1
|
Vargas-Diaz D, Altelaar M. Automated High-Throughput Method for the Fast, Robust, and Reproducible Enrichment of Newly Synthesized Proteins. J Proteome Res 2021; 21:189-199. [PMID: 34860524 PMCID: PMC8749957 DOI: 10.1021/acs.jproteome.1c00743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
A high-throughput
method was developed for the automated enrichment
of newly synthesized proteins (NSPs), which are labeled metabolically
by substituting methionine with the “click-able” analogue
azidohomoalanine (AHA). A suitable conjugate containing a dibenzocyclooctyne
(DBCO) group allows the specific selection of NSPs by a fast 1 h click
chemistry-based reaction with AHA. Through an automated pipetting
platform, the samples are loaded into streptavidin cartridges for
the selective binding of the NSPs by means of a biotin bait contained
in the conjugate. The enriched proteins are eluted by a reproducible
chemical cleavage of the 4,4-dimethyl-2,6-dioxocyclohexylidene (Dde)
group in the conjugate, which increases selectivity. The NSPs can
be collected and digested in the same well plate, and the resulting
peptides can be subsequently loaded for automated cleanup, followed
by mass spectrometry analysis. The proposed automated method allows
for the robust and effective enrichment of samples in 96-well plates
in a period of 3 h. Our developed enrichment method was comprehensively
evaluated and then applied to the proteomics analysis of the melanoma
A375 cell secretome, after treatment with the cytokines interferon
α (IFN-α) and γ (IFN-γ), resulting in the
quantification of 283 and 263 proteins, respectively, revealing intricate
tumor growth-supportive and -suppressive effects.
Collapse
Affiliation(s)
- David Vargas-Diaz
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
2
|
Rus Bakarurraini NAA, Ab Mutalib NS, Jamal R, Abu N. The Landscape of Tumor-Specific Antigens in Colorectal Cancer. Vaccines (Basel) 2020; 8:E371. [PMID: 32664247 PMCID: PMC7565947 DOI: 10.3390/vaccines8030371] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/24/2022] Open
Abstract
Over the last few decades, major efforts in cancer research and treatment have intensified. Apart from standard chemotherapy approaches, immunotherapy has gained substantial traction. Personalized immunotherapy has become an important tool for cancer therapy with the discovery of immune checkpoint inhibitors. Traditionally, tumor-associated antigens are used in immunotherapy-based treatments. Nevertheless, these antigens lack specificity and may have increased toxicity. With the advent of next-generation technologies, the identification of new tumor-specific antigens is becoming more important. In colorectal cancer, several tumor-specific antigens were identified and functionally validated. Multiple clinical trials from vaccine-based and adoptive cell therapy utilizing tumor-specific antigens have commenced. Herein, we will summarize the current landscape of tumor-specific antigens particularly in colorectal cancer.
Collapse
Affiliation(s)
| | | | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.A.A.R.B.); (N.S.A.M.)
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.A.A.R.B.); (N.S.A.M.)
| |
Collapse
|
3
|
Wang Y, Wang X, Cui X, Zhuo Y, Li H, Ha C, Xin L, Ren Y, Zhang W, Sun X, Ge L, Liu X, He J, Zhang T, Zhang K, Yao Z, Yang X, Yang J. Oncoprotein SND1 hijacks nascent MHC-I heavy chain to ER-associated degradation, leading to impaired CD8 + T cell response in tumor. SCIENCE ADVANCES 2020; 6:eaba5412. [PMID: 32917674 PMCID: PMC7259962 DOI: 10.1126/sciadv.aba5412] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/25/2020] [Indexed: 05/16/2023]
Abstract
SND1 is highly expressed in various cancers. Here, we identify oncoprotein SND1 as a previously unidentified endoplasmic reticulum (ER) membrane-associated protein. The amino-terminal peptide of SND1 predominantly associates with SEC61A, which anchors on ER membrane. The SN domain of SND1 catches and guides the nascent synthesized heavy chain (HC) of MHC-I to ER-associated degradation (ERAD), hindering the normal assembly of MHC-I in the ER lumen. In mice model bearing tumors, especially in transgenic OT-I mice, deletion of SND1 promotes the presentation of MHC-I in both B16F10 and MC38 cells, and the infiltration of CD8+ T cells is notably increased in tumor tissue. It was further confirmed that SND1 impaired tumor antigen presentation to cytotoxic CD8+ T cells both in vivo and in vitro. These findings reveal SND1 as a novel ER-associated protein facilitating immune evasion of tumor cells through redirecting HC to ERAD pathway that consequently interrupts antigen presentation.
Collapse
Affiliation(s)
- Yuan Wang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology, Excellent Talent Project, Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xinting Wang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology, Excellent Talent Project, Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaoteng Cui
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology, Excellent Talent Project, Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yue Zhuo
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Hongshuai Li
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology, Excellent Talent Project, Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chuanbo Ha
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology, Excellent Talent Project, Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lingbiao Xin
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology, Excellent Talent Project, Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuanyuan Ren
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology, Excellent Talent Project, Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Wei Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology, Excellent Talent Project, Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaoming Sun
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology, Excellent Talent Project, Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lin Ge
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology, Excellent Talent Project, Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xin Liu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology, Excellent Talent Project, Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jinyan He
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology, Excellent Talent Project, Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Tao Zhang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Kai Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology, Excellent Talent Project, Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhi Yao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology, Excellent Talent Project, Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Xi Yang
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Jie Yang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology, Excellent Talent Project, Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
4
|
Use of Dendritic Cell Receptors as Targets for Enhancing Anti-Cancer Immune Responses. Cancers (Basel) 2019; 11:cancers11030418. [PMID: 30909630 PMCID: PMC6469018 DOI: 10.3390/cancers11030418] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022] Open
Abstract
A successful anti-cancer vaccine construct depends on its ability to induce humoral and cellular immunity against a specific antigen. Targeting receptors of dendritic cells to promote the loading of cancer antigen through an antibody-mediated antigen uptake mechanism is a promising strategy in cancer immunotherapy. Researchers have been targeting different dendritic cell receptors such as Fc receptors (FcR), various C-type lectin-like receptors such as dendritic and thymic epithelial cell-205 (DEC-205), dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), and Dectin-1 to enhance the uptake process and subsequent presentation of antigen to T cells through major histocompatibility complex (MHC) molecules. In this review, we compare different subtypes of dendritic cells, current knowledge on some important receptors of dendritic cells, and recent articles on targeting those receptors for anti-cancer immune responses in mouse models.
Collapse
|
5
|
Abstract
Antigen cross-presentation is an adaptation of the cellular process of loading MHC-I molecules with endogenous peptides during their biosynthesis within the endoplasmic reticulum. Cross-presented peptides derive from internalized proteins, microbial pathogens, and transformed or dying cells. The physical separation of internalized cargo from the endoplasmic reticulum, where the machinery for assembling peptide-MHC-I complexes resides, poses a challenge. To solve this problem, deliberate rewiring of organelle communication within cells is necessary to prepare for cross-presentation, and different endocytic receptors and vesicular traffic patterns customize the emergent cross-presentation compartment to the nature of the peptide source. Three distinct pathways of vesicular traffic converge to form the ideal cross-presentation compartment, each regulated differently to supply a unique component that enables cross-presentation of a diverse repertoire of peptides. Delivery of centerpiece MHC-I molecules is the critical step regulated by microbe-sensitive Toll-like receptors. Defining the subcellular sources of MHC-I and identifying sites of peptide loading during cross-presentation remain key challenges.
Collapse
Affiliation(s)
- J Magarian Blander
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; .,Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| |
Collapse
|
6
|
Kelly M, McNeel D, Fisch P, Malkovsky M. Immunological considerations underlying heat shock protein-mediated cancer vaccine strategies. Immunol Lett 2017; 193:1-10. [PMID: 29129721 DOI: 10.1016/j.imlet.2017.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/01/2017] [Accepted: 11/05/2017] [Indexed: 12/31/2022]
Abstract
The success of active immunotherapies in the prevention of many infectious diseases over the course of over 200 years has lead scientists to wonder if the same principles could be applied to cancer. Antigen-specific active immunotherapies for the treatment of cancer have been researched for over two decades, however, the overwhelming majority of these studies have failed to stimulate robust clinical responses. It is clear that current active immunotherapy research should incorporate methods to increase the immunostimulatory capacity of these therapies. To directly address this need, we propose the addition of the immunostimulatory heat shock proteins (HSPs) to active immunotherapeutic strategies to augment their efficacy. Heat shock proteins are a family of highly conserved intracellular chaperone proteins, and are the most abundant family proteins inside cells. This ubiquity, and their robust immunostimulatory capacity, points to their importance in regulation of intracellular processes and, therefore, indicators of loss of cellular integrity if found extracellularly. Thus, we emphasize the importance of taking into consideration the location of vaccine-derived HSP/tumor-antigen complexes when designing active immunotheraputic strategies.
