1
|
Landwehr EH, Vivian LR, Papadeas GG, White EJ, Doster JM, Brenner NR, Selesky KM, Zilinski CA, Donovan AM, Farha SM, Lewellyn L, Beachboard DC, Kaschner S, Stobart CC. Comparative syncytia formation dynamics of coronavirus MHV-A59 and pneumovirus hRSV A2 and incorporation into improved kinetic virus replication models. J Gen Virol 2025; 106. [PMID: 39945736 DOI: 10.1099/jgv.0.002078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025] Open
Abstract
Replication models have been developed to describe the replication dynamics of a variety of viruses to better understand the kinetics and key contributing factors affecting infectivity and spread. However, accurate representations of the dynamics of virus replication observed in vitro and in vivo are often limited due to the failure of these models to account for both environmental influences, such as temperature, and the variety of possible mechanisms employed by viruses to spread. Several major families of viruses including paramyxoviruses, pneumoviruses and coronaviruses, induce and use the formation of syncytia, large multinucleated cell masses formed through fusion of cells, to aid in spread to neighbouring susceptible cells. In this study, we evaluate and compare both the dynamics and roles of temperature and syncytia formation on the replication of two different fusogenic viruses in vitro: human respiratory syncytial virus (hRSV) and a murine coronavirus, mouse hepatitis virus (MHV). Thermal stability, replication kinetics and both the rates and dynamics of syncytia formation were evaluated for hRSV and MHV. These data were then incorporated into a novel and improved replication model for each of the two viruses, which provides new insights into the contributions of both temperature and syncytia formation in the replication of fusogenic viruses.
Collapse
Affiliation(s)
- Emily H Landwehr
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
- Department of Mathematical Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Lyla R Vivian
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - George G Papadeas
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Ethan J White
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Jayden M Doster
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Nicholas R Brenner
- Department of Mathematical Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Kara M Selesky
- Department of Biology, DeSales University, Center Valley, PA 18034, USA
| | - Cora A Zilinski
- Department of Biology, DeSales University, Center Valley, PA 18034, USA
| | | | - Stefania M Farha
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Lindsay Lewellyn
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Dia C Beachboard
- Department of Biology, DeSales University, Center Valley, PA 18034, USA
| | - Scott Kaschner
- Department of Mathematical Sciences, Butler University, Indianapolis, IN 46208, USA
| | | |
Collapse
|
2
|
Atchison EB, Croft SN, Mathew C, Brookes DW, Coates M, Ito K, Ghildyal R. Interaction Between the Matrix Protein and the Polymerase Complex of Respiratory Syncytial Virus. Viruses 2024; 16:1881. [PMID: 39772190 PMCID: PMC11680393 DOI: 10.3390/v16121881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 01/04/2025] Open
Abstract
The global burden of respiratory syncytial virus (RSV) and severe associated disease is prodigious. RSV-specific vaccines have been launched recently but there is no antiviral medicine commercially available. RSV polymerase (L) protein is one of the promising antiviral targets, along with fusion and nucleocapsid proteins. During medicinal chemistry campaigns, two potent L-protein inhibitors (PC786 and PC751) were identified. Both compounds inhibited the RSV A/B-induced cytopathic effect in HEp-2 cells equally, but PC786 was more potent than PC751 in bronchial epithelial cells. Repeated treatment with escalating concentrations on RSV A2-infected HEp-2 cells revealed both inhibitors led to a Y1631H mutation in the L protein, but only PC786 induced a mutation in the M protein (V153A). By L protein fragment and M protein binding analysis, we showed that the M protein interacts with the 1392-1735 amino acid region of the L protein, where PC786 potentially binds. In addition, PC786 treatment or PC786-induced mutant RSV was found to increase M-protein nuclear localisation later in infection, concomitant with delayed fusion protein localisation at the budding viral filaments. As M protein is known to play a key role in virus assembly and budding late in infection, our data suggests that disrupting the interaction between the M and L proteins could provide a novel target for antiviral development.
Collapse
Affiliation(s)
- Elliot B. Atchison
- Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia; (E.B.A.); (S.N.C.); (C.M.)
| | - Sarah N. Croft
- Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia; (E.B.A.); (S.N.C.); (C.M.)
| | - Cynthia Mathew
- Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia; (E.B.A.); (S.N.C.); (C.M.)
| | | | - Matthew Coates
- Pulmocide Ltd., London WC2A 1AP, UK; (D.W.B.); (M.C.); (K.I.)
| | - Kazuhiro Ito
- Pulmocide Ltd., London WC2A 1AP, UK; (D.W.B.); (M.C.); (K.I.)
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Reena Ghildyal
- Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia; (E.B.A.); (S.N.C.); (C.M.)
| |
Collapse
|
3
|
Shahriari S, Ghildyal R. The actin-binding protein palladin associates with the respiratory syncytial virus matrix protein. J Virol 2024; 98:e0143524. [PMID: 39360826 PMCID: PMC11494977 DOI: 10.1128/jvi.01435-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/09/2024] [Indexed: 10/23/2024] Open
Abstract
The respiratory syncytial virus (RSV) matrix (M) protein plays an important role in infection as it can interact with viral components as well as the host cell actin microfilaments. The M-actin interaction may play a role in facilitating the transportation of virion components to the apical surface, where RSV is released. We show that M protein's association with actin is facilitated by palladin, an actin-binding protein. Cells were infected with RSV or transfected to express full-length M as a green fluorescent protein (GFP)-tagged protein, followed by removal of nuclear and cytosolic proteins to enrich for cytoskeleton and its associated proteins. M protein was present in inclusion bodies tethered to microfilaments in infected cells. In transfected cells, GFP-M was presented close to microfilaments, without association, suggesting the possible involvement of an additional protein in this interaction. As palladin can bind to proteins that also bind actin, we investigated its interaction with M. Cells were co-transfected to express GFP-M and palladin as an mCherry fluorescent-tagged protein, followed by cytoskeleton enrichment. M and palladin were observed to colocalize towards microfilaments, suggesting that palladin is involved in the M-actin interaction. In co-immunoprecipitation studies, M was found to associate with two isoforms of palladin, of 140 and 37 kDa. Interestingly, siRNA downregulation of palladin resulted in reduced titer of released RSV, while cell associated RSV titer increased, suggesting a role for palladin in virus release. Together, our data show that the M-actin interaction mediated by palladin is important for RSV budding and release.IMPORTANCERespiratory syncytial virus is responsible for severe lower respiratory tract infections in young children under 5 years old, the elderly, and the immunosuppressed. The interaction of the respiratory syncytial virus matrix protein with the host actin cytoskeleton is important in infection but has not been investigated in depth. In this study, we show that the respiratory syncytial virus matrix protein associates with actin microfilaments and the actin-binding protein palladin, suggesting a role for palladin in respiratory syncytial virus release. This study provides new insight into the role of the actin cytoskeleton in respiratory syncytial virus infection, a key host-RSV interaction in assembly. Understanding the mechanism by which the RSV M protein and actin interact will ultimately provide a basis for the development of therapeutics targeted at RSV infections.
Collapse
Affiliation(s)
- Shadi Shahriari
- Biomedical Research Cluster, Faculty of Science and Technology, University of Canberra, Canberra, Australia
| | - Reena Ghildyal
- Biomedical Research Cluster, Faculty of Science and Technology, University of Canberra, Canberra, Australia
| |
Collapse
|
4
|
Sugrue RJ, Tan BH. Defining the Assembleome of the Respiratory Syncytial Virus. Subcell Biochem 2023; 106:227-249. [PMID: 38159230 DOI: 10.1007/978-3-031-40086-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
During respiratory syncytial virus (RSV) particle assembly, the mature RSV particles form as filamentous projections on the surface of RSV-infected cells. The RSV assembly process occurs at the / on the cell surface that is modified by a virus infection, involving a combination of several different host cell factors and cellular processes. This induces changes in the lipid composition and properties of these lipid microdomains, and the virus-induced activation of associated Rho GTPase signaling networks drives the remodeling of the underlying filamentous actin (F-actin) cytoskeleton network. The modified sites that form on the surface of the infected cells form the nexus point for RSV assembly, and in this review chapter, they are referred to as the RSV assembleome. This is to distinguish these unique membrane microdomains that are formed during virus infection from the corresponding membrane microdomains that are present at the cell surface prior to infection. In this article, an overview of the current understanding of the processes that drive the formation of the assembleome during RSV particle assembly is given.
Collapse
Affiliation(s)
- Richard J Sugrue
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore.
| | - Boon Huan Tan
- LKC School of Medicine, Nanyang Technological University, Singapore, Republic of Singapore
| |
Collapse
|
5
|
Manti S, Piedimonte G. An overview on the RSV-mediated mechanisms in the onset of non-allergic asthma. Front Pediatr 2022; 10:998296. [PMID: 36204661 PMCID: PMC9530042 DOI: 10.3389/fped.2022.998296] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/19/2022] [Indexed: 12/13/2022] Open
Abstract
Respiratory syncytial virus (RSV) infection is recognized as an important risk factor for wheezing and asthma, since it commonly affects babies during lung development. While the role of RSV in the onset of atopic asthma is widely recognized, its impact on the onset of non-atopic asthma, mediated via other and independent causal pathways, has long been also suspected, but the association is less clear. Following RSV infection, the release of local pro-inflammatory molecules, the dysfunction of neural pathways, and the compromised epithelial integrity can become chronic and influence airway development, leading to bronchial hyperreactivity and asthma, regardless of atopic status. After a brief review of the RSV structure and its interaction with the immune system and neuronal pathways, this review summarizes the current evidence about the RSV-mediated pathogenic pathways in predisposing and inducing airway dysfunction and non-allergic asthma development.
Collapse
Affiliation(s)
- Sara Manti
- Pediatric Pulmonology Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Pediatric Unit, Department of Human Pathology of Adult and Childhood Gaetano Barresi, University of Messina, Messina, Italy
| | - Giovanni Piedimonte
- Department of Pediatrics, Biochemistry and Molecular Biology, Tulane University, New Orleans, LA, United States
| |
Collapse
|
6
|
Bivalirudin exerts antiviral activity against respiratory syncytial virus-induced lung infections in neonatal mice. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2022; 72:415-425. [PMID: 36651544 DOI: 10.2478/acph-2022-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 01/26/2023]
Abstract
Respiratory syncytial virus (RSV) is the most common cause of small airways inflammation in the lungs (bronchiolitis) in neonates and immunocompromised adults. The deregulation of cellular and plasma components leads to increased morbidity and mortality. The activation of the clotting cascade plays a key role in the progression of disease severity during viral infection. The current investigation studied the effect of bivalirudin (BR) on the progression and cellular effects of RSV-induced infection in the neonatal mice model. Mice (5-7 days old) were inoculated intranasally with RSV with or without BR administration (2 mg kg-1 day-1, i.v.) for 2 weeks. Tissue histopathology, inflammatory signalling genes such as TLR, and cytokines were analyzed. The results showed pneumocytes exhibiting nuclear pyknosis, cellular infiltration in lung tissue and increased lung titers in RSV-infected mice compared to the control. Furthermore, RSV-infected mice demonstrated altered clotting parameters such as D-dimer, soluble thrombomodulin, and increased inflammatory cytokines IL-5, 6, IFN-γ, IL-13, and CXCL1. Additionally, the mRNA expression analysis displayed increased levels of IL-33, TLR3, and TLR7 genes in RSV-infected lung tissue. Further, to delineate the role of micro RNAs, the qRT-PCR analysis was done, and the results displayed an increase in miR-136, miR-30b, and let-7i. At the same time, the down-regulated expression of miR-221 in RSV-infected mice compared to the control. BR treatment reduced the cellular infiltration with reduced inflammatory cytokines and normalized clotting indices. Thus, the study shows that RSV infection induces specific changes in lung tissue and the clotting related signalling mechanism. Additionally, BR treatment significantly reduces bronchiolitis and prevents the severity of the infections suggesting that BR can possibly be used to reduce the viral-mediated infections in neonates.
