1
|
Yang Y, Sakimoto Y, Goshima M, Mitsushima D. Shorter Infantile Amnesia in Females: Important Implications for the Next Generation. Cells 2025; 14:354. [PMID: 40072083 PMCID: PMC11899582 DOI: 10.3390/cells14050354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 03/15/2025] Open
Abstract
The sex-specific development of hippocampal learning in juveniles remains unclear. Using an inhibitory avoidance task, we assessed contextual learning in both sexes of juvenile rats. While sex hormone levels and activating effects are low in juveniles, females showed superior performance to males, suggesting that females have a shorter period of infantile amnesia than males. It was already known that when infants are cared for by mothers with high parenting behavior, they are likely to become high parenting mothers themselves. In addition, neonatal testosterone is known to masculinize the brain, causing behavioral, neural, and hormonal sex differences. Here, we reviewed the purposeful significance of sex-specific development for learning, along with the interaction of developmental changes in the hormonal environment.
Collapse
Affiliation(s)
- Yuheng Yang
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505, Japan; (Y.Y.); (Y.S.); (M.G.)
| | - Yuya Sakimoto
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505, Japan; (Y.Y.); (Y.S.); (M.G.)
| | - Makoto Goshima
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505, Japan; (Y.Y.); (Y.S.); (M.G.)
| | - Dai Mitsushima
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505, Japan; (Y.Y.); (Y.S.); (M.G.)
- The Research Institute for Time Studies, Yamaguchi University, Yamaguchi 753-8511, Japan
| |
Collapse
|
2
|
Liu X, Chen X, Wang C, Song J, Xu J, Gao Z, Huang Y, Suo H. Mechanisms of probiotic modulation of ovarian sex hormone production and metabolism: a review. Food Funct 2024; 15:2860-2878. [PMID: 38433710 DOI: 10.1039/d3fo04345b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Sex hormones play a pivotal role in the growth and development of the skeletal, neurological, and reproductive systems. In women, the dysregulation of sex hormones can result in various health complications such as acne, hirsutism, and irregular menstruation. One of the most prevalent diseases associated with excess androgens is polycystic ovary syndrome with a hyperandrogenic phenotype. Probiotics have shown the potential to enhance the secretion of ovarian sex hormones. However, the underlying mechanism of action remains unclear. Furthermore, comprehensive reviews detailing how probiotics modulate ovarian sex hormones are scarce. This review seeks to shed light on the potential mechanisms through which probiotics influence the production of ovarian sex hormones. The role of probiotics across various biological axes, including the gut-ovarian, gut-brain-ovarian, gut-liver-ovarian, gut-pancreas-ovarian, and gut-fat-ovarian axes, with a focus on the direct impact of probiotics on the ovaries via the gut and their effects on brain gonadotropins is discussed. It is also proposed herein that probiotics can significantly influence the onset, progression, and complications of ovarian sex hormone abnormalities. In addition, this review provides a theoretical basis for the therapeutic application of probiotics in managing sex hormone-related health conditions.
Collapse
Affiliation(s)
- Xiao Liu
- College of Food Science, Southwest University, Chongqing 400715, P. R. China.
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing 400715, P. R. China.
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, P. R. China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, P. R. China.
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, P. R. China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, P. R. China.
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, P. R. China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Jiahui Xu
- College of Food Science, Southwest University, Chongqing 400715, P. R. China.
| | - Zhen Gao
- College of Food Science, Southwest University, Chongqing 400715, P. R. China.
| | - Yechuan Huang
- College of Bioengineering, Jingchu University of Technology, Jingmen 448000, P. R. China.
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, P. R. China.
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, P. R. China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| |
Collapse
|
3
|
Dynamics of GnRH Neuron Ionotropic GABA and Glutamate Synaptic Receptors Are Unchanged during Estrogen Positive and Negative Feedback in Female Mice. eNeuro 2017; 4:eN-FTR-0259-17. [PMID: 29109970 PMCID: PMC5672547 DOI: 10.1523/eneuro.0259-17.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/27/2017] [Accepted: 10/22/2017] [Indexed: 11/21/2022] Open
Abstract
Inputs from GABAergic and glutamatergic neurons are suspected to play an important role in regulating the activity of the gonadotropin-releasing hormone (GnRH) neurons. The GnRH neurons exhibit marked plasticity to control the ovarian cycle with circulating estradiol concentrations having profound "feedback" effects on their activity. This includes "negative feedback" responsible for suppressing GnRH neuron activity and "positive feedback" that occurs at mid-cycle to activate the GnRH neurons to generate the preovulatory luteinizing hormone surge. In the present study, we employed brain slice electrophysiology to question whether synaptic ionotropic GABA and glutamate receptor signaling at the GnRH neuron changed at times of negative and positive feedback. We used a well characterized estradiol (E)-treated ovariectomized (OVX) mouse model to replicate negative and positive feedback. Miniature and spontaneous postsynaptic currents (mPSCs and sPSCs) attributable to GABAA and glutamatergic receptor signaling were recorded from GnRH neurons obtained from intact diestrous, OVX, OVX + E (negative feedback), and OVX + E+E (positive feedback) female mice. Approximately 90% of GnRH neurons exhibited spontaneous GABAA-mPSCs in all groups but no significant differences in the frequency or kinetics of mPSCs were found at the times of negative or positive feedback. Approximately 50% of GnRH neurons exhibited spontaneous glutamate mPSCs but again no differences were detected. The same was true for spontaneous PSCs in all cases. These observations indicate that the kinetics of ionotropic GABA and glutamate receptor synaptic transmission to GnRH neurons remain stable across the different estrogen feedback states.
Collapse
|
4
|
Camille Melón L, Maguire J. GABAergic regulation of the HPA and HPG axes and the impact of stress on reproductive function. J Steroid Biochem Mol Biol 2016; 160:196-203. [PMID: 26690789 PMCID: PMC4861672 DOI: 10.1016/j.jsbmb.2015.11.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 11/16/2015] [Accepted: 11/26/2015] [Indexed: 11/25/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes are regulated by GABAergic signaling at the level of corticotropin-releasing hormone (CRH) and gonadotropin-releasing hormone (GnRH) neurons, respectively. Under basal conditions, activity of CRH and GnRH neurons are controlled in part by both phasic and tonic GABAergic inhibition, mediated by synaptic and extrasynaptic GABAA receptors (GABAARs), respectively. For CRH neurons, this tonic GABAergic inhibition is mediated by extrasynaptic, δ subunit-containing GABAARs. Similarly, a THIP-sensitive tonic GABAergic current has been shown to regulate GnRH neurons, suggesting a role for δ subunit-containing GABAARs; however, this remains to be explicitly demonstrated. GABAARs incorporating the δ subunit confer neurosteroid sensitivity, suggesting a potential role for neurosteroid modulation in the regulation of the HPA and HPG axes. Thus, stress-derived neurosteroids may contribute to the impact of stress on reproductive function. Interestingly, excitatory actions of GABA have been demonstrated in both CRH neurons at the apex of control of the HPA axis and in GnRH neurons which mediate the HPG axis, adding to the complexity for the role of GABAergic signaling in the regulation of these systems. Here we review the effects that stress has on GnRH neurons and HPG axis function alongside evidence supporting GABAARs as a major interface between the stress and reproductive axes.
