confirmed muscle atrophy, myofiber fibrosis, and hospitalization as significant predictors. CONCLUSION Muscular dystrophy can present similarly to juvenile PM. Selected clinical and laboratory features are helpful in combination in distinguishing these conditions.
Collapse
|
41
|
Abstract
The distal myopathies are a heterogeneous group of genetic disorders defined by a predominant distal weakness at onset or throughout the evolution of the disease and by pathological data supporting a myopathic process. The number of genes associated with distal myopathies continues to increase. Fourteen distinct distal myopathies are currently defined by their gene and causative mutations, compared to just five entities delineated on clinical grounds two decades ago. The known proteins affected in the distal myopathies are of many types and include a significant number of sarcomeric proteins. The useful indicators for clinicians to direct towards a correct molecular diagnosis are the mode of inheritance, the age at onset, the pattern of muscle involvement, the serum creatine kinase level and the muscle pathology findings. This review gives an overview of the clinical and genetic characteristics of the currently identified distal myopathies with emphasis on some recent findings.
Collapse
|
42
|
Overexpression of MHC class I in muscle of lymphocyte-deficient mice causes a severe myopathy with induction of the unfolded protein response. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:893-904. [PMID: 23850081 DOI: 10.1016/j.ajpath.2013.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/10/2013] [Accepted: 06/04/2013] [Indexed: 12/20/2022]
Abstract
Muscle fibers do not normally express major histocompatibility complex class I (MHC-I) molecules, and their reexpression is a hallmark of inflammatory myopathies. It has been shown in mice that overexpression of MHC-I induces a poorly inflammatory myositis accompanied by the unfolded protein response (UPR), but it is unclear whether it is attributable to T-cell-mediated MHC-I-dependent immune responses or to MHC-I forced expression per se. Indeed, besides presenting antigenic peptides to CD8(+) T cells, MHC-I may also possibly exert nonimmunologic, yet poorly understood pathogenic effects. Thus, we investigated the pathogenicity of MHC-I expression in muscle independently of its immune functions. HT transgenic mice that conditionally overexpress H-2K(b) in muscle were bred to an immunodeficient Rag2(-/-) background. The muscle proteome was analyzed by label-free high-resolution protein quantitation and Western blot. Despite the absence of adaptive immunity, HT Rag2(-/-) mice developed a very severe myopathy associated with the cytoplasmic accumulation of H-2K(b) molecules. The UPR was manifest by up-regulation of characteristic proteins. In humans, we found that HLA class I molecules not only were expressed at the sarcolemma but also could accumulate intracellularly in some patients with inclusion body myositis. Accordingly, the UPR was triggered as a function of the degree of HLA accumulation in myofibers. Hence, reexpression of MHC-I in normally negative myofibers exerts pathogenic effects independently of its immune function.
Collapse
|
43
|
Muscular dystrophy in dysferlin-deficient mouse models. Neuromuscul Disord 2013; 23:377-87. [DOI: 10.1016/j.nmd.2013.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/09/2013] [Accepted: 02/05/2013] [Indexed: 11/17/2022]
|
44
|
Mariano A, Henning A, Han R. Dysferlin-deficient muscular dystrophy and innate immune activation. FEBS J 2013; 280:4165-76. [PMID: 23527661 DOI: 10.1111/febs.12261] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/06/2013] [Accepted: 03/20/2013] [Indexed: 11/27/2022]
Abstract
Cells encounter many physical, chemical and biological stresses that perturb plasma membrane integrity, warranting an immediate membrane repair response to regain cell homeostasis. Failure to respond properly to such perturbation leads to individual cell death, which may also produce systemic influence by triggering sterile immunological responses. In this review, we discuss recent progress on understanding the mechanisms underlying muscle cell membrane repair and the potential mediators of innate immune activation when the membrane repair system is defective, specifically focusing on pathology associated with dysferlin deficiency.
Collapse
Affiliation(s)
- Andrew Mariano
- Department of Cell and Molecular Physiology, Loyola University Chicago Health Science Division, Maywood, IL 60153, USA
| | | | | |
Collapse
|
45
|
Abstract
The noninflammatory myopathies are a diverse group of diseases, some of which may mimic the autoimmune-mediated idiopathic inflammatory myopathies in their clinical presentation. They include certain metabolic, toxic, and infectious myopathies, as well as muscular dystrophies. In addition to muscle weakness, these forms of myopathy may present with exercise intolerance and muscle pain. Special testing techniques are often required to establish the diagnosis. This review focuses on those noninflammatory myopathies that should be included in the differential diagnosis of idiopathic inflammatory myopathy.
