1
|
Jastrząb P, Car H, Wielgat P. Cell membrane sialome machinery and regulation of receptor tyrosine kinases in gliomas: The functional relevance and therapeutic perspectives. Biomed Pharmacother 2025; 184:117921. [PMID: 39986236 DOI: 10.1016/j.biopha.2025.117921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/24/2025] Open
Abstract
Gliomas are the most common primary brain tumors characterized by high aggressive potential, poor therapeutic response, and significantly reduced overall patient survival. Despite significant progress in the diagnosis and therapy of cancer, gliomas remain a clinical challenge due to the high molecular and cellular heterogeneity, which provides for multiple mechanisms of chemoresistance and adaptive plasticity. A better understanding of cellular regulatory mechanisms of intracellular signal transduction enables the development of targeted drug therapies and clinical application. The increasing evidence confirms the role of sialoglycans in the processing of cell membrane receptors via altered dimerization, activation, and autophosphorylation, which results in changes in cellular signaling and promotes cancer progression. Hence, the modified sialylation patterns, as a hallmark of cancer, have been described as modulators of chemotherapy effectiveness and drug resistance. The receptor tyrosine kinases (RTKs)-mediated signaling in glial tumors control cell growth, survival, migration, and angiogenesis. Here, we focus on the engagement of the sialome machinery in RTKs processing in gliomas and its importance as a suitable therapeutic target. The analysis of the sialylation pattern and its impact on the activity of growth factor receptors provides valuable insights into our understanding of the molecular and cellular complexity of glial tumors. This highlights the novel treatment approaches that could improve prognosis and patients' overall survival.
Collapse
Affiliation(s)
- Patrycja Jastrząb
- Department of Clinical Pharmacology, Medical University of Bialystok, ul. Waszyngtona 15A, Bialystok 15-274, Poland
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, ul. Waszyngtona 15A, Bialystok 15-274, Poland; Department of Experimental Pharmacology, Medical University of Bialystok, ul. Szpitalna 37, Bialystok 15-295, Poland
| | - Przemyslaw Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, ul. Waszyngtona 15A, Bialystok 15-274, Poland.
| |
Collapse
|
2
|
Chen T, Zhou H, Yuan S, Deng X, Li Y, Chen N, You J, Li R, Li T, Zheng Y, Luo M, Lv H, Wu J, Wang L. Glycation of fibronectin impairs angiopoietin-1/Tie-2 signaling through uncoupling Tie-2-α5β1 integrin crosstalk. Cell Signal 2023; 112:110916. [PMID: 37806542 DOI: 10.1016/j.cellsig.2023.110916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
The dysfunction of angiopoietin-1 (Ang-1)/Tie-2 signaling pathways has been implicated in diabetic complications. However, the underlying molecular mechanisms remain unclear. Fibronectin (FN) is thought to have an important role in regulating Ang-1/Tie-2 signaling activation. But no previous study has investigated the effects of FN glycation on Ang-1/Tie-2 signaling. In the present study, FN was glycated by methylglyoxal (MGO) to investigate whether the glycation of FN contributes to diabetes-induced Ang-1/Tie-2 signaling impairment and to understand the molecular mechanisms involved. The results demonstrated that MGO-glycated FN significantly impaired Ang-1-evoked phosphorylation of Tie-2 and Akt, Ang-1-induced endothelial cell migration and tube formation and Ang-1-mediated cell survival. The glycation of FN also inhibited the binding of α5β1 integrin to Tie-2. Moreover, FN was remarkably modified by AGEs in aortae derived from db/db mice, indicating the glycation of FN in vivo. Ang-1-induced aortic ring vessel outgrowth and Ang-1-mediated cell survival were also both significantly inhibited in aortae from db/db mice compared to that from the wild type littermates. Moreover, FN, rather than glycated FN partly restored aortic ring angiogenesis in db/db mice, indicating that the angiogenesis defect in the db/db mice are due to FN glycation. Collectively, the results in the present study suggest that the glycation of FN impairs Ang-1/Tie-2 signaling pathway by uncoupling Tie-2-α5β1 integrin crosstalk. This may provide a mechanism for Ang-1/Tie-2 signaling dysfunction and angiogenesis failure in diabetic ischaemic diseases.
Collapse
Affiliation(s)
- Tangting Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Haiyan Zhou
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Shuangshuang Yuan
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Xin Deng
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Yongjie Li
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Ni Chen
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Jingcan You
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Rong Li
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Tian Li
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Youkun Zheng
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Mao Luo
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Hongbin Lv
- Department of Ophthalmology, the Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Jianbo Wu
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China.
| | - Liqun Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China; Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China.
| |
Collapse
|
3
|
Starchenko A, Graves-Deal R, Brubaker D, Li C, Yang Y, Singh B, Coffey RJ, Lauffenburger DA. Cell surface integrin α5ß1 clustering negatively regulates receptor tyrosine kinase signaling in colorectal cancer cells via glycogen synthase kinase 3. Integr Biol (Camb) 2021; 13:153-166. [PMID: 34037774 PMCID: PMC8204629 DOI: 10.1093/intbio/zyab009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/30/2022]
Abstract
As a key process within the tissue microenvironment, integrin signaling can influence cell functional responses to growth factor stimuli. We show here that clustering of integrin α5ß1 at the plasma membrane of colorectal cancer-derived epithelial cells modulates their ability to respond to stimulation by receptor tyrosine kinase (RTK)-activating growth factors EGF, NRG and HGF, through GSK3-mediated suppression of Akt pathway. We observed that integrin α5ß1 is lost from the membrane of poorly organized human colorectal tumors and that treatment with the integrin-clustering antibody P4G11 is sufficient to induce polarity in a mouse tumor xenograft model. While adding RTK growth factors (EGF, NRG and HGF) to polarized colorectal cancer cells induced invasion and loss of monolayer formation in 2D and 3D, this pathological behavior could be blocked by P4G11. Phosphorylation of ErbB family members as well as MET following EGF, NRG and HGF treatment was diminished in cells pretreated with P4G11. Focusing on EGFR, we found that blockade of integrin α5ß1 increased EGFR phosphorylation. Since activity of multiple downstream kinase pathways were altered by these various treatments, we employed computational machine learning techniques to ascertain the most important effects. Partial least-squares discriminant analysis identified GSK3 as a major regulator of EGFR pathway activities influenced by integrin α5ß1. Moreover, we used partial correlation analysis to examine signaling pathway crosstalk downstream of EGF stimulation and found that integrin α5ß1 acts as a negative regulator of the AKT signaling cascade downstream of EGFR, with GSK3 acting as a key mediator. We experimentally validated these computational inferences by confirming that blockade of GSK3 activity is sufficient to induce loss of polarity and increase of oncogenic signaling in the colonic epithelial cells.
Collapse
Affiliation(s)
- Alina Starchenko
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, MA, USA
| | - Ramona Graves-Deal
- Vanderbilt University Medical Center, Department of Cell & Developmental Biology, Nashville, TN, USA
| | - Douglas Brubaker
- Purdue University, Department of Biomedical Engineering, West Lafayette, IN, USA
| | - Cunxi Li
- Vanderbilt University Medical Center, Department of Cell & Developmental Biology, Nashville, TN, USA
| | - Yuping Yang
- Vanderbilt University Medical Center, Department of Cell & Developmental Biology, Nashville, TN, USA
| | - Bhuminder Singh
- Vanderbilt University Medical Center, Department of Cell & Developmental Biology, Nashville, TN, USA
| | - Robert J Coffey
- Vanderbilt University Medical Center, Department of Cell & Developmental Biology, Nashville, TN, USA
| | - Douglas A Lauffenburger
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, MA, USA
| |
Collapse
|
4
|
Sarwar M, Sykes PH, Chitcholtan K, Evans JJ. Extracellular biophysical environment: Guilty of being a modulator of drug sensitivity in ovarian cancer cells. Biochem Biophys Res Commun 2020; 527:180-186. [PMID: 32446364 DOI: 10.1016/j.bbrc.2020.04.107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/21/2020] [Indexed: 01/10/2023]
Abstract
The roles of the extracellular biophysical environment in cancer are barely studied. This study considers the possibility that cell-like topography of a cancer cell environment may influence chemo-responses. Here, a novel bioimprinting technique was employed to produce cell-like topography on the polystyrene substrates used for cell culture. In this work, we have shown that extracellular biophysical cues generated from the topography alter the chemosensitivity of ovarian cancer cells. The three-dimensionality of the bioimprinted surface altered the cell-surface interaction, which consequently modulated intracellular signalling and chemoresponses. Sensitivity to platinum was altered more than that to paclitaxel. The effect was largely mediated through the integrin/focal adhesion system and the Rho/ROCK pathway. Moreover, the results provided evidence that biophysical cues also modulate MAPK signalling associated with chemo-resistance in ovarian cancer. Therefore, the novel findings from of this study revealed for the first time that the effects of the biophysical environment, such as substrate topography, influences ovarian cancer cell responses to clinical drugs. These observations suggest that a full clinical understanding of ovarian cancer will include biophysical aspects of tumour microenvironment.
Collapse
Affiliation(s)
- Makhdoom Sarwar
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch, 8011, New Zealand.
| | - Peter H Sykes
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch, 8011, New Zealand
| | - Kenny Chitcholtan
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch, 8011, New Zealand
| | - John J Evans
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch, 8011, New Zealand; MacDiarmid Institute of Advanced Materials and Nanotechnology, Christchurch, New Zealand
| |
Collapse
|
5
|
Integrins and Cell Metabolism: An Intimate Relationship Impacting Cancer. Int J Mol Sci 2017; 18:ijms18010189. [PMID: 28106780 PMCID: PMC5297821 DOI: 10.3390/ijms18010189] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/26/2016] [Accepted: 01/06/2017] [Indexed: 12/19/2022] Open
Abstract
Integrins are important regulators of cell survival, proliferation, adhesion and migration. Once activated, integrins establish a regulated link between the extracellular matrix and the cytoskeleton. Integrins have well-established functions in cancer, such as in controlling cell survival by engagement of many specific intracellular signaling pathways and in facilitating metastasis. Integrins and associated proteins are regulated by control of transcription, membrane traffic, and degradation, as well as by a number of post-translational modifications including glycosylation, allowing integrin function to be modulated to conform to various cellular needs and environmental conditions. In this review, we examine the control of integrin function by cell metabolism, and the impact of this regulation in cancer. Within this context, nutrient sufficiency or deprivation is sensed by a number of metabolic signaling pathways such as AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR) and hypoxia-inducible factor (HIF) 1, which collectively control integrin function by a number of mechanisms. Moreover, metabolic flux through specific pathways also controls integrins, such as by control of integrin glycosylation, thus impacting integrin-dependent cell adhesion and migration. Integrins also control various metabolic signals and pathways, establishing the reciprocity of this regulation. As cancer cells exhibit substantial changes in metabolism, such as a shift to aerobic glycolysis, enhanced glucose utilization and a heightened dependence on specific amino acids, the reciprocal regulation of integrins and metabolism may provide important clues for more effective treatment of various cancers.