Collapse
Affiliation(s)
- Laverne Camille Melón
- Tufts University School of Medicine, Department of Neuroscience, Boston, MA 02111, United States
| | - Jamie Maguire
- Tufts University School of Medicine, Department of Neuroscience, Boston, MA 02111, United States.
| |
Collapse
|
5
|
Li X, Shao B, Lin C, O'Byrne KT, Lin Y. Stress-induced inhibition of LH pulses in female rats: role of GABA in arcuate nucleus. J Mol Endocrinol 2015; 55:9-19. [PMID: 25999179 DOI: 10.1530/jme-15-0084] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/21/2015] [Indexed: 12/21/2022]
Abstract
Stress exerts profound inhibitory effects on reproductive function by suppression of the pulsatile release of GnRH and therefore LH. Besides the corticotrophin-releasing factor (CRF), this effect also might be mediated via GABAergic signaling within the arcuate nucleus (ARC) since its inhibitory effects on LH pulses and increased activity during stress. In the present study, we investigated the role of endogenous GABAergic signaling within the ARC in stress-induced suppression of LH pulses. Ovariectomised oestradiol-replaced rats were implanted with bilateral and unilateral cannulae targeting toward the ARC and lateral cerebral ventricle respectively. Blood samples (25 μl) were taken via chronically implanted cardiac catheters every 5 min for 6 h for measurement of LH pulses. Intra-ARC infusion of GABAA receptor antagonist, bicuculline (0.2 pmol in 200 nl artificial cerebrospinal fluid (aCSF) each side, three times at 20-min intervals) markedly attenuated the inhibitory effect of lipopolysaccharide (LPS; 25 μg/kg i.v.) but not restraint (1 h) stress on pulsatile LH secretion. In contrast, restraint but not LPS stress-induced suppression of LH pulse frequency was reversed by intra-ARC administration of GABABR antagonist, CGP-35348 (1.5 nmol in 200 nl aCSF each side, three times at 20-min intervals). Moreover, intra-ARC application of either bicuculline or CGP-35348 attenuated the inhibitory effect of CRF (1 nmol in 4 μl aCSF, i.c.v.) on the LH pulses. These data indicate a pivotal and differential role of endogenous GABAA and GABAB signaling mechanisms in the ARC with respect to mediating immunological and psychological stress-induced suppression of the GnRH pulse generator respectively.
Collapse
Affiliation(s)
- XiaoFeng Li
- First Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, ChinaDivision of Women's HealthSchool of Medicine, King's College London, Guy's Campus, London, UKDepartment of Surgery LaboratoryFirst Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China First Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, ChinaDivision of Women's HealthSchool of Medicine, King's College London, Guy's Campus, London, UKDepartment of Surgery LaboratoryFirst Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Bei Shao
- First Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, ChinaDivision of Women's HealthSchool of Medicine, King's College London, Guy's Campus, London, UKDepartment of Surgery LaboratoryFirst Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - ChengCheng Lin
- First Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, ChinaDivision of Women's HealthSchool of Medicine, King's College London, Guy's Campus, London, UKDepartment of Surgery LaboratoryFirst Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Kevin T O'Byrne
- First Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, ChinaDivision of Women's HealthSchool of Medicine, King's College London, Guy's Campus, London, UKDepartment of Surgery LaboratoryFirst Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - YuanShao Lin
- First Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, ChinaDivision of Women's HealthSchool of Medicine, King's College London, Guy's Campus, London, UKDepartment of Surgery LaboratoryFirst Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China First Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, ChinaDivision of Women's HealthSchool of Medicine, King's College London, Guy's Campus, London, UKDepartment of Surgery LaboratoryFirst Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
6
|
Subhedar NK, Nakhate KT, Upadhya MA, Kokare DM. CART in the brain of vertebrates: circuits, functions and evolution. Peptides 2014; 54:108-30. [PMID: 24468550 DOI: 10.1016/j.peptides.2014.01.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/10/2014] [Accepted: 01/10/2014] [Indexed: 12/12/2022]
Abstract
Cocaine- and amphetamine-regulated transcript peptide (CART) with its wide distribution in the brain of mammals has been the focus of considerable research in recent years. Last two decades have witnessed a steady rise in the information on the genes that encode this neuropeptide and regulation of its transcription and translation. CART is highly enriched in the hypothalamic nuclei and its relevance to energy homeostasis and neuroendocrine control has been understood in great details. However, the occurrence of this peptide in a range of diverse circuitries for sensory, motor, vegetative, limbic and higher cortical areas has been confounding. Evidence that CART peptide may have role in addiction, pain, reward, learning and memory, cognition, sleep, reproduction and development, modulation of behavior and regulation of autonomic nervous system are accumulating, but an integration has been missing. A steady stream of papers has been pointing at the therapeutic potentials of CART. The current review is an attempt at piecing together the fragments of available information, and seeks meaning out of the CART elements in their anatomical niche. We try to put together the CART containing neuronal circuitries that have been conclusively demonstrated as well as those which have been proposed, but need confirmation. With a view to finding out the evolutionary antecedents, we visit the CART systems in sub-mammalian vertebrates and seek the answer why the system is shaped the way it is. We enquire into the conservation of the CART system and appreciate its functional diversity across the phyla.
Collapse
Affiliation(s)
- Nishikant K Subhedar
- Indian Institute of Science Education and Research (IISER), Sai Trinity Building, Sutarwadi, Pashan, Pune 411 021, Maharashtra, India.
| | - Kartik T Nakhate
- Rungta College of Pharmaceutical Sciences and Research, Rungta Educational Campus, Kohka-Kurud Road, Bhilai 490 024, Chhattisgarh, India
| | - Manoj A Upadhya
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, Maharashtra, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, Maharashtra, India
| |
Collapse
|
7
|
Xiao L, Zhang C, Li X, Gong S, Hu R, Balasubramanian R, Crowley W. Jr. WF, Hastings MH, Zhou QY. Signaling role of prokineticin 2 on the estrous cycle of female mice. PLoS One 2014; 9:e90860. [PMID: 24633064 PMCID: PMC3954593 DOI: 10.1371/journal.pone.0090860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 02/06/2014] [Indexed: 01/06/2023] Open
Abstract
The possible signaling role of prokineticin 2 (PK2) and its receptor, prokineticin receptor 2 (PKR2), on female reproduction was investigated. First, the expression of PKR2 and its co-localization with estrogen receptor (ERα) in the hypothalamus was examined. Sexually dimorphic expression of PKR2 in the preoptic area of the hypothalamus was observed. Compared to the male mice, there was more widespread PKR2 expression in the preoptic area of the hypothalamus in the female mice. The likely co-expression of PKR2 and ERα in the preoptic area of the hypothalamus was observed. The estrous cycles in female PK2-null, and PKR2-null heterozygous mice, as well as in PK2-null and PKR2-null compound heterozygous mice were examined. Loss of one copy of PK2 or PKR2 gene caused elongated and irregular estrous cycle in the female mice. The alterations in the estrous cycle were more pronounced in PK2-null and PKR2-null compound heterozygous mice. Consistent with these observations, administration of a small molecule PK2 receptor antagonist led to temporary blocking of estrous cycle at the proestrous phase in female mice. The administration of PKR2 antagonist was found to blunt the circulating LH levels. Taken together, these studies indicate PK2 signaling is required for the maintenance of normal female estrous cycles.