Collapse
Affiliation(s)
- Matthew Kelly
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Douglas McNeel
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA; Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Paul Fisch
- Universitätsklinikum Freiburg, Institut für Pathologie, Freiburg, Germany
| | - Miroslav Malkovsky
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA; Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
7
|
Ishikawa Y, Holden P, Bächinger HP. Heat shock protein 47 and 65-kDa FK506-binding protein weakly but synergistically interact during collagen folding in the endoplasmic reticulum. J Biol Chem 2017; 292:17216-17224. [PMID: 28860186 DOI: 10.1074/jbc.m117.802298] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/18/2017] [Indexed: 12/21/2022] Open
Abstract
Collagen is the most abundant protein in the extracellular matrix in humans and is critical to the integrity and function of many musculoskeletal tissues. A molecular ensemble comprising more than 20 molecules is involved in collagen biosynthesis in the rough endoplasmic reticulum. Two proteins, heat shock protein 47 (Hsp47/SERPINH1) and 65-kDa FK506-binding protein (FKBP65/FKBP10), have been shown to play important roles in this ensemble. In humans, autosomal recessive mutations in both genes cause similar osteogenesis imperfecta phenotypes. Whereas it has been proposed that Hsp47 and FKBP65 interact in the rough endoplasmic reticulum, there is neither clear evidence for this interaction nor any data regarding their binding affinities for each other. In this study using purified endogenous proteins, we examined the interaction between Hsp47, FKBP65, and collagen and also determined their binding affinities and functions in vitro Hsp47 and FKBP65 show a direct but weak interaction, and FKBP65 prefers to interact with Hsp47 rather than type I collagen. Our results suggest that a weak interaction between Hsp47 and FKBP65 confers mutual molecular stability and also allows for a synergistic effect during collagen folding. We also propose that Hsp47 likely acts as a hub molecule during collagen folding and secretion by directing other molecules to reach their target sites on collagens. Our findings may explain why osteogenesis imperfecta-causing mutations in both genes result in similar phenotypes.
Collapse
Affiliation(s)
- Yoshihiro Ishikawa
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University and Shriners Hospital for Children, Research Department, Portland, Oregon 97239
| | - Paul Holden
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University and Shriners Hospital for Children, Research Department, Portland, Oregon 97239
| | - Hans Peter Bächinger
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University and Shriners Hospital for Children, Research Department, Portland, Oregon 97239
| |
Collapse
|
8
|
Fisette O, Wingbermühle S, Schäfer LV. Partial Dissociation of Truncated Peptides Influences the Structural Dynamics of the MHCI Binding Groove. Front Immunol 2017; 8:408. [PMID: 28458665 PMCID: PMC5394104 DOI: 10.3389/fimmu.2017.00408] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/22/2017] [Indexed: 12/29/2022] Open
Abstract
Antigen processing on MHCI involves the exchange of low-affinity peptides by high-affinity, immunodominant ones. This peptide editing process is mediated by tapasin and ERAAP at the peptide C- and N-terminus, respectively. Since tapasin does not contact the peptide directly, a sensing mechanism involving conformational changes likely allows tapasin to distinguish antigen-loaded MHCI molecules from those occupied by weakly bound, non-specific peptides. To understand this mechanism at the atomic level, we performed molecular dynamics simulations of MHCI allele B*44:02 loaded with peptides truncated or modified at the C- or N-terminus. We show that the deletion of peptide anchor residues leads to reversible, partial dissociation of the peptide from MHCI on the microsecond timescale. Fluctuations in the MHCI α2-1 helix segment, bordering the binding groove and cradled by tapasin in the PLC, are influenced by the peptide C-terminus occupying the nearby F-pocket. Simulations of tapasin complexed with MHCI bound to a low-affinity peptide show that tapasin widens the MHCI binding groove near the peptide C-terminus and weakens the attractive forces between MHCI and the peptide. Our simulations thus provide a detailed, spatially resolved picture of MHCI plasticity, revealing how peptide loading status can affect key structural regions contacting tapasin.
Collapse
Affiliation(s)
- Olivier Fisette
- Center for Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University, Bochum, Germany
| | - Sebastian Wingbermühle
- Center for Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University, Bochum, Germany
| | - Lars V. Schäfer
- Center for Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University, Bochum, Germany
| |
Collapse
|
9
|
Takata H, Kudo M, Yamamoto T, Ueda J, Ishino K, Peng WX, Wada R, Taniai N, Yoshida H, Uchida E, Naito Z. Increased expression of PDIA3 and its association with cancer cell proliferation and poor prognosis in hepatocellular carcinoma. Oncol Lett 2016; 12:4896-4904. [PMID: 28101228 PMCID: PMC5228093 DOI: 10.3892/ol.2016.5304] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/22/2016] [Indexed: 12/18/2022] Open
Abstract
The prognosis of hepatocellular carcinoma (HCC) is unfavorable following complete tumor resection. The aim of the present study was to identify a molecule able to predict HCC prognosis through comprehensive protein profiling and to elucidate its clinicopathological significance. Comprehensive protein profiling of HCC was performed by liquid chromatography-tandem mass spectrometry. Through the bioinformatic analysis of proteins expressed differentially in HCC and non-HCC tissues, protein disulfide-isomerase A3 (PDIA3) was identified as a candidate for the prediction of prognosis. PDIA3 expression was subsequently examined in 86 cases of HCC by immunostaining and associations between PDIA3 expression levels and clinicopathological characteristics were evaluated. The Ki-67 index and apoptotic cell death of carcinoma cells were examined by immunostaining and terminal deoxynucleotidyl transferase dUTP nick-end labeling assay in 24 cases. The results demonstrated that PDIA3 was expressed in all 86 HCC cases; 56 HCC cases (65%) exhibited high expression of PDIA3 and 30 (35%) exhibited low expression. The disease-free and overall survival times of HCC patients with high PDIA3 expression were significantly shorter than in HCC patients with low expression. Furthermore, increased expression of PDIA3 was associated with an elevated Ki-67 index, indicating increased cancer cell proliferation and a reduction in apoptotic cell death. Taken together, these results suggest that PDIA3 expression is associated with tumor proliferation and decreased apoptosis in HCC, and that increased expression of PDIA3 predicts poor prognosis. PDIA3 may therefore be a key molecule in the development of novel targeting therapies for patients with HCC.
Collapse
Affiliation(s)
- Hideyuki Takata
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo 113-8602, Japan; Department of Gastrointestinal Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo 113-8602, Japan
| | - Mitsuhiro Kudo
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo 113-8602, Japan
| | | | - Junji Ueda
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo 113-8602, Japan; Department of Gastrointestinal Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo 113-8602, Japan
| | - Kousuke Ishino
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Wei-Xia Peng
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Ryuichi Wada
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Nobuhiko Taniai
- Department of Gastrointestinal Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo 113-8602, Japan
| | - Hiroshi Yoshida
- Department of Gastrointestinal Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo 113-8602, Japan
| | - Eiji Uchida
- Department of Gastrointestinal Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo 113-8602, Japan
| | - Zenya Naito
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo 113-8602, Japan
| |
Collapse
|
10
|
Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing. Proc Natl Acad Sci U S A 2016; 113:E1006-15. [PMID: 26869717 DOI: 10.1073/pnas.1519894113] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Peptide loading of major histocompatibility complex class I (MHC-I) molecules is central to antigen presentation, self-tolerance, and CD8(+) T-cell activation. TAP binding protein, related (TAPBPR), a widely expressed tapasin homolog, is not part of the classical MHC-I peptide-loading complex (PLC). Using recombinant MHC-I molecules, we show that TAPBPR binds HLA-A*02:01 and several other MHC-I molecules that are either peptide-free or loaded with low-affinity peptides. Fluorescence polarization experiments establish that TAPBPR augments peptide binding by MHC-I. The TAPBPR/MHC-I interaction is reversed by specific peptides, related to their affinity. Mutational and small-angle X-ray scattering (SAXS) studies confirm the structural similarities of TAPBPR with tapasin. These results support a role of TAPBPR in stabilizing peptide-receptive conformation(s) of MHC-I, permitting peptide editing.
Collapse
|
11
|
Gan CS, Yusof R, Othman S. Different serotypes of dengue viruses differently regulate the expression of the host cell antigen processing machinery. Acta Trop 2015; 149:8-14. [PMID: 25981524 DOI: 10.1016/j.actatropica.2015.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 04/14/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
Abstract
Dengue virus (DV) infection demonstrates an intriguing virus-induced intracellular membrane alteration that results in the augmentation of major histocompatibility complex (MHC) class I-restricted antigen presentation. As oppose to its biological function in attracting CD8(+) T-cells, this phenomenon appears to facilitate the immune evasion. However, the molecular events that attribute to the dysregulation of the antigen presenting mechanism (APM) by DV remain obscure. In this study, we aimed to characterize the host cell APM upon infection with all serotypes of whole DV. Cellular RNA were isolated from infected cells and the gene expressions of LMP2, LMP7, TAP1, TAP2, TAPBP, CALR, CANX, PDIA3, HLA-A and HLA-B were analyzed via quantitative PCR. The profiles of the gene expression were further validated. We showed that all four DV serotypes modulate host APM at the proteasomal level with DV2 showing the most prominent expression profile.
Collapse
|
12
|
Herpesvirus saimiri MicroRNAs Preferentially Target Host Cell Cycle Regulators. J Virol 2015; 89:10901-11. [PMID: 26292323 DOI: 10.1128/jvi.01884-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 08/12/2015] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED In latently infected marmoset T cells, Herpesvirus saimiri (HVS) expresses six microRNAs (known as miR-HSURs [H. saimiri U-rich RNAs]). The viral miR-HSURs are processed from chimeric primary transcripts, each containing a noncoding U-rich RNA (HSUR) and a pre-miRNA hairpin. To uncover the functions of miR-HSURs, we identified mRNA targets in infected cells using high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation (HITS-CLIP). HITS-CLIP revealed hundreds of robust Argonaute (Ago) binding sites mediated by miR-HSURs that map to the host genome but few in the HVS genome. Gene ontology analysis showed that several pathways regulating the cell cycle are enriched among cellular targets of miR-HSURs. Interestingly, miR-HSUR4-3p represses expression of the p300 transcriptional coactivator by binding the open reading frame of its mRNA. miR-HSUR5-3p directly regulates BiP, an endoplasmic reticulum (ER)-localized chaperone facilitating maturation of major histocompatibility complex class I (MHC-I) and the antiviral response. miR-HSUR5-3p also robustly downregulates WEE1, a key negative regulator of cell cycle progression, leading to reduced phosphorylation of its substrate, cyclin-dependent kinase (Cdk1). Consistently, inhibition of miR-HSUR5-3p in HVS-infected cells decreases their proliferation. Together, our results shed light on the roles of viral miRNAs in cellular transformation and viral latency. IMPORTANCE Viruses express miRNAs during various stages of infection, suggesting that viral miRNAs play critical roles in the viral life cycle. Compared to protein-coding genes, the functions of viral miRNAs are not well understood. This is because it has been challenging to identify their mRNA targets. Here, we focused on the functions of the recently discovered HVS miRNAs, called miR-HSURs. HVS is an oncogenic gammaherpesvirus that causes acute T-cell lymphomas and leukemias in New World primates and transforms human T cells. A better understanding of HVS biology will help advance our knowledge of virus-induced oncogenesis. Because numerous cellular miRNAs play crucial roles in cancer, viral miRNAs from the highly oncogenic HVS might also be important for transformation. Here, we found that the miR-HSURs preferentially modulate expression of host cell cycle regulators, as well as antiviral response factors. Our work provides further insight into the functions of herpesviral miRNAs in virus-induced oncogenesis and latency.
