1
|
Stöckl AL, Foster JJ. Night skies through animals' eyes-Quantifying night-time visual scenes and light pollution as viewed by animals. Front Cell Neurosci 2022; 16:984282. [PMID: 36274987 PMCID: PMC9582234 DOI: 10.3389/fncel.2022.984282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
A large proportion of animal species enjoy the benefits of being active at night, and have evolved the corresponding optical and neural adaptations to cope with the challenges of low light intensities. However, over the past century electric lighting has introduced direct and indirect light pollution into the full range of terrestrial habitats, changing nocturnal animals' visual worlds dramatically. To understand how these changes affect nocturnal behavior, we here propose an animal-centered analysis method based on environmental imaging. This approach incorporates the sensitivity and acuity limits of individual species, arriving at predictions of photon catch relative to noise thresholds, contrast distributions, and the orientation cues nocturnal species can extract from visual scenes. This analysis relies on just a limited number of visual system parameters known for each species. By accounting for light-adaptation in our analysis, we are able to make more realistic predictions of the information animals can extract from nocturnal visual scenes under different levels of light pollution. With this analysis method, we aim to provide context for the interpretation of behavioral findings, and to allow researchers to generate specific hypotheses for the behavior of nocturnal animals in observed light-polluted scenes.
Collapse
Affiliation(s)
- Anna Lisa Stöckl
- Department of Biology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Zukunftskolleg, Universität Konstanz, Konstanz, Germany
| | - James Jonathan Foster
- Department of Biology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| |
Collapse
|
2
|
Bolder MF, Jung K, Stern M. Seasonal variations of serotonin in the visual system of an ant revealed by immunofluorescence and a machine learning approach. ROYAL SOCIETY OPEN SCIENCE 2022; 9:210932. [PMID: 35154789 PMCID: PMC8825996 DOI: 10.1098/rsos.210932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Hibernation, as an adaptation to seasonal environmental changes in temperate or boreal regions, has profound effects on mammalian brains. Social insects of temperate regions hibernate as well, but despite abundant knowledge on structural and functional plasticity in insect brains, the question of how seasonal activity variations affect insect central nervous systems has not yet been thoroughly addressed. Here, we studied potential variations of serotonin-immunoreactivity in visual information processing centres in the brain of the long-lived ant species Lasius niger. Quantitative immunofluorescence analysis revealed stronger serotonergic signals in the lamina and medulla of the optic lobes of wild or active laboratory workers than in hibernating animals. Instead of statistical inference by testing, differentiability of seasonal serotonin-immunoreactivity was confirmed by a machine learning analysis using convolutional artificial neuronal networks (ANNs) with the digital immunofluorescence images as input information. Machine learning models revealed additional differences in the third visual processing centre, the lobula. We further investigated these results by gradient-weighted class activation mapping. We conclude that seasonal activity variations are represented in the ant brain, and that machine learning by ANNs can contribute to the discovery of such variations.
Collapse
Affiliation(s)
- Maximilian F. Bolder
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
- Institute of Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Klaus Jung
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Michael Stern
- Institute of Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
3
|
Meinertzhagen IA. Of what use is connectomics? A personal perspective on the Drosophila connectome. ACTA ACUST UNITED AC 2018; 221:221/10/jeb164954. [PMID: 29784759 DOI: 10.1242/jeb.164954] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The brain is a network of neurons and its biological output is behaviour. This is an exciting age, with a growing acknowledgement that the comprehensive compilation of synaptic circuits densely reconstructed in the brains of model species is now both technologically feasible and a scientifically enabling possibility in neurobiology, much as 30 years ago genomics was in molecular biology and genetics. Implemented by huge advances in electron microscope technology, especially focused ion beam-scanning electron microscope (FIB-SEM) milling (see Glossary), image capture and alignment, and computer-aided reconstruction of neuron morphologies, enormous progress has been made in the last decade in the detailed knowledge of the actual synaptic circuits formed by real neurons, in various brain regions of the fly Drosophila It is useful to distinguish synaptic pathways that are major, with 100 or more presynaptic contacts, from those that are minor, with fewer than about 10; most neurites are both presynaptic and postsynaptic, and all synaptic sites have multiple postsynaptic dendrites. Work on Drosophila has spearheaded these advances because cell numbers are manageable, and neuron classes are morphologically discrete and genetically identifiable, many confirmed by reporters. Recent advances are destined within the next few years to reveal the complete connectome in an adult fly, paralleling advances in the larval brain that offer the same prospect possibly within an even shorter time frame. The final amendment and validation of segmented bodies by human proof-readers remains the most time-consuming step, however. The value of a complete connectome in Drosophila is that, by targeting to specific neurons transgenes that either silence or activate morphologically identified circuits, and then identifying the resulting behavioural outcome, we can determine the causal mechanism for behaviour from its loss or gain. More importantly, the connectome reveals hitherto unsuspected pathways, leading us to seek novel behaviours for these. Circuit information will eventually be required to understand how differences between brains underlie differences in behaviour, and especially to herald yet more advanced connectomic strategies for the vertebrate brain, with an eventual prospect of understanding cognitive disorders having a connectomic basis. Connectomes also help us to identify common synaptic circuits in different species and thus to reveal an evolutionary progression in candidate pathways.
Collapse
Affiliation(s)
- Ian A Meinertzhagen
- FlyEM Team, Janelia Research Campus of HHMI, 19700 Helix Drive, Ashburn, VA 20147-2408, USA .,Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, NS, Canada B3H 4R2.,Department of Biology, Life Sciences Centre, Dalhousie University, Halifax, NS, Canada B3H 4R2
| |
Collapse
|
4
|
Ruiz S, Ferreiro MJ, Menhert KI, Casanova G, Olivera A, Cantera R. Rhythmic changes in synapse numbers in Drosophila melanogaster motor terminals. PLoS One 2013; 8:e67161. [PMID: 23840613 PMCID: PMC3695982 DOI: 10.1371/journal.pone.0067161] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 05/15/2013] [Indexed: 11/18/2022] Open
Abstract
Previous studies have shown that the morphology of the neuromuscular junction of the flight motor neuron MN5 in Drosophila melanogaster undergoes daily rhythmical changes, with smaller synaptic boutons during the night, when the fly is resting, than during the day, when the fly is active. With electron microscopy and laser confocal microscopy, we searched for a rhythmic change in synapse numbers in this neuron, both under light:darkness (LD) cycles and constant darkness (DD). We expected the number of synapses to increase during the morning, when the fly has an intense phase of locomotion activity under LD and DD. Surprisingly, only our DD data were consistent with this hypothesis. In LD, we found more synapses at midnight than at midday. We propose that under LD conditions, there is a daily rhythm of formation of new synapses in the dark phase, when the fly is resting, and disassembly over the light phase, when the fly is active. Several parameters appeared to be light dependent, since they were affected differently under LD or DD. The great majority of boutons containing synapses had only one and very few had either two or more, with a 70∶25∶5 ratio (one, two and three or more synapses) in LD and 75∶20∶5 in DD. Given the maintenance of this proportion even when both bouton and synapse numbers changed with time, we suggest that there is a homeostatic mechanism regulating synapse distribution among MN5 boutons.
Collapse
Affiliation(s)
- Santiago Ruiz
- Departamento de Biología del Neurodesarrollo, Instituto de Investigaciones Biológicas Clemente
- Estable, Montevideo, Uruguay
| | - Maria Jose Ferreiro
- Departamento de Biología del Neurodesarrollo, Instituto de Investigaciones Biológicas Clemente
- Estable, Montevideo, Uruguay
| | | | - Gabriela Casanova
- Unidad de Microscopía Electrónica de Transmisión, Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| | - Alvaro Olivera
- Unidad de Microscopía Electrónica de Transmisión, Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| | - Rafael Cantera
- Departamento de Biología del Neurodesarrollo, Instituto de Investigaciones Biológicas Clemente
- Estable, Montevideo, Uruguay
- Zoology Department, Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
5
|
Muraro NI, Pírez N, Ceriani MF. The circadian system: plasticity at many levels. Neuroscience 2013; 247:280-93. [PMID: 23727010 DOI: 10.1016/j.neuroscience.2013.05.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 11/16/2022]
Abstract
Over the years it has become crystal clear that a variety of processes encode time-of-day information, ranging from gene expression, protein stability, or subcellular localization of key proteins, to the fine tuning of network properties and modulation of input signals, ultimately ensuring that physiology and behavior are properly synchronized to a changing environment. The purpose of this review is to put forward examples (as opposed to generate a comprehensive revision of all the available literature) in which the circadian system displays a remarkable degree of plasticity, from cell autonomous to circuit-based levels. In the literature, the term circadian plasticity has been used to refer to different concepts. The obvious one, more literally, refers to any change that follows a circadian (circa=around, diem=day) pattern, i.e. a daily change of a given parameter. The discovery of daily remodeling of neuronal structures will be referred herein as structural circadian plasticity, and represents an additional and novel phenomenon modified daily. Finally, any plasticity that has to do with a circadian parameter would represent a type of circadian plasticity; as an example, adjustments that allow organisms to adapt their daily behavior to the annual changes in photoperiod is a form of circadian plasticity at a higher organizational level, which is an emergent property of the whole circadian system. Throughout this work we will revisit these types of changes by reviewing recent literature delving around circadian control of clock outputs, from the most immediate ones within pacemaker neurons to the circadian modulation of rest-activity cycles.