Collapse
Affiliation(s)
- Ling Xiao
- Department of Pharmacology, University of California, Irvine, California, United States of America
- Department of Endocrinology, Jinshan Hospital affiliated to Fudan University, Shanghai, China
| | - Chengkang Zhang
- Department of Pharmacology, University of California, Irvine, California, United States of America
| | - Xiaohan Li
- Department of Pharmacology, University of California, Irvine, California, United States of America
| | - Shiaoching Gong
- GENSAT Project, The Rockefeller University, New York, New York, United States of America
| | - Renming Hu
- Institute of Endocrinology and Diabetology, Huashan Hospital affiliated to Fudan University, Shanghai, China
| | - Ravikumar Balasubramanian
- Harvard Reproductive Endocrine Sciences Center & The Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - William F. Crowley W. Jr.
- Harvard Reproductive Endocrine Sciences Center & The Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Michael H. Hastings
- Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Qun-Yong Zhou
- Department of Pharmacology, University of California, Irvine, California, United States of America
| |
Collapse
|
8
|
Sellix MT. Clocks underneath: the role of peripheral clocks in the timing of female reproductive physiology. Front Endocrinol (Lausanne) 2013; 4:91. [PMID: 23888155 PMCID: PMC3719037 DOI: 10.3389/fendo.2013.00091] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/08/2013] [Indexed: 11/13/2022] Open
Abstract
The central circadian pacemaker in the suprachiasmatic nucleus (SCN) is a critical component of the neuroendocrine circuit controlling gonadotropin secretion from the pituitary gland. The SCN conveys photic information to hypothalamic targets including the gonadotropin releasing hormone neurons. Many of these target cells are also cell autonomous clocks. It has been suggested that, rather then being singularly driven by the SCN, the timing of gonadotropin secretion depends on the activity of multiple hypothalamic oscillators. While this view provides a novel twist to an old story, it does little to diminish the central role of rhythmic hypothalamic output in this system. It is now clear that the pituitary, ovary, uterus, and oviduct have functional molecular clocks. Evidence supports the notion that the clocks in these tissues contribute to the timing of events in reproductive physiology. The aim of this review is to highlight the current evidence for molecular clock function in the peripheral components of the female hypothalamo-pituitary-gonadal axis as it relates to the timing of gonadotropin secretion, ovulation, and parturition.
Collapse
Affiliation(s)
- Michael T. Sellix
- Department of Medicine, Division of Endocrinology and Metabolism, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
- *Correspondence: Michael T. Sellix, Department of Medicine, Division of Endocrinology and Metabolism, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA e-mail:
| |
Collapse
|
9
|
Taherianfard M, Bahaoddini A, Bahrebar M. Effect of diazepam and Bicuculline on Serum Concentrations of Estradiol, Progesterone and K+ in Female Rat. JOURNAL OF APPLIED ANIMAL RESEARCH 2011. [DOI: 10.1080/09712119.2005.9706800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- M. Taherianfard
- a Department of Physiology , School of Veterinary Medicine Shiraz University , Shiraz , 71345-1731 , Iran
| | - A. Bahaoddini
- a Department of Physiology , School of Veterinary Medicine Shiraz University , Shiraz , 71345-1731 , Iran
| | - M. Bahrebar
- a Department of Physiology , School of Veterinary Medicine Shiraz University , Shiraz , 71345-1731 , Iran
| |
Collapse
|
10
|
Bhattarai JP, Park SA, Park JB, Lee SY, Herbison AE, Ryu PD, Han SK. Tonic extrasynaptic GABA(A) receptor currents control gonadotropin-releasing hormone neuron excitability in the mouse. Endocrinology 2011; 152:1551-61. [PMID: 21285326 DOI: 10.1210/en.2010-1191] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It is well established that the GABA(A) receptor plays an important role in regulating the electrical excitability of GnRH neurons. Two different modes of GABA(A) receptor signaling exist: one mediated by synaptic receptors generating fast (phasic) postsynaptic currents and the other mediated by extrasynaptic receptors generating a persistent (tonic) current. Using GABA(A) receptor antagonists picrotoxin, bicuculline methiodide, and gabazine, which differentiate between phasic and tonic signaling, we found that ∼50% of GnRH neurons exhibit an approximately 15-pA tonic GABA(A) receptor current in the acute brain slice preparation. The blockade of either neuronal (NO711) or glial (SNAP-5114) GABA transporter activity within the brain slice revealed the presence of tonic GABA signaling in ∼90% of GnRH neurons. The GABA(A) receptor δ subunit is only found in extrasynaptic GABA(A) receptors. Using single-cell RT-PCR, GABA(A) receptor δ subunit mRNA was identified in GnRH neurons and the δ subunit-specific agonist 4,5,6,7-tetrahydroisoxazolo [5,4-c] pyridin-3-ol was found to activate inward currents in GnRH neurons. Perforated-patch clamp studies showed that 4,5,6,7-tetrahydroisoxazolo [5,4-c] pyridin-3-ol exerted the same depolarizing or hyperpolarizing effects as GABA on juvenile and adult GnRH neurons and that tonic GABA(A) receptor signaling regulates resting membrane potential. Together, these studies reveal the presence of a tonic GABA(A) receptor current in GnRH neurons that controls their excitability. The level of tonic current is dependent, in part, on neuronal and glial GABA transporter activity and mediated by extrasynaptic δ subunit-containing GABA(A) receptors.
Collapse
Affiliation(s)
- Janardhan P Bhattarai
- Department of Oral Physiology and Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, 561-756, Korea
| | | | | | | | | | | | | |
Collapse
|
11
|
Mitsushima D. Sex differences in the septo-hippocampal cholinergic system in rats: behavioral consequences. Curr Top Behav Neurosci 2011; 8:57-71. [PMID: 21769723 DOI: 10.1007/7854_2010_95] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The hippocampus is processing temporal and spatial information in particular contexts or episodes. Using freely moving rats, we monitored extracellular levels of acetylcholine (ACh), a critical neurotransmitter activating hippocampal circuits. We found that the ACh release in the dorsal hippocampus increases during the period of learning or exploration, exhibiting a sex-specific 24-h release profile. Moreover, neonatal increase in circulating androgen not only androgenizes behavioral and hormonal features, but also produces male-type ACh release profile after the development. The results suggest neonatal sexual differentiation of septo-hippocampal cholinergic system. Environmental conditions (such as stress, housing or food) of animals further affected the ACh release.Although recent advances of neuroscience successfully revealed molecular/cellular mechanism of learning and memory, most research were performed using male animals at specific time period. Sex-specific or time-dependent hippocampal functions are still largely unknown.
