1
|
Costa FV, Zabegalov KN, Kolesnikova TO, de Abreu MS, Kotova MM, Petersen EV, Kalueff AV. Experimental models of human cortical malformations: from mammals to 'acortical' zebrafish. Neurosci Biobehav Rev 2023; 155:105429. [PMID: 37863278 DOI: 10.1016/j.neubiorev.2023.105429] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
Human neocortex controls and integrates cognition, emotions, perception and complex behaviors. Aberrant cortical development can be triggered by multiple genetic and environmental factors, causing cortical malformations. Animal models, especially rodents, are a valuable tool to probe molecular and physiological mechanisms of cortical malformations. Complementing rodent studies, the zebrafish (Danio rerio) is an important model organism in biomedicine. Although the zebrafish (like other fishes) lacks neocortex, here we argue that this species can still be used to model various aspects and brain phenomena related to human cortical malformations. We also discuss novel perspectives in this field, covering both advantages and limitations of using mammalian and zebrafish models in cortical malformation research. Summarizing mounting evidence, we also highlight the importance of translationally-relevant insights into the pathogenesis of cortical malformations from animal models, and discuss future strategies of research in the field.
Collapse
Affiliation(s)
- Fabiano V Costa
- World-class Research Center "Center for Personalized Medicine", Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | - Konstantin N Zabegalov
- Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | - Tatiana O Kolesnikova
- World-class Research Center "Center for Personalized Medicine", Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | | | - Maria M Kotova
- World-class Research Center "Center for Personalized Medicine", Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | | | - Allan V Kalueff
- World-class Research Center "Center for Personalized Medicine", Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia; Ural Federal University, Yekaterinburg, Russia; Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory, Russia.
| |
Collapse
|
2
|
Wang XY, Yu J, Zhang Y, Zhang FY, Liu KJ, Xiang B. Phenylephrine alleviates 131I damage in submandibular gland through promoting endogenous stem cell regeneration via lissencephaly-1 upregulation. Toxicol Appl Pharmacol 2020; 396:114999. [PMID: 32278511 DOI: 10.1016/j.taap.2020.114999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/26/2020] [Accepted: 04/05/2020] [Indexed: 01/07/2023]
Abstract
Thyroid cancer is the most common endocrine malignancy. 131I ablation therapy is an effective treatment for patients with differentiated thyroid cancer (DTC) but frequently causes radiation damage in salivary glands (SGs). Stem cell-based regenerative therapy has been found to reduce radiation sialadenitis. We hypothesize that microtubule motor-regulating protein lissencephaly-1 (LIS1) may be a key stem cell regulator responsible for its efficacy and that upregulating LIS1 would decrease131I-induced radiation sialadenitis. Here, we report that LIS1 was reduced by 131I in submandibular glands (SMGs) of rats, using both proteomic analysis and Western blot approach. Moreover, the levels of LIS1-Sca-1 and LIS1-SOX2 were downregulated by 131I together with the decrease of LIS1. In contrast, phenylephrine pretreatment enhanced LIS1 and improved the co-expressions and co-localizations of LIS1-Sca-1 and LIS1-SOX2 in 131I-irradiated SMGs. Since Sca-1 and SOX2 are the established stem cell biomarkers in salivary gland, our findings demonstrate that LIS1 may be a potential target for regulating stem cell maintenance in irradiated SGs. Importantly, phenylephrine may have the ability to promote endogenous stem cell regeneration in SMGs via upregulating the LIS1/Sca-1 and LIS1/SOX2 signaling pathways, suggesting that phenylephrine application before 131I ablation therapy may provide a practical and effective way to prevent radiation sialadenitis for DTC patients.