Collapse
Affiliation(s)
- N I Muraro
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, IIB-BA-CONICET, Buenos Aires, Argentina
| | | | | |
Collapse
|
6
|
Warzecha AK, Rosner R, Grewe J. Impact and sources of neuronal variability in the fly's motion vision pathway. ACTA ACUST UNITED AC 2012. [PMID: 23178476 DOI: 10.1016/j.jphysparis.2012.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nervous systems encode information about dynamically changing sensory input by changes in neuronal activity. Neuronal activity changes, however, also arise from noise sources within and outside the nervous system or from changes of the animal's behavioral state. The resulting variability of neuronal responses in representing sensory stimuli limits the reliability with which animals can respond to stimuli and may thus even affect the chances for survival in certain situations. Relevant sources of noise arising at different stages along the motion vision pathway have been investigated from the sensory input to the initiation of behavioral reactions. Here, we concentrate on the reliability of processing visual motion information in flies. Flies rely on visual motion information to guide their locomotion. They are among the best established model systems for the processing of visual motion information allowing us to bridge the gap between behavioral performance and underlying neuronal computations. It has been possible to directly assess the consequences of noise at major stages of the fly's visual motion processing system on the reliability of neuronal signals. Responses of motion sensitive neurons and their variability have been related to optomotor movements as indicators for the overall performance of visual motion computation. We address whether and how noise already inherent in the stimulus, e.g. photon noise for the visual system, influences later processing stages and to what extent variability at the output level of the sensory system limits behavioral performance. Recent advances in circuit analysis and the progress in monitoring neuronal activity in behaving animals should now be applied to understand how the animal meets the requirements of fast and reliable manoeuvres in naturalistic situations.
Collapse
Affiliation(s)
| | - Ronny Rosner
- Tierphysiologie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Jan Grewe
- Dept. Biology II, Ludwig-Maximilians Univ., 82152 Martinsried, Germany
| |
Collapse
|
7
|
Yan XC, Chen ZF, Sun J, Matsumura K, Wu RSS, Qian PY. Transcriptomic analysis of neuropeptides and peptide hormones in the barnacle Balanus amphitrite: evidence of roles in larval settlement. PLoS One 2012; 7:e46513. [PMID: 23056329 PMCID: PMC3462748 DOI: 10.1371/journal.pone.0046513] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 09/01/2012] [Indexed: 01/18/2023] Open
Abstract
The barnacle Balanus amphitrite is a globally distributed marine crustacean and has been used as a model species for intertidal ecology and biofouling studies. Its life cycle consists of seven planktonic larval stages followed by a sessile juvenile/adult stage. The transitional processes between larval stages and juveniles are crucial for barnacle development and recruitment. Although some studies have been conducted on the neuroanatomy and neuroactive substances of the barnacle, a comprehensive understanding of neuropeptides and peptide hormones remains lacking. To better characterize barnacle neuropeptidome and its potential roles in larval settlement, an in silico identification of putative transcripts encoding neuropeptides/peptide hormones was performed, based on transcriptome of the barnacle B. amphitrite that has been recently sequenced. Potential cleavage sites andstructure of mature peptides were predicted through homology search of known arthropod peptides. In total, 16 neuropeptide families/subfamilies were predicted from the barnacle transcriptome, and 14 of them were confirmed as genuine neuropeptides by Rapid Amplification of cDNA Ends. Analysis of peptide precursor structures and mature sequences showed that some neuropeptides of B. amphitrite are novel isoforms and shared similar characteristics with their homologs from insects. The expression profiling of predicted neuropeptide genes revealed that pigment dispersing hormone, SIFamide, calcitonin, and B-type allatostatin had the highest expression level in cypris stage, while tachykinin-related peptide was down regulated in both cyprids and juveniles. Furthermore, an inhibitor of proprotein convertase related to peptide maturation effectively delayed larval metamorphosis. Combination of real-time PCR results and bioassay indicated that certain neuropeptides may play an important role in cypris settlement. Overall, new insight into neuropeptides/peptide hormones characterized in this study shall provide a platform for unraveling peptidergic control of barnacle larval behavior and settlement process.
Collapse
Affiliation(s)
- Xing-Cheng Yan
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zhang-Fan Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jin Sun
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Kiyotaka Matsumura
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Rudolf S. S. Wu
- School of Biological Sciences, University of Hong Kong, Hong Kong SAR, China
| | - Pei-Yuan Qian
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
8
|
Sumiyoshi M, Sato S, Takeda Y, Sumida K, Koga K, Itoh T, Nakagawa H, Shimohigashi Y, Shimohigashi M. A circadian neuropeptide PDF in the honeybee, Apis mellifera: cDNA cloning and expression of mRNA. Zoolog Sci 2012; 28:897-909. [PMID: 22132787 DOI: 10.2108/zsj.28.897] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pigment-dispersing factor (PDF) is a pacemaker hormone regulating the locomotor rhythm in insects. In the present study, we cloned the cDNAs encoding the Apis PDF precursor protein, and found that there are at least seven different pdf mRNAs yielded by an alternative splicing site and five alternative polyadenylation sites in the 5'UTR and 3'UTR regions. The amino acid sequence of Apis PDF peptide has a characteristic novel amino acid residue, aspargine (Asn), at position 17. Quantitative real-time PCR of total and 5'UTR insertion-type pdf mRNAs revealed, for the first time, that the expression levels change in a circadian manner with a distinct trough at the beginning of night in LD conditions, and at the subjective night under DD conditions. In contrast, the expression level of 5'UTR deletion-type pdf mRNAs was about half of that of the insertion type, and the expression profile failed to show a circadian rhythm. As the expression profile of the total pdf mRNA exhibited a circadian rhythm, transcription regulated at the promoter region was supposed to be controlled by some of the clock components. Whole mount in situ hybridization revealed that 14 lateral neurons at the frontal margin of the optic lobe express these mRNA isoforms. PDF expressing cells examined with a newly produced antibody raised against Apis PDF were also found to have a dense supply of axon terminals in the optic lobes and the central brain.
Collapse
Affiliation(s)
- Miho Sumiyoshi
- Division of Biology, Department of Earth System of Science, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Peripheral circadian rhythms and their regulatory mechanism in insects and some other arthropods: a review. J Comp Physiol B 2012; 182:729-40. [PMID: 22327195 DOI: 10.1007/s00360-012-0651-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/18/2012] [Accepted: 01/26/2012] [Indexed: 01/15/2023]
Abstract
Many physiological functions of insects show a rhythmic change to adapt to daily environmental cycles. These rhythms are controlled by a multi-clock system. A principal clock located in the brain usually organizes the overall behavioral rhythms, so that it is called the "central clock". However, the rhythms observed in a variety of peripheral tissues are often driven by clocks that reside in those tissues. Such autonomous rhythms can be found in sensory organs, digestive and reproductive systems. Using Drosophila melanogaster as a model organism, researchers have revealed that the peripheral clocks are self-sustained oscillators with a molecular machinery slightly different from that of the central clock. However, individual clocks normally run in harmony with each other to keep a coordinated temporal structure within an animal. How can this be achieved? What is the molecular mechanism underlying the oscillation? Also how are the peripheral clocks entrained by light-dark cycles? There are still many questions remaining in this research field. In the last several years, molecular techniques have become available in non-model insects so that the molecular oscillatory mechanisms are comparatively investigated among different insects, which give us more hints to understand the essential regulatory mechanism of the multi-oscillatory system across insects and other arthropods. Here we review current knowledge on arthropod's peripheral clocks and discuss their physiological roles and molecular mechanisms.
Collapse
|
10
|
Strauß J, Zhang Q, Verleyen P, Huybrechts J, Neupert S, Predel R, Pauwels K, Dircksen H. Pigment-dispersing hormone in Daphnia interneurons, one type homologous to insect clock neurons displaying circadian rhythmicity. Cell Mol Life Sci 2011; 68:3403-23. [PMID: 21365282 PMCID: PMC11115014 DOI: 10.1007/s00018-011-0636-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 01/29/2011] [Accepted: 02/01/2011] [Indexed: 10/18/2022]
Abstract
We report identification of a beta-type pigment-dispersing hormone (PDH) identical in two water flea species, Daphnia magna and Daphnia pulex. It has been identified by cloning of precursors, chromatographic isolation from tissue extracts followed by immunoassays and de novo-mass spectrometric sequencing. The peptide is restricted to a complex system of distinct interneurons in the brain and visual ganglia, but does not occur in neurosecretory cells projecting to neurohemal organs as in decapod crustaceans. Thirteen neuron types individually identified and reconstructed by immunohistochemistry were almost identical in terms of positions and projection patterns in both species. Several neurons invade and form plexuses in visual ganglia and major brain neuropils including the central body. Five neuron types show contralateral pathways and form plexuses in the lateral, dorsal, or postlateral brain neuropils. Others are local interneurons, and a tritocerebral neuron connects the protocerebrum with the neuropil of the locomotory second antenna. Two visual ganglia neuron types lateral to the medulla closely resemble insect medulla lateral circadian clock neurons containing pigment-dispersing factor based upon positional and projectional criteria. Experiments under 12:12 h light/dark cycles and constant light or darkness conditions showed significant circadian changes in numbers and activities of one type of medulla lateral PDH neuron with an acrophase in the evening. This simple PDH system shows striking homologies to PDH systems in decapod crustaceans and well-known clock neurons in several insects, which suggests evolutionary conservation of an ancient peptidergic interneuronal system that is part of biological clocks.