Collapse
Affiliation(s)
- Dai Mitsushima
- Department of Physiology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura Kanazawaku, Yokohama, 236-0004, Japan.
| |
Collapse
|
12
|
Lee K, Porteous R, Campbell RE, Lüscher B, Herbison AE. Knockdown of GABA(A) receptor signaling in GnRH neurons has minimal effects upon fertility. Endocrinology 2010; 151:4428-36. [PMID: 20573723 PMCID: PMC5398471 DOI: 10.1210/en.2010-0314] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The amino acid gamma-aminobutyric acid (GABA) is thought to play a key role in shaping the activity of the GnRH neurons throughout embryonic and postnatal life. However, the physiological roles of direct GABA inputs to GnRH neurons remain unknown. Using a Cre-LoxP strategy, we generated a targeted mouse line, in which all (98 +/- 1%) GnRH neurons had the gamma2-subunit of the GABA(A) receptor deleted. Electrophysiological recordings of GABA(A)-mediated postsynaptic currents from green fluorescent protein-tagged GnRH neurons with the gamma2-subunit knocked out (GnRH gamma2 KO) showed that the amplitude and frequency of GABA(A) postsynaptic currents were reduced by 70% (P < 0.01) and 77% (P < 0.05), respectively, and that the response to exogenous GABA was reduced by 90% (P < 0.01). Evaluation of male and female GnRH gamma2 KO mice revealed completely normal fecundity, estrous cycles, and puberty onset. Further investigation with gonadectomy and different steroid replacement regimens showed normal basal levels of LH in both sexes, and a normal estradiol-evoked positive feedback mechanism in females. However, the increment in LH after gonadectomy in GnRH gamma2 KO female mice was double that of controls (P < 0.05) and also more potently suppressed by 17-beta-estradiol (P < 0.05). A similar but nonsignificant trend was observed in GnRH gamma2 KO male mice. Together, these findings show that 70-90% reductions in the normal levels of GABA(A) receptor activity at the GnRH neuron appear to impact upon the estrogen negative feedback mechanism but are, nevertheless, compatible with normal fertility in mice.
Collapse
Affiliation(s)
- Kiho Lee
- Centre for Neuroendocrinology, Department of Physiology, University of Otago School of Medical Sciences, P.O. Box 913, Dunedin 9054, New Zealand
| | | | | | | | | |
Collapse
|
13
|
Altered GABAA receptor-mediated synaptic transmission disrupts the firing of gonadotropin-releasing hormone neurons in male mice under conditions that mimic steroid abuse. J Neurosci 2010; 30:6497-506. [PMID: 20463213 DOI: 10.1523/jneurosci.5383-09.2010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neurons are the central regulators of reproduction. GABAergic transmission plays a critical role in pubertal activation of pulsatile GnRH secretion. Self-administration of excessive doses of anabolic androgenic steroids (AAS) disrupts reproductive function and may have critical repercussions for pubertal onset in adolescent users. Here, we demonstrate that chronic treatment of adolescent male mice with the AAS 17alpha-methyltestosterone significantly decreased action potential frequency in GnRH neurons, reduced the serum gonadotropin levels, and decreased testes mass. AAS treatment did not induce significant changes in GABAA receptor subunit mRNA levels or alter the amplitude or decay kinetics of GABAA receptor-mediated spontaneous postsynaptic currents (sPSCs) or tonic currents in GnRH neurons. However, AAS treatment significantly increased action potential frequency in neighboring medial preoptic area (mPOA) neurons and GABAA receptor-mediated sPSC frequency in GnRH neurons. In addition, physical isolation of the more lateral aspects of the mPOA from the medially localized GnRH neurons abrogated the AAS-induced increase in GABAA receptor-mediated sPSC frequency and the decrease in action potential firing in the GnRH cells. Our results indicate that AAS act predominantly on steroid-sensitive presynaptic neurons within the mPOA to impart significant increases in GABAA receptor-mediated inhibitory tone onto downstream GnRH neurons, resulting in diminished activity of these pivotal mediators of reproductive function. These AAS-induced changes in central GABAergic circuits of the forebrain may significantly contribute to the disruptive actions of these drugs on pubertal maturation and the development of reproductive competence in male steroid abusers.
Collapse
|
14
|
Catalano PN, Di Giorgio N, Bonaventura MM, Bettler B, Libertun C, Lux-Lantos VA. Lack of functional GABA(B) receptors alters GnRH physiology and sexual dimorphic expression of GnRH and GAD-67 in the brain. Am J Physiol Endocrinol Metab 2010; 298:E683-96. [PMID: 20009027 DOI: 10.1152/ajpendo.00532.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
GABA, the main inhibitory neurotransmitter, acts through GABA(A/C) and GABA(B) receptors (GABA(B)Rs); it is critical for gonadotropin regulation. We studied whether the lack of functional GABA(B)Rs in GABA(B1) knockout (GABA(B1)KO) mice affected the gonadotropin axis physiology. Adult male and female GABA(B1)KO and wild-type (WT) mice were killed to collect blood and tissue samples. Gonadotropin-releasing hormone (GnRH) content in whole hypothalami (HT), olfactory bulbs (OB), and frontoparietal cortexes (CT) were determined (RIA). GnRH expression by quantitative real-time PCR (qRT-PCR) was evaluated in preoptic area-anterior hypothalamus (POA-AH), medial basal-posterior hypothalamus (MBH-PH), OB, and CT. Pulsatile GnRH secretion from hypothalamic explants was measured by RIA. GABA, glutamate, and taurine contents in HT and CT were determined by HPLC. Glutamic acid decarboxylase-67 (GAD-67) mRNA was measured by qRT-PCR in POA-AH, MBH-PH, and CT. Gonadotropin content, serum levels, and secretion from adenohypophyseal cell cultures (ACC) were measured by RIA. GnRH mRNA expression was increased in POA-AH of WT males compared with females; this pattern of expression was inversed in GABA(B1)KO mice. MBH-PH, OB, and CT did not follow this pattern. In GABA(B1)KO females, GnRH pulse frequency was increased and GABA and glutamate contents were augmented. POA-AH GAD-67 mRNA showed the same expression pattern as GnRH mRNA in this area. Gonadotropin pituitary contents and serum levels showed no differences between genotypes. Increased basal LH secretion and decreased GnRH-stimulated gonadotropin response were observed in GABA(B1)KO female ACCs. These results support the hypothesis that the absence of functional GABA(B)Rs alters GnRH physiology and critically affects sexual dimorphic expression of GnRH and GAD-67 in POA-AH.