Collapse
|
6
|
Nakashima Y, Omasa T. What Kind of Signaling Maintains Pluripotency and Viability in Human-Induced Pluripotent Stem Cells Cultured on Laminin-511 with Serum-Free Medium? Biores Open Access 2016; 5:84-93. [PMID: 27096107 PMCID: PMC4834485 DOI: 10.1089/biores.2016.0001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Xeno-free medium contains no animal-derived components, but is composed of minimal growth factors and is serum free; the medium may be supplemented with insulin, transferrin, and selenium (ITS medium). Serum-free and xeno-free culture of human-induced pluripotent stem cells (hiPSCs) uses a variety of components based on ITS medium and Dulbecco's modified Eagle's medium/Ham's nutrient mixture F12 (DMEM/F12) that contain high levels of iron salt and glucose. Culture of hiPSCs also requires scaffolding materials, such as extracellular matrix, collagen, fibronectin, laminin, proteoglycan, and vitronectin. The scaffolding component laminin-511, which is composed of α5, β1, and γ1 chains, binds to α3β1, α6β1, and α6β4 integrins on the cell membrane to induce activation of the PI3K/AKT- and Ras/MAPK-dependent signaling pathways. In hiPSCs, the interaction of laminin-511/α6β1 integrin with the cell–cell adhesion molecule E-cadherin confers protection against apoptosis through the Ras homolog gene family member A (RhoA)/Rho kinase (ROCK) signaling pathway (the major pathways for cell death) and the proto-oncogene tyrosine-protein kinase Fyn (Fyn)-RhoA-ROCK signaling pathway. The expression levels of α6β1 integrin and E-cadherin on cell membranes are controlled through the activation of insulin receptor/insulin, FGF receptor/FGF2, or activin-like kinase 5 (ALK5)-dependent TGF-β signaling. A combination of growth factors, medium constituents, cell membrane-located E-cadherin, and α6β1 integrin-induced signaling is required for pluripotent cell proliferation and for optimal cell survival on a laminin-511 scaffold. In this review, we discuss and explore the influence of growth factors on the cadherin and integrin signaling pathways in serum-free and xeno-free cultures of hiPSCs during the preparation of products for regenerative medicinal therapies. In addition, we suggest the optimum serum-free medium components for use with laminin-511, a new scaffold for hiPSC culture.
Collapse
Affiliation(s)
- Yoshiki Nakashima
- Department of Material and Life Science, Graduate School of Engineering, Osaka University , Osaka, Japan
| | - Takeshi Omasa
- Department of Material and Life Science, Graduate School of Engineering, Osaka University , Osaka, Japan
| |
Collapse
|
7
|
Fedorenko IV, Wargo JA, Flaherty KT, Messina JL, Smalley KSM. BRAF Inhibition Generates a Host-Tumor Niche that Mediates Therapeutic Escape. J Invest Dermatol 2015; 135:3115-3124. [PMID: 26302068 PMCID: PMC4648653 DOI: 10.1038/jid.2015.329] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/13/2015] [Accepted: 07/27/2015] [Indexed: 01/07/2023]
Abstract
The current study defines a fibroblast-derived niche that facilitates the therapeutic escape of melanoma cells from BRAF inhibition. Vemurafenib treatment led to the release of TGF-β from the melanoma cells that increased the differentiation state of the fibroblasts; an affect associated with fibronectin deposition, increase in α-smooth muscle actin (α–SMA) expression and the release of neuregulin (NRG). At the same time, vemurafenib directly activated the fibroblasts through paradoxical stimulation of the MAPK pathway, causing them to secrete hepatocyte growth factor (HGF). Treatment with the BRAF/MEK inhibitor combination reversed the release of HGF. Adhesion of melanoma cells to fibronectin was critical in amplifying the fibroblast-derived NRG and HGF-mediated PI3K/AKT survival signaling in the melanoma cells following BRAF inhibition. In co-culture studies, combination treatment with inhibitors of BRAF/MET/HER kinase was ineffective at reversing the fibroblast-mediated therapeutic escape from BRAF inhibition. Instead, it was noted that combined BRAF/PI3K inhibition overcame fibroblast-mediated drug resistance in vitro and was associated with enhanced anti-tumor effects in an in vivo xenograft model. Thus, we show melanoma cells and fibroblasts remodel their microenvironment in response to BRAF inhibition and that these adaptations allow tumor cells to evade therapy through increased PI3K/AKT survival signaling.
Collapse
Affiliation(s)
- Inna V Fedorenko
- The Department of Tumor Biology, The Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Jennifer A Wargo
- Department of Surgery, MD Anderson Cancer Center, Houston, Texas, USA
| | - Keith T Flaherty
- Department of Medicine, Massachusetts General Hospital, Boston, Massachussetts, USA
| | - Jane L Messina
- The Department of Cutaneous Oncology, The Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Keiran S M Smalley
- The Department of Tumor Biology, The Moffitt Cancer Center and Research Institute, Tampa, Florida, USA; The Department of Cutaneous Oncology, The Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.
| |
Collapse
|
8
|
Charming neighborhoods on the cell surface: plasma membrane microdomains regulate receptor tyrosine kinase signaling. Cell Signal 2015; 27:1963-76. [PMID: 26163824 DOI: 10.1016/j.cellsig.2015.07.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/07/2015] [Indexed: 12/14/2022]
Abstract
Receptor tyrosine kinases (RTK) are an important family of growth factor and hormone receptors that regulate many aspects of cellular physiology. Ligand binding by RTKs at the plasma membrane elicits activation of many signaling intermediates. The spatial and temporal regulation of RTK signaling within cells is an important determinant of receptor signaling outcome. In particular, the compartmentalization of the plasma membrane into a number of microdomains allows context-specific control of RTK signaling. Indeed various RTKs are recruited to and enriched within specific plasma membrane microdomains under various conditions, including lipid-ordered domains such as caveolae and lipid rafts, clathrin-coated structures, tetraspanin-enriched microdomains, and actin-dependent protrusive membrane microdomains such as dorsal ruffles and invadosomes. We examine the evidence for control of RTK signaling by each of these plasma membrane microdomains, as well as molecular mechanisms for how this spatial organization controls receptor signaling.
Collapse
|
9
|
Yao JH, Cui M, Li MT, Liu YN, He QH, Xiao JJ, Bai Y. Angiopoietin1 inhibits mast cell activation and protects against anaphylaxis. PLoS One 2014; 9:e89148. [PMID: 24586553 PMCID: PMC3929638 DOI: 10.1371/journal.pone.0089148] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/14/2014] [Indexed: 01/13/2023] Open
Abstract
Since morbidity and mortality rates of anaphylaxis diseases have been increasing year by year, how to prevent and manage these diseases effectively has become an important issue. Mast cells play a central regulatory role in allergic diseases. Angiopoietin1 (Ang-1) exhibits anti-inflammatory properties by inhibiting vascular permeability, leukocyte migration and cytokine production. However, Ang-1's function in mast cell activation and anaphylaxis diseases is unknown. The results of our study suggest that Ang-1 decreased lipopolysaccharide (LPS)-induced pro-inflammatory cytokines production of mast cells by suppressing IκB phosphorylation and NF-κB nuclear translocation. Ang-1 also strongly inhibited compound 48/80 induced and FcεRI-mediated mast cells degranulation by decreasing intracellular calcium levels in vitro. In vivo lentivirus-mediated delivery of Ang-1 in mice exhibited alleviated leakage in IgE-dependent passive cutaneous anaphylaxis (PCA). Furthermore, exogenous Ang-1 intervention treatment prevented mice from compound 48/80-induced mesentery mast cell degranulation, attenuated increases in pro-inflammatory cytokines, relieved lung injury, and improved survival in anaphylaxis shock. The results of our study reveal, for the first time, the important role of Ang-1 in the activation of mast cells, and identify a therapeutic effect of Ang-1 on anaphylaxis diseases.
Collapse
Affiliation(s)
- Jun-Hua Yao
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ming Cui
- Department of Cardiology, Peking University Third Hospital, Beijing, China
| | - Meng-Tao Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yi-Nan Liu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Qi-Hua He
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jun-Jun Xiao
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- * E-mail:
| |
Collapse
|
10
|
Kondo S, Iwata S, Yamada T, Inoue Y, Ichihara H, Kichikawa Y, Katayose T, Souta-Kuribara A, Yamazaki H, Hosono O, Kawasaki H, Tanaka H, Hayashi Y, Sakamoto M, Kamiya K, Dang NH, Morimoto C. Impact of the integrin signaling adaptor protein NEDD9 on prognosis and metastatic behavior of human lung cancer. Clin Cancer Res 2012; 18:6326-38. [PMID: 23037767 DOI: 10.1158/1078-0432.ccr-11-2162] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE In a substantial population of non-small cell lung cancer (NSCLC), expression and activation of EGF receptor (EGFR) have been reported and is regarded as a novel molecular target. A growing body of evidence has shown the signaling crosstalk between EGFR and integrins in cellular migration and invasion. NEDD9 is an integrin signaling adaptor protein composed of multiple domains serving as substrate for a variety of tyrosine kinases. In the present study, we aimed at elucidating a role of NEDD9 in the signaling crosstalk between EGFR and integrins. EXPERIMENTAL DESIGN Using NSCLC cell lines, we conducted immunoblotting and cellular migration/invasion assay in vitro. Next, we analyzed metastasis assays in vivo by the use of xenograft transplantation model. Finally, we retrospectively evaluated clinical samples and records of patients with NSCLCs. RESULTS We showed that tyrosine phosphorylation of NEDD9 was reduced by the inhibition of EGFR in NSCLC cell lines. Overexpression of constitutively active EGFR caused tyrosine phosphorylation of NEDD9 in the absence of integrin stimulation. By gene transfer and gene knockdown, we showed that NEDD9 plays a pivotal role in cell migration and invasion of those cells in vitro. Furthermore, overexpression of NEDD9 promoted lung metastasis of an NSCLC cell line in NOD/Shi-scid, IL-2Rγ(null) mice (NOG) mice. Finally, univariate and multivariate Cox model analysis of NSCLC clinical specimens revealed a strong correlation between NEDD9 expression and recurrence-free survival as well as overall survival. CONCLUSION Our data thus suggest that NEDD9 is a promising biomarker for the prognosis of NSCLCs and its expression can promote NSCLC metastasis.
Collapse
Affiliation(s)
- Shunsuke Kondo
- Hepatobiliary and Pancreatic Oncology Division, National Cancer Center Hospital, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Williams CM, Mehta G, Peyton SR, Zeiger AS, Van Vliet KJ, Griffith LG. Autocrine-controlled formation and function of tissue-like aggregates by primary hepatocytes in micropatterned hydrogel arrays. Tissue Eng Part A 2011; 17:1055-68. [PMID: 21121876 DOI: 10.1089/ten.tea.2010.0398] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The liver carries out a variety of essential functions regulated in part by autocrine signaling, including hepatocyte-produced growth factors and extracellular matrix (ECM). The local concentrations of autocrine factors are governed by a balance between receptor-mediated binding at the cell surface and diffusion into the local matrix and are thus expected to be influenced by the dimensionality of the cell culture environment. To investigate the role of growth factor and ECM-modulated autocrine signaling in maintaining appropriate primary hepatocyte survival, metabolic functions, and polarity, we created three-dimensional cultures of defined geometry using micropatterned semisynthetic polyethylene glycol-fibrinogen hydrogels to provide a mechanically compliant, nonadhesive material platform that could be modified by cell-secreted factors. We found that in the absence of exogenous peptide growth factors or ECM, hepatocytes retain the epidermal growth factor (EGF) receptor ligands (EGF and transforming growth factor-α) and the proto-oncogenic mesenchymal epithelial transition factor (c-MET) ligand hepatocyte growth factor (HGF), along with fibronectin. Further, hepatocytes cultured in this three-dimensional microenvironment maintained high levels of liver-specific functions over the 10-day culture period. Function-blocking inhibitors of α5β1 or EGF receptor dramatically reduced cell viability and function, suggesting that signaling by both these receptors is needed for in vitro survival and function of hepatocytes in the absence of other exogenous signals.