Collapse
Affiliation(s)
- Johannes Strauß
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18A, 10691 Stockholm, Sweden
| | - Qian Zhang
- Dr. Senckenbergische Anatomie, Institute of Anatomy II, J.-W. Goethe-University of Frankfurt, Frankfurt, Germany
| | | | | | - Susanne Neupert
- Institute of General Zoology and Animal Physiology, Friedrich-Schiller-University, Jena, Germany
| | - Reinhard Predel
- Institute of General Zoology and Animal Physiology, Friedrich-Schiller-University, Jena, Germany
| | - Kevin Pauwels
- Department of Biology, K. U. Leuven, Leuven, Belgium
| | - Heinrich Dircksen
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18A, 10691 Stockholm, Sweden
| |
Collapse
|
11
|
A novel wide-field neuron with branches in the lamina of the Drosophila visual system expresses myoinhibitory peptide and may be associated with the clock. Cell Tissue Res 2010; 343:357-69. [PMID: 21174124 DOI: 10.1007/s00441-010-1100-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022]
Abstract
Although neuropeptides are widespread throughout the central nervous system of the fruifly Drosophila, no records exist of peptidergic neurons in the first synaptic region of the visual system, the lamina. Here, we describe a novel type of neuron that has wide-field tangential arborizations just distal to the lamina neuropil and that expresses myoinhibitory peptide (MIP). The cell bodies of these neurons, designated lateral MIP-immunoreactive optic lobe (LMIo) neurons, lie anteriorly at the base of the medulla of the optic lobe. The LMIo neurons also arborize in several layers of the medulla and in the dorso-lateral and lateral protocerebrum. Since the LMIo resemble LN(v) clock neurons, we have investigated the relationships between these two sets of neurons by combining MIP-immunolabeling with markers for two of the clock genes, viz., Cryptochrome and Timeless, or with antisera to two peptides expressed in clock neurons, viz., pigment-dispersing factor and ion transport peptide. LMIo neurons do not co-express any of these clock neuron markers. However, branches of LMIo and clock neurons overlap in several regions. Furthermore, the varicose lamina branches of LMIo neurons superimpose those of two large bilateral serotonergic neurons. The close apposition of the terminations of MIP- and serotonin-producing neurons distal to the lamina suggests that they have the same peripheral targets. Our data indicate that the LMIo neurons are not bona fide clock neurons, but they may be associated with the clock system and regulate signaling peripherally in the visual system.
Collapse
|
12
|
Meelkop E, Temmerman L, Schoofs L, Janssen T. Signalling through pigment dispersing hormone-like peptides in invertebrates. Prog Neurobiol 2010; 93:125-47. [PMID: 21040756 DOI: 10.1016/j.pneurobio.2010.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 10/19/2010] [Accepted: 10/21/2010] [Indexed: 12/19/2022]
Abstract
During recent decades, several research teams engaged in unraveling the molecular structure and the physiological significance of pigment dispersing hormone-like peptides, particularly with respect to colour change and biological rhythms. In this review, we first summarise the entire history of pigment dispersing hormone-like peptide research, thus providing a stepping stone for those who are curious about this growing area of interest. Next, we try to bring order in the plethora of experimental data on the molecular structure of the various peptides and receptors and also discuss immunolocalization, time-related expression and suggested functions in crustaceans, insects and nematodes. In addition, a brief comparison with the vertebrate system is made.
Collapse
Affiliation(s)
- E Meelkop
- Laboratory of Functional Genomics and Proteomics, Zoological Institute, K.U. Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
13
|
Barth M, Schultze M, Schuster CM, Strauss R. Circadian plasticity in photoreceptor cells controls visual coding efficiency in Drosophila melanogaster. PLoS One 2010; 5:e9217. [PMID: 20169158 PMCID: PMC2821403 DOI: 10.1371/journal.pone.0009217] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 01/20/2010] [Indexed: 12/05/2022] Open
Abstract
In the fly Drosophila melanogaster, neuronal plasticity of synaptic terminals in the first optic neuropil, or lamina, depends on early visual experience within a critical period after eclosion [1]. The current study revealed two additional and parallel mechanisms involved in this type of synaptic terminal plasticity. First, an endogenous circadian rhythm causes daily oscillations in the volume of photoreceptor cell terminals. Second, daily visual experience precisely modulates the circadian time course and amplitude of the volume oscillations that the photoreceptor-cell terminals undergo. Both mechanisms are separable in their molecular basis. We suggest that the described neuronal plasticity in Drosophila ensures continuous optimal performance of the visual system over the course of a 24 h-day. Moreover, the sensory system of Drosophila cannot only account for predictable, but also for acute, environmental changes. The volumetric changes in the synaptic terminals of photoreceptor cells are accompanied by circadian and light-induced changes of presynaptic ribbons as well as extensions of epithelial glial cells into the photoreceptor terminals, suggesting that the architecture of the lamina is altered by both visual exposure and the circadian clock. Clock-mutant analysis and the rescue of PER protein rhythmicity exclusively in all R1-6 cells revealed that photoreceptor-cell plasticity is autonomous and sufficient to control visual behavior. The strength of a visually guided behavior, the optomotor turning response, co-varies with synaptic-terminal volume oscillations of photoreceptor cells when elicited at low light levels. Our results show that behaviorally relevant adaptive processing of visual information is performed, in part, at the level of visual input level.
Collapse
Affiliation(s)
- Martin Barth
- Friedrich-Miescher-Laboratory of the Max-Planck Society (MPG), Tuebingen, Germany
| | - Michael Schultze
- Friedrich-Miescher-Laboratory of the Max-Planck Society (MPG), Tuebingen, Germany
| | | | - Roland Strauss
- Friedrich-Miescher-Laboratory of the Max-Planck Society (MPG), Tuebingen, Germany
- * E-mail:
| |
Collapse
|
14
|
Groh C, Meinertzhagen IA. Brain plasticity in Diptera and Hymenoptera. Front Biosci (Schol Ed) 2010; 2:268-88. [PMID: 20036946 DOI: 10.2741/s63] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To mediate different types of behaviour, nervous systems need to coordinate the proper operation of their neural circuits as well as short- and long-term alterations that occur within those circuits. The latter ultimately devolve upon specific changes in neuronal structures, membrane properties and synaptic connections that are all examples of plasticity. This reorganization of the adult nervous system is shaped by internal and external influences both during development and adult maturation. In adults, behavioural experience is a major driving force of neuronal plasticity studied particularly in sensory systems. The range of adaptation depends on features that are important to a particular species, and is therefore specific, so that learning is essential for foraging in honeybees, while regenerative capacities are important in hemimetabolous insects with long appendages. Experience is usually effective during a critical period in early adult life, when neural function becomes tuned to future conditions in an insect's life. Tuning occur at all levels, in synaptic circuits, neuropile volumes, and behaviour. There are many examples, and this review incorporates only a select few, mainly those from Diptera and Hymenoptera.
Collapse
Affiliation(s)
- Claudia Groh
- Life Sciences Centre, Dalhousie University, Halifax, NS, Canada B3H 4J1
| | | |
Collapse
|
15
|
Ruiz S, Ferreiro MJ, Casanova G, Olivera A, Cantera R. Synaptic vesicles in motor synapses change size and distribution during the day. Synapse 2010; 64:14-9. [DOI: 10.1002/syn.20699] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
16
|
Górska-Andrzejak J, Salvaterra PM, Meinertzhagen IA, Krzeptowski W, Görlich A, Pyza E. Cyclical expression of Na+/K+-ATPase in the visual system of Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:459-68. [PMID: 19428365 PMCID: PMC2721802 DOI: 10.1016/j.jinsphys.2009.02.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 02/13/2009] [Accepted: 02/16/2009] [Indexed: 05/27/2023]
Abstract
In the first (lamina) and second (medulla) optic neuropils of Drosophila melanogaster, sodium pump subunit expression changes during the day and night, controlled by a circadian clock. We examined alpha-subunit expression from the intensity of immunolabeling. For the beta-subunit, encoded by Nervana 2 (Nrv2), we used Nrv2-GAL4 to drive expression of GFP, and measured the resultant fluorescence in whole heads and specific optic lobe cells. All optic neuropils express the alpha-subunit, highest at the beginning of night in both lamina and medulla in day/night condition and the oscillation was maintained in constant darkness. This rhythm was lacking in the clock arrhythmic per(0) mutant. GFP driven by Nrv2 was mostly detected in glial cells, mainly in the medulla. There, GFP expression occurs in medulla neuropil glia (MNGl), which express the clock gene per, and which closely contact the terminals of clock neurons immunoreactive to pigment dispersing factor. GFP fluorescence exhibited circadian oscillation in whole heads from Nrv2-GAL4+UAS-S65T-GFP flies, although significant GFP oscillations were lacking in MNGl, as they were for both subunit mRNAs in whole-head homogenates. In the dissected brain tissues, however, the mRNA of the alpha-subunit showed a robust daily rhythm in concentration changes while changes in the beta-subunit mRNA were weaker and not statistically significant. Thus in the brain, the genes for the sodium pump subunits, at least the one encoding the alpha-subunit, seem to be clock-controlled and the abundance of their corresponding proteins mirrors daily changes in mRNA, showing cyclical accumulation in cells.
Collapse
Affiliation(s)
- Jolanta Górska-Andrzejak
- Department of Cytology and Histology, Institute of Zoology, Jagiellonian University, Ingardena 6, Kraków 30-060, Poland
| | | | | | | | | | | |
Collapse
|
17
|
Harzsch S, Dircksen H, Beltz BS. Development of pigment-dispersing hormone-immunoreactive neurons in the American lobster: homology to the insect circadian pacemaker system? Cell Tissue Res 2009; 335:417-29. [PMID: 19034522 PMCID: PMC3072782 DOI: 10.1007/s00441-008-0728-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 10/22/2008] [Indexed: 10/21/2022]
Abstract
We have examined the development of pigment-dispersing hormone (PDH)-immunoreactive neurons in embryos of the American lobster Homarus americanus Milne Edwards, 1837 (Decapoda, Reptantia, Homarida) by using an antiserum against beta-PDH. This peptide is detectable in the terminal medulla of the eyestalks and the protocerebrum where PDH immunoreactivity is present as early as 20% of embryonic development. During ontogenesis, an elaborate system of PDH-immunoreactive neurons and fibres develops in the eyestalks and the protocerebrum, whereas less labelling is present in the deuto- and tritocerebrum and the ventral nerve cord. The sinus gland is innervated by PDH neurites at hatching. This pattern of PDH immunoreactivity has been compared with that found in various insect species. Neurons immunoreactive to pigment-dispersing factor in the medulla have been shown to be a central component of the system that generates the circadian rhythm in insects. Our results indicate that, in view of the position of the neuronal somata and projection patterns of their neurites, the immunolabelled medulla neurons in insects have homologous counterparts in the crustacean eyestalk. Since locomotory and other activities in crustaceans follow distinct circadian rhythms comparable with those observed in insects, we suggest that PDH-immunoreactive medulla neurons in crustaceans are involved in the generation of these rhythms.