Collapse
|
7
|
Paluck A, Osan J, Hollingsworth L, Talukdar SN, Saegh AA, Mehedi M. Role of ARP2/3 Complex-Driven Actin Polymerization in RSV Infection. Pathogens 2021; 11:26. [PMID: 35055974 PMCID: PMC8781601 DOI: 10.3390/pathogens11010026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 01/30/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the leading viral agent causing bronchiolitis and pneumonia in children under five years old worldwide. The RSV infection cycle starts with macropinocytosis-based entry into the host airway epithelial cell membrane, followed by virus transcription, replication, assembly, budding, and spread. It is not surprising that the host actin cytoskeleton contributes to different stages of the RSV replication cycle. RSV modulates actin-related protein 2/3 (ARP2/3) complex-driven actin polymerization for a robust filopodia induction on the infected lung epithelial A549 cells, which contributes to the virus's budding, and cell-to-cell spread. Thus, a comprehensive understanding of RSV-induced cytoskeletal modulation and its role in lung pathobiology may identify novel intervention strategies. This review will focus on the role of the ARP2/3 complex in RSV's pathogenesis and possible therapeutic targets to the ARP2/3 complex for RSV.
Collapse
Affiliation(s)
- Autumn Paluck
- School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (A.P.); (J.O.); (L.H.); (S.N.T.); (A.A.S.)
| | - Jaspreet Osan
- School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (A.P.); (J.O.); (L.H.); (S.N.T.); (A.A.S.)
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lauren Hollingsworth
- School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (A.P.); (J.O.); (L.H.); (S.N.T.); (A.A.S.)
| | - Sattya Narayan Talukdar
- School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (A.P.); (J.O.); (L.H.); (S.N.T.); (A.A.S.)
| | - Ali Al Saegh
- School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (A.P.); (J.O.); (L.H.); (S.N.T.); (A.A.S.)
| | - Masfique Mehedi
- School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (A.P.); (J.O.); (L.H.); (S.N.T.); (A.A.S.)
| |
Collapse
|
8
|
Ravi LI, Tan TJ, Tan BH, Sugrue RJ. Virus-induced activation of the rac1 protein at the site of respiratory syncytial virus assembly is a requirement for virus particle assembly on infected cells. Virology 2021; 557:86-99. [PMID: 33677389 DOI: 10.1016/j.virol.2021.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/17/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
The distributions of the rac1, rhoA and cdc42 proteins in respiratory syncytial virus (RSV) infected cells was examined. All three rhoGTPases were detected within inclusion bodies, and while the rhoA and rac1 proteins were associated with virus filaments, only the rac1 protein was localised throughout the virus filaments. RSV infection led to increased rac1 protein activation, and using the rac1 protein inhibitor NS23766 we provided evidence that the increased rac1 activation occurred at the site of RSV assembly and facilitated F-actin remodeling during virus morphogenesis. A non-infectious virus-like particle (VLP) assay showed that the RSV VLPs formed in lipid-raft microdomains containing the rac1 protein, together with F-actin and filamin-1 (cell proteins associated with virus filaments). This provided evidence that the virus envelope proteins are trafficked to membrane microdomains containing the rac1 protein. Collectively, these data provide evidence that the rac1 protein plays a direct role in the RSV assembly process.
Collapse
Affiliation(s)
- Laxmi Iyer Ravi
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Timothy J Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Boon Huan Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore; Defense Medical and Environment Research Institute, DSO National Laboratories, 27 Medical Drive, 117510, Singapore; Infection and Immunity, Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Richard J Sugrue
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore.
| |
Collapse
|
9
|
Respiratory Syncytial Virus and Human Metapneumovirus Infections in Three-Dimensional Human Airway Tissues Expose an Interesting Dichotomy in Viral Replication, Spread, and Inhibition by Neutralizing Antibodies. J Virol 2020; 94:JVI.01068-20. [PMID: 32759319 DOI: 10.1128/jvi.01068-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
Respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) are two of the leading causes of respiratory infections in children and elderly and immunocompromised patients worldwide. There is no approved treatment for HMPV and only one prophylactic treatment against RSV, palivizumab, for high-risk infants. Better understanding of the viral lifecycles in a more relevant model system may help identify novel therapeutic targets. By utilizing three-dimensional (3-D) human airway tissues to examine viral infection in a physiologically relevant model system, we showed that RSV infects and spreads more efficiently than HMPV, with the latter requiring higher multiplicities of infection (MOIs) to yield similar levels of infection. Apical ciliated cells were the target for both viruses, but RSV apical release was significantly more efficient than HMPV. In RSV- or HMPV-infected cells, cytosolic inclusion bodies containing the nucleoprotein, phosphoprotein, and respective viral genomic RNA were clearly observed in human airway epithelial (HAE) culture. In HMPV-infected cells, actin-based filamentous extensions were more common (35.8%) than those found in RSV-infected cells (4.4%). Interestingly, neither RSV nor HMPV formed syncytia in HAE tissues. Palivizumab and nirsevimab effectively inhibited entry and spread of RSV in HAE tissues, with nirsevimab displaying significantly higher potency than palivizumab. In contrast, 54G10 completely inhibited HMPV entry but only modestly reduced viral spread, suggesting HMPV may use alternative mechanisms for spread. These results represent the first comparative analysis of infection by the two pneumoviruses in a physiologically relevant model, demonstrating an interesting dichotomy in the mechanisms of infection, spread, and consequent inhibition of the viral lifecycles by neutralizing monoclonal antibodies.IMPORTANCE Respiratory syncytial virus and human metapneumovirus are leading causes of respiratory illness worldwide, but limited treatment options are available. To better target these viruses, we examined key aspects of the viral life cycle in three-dimensional (3-D) human airway tissues. Both viruses establish efficient infection through the apical surface, but efficient spread and apical release were seen for respiratory syncytial virus (RSV) but not human metapneumovirus (HMPV). Both viruses form inclusion bodies, minimally composed of nucleoprotein (N), phosphoprotein (P), and viral RNA (vRNA), indicating that these structures are critical for replication in this more physiological model. HMPV formed significantly more long, filamentous actin-based extensions in human airway epithelial (HAE) tissues than RSV, suggesting HMPV may promote cell-to-cell spread via these extensions. Lastly, RSV entry and spread were fully inhibited by neutralizing antibodies palivizumab and the novel nirsevimab. In contrast, while HMPV entry was fully inhibited by 54G10, a neutralizing antibody, spread was only modestly reduced, further supporting a cell-to-cell spread mechanism.
Collapse
|
10
|
Ajamian F, Ilarraza R, Wu Y, Morris K, Odemuyiwa SO, Moqbel R, Adamko DJ. CCL5 persists in RSV stocks following sucrose-gradient purification. J Leukoc Biol 2020; 108:169-176. [PMID: 32450617 DOI: 10.1002/jlb.4ma0320-621r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/18/2020] [Accepted: 04/07/2020] [Indexed: 11/10/2022] Open
Abstract
Respiratory syncytial virus (RSV) is associated with bronchiolitis in infancy and the later development of asthma. Research on RSV in vitro requires preparation of a purified RSV stock. The objective for this work was to develop best methods for RSV purification, while monitoring the samples for potential contaminating proinflammatory mediators. Using polyethylene glycol concentration, and sucrose-gradient ultracentrifugation, we collected samples at each step of purification and measured the values of RSV titer, total protein (µg/mL), and proinflammatory cytokines (ELISA). We analyzed the efficacy of each step in the purification procedure. In so doing, we also determined that despite optimal purification methods, a well-known chemokine in the field of allergic disease, CCL5 (RANTES), persisted within the virus preparations, whereas other cytokines did not. We suggest that researchers should be aware that CCL5 appears to co-purify with RSV. Despite reasonable purification methods, a significant level of CCL5 (RANTES) persists in the virus preparation. This is relevant to the study of RSV-induced allergic disease.
Collapse
Affiliation(s)
- Farnam Ajamian
- Departments of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Ramses Ilarraza
- Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Yingqi Wu
- Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Katherine Morris
- Departments of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | - Redwan Moqbel
- Departments of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Darryl J Adamko
- Departments of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Departments of Pediatrics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
11
|
To assemble or not to assemble: The changing rules of pneumovirus transmission. Virus Res 2019; 265:68-73. [PMID: 30844414 DOI: 10.1016/j.virusres.2019.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/01/2019] [Indexed: 01/07/2023]
Abstract
Pneumoviruses represent a major public health burden across the world. Respiratory syncytial virus (RSV) and human metapneumovirus (HMPV), two of the most recognizable pediatric infectious agents, belong to this family. These viruses are enveloped with a non-segmented negative-sense RNA genome, and their replication occurs in specialized cytosolic organelles named inclusion bodies (IB). The critical role of IBs in replication of pneumoviruses has begun to be elucidated, and our current understanding suggests they are highly dynamic structures. From IBs, newly synthesized nucleocapsids are transported to assembly sites, potentially via the actin cytoskeleton, to be incorporated into nascent virions. Released virions, which generally contain one genome, can then diffuse in the extracellular environment to target new cells and reinitiate the process of infection. This is a challenging business for virions, which must face several risks including the extracellular immune responses. In addition, several recent studies suggest that successful infection may be achieved more rapidly by multiple, rather than single, genomic copies being deposited into a target cell. Interestingly, recent data indicate that pneumoviruses have several mechanisms that permit their transmission en bloc, i.e. transmission of multiple genomes at the same time. These mechanisms include the well-studied syncytia formation as well as the newly described formation of long actin-based intercellular extensions. These not only permit en bloc viral transmission, but also bypass assembly of complete virions. In this review we describe several aspects of en bloc viral transmission and how these mechanisms are reshaping our understanding of pneumovirus replication, assembly and spread.