Collapse
Affiliation(s)
- Courtney M Williams
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
12
|
Soung YH, Clifford JL, Chung J. Crosstalk between integrin and receptor tyrosine kinase signaling in breast carcinoma progression. BMB Rep 2010; 43:311-8. [PMID: 20510013 DOI: 10.5483/bmbrep.2010.43.5.311] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
This review explored the mechanism of breast carcinoma progression by focusing on integrins and receptor tyrosine kinases (or growth factor receptors). While the primary role of integrins was previously thought to be solely as mediators of adhesive interactions between cells and extracellular matrices, it is now believed that integrins also regulate signaling pathways that control cancer cell growth, survival, and invasion. A large body of evidence suggests that the cooperation between integrin and receptor tyrosine kinase signaling regulates certain signaling functions that are important for cancer progression. Recent developments on the crosstalk between integrins and receptor tyrosine kinases, and its implication in mammary tumor progression, are discussed.
Collapse
Affiliation(s)
- Young Hwa Soung
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | | | | |
Collapse
|
13
|
Ou XL, Chen HJ, Sun WH, Hang C, Yang L, Guan YY, Yan F, Chen BA. Effects of angiopoietin-1 on attachment and metastasis of human gastric cancer cell line BGC-823. World J Gastroenterol 2009; 15:5432-41. [PMID: 19916173 PMCID: PMC2778099 DOI: 10.3748/wjg.15.5432] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the effects of angiopoietin-1 (Ang-1) on adhesion of gastric cancer cell line BGC-823 and expression of integrin β1, CD44V6, urokinase-type plasminogen activator (uPA) and matrix metalloproteinase-2 (MMP-2).
METHODS: BGC-823 cells were transfected transiently with adenovirus-Ang-1 (Ad-Ang-1). Cells transfected transiently with adenovirus-green fluorescent protein (Ad-GFP) and untransfected cells were used as a negative and blank control group, respectively. The cell adhesion rate between cell and extracellular matrix (ECM) was determined by cell adhesion assay. To investigate whether Ang-1 could reinforce gastric carcinoma metastasis, we performed migration and invasion assays in BGC-823 cells. The mRNA and protein expression of integrin β1, CD44V6, uPA and MMP-2 were detected by reverse transcription polymerase chain reaction and Western blotting, respectively. The expression of integrin β1 and CD44V6 was measured by immunohistochemistry.
RESULTS: BGC-823 cells were transfected successfully. The adhesion rate increased significantly in the Ad-Ang-1 group (P < 0.05). The Ad-Ang-1-transfected group had a significant increase in migration and invasion compared with that of the mock-transfected and Ad-GFP groups. The mRNA and protein expression of integrin β1, CD44V6, uPA and MMP-2 in the Ad-Ang-1 group was higher than that in the Ad-GFP and blank control groups (P < 0.05). Compared with mock-transfected and Ad-GFP groups, integrin β1 and CD44V6 expression intensity greatly increased (P < 0.05).
CONCLUSION: Transfection of Ang-1 into human gastric cancer cell line BGC-823 can significantly increase expression of integrin β1 and CD44V6, by which cell adhesion and metastasis to the ECM are promoted.
Collapse
|
14
|
Affiliation(s)
- Nils Cordes
- OncoRay – Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Catherine C. Park
- Department of Radiation Oncology, University of California, San Francisco, California, USA
| |
Collapse
|
15
|
Assidi M, Dufort I, Ali A, Hamel M, Algriany O, Dielemann S, Sirard MA. Identification of potential markers of oocyte competence expressed in bovine cumulus cells matured with follicle-stimulating hormone and/or phorbol myristate acetate in vitro. Biol Reprod 2008; 79:209-22. [PMID: 18417710 DOI: 10.1095/biolreprod.108.067686] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Oocyte competence is the ability of the oocyte to complete maturation, undergo successful fertilization, and reach the blastocyst stage. Cumulus cells are indispensable for this process. Their removal significantly affects the blastocyst rates. Moreover, the properties and functions of cumulus cells are regulated by the oocyte. They also reflect the oocyte's degree of maturation. Our study was aimed at identifying markers of oocyte competence that are expressed in bovine cumulus cells. In a previous study in our laboratory, the blastocyst yield following FSH or phorbol myristate acetate (PMA) treatment was 45%%. Therefore, we tested four sets of conditions during the first 6 h of in vitro maturation (IVM): FSH (0.1 microg/ml), PMA (0.1 microM), FSH ++ PMA, and negative control. Extracts from each IVM treatment were hybridized against the same negative control on a microarray containing a partial library of differentially expressed transcripts in the cumulus of competent oocytes collected at 6 h after LH in vivo. Common positive clones between diffrentially treated cells were selected, and 15 candidates were validated by real-time PCR. Based on this, the main candidates expressed in cumulus cells and that could be valuable and indirect markers of oocyte competence are hyaluronan synthase 2 (HAS2), inhibin betaA (INHBA), epidermal growth factor receptor (EGFR), gremlin 1 (GREM1), betacellulin (BTC), CD44, tumor necrosis factor-induced protein 6 (TNFAIP6), and prostaglandin-endoperoxide synthase 2 (PTGS2). These biomarkers could be potential candidates to predict oocyte competence and to select higher-quality embryos for transfer. Additionally, these indirect predictors of oocyte competence and follicular health could improve our knowledge of gene expression patterns in the cumulus and yield insights into the molecular pathways controlling oocyte competence.
Collapse
Affiliation(s)
- Mourad Assidi
- Centre de Recherche en Biologie de la Reproduction, Université Laval, Québec, Québec, Canada G1K 7P4
| | | | | | | | | | | | | |
Collapse
|
16
|
Bouchard V, Demers MJ, Thibodeau S, Laquerre V, Fujita N, Tsuruo T, Beaulieu JF, Gauthier R, Vézina A, Villeneuve L, Vachon PH. Fak/Src signaling in human intestinal epithelial cell survival and anoikis: differentiation state-specific uncoupling with the PI3-K/Akt-1 and MEK/Erk pathways. J Cell Physiol 2007; 212:717-28. [PMID: 17443665 DOI: 10.1002/jcp.21096] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Human intestinal epithelial cell survival and anoikis are distinctively regulated according to the state of differentiation. In the present study, we analyzed the roles of focal adhesion kinase (Fak)/Src signaling to the PI3-K/Akt-1 and mitogen-activated protein kinase (MEK)/extracellular regulated kinases (Erk) pathways, within the context of such differentiation-state distinctions. Anoikis was induced by inhibition of beta1 integrins (antibody blocking), inhibition of Fak (pharmacologic inhibition or overexpression of dominant negative mutants), or by maintaining cells in suspension. Activation parameters of Fak, Src, Akt-1, and Erk1/2 were analyzed. Activities of Src, Akt-1, or Erk1/2 were also blocked by pharmacological inhibition or by overexpression of dominant-negative mutants. We report that: (1) the loss or inhibition of beta1 integrin binding activity causes anoikis and results in a down-activation of Fak, Src, Akt-1, and Erk1/2 in both undifferentiated, and differentiated cells; (2) the inhibition of Fak likewise causes anoikis and a down-activation of Src, Akt-1, and Erk1/2, regardless of the differentiation state; (3) Src, PI3-K/Akt-1, and MEK/Erk contribute to the survival of differentiated cells, whereas MEK/Erk does not play a role in the survival of undifferentiated ones; (4) the inhibition/loss of beta1 integrin binding and/or Fak activity results in a loss of Src engagement with Fak, regardless of the state of differentiation; and (5) Src contributes to the activation of both the PI3-K/Akt-1 and MEK/Erk pathways in undifferentiated cells, but does not influence PI3-K/Akt-1 in differentiated ones. Hence, Fak/Src signaling to the PI3-K/Akt-1 and MEK/Erk pathways undergoes a differentiation state-specific uncoupling which ultimately reflects upon the selective engagement of these same pathways in the mediation of intestinal epithelial cell survival.
Collapse
Affiliation(s)
- Véronique Bouchard
- Département d'Anatomie et de Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Velling T, Stefansson A, Johansson S. EGFR and beta1 integrins utilize different signaling pathways to activate Akt. Exp Cell Res 2007; 314:309-16. [PMID: 17910952 DOI: 10.1016/j.yexcr.2007.08.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 08/23/2007] [Accepted: 08/23/2007] [Indexed: 02/07/2023]
Abstract
Akt, also called PKB, is a serine/threonine kinase that plays a major role in cell survival. It can be activated by several cellular receptors, including integrins and growth factor receptors, in PI3K-dependent manners. In this study, we analyzed the two current models for Akt activation upon beta1 integrin-mediated adhesion: via focal adhesion kinase and via transactivation of the EGF receptor. Distinct differences in the pathways leading to phosphorylation and activation of Akt from stimulated beta1 integrins and EGF receptor were observed, including opposing sensitivity to the tyrosine kinase inhibitors PP2 and Gefitinib. Using knockout cells and integrin mutant cells, we show that beta1 integrins can induce phosphorylation of Akt at Ser473 and Thr308 and Akt kinase activity independently of the EGF receptor activity, focal adhesion kinase, and the Src family members. In contrast to stimulation with EGF, beta1 integrin-mediated adhesion did not induce Akt tyrosine phosphorylation. Moreover, tyrosine phosphorylation of Akt was found not to be required for its catalytic activity. The results identify a previously unrecognized mechanism by which beta1 integrins activate the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Teet Velling
- Department of Medical Sciences, University Hospital, 75185, Uppsala, Sweden.
| | | | | |
Collapse
|
18
|
Kang ES, Oh MA, Lee SA, Kim TY, Kim SH, Gotoh N, Kim YN, Lee JW. EGFR phosphorylation-dependent formation of cell-cell contacts by Ras/Erks cascade inhibition. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:833-43. [PMID: 17368581 DOI: 10.1016/j.bbamcr.2007.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 02/10/2007] [Accepted: 02/12/2007] [Indexed: 11/19/2022]
Abstract
Cell-cell contacts play important roles in the homeostasis of normal epithelium and in the steps of metastasis of tumor cells, although signaling mechanisms to regulate cell-cell contacts are unclear. In this study, we observed that phenotype of no cell-cell contacts in rat intestinal epithelial cell subline (RIE1-Sca) correlated with increased Erk1/2 signaling activity, compared to that of parental RIE1 cells growing in colonies. Furthermore, cell-cell contacts between RIE1-Sca cells were reformed by treatment with a specific MEK inhibitor (U0126), with translocation of ZO1 and beta-catenin to cell-cell contacts, without changes of their expression levels. U0126 treatment also increased EGFR phosphorylation in a ligand-independent manner. Pretreatment with EGFR kinase inhibitor abolished U0126 treatment-mediated EGFR phosphorylation, and expression of dominant negative H-Ras N17 allowed EGFR phosphorylation and cell-cell contacts even without U0126 treatment. Furthermore, the expression of a nonphosphorylatable EGFR Y5F mutant abolished U0126-mediated cell-cell contacts. U0126 treatment also caused less efficient wound healing by keeping monolayer integrity intact, compared to control untreated cells. This U0126-mediated reduction in wound healing was further altered either by pretreatment of EGFR kinase inhibitor or expression of H-Ras N17 or EGFR Y5F. Taken together, this study supports a unique mechanism of cell-cell contact formation through MEK/Erks inhibition-mediated EGFR phosphorylation.