Collapse
Affiliation(s)
- Steffen Harzsch
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany.
| | | | | |
Collapse
|
18
|
A peripheral pacemaker drives the circadian rhythm of synaptic boutons in Drosophila independently of synaptic activity. Cell Tissue Res 2008; 334:103-9. [DOI: 10.1007/s00441-008-0670-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 07/01/2008] [Indexed: 02/04/2023]
|
19
|
Kula E, Pyza E. Effects of locomotor stimulation and protein synthesis inhibition on circadian rhythms in size changes of L1 and L2 interneurons in the fly's visual system. Dev Neurobiol 2007; 67:1433-42. [PMID: 17497696 DOI: 10.1002/dneu.20518] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Axons of monopolar cell interneurons L1 and L2 in the first optic lobe (lamina) of the fly Musca domestica undergo cyclical changes in diameter. These axons swell during the day and shrink during the night. In addition, the axons' size depends on light conditions since they are largest in continuous light (LL), somewhat smaller under day/night (LD) conditions, and smallest under constant darkness (DD). In this study we found that sizes of both cells can further increase in free flying flies under LD conditions, while the visual stimulation alone does not have significant effect on the cross-sectional area of L1 and L2 axons. The stimulation of free flying had no effect on L1 and L2 sizes if it was performed at the beginning of subjective day in LL or DD. Our results indicate that a maximal increase in size of L1 and L2 is observed when stimulation of free flying is synchronized with a fly' daily peak of activity. We also found that protein synthesis is needed to increase size of monopolar cell axons during the day when they normally swell.
Collapse
Affiliation(s)
- Elzbieta Kula
- Department of Cytology and Histology, Institute of Zoology, Jagiellonian University, 30-060 Kraków, Poland
| | | |
Collapse
|
20
|
Mehnert KI, Beramendi A, Elghazali F, Negro P, Kyriacou CP, Cantera R. Circadian changes in Drosophila motor terminals. Dev Neurobiol 2007; 67:415-21. [PMID: 17443798 DOI: 10.1002/dneu.20332] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In Drosophila melanogaster, as in most other higher organisms, a circadian clock controls the rhythmic distribution of rest/sleep and locomotor activity. Here we report that the morphology of Drosophila flight neuromuscular terminals changes between day and night, with a rhythm in synaptic bouton size that continues in constant darkness, but is abolished during aging. Furthermore, arrhythmic mutations in the clock genes timeless and period also disrupt this circadian rhythm. Finally, these clock mutants also have an opposing effect on the nonrhythmic phenotype of neuronal branching, with tim mutants showing a dramatic hyperbranching morphology and per mutants having fewer branches than wild-type flies. These unexpected results reveal further circadian as well as nonclock related pleiotropic effects for these classic behavioral mutants.
Collapse
|
21
|
Helfrich-Förster C, Shafer OT, Wülbeck C, Grieshaber E, Rieger D, Taghert P. Development and morphology of the clock-gene-expressing lateral neurons of Drosophila melanogaster. J Comp Neurol 2007; 500:47-70. [PMID: 17099895 DOI: 10.1002/cne.21146] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The clock-gene-expressing lateral neurons are essential for the locomotor activity rhythm of Drosophila melanogaster. Traditionally, these neurons are divided into three groups: the dorsal lateral neurons (LN(d)), the large ventral lateral neurons (l-LN(v)), and the small ventral lateral neurons (s-LN(v)), whereby the latter group consists of four neurons that express the neuropeptide pigment-dispersing factor (PDF) and a fifth PDF-negative neuron. So far, only the l-LN(v) and the PDF-positive s-LN(v) have been shown to project into the accessory medulla, a small neuropil that contains the circadian pacemaker center in several insects. We show here that the other lateral neurons also arborize in the accessory medulla, predominantly forming postsynaptic sites. Both the l-LN(v) and LN(d) are anatomically well suited to connect the accessory medullae. Whereas the l-LN(v) may receive ipsilateral photic input from the Hofbauer-Buchner eyelet, the LN(d) invade mainly the contralateral accessory medulla and thus may receive photic input from the contralateral side. Both the LN(d) and the l-LN(v) differentiate during midmetamorphosis. They do so in close proximity to one another and the fifth PDF-negative s-LN(v), suggesting that these cell groups may derive from common precursors.
Collapse
|
22
|
Wagner S, Heseding C, Szlachta K, True JR, Prinz H, Hovemann BT. Drosophila photoreceptors express cysteine peptidase tan. J Comp Neurol 2007; 500:601-11. [PMID: 17154266 DOI: 10.1002/cne.21138] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The Drosophila mutant tan (t) shows reciprocal pigmentation defects compared with the ebony (e) mutant. Visual phenotypes, however, are similar in both flies: Electroretinogram (ERG) recordings lack "on" and "off" transients, an indication of impaired synaptic transmission to postsynaptic cells L1 and L2. Cloning of tan revealed transcription of the gene in the retina, apparently in photoreceptor cells. We expressed Tan in Escherichia coli and confirmed by Western blotting and mass spectroscopic analyses that Tan is expressed as preprotein, followed by proteolytic cleavage into two subunits at a conserved --Gly--Cys-- motif like its fungal ortholog isopenicillin-N N-acyltransferase (IAT). Tan thus belongs to the large family of cysteine peptidases. To discriminate expression of Tan and Ebony in retina and optic neuropils, we raised antisera against specific Tan peptides. Testing for colocalization with GMR-driven n-Syb-GFP labeling revealed that Tan expression is confined to the photoreceptor cells R1-R8. A close proximity of Tan and Ebony expression is evident in lamina cartridges, where three epithelial glia cells envelop the six photoreceptor terminals R1-R6. In the medulla, R7/R8 axonal terminals appeared lined up side by side with glial extensions. This local proximity supports a model for Drosophila visual synaptic transmission in which Tan and Ebony interact biochemically in a putative histamine inactivation and recycling pathway in Drosophila.
Collapse
Affiliation(s)
- Stefanie Wagner
- Fakultät für Chemie, AG Molekulare Zellbiochemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Honda T, Matsushima A, Sumida K, Chuman Y, Sakaguchi K, Onoue H, Meinertzhagen IA, Shimohigashi Y, Shimohigashi M. Structural isoforms of the circadian neuropeptide PDF expressed in the optic lobes of the cricket Gryllus bimaculatus: immunocytochemical evidence from specific monoclonal antibodies. J Comp Neurol 2006; 499:404-21. [PMID: 16998911 DOI: 10.1002/cne.21112] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pigment-dispersing factor (PDF) is an 18-mer peptide that acts as a principal neurotransmitter of the insect circadian clock. Our previous study, utilizing anti-Uca beta-PDH polyclonal antibody (pAb) to immunolabel the optic lobe of the cricket Gryllus bimaculatus, suggested the existence of an alternative PDF-like peptide in the outer cells of the first neuropile, or lamina (La), which were much less immunoreactive than the inner cells of the second neuropile, the medulla (Me). To obtain structural information about such a PDF-like peptide, we prepared 10 anti-Gryllus PDF monoclonal (mAb) and pAb antibodies and analyzed their detailed epitope specificities. The PDFMe and PDFLa inner cells and their axonal projections were clearly immunoreactive to all these antibodies, revealing the widespread immunocytochemical organization of the PDF system in the optic lobe, as seen previously with anti-Uca beta-PDH pAb and anti-Gryllus PDF mAb, the epitope structures of which were also clarified in this study. The lamina outer cells, which we found lacked a target pdf mRNA, displayed specific immunoreactivities, indicating that the cells contain a distinct PDF-like peptide possessing both N- and C-terminal structures. These cells were not immunolabeled by some other monoclonal antibodies, however, implying that the PDFLa outer cells have a PDF isoform peptide devoid of Asn at positions 6 and 16. This isoform was also identified in a varicose arborization in the lamina. These results suggest not only the structure of the peptide, but also the possibility of additional functions of this novel PDF isoform.
Collapse
Affiliation(s)
- Takeshi Honda
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty and Graduate School of Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Carrington E, Kokay IC, Duthie J, Lewis R, Mercer AR. Manipulating the light/dark cycle: effects on dopamine levels in optic lobes of the honey bee (Apis mellifera) brain. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2006; 193:167-80. [PMID: 17063341 DOI: 10.1007/s00359-006-0177-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 09/25/2006] [Accepted: 09/29/2006] [Indexed: 11/24/2022]
Abstract
This study examines the relationship between cyclical variations in optic-lobe dopamine levels and the circadian behavioural rhythmicity exhibited by forager bees. Our results show that changing the light-dark regimen to which bees are exposed has a significant impact not only on forager behaviour, but also on the levels of dopamine that can be detected in the optic lobes of the brain. Consistent with earlier reports, we show that foraging behaviour exhibits properties characteristic of a circadian rhythm. Foraging activity is entrained by daily light cycles to periods close to 24 h, it changes predictably in response to phase shifts in light, and it is able to free-run under constant conditions. Dopamine levels in the optic lobes also undergo cyclical variations, and fluctuations in endogenous dopamine levels are influenced significantly by alterations to the light/dark cycle. However, the time course of these changes is markedly different from changes observed at a behavioural level. No direct correlation could be identified between levels of dopamine in the optic lobes and circadian rhythmic activity of the honey bee.