Collapse
Affiliation(s)
- Alan N Baer
- Division of Rheumatology, Johns Hopkins University School of Medicine, Suite 4000, Mason Lord Center Tower, 5200 Eastern Avenue, Baltimore, MD 21224, USA.
| | | |
Collapse
|
46
|
de Visser M. The efficacy of rituximab in refractory myositis: the jury is still out. ARTHRITIS AND RHEUMATISM 2013; 65:303-6. [PMID: 23125047 DOI: 10.1002/art.37758] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 10/11/2012] [Indexed: 11/08/2022]
|
47
|
Nalini A, Narayanappa G, Nagappa M. Major histocompatibility complex and inflammatory cell subtype expression in inflammatory myopathies and muscular dystrophies. Neurol India 2013; 61:614-21. [DOI: 10.4103/0028-3886.125264] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
48
|
Kobayashi K, Izawa T, Kuwamura M, Yamate J. Dysferlin and animal models for dysferlinopathy. J Toxicol Pathol 2012; 25:135-47. [PMID: 22907980 PMCID: PMC3392904 DOI: 10.1293/tox.25.135] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 03/16/2012] [Indexed: 12/27/2022] Open
Abstract
Dysferlin (DYSF) is involved in the membrane-repair process, in the intracellular vesicle system and in T-tubule development in skeletal muscle. It interacts with mitsugumin 53, annexins, caveolin-3, AHNAK, affixin, S100A10, calpain-3, tubulin and dihydropyridine receptor. Limb-girdle muscular dystrophy 2B (LGMD2B) and Miyoshi myopathy (MM) are muscular dystrophies associated with recessively inherited mutations in the DYSF gene. The diseases are characterized by weakness and muscle atrophy that progress slowly and symmetrically in the proximal muscles of the limb girdles. LGMD2B and MM, which are collectively termed “dysferlinopathy”, both lead to abnormalities in vesicle traffic and membrane repair at the plasma membrane in muscle fibers. SJL/J (SJL) and A/J mice are naturally occurring animal models for dysferlinopathy. Since there has been no an approach to therapy for dysferlinopathy, the immediate development of a therapeutic method for this genetic disorder is desirable. The murine models are useful in verification experiments for new therapies and they are valuable tools for identifying factors that accelerate dystrophic changes in skeletal muscle. It could be possible that the genetic or immunological background in SJL or A/J mice could modify muscle damage in experiments involving these models, because SJL and A/J mice show differences in the progress and prevalent sites of skeletal muscle lesions as well as in the gene-expression profiles of their skeletal muscle. In this review, we provide up-to-date information on the function of dysferlin, the development of possible therapies for muscle dystrophies (including dysferlinopathy) and the detection of new therapeutic targets for dysferlinopathy by means of experiments using animal models for dysferlinopathy.
Collapse
|
49
|
Myopathy caused by anoctamin 5 mutations and necrotizing vasculitis. J Neurol 2012; 259:1988-90. [DOI: 10.1007/s00415-012-6502-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 03/26/2012] [Accepted: 03/27/2012] [Indexed: 10/28/2022]
|
50
|
Farini A, Sitzia C, Navarro C, D'Antona G, Belicchi M, Parolini D, Del Fraro G, Razini P, Bottinelli R, Meregalli M, Torrente Y. Absence of T and B lymphocytes modulates dystrophic features in dysferlin deficient animal model. Exp Cell Res 2012; 318:1160-74. [PMID: 22465227 DOI: 10.1016/j.yexcr.2012.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 03/12/2012] [Accepted: 03/15/2012] [Indexed: 12/13/2022]
Abstract
Dysferlin mutations cause muscular dystrophy (dysferlinopathy) characterized by adult onset muscle weakness, high serum creatine kinase levels, attenuation of muscle regeneration and a prominent inflammatory infiltrate. In order to verify the role of lymphocytes and immune cells on this disease, we generated the Scid/A/J transgenic mice and compared these animals with the age-matched A/J mice. The absence of T and B lymphocytes in this animal model of dysferlinopathy resulted in an improvement of the muscle regeneration. Scid/A/J mice showed increased specific force in the myosin heavy chain 2A-expressing fibers of the diaphragm and abdominal muscles. Moreover, a partial reduction in complement deposition was observed together with a diminution in pro-inflammatory M1 macrophages. Consistent with this model, T and B lymphocytes seem to have a role in the muscle damaging immune response. The knowledge of the involvement of immune system in the development of dysferlinopathies could represent an important tool for their rescuing. By studying Scid/blAJ mice, we showed that it could be possible to modulate the pathological symptoms of these diseases by interfering with different components of the immune system.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/pathology
- Complement Membrane Attack Complex/metabolism
- Disease Models, Animal
- Dysferlin
- Dystrophin/metabolism
- Endothelial Cells/pathology
- Female
- Hybridization, Genetic
- In Vitro Techniques
- Inflammation
- Laminin/metabolism
- Macrophages/pathology
- Male
- Membrane Proteins/deficiency
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, SCID
- Muscle Contraction
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Animal/pathology
- Regeneration
- Sarcoglycans/metabolism
- Sarcolemma/genetics
- Sarcolemma/metabolism
- Sarcolemma/pathology
- T-Lymphocytes/pathology
Collapse
Affiliation(s)
- Andrea Farini
- Stem Cell Laboratory, Department of Neurological Sciences, Centro Dino Ferrari, Università degli Studi di Milano, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico di Milano, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|