Collapse
|
12
|
Shimojo G, Joseph B, Shah R, Consolim-Colombo FM, De Angelis K, Ulloa L. Exercise activates vagal induction of dopamine and attenuates systemic inflammation. Brain Behav Immun 2019; 75:181-191. [PMID: 30394312 PMCID: PMC6334665 DOI: 10.1016/j.bbi.2018.10.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/26/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022] Open
Abstract
Physical exercise is one of the most important factors improving quality of life, but it is not feasible for patients with morbidity or limited mobility. Most previous studies focused on high-intensity or long-term exercise that causes metabolic stress or physiological adaption, respectively. Here, we studied how moderate-intensity swimming affects systemic inflammation in 6-8 week old C57BL/6J male mice during endotoxemia. One-hour swimming prevented hypokalemia, hypocalcemia, attenuated serum levels of inflammatory cytokines, increased anti-inflammatory cytokines but affected neither IL6 nor glycemia before or after the endotoxic challenge. Exercise attenuated serum TNF levels by inhibiting its production in the spleen through a mechanism mediated by the subdiaphragmatic vagus nerve but independent of the splenic nerve. Exercise increased serum levels of dopamine, and adrenalectomy prevented the potential of exercise to induce dopamine and to attenuate serum TNF levels. Dopaminergic agonist type-1, fenoldopam, inhibited TNF production in splenocytes. Conversely, dopaminergic antagonist type-1, butaclamol, attenuated exercise control of serum TNF levels. These results suggest that vagal induction of dopamine may contribute to the anti-inflammatory potential of physical exercise.
Collapse
Affiliation(s)
- Guilherme Shimojo
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA; Nove de Julho University (UNINOVE), Sao Paulo, Brazil
| | - Biju Joseph
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| | - Roshan Shah
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| | - Fernanda M Consolim-Colombo
- Nove de Julho University (UNINOVE), Sao Paulo, Brazil; Hypertension Unit, Heart Institute (INCOR) School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Kátia De Angelis
- Nove de Julho University (UNINOVE), Sao Paulo, Brazil; Department of Physiology, Federal University of Sao Paulo (UNIFESP), Brazil
| | - Luis Ulloa
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA; Center for Immunity and Inflammation, Rutgers-New Jersey Medical School, Rutgers Biomedical Health Sciences, Newark, NJ 07103, USA.
| |
Collapse
|
13
|
Snape N, Li D, Wei T, Jin H, Lor M, Rawle DJ, Spann KM, Harrich D. The eukaryotic translation elongation factor 1A regulation of actin stress fibers is important for infectious RSV production. Virol J 2018; 15:182. [PMID: 30477508 PMCID: PMC6260765 DOI: 10.1186/s12985-018-1091-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023] Open
Abstract
Cellular protein eukaryotic translation elongation factor 1A (eEF1A) is an actin binding protein that plays a role in the formation of filamentous actin (F-actin) bundles. F-Actin regulates multiple stages of respiratory syncytial virus (RSV) replication including assembly and budding. Our previous study demonstrated that eEF1A knock-down significantly reduced RSV replication. Here we investigated if the eEF1A function in actin bundle formation was important for RSV replication and release. To investigate this, eEF1A function was impaired in HEp-2 cells by either knock-down of eEF1A with siRNA, or treatment with an eEF1A inhibitor, didemnin B (Did B). Cell staining and confocal microscopy analysis showed that both eEF1A knock-down and treatment with Did B resulted in disruption of cellular stress fiber formation and elevated accumulation of F-actin near the plasma membrane. When treated cells were then infected with RSV, there was also reduced formation of virus-induced cellular filopodia. Did B treatment, similarly to eEF1A knock-down, reduced the release of infectious RSV, but unlike eEF1A knock-down, did not significantly affect RSV genome replication. The lower infectious virus production in Did B treated cells also reduced RSV-induced cell death. In conclusion, the cellular factor eEF1A plays an important role in the regulation of F-actin stress fiber formation required for RSV assembly and release.
Collapse
Affiliation(s)
- Natale Snape
- Faculty of Medicine, The University of Queensland Diamantina Institute, Brisbane, Australia
| | - Dongsheng Li
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Qld, Herston, 4029 Australia
| | - Ting Wei
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Qld, Herston, 4029 Australia
| | - Hongping Jin
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Qld, Herston, 4029 Australia
| | - Mary Lor
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Qld, Herston, 4029 Australia
| | - Daniel J. Rawle
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Qld, Herston, 4029 Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Qld, St. Lucia, 4072 Australia
| | - Kirsten M. Spann
- School of Biomedical Science and Institute of Health and Biomedical Innovation at the Centre for Children’s Health Research, Queensland University of Technology, Qld, Brisbane, 4101 Australia
| | - David Harrich
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Qld, Herston, 4029 Australia
| |
Collapse
|
14
|
Ohta K, Matsumoto Y, Yumine N, Nishio M. The V protein of human parainfluenza virus type 2 promotes RhoA-induced filamentous actin formation. Virology 2018; 524:90-96. [DOI: 10.1016/j.virol.2018.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 10/28/2022]
|
15
|
Sviben D, Forcic D, Halassy B, Allmaier G, Marchetti-Deschmann M, Brgles M. Mass spectrometry-based investigation of measles and mumps virus proteome. Virol J 2018; 15:160. [PMID: 30326905 PMCID: PMC6192076 DOI: 10.1186/s12985-018-1073-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 10/02/2018] [Indexed: 02/08/2023] Open
Abstract
Background Measles (MEV) and mumps virus (MUV) are enveloped, non-segmented, negative single stranded RNA viruses of the family Paramyxoviridae, and are the cause of measles and mumps, respectively, both preventable by vaccination. Aside from proteins coded by the viral genome, viruses are considered to contain host cell proteins (HCPs). The presence of extracellular vesicles (ECVs), which are often co-purified with viruses due to their similarity in size, density and composition, also contributes to HCPs detected in virus preparations, and this has often been neglected. The aim was to identify which virus-coded proteins are present in MEV and MUV virions, and to try to detect which HCPs, if any, are incorporated inside the virions or adsorbed on their outer surface, and which are more likely to be a contamination from co-purified ECVs. Methods MUV, MEV and ECVs were purified by ultracentrifugation, hydrophobic interaction chromatography and immunoaffinity chromatography, proteins in the samples were resolved by SDS-PAGE and subjected to identification by MALDI-TOF/TOF-MS. A comparative analysis of HCPs present in all samples was carried out. Results By proteomics approach, it was verified that almost all virus-coded proteins are present in MEV and MUV particles. Protein C in MEV which was until now considered to be non-structural viral protein, was found to be present inside the MeV virions. Results on the presence of HCPs in differently purified virus preparations imply that actin, annexins, cyclophilin A, moesin and integrin β1 are part of the virions. Conclusions All HCPs detected in the viruses are present in ECVs as well, indicating their possible function in vesicle formation, or that most of them are only present in ECVs. Only five HCPs were constantly present in purified virus preparations, regardless of the purification method used, implying they are likely the integral part of the virions. The approach described here is helpful for further investigation of HCPs in other virus preparations. Electronic supplementary material The online version of this article (10.1186/s12985-018-1073-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dora Sviben
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, HR-10 000, Zagreb, Croatia. .,Centre of Excellence for Viral Immunology and Vaccines, CERVirVac, Zagreb, Croatia.
| | - Dubravko Forcic
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, HR-10 000, Zagreb, Croatia.,Centre of Excellence for Viral Immunology and Vaccines, CERVirVac, Zagreb, Croatia
| | - Beata Halassy
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, HR-10 000, Zagreb, Croatia.,Centre of Excellence for Viral Immunology and Vaccines, CERVirVac, Zagreb, Croatia
| | - Günter Allmaier
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, AT-1060, Vienna, Austria
| | | | - Marija Brgles
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, HR-10 000, Zagreb, Croatia.,Centre of Excellence for Viral Immunology and Vaccines, CERVirVac, Zagreb, Croatia
| |
Collapse
|
16
|
Shahriari S, Wei KJ, Ghildyal R. Respiratory Syncytial Virus Matrix (M) Protein Interacts with Actin In Vitro and in Cell Culture. Viruses 2018; 10:v10100535. [PMID: 30274351 PMCID: PMC6213044 DOI: 10.3390/v10100535] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/24/2018] [Accepted: 09/28/2018] [Indexed: 01/26/2023] Open
Abstract
The virus–host protein interactions that underlie respiratory syncytial virus (RSV) assembly are still not completely defined, despite almost 60 years of research. RSV buds from the apical surface of infected cells, once virion components have been transported to the budding sites. Association of RSV matrix (M) protein with the actin cytoskeleton may play a role in facilitating this transport. We have investigated the interaction of M with actin in vitro and cell culture. Purified wildtype RSV M protein was found to bind directly to polymerized actin in vitro. Vero cells were transfected to express full-length M (1–256) as a green fluorescent protein-(GFP) tagged protein, followed by treatment with the microfilament destabilizer, cytochalasin D. Destabilization of the microfilament network resulted in mislocalization of full-length M, from mostly cytoplasmic to diffused across both cytoplasm and nucleus, suggesting that M interacts with microfilaments in this system. Importantly, treatment of RSV-infected cells with cytochalasin D results in lower infectious virus titers, as well as mislocalization of M to the nucleus. Finally, using deletion mutants of M in a transfected cell system, we show that both the N- and C-terminus of the protein are required for the interaction. Together, our data suggest a possible role for M–actin interaction in transporting virion components in the infected cell.
Collapse
Affiliation(s)
- Shadi Shahriari
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra ACT 2617, Australia.
| | - Ke-Jun Wei
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra ACT 2617, Australia.
| | - Reena Ghildyal
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra ACT 2617, Australia.
| |
Collapse
|
17
|
Ludwig A, Nguyen TH, Leong D, Ravi LI, Tan BH, Sandin S, Sugrue RJ. Caveolae provide a specialized membrane environment for respiratory syncytial virus assembly. J Cell Sci 2017; 130:1037-1050. [PMID: 28154158 PMCID: PMC5358342 DOI: 10.1242/jcs.198853] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/26/2017] [Indexed: 12/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is an enveloped virus that assembles into filamentous virus particles on the surface of infected cells. Morphogenesis of RSV is dependent upon cholesterol-rich (lipid raft) membrane microdomains, but the specific role of individual raft molecules in RSV assembly is not well defined. Here, we show that RSV morphogenesis occurs within caveolar membranes and that both caveolin-1 and cavin-1 (also known as PTRF), the two major structural and functional components of caveolae, are actively recruited to and incorporated into the RSV envelope. The recruitment of caveolae occurred just prior to the initiation of RSV filament assembly, and was dependent upon an intact actin network as well as a direct physical interaction between caveolin-1 and the viral G protein. Moreover, cavin-1 protein levels were significantly increased in RSV-infected cells, leading to a virus-induced change in the stoichiometry and biophysical properties of the caveolar coat complex. Our data indicate that RSV exploits caveolae for its assembly, and we propose that the incorporation of caveolae into the virus contributes to defining the biological properties of the RSV envelope.