Collapse
Affiliation(s)
- Eun-Sil Kang
- Cancer Research Institute, Department of Molecular and Clinical Oncology, College of Medicine, Seoul National University, 28, Yeongeon-dong, Jongno-gu, Seoul 110-799, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Koon HW, Zhao D, Zhan Y, Moyer MP, Pothoulakis C. Substance P mediates antiapoptotic responses in human colonocytes by Akt activation. Proc Natl Acad Sci U S A 2007; 104:2013-8. [PMID: 17264209 PMCID: PMC1794289 DOI: 10.1073/pnas.0610664104] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We examined the hypothesis that substance P (SP) and the neurokinin-1 receptor (NK-1R), both in vitro and in vivo, promote mucosal healing during recovery from colitis by stimulating antiapoptotic pathways in human colonic epithelial cells. For the in vitro experiments, human nontransformed NCM460 colonocytes stably transfected with NK-1R (NCM460-NK-1R cells) were exposed to SP, and cell viability assays, TUNEL assays, and Western blot analyses were used to detect apoptotic and antiapoptotic pathways. SP exposure of NCM460-NK-1R colonocytes stimulated phosphorylation of the antiapoptotic molecule Akt and inhibited tamoxifen-induced cell death and apoptosis evaluated by the cell viability assay and poly(ADP-ribose) polymerase cleavage, respectively. SP-induced phosphorylation of Akt and cleavage of poly(ADP-ribose) polymerase were inhibited by blockade of integrin alphaVbeta3, Jak2, and activation of phosphatidylinositol 3-kinase. For the in vivo experiments, C57BL/6 mice, administered 5% dextran sulfate (DSS) dissolved in tap water for 5 days followed by a 5-day recovery period, were treated with the NK-1R antagonist CJ-12,255 or vehicle. Vehicle-treated mice showed increased colonic Akt phosphorylation and apoptosis compared with mice that received no DSS. In contrast, daily i.p. administration of CJ-12,255 for 5 days post-DSS suppressed Akt activation, exacerbated colitis, and enhanced apoptosis, and pharmacologic inhibition of Akt, either alone or together with CJ-12,255, produced a similar effect. Thus, SP, through NK-1R, possesses antiapoptotic effects in the colonic mucosa by activating Akt, which prevents apoptosis and mediates tissue recovery during colitis.
Collapse
Affiliation(s)
- Hon-Wai Koon
- *Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215; and
| | - Dezheng Zhao
- *Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215; and
| | - Yanai Zhan
- *Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215; and
| | | | - Charalabos Pothoulakis
- *Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215; and
- To whom correspondence should be addressed at:
Beth Israel Deaconess Medical Center, Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Dana 501, 330 Brookline Avenue, Boston, MA 02215. E-mail:
| |
Collapse
|
20
|
Lee MS, Kim YB, Lee SY, Kim JG, Kim SH, Ye SK, Lee JW. Integrin signaling and cell spreading mediated by phorbol 12-myristate 13-acetate treatment. J Cell Biochem 2006; 99:88-95. [PMID: 16598791 DOI: 10.1002/jcb.20830] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spreading of SNU16mAd gastric carcinoma cells was previously shown to be regulated via a signaling network from transforming growth factor beta1 (TGFbeta1) to integrins signaling, through a mediation of protein kinase C delta (PKCdelta). However, in the previous study, the roles of PKCdelta appeared complicated. In this study to clarify the roles of PKCdelta in the spreading of the gastric carcinoma cells, we questioned if PKC activation via phorbol 12-myristate 13-acetate (PMA) treatment could mimic the TGFbeta1 effects. An acute PMA treatment increased phosphorylations of focal adhesion (FA) kinase, paxillin, c-Src, and cofilin, just as TGFbeta1 did. Furthermore, cell spreading mediated by TGFbeta1- or acute PMA treatment correlated with activation of RhoA, which regulates actin reorganization and FA formation. However, stress fiber formation was prominent in TGFbeta1-treated cells, compared to cortical actin organization in PMA-treated cells. Altogether, these observations indicate that acute PMA treatment could mimic the TGFbeta1 mechanisms for cell spreading through subtly different effects on actin reorganization.
Collapse
Affiliation(s)
- Mi-Sook Lee
- Department of Molecular and Clinical Oncology, Cancer Research Institute, College of Medicine, Seoul National University, 28 Yeongeon-dong, Jongno-gu, Seoul 110-799, Korea
| | | | | | | | | | | | | |
Collapse
|
21
|
Kim YB, Lee SY, Ye SK, Lee JW. Epigenetic regulation of integrin-linked kinase expression depending on adhesion of gastric carcinoma cells. Am J Physiol Cell Physiol 2006; 292:C857-66. [PMID: 16987993 DOI: 10.1152/ajpcell.00169.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell adhesion to the extracellular matrix (ECM) regulates gene expressions in diverse dynamic environments. However, the manner in which gene expressions are regulated by extracellular cues is largely unknown. In this study, suspended gastric carcinoma cells showed higher basal and transforming growth factor-beta1 (TGFbeta1)-mediated acetylations of histone 3 (H3) and Lys(9) of H3 and levels of integrin-linked kinase (ILK) mRNA and protein than did fibronectin-adherent cells did. Moreover, the insignificant acetylation and ILK expression in adherent cells were recovered by alterations of integrin signaling and actin organization, indicating a connection between cytoplasmic and nuclear changes. Higher acetylations in suspended cells were correlated with associations between Smad4, p300/CBP, and Lys(9)-acetylated H3. Meanwhile, adherent cells showed more associations between HDAC3, Ski, and MeCP2. Chromatin immunoprecipitations with anti-acetylated H3, Lys(9)-acetylated H3, or p300/CBP antibody resulted in more coprecipitated ILK promoter, correlated with enhanced ILK mRNA and protein levels, in suspended cells. Moreover, ILK expression inversely regulated cell adhesion to ECM proteins, and its overexpression enhanced cell growth in soft agar. These observations indicate that cell adhesion and/or its related molecular basis regulate epigenetic mechanisms leading to a loss of ILK transcription, which in turn regulates cell adhesion property in a feedback linkage.
Collapse
Affiliation(s)
- Yong-Bae Kim
- Cancer Research Institute, Depts. of Tumor Biology and Molecular and Clinical Oncology, College of Medicine, Seoul National Univ., Seoul 110-799, Korea
| | | | | | | |
Collapse
|
22
|
Natarajan M, Stewart JE, Golemis EA, Pugacheva EN, Alexandropoulos K, Cox BD, Wang W, Grammer JR, Gladson CL. HEF1 is a necessary and specific downstream effector of FAK that promotes the migration of glioblastoma cells. Oncogene 2006; 25:1721-32. [PMID: 16288224 DOI: 10.1038/sj.onc.1209199] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The highly invasive behavior of glioblastoma cells contributes to the morbidity and mortality associated with these tumors. The integrin-mediated adhesion and migration of glioblastoma cells on brain matrix proteins is enhanced by stimulation with growth factors, including platelet-derived growth factor (PDGF). As focal adhesion kinase (FAK), a nonreceptor cytoplasmic tyrosine kinase, has been shown to promote cell migration in various other cell types, we analysed its role in glioblastoma cell migration. Forced overexpression of FAK in serum-starved glioblastoma cells plated on recombinant (rec)-osteopontin resulted in a twofold enhancement of basal migration and a ninefold enhancement of PDGF-BB-stimulated migration. Both expression of mutant FAK(397F) and the downregulation of FAK with small interfering (si) RNA inhibited basal and PDGF-stimulated migration. FAK overexpression and PDGF stimulation was found to increase the phosphorylation of the Crk-associated substrate (CAS) family member human enhancer of filamentation 1 (HEF1), but not p130CAS or Src-interacting protein (Sin)/Efs, although the levels of expression of these proteins was similar. Moreover downregulation of HEF1 with siRNA, but not p130CAS, inhibited basal and PDGF-stimulated migration. The phosphorylated HEF1 colocalized with vinculin and was associated almost exclusively with 0.1% Triton X-100 insoluble material, consistent with its signaling at focal adhesions. FAK overexpression promoted invasion through normal brain homogenate and siHEF1 inhibited this invasion. Results presented here suggest that HEF1 acts as a necessary and specific downstream effector of FAK in the invasive behavior of glioblastoma cells and may be an effective target for treatment of these tumors.