Collapse
|
13
|
González A, Valck C, Sánchez G, Härtel S, Mansilla J, Ramírez G, Fernández MS, Arias JL, Galanti N, Ferreira A. Trypanosoma cruzi Calreticulin Topographical Variations in Parasites Infecting Murine Macrophages. Am J Trop Med Hyg 2015; 92:887-97. [PMID: 25758653 DOI: 10.4269/ajtmh.14-0497] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/29/2014] [Indexed: 11/07/2022] Open
Abstract
Trypanosoma cruzi calreticulin (TcCRT), a 47-kDa chaperone, translocates from the endoplasmic reticulum to the area of flagellum emergence. There, it binds to complement components C1 and mannan-binding lectin (MBL), thus acting as a main virulence factor, and inhibits the classical and lectin pathways. The localization and functions of TcCRT, once the parasite is inside the host cell, are unknown. In parasites infecting murine macrophages, polyclonal anti-TcCRT antibodies detected TcCRT mainly in the parasite nucleus and kinetoplast. However, with a monoclonal antibody (E2G7), the resolution and specificity of the label markedly improved, and TcCRT was detected mainly in the parasite kinetoplast. Gold particles, bound to the respective antibodies, were used as probes in electron microscopy. This organelle may represent a stopover and accumulation site for TcCRT, previous its translocation to the area of flagellum emergence. Finally, early during T. cruzi infection and by unknown mechanisms, an important decrease in the number of MHC-I positive host cells was observed.
Collapse
Affiliation(s)
- Andrea González
- Programa Disciplinario de Inmunología, Programa de Genética Humana, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas; Laboratorio de Análisis de Imágenes Científicas (SCIAN), Instituto de Neurociencias Biomédicas, Facultad de Medicina; Departamento de Medicina Preventiva Animal, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Chile
| | - Carolina Valck
- Programa Disciplinario de Inmunología, Programa de Genética Humana, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas; Laboratorio de Análisis de Imágenes Científicas (SCIAN), Instituto de Neurociencias Biomédicas, Facultad de Medicina; Departamento de Medicina Preventiva Animal, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Chile
| | - Gittith Sánchez
- Programa Disciplinario de Inmunología, Programa de Genética Humana, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas; Laboratorio de Análisis de Imágenes Científicas (SCIAN), Instituto de Neurociencias Biomédicas, Facultad de Medicina; Departamento de Medicina Preventiva Animal, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Chile
| | - Steffen Härtel
- Programa Disciplinario de Inmunología, Programa de Genética Humana, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas; Laboratorio de Análisis de Imágenes Científicas (SCIAN), Instituto de Neurociencias Biomédicas, Facultad de Medicina; Departamento de Medicina Preventiva Animal, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Chile
| | - Jorge Mansilla
- Programa Disciplinario de Inmunología, Programa de Genética Humana, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas; Laboratorio de Análisis de Imágenes Científicas (SCIAN), Instituto de Neurociencias Biomédicas, Facultad de Medicina; Departamento de Medicina Preventiva Animal, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Chile
| | - Galia Ramírez
- Programa Disciplinario de Inmunología, Programa de Genética Humana, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas; Laboratorio de Análisis de Imágenes Científicas (SCIAN), Instituto de Neurociencias Biomédicas, Facultad de Medicina; Departamento de Medicina Preventiva Animal, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Chile
| | - María Soledad Fernández
- Programa Disciplinario de Inmunología, Programa de Genética Humana, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas; Laboratorio de Análisis de Imágenes Científicas (SCIAN), Instituto de Neurociencias Biomédicas, Facultad de Medicina; Departamento de Medicina Preventiva Animal, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Chile
| | - José Luis Arias
- Programa Disciplinario de Inmunología, Programa de Genética Humana, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas; Laboratorio de Análisis de Imágenes Científicas (SCIAN), Instituto de Neurociencias Biomédicas, Facultad de Medicina; Departamento de Medicina Preventiva Animal, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Chile
| | - Norbel Galanti
- Programa Disciplinario de Inmunología, Programa de Genética Humana, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas; Laboratorio de Análisis de Imágenes Científicas (SCIAN), Instituto de Neurociencias Biomédicas, Facultad de Medicina; Departamento de Medicina Preventiva Animal, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Chile
| | - Arturo Ferreira
- Programa Disciplinario de Inmunología, Programa de Genética Humana, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas; Laboratorio de Análisis de Imágenes Científicas (SCIAN), Instituto de Neurociencias Biomédicas, Facultad de Medicina; Departamento de Medicina Preventiva Animal, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Chile
| |
Collapse
|
14
|
Cao Z, Robinson RAS. Proteome characterization of splenocytes from an A
βpp/ps-
1 Alzheimer's disease model. Proteomics 2014; 14:291-7. [DOI: 10.1002/pmic.201300130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 10/22/2013] [Accepted: 11/21/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Zhiyun Cao
- Department of Chemistry; University of Pittsburgh; Pittsburgh PA USA
| | | |
Collapse
|
15
|
Kurimoto E, Kuroki K, Yamaguchi Y, Yagi-Utsumi M, Igaki T, Iguchi T, Maenaka K, Kato K. Structural and functional mosaic nature of MHC class I molecules in their peptide-free form. Mol Immunol 2013; 55:393-9. [DOI: 10.1016/j.molimm.2013.03.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/14/2013] [Accepted: 03/15/2013] [Indexed: 10/27/2022]
|
16
|
Tamura T, Arai S, Nagaya H, Mizuguchi J, Wada I. Stepwise assembly of fibrinogen is assisted by the endoplasmic reticulum lectin-chaperone system in HepG2 cells. PLoS One 2013; 8:e74580. [PMID: 24040290 PMCID: PMC3769264 DOI: 10.1371/journal.pone.0074580] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 08/06/2013] [Indexed: 11/29/2022] Open
Abstract
The endoplasmic reticulum (ER) plays essential roles in protein folding and assembly of secretory proteins. ER-resident molecular chaperones and related enzymes assist in protein maturation by co-operated interactions and modifications. However, the folding/assembly of multimeric proteins is not well understood. Here, we show that the maturation of fibrinogen, a hexameric secretory protein (two trimers from α, β and γ subunits), occurs in a stepwise manner. The αγ complex, a precursor for the trimer, is retained in the ER by lectin-like chaperones, and the β subunit is incorporated into the αγ complex immediately after translation. ERp57, a protein disulfide isomerase homologue, is involved in the hexamer formation from two trimers. Our results indicate that the fibrinogen hexamer is formed sequentially, rather than simultaneously, using kinetic pause by lectin chaperones. This study provides a novel insight into the assembly of most abundant multi-subunit secretory proteins.
Collapse
Affiliation(s)
- Taku Tamura
- Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency (JST), Tokyo, Japan
- * E-mail:
| | - Seisuke Arai
- Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima, Japan
| | - Hisao Nagaya
- Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency (JST), Tokyo, Japan
| | - Jun Mizuguchi
- The Chemo-Sero-Therapeutic Research Institute (Kaketsuken), Kumamoto, Japan
| | - Ikuo Wada
- Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency (JST), Tokyo, Japan
| |
Collapse
|
17
|
Kaser A, Flak MB, Tomczak MF, Blumberg RS. The unfolded protein response and its role in intestinal homeostasis and inflammation. Exp Cell Res 2011; 317:2772-9. [PMID: 21821022 PMCID: PMC3392150 DOI: 10.1016/j.yexcr.2011.07.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 07/06/2011] [Accepted: 07/06/2011] [Indexed: 01/26/2023]
Abstract
The unfolded protein response (UPR) is a signaling pathway from the endoplasmic reticulum (ER) to the nucleus that protects cells from the stress caused by misfolded or unfolded proteins [1, 2]. As such, ER stress is an ongoing challenge for all cells given the central biologic importance of secretion as part of normal physiologic functions. This is especially the case for cells that are highly dependent upon secretory function as part of their major duties. Within mucosal tissues, the intestinal epithelium is especially dependent upon an intact UPR for its normal activities [3]. This review will discuss the UPR and the special role that it provides in the functioning of the intestinal epithelium and, when dysfunctional, its implications for understanding mucosal homeostasis and intestinal inflammation, as occurs in inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Arthur Kaser
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
- Dept of Medicine II, Innsbruck Medical University, Innsbruck, Austria
| | - Magdalena B. Flak
- Gastroenterology, Hepatology and Endoscopy Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michal F. Tomczak
- Gastroenterology, Hepatology and Endoscopy Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Richard S. Blumberg
- Gastroenterology, Hepatology and Endoscopy Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
18
|
Li T, Li WY, Bai HL, Ma HB, Zhang H, Zhu JM, Li XH, Huang HY, Ma YF, Ji XY. The genetic profiling of preferentially expressed genes in murine splenic CD8α+ dendritic cells. Immunol Res 2011; 51:80-96. [PMID: 21814860 DOI: 10.1007/s12026-011-8237-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the murine splenocytes, CD8α+ dendritic cells (abbreviated as 8+DC) and CD8α- dendritic cells (abbreviated as 8-DC) are identified with some vague features for each of them. 8+DCs but not 8-DCs cross-prime cytotoxic T cells in vivo. We aim to distinguish the two subtypes of DC based on gene expression profiling. Suppressive subtractive hybridization was undertaken to get differentially expressed genes from such subtracted cDNA library specific to 8+DC. A total of 114 sequences from the subtracted cDNA library specific to 8+DC library were analyzed. Most of them are known proteins, but some of them were novel, either totally novel genes or homologs to known genes, but with novel exon. About 55 probably novel exons were discovered, and 11 exons had longer length than those in gene bank. The clones 12, 44, 79, and 110 have no match with known sequences in gene bank. Then, semi-quantitative PCR was done to compare the expression of the enriched sequences between 8+DC and 8-DC. About 14 genes are differentially expressed in 8+DC. Therefore, SSH is an effective method to clone differentially expressed genes for 8+DC compared to 8-DC.