Collapse
Affiliation(s)
- Alexander Ludwig
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Tra Huong Nguyen
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Daniel Leong
- Detection and Diagnostics Laboratory, DSO National Laboratories, 27 Medical Drive, Singapore 117510
| | - Laxmi Iyer Ravi
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Boon Huan Tan
- Detection and Diagnostics Laboratory, DSO National Laboratories, 27 Medical Drive, Singapore 117510
| | - Sara Sandin
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Richard J Sugrue
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
18
|
Mehedi M, McCarty T, Martin SE, Le Nouën C, Buehler E, Chen YC, Smelkinson M, Ganesan S, Fischer ER, Brock LG, Liang B, Munir S, Collins PL, Buchholz UJ. Actin-Related Protein 2 (ARP2) and Virus-Induced Filopodia Facilitate Human Respiratory Syncytial Virus Spread. PLoS Pathog 2016; 12:e1006062. [PMID: 27926942 PMCID: PMC5142808 DOI: 10.1371/journal.ppat.1006062] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/14/2016] [Indexed: 11/19/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is an enveloped RNA virus that is the most important viral cause of acute pediatric lower respiratory tract illness worldwide, and lacks a vaccine or effective antiviral drug. The involvement of host factors in the RSV replicative cycle remains poorly characterized. A genome-wide siRNA screen in human lung epithelial A549 cells identified actin-related protein 2 (ARP2) as a host factor involved in RSV infection. ARP2 knockdown did not reduce RSV entry, and did not markedly reduce gene expression during the first 24 hr of infection, but decreased viral gene expression thereafter, an effect that appeared to be due to inhibition of viral spread to neighboring cells. Consistent with reduced spread, there was a 10-fold reduction in the release of infectious progeny virions in ARP2-depleted cells at 72 hr post-infection. In addition, we found that RSV infection induced filopodia formation and increased cell motility in A549 cells and that this phenotype was ARP2 dependent. Filopodia appeared to shuttle RSV to nearby uninfected cells, facilitating virus spread. Expression of the RSV F protein alone from a plasmid or heterologous viral vector in A549 cells induced filopodia, indicating a new role for the RSV F protein, driving filopodia induction and virus spread. Thus, this study identified roles for ARP2 and filopodia in RSV-induced cell motility, RSV production, and RSV cell-to-cell spread.
Collapse
Affiliation(s)
- Masfique Mehedi
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas McCarty
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Scott E. Martin
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, Rockville, Maryland, United States of America
| | - Cyril Le Nouën
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eugen Buehler
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, Rockville, Maryland, United States of America
| | - Yu-Chi Chen
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, Rockville, Maryland, United States of America
| | - Margery Smelkinson
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sundar Ganesan
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Elizabeth R. Fischer
- Microscopy Unit, Rocky Mountain Laboratories, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Linda G. Brock
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bo Liang
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shirin Munir
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter L. Collins
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ursula J. Buchholz
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
19
|
Shahriari S, Gordon J, Ghildyal R. Host cytoskeleton in respiratory syncytial virus assembly and budding. Virol J 2016; 13:161. [PMID: 27670781 PMCID: PMC5037899 DOI: 10.1186/s12985-016-0618-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/17/2016] [Indexed: 12/02/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the major pathogens responsible for lower respiratory tract infections (LRTI) in young children, the elderly, and the immunosuppressed. Currently, there are no antiviral drugs or vaccines available that effectively target RSV infections, proving a significant challenge in regards to prevention and treatment. An in-depth understanding of the host-virus interactions that underlie assembly and budding would inform new targets for antiviral development.Current research suggests that the polymerised form of actin, the filamentous or F-actin, plays a role in RSV assembly and budding. Treatment with cytochalasin D, which disrupts F-actin, has been shown to inhibit virus release. In addition, the actin cytoskeleton has been shown to interact with the RSV matrix (M) protein, which plays a central role in RSV assembly. For this reason, the interaction between these two components is hypothesised to facilitate the movement of viral components in the cytoplasm and to the budding site. Despite increases in our knowledge of RSV assembly and budding, M-actin interactions are not well understood. In this review, we discuss the current literature on the role of actin cytoskeleton during assembly and budding of RSV with the aim to integrate disparate studies to build a hypothetical model of the various molecular interactions between actin and RSV M protein that facilitate RSV assembly and budding.
Collapse
Affiliation(s)
- Shadi Shahriari
- Respiratory Virology Group, Health Research Institute, Faculty of Education, Science, Technology and Mathematics, University of Canberra, Canberra, 2617, Australia
| | - James Gordon
- Respiratory Virology Group, Health Research Institute, Faculty of Education, Science, Technology and Mathematics, University of Canberra, Canberra, 2617, Australia
| | - Reena Ghildyal
- Respiratory Virology Group, Health Research Institute, Faculty of Education, Science, Technology and Mathematics, University of Canberra, Canberra, 2617, Australia.
| |
Collapse
|
20
|
Huong TN, Iyer Ravi L, Tan BH, Sugrue RJ. Evidence for a biphasic mode of respiratory syncytial virus transmission in permissive HEp2 cell monolayers. Virol J 2016; 13:12. [PMID: 26790623 PMCID: PMC4719537 DOI: 10.1186/s12985-016-0467-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/12/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During respiratory syncytial virus (RSV) infection filamentous virus particles are formed on the cell surface. Although the virus infectivity remains cell-associated, low levels of cell-free virus is detected during advanced infection. It is currently unclear if this cell-free virus infectivity is due to a low-efficiency specific cell-release mechanism, or if it arises due to mechanical breakage following virus-induced cell damage at the advanced stage of infection. Understanding the origin of this cell-free virus is a prerequisite for understanding the mechanism of RSV transmission in permissive cells. In this study we describe a detailed examination of RSV transmission in permissive HEp2 cell monolayers. METHODS HEp2 cell monolayers were infected with RSV using a multiplicity of infection of 0.0002, and the course of infection monitored over 5 days. The progression of the virus infection within the cell monolayers was performed using bright-field microscopy to visualise the cell monolayer and immunofluorescence microscopy to detect virus-infected cells. The cell-associated and cell-free virus infectivity were determined by virus plaque assay, and the virus-induced cell cytotoxicity determined by measuring cell membrane permeability and cellular DNA fragmentation. RESULTS At 2 days-post infection (dpi), large clusters of virus-infected cells could be detected indicating localised transmission in the cell monolayer, and during this stage we failed to detect either cell-free virus or cell cytotoxicity. At 3 dpi the presence of much larger infected cell clusters correlated with the begining of virus-induced changes in cell permeability. The presence of cell-free virus correlated with continued increase in cell permeability and cytotoxicity at 4 and 5 dpi. At 5 dpi extensive cell damage, syncytial formation, and increased cellular DNA fragmentation was noted. However, even at 5 dpi the cell-free virus constituted less than 1 % of the total virus infectivity. CONCLUSIONS Our data supports a model of RSV transmission that initially involves the localised cell-to-cell spread of virus particles within the HEp2 cell monolayer. However, low levels of cell free-virus infectivity was observed at the advanced stages of infection, which correlated with a general loss in cell monolayer integrity due to virus-induced cytotoxicity.
Collapse
Affiliation(s)
- Tra Nguyen Huong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| | - Laxmi Iyer Ravi
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| | - Boon Huan Tan
- Detection and Diagnostics Laboratory, DSO National Laboratories, 27 Medical Drive, Singapore, 117510, Singapore.
| | - Richard J Sugrue
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
21
|
Brgles M, Bonta M, Šantak M, Jagušić M, Forčić D, Halassy B, Allmaier G, Marchetti-Deschmann M. Identification of mumps virus protein and lipid composition by mass spectrometry. Virol J 2016; 13:9. [PMID: 26768080 PMCID: PMC4712546 DOI: 10.1186/s12985-016-0463-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 01/05/2016] [Indexed: 01/19/2023] Open
Abstract
Background Mumps virus is a negative-sense, single stranded RNA virus consisting of a ribonucleocapsid core enveloped by a lipid membrane derived from host cell, which causes mumps disease preventable by vaccination. Since virus lipid envelope and glycosylation pattern are not encoded by the virus but dependent on the host cell at least to some extent, the aim of this work was to analyse L-Zagreb (L-Zg) mumps virus lipids and proteins derived from two cell types; Vero and chicken embryo fibroblasts (CEF). Jeryl Lynn 5 (JL5) mumps strain lipids were also analysed. Methods Virus lipids were isolated by organic phase extraction and subjected to 2D-high performance thin layer chromatography followed by lipid extraction and identification by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Virus samples were also subjected to gel electrophoresis under denaturating conditions and protein bands were excised, in-gel trypsinized and identified by MS as well as tandem MS. Results Results showed that lipids of both mumps virus strains derived from Vero cells contained complex glycolipids with up to five monosaccharide units whereas the lipid pattern of mumps virus derived from CEF was less complex. Mumps virus was found to contain expected structural proteins with exception of fusion (F) protein which was not detected but on the other hand, V protein was detected. Most interesting finding related to the mumps proteins is the detection of several forms of nucleoprotein (NP), some of which appear to be C-terminally truncated. Conclusions Differences found in lipid and protein content of mumps virus demonstrated the importance of detailed biochemical characterization of mumps virus and the methodology described here could provide a means for a more comprehensive quality control in vaccine production. Electronic supplementary material The online version of this article (doi:10.1186/s12985-016-0463-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marija Brgles
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, HR-10000, Zagreb, Croatia. .,Center of Excellence for Viral Immunology and Vaccines, CERVirVac, Rijeka, Zagreb, Croatia.
| | - Maximilian Bonta
- Vienna University of Technology, Institute of Chemical Technologies and Analytics, A-1060, Vienna, Austria.
| | - Maja Šantak
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, HR-10000, Zagreb, Croatia. .,Center of Excellence for Viral Immunology and Vaccines, CERVirVac, Rijeka, Zagreb, Croatia.
| | - Maja Jagušić
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, HR-10000, Zagreb, Croatia. .,Center of Excellence for Viral Immunology and Vaccines, CERVirVac, Rijeka, Zagreb, Croatia.
| | - Dubravko Forčić
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, HR-10000, Zagreb, Croatia. .,Center of Excellence for Viral Immunology and Vaccines, CERVirVac, Rijeka, Zagreb, Croatia.
| | - Beata Halassy
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, HR-10000, Zagreb, Croatia. .,Center of Excellence for Viral Immunology and Vaccines, CERVirVac, Rijeka, Zagreb, Croatia.
| | - Günter Allmaier
- Vienna University of Technology, Institute of Chemical Technologies and Analytics, A-1060, Vienna, Austria.