Collapse
Affiliation(s)
- M Natarajan
- Department of Pathology, Division of Neuropathology, University of Alabama at Birmingham, 35294-0007, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
You Z, Shi XB, DuRaine G, Haudenschild D, Tepper CG, Lo SH, Gandour-Edwards R, de Vere White RW, Reddi AH. Interleukin-17 receptor-like gene is a novel antiapoptotic gene highly expressed in androgen-independent prostate cancer. Cancer Res 2006; 66:175-83. [PMID: 16397230 DOI: 10.1158/0008-5472.can-05-1130] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have recently identified a new gene, interleukin-17 receptor-like (IL-17RL), which is expressed in normal prostate and prostate cancer. This investigation is focused on the role of IL-17RL in prostate cancer. We found that IL-17RL was expressed at significantly higher levels in several androgen-independent prostate cancer cell lines (PC3, DU145, cds1, cds2, and cds3) and tumors compared with the androgen-dependent cell lines (LNCaP and MLC-SV40) and tumors. In an in vivo model of human prostate tumor growth in nude mice (CWR22 xenograft model), IL-17RL expression in tumors was induced by androgen deprivation. The relapsed androgen-independent tumors expressed higher levels of IL-17RL compared with the androgen-dependent tumors. Overexpression of IL-17RL in tumor necrosis factor alpha (TNFalpha)-sensitive LNCaP cells inhibited TNFalpha-induced apoptosis by blocking activation of caspase-3 downstream to caspase-2 and caspase-8. Reciprocally, knocking down IL-17RL expression by small interfering RNA induced apoptosis in all the prostate cancer cell lines studied. Taken together, these results show that IL-17RL is a novel antiapoptotic gene, which may confer partially the property of androgen-independent growth of prostate cancer by promoting cell survival. Thus, IL-17RL is a potential therapeutic target in the treatment of prostate cancer.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Caspase Inhibitors
- Caspases/metabolism
- Cell Adhesion/genetics
- Cell Line, Tumor
- Drug Resistance, Neoplasm
- Enzyme Activation
- Extracellular Matrix/genetics
- Extracellular Matrix/metabolism
- Humans
- Isoenzymes
- Male
- Mice
- Mice, Nude
- Neoplasms, Hormone-Dependent/genetics
- Neoplasms, Hormone-Dependent/metabolism
- Neoplasms, Hormone-Dependent/pathology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- RNA, Small Interfering/genetics
- Receptors, Interleukin/antagonists & inhibitors
- Receptors, Interleukin/biosynthesis
- Receptors, Interleukin/genetics
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Zongbing You
- Center for Tissue Regeneration and Repair, Department of Orthopaedic Surgery, School of Medicine, University of California, Davis, Sacramento, California 95817, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Singh K, Dobson J, Phyn C, Davis S, Farr V, Molenaar A, Stelwagen K. Milk accumulation decreases expression of genes involved in cell–extracellular matrix communication and is associated with induction of apoptosis in the bovine mammary gland. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.livprodsci.2005.10.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Cascone I, Napione L, Maniero F, Serini G, Bussolino F. Stable interaction between alpha5beta1 integrin and Tie2 tyrosine kinase receptor regulates endothelial cell response to Ang-1. ACTA ACUST UNITED AC 2005; 170:993-1004. [PMID: 16157706 PMCID: PMC2171441 DOI: 10.1083/jcb.200507082] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During angiogenic remodeling, Ang-1, the ligand of Tie2 tyrosine kinase, is involved in vessel sprouting and stabilization through unclear effects on nascent capillaries and mural cells. In our study, we hypothesized that the Ang-1/Tie2 system could cross-talk with integrins, and be influenced by the dynamic interactions between extracellular matrix and endothelial cells (ECs). Here, we show that alpha5beta1 specifically sensitizes and modulates Tie2 receptor activation and signaling, allowing EC survival at low concentrations of Ang-1 and inducing persistent EC motility. Tie2 and alpha5beta1 interact constitutively; alpha5beta1 binding to fibronectin increases this association, whereas Ang-1 stimulation recruits p85 and FAK to this complex. Furthermore, we demonstrate that Ang-1 is able to mediate selectively alpha5beta1 outside-in FAK phosphorylation. Thus, Ang-1 triggers signaling pathways through Tie2 and alpha5beta1 receptors that could cross-talk when Tie2/alpha5beta1 interaction occurs in ECs plated on fibronectin. By using blocking antibodies, we consistently found that alpha5beta1, but not alphavbeta3 activation, is essential to Ang-1-dependent angiogenesis in vivo.
Collapse
Affiliation(s)
- Ilaria Cascone
- Department of Oncological Sciences and Institute for Cancer Research and Treatment, University of Turin, 10060 Candiolo, Italy.
| | | | | | | | | |
Collapse
|
26
|
Gibson RM, Craig SE, Heenan L, Tournier C, Humphries MJ. Activation of integrin alpha5beta1 delays apoptosis of Ntera2 neuronal cells. Mol Cell Neurosci 2005; 28:588-98. [PMID: 15737747 DOI: 10.1016/j.mcn.2004.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 10/28/2004] [Accepted: 11/03/2004] [Indexed: 10/25/2022] Open
Abstract
Integrins are dynamic membrane proteins that mediate adhesion of cells to the extracellular matrix. Integrins initiate signal transduction, alone and cooperatively with growth factor receptors, and regulate many aspects of cell behavior. We report here that alpha5beta1-mediated adhesion of Ntera2 neuronal cells to fibronectin decreased apoptosis in response to serum withdrawal. Adhesion induced phosphorylation of FAK, and strongly increased the AKT phosphorylation induced by growth factors, demonstrating for the first time in neuronal cells that integrin-mediated adhesion and growth factors cooperate to regulate AKT activity. Integrins exist on cells in different activation states, and cell survival on fibronectin was enhanced by the antibody 12G10, that modulates the conformation of beta1 in favor of its active form. The antibody 12G10 specifically delayed loss of phosphorylation of AKT on serine 473, and GSK-3beta on serine 9, induced by serum withdrawal, suggesting that these kinases are critical sensors of integrin activation on neuronal cells.
Collapse
Affiliation(s)
- Rosemary M Gibson
- Faculty of Life Sciences, University of Manchester, 1.124 Stopford Building, Oxford Road, Manchester, M13 9PT, UK.
| | | | | | | | | |
Collapse
|
27
|
Kim YB, Yu J, Lee SY, Lee MS, Ko SG, Ye SK, Jong HS, Kim TY, Bang YJ, Lee JW. Cell adhesion status-dependent histone acetylation is regulated through intracellular contractility-related signaling activities. J Biol Chem 2005; 280:28357-28364. [PMID: 15961394 DOI: 10.1074/jbc.m412608200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although histone acetylation is important for epigenetic gene transcription, histone acetylation regulation by extracellular cues has rarely been evidenced. Here, we examined whether and how histone acetylation is regulated by cell adhesion-mediated signaling. Gastric carcinoma cells in suspension showed a higher histone acetylation, compared with fibronectin-adherent cells. This difference was supported by a decreased histone deacetylases activity. Furthermore, trichostatin A (TSA)-mediated histone acetylation was significantly increased only in suspended, but not in fibronectin-adherent, cells. Pharmacological inhibition of intracellular contractility-related myosin light chain kinase or RhoA-kinase (ROCK) or expression of ROCK1 small interfering RNA, dominant negative RhoA, or active Rac1 decreased basal and TSA-mediated histone H3 acetylations in suspended cells,whereas inhibition of calmodulin-dependent protein kinase II or transient overexpression of wild type myosin light chain kinase enhanced the acetylations. Meanwhile, chromatin immunoprecipitation showed higher basal and TSA-enhanced associations of ROCK1 promoter regions with Lys(9)-acetylated histone 3 in suspended cells than in fibronectin-adherent cells and expression of ROCK1 was higher and further increased by TSA treatment in suspension. In addition, phosphorylation of myosin light chain was further increased by TSA in suspension and higher in anchorage-independent cells over adherently growing cells, indicating an inverse relationship between ROCK1 expression-mediated contractility and cell adhesion abilities. Cell adhesion analysis showed that pharmacological activation of intracellular contractility-related signaling activities decreased cell adhesion abilities, whereas inhibition of them increased the adhesion. Taken together, these observations suggest that cell adhesion-related signal transduction regulates histone acetylation, presumably through a close functional linkage between intracellular contractility and histone deacetylases activity/histone acetylation.
Collapse
Affiliation(s)
- Yong-Bae Kim
- Cancer Research Institute, Department of Tumor Biology, College of Medicine, Seoul National University, 28, Yeongeon-dong, Jongno-gu, Seoul 110-799, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lee MS, Kim TY, Kim YB, Lee SY, Ko SG, Jong HS, Kim TY, Bang YJ, Lee JW. The signaling network of transforming growth factor beta1, protein kinase Cdelta, and integrin underlies the spreading and invasiveness of gastric carcinoma cells. Mol Cell Biol 2005; 25:6921-6936. [PMID: 16055706 PMCID: PMC1190263 DOI: 10.1128/mcb.25.16.6921-6936.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 02/15/2005] [Accepted: 05/24/2005] [Indexed: 01/01/2023] Open
Abstract
Integrin-mediated cell adhesion and spreading enables cells to respond to extracellular stimuli for cellular functions. Using a gastric carcinoma cell line that is usually round in adhesion, we explored the mechanisms underlying the cell spreading process, separate from adhesion, and the biological consequences of the process. The cells exhibited spreading behavior through the collaboration of integrin-extracellular matrix interaction with a Smad-mediated transforming growth factor beta1 (TGFbeta1) pathway that is mediated by protein kinase Cdelta (PKCdelta). TGFbeta1 treatment of the cells replated on extracellular matrix caused the expression and phosphorylation of PKCdelta, which is required for expression and activation of integrins. Increased expression of integrins alpha2 and alpha3 correlated with the spreading, functioning in activation of focal adhesion molecules. Smad3, but not Smad2, overexpression enhanced the TGFbeta1 effects. Furthermore, TGFbeta1 treatment and PKCdelta activity were required for increased motility on fibronectin and invasion through matrigel, indicating their correlation with the spreading behavior. Altogether, this study clearly evidenced that the signaling network, involving the Smad-dependent TGFbeta pathway, PKCdelta expression and phosphorylation, and integrin expression and activation, regulates cell spreading, motility, and invasion of the SNU16mAd gastric carcinoma cell variant.
Collapse
Affiliation(s)
- Mi-Sook Lee
- Cancer Research Institute, College of Medicine, Seoul National University, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lader AS, Lee JJ, Cicchetti G, Kwiatkowski DJ. Mechanisms of gelsolin-dependent and -independent EGF-stimulated cell motility in a human lung epithelial cell line. Exp Cell Res 2005; 307:153-63. [PMID: 15922735 DOI: 10.1016/j.yexcr.2005.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Revised: 02/28/2005] [Accepted: 03/01/2005] [Indexed: 11/23/2022]
Abstract
Acquisition of motility is an important step in malignant progression of tumor cells and involves dynamic changes in actin filament architecture orchestrated by many actin binding proteins. A role for the actin-binding protein gelsolin has been demonstrated in fibroblast motility. In this report, we investigated the role of gelsolin in bronchial epithelial cell motility. The non-tumorigenic bronchial epithelial cell line, NL20 migrated towards EGF in a modified Boyden chamber cell motility assay. However, the tumorigenic NL20-TA cell line derived from the NL20 cells and lacking gelsolin, did not migrate towards EGF. Ectopic expression of gelsolin in NL20-TA cells restored the EGF response, while motility of NL20-TA derived cells towards serum, PDGF, and fibronectin was independent of gelsolin expression. PI3-kinase inhibition failed to block EGF-stimulated motility in gelsolin transfected NL20-TA cells. Furthermore, EGF stimulated a motility response in cells lacking gelsolin in the presence of fibronectin or fibrinogen that was blocked with PI3-kinase inhibition. Thus, EGF-stimulated motility in NL20 cells and its derivatives are gelsolin dependent and PI3-kinase independent, while fibronectin and fibrinogen enhances EGF-stimulated motility through a pathway independent of gelsolin and dependent upon PI3-kinase.
Collapse
Affiliation(s)
- Alan S Lader
- Hematology Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
30
|
Kim HP, Kim TY, Lee MS, Jong HS, Kim TY, Lee JW, Bang YJ. TGF-beta1-mediated activations of c-Src and Rac1 modulate levels of cyclins and p27(Kip1) CDK inhibitor in hepatoma cells replated on fibronectin. BIOCHIMICA ET BIOPHYSICA ACTA 2005; 1743:151-161. [PMID: 15777850 DOI: 10.1016/j.bbamcr.2004.09.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 07/30/2004] [Accepted: 09/16/2004] [Indexed: 01/03/2023]
Abstract
Integrin-mediated cell adhesion transduces signals to regulate actin cytoskeleton and cell proliferation. While understanding how integrin signals cross-talk with the TGF-beta1 pathways, we observed lamellipodia formation and cyclin regulation in Hep3B cells, following TGF-beta1 treatment. To answer if integrin signaling via actin organization might regulate cell cycle progression after TGF-beta1 treatment, we analyzed cross-talk between the two receptor-mediated pathways in hepatoma cells on specific ECMs. We found that basal and TGF-beta1-mediated activation of c-Src and Rac1, expression of cyclins E and A, and suppression of p27Kip1 were significant in cells replated on fibronectin, but not in cells on collagen I, indicating a different integrin-mediated cellular response to TGF-beta1 treatment. Levels of tyrosine phosphorylation and actin-enriched lamellipodia on fibronectin were also more prominent than in cells on collagen I. Studies using pharmacological inhibitors or transient transfections revealed that the preferential TGF-beta1 effects in cells on fibronectin required c-Src family kinase activity. These observations suggest that a specific cross-talk between TGF-beta1 and fibronectin-binding integrin signal pathways leads to the activation of c-Src/Rac1/actin-organization, leading to changes in cell cycle regulator levels in hepatoma cells. Therefore, this study represents another mechanism to regulate cell cycle regulators when integrin signaling is collaborative with TGF-beta1 pathways.