Collapse
Affiliation(s)
- Paolo N Catalano
- Instituto de Biología y Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
15
|
Mitsushima D. Sex Steroids and Acetylcholine Release in the Hippocampus. HORMONES OF THE LIMBIC SYSTEM 2010; 82:263-77. [DOI: 10.1016/s0083-6729(10)82014-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Homma T, Sakakibara M, Yamada S, Kinoshita M, Iwata K, Tomikawa J, Kanazawa T, Matsui H, Takatsu Y, Ohtaki T, Matsumoto H, Uenoyama Y, Maeda KI, Tsukamura H. Significance of neonatal testicular sex steroids to defeminize anteroventral periventricular kisspeptin neurons and the GnRH/LH surge system in male rats. Biol Reprod 2009; 81:1216-25. [PMID: 19684332 DOI: 10.1095/biolreprod.109.078311] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The brain mechanism regulating gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) release is sexually differentiated in rodents. Kisspeptin neurons in the anteroventral periventricular nucleus (AVPV) have been suggested to be sexually dimorphic and involved in the GnRH/LH surge generation. The present study aimed to determine the significance of neonatal testicular androgen to defeminize AVPV kisspeptin expression and the GnRH/LH surge-generating system. To this end, we tested whether neonatal castration feminizes AVPV kisspeptin neurons and the LH surge-generating system in male rats and whether neonatal estradiol benzoate (EB) treatment suppresses the kisspeptin expression and the LH surge in female rats. Immunohistochemistry, in situ hybridization, and quantitative real-time RT-PCR were performed to investigate kisspeptin and Kiss1 mRNA expressions. Male rats were castrated immediately after birth, and females were treated with EB on postnatal Day 5. Neonatal castration caused an increase in AVPV kisspeptin expression at peptide and mRNA levels in the genetically male rats, and the animals showed surge-like LH release in the presence of the preovulatory level of estradiol (E2) at adulthood. On the other hand, neonatal EB treatment decreased the number of AVPV kisspeptin neurons and caused an absence of E2-induced LH surge in female rats. Semiquantitative RT-PCR analysis showed that neonatal steroidal manipulation affects Kiss1 expression but does not significantly affect gene expressions of neuropeptides (neurotensin and galanin) and enzymes or transporter for neurotransmitters (gamma-aminobutyric acid, glutamate, and dopamine) in the AVPV, suggesting that the manipulation specifically affects Kiss1 expressions. Taken together, our present results provide physiological evidence that neonatal testicular androgen causes the reduction of AVPV kisspeptin expression and failure of LH surge in genetically male rats. Thus, it is plausible that perinatal testicular androgen causes defeminization of the AVPV kisspeptin system, resulting in the loss of the surge system in male rats.
Collapse
Affiliation(s)
- Tamami Homma
- Laboratory of Reproductive Science, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Neal-Perry G, Lebesgue D, Lederman M, Shu J, Zeevalk GD, Etgen AM. The excitatory peptide kisspeptin restores the luteinizing hormone surge and modulates amino acid neurotransmission in the medial preoptic area of middle-aged rats. Endocrinology 2009; 150:3699-708. [PMID: 19423763 PMCID: PMC2717872 DOI: 10.1210/en.2008-1667] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Reproductive success depends on a robust and appropriately timed preovulatory LH surge. The LH surge, in turn, requires ovarian steroid modulation of GnRH neuron activation by the neuropeptide kisspeptin and glutamate and gamma-aminobutyric acid (GABA) neurotransmission in the medial preoptic area (mPOA). Middle-aged females exhibit reduced excitation of GnRH neurons and attenuated LH surges under estrogen-positive feedback conditions, in part, due to increased GABA and decreased glutamate neurotransmission in the mPOA. This study tested the hypothesis that altered kisspeptin regulation by ovarian steroids plays a role in age-related LH surge dysfunction. We demonstrate that middle-aged rats exhibiting delayed and attenuated LH surges have reduced levels of Kiss1 mRNA in the anterior hypothalamus under estrogen-positive feedback conditions. Kisspeptin application directly into the mPOA rescues total LH release and the LH surge amplitude in middle-aged rats and increases glutamate and decreases GABA release to levels seen in the mPOA of young females. Moreover, the N-methyl-D-aspartate receptor antagonist MK801 blocks kisspeptin reinstatement of the LH surge. These observations suggest that age-related LH surge dysfunction results, in part, from reduced kisspeptin drive under estrogen-positive feedback conditions and that kisspeptin regulates GnRH/LH release, in part, through modulation of mPOA glutamate and GABA release.
Collapse
Affiliation(s)
- Genevieve Neal-Perry
- Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
18
|
Sex-specific 24-h profile of extracellular serotonin levels in the medial prefrontal cortex. Brain Res 2009; 1260:30-7. [DOI: 10.1016/j.brainres.2008.12.084] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 12/03/2008] [Accepted: 12/23/2008] [Indexed: 02/05/2023]
|
19
|
Kurunczi A, Hoyk Z, Csakvari E, Gyenes A, Párducz Á. 17β-Estradiol-induced remodeling of GABAergic axo-somatic synapses on estrogen receptor expressing neurons in the anteroventral periventricular nucleus of adult female rats. Neuroscience 2009; 158:553-7. [DOI: 10.1016/j.neuroscience.2008.10.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 11/06/2008] [Indexed: 11/28/2022]
|
20
|
Takase K, Mitsushima D, Funabashi T, Kimura F. Sex difference in the 24-h acetylcholine release profile in the premotor/supplementary motor area of behaving rats. Brain Res 2007; 1154:105-15. [PMID: 17477908 DOI: 10.1016/j.brainres.2007.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 03/31/2007] [Accepted: 04/02/2007] [Indexed: 11/27/2022]
Abstract
The sex differences in various motor functions suggest a sex-specific neural basis in the nonprimary or primary motor area. To examine the sex difference in the 24-h profile of acetylcholine (ACh) release in the rostral frontal cortex area 2 (rFr2), which is equivalent to the premotor/supplementary motor area in primates, we performed an in vivo microdialysis study in both sexes of rats fed pelleted or powdered diet. The dialysate was automatically collected from the rFr2 for 24 h under freely moving conditions. Moreover, the number of cholinergic neurons in the nucleus basalis magnocellularis (NBM) was examined. Further, to confirm the relation between ACh release in the rFr2 and motor function, the spontaneous locomotor activity was monitored for 24 h. Both sexes showed a distinct 24-h rhythm of ACh release, which was high during the dark phase and low during the light phase. Female rats, however, showed a greater ACh release and more cholinergic neurons in the NBM than male rats. Similarly, spontaneous locomotor activity also showed a 24-h rhythm, which paralleled the changes in ACh release in both sexes, and these changes were again greater in female rats than in male rats. In addition, feeding with powdered diet significantly increased the ACh release and spontaneous locomotor activity. The present study is the first to report the sex difference in the 24-h profile of ACh release in the rFr2 in rats. The sex specific ACh release in the rFr2 may partly contribute to the sex difference in motor function in rats.