Collapse
Affiliation(s)
- Tao Li
- Henan Provincial Key Laboratory for Cellular and Molecular Immunology, School of Medicine, Henan University, 1000 Jinming-Dadao Ave, Kai-Feng, Henan 475004, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ramos MA, Mares RE, Magaña PD, Rivas ID, Meléndez-López SG. Entamoeba histolytica: Biochemical characterization of a protein disulfide isomerase. Exp Parasitol 2011; 128:76-81. [DOI: 10.1016/j.exppara.2011.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 02/05/2011] [Accepted: 02/08/2011] [Indexed: 11/29/2022]
|
20
|
Noorwez SM, Sama RRK, Kaushal S. Calnexin improves the folding efficiency of mutant rhodopsin in the presence of pharmacological chaperone 11-cis-retinal. J Biol Chem 2009; 284:33333-42. [PMID: 19801547 DOI: 10.1074/jbc.m109.043364] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The lectin chaperone calnexin (Cnx) is important for quality control of glycoproteins, and the chances of correct folding of a protein increase the longer the protein interacts with Cnx. Mutations in glycoproteins increase their association with Cnx, and these mutant proteins are retained in the endoplasmic reticulum. However, until now, the increased interaction with Cnx was not known to increase the folding of mutant glycoproteins. Because many human diseases result from glycoprotein misfolding, a Cnx-assisted folding of mutant glycoproteins could be beneficial. Mutations of rhodopsin, the glycoprotein pigment of rod photoreceptors, cause misfolding resulting in retinitis pigmentosa. Despite the critical role of Cnx in glycoprotein folding, surprisingly little is known about its interaction with rhodopsin or whether this interaction could be modulated to increase the folding of mutant rhodopsin. Here, we demonstrate that Cnx preferentially associates with misfolded mutant opsins associated with retinitis pigmentosa. Furthermore, the overexpression of Cnx leads to an increased accumulation of misfolded P23H opsin but not the correctly folded protein. Finally, we demonstrate that increased levels of Cnx in the presence of the pharmacological chaperone 11-cis-retinal increase the folding efficiency and result in an increase in correct folding of mutant rhodopsin. These results demonstrate that misfolded rather than correctly folded rhodopsin is a substrate for Cnx and that the interaction between Cnx and mutant, misfolded rhodopsin, can be targeted to increase the yield of folded mutant protein.
Collapse
Affiliation(s)
- Syed M Noorwez
- Department of Ophthalmology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | |
Collapse
|
21
|
A contiguous compartment functions as endoplasmic reticulum and endosome/lysosome in Giardia lamblia. EUKARYOTIC CELL 2009; 8:1665-76. [PMID: 19749174 DOI: 10.1128/ec.00123-09] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The dynamic evolution of organelle compartmentalization in eukaryotes and how strictly compartmentalization is maintained are matters of ongoing debate. While the endoplasmic reticulum (ER) is classically envisioned as the site of protein cotranslational translocation, it has recently been proposed to have pluripotent functions. Using transfected reporter constructs, organelle-specific markers, and functional enzyme assays, we now show that in an early-diverging protozoan, Giardia lamblia, endocytosis and subsequent degradation of exogenous proteins occur in the ER or in an adjacent and communicating compartment. The Giardia endomembrane system is simple compared to those of typical eukaryotes. It lacks peroxisomes, a classical Golgi apparatus, and canonical lysosomes. Giardia orthologues of mammalian lysosomal proteases function within an ER-like tubulovesicular compartment, which itself can dynamically communicate with clathrin-containing vacuoles at the periphery of the cell to receive endocytosed proteins. These primitive characteristics support Giardia's proposed early branching and could serve as a model to study the compartmentalization of endocytic and lysosomal functions into organelles distinct from the ER. This system also may have functional similarity to the retrograde transport of toxins and major histocompatibility complex class I function in the ER of mammals.
Collapse
|
22
|
Marcilla M, López de Castro JA. Peptides: the cornerstone of HLA-B27 biology and pathogenetic role in spondyloarthritis. ACTA ACUST UNITED AC 2008; 71:495-506. [PMID: 18489433 DOI: 10.1111/j.1399-0039.2008.01051.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The association of human leukocyte antigen (HLA)-B27 to ankylosing spondylitis is one of the strongest between a major histocompatibility complex molecule and a disease. Yet, the basis for this association remains unknown. Several hypotheses, each based on a particular feature of HLA-B27, guide much of the current research on the pathogenesis of this disease, but none has yet satisfactorily explained its mechanism and the differential association of B27 subtypes to it. In this review, the pathogenetic role of HLA-B27 will be analyzed from a global perspective of its biology, emphasizing the interdependency of multiple molecular features and the likely influence of disease-modifying gene products. From this perspective, peptide binding emerges as the cornerstone of all other biological properties.
Collapse
Affiliation(s)
- M Marcilla
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma, Madrid, Spain
| | | |
Collapse
|
23
|
Abstract
To cope with the accumulation of unfolded or misfolded proteins the endoplasmic reticulum (ER) has evolved specific signalling pathways collectively called the unfolded protein response (UPR). Elucidation of the mechanisms governing ER stress signallinghas linked this response to the regulation of diverse physiologic processes as well as to the progression of a number of diseases. Interest in hereditary haemochromatosis (HH) has focused on the study of proteins implicated in iron homeostasis and on the identification of new alleles related with the disease. HFE has been amongst the preferred targets of interest, since the discovery that its C282Y mutation was associated with HH. However, the discrepancies between the disease penetrance and the frequency of this mutation have raised the possibility that its contribution to disease progression might go beyond the mere involvement in regulation of cellular iron uptake. Recent findings revealed that activation of the UPR is a feature of HH and that this stress response may be involved in the genesis of immunological anomalies associated with the disease. This review addresses the connection of the UPR with HH, including its role in MHC-I antigen presentation pathway and possible implications for new clinical approaches to HH.
Collapse
Affiliation(s)
- S F de Almeida
- Iron Genes and Immune System Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | | |
Collapse
|
24
|
Calreticulin expression in the clonal plasma cells of patients with systemic light-chain (AL-) amyloidosis is associated with response to high-dose melphalan. Blood 2007; 111:549-57. [PMID: 17982021 DOI: 10.1182/blood-2007-05-090852] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In high doses with stem-cell transplantation, melphalan is an effective but toxic therapy for patients with systemic light-chain (AL-) amyloidosis, a protein deposition and monoclonal plasma cell disease. Melphalan can eliminate the indolent clonal plasma cells that cause the disease, an achievement called a complete response. Such a response is usually associated with extended survival, while no response (a less than 50% reduction) is not. Gene-expression studies and a stringently supervised analysis identified calreticulin as having significantly higher expression in the pretreatment plasma cells of patients with systemic AL-amyloidosis who then had a complete response to high-dose melphalan. Calreticulin is a pleiotropic calcium-binding protein found in the endoplasmic reticulum and the nucleus whose overexpression is associated with increased sensitivity to apoptotic stimuli. Real-time PCR and immunohistochemical staining also showed that expression of calreticulin was higher in the plasma cells of those with a complete response. Furthermore, wild-type murine embryonic fibroblasts were significantly more sensitive to melphalan than calreticulin knock-out murine embryonic fibroblasts. These data have important implications for understanding the activity of melphalan in plasma-cell diseases and support further investigation of calreticulin and its modulation in patients with systemic AL-amyloidosis receiving high-dose melphalan.
Collapse
|
25
|
Sriram V, Willard CA, Liu J, Brutkiewicz RR. Importance of N-linked glycosylation in the functional expression of murine CD1d1. Immunology 2007; 123:272-81. [PMID: 17725604 PMCID: PMC2433293 DOI: 10.1111/j.1365-2567.2007.02696.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The mouse CD1d1 glycoprotein is specialized in presenting lipid antigens to a novel class of T cells called natural killer T (NKT) cells. CD1d1 is predicted to contain five potential N-linked glycosylation sites (asparagine residues at positions 25, 38, 60, 128, and 183). Glycosylation has been shown to invariably affect the molecular and functional properties of various glycoproteins, and in the current report it was found that a conservative change of the individual endogenous asparagine residues in CD1d1 to glutamine differentially affected its functional expression. Although the maturation rate of the glycosylation mutants was comparable to that of wild type, they differed in their relative levels of surface expression and in their ability to stimulate NKT cells. Mutating all five glycosylation residues resulted in the absence of detectable CD1d1 expression, with a concomitant lack of NKT cell activation. Therefore, these results demonstrate that glycosylation plays a significant role in the functional expression of CD1d1.