Collapse
Affiliation(s)
- Xin Yue Wang
- Laboratory of Oral and Maxillofacial Disease, Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jing Yu
- Department of Nuclear Medicine, Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yan Zhang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Beijing, China
| | - Fu Yin Zhang
- Department of Oral and Maxillofacial Surgery, Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, USA
| | - Bin Xiang
- Laboratory of Oral and Maxillofacial Disease, Second Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
3
|
Shahsavani M, Pronk RJ, Falk R, Lam M, Moslem M, Linker SB, Salma J, Day K, Schuster J, Anderlid BM, Dahl N, Gage FH, Falk A. An in vitro model of lissencephaly: expanding the role of DCX during neurogenesis. Mol Psychiatry 2018; 23:1674-1684. [PMID: 28924182 DOI: 10.1038/mp.2017.175] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 06/09/2017] [Accepted: 07/12/2017] [Indexed: 12/22/2022]
Abstract
Lissencephaly comprises a spectrum of brain malformations due to impaired neuronal migration in the developing cerebral cortex. Classical lissencephaly is characterized by smooth cerebral surface and cortical thickening that result in seizures, severe neurological impairment and developmental delay. Mutations in the X-chromosomal gene DCX, encoding doublecortin, is the main cause of classical lissencephaly. Much of our knowledge about DCX-associated lissencephaly comes from post-mortem analyses of patient's brains, mainly since animal models with DCX mutations do not mimic the disease. In the absence of relevant animal models and patient brain specimens, we took advantage of induced pluripotent stem cell (iPSC) technology to model the disease. We established human iPSCs from two males with mutated DCX and classical lissencephaly including smooth brain and abnormal cortical morphology. The disease was recapitulated by differentiation of iPSC into neural cells followed by expression profiling and dissection of DCX-associated functions. Here we show that neural stem cells, with absent or reduced DCX protein expression, exhibit impaired migration, delayed differentiation and deficient neurite formation. Hence, the patient-derived iPSCs and neural stem cells provide a system to further unravel the functions of DCX in normal development and disease.
Collapse
Affiliation(s)
- M Shahsavani
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - R J Pronk
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - R Falk
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - M Lam
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - M Moslem
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - S B Linker
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - J Salma
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - K Day
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - J Schuster
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - B-M Anderlid
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - N Dahl
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - F H Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - A Falk
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
Two distinct domains of Flo8 activator mediates its role in transcriptional activation and the physical interaction with Mss11. Biochem Biophys Res Commun 2014; 449:202-7. [DOI: 10.1016/j.bbrc.2014.04.161] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 04/30/2014] [Indexed: 11/23/2022]
|
5
|
Fry AE, Cushion TD, Pilz DT. The genetics of lissencephaly. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2014; 166C:198-210. [DOI: 10.1002/ajmg.c.31402] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Abstract
Disruptions to LIS1 gene expression result in neuronal migration abnormalities. LIS1 heterozygosity is a significant cause of lissencephaly, while overexpression has recently been noted in cases of microcephaly, ventriculomegaly, and dysgenesis of the corpus callosum with normal cortical gyration. We report a partial LIS1 duplication in a child with microcephaly, neurodevelopmental delays, and profound white matter atrophy in the absence of overt lissencephaly. The duplicated genetic segment was contained entirely within the first intron of LIS1, a segment that often contains inducers of transcription. Normal gyral patterns with mild volume loss were observed at birth. Follow-up cranial imaging revealed further white matter loss, diminished sulcation, and ventriculomegaly, suggesting expanding hydrocephalus ex vacuo. The radiographic pattern has not been documented in the presence of a LIS1 gene abnormality, and suggests that altered expression of LIS1 has wider phenotypic manifestations than currently defined.
Collapse
Affiliation(s)
- Jason P Lockrow
- Department of Neurosciences (Neurology), Medical University of South Carolina, Charleston, SC, USA
| | | | | | | | | |
Collapse
|
7
|
Drusenheimer N, Nayernia K, Meinhardt A, Jung B, Arnold HH, Engel W. Overexpression of Lis1 in Different Stages of Spermatogenesis Does Not Result in an Aberrant Phenotype. Cytogenet Genome Res 2011; 134:269-82. [DOI: 10.1159/000329482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2011] [Indexed: 01/15/2023] Open
|
8
|
Genetic basis in epilepsies caused by malformations of cortical development and in those with structurally normal brain. Hum Genet 2009; 126:173-93. [PMID: 19536565 DOI: 10.1007/s00439-009-0702-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 06/02/2009] [Indexed: 01/10/2023]
Abstract
Epilepsy is the most common neurological disorder affecting young people. The etiologies are multiple and most cases are sporadic. However, some rare families with Mendelian inheritance have provided evidence of genes' important role in epilepsy. Two important but apparently different groups of disorders have been extensively studied: epilepsies associated with malformations of cortical development (MCDs) and epilepsies associated with a structurally normal brain (or with minimal abnormalities only). This review is focused on clinical and molecular aspects of focal cortical dysplasia, polymicrogyria, periventricular nodular heterotopia, subcortical band heterotopia, lissencephaly and schizencephaly as examples of MCDs. Juvenile myoclonic epilepsy, childhood absence epilepsy, some familial forms of focal epilepsy and epilepsies associated with febrile seizures are discussed as examples of epileptic conditions in (apparently) structurally normal brains.