Collapse
Affiliation(s)
- Hwang-Phill Kim
- National Research Laboratory for Cancer Epigenetics, Cancer Research Institute, Department of Tumor Biology, College of Medicine, Seoul National University, Seoul 110-799, South Korea
| | | | | | | | | | | | | |
Collapse
|
31
|
Miura K, Uniyal S, Leabu M, Oravecz T, Chakrabarti S, Morris VL, Chan BMC. Chemokine receptor CXCR4-β1 integrin axis mediates tumorigenesis of osteosarcoma HOS cells. Biochem Cell Biol 2005; 83:36-48. [PMID: 15746965 DOI: 10.1139/o04-106] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
It is known that β1 integrins mediate the migratory response of cells to chemokine stimulation. Also, both β1 integrins and chemokines have roles in tumor development. In the present study, the β1 integrin-chemokine axis is assessed using human osteosarcoma (HOS) transfectant cells expressing the CXCR4 receptor for chemokine SDF-1 (CXCL12). We first identified in vitro the specific β1 integrins that mediated the migratory response to SDF-1 stimulation. Results showed that on collagen type I and laminin, the chemotactic response to SDF-1 was predominantly mediated by α2β1 integrin. On fibronectin, SDF-1-stimulated chemotaxis involved both α4β1 and α5β1 integrins. A comparison of the transfectant clones expressing CXCR4 at low, intermediate, and high levels and the control transfectant revealed that the transfectant clones migratory response in vitro and their ability to form tumors in vivo was related to their levels of CXCR4 expression. In addition, treatment by injection with mAbs to CXCR4, integrin α2β1, or integrin α5β1 effectively inhibited the growth of HOS-CXCR4 transfectant cells in vivo. Therefore, our results show that the β1 integrins that mediated the migratory response were also functionally linked to the enhanced tumor growth of CXCR4-expressing HOS transfectant cells.Key words: integrins, chemokines, chemotaxis, osteosarcoma, tumorigenesis.
Collapse
Affiliation(s)
- Kohei Miura
- Biotherapeutics Research Group, Robarts Research Institute and Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5K8, Canada
| | | | | | | | | | | | | |
Collapse
|
32
|
Alokail MS. Transient transfection of epidermal growth factor receptor gene into MCF7 breast ductal carcinoma cell line. Cell Biochem Funct 2005; 23:157-61. [PMID: 15584089 DOI: 10.1002/cbf.1186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Epidermal growth factor receptor (EGFR) is activated by autocrine growth factors in many types of tumours, including breast tumours. This receptor has been linked to a poor prognosis in breast cancer and may promote proliferation, migration, invasion, and cell survival as well as inhibition of apoptosis. Human breast ductal carcinoma MCF7 cells were transfected using FuGENE 6 with 1 microg of pcDNA3-EGFR containing the full-length human EGFR promoter or 1 microg of the vectors alone (pcDNA3). The transfected cells were transferred into a 25-cm2 flask containing growth medium and G418. Confluent cultures were lysed, total protein levels measured and electrophoresed. The electrophoresed samples were transferred to nitrocellulose and incubated overnight at 4 degrees C with either anti-EGFR or anti-phospho-ERK and immunoreactive bands were visualized using HRP-linked secondary antibody. We created a model system of EGFR overexpression in MCF7 clones with stably transfected pcDNA3/EGFR plasmid. These cells have been shown to promote substantial phosphorylation of both ERK1 and ERK2. The high level of EGFR and ERK1/2 phosphorylation was not seen in the pcDNA3 vector control cells or in non-transfected cells. In this article we describe successful transient transfection experiments on MCF7 cells using the FuGENE 6 Transfection Reagent. The overexpression of EGFR could be a mediated stress response and a survival signal that involves ERK1 and ERK2 phosphorylation.
Collapse
Affiliation(s)
- Majed S Alokail
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
33
|
Wu D, Thakore CU, Wescott GG, McCubrey JA, Terrian DM. Integrin signaling links protein kinase Cepsilon to the protein kinase B/Akt survival pathway in recurrent prostate cancer cells. Oncogene 2004; 23:8659-72. [PMID: 15467757 DOI: 10.1038/sj.onc.1207900] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Failure of hormone therapy often involves an outgrowth of protein kinase Cepsilon (PKCepsilon)-positive cells in recurrent prostate cancer. Our previous investigations have uncovered evidence of a complex signaling network operating downstream of this oncogenic protein kinase to actively advance the survival and proliferation of prostate cancer cells. In this study, we present evidence of a functional interplay among integrin receptors, PKCepsilon, and protein kinase B (PKB/Akt) in recurrent CWR-R1 prostate cancer cells. Flow cytometry and confocal microscopy provided evidence that PKCepsilon signaling promoted the assembly of matrix adhesions containing an abundance of colocalized actin filaments and beta1 integrins that exhibited an exposed activation epitope on the surface of live CWR-R1 cells. Reciprocal coimmunoprecipitations provided evidence of signaling complexes containing PKCepsilon, beta1 integrins, Src, and PKB/Akt in CWR-R1 cell cultures. An investigation into the functional significance of these interactions, and of their positive influence on beta1 integrins, demonstrated that PKCepsilon and several key components of the PKB/Akt signaling pathway remain constitutively phosphorylated/activated in adherent but not suspension cultures of PTEN-positive CWR-R1 cells. Gene transfer, antisense and pharmacological experiments provided additional support for the hypothesis that a mutually reinforcing signaling loop sustains the activation of beta1 integrins, PKCepsilon, and PKB/Akt in adherent prostate cancer cells.
Collapse
Affiliation(s)
- Daqing Wu
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | | | | | | | | |
Collapse
|
34
|
Dufour G, Demers MJ, Gagné D, Dydensborg AB, Teller IC, Bouchard V, Degongre I, Beaulieu JF, Cheng JQ, Fujita N, Tsuruo T, Vallée K, Vachon PH. Human intestinal epithelial cell survival and anoikis. Differentiation state-distinct regulation and roles of protein kinase B/Akt isoforms. J Biol Chem 2004; 279:44113-22. [PMID: 15299029 DOI: 10.1074/jbc.m405323200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown previously that human intestinal epithelial cell survival and anoikis are distinctively regulated according to the state of differentiation. Here we analyzed the roles of protein kinase B/Akt isoforms in such differentiation state distinctions. Anoikis was induced in undifferentiated and differentiated enterocytes by inhibition of focal adhesion kinase (Fak; pharmacologic inhibition or overexpression of dominant-negative mutants) or beta1 integrins (antibody blocking) or by maintaining cells in suspension. Expression/activation parameters of Akt isoforms (Akt-1, Akt-2, and Akt-3) and Fak were analyzed. Activity of Akt isoforms was also blocked by inhibition of phosphatidylinositol 3-kinase or by overexpression of dominant-negative mutants. Here we report the following. 1) The expression/activation levels of Akt-1 increase overall during enterocytic differentiation, and those of Akt-2 decrease, whereas Akt-3 is not expressed. 2) Akt-1 activation is dependent on beta1 integrins/Fak signaling, regardless of the differentiation state. 3) Akt-2 activation is dependent on beta1 integrins/Fak signaling in undifferentiated cells only. 4) Activation of Akt-1 is phosphatidylinositol 3-kinase-dependent, whereas that of Akt-2 is not. 5) Akt-2 does not promote survival or apoptosis/anoikis. 6) Akt-1 is essential for survival. 7) Akt-2 cannot substitute for Akt-1 in the suppression of anoikis. Hence, the expression and regulation of Akt isoforms show differentiation state-specific distinctions that ultimately reflect upon their selective implication in the mediation of human intestinal epithelial cell survival. These data provide new insights into the synchronized regulation of cell survival/death that is required in the dynamic renewal process of tissues such as the intestinal epithelium.
Collapse
Affiliation(s)
- Geneviève Dufour
- Canadian Institutes of Health Research Group on the Functional Development and Physiopathology of the Digestive Tract, Département d'Anatomie et de Biologie Cellulaire, Faculté de Médecine, Université de Sherbrooke, Québec J1H 5N4
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kim HP, Lee MS, Yu J, Park JA, Jong HS, Kim TY, Lee JW, Bang YJ. TGF-beta1 (transforming growth factor-beta1)-mediated adhesion of gastric carcinoma cells involves a decrease in Ras/ERKs (extracellular-signal-regulated kinases) cascade activity dependent on c-Src activity. Biochem J 2004; 379:141-150. [PMID: 14720123 PMCID: PMC1224061 DOI: 10.1042/bj20031408] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Revised: 12/11/2003] [Accepted: 01/14/2004] [Indexed: 01/02/2023]
Abstract
Signalling by integrin-mediated cell anchorage to extracellular matrix proteins is co-operative with other receptor-mediated signalling pathways to regulate cell adhesion, spreading, proliferation, survival, migration, differentiation and gene expression. It was observed that an anchorage-independent gastric carcinoma cell line (SNU16) became adherent on TGF-beta1 (transforming growth factor beta1) treatment. To understand how a signal cross-talk between integrin and TGF-beta1 pathways forms the basis for TGF-beta1 effects, cell adhesion and signalling activities were studied using an adherent subline (SNU16Ad, an adherent variant cell line derived from SNU16) derived from the SNU16 cells. SNU16 and SNU16Ad cells, but not integrin alpha5-expressing SNU16 cells, showed an increase in adhesion on extracellular matrix proteins after TGF-beta1 treatment. This increase was shown to be mediated by an integrin alpha3 subunit, which was up-regulated in adherent SNU16Ad cells and in TGF-beta1-treated SNU16 cells, compared with the parental SNU16 cells. After TGF-beta1 treatment of SNU16Ad cells on fibronectin, Tyr-416 phosphorylation of c-Src was increased, but Ras-GTP loading and ERK1/ERK2 (extracellular-signal-regulated kinases 1 and 2) activity were decreased, which showed a dependence on c-Src family kinase activity. Studies on adhesion and signalling activities using pharmacological inhibitors or by transient-transfection approaches showed that inhibition of ERK1/ERK2 activity increased TGF-beta1-mediated cell adhesion slightly, but not the basal cell adhesion significantly, and that c-Src family kinase activity and decrease in Ras/ERKs cascade activity were required for the TGF-beta1 effects. Altogether, the present study indicates that TGF-beta1 treatment causes anchorage-independent gastric carcinoma cells to adhere by an increase in integrin alpha3 level and a c-Src family kinase activity-dependent decrease in Ras/ERKs cascade activity.