Collapse
Affiliation(s)
- Venkataraman Sriram
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
26
|
Papadopoulos M, Momburg F. Multiple residues in the transmembrane helix and connecting peptide of mouse tapasin stabilize the transporter associated with the antigen-processing TAP2 subunit. J Biol Chem 2007; 282:9401-9410. [PMID: 17244610 DOI: 10.1074/jbc.m610429200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The type I endoplasmic reticulum (ER) glycoprotein tapasin (Tpn) is essential for loading of major histocompatibility complex class I (MHC-I) molecules with an optimal spectrum of antigenic peptides and for stable expression of the heterodimeric, polytopic TAP peptide transporter. In a detailed mutational analysis, the transmembrane domain (TMD) and ER-luminal connecting peptide (CP) of mouse Tpn were analyzed for their capacity to stabilize the TAP2 subunit. Replacement of the TMD of Tpn by TMDs from calnexin or the Tpn-related protein, respectively, completely abolished TAP2 stabilization after transfection of Tpn-deficient cells, whereas TMDs derived from distantly related Tpn molecules (chicken and fish) were functional. A detailed mutational analysis of the TMD and adjacent residues in the ER-luminal CP of mouse Tpn was performed to elucidate amino acids that control the stabilization of TAP2. Single amino acid substitutions, including a conserved Lys residue in the center of the putative TMD, did not affect TAP2 expression levels. Mutation of this Lys plus four additional residues, predicted to be neighbors in an assumed alpha-helical TMD arrangement, abrogated the TAP2-stabilizing capacity of Tpn. In the presence of a wild-type TMD, also the substitution of a highly conserved Glu residue in the CP of Tpn strongly affected TAP2 stabilization. Defective TAP2 stabilization resulted in impaired cell surface expression of MHC-I molecules. This study thus defines a novel, spatially arranged motif in the TMD of Tpn essential for stable expression of the TAP2 protein and a novel protein interaction mode involving an ER-luminal Glu residue close to the membrane.
Collapse
Affiliation(s)
- Martina Papadopoulos
- Department of Molecular Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Frank Momburg
- Department of Molecular Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
27
|
Ladasky JJ, Boyle S, Seth M, Li H, Pentcheva T, Abe F, Steinberg SJ, Edidin M. Bap31 enhances the endoplasmic reticulum export and quality control of human class I MHC molecules. THE JOURNAL OF IMMUNOLOGY 2006; 177:6172-81. [PMID: 17056546 PMCID: PMC1978250 DOI: 10.4049/jimmunol.177.9.6172] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The assembly of class I MHC molecules and their export from the endoplasmic reticulum (ER) is governed by chaperones and accessory proteins. We present evidence that the putative cargo receptor protein Bap31 participates in the transport and the quality control of human class I molecules. Transfection of the human adenocarcinoma cell line HeLa with yellow fluorescent protein-Bap31 chimeras increased surface levels of class I in a dose-dependent manner, by as much as 3.7-fold. The increase in surface class I resulted from an increase in the rate of export of newly synthesized class I molecules to the cell surface and from an increase in the stability of the exported molecules. We propose that Bap31 performs quality control on class I molecules in two distinct phases: first, by exporting peptide-loaded class I molecules to the ER/Golgi intermediate compartment, and second, by retrieving class I molecules that have lost peptides in the acidic post-ER environment. This function of Bap31 is conditional or redundant, because we find that Bap31 deficiency does not reduce surface class I levels. Overexpression of the Bap31 homolog, Bap29, decreases surface class levels in HeLa, indicating that it does not substitute for Bap31.
Collapse
Affiliation(s)
- John J Ladasky
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Selivanova A, Winblad B, Farmery MR, Dantuma NP, Ankarcrona M. COPI-mediated retrograde transport is required for efficient γ-secretase cleavage of the amyloid precursor protein. Biochem Biophys Res Commun 2006; 350:220-6. [PMID: 16999935 DOI: 10.1016/j.bbrc.2006.09.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 09/09/2006] [Indexed: 11/30/2022]
Abstract
Sequential cleavage of the amyloid precursor protein (APP) by beta- and gamma-secretases results in the production of beta-amyloid peptide, which is a key determinant in Alzheimer's disease. Since several putative locations for gamma-secretase cleavage have been identified along the secretory pathway, trafficking of APP may be of importance for beta-amyloid peptide production. Here we have studied the role of retrograde transport in APP processing. We found that APP interacts with the beta subunit of the coatomer protein I (COPI) complex, which is involved in retrograde transport. In line with a role of retrograde trafficking in APP transport, inhibition of COPI-dependent transport altered APP trafficking, decreased APP cell surface expression, and coincided with a profound reduction in gamma-secretase cleavage. These results suggest that COPI-dependent retrograde transport is important for APP processing and influences production of beta-amyloid peptide.
Collapse
Affiliation(s)
- Alexandra Selivanova
- Department of Neurobiology, Caring Sciences and Society (NVS), KI Alzheimer Disease Research Center, Karolinska Institutet, Novum 5th floor, S-141 57 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
29
|
Abstract
Classical major histocompatibility complex (MHC) class I antigens are trimeric molecules found on the surface of nucleated cells in all jawed vertebrates. MHC I are recognised by two families of receptors: clonotypic T cell receptors expressed on the surface of CD8+ cytotoxic T lymphocytes (CTLs), and monomorphic receptors expressed by both natural killer cells and CTLs. The production of MHC I molecules within the cells is a sequential process performed with the help of interacting proteins: proteases, chaperones, transporters and so on. Although largely homologous in their structure, organisation and function, the human and mouse MHC I antigen processing and presentation machineries show fine differences. Transgenesis and 'knockout' or 'knock-in' technologies permit the addition of relevant human genes or the replacement of mouse genes by their human orthologues in order to produce immunologically humanised mice. Such experimental animals are especially relevant for the comparative evaluation of immunotherapies and for the characterisation of MHC I peptide epitopes. This review presents the similarities and differences between mouse and human MHC I antigen processing machinery, and describes the development and utilisation of improving mouse models of human cytotoxic T cell immunity.
Collapse
Affiliation(s)
- Steve Pascolo
- Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany.
| |
Collapse
|
30
|
Paulsson KM, Jevon M, Wang JW, Li S, Wang P. The double lysine motif of tapasin is a retrieval signal for retention of unstable MHC class I molecules in the endoplasmic reticulum. THE JOURNAL OF IMMUNOLOGY 2006; 176:7482-8. [PMID: 16751394 DOI: 10.4049/jimmunol.176.12.7482] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tapasin (tpn), an essential component of the MHC class I (MHC I) loading complex, has a canonical double lysine motif acting as a retrieval signal, which mediates retrograde transport of escaped endoplasmic reticulum (ER) proteins from the Golgi back to the ER. In this study, we mutated tpn with a substitution of the double lysine motif to double alanine (GFP-tpn-aa). This mutation abolished interaction with the coatomer protein complex I coatomer and resulted in accumulation of GFP-tpn-aa in the Golgi compartment, suggesting that the double lysine is important for the retrograde transport of tpn from late secretory compartments to the ER. In association with the increased Golgi distribution, the amount of MHC I exported from the ER to the surface was increased in 721.220 cells transfected with GFP-tpn-aa. However, the expressed MHC I were less stable and had increased turnover rate. Our results suggest that tpn with intact double lysine retrieval signal regulates retrograde transport of unstable MHC I molecules from the Golgi back to the ER to control the quality of MHC I Ag presentation.
Collapse
Affiliation(s)
- Kajsa M Paulsson
- Institute of Cell and Molecular Science, Barts and London School of Medicine, UK
| | | | | | | | | |
Collapse
|
31
|
Chignard N, Shang S, Wang H, Marrero J, Bréchot C, Hanash S, Beretta L. Cleavage of endoplasmic reticulum proteins in hepatocellular carcinoma: Detection of generated fragments in patient sera. Gastroenterology 2006; 130:2010-22. [PMID: 16762624 DOI: 10.1053/j.gastro.2006.02.058] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 02/15/2006] [Indexed: 02/02/2023]
Abstract
BACKGROUND & AIMS In the past decade, there has been a rising incidence of hepatocellular carcinoma (HCC) and a progressive increase in HCC-related mortality in the United States and Western Europe. The poor survival of patients with HCC is largely related to the lack of reliable tools for early diagnosis. METHODS We have applied proteomics tools to the comparative analysis of protein profiles between HCC and adjacent nontumor tissues as a means for discovering novel molecular markers. RESULTS Forty-seven protein spots that showed reproducible variation were identified by mass spectrometry, corresponding to 23 distinct genes. A positive correlation between transcript and protein level variations was observed for only 7 out of the 23 genes. Proteolytic cleavage accounted for the discrepancies between messenger RNA and protein level changes for 7 genes including calreticulin, PDIA3, PDI, and GRP78. We detected a fragment of each of these 4 endoplasmic reticulum proteins in the culture supernatant of the PLC-PRF5 hepatoma cell line, suggesting that their cleavage leads to release of selected cleaved products in the extracellular compartment. We also detected calreticulin and PDIA3 cleavage products in sera of patients with HCC. A statistically highly significant difference in calreticulin and PDIA3 fragment serum levels between patients with HCC and healthy individuals was observed. Amounts of calreticulin and PDIA3 fragments were also significantly different between patients with HCC and at-risk patients (patients with chronic hepatitis or cirrhosis). CONCLUSIONS Specific isoforms in general and cleavage products in particular should therefore be further evaluated as new markers for HCC.
Collapse
Affiliation(s)
- Nicolas Chignard
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Hegde NR, Chevalier MS, Wisner TW, Denton MC, Shire K, Frappier L, Johnson DC. The role of BiP in endoplasmic reticulum-associated degradation of major histocompatibility complex class I heavy chain induced by cytomegalovirus proteins. J Biol Chem 2006; 281:20910-20919. [PMID: 16731524 DOI: 10.1074/jbc.m602989200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human cytomegalovirus (HCMV1) US11 and US2 proteins cause rapid degradation of major histocompatibility complex (MHC) molecules, apparently by ligating cellular endoplasmic reticulum (ER)-associated degradation machinery. Here, we show that US11 and US2 bind the ER chaperone BiP. Four related HCMV proteins, US3, US7, US9, and US10, which do not promote degradation of MHC proteins, did not bind BiP. Silencing BiP reduced US11- and US2-mediated degradation of MHC class I heavy chain (HC) without altering the synthesis or translocation of HC into the ER or the stability of HC in the absence of US11 or US2. Induction of the unfolded protein response (UPR) did not affect US11-mediated HC degradation and could not explain the stabilization of HC when BiP was silenced. Unlike in yeast, BiP did not act by maintaining substrates in a retrotranslocation-competent form. Our studies go beyond previous observations in mammalian cells correlating BiP release with degradation, demonstrating that BiP is functionally required for US2- and US11-mediated HC degradation. Further, US2 and US11 bound BiP even when HC was absent and degradation of US2 depended on HC. These data were consistent with a model in which US2 and US11 bridge HC onto BiP promoting interactions with other ER-associated degradation proteins.