Collapse
|
9
|
Ben-Ari Y. Neuro-archaeology: pre-symptomatic architecture and signature of neurological disorders. Trends Neurosci 2008; 31:626-36. [DOI: 10.1016/j.tins.2008.09.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 09/26/2008] [Accepted: 09/26/2008] [Indexed: 01/16/2023]
|
10
|
Leventer RJ, Guerrini R, Dobyns WB. Malformations of cortical development and epilepsy. DIALOGUES IN CLINICAL NEUROSCIENCE 2008. [PMID: 18472484 PMCID: PMC3181860 DOI: 10.31887/dcns.2008.10.1/rjleventer] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Malformations of cortical development (MCDs) are macroscopic or microscopic abnormalities of the cerebral cortex that arise as a consequence of an interruption to the normal steps of formation of the cortical plate. The human cortex develops its basic structure during the first two trimesters of pregnancy as a series of overlapping steps, beginning with proliferation and differentiation of neurons, which then migrate before finally organizing themselves in the developing cortex. Abnormalities at any of these stages, be they environmental or genetic in origin, may cause disruption of neuronal circuitry and predispose to a variety of clinical consequences, the most common of which is epileptic seizures, A large number of MCDs have now been described, each with characteristic pathological, clinical, and imaging features. The causes of many of these MCDs have been determined through the study of affected individuals, with many MCDs now established as being secondary to mutations in cortical development genes. This review will highlight the best-known of the human cortical malformations associated with epilepsy. The pathological, clinical, imaging, and etioiogic features of each MCD will be summarized, with representative magnetic resonance imaging (MRI) images shown for each MCD, The malformations tuberous sclerosis, focal cortical dysplasia, hemimegalencephaiy, classical iissencephaly, subcortical band heterotopia, periventricular nodular heterotopia, polymicrogyria, and schizencephaly will be presented.
Collapse
Affiliation(s)
- Richard J Leventer
- Children's Neuroscience Centre & Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia.
| | | | | |
Collapse
|
11
|
O’Driscoll M. Haploinsufficiency of DNA Damage Response Genes and their Potential Influence in Human Genomic Disorders. Curr Genomics 2008; 9:137-46. [PMID: 19440510 PMCID: PMC2679649 DOI: 10.2174/138920208784340795] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 03/31/2008] [Accepted: 03/31/2008] [Indexed: 11/22/2022] Open
Abstract
Genomic disorders are a clinically diverse group of conditions caused by gain, loss or re-orientation of a genomic region containing dosage-sensitive genes. One class of genomic disorder is caused by hemizygous deletions resulting in haploinsufficiency of a single or, more usually, several genes. For example, the heterozygous contiguous gene deletion on chromosome 22q11.2 causing DiGeorge syndrome involves at least 20-30 genes. Determining how the copy number variation (CNV) affects human variation and contributes to the aetiology and progression of various genomic disorders represents important questions for the future. Here, I will discuss the functional significance of one form of CNV, haploinsufficiency (i.e. loss of a gene copy), of DNA damage response components and its association with certain genomic disorders. There is increasing evidence that haploinsufficiency for certain genes encoding key players in the cells response to DNA damage, particularly those of the Ataxia Telangiectasia and Rad3-related (ATR)-pathway, has a functional impact. I will review this evidence and present examples of some well known clinically similar genomic disorders that have recently been shown to be defective in the ATR-dependent DNA damage response. Finally, I will discuss the potential implications of a haploinsufficiency-induced defective DNA damage response for the clinical management of certain human genomic disorders.
Collapse
Affiliation(s)
- Mark O’Driscoll
- Genome Damage & Stability Centre, University of Sussex, Falmer, Brighton, East Sussex, BN1 9RQ, UK
| |
Collapse
|
12
|
Vergnolle MAS, Taylor SS. Cenp-F links kinetochores to Ndel1/Nde1/Lis1/dynein microtubule motor complexes. Curr Biol 2007; 17:1173-9. [PMID: 17600710 DOI: 10.1016/j.cub.2007.05.077] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 05/30/2007] [Accepted: 05/31/2007] [Indexed: 10/23/2022]
Abstract
Cenp-F is a nuclear matrix component that localizes to kinetochores during mitosis and is then rapidly degraded after mitosis [1]. Unusually, both the localization and degradation of Cenp-F require it to be farnesylated [2]. Five studies recently demonstrated that Cenp-F is required for kinetochore-microtubule interactions and spindle checkpoint function [3-7]; however, the underlying molecular mechanisms have yet to be defined. Here, we show that Cenp-F interacts with Ndel1 and Nde1, two human NudE-related proteins implicated in regulating Lis1/Dynein motor complexes (reviewed in [8]). We show that Ndel1, Nde1, and Lis1 localize to kinetochores in a Cenp-F-dependent manner. In addition, Nde1, but not Ndel1, is required for kinetochore localization of Dynein. Accordingly, suppression of Nde1 inhibits metaphase chromosome alignment and activates the spindle checkpoint. By contrast, inhibition of Ndel1 results in malorientations that are not detected by the spindle checkpoint; Ndel1-deficient cells consequently enter anaphase in a timely manner but lagging chromosomes then manifest. A major function of Cenp-F, therefore, is to link the Ndel1/Nde1/Lis1/Dynein pathway to kinetochores. Furthermore, our data demonstrate that Ndel1 and Nde1 play distinct roles to ensure chromosome alignment and segregation.