Collapse
|
25
|
Rodriguez Moncalvo VG, Campos AR. Genetic dissection of trophic interactions in the larval optic neuropil of Drosophila melanogaster. Dev Biol 2005; 286:549-58. [PMID: 16168982 DOI: 10.1016/j.ydbio.2005.08.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 08/17/2005] [Accepted: 08/18/2005] [Indexed: 01/19/2023]
Abstract
The larval visual system of Drosophila melanogaster consists of two bilateral clusters of 12 photoreceptors, which express Rhodopsin 5 and 6 (Rh5 and Rh6) in a non-overlapping manner. These neurons send their axons in a fascicle, the larval optic nerve (LON), which terminates in the larval optic neuropil. The LON is required for the development of a serotonergic arborization originating in the central brain and for the development of the dendritic tree of the circadian pacemakers, the small ventral lateral neurons (LNv) [Malpel, S., Klarsfeld, A., Rouyer, F., 2002. Larval optic nerve and adult extra-retinal photoreceptors sequentially associate with clock neurons during Drosophila brain development. Development 129, 1443-1453; Mukhopadhyay, M., Campos, A.R., 1995. The larval optic nerve is required for the development of an identified serotonergic arborization in Drosophila melanogaster. Dev. Biol., 169, 629-643]. Here, we show that both Rh5- and Rh6-expressing fibers overlap equally with the 5-HT arborization and that it, in turn, also contacts the dendritic tree of the LNv. The experiments described here aimed at determining whether Rh5- or Rh6-expressing fibers, as well as the LNv, influence the development of this serotonergic arborization. We conclude that Rh6-expressing fibers play a unique role in providing a signal required for the outgrowth and branching of the serotonergic arborization. Moreover, the innervation of the larval optic neuropil by the 5-HT arborization depends on intact Rac function. A possible role for these serotonergic processes in modulating the larval circadian rhythmicity and photoreceptor function is discussed.
Collapse
|
26
|
Settembrini BP, Villar MJ. FMRFamide-like immunocytochemistry in the brain and subesophageal ganglion of Triatoma infestans (Insecta: Heteroptera). Coexpression with β-pigment-dispersing hormone and small cardioactive peptide B. Cell Tissue Res 2005; 321:299-310. [PMID: 15947966 DOI: 10.1007/s00441-005-1147-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Accepted: 04/13/2005] [Indexed: 10/25/2022]
Abstract
The distribution of FMRFamide (FMRFa)-like immunoreactivity (LI) was studied in the brain and subesophageal ganglion of Triatoma infestans, the insect vector of Chagas' disease. The neuropeptide displayed a widespread distribution with immunostained somata in the optic lobe, in the anterior, lateral, and posterior soma rinds of the protocerebrum, and around the antennal sensory and mechanosensory and motor neuropils of the deutocerebrum. FMRFa-immunoreactive profiles of the subesophageal ganglion were seen in the mandibular, maxillary, and labial neuromeres. Immunostained neurites were detected in the medulla and lobula of the optic lobe, the lateral protocerebral neuropil, the median bundle, the calyces and the stalk of the mushroom bodies, and the central body. In the deutocerebrum, the sensory glomeruli showed a higher density of immunoreactive processes than the mechanosensory and motor neuropil, whereas the neuropils of each neuromere of the subesophageal ganglion displayed a moderate density of immunoreactive neurites. Colocalization of FMRFa-LI and crustacean pigment-dispersing hormone-LI was found in perikarya of the proximal optic lobe, the lobula, the sensory deutocerebrum, and the labial neuromere of the subesophageal ganglion. The distribution pattern of small cardioactive peptide B (SCP(B))-LI was also widespread, with immunolabeled somata surrounding every neuropil region of the brain and subesophageal ganglion, except for the optic lobe. FMRFa- and SCP(B)-LIs showed extensive colocalization in the brain of this triatomine species. The presence of immunolabeled perikarya displaying either FMRFa- or SCP(B)-LI confirmed that each antisera identified different peptide molecules. The distribution of FMRFa immunostaining in T. infestans raises the possibility that FMRFa plays a role in the regulation of circadian rhythmicity. The finding of immunolabeling in neurosecretory somata of the protocerebrum suggests that this neuropeptide may also act as a neurohormone.
Collapse
Affiliation(s)
- Beatriz P Settembrini
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Pcia de Buenos Aires, Argentina.
| | | |
Collapse
|
27
|
Yasuyama K, Okada Y, Hamanaka Y, Shiga S. Synaptic connections between eyelet photoreceptors and pigment dispersing factor-immunoreactive neurons of the blowflyProtophormia terraenovae. J Comp Neurol 2005; 494:331-44. [PMID: 16320242 DOI: 10.1002/cne.20812] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Studies using various mutants of Drosophila melanogaster bearing defects in their visual system, including those of the retinal and extraretinal photoreceptor systems, have indicated that the extraretinal photoreceptor known as the Hofbauer-Buchner (H-B) eyelet plays an active, if subsidiary, role in the entrainment of circadian rhythms. In the present study, in the context of unraveling the function of extraretinal photoreception on circadian rhythms and photoperiodic responses, we searched for extraretinal photoreceptors in the blowfly, Protophormia terraenovae, and found that this fly has a homolog of the H-B eyelet. In addition, we show morphologically direct synaptic connections between the eyelet of P. terraenovae (called here Pt-eyelet, after the species' name) and pigment-dispersing factor (PDF)-immunoreactive neurons, which are putative circadian pacemaker neurons, by immunogold electron microscopy combined with intracellular dye injection. The Pt-eyelet was found to reside in the middle of the posterior surface of the optic lobe between the retina and the lamina, as does the H-B eyelet. This extraretinal photoreceptor was composed of at least four photoreceptor cells equipped with well-organized microvillar rhabdomeres. Rhodopsin 6-like immunoreactivity and also the response to light stimuli clearly showed the Pt-eyelet to be functional. The Pt-eyelet terminals in the accessory medulla exhibited synaptic bouton-like appearances and formed divergent multiple-contact output synapses. Synaptic contacts from the Pt-eyelet terminal to the PDF-immunoreactive neurons were identified by the presence of presynaptic ribbons and accumulated synaptic vesicles. Their possible function is discussed in relation to previous studies on circadian rhythm and photoperiodic response of P. terraenovae.
Collapse
Affiliation(s)
- Kouji Yasuyama
- Department of Biology, Kawasaki Medical School, Kurashiki 701-0192, Japan.
| | | | | | | |
Collapse
|
28
|
Pyza E, Górska-Andrzejak J. Involvement of glial cells in rhythmic size changes in neurons of the housefly's visual system. ACTA ACUST UNITED AC 2004; 59:205-15. [PMID: 15085538 DOI: 10.1002/neu.10307] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the housefly's first optic neuropile, or lamina, the axons of two classes of monopolar cell interneurons, L1 and L2, exhibit a daily rhythm of size changes: swelling during the day, and shrinking by night. At least for the L2 cells this rhythm is circadian. Moreover, epithelial glial cells that enwrap each lamina cartridge, its monopolar cell axons, and their surrounding crown of input photoreceptor terminals also change size, but in the opposite direction to the changes in L1 and L2-swelling by night and shrinking by day. The rhythmic changes in glia indicate the possible involvement of these cells in the lamina's circadian system. To examine their role in regulating the rhythmic changes of L1 and L2's axon sizes we have injected three chemicals into the haemolymph of the fly's head: fluorocitrate (FL) and iodoacetate (IAA), which affect the metabolism of glial cells, and octanol (OC), which closes gap junction channels. All chemicals exerted an effect on L1 and L2, which depended on the time of injection, the drug concentration, and the postinjection times at which we examined the fly's brains. Moreover, day/night changes in the axon sizes of L1 and L2 were increased in FL- and IAA-treated flies, indicating that glial cells may normally inhibit these changes by regulating the sizes of L1 and L2's axons during the day and night. In turn, lack of a day/night rhythm in L1 and L2 after OC injections shows that the rhythm's persistence depends on communication between the lamina cells through gap junction channels.
Collapse
Affiliation(s)
- Elzbieta Pyza
- Department of Cytology and Histology, Institute of Zoology, Jagiellonian University, Ingardena 6, 30-060 Kraków, Poland.
| | | |
Collapse
|
29
|
Hall JC. Genetics and molecular biology of rhythms in Drosophila and other insects. ADVANCES IN GENETICS 2003; 48:1-280. [PMID: 12593455 DOI: 10.1016/s0065-2660(03)48000-0] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Application of generic variants (Sections II-IV, VI, and IX) and molecular manipulations of rhythm-related genes (Sections V-X) have been used extensively to investigate features of insect chronobiology that might not have been experimentally accessible otherwise. Most such tests of mutants and molecular-genetic xperiments have been performed in Drosophila melanogaster. Results from applying visual-system variants have revealed that environmental inputs to the circadian clock in adult flies are mediated by external photoreceptive structures (Section II) and also by direct light reception chat occurs in certain brain neurons (Section IX). The relevant light-absorbing molecuLes are rhodopsins and "blue-receptive" cryptochrome (Sections II and IX). Variations in temperature are another clock input (Section IV), as has been analyzed in part by use of molecular techniques and transgenes involving factors functioning near the heart of the circadian clock (Section VIII). At that location within the fly's chronobiological system, approximately a half-dozen-perhaps up to as many as 10-clock genes encode functions that act and interact to form the circadian pacemaker (Sections III and V). This entity functions in part by transcriptional control of certain clock genes' expressions, which result in the production of key proteins that feed back negatively to regulate their own mRNA production. This occurs in part by interactions of such proteins with others that function as transcriptional activators (Section V). The implied feedback loop operates such that there are daily variations in the abundances of products put out by about one-half of the core clock genes. Thus, the normal expression of these genes defines circadian rhythms of their own, paralleling the effects of mutations at the corresponding genetic loci (Section III), which are to disrupt or apparently eliminate clock functioning. The fluctuations in the abundance of gene products are controlled transciptionally and posttranscriptionally. These clock mechanisms are being analyzed in ways that are increasingly complex and occasionally obscure; not all panels of this picture are comprehensive or clear, including problems revolving round the biological meaning or a given features of all this molecular cycling (Section V). Among the complexities and puzzles that have recently arisen, phenomena that stand out are posttranslational modifications of certain proteins that are circadianly regulated and regulating; these biochemical events form an ancillary component of the clock mechanism, as revealed in part by genetic identification of Factors (Section III) that turned out to encode protein kinases whose substrates include other pacemaking polypeptides (Section V). Outputs from insect circadian clocks have been long defined on formalistic and in some cases concrete criteria, related to revealed rhythms such as periodic eclosion and daily fluctuations of locomotion (Sections II and III). Based on the reasoning that if clock genes can regulate circadian cyclings of their own products, they can do the same for genes that function along output pathways; thus clock-regulated genes have been identified in part by virtue of their products' oscillations (Section X). Those studied most intensively have their expression influenced by circadian-pacemaker mutations. The clock-regulated genes discovered on molecular criteria have in some instances been analyzed further in their mutant forms and found to affect certain features of overt whole-organismal rhythmicity (Sections IV and X). Insect chronogenetics touches in part on naturally occurring gene variations that affect biological rhythmicity or (in some cases) have otherwise informed investigators about certain features of the organism's rhythm system (Section VII). Such animals include at least a dozen insect species other than D. melanogaster in which rhythm variants have been encountered (although usually not looked for systematically). The chronobiological "system" in the fruit fly might better be graced with a plural appellation because there is a myriad of temporally related phenomena that have come under the sway of one kind of putative rhythm variant or the other (Section IV). These phenotypes, which range well beyond the bedrock eclosion and locomotor circadian rhythms, unfortunately lead to the creation of a laundry list of underanalyzed or occult phenomena that may or may not be inherently real, whether or not they might be meaningfully defective under the influence of a given chronogenetic variant. However, such mutants seem to lend themselves to the interrogation of a wide variety of time-based attributes-those that fall within the experimental confines of conventionally appreciated circadian rhythms (Sections II, III, VI, and X); and others that consist of 24-hr or nondaily cycles defined by many kinds of biological, physiological, or biochemical parameters (Section IV).