Collapse
Affiliation(s)
- Hwang-Phill Kim
- Cancer Research Institute, Department of Tumor Biology, College of Medicine, Seoul National University, 28, Yongon-Dong, Chongno-Gu, Seoul 110-799, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Grotendorst GR, Rahmanie H, Duncan MR. Combinatorial signaling pathways determine fibroblast proliferation and myofibroblast differentiation. FASEB J 2004; 18:469-79. [PMID: 15003992 DOI: 10.1096/fj.03-0699com] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fibroblast proliferation, differentiation into myofibroblasts, and increased collagen synthesis are key events during both normal wound repair and fibrotic lesion formation. Here we report that these biological responses to TGF-beta by fibroblasts are regulated via a CTGF-dependent pathway in concert with either EGF or IGF-2. Our studies indicate these responses to TGF-beta are mutually exclusive, and cells that are proliferating do not express alpha-SMA or elevated levels of collagen synthesis. Cells expressing alpha-SMA do not exhibit DNA synthesis but do coexpress higher levels of types I and III collagen mRNA. Thus, fibroblast proliferation and differentiation are controlled by combinatorial signaling pathways involving not only components of the TGF-beta/CTGF pathway, but also signaling events induced by EGF and IGF-2-activated receptors. Collectively, our studies indicate TGF-beta functions as a classic embryonic inducer, initiating a cascade that is controlled by other factors in the cellular environment. We propose a model for this process with regard to wound repair and fibrotic lesion formation that is likely applicable to other instances of CTGF action during embryogenesis.
Collapse
Affiliation(s)
- Gary R Grotendorst
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, Miami, Florida 33136, USA.
| | | | | |
Collapse
|
37
|
Leabu M, Uniyal S, Xie J, Xu YQ, Vladau C, Morris VL, Chan BMC. Integrin ?2?1 modulates EGF stimulation of Rho GTPase-dependent morphological changes in adherent human rhabdomyosarcoma RD cells. J Cell Physiol 2004; 202:754-66. [PMID: 15481063 DOI: 10.1002/jcp.20163] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The ability of cells to undergo shape changes is essential for diverse cellular functions including cell growth, differentiation, and movement. The present study examines how an integration of the function of alpha2beta1 integrin with that of the receptor for epidermal growth factor (EGFR) modulates EGF-stimulated morphological changes in human rhabdomyosarcoma RD transfectant cells. Upon EGF stimulation, RD transfectant cells that lacked alpha2beta1 integrin expression (RDpF) underwent contraction; in contrast, expression of alpha2beta1 on RD cells (RDX2C2) resulted in transient cell spreading. Integrin alpha2 cytoplasmic domain played a critical role in the observed alpha2beta1-mediated conversion from a cell rounding to a cell spreading phenotype. Thus, the expression of an alpha2 cytoplasmic domain deletion variant (X2C0) or a chimeric alpha2beta1 containing the cytoplasmic domain of alpha4 (X2C4) or alpha5 (X2C5), instead of alpha2, failed to mediate spreading upon EGF stimulation. Using dominant negative (DN) mutants of RhoGTPases, results revealed that RhoA activation was required for both EGF-stimulated responses of cell rounding and spreading, Cdc42 functioned in the re-spreading of cells after undergoing EGF-stimulated contraction, and Rac1 was required in alpha2beta1-mediated RD cell spreading. Therefore, alpha2beta1 integrin function can switch the Rho GTPase-dependent cell shape changes in RD cells from an EGF-stimulated cell contraction to a spreading morphology. Together, results show that integrin alpha2 cytoplasmic domain plays an indispensable role in the ability of integrin alpha2beta1 to modulate EGF stimulation of Rho-GTPase-dependent morphological changes in RD cells.
Collapse
Affiliation(s)
- M Leabu
- Department of Cellular and Molecular Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | | | | | | | | | | |
Collapse
|
38
|
Wang XQ, Sun P, Paller AS. Ganglioside GM3 Blocks the Activation of Epidermal Growth Factor Receptor Induced by Integrin at Specific Tyrosine Sites. J Biol Chem 2003; 278:48770-8. [PMID: 14512423 DOI: 10.1074/jbc.m308818200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) can be activated by both direct ligand binding and cross-talk with other molecules, such as integrins. This integrin-mediated cross-talk with growth factor receptors participates in regulating cell proliferation, survival, migration, and invasion. Previous studies have shown that ligand-dependent EGFR activation is inhibited by GM3, the predominant ganglioside of epithelial cells, but the effect of GM3 on ligand-independent, integrin-EGFR cross-talk is unknown. Using a squamous carcinoma cell line we show that endogenous accumulation of GM3 disrupts the ligand-independent association of the integrin beta1 subunit with EGFR and results in inhibition of cell proliferation. Consistently, endogenous depletion of GM3 markedly increases the association of EGFR with tyrosine-phosphorylated integrin beta1 and promotes cell proliferation. The ligand-independent stimulation of EGFR does not require focal adhesion kinase phosphorylation or cytoskeletal rearrangement. Stimulation of EGFR and mitogen-activated protein kinase signaling by GM3 depletion involves the phosphorylation of EGFR at tyrosine residues 845, 1068, and 1148 but not 1086 or 1173. The specific blockade of phosphorylation at Tyr-845 with Src family kinase inhibition and at Tyr-1148 with phosphatidylinositol 3-kinase inhibition suggests that GM3 inhibits integrin-induced, ligand-independent EGFR phosphorylation (cross-talk) through suppression of Src family kinase and phosphatidylinositol 3-kinase signaling.
Collapse
Affiliation(s)
- Xiao-Qi Wang
- Departments of Pediatrics and Dermatology, Children's Memorial Institute for Education and Research, Northwestern University Medical School, Chicago, Illinois 60614, USA
| | | | | |
Collapse
|
39
|
Kracklauer MP, Schmidt C, Sclabas GM. TGFbeta1 signaling via alphaVbeta6 integrin. Mol Cancer 2003; 2:28. [PMID: 12935295 PMCID: PMC184456 DOI: 10.1186/1476-4598-2-28] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Accepted: 08/07/2003] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Transforming growth factor beta1 (TGFbeta1) is a potent inhibitor of epithelial cell growth, thus playing an important role in tissue homeostasis. Most carcinoma cells exhibit a reduced sensitivity for TGFbeta1 mediated growth inhibition, suggesting TGFbeta1 participation in the development of these cancers. The tumor suppressor gene DPC4/SMAD4, which is frequently inactivated in carcinoma cells, has been described as a key player in TGFbeta1 mediated growth inhibition. However, some carcinoma cells lacking functional SMAD4 are sensitive to TGFbeta1 induced growth inhibition, thus requiring a SMAD4 independent TGFbeta1 pathway. RESULTS Here we report that mature TGFbeta1 is a ligand for the integrin alphaVbeta6, independent of the common integrin binding sequence motif RGD. After TGFbeta1 binds to alphaVbeta6 integrin, different signaling proteins are activated in TGFbeta1-sensitive carcinoma cells, but not in cells that are insensitive to TGFbeta1. Among others, interaction of TGFbeta1 with the alphaVbeta6 integrin resulted in an upregulation of the cell cycle inhibitors p21/WAF1 and p27 leading to growth inhibition in SMAD4 deleted as well as in SMAD4 wildtype carcinoma cells. CONCLUSIONS Our data provide support for the existence of an alternate TGFbeta1 signaling pathway that is independent of the known SMAD pathway. This alternate pathway involves alphaVbeta6 integrin and the Ras/MAP kinase pathway and does not employ an RGD motif in TGFbeta1-sensitive tumor cells. The combined action of these two pathways seems to be necessary to elicit a complete TGFbeta1 signal.
Collapse
Affiliation(s)
- Martin P Kracklauer
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station, A4800, 78712, Austin, TX, USA
| | - Christian Schmidt
- Department of Surgical Oncology and Molecular Oncology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Guido M Sclabas
- Department of Surgical Oncology and Molecular Oncology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
- Department of Visceral and Transplantation Surgery, The University of Bern, Inselspital, Bern, 3010, Switzerland
| |
Collapse
|
40
|
Pankov R, Cukierman E, Clark K, Matsumoto K, Hahn C, Poulin B, Yamada KM. Specific beta1 integrin site selectively regulates Akt/protein kinase B signaling via local activation of protein phosphatase 2A. J Biol Chem 2003; 278:18671-81. [PMID: 12637511 DOI: 10.1074/jbc.m300879200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrin transmembrane receptors generate multiple signals, but how they mediate specific signaling is not clear. Here we test the hypothesis that particular sequences along the beta(1) integrin cytoplasmic domain may exist that are intimately related to specific integrin-mediated signaling pathways. Using systematic alanine mutagenesis of amino acids conserved between different beta integrin cytoplasmic domains, we identified the tryptophan residue at position 775 of human beta(1) integrin as specific and necessary for integrin-mediated protein kinase B/Akt survival signaling. Stable expression of a beta(1) integrin mutated at this amino acid in GD25 beta(1)-null cells resulted in reduction of Akt phosphorylation at both Ser(473) and Thr(308) activation sites. As a consequence, the cells were substantially more sensitive to serum starvation-induced apoptosis when compared with cells expressing wild type beta(1) integrin. This inactivation of Akt resulted from increased dephosphorylation by a localized active population of protein phosphatase 2A. Both Akt and protein phosphatase 2A were present in beta(1) integrin-organized cytoplasmic complexes, but the activity of this phosphatase was 2.5 times higher in the complexes organized by the mutant integrin. The mutation of Trp(775) specifically affected Akt signaling, without effects on other integrin-activated pathways including phosphoinositide 3-kinase, MAPK, JNK, and p38 nor did it influence activation of the integrin-responsive kinases focal adhesion kinase and Src. The identification of Trp(775) as a specific site for integrin-mediated Akt signaling supports the concept of specificity of signaling along the integrin cytoplasmic domain.
Collapse
Affiliation(s)
- Roumen Pankov
- Craniofacial Developmental Biology and Regeneration Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892-4370, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Li P, Xin F, Fu XB, Yang YH, Guo BC. Effects of EGF on expression of phosphorylated p44/42 MAPK in rat small intestine after ischemia-reperfusion injury. Shijie Huaren Xiaohua Zazhi 2003; 11:578-582. [DOI: 10.11569/wcjd.v11.i5.578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effects of EGF on the characteristics of phosphrylated p44/42 MAPK expression and its biological significance in EGF-induced gut repair after ischemia-reperfusion (I/R) injury.
METHODS A total of 80 Wistar rats were randomly divided into four groups, namely EGF treated group (E), normal saline control (R), ischemia group (I) and sham operated control (C). In group E and R, the rats were treated with intravenous EGF 100 μg/kg/rat or normal saline respectively after 45 minutes of superior mesenteric artery occlusion. Blood samples were collected at 2, 6, 12 and 24 hours after reperfusion and plasma D-lactate were determined. Tissue samples from intestine were also taken for histological analysis and immunohistochemical analysis of phospho-p44/42 MAPK.