Collapse
Affiliation(s)
- Nagendra R Hegde
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon 97239
| | - Mathieu S Chevalier
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon 97239
| | - Todd W Wisner
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon 97239
| | - Michael C Denton
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon 97239
| | - Kathy Shire
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Lori Frappier
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David C Johnson
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon 97239.
| |
Collapse
|
33
|
Zhang Y, Baig E, Williams DB. Functions of ERp57 in the Folding and Assembly of Major Histocompatibility Complex Class I Molecules. J Biol Chem 2006; 281:14622-31. [PMID: 16567808 DOI: 10.1074/jbc.m512073200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ERp57 is a thiol oxidoreductase of the endoplasmic reticulum that appears to be recruited to substrates indirectly through its association with the molecular chaperones calnexin and calreticulin. However, its functions in living cells have been difficult to demonstrate. During the biogenesis of class I histocompatibility molecules, ERp57 has been detected in association with free class I heavy chains and, at a later stage, with a large complex termed the peptide loading complex. This implicates ERp57 in heavy chain disulfide formation, isomerization, or reduction as well as in the loading of peptides onto class I molecules. In this study, we show that ERp57 does indeed participate in oxidative folding of the heavy chain. Depletion of ERp57 by RNA interference delayed heavy chain disulfide bond formation, slowed folding of the heavy chain alpha(3) domain, and caused slight delays in the transport of class I molecules from the endoplasmic reticulum to the Golgi apparatus. In contrast, heavy chain-beta(2)-microglobulin association kinetics were normal, suggesting that the interaction between heavy chain and beta(2) -microglobulin does not depend on an oxidized alpha(3) domain. Likewise, the peptide loading complex assembled properly, and peptide loading appeared normal upon depletion of ERp57. These studies demonstrate that ERp57 is involved in disulfide formation in vivo but do not support a role for ERp57 in peptide loading of class I molecules. Interestingly, depletion of another thiol oxidoreductase, ERp72, had no detectable effect on class I biogenesis, consistent with a specialized role for ERp57 in this process.
Collapse
Affiliation(s)
- Yinan Zhang
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
34
|
Lemaître G, Gonnet F, Vaigot P, Gidrol X, Martin MT, Tortajada J, Waksman G. CD98, a novel marker of transient amplifying human keratinocytes. Proteomics 2006; 5:3637-45. [PMID: 16097038 DOI: 10.1002/pmic.200401224] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Identification of plasma membrane markers of basal keratinocytes is essential for sorting basal cells and, subsequently, adult epidermal stem cells. In this study, we isolated caveolin-1-enriched microdomains from human HaCaT keratinocytes and identified proteins representing potential cell surface markers of the epidermis by a proteomic approach. The purification of this caveolae domain allowed us to characterize 53 proteins of which 26% were transmembrane and 32% associated-membrane proteins. One of them, CD98, was found to be co-localized with beta1 integrin at the plasma membrane of the basal keratinocytes of healthy human epidermis. We then isolated CD98-positive keratinocytes from fresh skin biopsies. Using clonogenic assays, we demonstrate that CD98 may be considered as a marker of transient amplifying human keratinocytes.
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Recent work has continued to clarify the role of major histocompatibility complex class I in the pathogenesis of autoimmune myositis. In the past year, several new observations have been made in this area. This review describes these findings and discusses their relevance to the pathogenesis of autoimmune myositis. RECENT FINDINGS Recent studies have confirmed earlier observations of the up-regulation of major histocompatibility complex class I antigens in myositis. In particular, a recent study has strengthened the conclusion that major histocompatibility complex class I expression is highly specific to inflammatory myopathies and may be of diagnostic value. Two new studies have indicated that endoplasmic reticulum stress response pathway (the endoplasmic reticulum overload [NF-kB] and unfolded protein response [GRP78]) are highly activated in patients with myositis. One study using transgenic mice has further indicated that abnormal accumulation of major histocompatibility complex class I in the endoplasmic reticulum of muscle may be responsible for the initiation of this endoplasmic reticulum stress response. Furthermore, studies of normal muscle cells have shown that endoplasmic reticulum stress also plays an important role in skeletal muscle development. Investigations of autoantigen expression in myositis biopsies have revealed that regenerating muscle cells express high levels of autoantigens and major histocompatibility complex class I, indicating that these cells are the targets of cytotoxic T-cell attack and may participate in the initiation of a myositis-specific autoimmune response. SUMMARY Defining the role of major histocompatibility complex class I in autoimmune myositis may be useful not only for diagnosis of this group of diseases but also for therapeutic opportunities for these difficult disorders.
Collapse
Affiliation(s)
- Kanneboyina Nagaraju
- Division of Rheumatology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland 21224, USA.
| |
Collapse
|
36
|
Garbi N, Tanaka S, Momburg F, Hämmerling GJ. Impaired assembly of the major histocompatibility complex class I peptide-loading complex in mice deficient in the oxidoreductase ERp57. Nat Immunol 2005; 7:93-102. [PMID: 16311600 DOI: 10.1038/ni1288] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Accepted: 10/05/2005] [Indexed: 11/09/2022]
Abstract
The thiol-oxidoreductase ERp57 is an integral component of the peptide-loading complex of the major histocompatibility complex (MHC) class I pathway, but its function is unknown. To investigate its function in antigen presentation, we generated ERp57-deficient mice. Death in utero caused by ubiquitous ERp57 deletion was prevented by specific deletion in the B cell compartment. We demonstrate that ERp57 was central for recruitment of MHC class I molecules into the loading complex. In ERp57-deficient cells, we found short-lived interaction of MHC class I molecules with the loading complex. Thus, in the steady state, very few MHC class I molecules were present in the loading complex. Surface H-2K(b)-peptide expression and stability were reduced, and presentation of a model antigen was decreased. Our results indicate that ERp57 does not influence the redox state of MHC class I molecules but is an essential structural component required for stable assembly of the peptide-loading complex.
Collapse
Affiliation(s)
- Natalio Garbi
- Division of Molecular Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
37
|
Garbi N, Tanaka S, van den Broek M, Momburg F, Hämmerling GJ. Accessory molecules in the assembly of major histocompatibility complex class I/peptide complexes: how essential are they for CD8+ T-cell immune responses? Immunol Rev 2005; 207:77-88. [PMID: 16181328 DOI: 10.1111/j.0105-2896.2005.00303.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Assembly of major histocompatibility complex (MHC) class I molecules in the endoplasmic reticulum is a highly coordinated process that results in abundant class I/peptide complexes at the cell surface for recognition by CD8(+) T cells and natural killer cells. During the assembly process, a number of chaperones and accessory molecules, such as transporter associated with antigen processing, tapasin, ER60, and calreticulin, assist newly synthesized class I molecules to facilitate loading of antigenic peptides and to optimize the repertoire of surface class I/peptide complexes. This review focuses on the relative importance of these accessory molecules for CD8(+) T-cell responses in vivo and discusses reasons that may help explain why some CD8(+) T-cell responses develop normally in mice deficient in components of class I assembly, despite impaired antigen presentation.
Collapse
Affiliation(s)
- Natalio Garbi
- Division of Molecular Immunology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
38
|
Paquet ME, Leach MR, Williams DB. In vitro and in vivo assays to assess the functions of calnexin and calreticulin in ER protein folding and quality control. Methods 2005; 35:338-47. [PMID: 15804605 DOI: 10.1016/j.ymeth.2004.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2004] [Indexed: 11/26/2022] Open
Abstract
Newly synthesized polypeptides entering the endoplasmic reticulum (ER) encounter a large array of molecular chaperones and folding factors that facilitate proper folding as well as assess folding status, retaining non-native proteins within the ER. Calnexin (CNX), an ER membrane protein, and its soluble homologue, calreticulin (CRT), are two important molecular chaperones that contribute to both processes. They are highly unusual chaperones in that they act as lectins, binding the Asn-linked oligosaccharides of newly synthesized glycoproteins, as well as recognizing the polypeptide segments of glycoproteins. Furthermore, they associate with ERp57, a thiol oxidoreductase, that is thought to enhance the oxidative folding of glycoproteins bound to CNX/CRT. These characteristics of CNX and CRT as well as their mode of action have been elucidated though the use of multiple in vitro and in vivo approaches. This chapter will focus on the description of a number of in vitro assays that have been used to characterize the lectin and ERp57-binding functions of CNX/CRT and also their abilities to act as molecular chaperones to suppress protein aggregation. In addition, we will describe insect and mammalian expression systems in which major histocompatibility complex class I molecules are used as model glycoprotein substrates for CNX and CRT. These systems have been valuable in assessing folding and quality control events in vivo that are influenced by CNX or CRT as well as in characterizing the spectrum of substrates that are recognized by these chaperones.