Collapse
Affiliation(s)
- Jeffrey C Hall
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| |
Collapse
|
30
|
Sehadová H, Sauman I, Sehnal F. Immunocytochemical distribution of pigment-dispersing hormone in the cephalic ganglia of polyneopteran insects. Cell Tissue Res 2003; 312:113-25. [PMID: 12712321 DOI: 10.1007/s00441-003-0705-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2002] [Accepted: 01/17/2003] [Indexed: 10/25/2022]
Abstract
Material detectable with antisera to the pigment-dispersing hormone (PDH) is regarded as a component of the circadian clock residing in some insects in the optic lobe. This paper demonstrates that the position of the PDH-positive neurones and the course of their processes are similar in all representatives of the insect cohort Polyneoptera. A basic morphological pattern, which includes the proximal frontoventral (Pfv), distal posteriodorsal (Dpd) and posterioventral (Dpv) clusters of PDH-positive neurones, was found in the examined species of locusts, crickets, walking sticks, cockroaches, earwigs and termites. The Pfv cluster is located close to the accessory medulla and usually consists of a set of smaller and a set of larger perikarya. The Dpd and Dpv clusters occupy a dorsal and a ventral position, respectively, at the distal edge of the medulla. These clusters are lacking in stonefly and praying mantid species. The fan-like arrangement of PDH-positive fibres within the frontal medulla face (the locusts and the praying mantid have an additional, smaller fan on the posterior medulla face) is another characteristic feature of Polyneoptera. One (two in the locusts and the praying mantid) nerve bundle runs from the optic lobe to the lateral protocerebrum where it ramifies. One branch gives rise to a fibre network frontally encircling brain neuropile in the area of mushroom bodies. One thin fibre in the crickets and the earwig, and several thicker and anastomosing fibres in the other insects, connect the brain hemispheres. The arrangement of other PDH-positive structures specifies taxa within Polyneoptera. Specific features comprise the presence of PDH-positive perikarya in protocerebrum (walking stick and termite), deutocerebrum (cricket, walking stick, and one cockroach species), tritocerebrum (another cockroach species), and the suboesophageal ganglion (cricket, walking stick and termite). In the walking stick and the termite, PDH-positive fibres pass from the cephalic to the frontal ganglion and from there via the recurrent nerve to the corpora cardiaca where they make varicosities indicative of peptide release into the haemolymph.
Collapse
Affiliation(s)
- H Sehadová
- Institute of Entomology, Czech Academy of Sciences and Faculty of Biological Sciences, University of South Bohemia, Branisovská 31, 370 05, Ceské Budejovice, Czech Republic
| | | | | |
Collapse
|
31
|
Fanjul-Moles ML, Prieto-Sagredo J. The circadian system of crayfish: a developmental approach. Microsc Res Tech 2003; 60:291-301. [PMID: 12539159 DOI: 10.1002/jemt.10268] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Adult crayfish exhibit a variety of overt circadian rhythms. However, the physiological mechanisms underlying the overt rhythms are controversial. Research has centered on two overt rhythms: the motor activity and the retinal sensitivity rhythms of the genus Procambarus. The present work reviews various studies undertaken to localize pacemakers and mechanisms of entrainment responsible for these two rhythms in adult organisms of this crustacean decapod. It also describes an ontogenetic approach to the problem by means of behavioral, electrophysiological, and neurochemical experiments. The results of this approach confirm previous models proposed for adult crayfish, based on a number of circadian pacemakers distributed in the central nervous system. However, the coupling of rhythmicity between these independent oscillators might be complex and dependent on the interaction between serotonin (5-HT), light, and the crustacean hyperglycemic hormone (CHH). The latter compound has, up until now, not been considered as an agent in the genesis and synchronization of the retinal sensitivity rhythm.
Collapse
Affiliation(s)
- María Luisa Fanjul-Moles
- Departamento de Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | | |
Collapse
|
32
|
Abstract
Circadian rhythms can be entrained by light to follow the daily solar cycle. In Drosophila melanogaster a pair of extraretinal eyelets expressing immunoreactivity to Rhodopsin 6 each contains four photoreceptors located beneath the posterior margin of the compound eye. Their axons project to the region of the pacemaker center in the brain with a trajectory resembling that of Bolwig's organ, the visual organ of the larva. A lacZ reporter line driven by an upstream fragment of the developmental gap gene Krüppel is a specific enhancer element for Bolwig's organ. Expression of immunoreactivity to the product of lacZ in Bolwig's organ persists through pupal metamorphosis and survives in the adult eyelet. We thus demonstrate that eyelet derives from the 12 photoreceptors of Bolwig's organ, which entrain circadian rhythmicity in the larva. Double labeling with anti-pigment-dispersing hormone shows that the terminals of Bolwig's nerve differentiate during metamorphosis in close temporal and spatial relationship to the ventral lateral neurons (LN(v)), which are essential to express circadian rhythmicity in the adult. Bolwig's organ also expresses immunoreactivity to Rhodopsin 6, which thus continues in eyelet. We compared action spectra of entrainment in different fly strains: in flies lacking compound eyes but retaining eyelet (so(1)), lacking both compound eyes and eyelet (so(1);gl(60j)), and retaining eyelet but lacking compound eyes as well as cryptochrome (so(1);cry(b)). Responses to phase shifts suggest that, in the absence of compound eyes, eyelet together with cryptochrome mainly mediates phase delays. Thus a functional role in circadian entrainment first found in Bolwig's organ in the larva is retained in eyelet, the adult remnant of Bolwig's organ, even in the face of metamorphic restructuring.
Collapse
|
33
|
Nässel DR. Neuropeptides in the nervous system of Drosophila and other insects: multiple roles as neuromodulators and neurohormones. Prog Neurobiol 2002; 68:1-84. [PMID: 12427481 DOI: 10.1016/s0301-0082(02)00057-6] [Citation(s) in RCA: 344] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neuropeptides in insects act as neuromodulators in the central and peripheral nervous system and as regulatory hormones released into the circulation. The functional roles of insect neuropeptides encompass regulation of homeostasis, organization of behaviors, initiation and coordination of developmental processes and modulation of neuronal and muscular activity. With the completion of the sequencing of the Drosophila genome we have obtained a fairly good estimate of the total number of genes encoding neuropeptide precursors and thus the total number of neuropeptides in an insect. At present there are 23 identified genes that encode predicted neuropeptides and an additional seven encoding insulin-like peptides in Drosophila. Since the number of G-protein-coupled neuropeptide receptors in Drosophila is estimated to be around 40, the total number of neuropeptide genes in this insect will probably not exceed three dozen. The neuropeptides can be grouped into families, and it is suggested here that related peptides encoded on a Drosophila gene constitute a family and that peptides from related genes (orthologs) in other species belong to the same family. Some peptides are encoded as multiple related isoforms on a precursor and it is possible that many of these isoforms are functionally redundant. The distribution and possible functions of members of the 23 neuropeptide families and the insulin-like peptides are discussed. It is clear that each of the distinct neuropeptides are present in specific small sets of neurons and/or neurosecretory cells and in some cases in cells of the intestine or certain peripheral sites. The distribution patterns vary extensively between types of neuropeptides. Another feature emerging for many insect neuropeptides is that they appear to be multifunctional. One and the same peptide may act both in the CNS and as a circulating hormone and play different functional roles at different central and peripheral targets. A neuropeptide can, for instance, act as a coreleased signal that modulates the action of a classical transmitter and the peptide action depends on the cotransmitter and the specific circuit where it is released. Some peptides, however, may work as molecular switches and trigger specific global responses at a given time. Drosophila, in spite of its small size, is now emerging as a very favorable organism for the studies of neuropeptide function due to the arsenal of molecular genetics methods available.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
34
|
Wise S, Davis NT, Tyndale E, Noveral J, Folwell MG, Bedian V, Emery IF, Siwicki KK. Neuroanatomical studies of period gene expression in the hawkmoth, Manduca sexta. J Comp Neurol 2002; 447:366-80. [PMID: 11992522 DOI: 10.1002/cne.10242] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the nervous system of the hawkmoth, Manduca sexta, cells expressing the period (per)gene were mapped by in situ hybridization and immunocytochemical methods. Digoxigenin-labeled riboprobes were transcribed from a 1-kb M. sexta per cDNA. Monoclonal anti-PER antibodies were raised to peptide antigens translated from both M. sexta and Drosophila melanogaster per cDNAs. These reagents revealed a widespread distribution of per gene products in M. sexta eyes, optic lobes, brains, and retrocerebral complexes. Labeling for per mRNA was prominent in photoreceptors and in glial cells throughout the brain, and in a cluster of 100-200 neurons adjacent to the accessory medulla of the optic lobes. Daily rhythms of per mRNA levels were detected only in glial cells. PER-like immunoreactivity was observed in nuclei of most neurons and glial cells and in many photoreceptor nuclei. Four neurosecretory cells in the pars lateralis of each brain hemisphere exhibited both nuclear and cytoplasmic staining with anti-PER antibodies. These cells were positively identified as Ia(1) neurosecretory cells that express corazonin immunoreactivity. Anti-corazonin labeled their projections in the brain and their neurohemal endings in the corpora cardiaca and corpora allata. Four pairs of PER-expressing neurosecretory cells previously described in the silkmoth, Anthereae pernyi, are likely to be homologous to these PER/corazonin-expressing Ia(1) cells of M. sexta. Other findings, such as widespread nuclear localization of M. sexta PER and rhythmic expression in glial cells, are reminiscent of the period gene of D. melanogaster, suggesting that some functions of per may be conserved in this lepidopteran species.