Collapse
Affiliation(s)
- Maïlys A S Vergnolle
- Faculty of Life Sciences, Michael Smith Building, Oxford Road, University of Manchester, Manchester, UK
| | | |
Collapse
|
13
|
O'Driscoll M, Dobyns WB, van Hagen JM, Jeggo PA. Cellular and clinical impact of haploinsufficiency for genes involved in ATR signaling. Am J Hum Genet 2007; 81:77-86. [PMID: 17564965 PMCID: PMC1950915 DOI: 10.1086/518696] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 04/05/2007] [Indexed: 02/03/2023] Open
Abstract
Ataxia telangiectasia and Rad3-related (ATR) protein, a kinase that regulates a DNA damage-response pathway, is mutated in ATR-Seckel syndrome (ATR-SS), a disorder characterized by severe microcephaly and growth delay. Impaired ATR signaling is also observed in cell lines from additional disorders characterized by microcephaly and growth delay, including non-ATR-SS, Nijmegen breakage syndrome, and MCPH1 (microcephaly, primary autosomal recessive, 1)-dependent primary microcephaly. Here, we examined ATR-pathway function in cell lines from three haploinsufficient contiguous gene-deletion disorders--a subset of blepharophimosis-ptosis-epicanthus inversus syndrome, Miller-Dieker lissencephaly syndrome, and Williams-Beuren syndrome--in which the deleted region encompasses ATR, RPA1, and RFC2, respectively. These three genes function in ATR signaling. Cell lines from these disorders displayed an impaired ATR-dependent DNA damage response. Thus, we describe ATR signaling as a pathway unusually sensitive to haploinsufficiency and identify three further human disorders displaying a defective ATR-dependent DNA damage response. The striking correlation of ATR-pathway dysfunction with the presence of microcephaly and growth delay strongly suggests a causal relationship.
Collapse
Affiliation(s)
- Mark O'Driscoll
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK.
| | | | | | | |
Collapse
|
14
|
Taya S, Shinoda T, Tsuboi D, Asaki J, Nagai K, Hikita T, Kuroda S, Kuroda K, Shimizu M, Hirotsune S, Iwamatsu A, Kaibuchi K. DISC1 regulates the transport of the NUDEL/LIS1/14-3-3epsilon complex through kinesin-1. J Neurosci 2007; 27:15-26. [PMID: 17202468 PMCID: PMC6672274 DOI: 10.1523/jneurosci.3826-06.2006] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Disrupted-In-Schizophrenia 1 (DISC1) is a candidate gene for susceptibility to schizophrenia. DISC1 is reported to interact with NudE-like (NUDEL), which forms a complex with lissencephaly-1 (LIS1) and 14-3-3epsilon. 14-3-3epsilon is involved in the proper localization of NUDEL and LIS1 in axons. Although the functional significance of this complex in neuronal development has been reported, the transport mechanism of the complex into axons and their functions in axon formation remain essentially unknown. Here we report that Kinesin-1, a motor protein of anterograde axonal transport, was identified as a novel DISC1-interacting molecule. DISC1 directly interacted with kinesin heavy chain of Kinesin-1. Kinesin-1 interacted with the NUDEL/LIS1/14-3-3epsilon complex through DISC1, and these molecules localized mainly at cell bodies and partially in the distal part of the axons. DISC1 partially colocalized with Kinesin family member 5A, NUDEL, LIS1, and 14-3-3epsilon in the growth cones. The knockdown of DISC1 by RNA interference or the dominant-negative form of DISC1 inhibited the accumulation of NUDEL, LIS1, and 14-3-3epsilon at the axons and axon elongation. The knockdown or the dominant-negative form of Kinesin-1 inhibited the accumulation of DISC1 at the axons and axon elongation. Furthermore, the knockdown of NUDEL or LIS1 inhibited axon elongation. Together, these results indicate that DISC1 regulates the localization of NUDEL/LIS1/14-3-3epsilon complex into the axons as a cargo receptor for axon elongation.