| | | |
Collapse
|
22
|
Morphogenesis of respiratory syncytial virus in human primary nasal ciliated epithelial cells occurs at surface membrane microdomains that are distinct from cilia. Virology 2015; 484:395-411. [DOI: 10.1016/j.virol.2015.05.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/12/2015] [Accepted: 05/19/2015] [Indexed: 11/21/2022]
|
23
|
High throughput proteomic analysis and a comparative review identify the nuclear chaperone, Nucleophosmin among the common set of proteins modulated in Chikungunya virus infection. J Proteomics 2015; 120:126-41. [PMID: 25782748 PMCID: PMC7102674 DOI: 10.1016/j.jprot.2015.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/14/2015] [Accepted: 03/04/2015] [Indexed: 01/14/2023]
Abstract
Global re-emergence of Chikungunya virus (CHIKV) has renewed the interest in its cellular pathogenesis. We subjected CHIKV-infected Human Embryo Kidney cells (HEK293), a widely used cell-based system for CHIKV infection studies, to a high throughput expression proteomics analysis by Liquid Chromatography–tandem mass spectrometry. A total of 1047 differentially expressed proteins were identified in infected cells, consistently in three biological replicates. Proteins involved in transcription, translation, apoptosis and stress response were the major ones among the 209 proteins that had significant up-regulation. In the set of 45 down-regulated proteins, those involved in carbohydrate and lipid metabolism predominated. A STRING network analysis revealed tight interaction of proteins within the apoptosis, stress response and protein synthesis pathways. We short-listed a common set of 30 proteins that can be implicated in cellular pathology of CHIKV infection by comparing our results and results of earlier CHIKV proteomics studies. Modulation of eight proteins selected from this set was re-confirmed at transcript level. One among them, Nucleophosmin, a nuclear chaperone, showed temporal modulation and cytoplasmic aggregation upon CHIKV infection in double immunofluorescence staining and confocal microscopy. The short-listed cellular proteins will be potential candidates for targeted study of the molecular interactions of CHIKV with host cells. Biological significance Chikungunya remained as a neglected tropical disease till its re-emergence in 2005 in the La RéUnion islands and subsequently, in India and many parts of South East Asia. These and the epidemics that followed in subsequent years ran an explosive course leading to extreme morbidity and attributed mortality to this originally benign virus infection. Apart from classical symptoms of acute fever and debilitating polyarthralgia lasting for several weeks, a number of complications were documented. These included aphthous-like ulcers and vesiculo-bullous eruptions on the skin, hepatic involvement, central nervous system complications such as encephalopathy and encephalitis, and transplacental transmission. The disease has recently spread to the Americas with its initial documentation in the Caribbean islands. The Asian genotype of this positive-stranded RNA virus of the Alphavirus genus has been attributed in these outbreaks. However, the disease ran a similar course as the one caused by the East, Central and South African (ECSA) genotype in the other parts of the world. Studies have documented a number of mutations in the re-emerging strains of the virus that enhances mosquito adaptability and modulates virus infectivity. This might support the occurrence of fiery outbreaks in the absence of herd immunity in affected population. Several research groups work to understand the pathogenesis of chikungunya and the mechanisms of complications using cellular and animal models. A few proteomics approaches have been employed earlier to understand the protein level changes in the infected cells. Our present study, which couples a high throughput proteomic analysis and a comparative review of these earlier studies, identifies a few critical molecules as hypothetical candidates that might be important in this infection and for future study. High throughput expression proteomics analysis in HEK293 cells Identified four major cellular pathways affected in Chikungunya virus infection Short-listed 30 key proteins modulated by a comparative review Confirmed modulation of Nucleophosmin and other selected proteins upon infection
Collapse
|
24
|
Jumat MR, Huong TN, Ravi LI, Stanford R, Tan BH, Sugrue RJ. Viperin protein expression inhibits the late stage of respiratory syncytial virus morphogenesis. Antiviral Res 2015; 114:11-20. [DOI: 10.1016/j.antiviral.2014.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 11/05/2014] [Accepted: 11/18/2014] [Indexed: 01/13/2023]
|
25
|
Wei T, Li D, Marcial D, Khan M, Lin MH, Snape N, Ghildyal R, Harrich D, Spann K. The eukaryotic elongation factor 1A is critical for genome replication of the paramyxovirus respiratory syncytial virus. PLoS One 2014; 9:e114447. [PMID: 25479059 PMCID: PMC4257679 DOI: 10.1371/journal.pone.0114447] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/06/2014] [Indexed: 01/01/2023] Open
Abstract
The eukaryotic translation factor eEF1A assists replication of many RNA viruses by various mechanisms. Here we show that down-regulation of eEF1A restricts the expression of viral genomic RNA and the release of infectious virus, demonstrating a biological requirement for eEF1A in the respiratory syncytial virus (RSV) life cycle. The key proteins in the replicase/transcriptase complex of RSV; the nucleocapsid (N) protein, phosphoprotein (P) and matrix (M) protein, all associate with eEF1A in RSV infected cells, although N is the strongest binding partner. Using individually expressed proteins, N, but not P or M bound to eEF1A. This study demonstrates a novel interaction between eEF1A and the RSV replication complex, through binding to N protein, to facilitate genomic RNA synthesis and virus production.
Collapse
Affiliation(s)
- Ting Wei
- Queensland Institute of Medical Research Berghofer, Herston, Australia
| | - Dongsheng Li
- Queensland Institute of Medical Research Berghofer, Herston, Australia
| | - Daneth Marcial
- Queensland Institute of Medical Research Berghofer, Herston, Australia
- Clinical Medical Virology Centre, The University of Queensland, Herston, Australia
- Sir Albert Sakzewski Virus Research Centre, Childrens Health Queensland, Herston, Australia
| | - Moshin Khan
- Queensland Institute of Medical Research Berghofer, Herston, Australia
- Sir Albert Sakzewski Virus Research Centre, Childrens Health Queensland, Herston, Australia
| | - Min-Hsuan Lin
- Queensland Institute of Medical Research Berghofer, Herston, Australia
| | - Natale Snape
- Clinical Medical Virology Centre, The University of Queensland, Herston, Australia
- Sir Albert Sakzewski Virus Research Centre, Childrens Health Queensland, Herston, Australia
| | - Reena Ghildyal
- Centre for Research in Therapeutic Solutions, University of Canberra, Canberra, Australia
| | - David Harrich
- Queensland Institute of Medical Research Berghofer, Herston, Australia
- Australian Infectious Disease Research Centre, St Lucia, Australia
- * E-mail: (KS); (DH)
| | - Kirsten Spann
- Clinical Medical Virology Centre, The University of Queensland, Herston, Australia
- Sir Albert Sakzewski Virus Research Centre, Childrens Health Queensland, Herston, Australia
- Australian Infectious Disease Research Centre, St Lucia, Australia
- * E-mail: (KS); (DH)
| |
Collapse
|
26
|
Jumat MR, Nguyen Huong T, Wong P, Loo LH, Tan BH, Fenwick F, Toms GL, Sugrue RJ. Imaging analysis of human metapneumovirus-infected cells provides evidence for the involvement of F-actin and the raft-lipid microdomains in virus morphogenesis. Virol J 2014; 11:198. [PMID: 25408253 PMCID: PMC4243936 DOI: 10.1186/s12985-014-0198-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/05/2014] [Indexed: 11/13/2022] Open
Abstract
Backgound Due to difficulties of culturing Human metapneumovirus (HMPV) much of the current understanding of HMPV replication can be inferred from other closely related viruses. The slow rates of virus replication prevent many biochemical analyses of HMPV particles. In this study imaging was used to examine the process of HMPV morphogenesis in individually infected LLC-MK2 cells, and to better characterise the sites of HMPV assembly. This strategy has circumvented the problems associated with slow replication rates and allowed us to characterise both the HMPV particles and the sites of HMPV morphogenesis. Methods HMPV-infected LLC-MK2 cells were stained with antibodies that recognised the HMPV fusion protein (F protein), attachment protein (G protein) and matrix protein (M protein), and fluorescent probes that detect GM1 within lipid-raft membranes (CTX-B-AF488) and F-actin (Phalloidin-FITC). The stained cells were examined by confocal microscopy, which allowed imaging of F-actin, GM1 and virus particles in HMPV-infected cells. Cells co-expressing recombinant HMPV G and F proteins formed virus-like particles and were co-stained with antibodies that recognise the recombinant G and F proteins and phalloidin-FITC and CTX-B-AF594, and the distribution of the G and F proteins, GM1 and F-actin determined. Results HMPV-infected cells stained with anti-F, anti-G or anti-M revealed a filamentous staining pattern, indicating that the HMPV particles have a filamentous morphology. Staining of HMPV-infected cells with anti-G and either phalloidin-FITC or CTX-B-AF488 exhibited extensive co-localisation of these cellular probes within the HMPV filaments. This suggested that lipid-raft membrane domains and F-actin structures are present at the site of the virus morphogenesis, and are subsequently incorporated into the HMPV filaments. Furthermore, the filamentous virus-like particles that form in cells expressing the G protein formed in cellular structures containing GM1 and F-actin, suggesting the G protein contains intrinsic targeting signals to the sites of virus assembly. Conclusions These data suggest that HMPV matures as filamentous particles and that virus morphogenesis occurs within lipid-raft microdomains containing localized concentrations of F-actin. The similarity between HMPV morphogenesis and the closely related human respiratory syncytial virus suggests that involvement of F-actin and lipid-raft microdomains in virus morphogenesis may be a common feature of the Pneumovirinae. Electronic supplementary material The online version of this article (doi:10.1186/s12985-014-0198-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Muhammad Raihan Jumat
- Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Nanyang, 637551, Republic of Singapore.
| | - Tra Nguyen Huong
- Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Nanyang, 637551, Republic of Singapore.
| | - Puisan Wong
- Detection and Diagnostics Laboratory, DSO National Laboratories, 27 Medical Drive, Singapore, 117510, Republic of Singapore.
| | - Liat Hui Loo
- Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Nanyang, 637551, Republic of Singapore.
| | - Boon Huan Tan
- Detection and Diagnostics Laboratory, DSO National Laboratories, 27 Medical Drive, Singapore, 117510, Republic of Singapore.
| | - Fiona Fenwick
- School of Clinical Medical Sciences, The University of Newcastle, Newcastle upon Tyne, NE24HH, UK.
| | - Geoffrey L Toms
- School of Clinical Medical Sciences, The University of Newcastle, Newcastle upon Tyne, NE24HH, UK.
| | - Richard J Sugrue
- Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Nanyang, 637551, Republic of Singapore.
| |
Collapse
|
27
|
Tiwari PM, Eroglu E, Boyoglu-Barnum S, He Q, Willing GA, Vig K, Dennis VA, Singh SR. Atomic force microscopic investigation of respiratory syncytial virus infection in HEp-2 cells. J Microsc 2013; 253:31-41. [PMID: 24251370 DOI: 10.1111/jmi.12095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 10/07/2013] [Indexed: 01/14/2023]
Abstract
Respiratory syncytial virus (RSV) primarily causes bronchiolitis and pneumonia in infants. In spite of intense research, no safe and effective vaccine has been developed yet. For understanding its pathogenesis and development of anti-RSV drugs/therapeutics, it is indispensable to study the RSV-host interaction. Although, there are limited studies using electron microscopy to elucidate the infection process of RSV, to our knowledge, no study has reported the morphological impact of RSV infection using atomic force microscopy. We report the cytoplasmic and nuclear changes in human epidermoid cell line type 2 using atomic force microscopy. Human epidermoid cell line type 2 cells, grown on cover slips, were infected with RSV and fixed after various time periods, processed and observed for morphological changes using atomic force microscopy. RSV infected cells showed loss of membrane integrity, with degeneration in the cellular content and cytoskeleton. Nuclear membrane was disintegrated and nuclear volume was decreased. The chromatin of the RSV infected cells was condensed, progressing towards degeneration via pyknosis and apoptosis. Membrane protrusions of ~150-200 nm diameter were observed on RSV infected cells after 6 h, suggestive of prospective RSV budding sites. To our knowledge, this is the first study of RSV infection process using atomic force microscopy. Such morphological studies could help explore viral infection process aiding the development of anti-RSV therapies.