Collapse
Affiliation(s)
- Sarah Wise
- Biology Department, Swarthmore College, Swarthmore, Pennsylvania 19081, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Saifullah ASM, Tomioka K. Serotonin sets the day state in the neurons that control coupling between the optic lobe circadian pacemakers in the cricketGryllus bimaculatus. J Exp Biol 2002; 205:1305-14. [PMID: 11948207 DOI: 10.1242/jeb.205.9.1305] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe bilaterally paired optic lobe circadian pacemakers of the cricket Gryllus bimaculatus mutually exchange photic and circadian information to keep their activity synchronized. The information is mediated by a neural pathway, consisting of the so-called medulla bilateral neurons,connecting the medulla areas of the two optic lobes. We investigated the effects of serotonin on the neural activity in this coupling pathway. Spontaneous and light-induced electrical activity of the neurons in the coupling pathway showed daily variations, being more intense during the night than the day. Microinjection of serotonin or a serotonin-receptor agonist,quipazine, into the optic lobe caused a dose- and time-dependent inhibition of spontaneous and light-induced responses, mimicking the day state. The amount of suppression was greater and the recovery from the suppression occurred faster during the night. Application of metergoline, a non-selective serotonin-receptor antagonist, increased spontaneous activity and light-evoked responses during both the day and the night, with higher effect during the day. In addition, metergoline effectively attenuated the effects of serotonin. These facts suggest that in the cricket's optic lobe, serotonin is released during the daytime and sets the day state in the neurons regulating coupling between the bilaterally paired optic lobe circadian pacemakers.
Collapse
Affiliation(s)
- A S M Saifullah
- Department of Physics, Biology and Informatics, Faculty of Science and Research Institute for Time Studies, Yamaguchi University, Yamaguchi 753-8512, Japan
| | | |
Collapse
|
36
|
Bałys M, Pyza E. Localization of the clock controlling circadian rhythms in the first neuropile of the optic lobe in the housefly. J Exp Biol 2001; 204:3303-10. [PMID: 11606604 DOI: 10.1242/jeb.204.19.3303] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
SUMMARYThe visual system of a fly expresses several circadian rhythms that have been detected in the photoreceptors of the compound eye and in the first neuropile, the lamina, of the underlying optic lobe. In the lamina, axons of two classes of interneuron, L1 and L2, exhibit cyclical size changes, swelling by day and shrinking by night. These rhythmic size changes may be generated by circadian oscillators located inside and/or outside the optic lobe. To localize such oscillators, we have examined changes in the axonal cross-sectional areas of L1 and L2 within the lamina of the housefly (Musca domestica) under conditions of 12 h of light and 12 h of darkness (LD12:12), constant darkness (DD) or continuous light (LL) 24 h after the medulla was severed from the rest of the brain. After the lesion, the axon size changes of L1 and L2 were maintained only in LD conditions, but were weaker than in control flies. In DD and LL conditions, they were eliminated. This indicates that circadian rhythms in the lamina of a fly are generated central to the lamina and medulla neuropiles of the optic lobe. Cyclical changes of light and darkness in LD conditions are still able, however, to induce a weak daily rhythm in the axon sizes of L1 and L2.
Collapse
Affiliation(s)
- M Bałys
- Zoological Museum, Institute of Zoology, Jagiellonian University, Ingardena 6, 30-060 Kraków, Poland
| | | |
Collapse
|
37
|
Abstract
Studies of insect identified neurons over the past 25 years have provided some of the very best data on sensorimotor integration; tracing information flow from sensory to motor networks. General principles have emerged that have increased the sophistication with which we now understand both sensory processing and motor control. Two overarching themes have emerged from studies of identified sensory interneurons. First, within a species, there are profound differences in neuronal organization associated with both the sex and the social experience of the individual. Second, single neurons exhibit some surprisingly rich examples of computational sophistication in terms of (a) temporal dynamics (coding superimposed upon circadian and shorter-term rhythms), and also (b) what Kenneth Roeder called "neural parsimony": that optimal information can be encoded, and complex acts of sensorimotor coordination can be mediated, by small ensembles of cells. Insect motor systems have proven to be relatively complex, and so studies of their organization typically have not yielded completely defined circuits as are known from some other invertebrates. However, several important findings have emerged. Analysis of neuronal oscillators for rhythmic behavior have delineated a profound influence of sensory feedback on interneuronal circuits: they are not only modulated by feedback, but may be substantially reconfigured. Additionally, insect motor circuits provide potent examples of neuronal restructuring during an organism's lifetime, as well as insights on how circuits have been modified across evolutionary time. Several areas where future advances seem likely to occur include: molecular genetic analyses, neuroecological syntheses, and neuroinformatics--the use of digital resources to organize databases with information on identified nerve cells and behavior.
Collapse
Affiliation(s)
- C M Comer
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | | |
Collapse
|
38
|
Giebultowicz JM. Molecular mechanism and cellular distribution of insect circadian clocks. ANNUAL REVIEW OF ENTOMOLOGY 2000; 45:769-793. [PMID: 10761596 DOI: 10.1146/annurev.ento.45.1.769] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Circadian clocks are endogenous timing mechanisms that control molecular, cellular, physiological, and behavioral rhythms in all organisms from unicellulars to humans. Circadian rhythms influence many aspects of insect biology, finetuning life functions to the light and temperature cycles associated with the solar day. Genetic studies in the fruit fly Drosophila melanogaster have led to the cloning and characterization of several genes involved in the mechanism of the circadian clock. Periodic transcription and translation of these clock genes form the basis of a molecular feedback loop that has a "circa" 24-hour period. Rhythmic expression of clock genes in specific brain neurons appears to control behavioral rhythms in adult flies. However, clock genes are also expressed in other tissues, both within and outside of the nervous system. These observations prompted chronobiologists to investigate whether nonneural tissues possess intrinsic circadian clocks, what role they may be playing, and what the relationships are between clocks in the nervous system and those in peripheral tissues. Answers to those questions are providing important insights into the overall organization of the circadian system in insects.
Collapse
Affiliation(s)
- J M Giebultowicz
- Department of Entomology, Oregon State University, Corvallis 97331, USA.
| |
Collapse
|
39
|
|
40
|
Abstract
Many invertebrates have supplementary extraocular photoreceptors that often are implicated in circadian rhythms. An extraretinal group of candidate photoreceptors in the fruit fly, Drosophila melanogaster, has been revealed previously at the posterior margin of the compound eye by using a photoreceptor-specific monoclonal antibody (Hofbauer and Buchner [1989] Naturwissen 76:335-336), but it never has been characterized. Here, we report the fine structure of this cell cluster reported by Hofbauer and Buchner, which is called "eyelet," as well as the further candidacy of their visual pigment and neurotransmitter. Eyelet forms a specialized, pigmented organ with cells that have numerous microvilli arranged into coherent rhabdomeres. The presence of rhabdomeric microvilli is a defining feature of a photoreceptor, reported here for the first time in eyelet. The rhabdomeres exhibit Rh6 opsin-like immunoreactivity, which provides evidence that the photoreceptors are functional: they fail to immunostain with antibodies against NINAE (Rh1), Rh4, or Rh5. The photoreceptors have been shown previously to exhibit histamine-like immunoreactivity, but they also stain with a monoclonal antiserum raised against Drosophila choline acetyltransferase (ChAT), suggesting that the photoreceptors not only may contain histamine but also can synthesize acetylcholine. A ChAT-immunoreactive axon bundle originating from eyelet terminates in the cortex of the anterior medulla. This bundle also is seen with reduced silver stains. Electron microscopic examination revealed four axon profiles of similar size in this bundle, indicating that eyelet contains at least four photoreceptors. The pathway of eyelet's axon bundle coincides with the precocious pathway of Bolwig's nerve that arises from the larval organ of sight. The origin and possible function of eyelet are discussed.