Collapse
Affiliation(s)
- Kenkichi Takase
- Department of Neuroendocrinology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura Kanazawa-ku, Yokohama 236-0004, Japan
| | | | | | | |
Collapse
|
21
|
Gozes I. Activity-dependent neuroprotective protein: from gene to drug candidate. Pharmacol Ther 2007; 114:146-54. [PMID: 17363064 DOI: 10.1016/j.pharmthera.2007.01.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 01/12/2007] [Indexed: 01/13/2023]
Abstract
Activity-dependent neuroprotective protein (ADNP) is essential for brain formation. The gene encoding ADNP is highly conserved and abundantly expressed in the brain. ADNP contains a homeobox profile and a peptide motif providing neuroprotection against a variety of cytotoxic insults. ADNP mRNA and protein expression responds to brain injury and oscillates as a function of the estrus cycle. The plastic nature of ADNP expression is correlated with brain protection and an association between neuroendocrine regulation and neuroprotection is put forth with ADNP as a focal point. Further understanding of neuroprotective molecules should pave the path to better diagnostics and therapies. In this respect, structure-activity studies have identified a short 8 amino acid peptide in ADNP/NAPVSIPQ (NAP) that provides potent neuroprotection. NAP is currently in clinical development for neuroprotection.
Collapse
Affiliation(s)
- Illana Gozes
- The Adams Super-Center for Brain Studies & Levi-Edersheim-Gitter fMRI Institute, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
22
|
Wilson CA, Davies DC. The control of sexual differentiation of the reproductive system and brain. Reproduction 2007; 133:331-59. [PMID: 17307903 DOI: 10.1530/rep-06-0078] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review summarizes current knowledge of the genetic and hormonal control of sexual differentiation of the reproductive system, brain and brain function. While the chromosomal regulation of sexual differentiation has been understood for over 60 years, the genes involved and their actions on the reproductive system and brain are still under investigation. In 1990, the predicted testicular determining factor was shown to be theSRYgene. However, this discovery has not been followed up by elucidation of the actions of SRY, which may either stimulate a cascade of downstream genes, or inhibit a suppressor gene. The number of other genes known to be involved in sexual differentiation is increasing and the way in which they may interact is discussed. The hormonal control of sexual differentiation is well-established in rodents, in which prenatal androgens masculinize the reproductive tract and perinatal oestradiol (derived from testosterone) masculinizes the brain. In humans, genetic mutations have revealed that it is probably prenatal testosterone that masculinizes both the reproductive system and the brain. Sexual differentiation of brain structures and the way in which steroids induce this differentiation, is an active research area. The multiplicity of steroid actions, which may be specific to individual cell types, demonstrates how a single hormonal regulator, e.g. oestradiol, can exert different and even opposite actions at different sites. This complexity is enhanced by the involvement of neurotransmitters as mediators of steroid hormone actions. In view of current environmental concerns, a brief summary of the effects of endocrine disruptors on sexual differentiation is presented.
Collapse
Affiliation(s)
- C A Wilson
- Basic Medical Sciences, Clinical Developmental Sciences, St George's, University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK.
| | | |
Collapse
|
23
|
Barabás K, Szegõ EM, Kaszás A, Nagy GM, Juhász GD, Abrahám IM. Sex differences in oestrogen-induced p44/42 MAPK phosphorylation in the mouse brain in vivo. J Neuroendocrinol 2006; 18:621-8. [PMID: 16867183 DOI: 10.1111/j.1365-2826.2006.01447.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In addition to the classical direct genomic mechanisms of action, oestrogen also exerts poorly understood, nonclassical effects on the signalling system in neurones. In the present study, we investigated whether sex differences exist in gonadectomy- and oestrogen-induced effects on p44/42 mitogen-activated protein kinase (MAPK) phosphorylation in specific brain regions of mice. We demonstrate that MAPK immunoreactivity was not altered by gonadectomy or oestrogen treatment in either sex. However, we show that the level of phosphorylated MAPK (pMAPK) within the anteroventral periventricular nucleus (AVPV) was consistently higher in males than females irrespective of gonadal steroid hormone status. In addition, gonadectomy was found to decrease pMAPK immunoreactivity within the piriform cortex of males. Oestrogen increased pMAPK immunoreactivity in the medial preoptic area and AVPV of females, but failed to have the same effect in male mice. Overall, these results demonstrate a marked sex difference in oestrogen-induced alteration of MAPK phosphorylation in the brain in vivo.
Collapse
Affiliation(s)
- K Barabás
- Neurobiology Research Group of Hungarian Academy of Sciences at Eötvös Loránd University, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
24
|
Attademo AM, Rondini TAR, Rodrigues BC, Bittencourt JC, Celis ME, Elias CF. Neuropeptide glutamic acid-isoleucine may induce luteinizing hormone secretion via multiple pathways. Neuroendocrinology 2006; 83:313-24. [PMID: 17016031 DOI: 10.1159/000096052] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 08/21/2006] [Indexed: 11/19/2022]
Abstract
Neuropeptide glutamic acid-isoleucine (NEI) is a 14-amino acid peptide processed from prepro-melanin-concentrating hormone (ppMCH). In males, the localization of NEI is almost identical to that of MCH, the cell bodies of both being located primarily in the lateral hypothalamic area and zona incerta, projecting fibers throughout the brain. Although MCH has been widely studied, the role that NEI plays in brain circuitry has been poorly investigated. Recently, we showed that intracerebroventricular injection of NEI increases serum luteinizing hormone (LH) levels. In order to identify the anatomical substrate underlying this effect, we used combined immunohistochemistry methods to analyze the forebrains of females on the diestrus and proestrus days, as well as those of ovariectomized females treated with estradiol benzoate, with estradiol benzoate plus progesterone or with sesame oil (control animals). We found that ovariectomized females with no steroid treatment showed an increased number of NEI-immunoreactive neurons in the medial zona incerta. In addition, we observed dense to moderate NEI innervation of areas related to reproduction, including the organum vasculosum of the lamina terminalis, the anteroventral periventricular nucleus (AVPV) and the median eminence. The NEI fibers were in close apposition with the AVPV and gonadotropin-releasing hormone (GnRH) neurons expressing Fos in the afternoon of the proestrus day or following administration of estradiol benzoate plus progesterone. In the median eminence, NEI varicosities and terminal-like structures were in close proximity to blood vessels and GnRH fibers. Our results suggest that NEI might induce LH secretion in one of the following ways: by direct release into the median eminence, by modulation of GnRH neurons located in the preoptic area, by modulation of the GnRH terminals located in the median eminence or by an additive effect involving other neurotransmitters or neurohormones. Release of NEI might also induce LH secretion indirectly by modulating AVPV neurons.