Collapse
Affiliation(s)
- P M Tiwari
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, Alabama 36101, U.S.A
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Opyrchal M, Allen C, Msaouel P, Iankov I, Galanis E. Inhibition of Rho-associated coiled-coil-forming kinase increases efficacy of measles virotherapy. Cancer Gene Ther 2013; 20:630-7. [PMID: 24157925 DOI: 10.1038/cgt.2013.58] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 08/10/2013] [Indexed: 12/16/2022]
Abstract
RhoA and its downstream effector Rho-associated coiled-coil-forming kinase (ROCK) are known regulators of the formation of actin cytoskeleton in cells. Actin cytoskeleton is involved in paramyxovirus infection; we, therefore, examined the effect of ROCK inhibition on measles virus (MV) cytopathic effect and replication. Treatment with the ROCK inhibitor, Y27632, significantly increased syncytia size in tumor cell lines following MV infection, associated with cytoskeleton disruption as demonstrated by actin staining. Treatment of prostate cancer, breast cancer and glioblastoma tumor cell lines with Y27632 following MV infection resulted in increased cytopathic effect, as assessed by trypan blue exclusion assays. In addition, there was a significant increase in viral proliferation by at least one log or more as tested in one-step viral growth curves. Increased viral replication was also observed in athymic nude mice bearing MDA-MB-231 xenografts following combination treatment with MV and Y27632. In summary, inhibition of the ROCK kinase by Y27632 enhanced the oncolytic effect of MV and viral proliferation; this approach merits further translational investigation.
Collapse
Affiliation(s)
- M Opyrchal
- 1] Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA [2] Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | |
Collapse
|
29
|
Shaikh FY, Crowe JE. Molecular mechanisms driving respiratory syncytial virus assembly. Future Microbiol 2013; 8:123-31. [PMID: 23252497 DOI: 10.2217/fmb.12.132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Respiratory syncytial virus is a single-stranded RNA virus in the Paramyxoviridae family that preferentially assembles and buds from the apical surface of polarized epithelial cells, forming filamentous structures that contain both viral proteins and the genomic RNA. Recent studies have described both viral and host factors that are involved in ribonucleoprotein assembly and trafficking of viral proteins to the cell surface. At the cell surface, viral proteins assemble into filaments that probably require interactions between viral proteins, host proteins and the cell membrane. Finally, a membrane scission event must occur to release the free virion. This article will review the recent literature describing the mechanisms that drive respiratory syncytial virus assembly and budding.
Collapse
Affiliation(s)
- Fyza Y Shaikh
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | |
Collapse
|
30
|
Shaikh FY, Utley TJ, Craven RE, Rogers MC, Lapierre LA, Goldenring JR, Crowe JE. Respiratory syncytial virus assembles into structured filamentous virion particles independently of host cytoskeleton and related proteins. PLoS One 2012; 7:e40826. [PMID: 22808269 PMCID: PMC3396619 DOI: 10.1371/journal.pone.0040826] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/13/2012] [Indexed: 12/02/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a single-stranded RNA virus that assembles into viral filaments at the cell surface. Virus assembly often depends on the ability of a virus to use host proteins to accomplish viral tasks. Since the fusion protein cytoplasmic tail (FCT) is critical for viral filamentous assembly, we hypothesized that host proteins important for viral assembly may be recruited by the FCT. Using a yeast two-hybrid screen, we found that filamin A interacted with FCT, and mammalian cell experiments showed it localized to viral filaments but did not affect viral replication. Furthermore, we found that a number of actin-associated proteins also were excluded from viral filaments. Actin or tubulin cytoskeletal rearrangement was not necessary for F trafficking to the cell surface or for viral assembly into filaments, but was necessary for optimal viral replication and may be important for anchoring viral filaments. These findings suggest that RSV assembly into filaments occurs independently of actin polymerization and that viral proteins are the principal drivers for the mechanical tasks involved with formation of complex, structured RSV filaments at the host cell plasma membrane.
Collapse
Affiliation(s)
- Fyza Y. Shaikh
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Thomas J. Utley
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Ryan E. Craven
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Meredith C. Rogers
- The Medical Scientist Training Program, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Lynne A. Lapierre
- Department of Surgery and the Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - James R. Goldenring
- Department of Surgery and the Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - James E. Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
31
|
The human respiratory syncytial virus matrix protein is required for maturation of viral filaments. J Virol 2012; 86:4432-43. [PMID: 22318136 DOI: 10.1128/jvi.06744-11] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
An experimental system was developed to generate infectious human respiratory syncytial virus (HRSV) lacking matrix (M) protein expression (M-null virus) from cDNA. The role of the M protein in virus assembly was then examined by infecting HEp-2 and Vero cells with the M-null virus and assessing the impact on infectious virus production and viral protein trafficking. In the absence of M, the production of infectious progeny was strongly impaired. Immunofluorescence (IF) microscopy analysis using antibodies against the nucleoprotein (N), attachment protein (G), and fusion protein (F) failed to detect the characteristic virus-induced cell surface filaments, which are believed to represent infectious virions. In addition, a large proportion of the N protein was detected in viral replication factories termed inclusion bodies (IBs). High-resolution analysis of the surface of M-null virus-infected cells by field emission scanning electron microscopy (SEM) revealed the presence of large areas with densely packed, uniformly short filaments. Although unusually short, these filaments were otherwise similar to those induced by an M-containing control virus, including the presence of the viral G and F proteins. The abundance of the short, stunted filaments in the absence of M indicates that M is not required for the initial stages of filament formation but plays an important role in the maturation or elongation of these structures. In addition, the absence of mature viral filaments and the simultaneous increase in the level of the N protein within IBs suggest that the M protein is involved in the transport of viral ribonucleoprotein (RNP) complexes from cytoplasmic IBs to sites of budding.
Collapse
|
32
|
A critical phenylalanine residue in the respiratory syncytial virus fusion protein cytoplasmic tail mediates assembly of internal viral proteins into viral filaments and particles. mBio 2012; 3:mBio.00270-11. [PMID: 22318318 PMCID: PMC3280462 DOI: 10.1128/mbio.00270-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a single-stranded RNA virus in the Paramyxoviridae family that assembles into filamentous structures at the apical surface of polarized epithelial cells. These filaments contain viral genomic RNA and structural proteins, including the fusion (F) protein, matrix (M) protein, nucleoprotein (N), and phosphoprotein (P), while excluding F-actin. It is known that the F protein cytoplasmic tail (FCT) is necessary for filament formation, but the mechanism by which the FCT mediates assembly into filaments is not clear. We hypothesized that the FCT is necessary for interactions with other viral proteins in order to form filaments. In order to test this idea, we expressed the F protein with cytoplasmic tail (CT) truncations or specific point mutations and determined the abilities of these variant F proteins to form filaments independent of viral infection when coexpressed with M, N, and P. Deletion of the terminal three FCT residues (amino acids Phe-Ser-Asn) or mutation of the Phe residue resulted in a loss of filament formation but did not affect F-protein expression or trafficking to the cell surface. Filament formation could be restored by addition of residues Phe-Ser-Asn to an FCT deletion mutant and was unaffected by mutations to Ser or Asn residues. Second, deletion of residues Phe-Ser-Asn or mutation of the Phe residue resulted in a loss of M, N, and P incorporation into virus-like particles. These data suggest that a C-terminal Phe residue in the FCT mediates assembly through incorporation of internal virion proteins into virus filaments at the cell surface. Respiratory syncytial virus (RSV) is a leading cause of bronchiolitis and pneumonia in infants and the elderly worldwide. There is no licensed RSV vaccine and only limited therapeutics for use in infected patients. Many aspects of the RSV life cycle have been studied, but the mechanisms that drive RSV assembly at the cell surface are not well understood. This study provides evidence that a specific residue in the RSV fusion protein cytoplasmic tail coordinates assembly into viral filaments by mediating the incorporation of internal virion proteins. Understanding the mechanisms that drive RSV assembly could lead to targeted development of novel antiviral drugs. Moreover, since RSV exits infected cells in an ESCRT (endosomal sorting complexes required for transport)-independent manner, these studies may contribute new knowledge about a general strategy by which ESCRT-independent viruses mediate outward bud formation using viral protein-mediated mechanisms during assembly and budding.
Collapse
|
33
|
Phosphorylation of the human respiratory syncytial virus N protein provokes a decrease in viral RNA synthesis. Virus Res 2011; 163:396-400. [PMID: 22019509 DOI: 10.1016/j.virusres.2011.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 10/03/2011] [Accepted: 10/06/2011] [Indexed: 11/22/2022]
Abstract
When HEp-2 cells are infected by human respiratory syncytial virus (HRSV) its N protein becomes phosphorylated at tyrosine (Y) Y38, in a strictly regulated way. To determine how this phosphorylation affects nucleocapsid (NC) template activity during viral RNA synthesis, N protein variants were analysed in which Y38 and nearby Y residues were substituted by phenylalanine (F; Y23F, Y38F and Y69F) or aspartic acid (D; Y23D and Y38D). While the capacity of these proteins to form the NC and to interact with the P protein was maintained, their NC template activity was altered affecting distinctly viral transcription and replication of HRSV based minigenomes. Thus, Y38 phosphorylation of the HRSV N protein modulates NC template activity probably by altering the interactions of the monomeric components of the NC.
Collapse
|
34
|
Hung CY, Tsai MC, Wu YP, Wang RYL. Identification of heat-shock protein 90 beta in Japanese encephalitis virus-induced secretion proteins. J Gen Virol 2011; 92:2803-2809. [PMID: 21813703 DOI: 10.1099/vir.0.033993-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Five host cellular proteins were identified in the secretion medium from Japanese encephalitis virus (JEV)-infected baby hamster kidney-21 (BHK-21) cells, including three molecular chaperones: Hsp70, GRP78 and Hsp90. Hsp90 isoforms were characterized further. Hsp90α was observed to be retained inside the nuclei, whereas Hsp90β associated with virus particles during assembly and was released into the secretion medium upon JEV infection. The association of Hsp90β and viral E protein was demonstrated by using sucrose-density fractionation and Western blot analysis. Moreover, JEV viral RNA replication was not affected by treatment with geldanamycin, an Hsp90 inhibitor, but impaired virus infectivity that was determined by a plaque-forming assay. Our results show that Hsp90β, not Hsp90α, is present in the JEV-induced secretion medium and is required for JEV infectivity in BHK-21 cells.