Collapse
Affiliation(s)
- Shinichiro Taya
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| | - Tomoyasu Shinoda
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| | - Daisuke Tsuboi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| | - Junko Asaki
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| | - Kumiko Nagai
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| | - Takao Hikita
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| | - Setsuko Kuroda
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| | - Keisuke Kuroda
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| | - Mariko Shimizu
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| | - Shinji Hirotsune
- Department of Genetic Disease Research, Graduate School of Medicine, Osaka City University, Abeno, Osaka 545-8585, Japan, and
| | | | - Kozo Kaibuchi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| |
Collapse
|
15
|
Lissencephaly type I. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s0072-9752(07)87013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
16
|
Leventer RJ. Genotype-phenotype correlation in lissencephaly and subcortical band heterotopia: the key questions answered. J Child Neurol 2005; 20:307-12. [PMID: 15921231 DOI: 10.1177/08830738050200040701] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lissencephaly and subcortical band heterotopia are closely related cortical malformations and are true disorders of neuronal migration. The genetic basis of approximately 70% of classic lissencephaly and 80% of typical subcortical band heterotopia is known. Most are due to abnormalities within the LIS1 or DCX genes, with abnormalities ranging from single basepair substitutions to contiguous gene deletions. Understanding the genetic basis of these disorders has led to the elucidation of the molecular and developmental mechanisms that are adversely affected. There is a robust correlation between many of the clinical aspects of lissencephaly or subcortical band heterotopia and the type and location of mutations in the affected gene. Using this knowledge, the clinician can predict with some accuracy which gene is likely to be affected based on the clinical and imaging features. This review answers some of the key questions regarding the genotype-phenotype correlation for lissencephaly and subcortical band heterotopia.
Collapse
Affiliation(s)
- Richard Jacob Leventer
- Department of Neurology, Royal Children's Hospital, Murdoch Children's Research Institute, University of Melbourne, Australia.
| |
Collapse
|
17
|
Hayashi MAF, Portaro FCV, Bastos MF, Guerreiro JR, Oliveira V, Gorrão SS, Tambourgi DV, Sant'Anna OA, Whiting PJ, Camargo LM, Konno K, Brandon NJ, Camargo ACM. Inhibition of NUDEL (nuclear distribution element-like)-oligopeptidase activity by disrupted-in-schizophrenia 1. Proc Natl Acad Sci U S A 2005; 102:3828-33. [PMID: 15728732 PMCID: PMC553309 DOI: 10.1073/pnas.0500330102] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recently, nuclear distribution element-like (NUDEL) has been implicated to play a role in lissencephaly and schizophrenia through interactions with the lissencephaly gene 1 (Lis1) and disrupted-in-schizophrenia 1 (DISC1) products, respectively. Interestingly, NUDEL is the same protein as endooligopeptidase A (EOPA), a thiol-activated peptidase involved in conversion and inactivation of a number of bioactive peptides. In this study, we have cloned EOPA from the human brain and have confirmed that it is equivalent to NUDEL, leading us to suggest a single name, NUDEL-oligopeptidase. In the brain, the monomeric form of NUDEL-oligopeptidase is responsible for the peptidase activity whose catalytic mechanism is likely to involve a reactive cysteine, because mutation of Cys-273 fully abolished NUDEL-oligopeptidase activity without disrupting the protein's secondary structure. Cys-273 is very close to the DISC1-binding site on NUDEL-oligopeptidase. Intriguingly, DISC1 inhibits NUDEL-oligopeptidase activity in a competitive fashion. We suggest that the activity of NUDEL-oligopeptidase is under tight regulation through protein-protein interactions and that disruption of these interactions, as postulated in a Scottish DISC1 translocation schizophrenia cohort, may lead to aberrant regulation of NUDEL-oligopeptidase, perhaps providing a substrate for the pathology of schizophrenia.
Collapse
Affiliation(s)
- Mirian A F Hayashi
- Center for Applied Toxinology, Laboratories of Immunogenetics and Immunochemistry, Butantan Institute, and Laboratory of Neurosciences, Universidade Cidade de São Paulo, SP 05503-900, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
One of the most striking 'rags to riches' stories in the protein world is that of 14-3-3, originally identified in 1967 as merely an abundant brain protein. The first clues that 14-3-3 would play an important role in cell biology came almost 25 years later when it was found to interact with various proto-oncogene proteins and signaling proteins. The subsequent identification of 14-3-3 as a phosphoserine/phosphothreonine-binding protein firmly established its importance in cell signaling. 14-3-3 family members are found in all eukaryotes - from plants to mammals - and more than 100 binding partners have been identified to date. The targets of 14-3-3 are found in all subcellular compartments and their functional diversity is overwhelming - they include transcription factors, biosynthetic enzymes, cytoskeletal proteins, signaling molecules, apoptosis factors and tumor suppressors. 14-3-3 binding can alter the localization, stability, phosphorylation state, activity and/or molecular interactions of a target protein. Recent studies now indicate that the serine/threonine protein phosphatases PP1 and PP2A are important regulators of 14-3-3 binding interactions, and demonstrate a role for 14-3-3 in controlling the translocation of certain proteins from the cytoplasmic and endoplasmic reticulum to the plasma membrane. New reports also link 14-3-3 to several neoplastic and neurological disorders, where it might contribute to the pathogenesis and progression of these diseases.