Collapse
Affiliation(s)
- K Yasuyama
- Department of Biology, Kawasaki Medical School, Kurashiki City, Okayama 701-0192, Japan.
| | | |
Collapse
|
41
|
|
42
|
Giebultowicz JM. Insect circadian clocks: is it all in their heads? JOURNAL OF INSECT PHYSIOLOGY 1999; 45:791-800. [PMID: 12770291 DOI: 10.1016/s0022-1910(99)00055-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Circadian rhythms are ubiquitous in living organisms, synchronizing life functions at the biochemical, physiological, and behavioral levels. The rhythm-generating mechanisms, collectively known as circadian clocks, are not fully understood in any organism. Research in the fruit fly Drosophila has led to the identification of several clock genes that are involved in the function of the brain-centered clock, which controls behavioral rhythms of adult flies. With the use of clock genes as markers, putative circadian clocks were mapped in the fly peripheral organs and shown to be independent from clocks located in the brain. A homologue of fruit fly period gene has been identified in moths and other insects, allowing investigations of this gene's role in known insect rhythms. This approach may increase our understanding of how circadian clocks are organized into the circadian system that orchestrates temporal integration of life processess in insects.
Collapse
|
43
|
Pyza E, Meinertzhagen IA. Daily rhythmic changes of cell size and shape in the first optic neuropil in Drosophila melanogaster. JOURNAL OF NEUROBIOLOGY 1999; 40:77-88. [PMID: 10398073 DOI: 10.1002/(sici)1097-4695(199907)40:1<77::aid-neu7>3.0.co;2-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Daily rhythms of changes in axon size and shape are seen in two types of monopolar cell-L1 and L2-that are unique cells within each of the modules or cartridges of the first optic neuropil or lamina in the fly's optic lobe. In the fruit fly Drosophila, L1 and L2's axons swell at the beginning of both day and night, with larger size increases occurring at the beginning of night. Later, they shrink during the day and night, respectively. Simultaneously, they change shape from an inverted conical form during the day to a cylindrical one at night. This is because the axonal cross section of L1 increases during the night, especially at proximal depths of the lamina, closest to the brain, whereas the axon of L2 increases in size at distal lamina depths. The cross-sectional areas of the L1 cell and of an individual cartridge both change under constant darkness (DD), indicating the circadian origin of changes observed under day/night (LD) conditions. We sought to see whether such changes impart a net change to the entire lamina's volume or shape that is visible by light microscopy, but oscillations in the volume or the curvature of the whole lamina neuropil are found neither in LD nor in DD. These size changes are discussed in relation to previous findings in the housefly Musca, with respect to differences in L1 and L2 between the two species, and to differences in the time course of their circadian changes.
Collapse
Affiliation(s)
- E Pyza
- Zoological Museum, Institute of Zoology, Jagiellonian University, Ingardena 6, 30-060 Kraków, Poland
| | | |
Collapse
|
44
|
Shimohigashi M, Tominaga Y. Synaptic organization in the lamina of the superposition eye of a skipper butterfly, Parnara guttata. J Comp Neurol 1999; 408:107-24. [PMID: 10331583 DOI: 10.1002/(sici)1096-9861(19990524)408:1<107::aid-cne8>3.0.co;2-#] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The first optic neuropil of the compound eye, the lamina, of the skipper butterfly Parnara guttata, was examined by light microscopy after Golgi-impregnation and by electron microscopy (EM) to clarify the cellular and synaptic organization. In the lamina, five different types of lamina neurons (L neurons) were characterized by using Golgi-impregnation. By EM, each cartridge was found to contain all nine receptor axons from an ommatidium, five L neurons, and a few putative centrifugal elements. Axons from photoreceptors (retinula cells) R2, R3, R4, R6, R7, and R8 terminate as short visual fibers (svfs) in the lamina cartridge. Those from R1, R5, and R9 penetrate the lamina and terminate in the medulla as long visual fibers (lvfs). In the cartridges, the synaptic contacts were formed from svfs onto L neurons, from the lvfs of R1 and/or R5 to the lvf of R9 and L neurons, and from the lvf of R9 to L neurons. The putative centrifugal fibers also make synapses to svfs and L neurons. At the most distal level of the cartridge, one of the centrifugal fibers containing dense-core vesicles makes presynaptic contacts to the putative long collaterals of the L neuron. A novel characteristic feature of this lamina is that svfs of R3 and R7 and the lvfs of R1 or R5 have long collaterals extending into neighboring cartridges. Presynaptic contacts were confirmed in such long collaterals from the svf. These results imply that receptor axons provide direct intercartridge connections as well as providing indirect connections to neighboring cartridges by way of their input upon L neurons.
Collapse
Affiliation(s)
- M Shimohigashi
- Division of Biology, Faculty of Science, Fukuoka University, Japan.
| | | |
Collapse
|
45
|
Abstract
The visual system of the fly's compound eye undergoes a number of cyclical day/night changes that have a circadian basis. Such responses are seen in the synaptic terminals of the photoreceptors and in their large monopolar-cell interneurons in the first optic neuropile, or lamina. These changes include, in the photoreceptor terminals, rhythms in the numbers of synapses and the vertical migration of screening pigment; and, in the monopolar cells L1 and L2, a rhythm in the transients of the electroretinogram and in the cyclical swelling of L1 and L2 lamina axons, as well as of the epithelial glia that surround these. Some of these changes are seen in both the housefly and the fruit fly, but the time-course of such changes differs between the two species. Many of the changes are influenced by the injection of various transmitter candidates, in a direction that can be reconciled with the possibility of normal endogenous release of two substances, 5HT from the neurites of 5HT-immunoreactive neurons, and pigment dispersing factor peptide from the neurites of PDH cells. Consistent with this interpretation, the immunoreactive varicosities of PDH cells exhibit size changes attributable to their cyclical release of peptide, or to its cyclical synthesis and/or transport from the PDH cell somata. Thus, neurotransmitter substances not only have rapid electrophysiological actions in the optic lobe, but also longer-lasting, presumably indirect, neuromodulatory actions, which are manifest as structural changes among the lamina's neurons and synapses. These actions involve an interplay between aminergic and peptidergic systems, but the exact role and especially the site of action of each has still to be elucidated.
Collapse
Affiliation(s)
- I A Meinertzhagen
- Neuroscience Institute, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
46
|
Abstract
The circadian systems of different insect groups are summarized and compared. Emphasis is placed on the anatomical identification and characterization of circadian pacemakers, as well as on their entrainment, coupling, and output pathways. Cockroaches, crickets, beetles, and flies possess bilaterally organized pacemakers in the optic lobes that appear to be located in the accessory medulla, a small neuropil between the medulla and the lobula. Neurons that are immunoreactive for the peptide pigment-dispersing hormone (PDH) arborize in the accessory medulla and appear to be important components of the optic lobe pacemakers. The neuronal architecture of the accessory medulla with associated PDH-immunoreactive neurons is best characterized in cockroaches, while the molecular machinery of rhythm generation is best understood in fruit flies. One essential component of the circadian clock is the period protein (PER), which colocalizes with PDH in about half of the fruit fly's presumptive pacemaker neurons. PER is also found in the presumptive pacemaker neurons of beetles and moths, but appears to have different functions in these insects. In moths, the pacemakers are situated in the central brain and are closely associated with neuroendocrine functions. In the other insects, neurons associated with neuroendocrine functions also appear to be closely coupled to the optic lobe pacemakers. Some crickets and flies seem to possess central brain pacemakers in addition to their optic lobe pacemakers. With respect to neuronal organization, the circadian systems of insects show striking similarities to the vertebrate circadian system.
Collapse
|
47
|
Abstract
In the fruit-fly Drosophila, rhythmic expression of the clock gene period is detected in cells throughout the body. Whereas these cells could be pacemakers for circadian rhythms of unknown physiological processes, the brain pacemakers are known to be responsible for circadian behavior. Recent progress in genetic and molecular studies of clock genes in Drosophila has permitted the identification of brain pacemakers at the cellular level and their output pathways to rhythmic behavior. Similar studies in other insect species have suggested considerable diversity in the anatomical and neurochemical properties of pacemaker cells, as well as in the mechanisms of clock-gene regulation.
Collapse
Affiliation(s)
- M Kaneko
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA.
| |
Collapse
|
48
|
Affiliation(s)
- J C Hall
- Department of Biology, Brandeis University, Waltham, MA 02254-9110, USA.
| |
Collapse
|
49
|
Affiliation(s)
- J C Hall
- Department of Biology, Brandeis University, Waltham, Massachusetts 02254, USA
| |
Collapse
|
50
|
Brodbeck D, Amherd R, Callaerts P, Hintermann E, Meyer UA, Affolter M. Molecular and biochemical characterization of the aaNAT1 (Dat) locus in Drosophila melanogaster: differential expression of two gene products. DNA Cell Biol 1998; 17:621-33. [PMID: 9703021 DOI: 10.1089/dna.1998.17.621] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In insects, arylalkylamine N-acetyltransferases (AANATs) have been implicated in several physiological processes, including sclerotization, inactivation of certain neurotransmitters, and, similar to the function in vertebrates, catalysis of the rate-limiting step in melatonin biosynthesis. Here, we report an extensive biochemical and functional analysis of the products of the aaNAT1 gene of Drosophila melanogaster. The aaNAT1 gene generates two transcripts through alternative first-exon usage. These transcripts are under tissue-specific and developmental control and encode proteins which differ in their N-terminus with respect to their starting methionine. The more abundant isoform, AANATlb, is first expressed during late embryogenesis in the brain, the ventral nerve cord, and the midgut; in adults, AANATlb is still detectable in the brain and midgut. The less abundant isoform, AANATla, appears only during late pupal stages and in adults is found predominantly in the brain. We demonstrate that the mutation Dat(lo) represents a hypomorphic allele of aaNAT1b, in which an insertion of two transposable elements, MDG412 and blastopia, has occurred within the first intron of the gene. Using a deficiency which removes the aaNAT1 gene, we provide evidence that aaNAT1 is not essential for the process of sclerotization. Furthermore, neither of the two enzyme isoforms shows circadian regulation of RNA or protein levels. The differing levels of abundance and distinct developmental control of AANAT1a and AANAT1b suggest different in vivo functions for these two enzymes.
Collapse
Affiliation(s)
- D Brodbeck
- Department of Pharmacology, Biozentrum of the University of Basel, Switzerland
| | | | | | | | | | | |
Collapse
|