Collapse
Affiliation(s)
- Chun-Yu Hung
- Department of Biomedical Sciences, Chang Gung University, Tao-Yuan 33302, Taiwan, ROC
| | - Meng-Chieh Tsai
- Department of Biomedical Sciences, Chang Gung University, Tao-Yuan 33302, Taiwan, ROC
| | - Yi-Ping Wu
- Department of Biomedical Sciences, Chang Gung University, Tao-Yuan 33302, Taiwan, ROC
| | - Robert Y L Wang
- Research Center for Emerging Viral Infections, Chang Gung University, Tao-Yuan 33302, Taiwan, ROC.,Department of Biomedical Sciences, Chang Gung University, Tao-Yuan 33302, Taiwan, ROC
| |
Collapse
|
35
|
Miazza V, Mottet-Osman G, Startchick S, Chaponnier C, Roux L. Sendai virus induced cytoplasmic actin remodeling correlates with efficient virus particle production. Virology 2010; 410:7-16. [PMID: 21075412 DOI: 10.1016/j.virol.2010.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 09/27/2010] [Accepted: 10/01/2010] [Indexed: 11/30/2022]
Abstract
Cytoplasmic actins have been found interacting with viral proteins and identified in virus particles. We analyzed by confocal microscopy the cytoplasmic β- and γ-actin patterns during the course of Sendai virus infections in polarized cells. We observed a spectacular remodeling of the β-cytoplasmic actin which correlated with productive viral multiplication. Conversely, suppression of M during the course of a productive infection resulted in the decrease of particle production and the absence of β-actin remodeling. As concomitant suppression of β- and γ-actins resulted as well in reduction of virus particle production, we propose that Sendai virus specifically induces actin remodeling in order to promote efficient virion production. Beta- and γ-cytoplasmic actin recruitment could substitute for that of the endosomal sorting complex required for transport (ESCRT) mobilized by other enveloped viruses but apparently not used by Sendai virus.
Collapse
Affiliation(s)
- Vincent Miazza
- Department of Microbiology and Molecular Medicine, Faculty of Medicine University of Geneva, CMU, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
| | | | | | | | | |
Collapse
|
36
|
Radhakrishnan A, Yeo D, Brown G, Myaing MZ, Iyer LR, Fleck R, Tan BH, Aitken J, Sanmun D, Tang K, Yarwood A, Brink J, Sugrue RJ. Protein analysis of purified respiratory syncytial virus particles reveals an important role for heat shock protein 90 in virus particle assembly. Mol Cell Proteomics 2010; 9:1829-48. [PMID: 20530633 DOI: 10.1074/mcp.m110.001651] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In this study, we used imaging and proteomics to identify the presence of virus-associated cellular proteins that may play a role in respiratory syncytial virus (RSV) maturation. Fluorescence microscopy of virus-infected cells revealed the presence of virus-induced cytoplasmic inclusion bodies and mature virus particles, the latter appearing as virus filaments. In situ electron tomography suggested that the virus filaments were complex structures that were able to package multiple copies of the virus genome. The virus particles were purified, and the protein content was analyzed by one-dimensional nano-LC MS/MS. In addition to all the major virus structural proteins, 25 cellular proteins were also detected, including proteins associated with the cortical actin network, energy pathways, and heat shock proteins (HSP70, HSC70, and HSP90). Representative actin-associated proteins, HSC70, and HSP90 were selected for further biological validation. The presence of beta-actin, filamin-1, cofilin-1, HSC70, and HSP90 in the virus preparation was confirmed by immunoblotting using relevant antibodies. Immunofluorescence microscopy of infected cells stained with antibodies against relevant virus and cellular proteins confirmed the presence of these cellular proteins in the virus filaments and inclusion bodies. The relevance of HSP90 to virus infection was examined using the specific inhibitors 17-N-Allylamino-17-demethoxygeldanamycin. Although virus protein expression was largely unaffected by these drugs, we noted that the formation of virus particles was inhibited, and virus transmission was impaired, suggesting an important role for HSP90 in virus maturation. This study highlights the utility of proteomics in facilitating both our understanding of the role that cellular proteins play during RSV maturation and, by extrapolation, the identification of new potential targets for antiviral therapy.
Collapse
Affiliation(s)
- Anuradha Radhakrishnan
- Division of Molecular and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
PIV5 M protein interaction with host protein angiomotin-like 1. Virology 2009; 397:155-66. [PMID: 19932912 DOI: 10.1016/j.virol.2009.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Revised: 09/29/2009] [Accepted: 11/02/2009] [Indexed: 12/14/2022]
Abstract
Paramyxovirus matrix (M) proteins organize virus assembly, functioning as adapters that link together viral ribonucleoprotein complexes and viral glycoproteins at infected cell plasma membranes. M proteins may also function to recruit and manipulate host factors to assist virus budding, similar to retroviral Gag proteins. By yeast two-hybrid screening, angiomotin-like 1 (AmotL1) was identified as a host factor that interacts with the M protein of parainfluenza virus 5 (PIV5). AmotL1-M protein interaction was observed in yeast, in transfected mammalian cells, and in virus-infected cells. Binding was mapped to a 83-amino acid region derived from the C-terminal portion of AmotL1. Overexpression of M-binding AmotL1-derived polypeptides potently inhibited production of PIV5 VLPs and impaired virus budding. Expression of these polypeptides moderately inhibited production of mumps VLPs, but had no effect on production of Nipah VLPs. siRNA-mediated depletion of AmotL1 protein reduced PIV5 budding, suggesting that this interaction is beneficial to paramyxovirus infection.
Collapse
|
38
|
Identification of gene biomarkers for respiratory syncytial virus infection in a bronchial epithelial cell line. Genomic Med 2009; 2:113-25. [PMID: 19459069 DOI: 10.1007/s11568-009-9080-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 04/14/2009] [Accepted: 04/24/2009] [Indexed: 12/26/2022] Open
Abstract
Respiratory syncytial virus (RSV) infection involves complex virus-host interplay. In this study, we analyzed gene expression in RSV-infected BEAS-2B cells to discover novel signaling pathways and biomarkers. We hybridized RNAs from RSV- or vehicle-treated BEAS-2B to Affymetrix HU133 plus 2.0 microarrays (n = 4). At 4 and 24 h post-infection, 277 and 900 genes (RSV/control ratio >/=2.0 or </=0.5), and 1 and 12 pathways respectively were significantly altered. Twenty-three and 92 genes at 4 and 24 h respectively matched respiratory disease biomarkers with ARG2 flagged at 24 h and SCNN1G, EPB41L4B, CSF1, PTEN, TUBB1 and ESR2 at both time points. Hierachical clustering showed a cluster containing ARG2 and IL8. In human bronchial epithelial cells, RSV upregulated arginase II protein. Knockdown of ARG2 increased RSV-induced IL-8, LDH and histone release. With microarray, we identified novel proximal airway epithelial cell genes that may be tested in the sputum samples as biomarkers of RSV infection.
Collapse
|
39
|
Yeo DSY, Chan R, Brown G, Ying L, Sutejo R, Aitken J, Tan BH, Wenk MR, Sugrue RJ. Evidence that selective changes in the lipid composition of raft-membranes occur during respiratory syncytial virus infection. Virology 2009; 386:168-82. [PMID: 19178924 DOI: 10.1016/j.virol.2008.12.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 11/19/2008] [Accepted: 12/01/2008] [Indexed: 11/27/2022]
Abstract
We examined the structure of lipid-raft membranes in respiratory syncytial virus infected cells. Cholesterol depletion studies using methyl-beta-cyclodextrin suggested that membrane cholesterol was required for virus filament formation, but not inclusion bodies. In addition, virus filament formation coincided with elevated 3-hydroxy-3-methylglutaryl-coenzyme A reductase expression, suggesting an increase in requirement for endogenous cholesterol synthesis during virus assembly. Lipid raft membranes were examined by mass spectrometry, which suggested that virus infection induced subtle changes in the lipid composition of these membrane structures. This analysis revealed increased levels of raft-associated phosphatidylinositol (PI) and phosphorylated PI during RSV infection, which correlated with the appearance of phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-triphosphate (PIP(3)) within virus inclusion bodies, and inhibiting the synthesis of PIP(3) impaired the formation of progeny virus. Collectively, our analysis suggests that RSV infection induces specific changes in the composition of raft-associated lipids, and that these changes play an important role in virus maturation.
Collapse
Affiliation(s)
- Dawn Su-Yin Yeo
- Division of Molecular and Cell Biology, School of Biological Sciences, Nanyang Technological University, Nanyang Drive, Singapore, 637551, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Fernandes LB, Henry PJ, Goldie RG. Rho kinase as a therapeutic target in the treatment of asthma and chronic obstructive pulmonary disease. Ther Adv Respir Dis 2009; 1:25-33. [PMID: 19124345 DOI: 10.1177/1753465807080740] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Asthma is a complex inflammatory disease of the airways involving reversible bronchoconstriction. Chronic obstructive pulmonary disease is typified by inflammation and airflow limitation that has an irreversible component. There is now substantial evidence that Rho kinase is involved in many of the pathways that contribute to the pathologies associated with these respiratory diseases including bronchoconstriction, airway inflammation, airway remodelling, neuromodulation and exacerbations due to respiratory tract viral infection. Indeed the Rho kinase inhibitor Y-27632 causes bronchodilatation and reduces pulmonary eosinophilia trafficking and airways hyperresponsiveness. Furthermore, accumulating evidence suggests that inhibition of Rho kinase could have a major beneficial impact on symptoms and disease progression in asthma and COPD by modulating several other systems and processes. Thus, the Rho kinase pathway may indeed be a worthwhile therapeutic target in the treatment of asthma and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Lynette B Fernandes
- Pharmacology and Anaesthesiology Unit, School of Medicine & Pharmacology, and Western Australian Institute for Medical Research, The University of Western Australia, Perth, Australia
| | | | | |
Collapse
|
41
|
Derdowski A, Peters TR, Glover N, Qian R, Utley TJ, Burnett A, Williams JV, Spearman P, Crowe JE. Human metapneumovirus nucleoprotein and phosphoprotein interact and provide the minimal requirements for inclusion body formation. J Gen Virol 2008; 89:2698-2708. [PMID: 18931065 PMCID: PMC2876975 DOI: 10.1099/vir.0.2008/004051-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human metapneumovirus (HMPV) is a recently discovered paramyxovirus of the subfamily Pneumovirinae, which also includes avian pneumovirus and human respiratory syncytial virus (HRSV). HMPV is an important cause of respiratory disease worldwide. To understand early events in HMPV replication, cDNAs encoding the HMPV nucleoprotein (N), phosphoprotein (P), matrix protein (M), M2-1 protein and M2-2 protein were cloned from cells infected with the genotype A1 HMPV wild-type strain TN/96-12. HMPV N and P were shown to interact using a variety of techniques: yeast two-hybrid assays, co-immunoprecipitation and fluorescence resonance energy transfer (FRET). Confocal microscopy studies showed that, when expressed individually, fluorescently tagged HMPV N and P exhibited a diffuse expression pattern in the host-cell cytoplasm of uninfected cells but were recruited to cytoplasmic viral inclusion bodies in HMPV-infected cells. Furthermore, when HMPV N and P were expressed together, they also formed cytoplasmic inclusion-like complexes, even in the absence of viral infection. FRET microscopy revealed that HMPV N and P interacted directly within cytoplasmic inclusion-like complexes. Moreover, it was shown by yeast two-hybrid analysis that the N-terminal 28 aa are required for the recruitment to and formation of cytoplasmic inclusions, but are dispensable for binding to HMPV P. This work showed that HMPV N and P proteins provide the minimal viral requirements for HMPV inclusion body formation, which may be a distinguishing characteristic of members of the subfamily Pneumovirinae.