Collapse
Affiliation(s)
- Michele K Dougherty
- Laboratory of Protein Dynamics and Signaling, NCI-Frederick, Frederick, MD 21702, USA
| | | |
Collapse
|
19
|
Kim TS, Kim HY, Yoon JH, Kang HS. Recruitment of the Swi/Snf complex by Ste12-Tec1 promotes Flo8-Mss11-mediated activation of STA1 expression. Mol Cell Biol 2004; 24:9542-56. [PMID: 15485921 PMCID: PMC522284 DOI: 10.1128/mcb.24.21.9542-9556.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the yeast Saccharomyces diastaticus, expression of the STA1 gene, which encodes an extracellular glucoamylase, is activated by the specific DNA-binding activators Flo8, Mss11, Ste12, and Tec1 and the Swi/Snf chromatin-remodeling complex. Here we show that Flo8 interacts physically and functionally with Mss11. Flo8 and Mss11 bind cooperatively to the inverted repeat sequence TTTGC-n-GCAAA (n = 97) in UAS1-2 of the STA1 promoter. In addition, Flo8 and Mss11 bind indirectly to UAS2-1 of the STA1 promoter by interacting with Ste12 and Tec1, which bind to the filamentation and invasion response element (FRE) in UAS2-1. Furthermore, our findings indicate that the Ste12, Tec1, Flo8, and Mss11 activators and the Swi/Snf complex bind sequentially to the STA1 promoter, as follows: Ste12 and Tec1 bind first to the FRE, whereby they recruit the Swi/Snf complex to the STA1 promoter. Next, the Swi/Snf complex enhances Flo8 and Mss11 binding to UAS1-2. In the final step, Flo8 and Mss11 directly promote association of RNA polymerase II with the STA1 promoter to activate STA1 expression. In the absence of glucose, the levels of Flo8 and Tec1 are greatly increased, whereas the abundances of two repressors, Nrg1 and Sfl1, are reduced, suggesting that the balance of transcriptional regulators may be important for determining activation or repression of STA1 expression.
Collapse
Affiliation(s)
- Tae Soo Kim
- School of Biological Sciences, Seoul National University, Shillim-Dong, Kwanak-Gu, Seoul 151-742, South Korea
| | | | | | | |
Collapse
|
20
|
Brown JP, Couillard-Després S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG. Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 2004; 467:1-10. [PMID: 14574675 DOI: 10.1002/cne.10874] [Citation(s) in RCA: 1252] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
During development of the central nervous system, expression of the microtubule binding protein doublecortin (DCX) is associated with migration of neuroblasts. In addition to this developmental role, expression of DCX remains high within certain areas of the adult mammalian brain. These areas, mainly the dentate gyrus and the lateral ventricle wall in conjunction with the rostral migratory stream and olfactory bulb, retain the capacity to generate new neurons into adulthood. Adult neurogenesis is typically detected by incorporation of bromodeoxyuridine (BrdU) into dividing cells and colabeling of BrdU-positive cells with markers for mature neurons. To elucidate whether DCX could act as an alternative indicator for adult neurogenesis, we investigated the temporal expression pattern of DCX in neurogenic regions of the adult brain. Analysis of newly generated cells showed that DCX is transiently expressed in proliferating progenitor cells and newly generated neuroblasts. As the newly generated cells began expressing mature neuronal markers, DCX immunoreactivity decreased sharply below the level of detection and remained undetectable thereafter. The transient expression pattern of DCX in neuronal committed progenitor cells/neuroblasts indicates that DCX could be developed into a suitable marker for adult neurogenesis and may provide an alternative to BrdU labeling. This assumption is further supported by our observation that the number of DCX-expressing cells in the dentate gyrus was decreased with age according to the reduction of neurogenesis in the aging dentate gyrus previously reported.