RESULTS The changes of histological structure and D-lactate indicated that the intestinal barrier was damaged after intestinal I/R injury, while EGF treatment significantly improved the outcome. In group C and I positive signals of phospho-p44/42 MAPK were mainly located in the cytoplasm of the intestinal villi and crypts, while in group I positive cells increased significantly (P<0.05). In group R, positive signals were found in almost all the cells and the percentage of positive nuclei increased with the time of reperfusion, reaching its peak after 12h of reperfusion. In group E, the percentages were higher than those in group R and the peak of nuclear expression was earlier.
CONCLUSION EGF administration improves the outcome of I/R induced intestinal damage. After I/R the expression and nuclear translocation of phspho-p44/42 MAPK increases with the time of reperfusion, suggesting its role in intestinal reconstitution. EGF treatment induces its early expression and translocation into the nucleus, suggesting the significance of p44/42 MAPK signaling pathway in EGF-induced gut repair.
Collapse
Affiliation(s)
- Ping Li
- Department of Anesthesiology, 304 Hospital of PLA, Bei jing 100037, China
| | - Feng Xin
- Department of Anesthesiology, the Second Artillery General Hospital of PLA, Beijing 100088, China
| | - Xiao-Bing Fu
- Trauma Research Institute, 304 Hospital of PLA, Beijing, 100037, China
| | - Yin-Hui Yang
- Trauma Research Institute, 304 Hospital of PLA, Beijing, 100037, China
| | - Bao-Chen Guo
- Department of Anesthesiology, 304 Hospital of PLA, Bei jing 100037, China
| |
Collapse
|
42
|
Fukuda T, Guo L, Shi X, Wu C. CH-ILKBP regulates cell survival by facilitating the membrane translocation of protein kinase B/Akt. J Cell Biol 2003; 160:1001-8. [PMID: 12654898 PMCID: PMC2172761 DOI: 10.1083/jcb.200212113] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cell survival depends on proper propagation of protective signals through intracellular signaling intermediates. We report here that calponin homology domain-containing integrin-linked kinase (ILK)-binding protein (CH-ILKBP), a widely expressed adaptor protein localized at plasma membrane-actin junctions, is essential for transmission of survival signals. Cells that are depleted of CH-ILKBP undergo extensive apoptosis despite the presence of cell-extracellular matrix contacts and soluble growth factors. The activating phosphorylation of protein kinase B (PKB/Akt), a key regulator of apoptosis, is impaired in the absence of CH-ILKBP. Importantly, loss of CH-ILKBP prevents the membrane translocation of PKB/Akt. Furthermore, forced membrane targeting of PKB/Akt bypasses the requirement of CH-ILKBP for the activating phosphorylation of PKB/Akt, suggesting that CH-ILKBP is required for the membrane translocation but not the subsequent phosphorylation of PKB/Akt. Finally, we show that loss of CH-ILKBP is also required for the full activation of extracellular signal-regulated kinase (ERK)1/2. However, restoration of the PKB/Akt activation is sufficient for protection of cells from apoptosis induced by the depletion of CH-ILKBP despite the persistent suppression of the ERK1/2 activation. Thus, CH-ILKBP is an important component of the prosurvival signaling pathway functioning primarily by facilitating the membrane translocation of PKB/Akt and consequently the activation of PKB/Akt in response to extracellular survival signals.
Collapse
Affiliation(s)
- Tomohiko Fukuda
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
43
|
Tuck AB, Hota C, Wilson SM, Chambers AF. Osteopontin-induced migration of human mammary epithelial cells involves activation of EGF receptor and multiple signal transduction pathways. Oncogene 2003; 22:1198-205. [PMID: 12606946 DOI: 10.1038/sj.onc.1206209] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Osteopontin (OPN) is a secreted, integrin-binding glycophosphoprotein that has been implicated in breast cancer. We previously showed that OPN-induced cell migration of mammary epithelial cells (MEC) depends on binding to cell surface integrins and involves activation of the hepatocyte growth factor (HGF) receptor, Met. Here, we show that OPN-induced migration of MEC also requires activation of the epidermal growth factor (EGF) pathway. Synergism was seen between EGF and OPN in inducing cell migration. Furthermore, incubation of cells with exogenous OPN increased ligand (TGFalpha> EGF) and EGF receptor (EGFR) mRNA expression, as well as EGFR kinase activity. Treatment of cells with anti-TGFalpha or anti-EGFR antibody, or with tyrphostin-25 (EGFR inhibitor), significantly impaired the cell migration response to OPN. Other more broad-spectrum tyrosine kinase inhibitors and the growth factor/ receptor interaction inhibitor, suramin, also inhibited OPN-induced migration. Using specific signal transduction pathway inhibitors, we have screened for involvement of MEK (MAP kinase kinase), phosphatidylinositol 3-kinase, phospholipase C (PLC), and protein kinase C (PKC). Results implicated all of these pathways in OPN-induced cell migration, the most pronounced effect being seen with PLC and PKC inhibitors. These results suggest that induction of MEC migration by OPN involves a cascade of events including at least two growth factor/receptor pathways and multiple downstream signal transduction pathways. A number of potential targets are thus provided for strategies aimed at blocking the malignancy-promoting effects of OPN.
Collapse
Affiliation(s)
- Alan B Tuck
- Department of Pathology, London Health Sciences Centre, University of Western Ontario, London, Ontario, Canada.
| | | | | | | |
Collapse
|
44
|
Vachon PH, Harnois C, Grenier A, Dufour G, Bouchard V, Han J, Landry J, Beaulieu JF, Vézina A, Dydensborg AB, Gauthier R, Côté A, Drolet JF, Lareau F. Differentiation state-selective roles of p38 isoforms in human intestinal epithelial cell anoikis. Gastroenterology 2002; 123:1980-91. [PMID: 12454855 DOI: 10.1053/gast.2002.37072] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Little is known of the signaling events implicated in the induction of human enterocytic anoikis. In the present study, we analyzed the role of the stress-activated protein kinase p38 in this process. METHODS Anoikis was induced in undifferentiated and differentiated enterocytes by inhibition of focal adhesion kinase (Fak; pharmacologic inhibition or overexpression of a dominant negative form) or beta1 integrins (antibody blocking), or by maintaining cells in suspension. Expression/activation parameters of p38 (isoforms alpha, beta, gamma, delta) and of the Fak/phosphatidylinositol-3-kinase (PI3-K)/Akt anoikis-suppressing pathways were analyzed. Kinase activities of p38 isoforms also were blocked by pharmacologic inhibitors or by overexpression of dominant-negative forms. RESULTS (1) p38 activation is sustained transiently after induction of anoikis in both undifferentiated and differentiated enterocytes; (2) such sustenance of p38 activation is associated with a down-regulation of the Fak/PI3-K/Akt pathway; (3) distinct profiles of p38 isoform expression are exhibited by undifferentiated (alpha, beta, gamma) and differentiated (alpha, gamma, delta) enterocytes; (4) none of the 4 known p38 isoforms was found to promote cell survival in either differentiation state; and (5) only p38beta and p38delta are required specifically for anoikis in undifferentiated and differentiated cells, respectively. CONCLUSIONS Distinct p38 isoforms play a major role in the induction of enterocytic anoikis and the regulation of such selective p38 isoform-mediated anoikis is linked with the state of cell differentiation. These data provide novel insights into the synchronized regulation of cell survival/death required in the epithelial renewal process along the human intestinal crypt-villus axis.
Collapse
Affiliation(s)
- Pierre H Vachon
- Canadian Institutes of Health Research Group on the Functional Development and Physiopathology of the Digestive Tract, Québec, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Golubovskaya V, Beviglia L, Xu LH, Earp HS, Craven R, Cance W. Dual inhibition of focal adhesion kinase and epidermal growth factor receptor pathways cooperatively induces death receptor-mediated apoptosis in human breast cancer cells. J Biol Chem 2002; 277:38978-87. [PMID: 12167618 DOI: 10.1074/jbc.m205002200] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The focal adhesion kinase (FAK) and epidermal growth factor receptor (EGFR) are protein-tyrosine kinases that are overexpressed and activated in human breast cancer. To determine the role of EGFR and FAK survival signaling in breast cancer, EGFR was stably overexpressed in BT474 breast cancer cells, and each signaling pathway was specifically targeted for inhibition. FAK and EGFR constitutively co-immunoprecipitated in EGFR-overexpressing BT474 cells. In low EGFR-expressing BT474-pcDNA3 vector control cells, inhibition of FAK by the FAK C-terminal domain caused detachment and apoptosis via pathways involving activation of caspase-3 and -8, cleavage of poly(ADP-ribose) polymerase, and caspase-3-dependent degradation of AKT. This apoptosis could be rescued by the dominant-negative Fas-associated death domain, indicating involvement of the death receptor pathway. EGFR overexpression did not inhibit detachment induced by the FAK C-terminal domain, but did suppress apoptosis, activating AKT and ERK1/2 survival pathways and inhibiting cleavage of FAK, caspase-3 and -8, and poly(ADP-ribose) polymerase. Furthermore, this protective effect of EGFR signaling was reversed by EGFR kinase inhibition with AG1478. In addition, inhibition of FAK and EGFR in another breast cancer cell line (BT20) endogenously overexpressing these kinases also induced apoptosis via the same mechanism as in the EGFR-overexpressing BT474 cells. The results of this study indicate that dual inhibition of FAK and EGFR signaling pathways can cooperatively enhance apoptosis in breast cancers.
Collapse
Affiliation(s)
- Vita Golubovskaya
- Lineberger Comprehensive Cancer Center, School of Medicine, and the Department Surgery, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
46
|
Stoll SW, Kansra S, Elder JT. Metalloproteinases stimulate ErbB-dependent ERK signaling in human skin organ culture. J Biol Chem 2002; 277:26839-45. [PMID: 12016209 DOI: 10.1074/jbc.m201108200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the role of ERK signaling in human skin responses to wounding, organ cultures of human skin were maintained for 0.5-24 h in the presence of various inhibitors, followed by measurement of ERK phosphorylation or mRNA levels. The MEK inhibitor PD98059 produced near-complete (97-98%) inhibition of ERK phosphorylation, whereas inhibition of c-Fos, c-Jun, HB-EGF, AR, and VEGF mRNA by this compound was incomplete (41-65%). PD98059 was significantly more effective than either PD158780 or BB2516 as an inhibitor of ERK phosphorylation and of the rapid rise in c-Fos and c-Jun mRNA expression. In contrast, all three compounds inhibited the more delayed rise in HB-EGF mRNA to the same extent. Exogenous epidermal growth factor abrogated the inhibition of ERK phosphorylation caused by BB2516. These data indicate that one or more metalloproteinases activate ErbB signaling in skin organ culture, that ErbB signaling plays an important but not exclusive role in the activation of ERK, and that non-ERK pathways contribute to gene expression in this system. Because metalloproteinase-mediated cleavage of the HB-EGF transmembrane precursor is known to be ERK-dependent, our data suggest that ERK activation resulting from initial trauma leads to metalloproteinase-mediated cleavage of HB-EGF, thereby triggering the ErbB signaling cascade.
Collapse
Affiliation(s)
- Stefan W Stoll
- Department of Dermatology, University of Michigan Medical Center, 1500 E Medical Center Drive, Ann Arbor, MI 48109-0932, USA
| | | | | |
Collapse
|