Collapse
Affiliation(s)
- Andres M Attademo
- Laboratorio de Ciencias Fisiológicas, Cátedra de Bacteriologia y Virologia, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | | | | | | |
Collapse
|
25
|
Larivière K, Samia M, Lister A, Van Der Kraak G, Trudeau VL. Sex steroid regulation of brain glutamic acid decarboxylase (GAD) mRNA is season-dependent and sexually dimorphic in the goldfish Carassius auratus. ACTA ACUST UNITED AC 2005; 141:1-9. [PMID: 16226340 DOI: 10.1016/j.molbrainres.2005.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 05/18/2005] [Accepted: 06/08/2005] [Indexed: 11/29/2022]
Abstract
GABA, the major inhibitory neurotransmitter of the vertebrate brain, has been shown to play an important role in vertebrate reproduction by regulating LH release and sexual behavior. We have studied the expression of the GABA-synthesizing enzyme, glutamic acid decarboxylase (GAD), in goldfish throughout the reproductive cycle in May (mature), November (early gonadal recrudescence) and February (late gonadal recrudescence) and in response to implanted sex steroids. Levels of GAD67 and GAD65 mRNA levels in the hypothalamus of both males and females were highest in the early stages of gonadal recrudescence. In the telencephalon, a different seasonal pattern of GAD expression was evident. The telencephalic expression GAD67, GAD65 and a novel isoform, GAD3, were highest in sexually mature fish in May. Five-day intraperitoneal implantation of gonad-intact fish with testosterone (T), estradiol (E2) or progesterone (P4) did not affect GAD expression in November and February. This is in contrast to results in May when sex differences in steroid responsiveness were evident. Progesterone decreased hypothalamic GAD67 and GAD65 in females and was without effect in males. All other treatments did not alter GAD67, GAD65 or GAD3 expression in the hypothalamus. Both T and P4 decreased GAD67 and GAD65 levels in the telencephalon of male goldfish but had no effect in females. Serum sex steroid levels in control and implanted mature males and females in May were similar so it is unlikely that sex differences in the GAD responses were a result of differences in serum sex steroid levels. These contrasting effects of sex steroids on males and females suggest important sex differences in the regulation of the GADs in sexually mature goldfish.
Collapse
Affiliation(s)
- K Larivière
- Department of Biology, Centre for Advanced Research in Environmental Genomics, Canada
| | | | | | | | | |
Collapse
|
26
|
Mogi K, Funabashi T, Mitsushima D, Hagiwara H, Kimura F. Sex difference in the response of melanin-concentrating hormone neurons in the lateral hypothalamic area to glucose, as revealed by the expression of phosphorylated cyclic adenosine 3',5'-monophosphate response element-binding protein. Endocrinology 2005; 146:3325-33. [PMID: 15905320 DOI: 10.1210/en.2005-0078] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Because there are sex differences in feeding behavior in rats, we looked for a possible sex difference in the response to glucose of melanin-concentrating hormone (MCH) neurons in the lateral hypothalamic area using phosphorylated cAMP response element-binding protein (pCREB) as a marker of neural activity. Intact male rats and female rats at diestrus 2, proestrus, or estrus were fed normally or fasted for 48 h and injected with saline or glucose (400 mg/kg). Thereafter, preparations were subjected to immunohistochemical processing for the double staining of MCH and pCREB. Fasting increased the ratio of MCH neurons with pCREB (double-stained cells) in both male and female rats. In fasted rats, glucose injection decreased the ratio of double-stained cells more promptly in females than in males. The magnitude of decrease caused by glucose was greater at proestrus and estrus than at diestrus 2. Gonadectomy in males enhanced and in females attenuated the response of MCH neurons to glucose. Testosterone and estrogen replacement in males and females, respectively, restored the response of MCH neurons to glucose. The demonstrated sex differences in the response of MCH neurons to glucose correlated well with the gonadal steroid milieu; thus, MCH neurons may play an important role in sex differences in feeding behavior.
Collapse
Affiliation(s)
- Kazutaka Mogi
- Department of Neuroendocrinology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | | | | | | | | |
Collapse
|
27
|
Patisaul HB, Blum A, Luskin JR, Wilson ME. Dietary soy supplements produce opposite effects on anxiety in intact male and female rats in the elevated plus-maze. Behav Neurosci 2005; 119:587-94. [PMID: 15839804 DOI: 10.1037/0735-7044.119.2.587] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effects of 2 popular, commercially available soy phytoestrogen supplements on anxiety in male, diestrus female, and proestrus female rats were examined with an elevated plus-maze. Both of the soy supplements were anxiolytic in proestrus females but anxiogenic in males as determined by time spent in the open arms. No effect of diet was seen in the diestrus females. The observed changes in anxiety were not because of altered levels of gonadal hormones, as serum estrogen and progesterone levels were unaffected by diet in the females. The results suggest that the soy supplements have sex- and cycle-specific effects on anxiety.
Collapse
Affiliation(s)
- Heather B Patisaul
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
| | | | | | | |
Collapse
|
28
|
Furman S, Hill JM, Vulih I, Zaltzman R, Hauser JM, Brenneman DE, Gozes I. Sexual dimorphism of activity-dependent neuroprotective protein in the mouse arcuate nucleus. Neurosci Lett 2005; 373:73-8. [PMID: 15555780 DOI: 10.1016/j.neulet.2004.09.077] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Accepted: 09/27/2004] [Indexed: 11/20/2022]
Abstract
Activity-dependent neuroprotective protein (ADNP) is a highly conserved vasoactive intestinal peptide (VIP) responsive gene that is expressed abundantly in the brain and in the body and is essential for brain formation and embryonic development. Since, VIP exhibits sexual dimorphism in the hypothalamus, the potential differential expression of ADNP in male and female mice was investigated. Real-time polymerase chain reaction revealed sexual dimorphism in ADNP mRNA expression as well as fluctuations within the estrus cycle. Immunohistochemistry with an antibody to ADNP showed specific staining in the arcuate nucleus of the hypothalamus. ADNP-like immunoreactivity in the arcuate nucleus also exhibited fluctuations during the estrus cycle. Here, brain sections at proestrus were the most immunoreactive and brain sections at estrus--the least. Furthermore, male arcuate nucleus ADNP-like immunoreactivity was significantly lower than that of the female estrus. Many neuropeptides, neurotransmitters and proteins are localized to the arcuate nucleus where they contribute to the regulation of reproductive cyclicity and energy homeostasis. The results presented here suggest that ADNP has a part in the estrus cycle as an affecter or an effector.
Collapse
Affiliation(s)
- Sharon Furman
- Department of Clinical Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | | | | | | | | | |
Collapse
|
29
|
Nakamura TJ, Moriya T, Inoue S, Shimazoe T, Watanabe S, Ebihara S, Shinohara K. Estrogen differentially regulates expression ofPer1 andPer2 genes between central and peripheral clocks and between reproductive and nonreproductive tissues in female rats. J Neurosci Res 2005; 82:622-30. [PMID: 16273538 DOI: 10.1002/jnr.20677] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although it has long been established that estrogen alters circadian rhythms in behavior, physiology, and reproductive functions in mammals, the molecular mechanism for these effects remains unknown. To explore the possibility that estrogen affects circadian rhythms by changing the expression of clock-related genes, we investigated the effects of chronic treatment with 17beta-estradiol (E2) on the expression of Per1 and Per2 genes in the brain (suprachiasmatic nucleus and cerebral cortex) and periphery (liver, kidney, and uterus) of ovariectomized rats by means of in situ hybridization and northern blotting. In the brain, E2 treatment advanced the peak of Per2 mRNA expression in the SCN; however, it failed to affect the rhythm of Per2 mRNA expression in the CX and Per1 mRNA expression in both the SCN and the CX. In nonreproductive peripheral tissues (liver and kidney), E2 delayed the phase and increased the amplitude of Per1 mRNA expression. In the reproductive tissues (uterus), biphasic rhythms in Per1 and Per2 mRNA were observed after E2 treatment. These findings suggest that the effects of estrogen are different between central and peripheral clock in the brain, and between reproductive and nonreproductive tissues in the periphery.