Collapse
Affiliation(s)
- Jason P Brown
- Department of Neurology, University of Regensburg, 93053 Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Cahana A, Jin XL, Reiner O, Wynshaw-Boris A, O'Neill C. A study of the nature of embryonic lethality in LIS1-/- mice. Mol Reprod Dev 2003; 66:134-42. [PMID: 12950100 DOI: 10.1002/mrd.10339] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Homozygous deletion of the Lis1 gene (Lis1(-/-)) in mouse resulted in early embryonic lethality immediately after embryo implantation by an undefined mechanism. We seek to define the nature of this demise. LIS1 (pafah1b1) is a 46 kDa protein with seven tryptophan-aspartate (WD) repeats. It docks with many proteins and has been implicated in microtubular function, cell division, intercellular transport, and nuclear and cellular motility. Combined Western and quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) analyses showed that LIS1 expression from the blastocyst stage required new transcription from the embryonic genome. Consequently, the death of post-implantation embryos may not reflect the first time during development that LIS1 was required, rather, it may reflect the first time following depletion of gametic stores that its actions were essential. Following culture of blastocysts in vitro for 96 hr the inner cell mass (ICM) of null embryos were significantly smaller than ICM of wild-type siblings. Normal blastocyst outgrowths after 96-hr culture had high levels of LIS1 expression in the outer cells of developing ICM and extensive expression in trophoblast cells. Lis1(-/-) embryos had significantly smaller trophoblast nuclei than wild-type embryos. The results show that LIS1 expression is required for the continued normal development of the ICM and optimal trophoblast giant cell formation.
Collapse
Affiliation(s)
- A Cahana
- Human Reproduction Unit, Department of Physiology, University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| | | | | | | | | |
Collapse
|
22
|
Abstract
Studies of human birth defects and developmental disorders have made major contributions to our understanding of development. Rare human syndromes have allowed identification of important developmental genes, and revealed mechanisms such as uniparental disomy and unstable trinucleotide repeats that were not suspected from animal studies. Some aspects of development, in particular cognitive development, can only be studied in human beings. Basic developmental mechanisms are very highly conserved across a very wide range of animals, making for a rich interplay between animal and human studies. Often, clinical studies identify a gene, or suggest a hypothesis, that can then be investigated in animals.
Collapse
Affiliation(s)
- Dian Donnai
- University of Manchester, Academic Unit of Medical Genetics and Regional Genetic Service, St Mary's Hospital, M13 0JH, Manchester, UK.
| | | |
Collapse
|
23
|
Aumais JP, Williams SN, Luo W, Nishino M, Caldwell KA, Caldwell GA, Lin SH, Yu-Lee LY. Role for NudC, a dynein-associated nuclear movement protein, in mitosis and cytokinesis. J Cell Sci 2003; 116:1991-2003. [PMID: 12679384 DOI: 10.1242/jcs.00412] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NudC, a nuclear movement protein that associates with dynein, was originally cloned as a mitogen-inducible early growth response gene. NudC forms a biochemical complex with components of the dynein/dynactin complex and is suggested to play a role in translocation of nuclei in proliferating neuronal progenitors as well as in migrating neurons in culture. Here, we show that NudC plays multiple roles in mitosis and cytokinesis in cultured mammalian cells. Altering NudC levels by either small interfering RNA-mediated gene silencing or adenovirus-mediated overexpression resulted in multinucleated cells and cells with persistent intercellular connections and disorganized midzone and midbody matrix. These phenotypes suggest a failure in cytokinesis in NudC altered cells. Further, a key mitotic enzyme, polo-like kinase, is mislocalized from the centrosomes and the midbody in NudC altered cells. Gene silencing of nud-1, the Caenorhabditis elegans ortholog of NudC, led to a loss of midzone microtubules and the rapid regression of the cleavage furrow, which resulted in one-celled embryos containing two nuclei. The loss of midzone microtubule organization owing to silencing of the NudC/nud-1 gene in two systems, coupled with the loss of Plk1 from mitotic structures in mammalian cells, provide clues to the cytokinesis defect and the multinucleation phenotype. Our findings suggest that NudC functions in mitosis and cytokinesis, in part by regulating microtubule organization at the midzone and midbody.