Collapse
Affiliation(s)
- Marie-Eve Paquet
- Department of Biochemistry, University of Toronto, Toronto, Canada M5S 1A8
| | | | | |
Collapse
|
39
|
York IA, Grant EP, Dahl AM, Rock KL. A mutant cell with a novel defect in MHC class I quality control. THE JOURNAL OF IMMUNOLOGY 2005; 174:6839-46. [PMID: 15905525 DOI: 10.4049/jimmunol.174.11.6839] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
COS7 (African Green Monkey kidney) cells stably transfected with the mouse MHC class I allele H-2K(b) were mutagenized, selected for low surface expression of endogenous MHC class I products, and subcloned. A mutant cell line, 4S8.12, expressing very low surface MHC class I (approximately 5% of parental levels) was identified. This cell line synthesized normal levels of the MHC class I H chain and beta(2)-microglobulin, as well as normal levels of TAP, tapasin, GRP78, calnexin, calreticulin, ERp57, and protein disulfide isomerase. Full-length OVA was processed to generate presented H-2K(b)-SIINFEKL complexes with equal efficiency in wild-type and mutant cells, demonstrating that proteasomes, as well as TAP and tapasin, functioned normally. Therefore, all the known components of the MHC class I Ag presentation pathway were intact. Nevertheless, primate (human and monkey) MHC class I H chain and beta(2)-microglobulin failed to associate to form the normal peptide-receptive complex. In contrast, mouse H chains associated with beta(2)-microglobulin normally and bound peptide at least as well as in wild-type cells. The 4S8.12 cells provide strong genetic evidence for a novel component in the MHC class I pathway. This as-yet unidentified gene is important in early assembly of primate, but not mouse, MHC class I complexes.
Collapse
Affiliation(s)
- Ian A York
- Department of Pathology, University of Massachusetts Medical Center, Worcester, 01655, USA.
| | | | | | | |
Collapse
|
40
|
Volmer MW, Stühler K, Zapatka M, Schöneck A, Klein-Scory S, Schmiegel W, Meyer HE, Schwarte-Waldhoff I. Differential proteome analysis of conditioned media to detect Smad4 regulated secreted biomarkers in colon cancer. Proteomics 2005; 5:2587-601. [PMID: 15912508 DOI: 10.1002/pmic.200401188] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Smad4 is a tumor suppressor gene primarily involved in carcinogenesis of the pancreas and colon. The functional inactivation of Smad4 is a late step genetically. In pancreatic carcinogenesis, loss of Smad4 marks the transition to invasive growth. In colorectal cancers, the frequency of Smad4 inactivation is markedly increased in metastatic cancers. We have established cell biological models, re-expressing Smad4 in deficient human cancer cells, in which we could show that Smad4 is adequate to suppress tumor growth through suppression of angiogenic and invasive properties. Thus, pairs of Smad4-re-expressing and Smad4-deficient cells are prone to model the progression from premalignant stages to carcinomas in the carcinogenic process and may provide access to Smad4 targets of high clinical relevance. We present here a "differential secretome analysis", comparing all the proteins released in vitro from the Smad4-deficient and Smad4-re-expressing SW480 human colon carcinoma cells. The differential secretome catalog comprises more than 25 proteins including proteases and protease inhibitors, as well as established tumor biomarkers. In conclusion, this approach proved to be a sensitive tool to specifically detect Smad4 targets relevant for tumor-stroma interactions. It is also able to reflect complex alterations of cellular physiology. Moreover, the results support our hypothesis that human tumor markers detectable in serum may be identified through differential secretome analyses.
Collapse
MESH Headings
- Biomarkers, Tumor/chemistry
- Biomarkers, Tumor/isolation & purification
- Cell Division
- Cell Line, Tumor
- Colonic Neoplasms/metabolism
- Culture Media, Conditioned/chemistry
- DNA-Binding Proteins/metabolism
- Electrophoresis, Gel, Two-Dimensional/methods
- Enzymes/isolation & purification
- Enzymes/metabolism
- Genes, Tumor Suppressor
- Humans
- Models, Biological
- Peptide Fragments/chemistry
- Peptide Fragments/isolation & purification
- Protease Inhibitors
- Proteome
- Smad4 Protein
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Trans-Activators/metabolism
- Trypsin
Collapse
|
41
|
Sesma L, Galocha B, Vázquez M, Purcell AW, Marcilla M, McCluskey J, López de Castro JA. Qualitative and Quantitative Differences in Peptides Bound to HLA-B27 in the Presence of Mouse versus Human Tapasin Define a Role for Tapasin as a Size-Dependent Peptide Editor. THE JOURNAL OF IMMUNOLOGY 2005; 174:7833-44. [PMID: 15944288 DOI: 10.4049/jimmunol.174.12.7833] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tapasin (Tpn) is a chaperone of the endoplasmic reticulum involved in peptide loading to MHC class I proteins. The influence of mouse Tpn (mTpn) on the HLA-B*2705-bound peptide repertoire was analyzed to characterize the species specificity of this chaperone. B*2705 was expressed on Tpn-deficient human 721.220 cells cotransfected with human (hTpn) or mTpn. The heterodimer to beta(2)-microglobulin-free H chain ratio on the cell surface was reduced with mTpn, suggesting lower B*2705 stability. The B*2705-bound peptide repertoires loaded with hTpn or mTpn shared 94-97% identity, although significant differences in peptide amount were observed in 16-17% of the shared ligands. About 3-6% of peptides were bound only with either hTpn or mTpn. Nonamers differentially bound with mTpn had less suitable anchor residues and bound B*2705 less efficiently in vitro than those loaded only with hTpn or shared nonamers. Decamers showed a different pattern: those found only with mTpn had similarly suitable residues as shared decamers and bound B*2705 with high efficiency. Peptides differentially presented by B*2705 on human or mouse cells showed an analogous pattern of residue suitability, suggesting that the effect of mTpn on B*2705 loading is comparable in both cell types. Thus, mTpn has quantitative and qualitative effects on the B*2705-bound peptide repertoire, impairing presentation of some suitable ligands and allowing others with suboptimal anchor residues and lower affinity to be presented. Our results favor a size-dependent peptide editing role of Tpn for HLA-B*2705 that is species-dependent and suboptimally performed, at least for nonamers, by mTpn.
Collapse
Affiliation(s)
- Laura Sesma
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Facultad de Ciencias, Universidad Autónoma, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
42
|
Ozawa T, Nishitani K, Sako Y, Umezawa Y. A high-throughput screening of genes that encode proteins transported into the endoplasmic reticulum in mammalian cells. Nucleic Acids Res 2005; 33:e34. [PMID: 15731327 PMCID: PMC549573 DOI: 10.1093/nar/gni032] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The compartments of eukaryotic cells maintain a distinct protein composition to perform a variety of specialized functions. We developed a new method for identifying the proteins that are transported to the endoplasmic reticulum (ER) in living mammalian cells. The principle is based on the reconstitution of two split fragments of enhanced green fluorescent protein (EGFP) by protein splicing with DnaE from Synechocystis PCC6803. Complementary DNA (cDNA) libraries fused to the N-terminal halves of DnaE and EGFP are introduced in mammalian cells with retroviruses. If an expressed protein is transported into the ER, the N-terminal half of EGFP meets its C-terminal half in the ER, and full-length EGFP is reconstituted by protein splicing. The fluorescent cells are isolated using fluorescence-activated cell sorting and the cDNAs are sequenced. The developed method was able to accurately identify cDNAs that encode proteins transported to the ER. We identified 27 novel proteins as the ER-targeting proteins. The present method overcomes the limitation of the previous GFP- or epitope-tagged methods, using which it was difficult to identify the ER-targeting proteins in a high-throughput manner.
Collapse
Affiliation(s)
- Takeaki Ozawa
- Department of Chemistry, School of Science, The University of TokyoHongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Japan Science and Technology CorporationTokyo, Japan
- PREST, Japan Science and Technology Agency4-1-8 Honcho Kawaguchi, Saitama, Japan
| | - Kengo Nishitani
- Department of Chemistry, School of Science, The University of TokyoHongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Japan Science and Technology CorporationTokyo, Japan
| | - Yusuke Sako
- Department of Chemistry, School of Science, The University of TokyoHongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Japan Science and Technology CorporationTokyo, Japan
| | - Yoshio Umezawa
- Department of Chemistry, School of Science, The University of TokyoHongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Japan Science and Technology CorporationTokyo, Japan
- To whom correspondence should be addressed. Tel: +81 3 5841 4351; Fax: +81 3 5841 8349;
| |
Collapse
|
43
|
Kato T, Murata T, Usui T, Park EY. Improvement of the production of GFPuv-?1,3-N-acetylglucosaminyltransferase 2 fusion protein using a molecular chaperone-assisted insect-cell-based expression system. Biotechnol Bioeng 2005; 89:424-33. [PMID: 15609270 DOI: 10.1002/bit.20362] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A stable Tn-5B1-4 insect cell line co-expressing the recombinant GFPuv-beta1,3-N-acetylglucosaminyltransferase 2 (GFPuv-beta3GnT2) protein fused to a melittin signal sequence with a lectin-like molecular chaperone, human calnexin (hCNX) or human calreticulin (hCRT), was constructed. The expression of either of these molecular chaperones is under the control of a weak promoter, OpMNPV IE2, while that of GFPuv-beta3GnT2 is under the control of Bombyx mori actin promoter. This co-expression system was compared between two different insect cell-baculovirus expression systems: (1) co-infection of the recombinant baculovirus containing a molecular chaperone (AcNPV-hCNX or -hCRT) with a recombinant baculovirus containing GFPuv-beta3GnT2 fused with the melittin signal sequence (AcNPV-me-GGT); (2) infection of AcNPV-me-GGT to a stably expressing cell line for either hCNX or hCRT. In the co-infection system, the intracellular GFPuv-beta3GnT2 expression level was low because of the improved secretion level ratio of the fusion protein, due to the chaperone expression. In the case of infection to the stably expressing cell line for a chaperone, the extracellular GFPuv-beta3GnT2 expression level was similar to the intracellular expression level. This suggests that the amount of expressed chaperone is not sufficient to process beta3GnT2. On the other hand, the co-expression system produced an extracellular beta3GnT activity of 22-23 mU/mL, which was approximately 3.5- and 11-fold higher than those of the stable expression of the fusion gene without the chaperone and the conventional BES with the addition of protease, respectively. The secretion level ratio of the fusion protein of this system increased to 82%, which was approximately 1.5-fold that of any other expression system investigated thus far. These results indicate that the ratio of the expression level of the target gene to that of the chaperone gene may be an important factor in maximizing the production of a target protein. The molecular-chaperone-assisted expression system using a stably transformed insect cell line offers promising prospects for the efficient production of recombinant secretory proteins in insect cells.