Collapse
Affiliation(s)
- Takahiro J Nakamura
- Division of Neurobiology and Behavior, Department of Translational Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Takase K, Mitsushima D, Masuda J, Mogi K, Funabashi T, Endo Y, Kimura F. Feeding with powdered diet after weaning affects sex difference in acetylcholine release in the hippocampus in rats. Neuroscience 2005; 136:593-9. [PMID: 16226386 DOI: 10.1016/j.neuroscience.2005.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2005] [Accepted: 08/04/2005] [Indexed: 11/23/2022]
Abstract
We have reported in the past that female rats fed a powdered diet showed better spatial learning and memory functions than female rats a fed pelleted diet. In the present study, we examined the effects of feeding with powdered diet on acetylcholine release in the hippocampus in both sexes of rats. After weaning (3 weeks of age), rats were fed either standard pelleted diet or powdered diet, and after maturation (9-12 weeks of age), they were used in an in vivo microdialysis study, in which no eserine (a cholinesterase inhibitor) was added to the perfusate. The dialysate was collected from the dorsal hippocampus at 20-min intervals under freely moving conditions for more than 24 h. Acetylcholine in the dialysate was measured by high performance liquid chromatography. As we reported previously, the acetylcholine release showed a clear daily rhythm in both sexes, and males showed significantly greater acetylcholine release in the hippocampus than females in rats fed pelleted diet. Conversely, in rats fed powdered diet, no sex difference in the acetylcholine release was observed, since feeding with powdered diet significantly increased the acetylcholine release only in females. To further examine the number of cholinergic neurons in the medial septum and horizontal limb of the diagonal band of Broca, immunocytochemistry for choline acetyltransferase was performed in both sexes of rats fed either standard pelleted diet or powdered diet. However, neither sex nor feeding conditions affect the number of choline acetyltransferase immunoreactive cells in the areas. These results suggest that powdered diet after weaning enhances spontaneous acetylcholine release in the hippocampus in female rats without changes in the number of cholinergic neurons in the areas. It is possible that this effect of feeding contributes to improve the performance in spatial learning and memory functions in female rats fed powdered diet.
Collapse
Affiliation(s)
- K Takase
- Department of Neuroendocrinology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawaku, Yokohama 236-0004, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Rondini TA, Baddini SP, Sousa LF, Bittencourt JC, Elias CF. Hypothalamic cocaine- and amphetamine-regulated transcript neurons project to areas expressing gonadotropin releasing hormone immunoreactivity and to the anteroventral periventricular nucleus in male and female rats. Neuroscience 2004; 125:735-48. [PMID: 15099687 DOI: 10.1016/j.neuroscience.2003.12.045] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2003] [Indexed: 01/10/2023]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) and CART-derived peptides are widely expressed in the hypothalamus. CART is involved in food intake control and is regulated by circulating leptin, a hormone implicated in a variety of endocrine functions. Lack of leptin (ob/ob mice) is associated with obesity, hypogonadism and infertility. In the arcuate nucleus, dorsomedial nucleus of the hypothalamus, and ventral premammillary nucleus, CART neurons also express leptin receptor long-form splice-variant. Recent studies have suggested that the facilitatory effect of leptin on gonadotropin-releasing hormone (GnRH) secretion is mediated by CART. In the present study, using dual- and triple-label immunohistochemistry, we identified CART fibers in close apposition with GnRH neurons expressing Fos in the afternoon of the proestrous day, as well as with GnRH neurons in male rats. In order to investigate the origin of these fibers, we injected the retrograde tracer Fluorogold into areas containing GnRH cell bodies. In male and female rats, the tracer was injected around the vascular organ of lamina terminalis, median preoptic nucleus and medial preoptic nucleus, as well as in the anteroventral periventricular nucleus. We observed retrogradely labeled neurons in various hypothalamic nuclei, including the arcuate, dorsomedial and ventral premammillary. In these areas, dual-label immunohistochemistry/in situ hybridization revealed that part of the retrogradely labeled neurons also express CART mRNA. As a control, we injected the anterograde tracer biotinylated dextran amine into the ventral premammillary nucleus of both males and females. Most projections targeted brain areas related to reproductive behavior and few fibers were closely associated with GnRH neurons. Our findings indicate that ventral premammillary nucleus CART neurons intermingle with brain circuitry involved in reproduction. Therefore, these neurons are well positioned to mediate leptin effect on reproductive control.
Collapse
Affiliation(s)
- T A Rondini
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil
| | | | | | | | | |
Collapse
|
32
|
Mitsushima D, Shinohara K, Kimura F. Sexual dimorphism of GABA release in the medial preoptic area and luteinizing hormone release in gonadectomized estrogen-primed rats. Neuroscience 2004; 127:243-50. [PMID: 15219686 DOI: 10.1016/j.neuroscience.2004.04.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Revised: 04/13/2004] [Accepted: 04/20/2004] [Indexed: 10/26/2022]
Abstract
We showed marked sex differences in the GABA outflow in the medial preoptic area of intact rats. To further determine the sexually dimorphic effects of estrogen on the GABA outflow, an in vivo microdialysis study was performed in gonadectomized rats 3-5 days after the estrogen- or cholesterol-priming. Dialysates and sequential blood samples (150 microl each) were simultaneously collected under freely moving conditions. Serum estradiol concentrations at 72 and 84 h after the estrogen capsule implantation were approximately 75 pg/ml in both sexes. Ovariectomized estrogen-primed (OVX+E(2)) rats showed high GABA outflow from the late night through the morning, which was significantly declined until the onset of surge like secretion of luteinizing hormone (LH) in the afternoon (N=7). Ovariectomized cholesterol-primed (OVX+C) rats consistently showed low GABA outflow and high serum LH concentration (N=8). Conversely, orchidectomized estrogen-primed (ORX+E(2)) rats showed high and episodic GABA outflow without any daily changes (N=7), which was significantly greater than orchidectomized cholesterol-primed (ORX+C; N=8) and OVX+C rats. Only OVX+E(2) rats showed significant daily changes in the GABA outflow and serum LH concentration. Fitting with the double cosinor method demonstrated that the acrophase of the GABA outflow in OVX+E(2) rats occurs in the early morning, whereas the acrophases in OVX+C, ORX+C, and ORX+E(2) rats occur at various times of day. The present findings suggest that sex-specific effects of estrogen on the daily GABA release in the medial preoptic area may be involved in the sex difference of LH release in rats.
Collapse
|