Collapse
Affiliation(s)
- Jonathan P Aumais
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Sarnat HB, Flores-Sarnat L. Role of Cajal-Retzius and subplate neurons in cerebral cortical development. Semin Pediatr Neurol 2002; 9:302-8. [PMID: 12523554 DOI: 10.1053/spen.2002.32506] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A synaptic network is already formed in the marginal zone of the early telencephalon before the arrival of the first wave of radial migration of neuroblasts from the subventricular zone to form the cortical plate. Cells and fibers forming the marginal zone are mainly the Cajal-Retzius (C-R) neurons and their processes. The origin of these cells is not yet proved but is likely either the median ganglionic eminence or the mesencephalic neuromere. The bipolar or multipolar C-R neurons populate the molecular layer of the fetal cortical plate and are sparse in the adult. Their thick axon emits collaterals for synaptic contact with pyramidal neurons initially in layer 6 and later with in all layers. C-R neurons produce GABA, possibly ACh, several calcium-binding proteins (eg, calmodulin, parvalbumin, calretinin) and several neuropeptides; they are rich in ribosomes. Subplate neurons, beneath the cortical plate, emit pioneer axons in the incipient formation of the internal capsule and also commissural fibers of the early hippocampus. C-R cells express products of the genes RELN, LIS1, and DS-CAM, which mediate radial neuroblast migration and lamination of the cortical plate and important in the pathogenesis of lissencephaly. A subpopulation of C-R neurons also expresses a p53 product implicated in cell survival and apoptosis. In addition to forming the first intrinsic synaptic circuits of the cortical plate and its first afferent and efferent connections with subcortical structures, they may play additional roles in the formation of ocular dominance columns, in regulating neuronogenesis, and in cortical repair. They do not disappear by apoptosis at the completion of cell migration, as was previously thought, but their functional role in the mature brain remains unknown.
Collapse
Affiliation(s)
- Harvey B Sarnat
- Department of Pediatrics (Neurology), Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | |
Collapse
|
25
|
Abstract
A combination of genetic susceptibility and environmental perturbations appear to be necessary for the expression of schizophrenia. In addition, the pathogenesis of the disease is hypothesized to be neurodevelopmental in nature based on reports of an excess of adverse events during the pre- and perinatal periods, the presence of cognitive and behavioral signs during childhood and adolescence, and the lack of evidence of a neurodegenerative process in most individuals with schizophrenia. Recent studies of neurodevelopmental mechanisms strongly suggest that no single gene or factor is responsible for driving a highly complex biological process. Together, these findings suggest that combinatorial genetic and environmental factors, which disturb a normal developmental course early in life, result in molecular and histogenic responses that cumulatively lead to different developmental trajectories and the clinical phenotype recognized as schizophrenia.
Collapse
Affiliation(s)
- David A Lewis
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, Pennsylvania 15213, USA.
| | | |
Collapse
|
26
|
Montare A. A theory of sulcal-gap signalization. Percept Mot Skills 2002; 95:375-406. [PMID: 12434831 DOI: 10.2466/pms.2002.95.2.375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Two sulcal-gap signalization systems are hypothesized to have evolved as emergent functional "exaptations" having the capacity to transmit two-way cortex-to-cortex signals across tissues embedded in opposing sulcal banks. Hypothesis 1 posits that a primary sulcal-gap signalization system evolved the capacity to transmit nonlanguage signals within hierarchically lower-order sensory, motor, and perceptual functional areas of the neocortex having elemental functional units consisting of columns of about 110 neurons. Hypothesis 2 posits that a secondary sulcal-gap signalization system evolved the capacity to transmit language signals within hierarchically higher-order cognitive functional areas of the "neo-neocortex" having elemental functional units consisting of modules of about 4,000 neurons. Neuroanatomical, neurophysiological neuroevolutionary, and neurodevelopmental evidence is presented in support of these two sulcal-gap hypotheses. It is speculated that the combined cognitive capacities of these two sulcal-gap signalization systems may contribute to the transduction of physiological brain into psychological mind.
Collapse
Affiliation(s)
- Alberto Montare
- Human Learning Laboratory, William Paterson University, Wayne, NJ 07470, USA.
| |
Collapse
|
27
|
Nadarajah B, Parnavelas JG. Modes of neuronal migration in the developing cerebral cortex. Nat Rev Neurosci 2002; 3:423-32. [PMID: 12042877 DOI: 10.1038/nrn845] [Citation(s) in RCA: 472] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The conventional scheme of cortical formation shows that postmitotic neurons migrate away from the germinal ventricular zone to their positions in the developing cortex, guided by the processes of radial glial cells. However, recent studies indicate that different neuronal types adopt distinct modes of migration in the developing cortex. Here, we review evidence for two modes of radial movement: somal translocation, which is adopted by the early-generated neurons; and glia-guided locomotion, which is used predominantly by pyramidal cells. Cortical interneurons, which originate in the ventral telencephalon, use a third mode of migration. They migrate tangentially into the cortex, then seek the ventricular zone before moving radially to take up their positions in the cortical anlage.
Collapse
Affiliation(s)
- Bagirathy Nadarajah
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
28
|
ARE ALBERTOMONT. A THEORY OF SULCAL-GAP SIGNALIZATION. Percept Mot Skills 2002. [DOI: 10.2466/pms.95.6.375-406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|