Collapse
Affiliation(s)
- Tatsuya Kato
- Laboratory of Biotechnology, Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
| | | | | | | |
Collapse
|
44
|
Danchin E, Vitiello V, Vienne A, Richard O, Gouret P, McDermott MF, Pontarotti P. The major histocompatibility complex origin. Immunol Rev 2004; 198:216-32. [PMID: 15199965 DOI: 10.1111/j.0105-2896.2004.00132.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The present review focuses on the history of genes involved in the major histocompatibility complex (MHC), with a special emphasis on class I function in peptide presentation. The MHC class II story is covered in less detail, as it does not have a major impact on the general understanding of the MHC evolution. We first redefine the MHC as the definition evolved over time. We then use phylogenetic analysis to investigate the history of genes involved in the MHC class I process. As not all the genes involved in this process have been phylogenetically analyzed and because new sequences have been recently released in biological databases, we have re-investigated this matter. In the light of the phylogenetic analysis, the functions of the orthologs of the genes involved in MHC processes are examined in species not having an MHC system. We then demonstrate that the emergence of this new function is due to various levels of co-option.
Collapse
Affiliation(s)
- Etienne Danchin
- Phylogenomics Laboratory, Université d'Aix Marseille I, Marseille, France.
| | | | | | | | | | | | | |
Collapse
|
45
|
Prasanna SJ, Nandi D. The MHC-encoded class I molecule, H-2Kk, demonstrates distinct requirements of assembly factors for cell surface expression: roles of TAP, Tapasin and β2-microglobulin. Mol Immunol 2004; 41:1029-45. [PMID: 15302165 DOI: 10.1016/j.molimm.2004.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Indexed: 11/24/2022]
Abstract
Major histocompatibility complex encoded class I (MHC-I) molecules display peptides derived from endogenous proteins for perusal by CD8+ T lymphocytes. H6, a mouse hepatoma cell line, expresses low levels of surface H-2Dd but not H-2Kk. Surface H-2Dd molecules are unstable and their levels, but not H-2Kk, are induced at 22 degrees C. Immunoprecipitation experiments revealed that H-2Kk, H-2Dd and beta2-microglobulin (beta2m) are expressed intracellularly; however no conformed MHC-I are present. Transcriptional profiling of factors required for MHC-I assembly demonstrated greatly reduced levels of the Transporter associated with antigen processing (Tap)2 subunit. The role of key assembly molecules in the MHC-I pathway was investigated by ectopic expression studies. Overexpression of beta2m enhanced surface H-2Dd, but not H-2Kk, levels whereas overexpression of TAP2 rescued surface H-2Kk, but not H-2Dd, levels. Interestingly, Tapasin plays a dual role: first, in quality control by reducing the induced surface expression of TAP2-mediated H-2Kk and beta2m-mediated H-2Dd levels. Secondly, Tapasin overexpression increases Tap2 transcripts and cooperates with TAPl or human beta2m to enhance surface H-2Kk expression; this synergy is TAP-dependent as demonstrated by infected cell protein 47 (ICP47) inhibition studies. Unlike the well studied H-2 MHC-I alleles, H-2Kb, H-2Db, H-2Kd and H-2Dd, a functional TAP is "essential" for H-2Kk cell surface expression.
Collapse
Affiliation(s)
- S Jyothi Prasanna
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | | |
Collapse
|
46
|
Mayer MP. Recruitment of Hsp70 chaperones: a crucial part of viral survival strategies. Rev Physiol Biochem Pharmacol 2004; 153:1-46. [PMID: 15243813 DOI: 10.1007/s10254-004-0025-5] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Virus proliferation depends on the successful recruitment of host cellular components for their own replication, protein synthesis, and virion assembly. In the course of virus particle production a large number of proteins are synthesized in a relatively short time, whereby protein folding can become a limiting step. Most viruses therefore need cellular chaperones during their life cycle. In addition to their own protein folding problems viruses need to interfere with cellular processes such as signal transduction, cell cycle regulation and induction of apoptosis in order to create a favorable environment for their proliferation and to avoid premature cell death. Chaperones are involved in the control of these cellular processes and some viruses reprogram their host cell by interacting with them. Hsp70 chaperones, as central components of the cellular chaperone network, are frequently recruited by viruses. This review focuses on the function of Hsp70 chaperones at the different stages of the viral life cycle emphasizing mechanistic aspects.
Collapse
Affiliation(s)
- M P Mayer
- Zentrum für Molekulare Biologie, Universität Heidelberg, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany.
| |
Collapse
|
47
|
Sarnataro D, Campana V, Paladino S, Stornaiuolo M, Nitsch L, Zurzolo C. PrP(C) association with lipid rafts in the early secretory pathway stabilizes its cellular conformation. Mol Biol Cell 2004; 15:4031-42. [PMID: 15229281 PMCID: PMC515338 DOI: 10.1091/mbc.e03-05-0271] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The pathological conversion of cellular prion protein (PrP(C)) into the scrapie prion protein (PrP(Sc)) isoform appears to have a central role in the pathogenesis of transmissible spongiform encephalopathies. However, the identity of the intracellular compartment where this conversion occurs is unknown. Several lines of evidence indicate that detergent-resistant membrane domains (DRMs or rafts) could be involved in this process. We have characterized the association of PrP(C) to rafts during its biosynthesis. We found that PrP(C) associates with rafts already as an immature precursor in the endoplasmic reticulum. Interestingly, compared with the mature protein, the immature diglycosylated form has a different susceptibility to cholesterol depletion vs. sphingolipid depletion, suggesting that the two forms associate with different lipid domains. We also found that cholesterol depletion, which affects raft-association of the immature protein, slows down protein maturation and leads to protein misfolding. On the contrary, sphingolipid depletion does not have any effect on the kinetics of protein maturation or on the conformation of the protein. These data indicate that the early association of PrP(C) with cholesterol-enriched rafts facilitates its correct folding and reinforce the hypothesis that cholesterol and sphingolipids have different roles in PrP metabolism.
Collapse
Affiliation(s)
- Daniela Sarnataro
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Centro di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy
| | | | | | | | | | | |
Collapse
|
48
|
Tran TM, Satumtira N, Dorris ML, May E, Wang A, Furuta E, Taurog JD. HLA-B27 in Transgenic Rats Forms Disulfide-Linked Heavy Chain Oligomers and Multimers That Bind to the Chaperone BiP. THE JOURNAL OF IMMUNOLOGY 2004; 172:5110-9. [PMID: 15067095 DOI: 10.4049/jimmunol.172.8.5110] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
To test the hypothesis that HLA-B27 predisposes to disease by forming disulfide-linked homodimers, we examined rats transgenic for HLA-B27, mutant Cys(67)Ser HLA-B27, or HLA-B7. In splenic Con A blasts from high transgene copy B27 lines that develop inflammatory disease, the anti-H chain mAb HC10 precipitated four bands of molecular mass 78-105 kDa and additional higher molecular mass material, seen by nonreducing SDS-PAGE. Upon reduction, all except one 78-kDa band resolved to 44 kDa, the size of the H chain monomer. The 78-kDa band was found to be BiP/Grp78, and the other high molecular mass material was identified as B27 H chain. Analysis of a disease-resistant low copy B27 line showed qualitatively similar high molecular mass bands that were less abundant relative to H chain monomer. Disease-prone rats with a Cys(67)Ser B27 mutant showed B27 H chain bands at 95 and 115 kDa and a BiP band at 78 kDa, whereas only scant high molecular mass bands were found in cells from control HLA-B7 rats. (125)I-surface labeled B27 oligomers were immunoprecipitated with HC10, but not with a mAb to folded B27-beta(2)-microglobulin-peptide complexes. Immunoprecipitation of BiP with anti-BiP Abs coprecipitated B27 H chain multimers. Folding and maturation of B27 were slow compared with B7. These data indicate that disulfide-linked intracellular H chain complexes are more prone to form and bind BiP in disease-prone wild-type B27 and B27-C67S rats than in disease-resistant HLA-B7 rats. The data support the hypothesis that accumulation of misfolded B27 participates in the pathogenesis of B27-associated disease.
Collapse
Affiliation(s)
- Tri Minh Tran
- Harold C. Simmons Arthritis Research Center and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Assembly of MHC class I molecules in the ER is regulated by the so-called loading complex (LC). This multiprotein complex is of definite importance for class I maturation, but its exact organization and order of assembly are not known. Evidence implies that the quality of peptides loaded onto class I molecules is controlled at multiple stages during MHC class I assembly. We recently found that tapasin, an important component of the LC, interacts with COPI-coated vesicles. Biochemical studies suggested that the tapa-sin-COPI interaction regulates the retrograde transport of immature MHC class I molecules from the Golgi network back to the ER. Also other findings now propose that in addition to the peptide-loading control, the quality control of MHC class I antigen presentation includes the restriction of export of suboptimally loaded MHC class I molecules to the cell surface. In this review, we use recent studies of tapasin to examine the efficiency of TAP, the LC constitution, ER quality control of class I assembly, and peptide optimization. The concepts of MHC class I recycling and ER retention are also discussed.
Collapse
Affiliation(s)
- Kajsa M Paulsson
- Rayne Institute, Centre for Molecular Medicine, Department of Medicine, University College of London, 5 University St., London WC1E 6JJ, UK.
| | | |
Collapse
|