Collapse
Affiliation(s)
- Aaron Derdowski
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Timothy R. Peters
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Nancy Glover
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ray Qian
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Thomas J. Utley
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Atuhani Burnett
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Pediatrics and Microbiology and Immunology, Emory School of Medicine, Atlanta, GA 30322, USA
| | - John V. Williams
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Paul Spearman
- Department of Pediatrics and Microbiology and Immunology, Emory School of Medicine, Atlanta, GA 30322, USA
| | - James E. Crowe
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
42
|
Respiratory syncytial virus uses a Vps4-independent budding mechanism controlled by Rab11-FIP2. Proc Natl Acad Sci U S A 2008; 105:10209-14. [PMID: 18621683 DOI: 10.1073/pnas.0712144105] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Respiratory syncytial virus (RSV) infects polarized epithelia, which have tightly regulated trafficking because of the separation and maintenance of the apical and basolateral membranes. Previously we established a link between the apical recycling endosome (ARE) and the assembly of RSV. The current studies tested the role of a major ARE-associated protein, Rab11 family interacting protein 2 (FIP2) in the virus life cycle. A dominant-negative form of FIP2 lacking its N-terminal C2 domain reduced the supernatant-associated RSV titer 1,000-fold and also caused the cell-associated virus titer to increase. These data suggested that the FIP2 C2 mutant caused a failure at the final budding step in the virus life cycle. Additionally, truncation of the Rab-binding domain from FIP2 caused its accumulation into mature filamentous virions. RSV budding was independent of the ESCRT machinery, the only well-defined budding mechanism for enveloped RNA viruses. Therefore, RSV uses a virus budding mechanism that is controlled by FIP2.
Collapse
|
43
|
Jeffree CE, Brown G, Aitken J, Su-Yin DY, Tan BH, Sugrue RJ. Ultrastructural analysis of the interaction between F-actin and respiratory syncytial virus during virus assembly. Virology 2007; 369:309-23. [PMID: 17825340 DOI: 10.1016/j.virol.2007.08.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2007] [Revised: 06/06/2007] [Accepted: 08/02/2007] [Indexed: 11/17/2022]
Abstract
During respiratory syncytial virus (RSV) infection there is a close physical interaction between the filamentous actin (F-actin) and the virus, involving both inclusion bodies and the virus filaments. This interaction appears to occur relatively early in the replication cycle, and can be detected from 8 h post-infection. Furthermore, during virus assembly we obtained evidence for the participation of an F-actin-associated signalling pathway involving phosphatidyl-3-kinase (PI3K). Treatment with the PI3K inhibitor LY294002 prevented the formation of virus filaments, although no effect was observed either on virus protein expression, or on trafficking of the virus glycoproteins to the cell surface. Inhibition of the activity of Rac GTPase, a down-stream effector of PI3K, by treatment with the Rac-specific inhibitor NSC23766 gave similar results. These data suggest that an intimate interaction occurs between actin and RSV, and that actin-associated signalling pathway, involving PI3K and Rac GTPase, may play an important role during virus assembly.
Collapse
Affiliation(s)
- Chris E Jeffree
- School of Biological Sciences, Daniel Rutherford Building, King's Buildings, Mayfield Road, University of Edinburgh Edinburgh, EH9 3JH, UK
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
The final step in the maturation of paramyxoviruses, orthomyxoviruses and viruses of several other families, entails the budding of the viral nucleocapsid through the plasma membrane of the host cell. Many medically important viruses, such as influenza, parainfluenza, respiratory syncytial virus (RSV) and Ebola, can form filamentous particles when budding. Although filamentous virions have been previously studied, details of how viral filaments bud from the plasma membrane remain largely unknown. Using molecular beacon (MB)-fluorescent probes to image the viral genomic RNA (vRNA) of human RSV (hRSV) in live Vero cells, the dynamics of assembled viral filaments was observed to consist of three primary types of motion prior to egress from the plasma membrane: (i) filament projection and rotation, (ii) migration and (iii) non-directed motion. In addition, from information gained by imaging the 3D distribution of cellular vRNA, observing and characterizing vRNA dynamics, imaging vRNA/Myosin Va colocalization, and studying the effects of cytochalasin D (actin depolymerizing agent) exposure, a model for filamentous virion egress is presented.
Collapse
Affiliation(s)
| | - Gang Bao
- *To whom correspondence should be addressed. ;
| |
Collapse
|
45
|
Martínez I, Lombardía L, García-Barreno B, Domínguez O, Melero JA. Distinct gene subsets are induced at different time points after human respiratory syncytial virus infection of A549 cells. J Gen Virol 2007; 88:570-581. [PMID: 17251576 DOI: 10.1099/vir.0.82187-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
cDNA microarray technology was applied to time course analysis of differentially expressed genes in A549 cells following human respiratory syncytial virus (HRSV) infection. Both up- and down-regulation of cellular genes were observed in a time-dependent manner. However, gene up-regulation prevailed over gene down-regulation. Virus infectivity was required as UV-inactivated virus failed to up-regulate/down-regulate those genes. At early times post-infection (0-6 h p.i.) 85 genes were up-regulated. Some of those genes were involved in cell growth/proliferation, cellular protein metabolism and cytoskeleton organization. Among the most strongly up-regulated genes at that time were the urokinase plasminogen activator (PLAU) and its receptor (PLAUR), a pleiotropic system involved in many biological processes, including chemotaxis and inflammation. Functionally related genes encoding the alpha- and beta-chains of several integrins were also up-regulated within the first 12 h of infection. Genes up-regulated between 6 and 12 h p.i. included interferon-stimulated genes (ISGs), genes related to oxidative stress and genes of the non-canonical NF-kappaB pathway. At later times, genes involved in the immune response became predominant among the up-regulated genes, most of them being ISGs. Different up-regulation kinetics of cytokine and cytokine-signalling-related genes were also observed. These results highlight the dynamic interplay between the virus and the host cell and provide a general picture of changes in cellular gene expression along the HRSV replicative cycle.
Collapse
Affiliation(s)
- Isidoro Martínez
- Unidad de Biología Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Luis Lombardía
- Unidad de Genómica, Centro Nacional de Investigaciones Oncológicas, Instituto de Salud Carlos III, Madrid, Spain
| | - Blanca García-Barreno
- Unidad de Biología Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Orlando Domínguez
- Unidad de Genómica, Centro Nacional de Investigaciones Oncológicas, Instituto de Salud Carlos III, Madrid, Spain
| | - José A Melero
- Unidad de Biología Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
46
|
Valarcher JF, Taylor G. Bovine respiratory syncytial virus infection. Vet Res 2007; 38:153-80. [PMID: 17257568 DOI: 10.1051/vetres:2006053] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Accepted: 07/18/2006] [Indexed: 11/14/2022] Open
Abstract
Bovine respiratory syncytial virus (BRSV) belongs to the pneumovirus genus within the family Paramyxoviridae and is a major cause of respiratory disease in young calves. BRSV is enveloped and contains a negative sense, single-stranded RNA genome encoding 11 proteins. The virus replicates predominantly in ciliated respiratory epithelial cells but also in type II pneumocytes. It appears to cause little or no cytopathology in ciliated epithelial cell cultures in vitro, suggesting that much of the pathology is due to the host's response to virus infection. RSV infection induces an array of pro-inflammatory chemokines and cytokines that recruit neutrophils, macrophages and lymphocytes to the respiratory tract resulting in respiratory disease. Although the mechanisms responsible for induction of these chemokines and cytokines are unclear, studies on the closely related human (H)RSV suggest that activation of NF-kappaB via TLR4 and TLR3 signalling pathways is involved. An understanding of the mechanisms by which BRSV is able to establish infection and induce an inflammatory response has been facilitated by advances in reverse genetics, which have enabled manipulation of the virus genome. These studies have demonstrated an important role for the non-structural proteins in anti-interferon activity, a role for a virokinin, released during proteolytic cleavage of the fusion protein, in the inflammatory response and a role for the SH and the secreted form of the G protein in establishing pulmonary infection. Knowledge gained from these studies has also provided the opportunity to develop safe, stable, live attenuated virus vaccine candidates.
Collapse
|
47
|
Abstract
Viruses exploit the cytoskeleton of host cells to transport their components and spread to neighbouring cells. Here we show that the actin cytoskeleton is involved in the release of Marburgvirus (MARV) particles. We found that peripherally located nucleocapsids and envelope precursors of MARV are located either at the tip or at the side of filopodial actin bundles. Importantly, viral budding was almost exclusively detected at filopodia. Inhibiting actin polymerization in MARV-infected cells significantly diminished the amount of viral particles released into the medium. This suggested that dynamic polymerization of actin in filopodia is essential for efficient release of MARV. The viral matrix protein VP40 plays a key role in the release of MARV particles and we found that the intracellular localization of recombinant VP40 and its release in form of virus-like particles were strongly influenced by overexpression or inhibition of myosin 10 and Cdc42, proteins important in filopodia formation and function. We suggest that VP40, which is capable of interacting with viral nucleocapsids, provides an interface of MARV subviral particles and filopodia. As filopodia are in close contact with neighbouring cells, usurpation of these structures may facilitate spread of MARV to adjacent cells.
Collapse
|
48
|
Ghildyal R, Ho A, Jans DA. Central role of the respiratory syncytial virus matrix protein in infection. FEMS Microbiol Rev 2006; 30:692-705. [PMID: 16911040 DOI: 10.1111/j.1574-6976.2006.00025.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Respiratory syncytial virus is the major respiratory pathogen of infants and children worldwide, with no effective treatment or vaccine available. Steady progress has been made in understanding the respiratory syncytial virus life cycle and the consequences of infection, but many areas of respiratory syncytial virus biology remain poorly understood, including the role of subcellular localisation of respiratory syncytial virus gene products such as the matrix protein in the infected host cell. The matrix protein plays a central role in viral assembly and, intriguingly, has been observed to traffic into and out of the nucleus at specific times during the respiratory syncytial virus infectious cycle. Further, the matrix protein has been shown to be able to inhibit transcription, which may be a key to respiratory syncytial virus pathogenesis. This review will focus on the role of the matrix protein in respiratory syncytial virus infection and what is known of its nucleocytoplasmic trafficking, the understanding of which may lead to new therapeutic approaches to combat respiratory syncytial virus, and/or vaccine development.
Collapse
Affiliation(s)
- Reena Ghildyal
- Department of Respiratory and Sleep Medicine, Monash Medical Centre, Clayton, Australia
| | | | | |
Collapse
|
49
|
Cowton VM, McGivern DR, Fearns R. Unravelling the complexities of respiratory syncytial virus RNA synthesis. J Gen Virol 2006; 87:1805-1821. [PMID: 16760383 DOI: 10.1099/vir.0.81786-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is the leading cause of paediatric respiratory disease and is the focus of antiviral- and vaccine-development programmes. These goals have been aided by an understanding of the virus genome architecture and the mechanisms by which it is expressed and replicated. RSV is a member of the order Mononegavirales and, as such, has a genome consisting of a single strand of negative-sense RNA. At first glance, transcription and genome replication appear straightforward, requiring self-contained promoter regions at the 3' ends of the genome and antigenome RNAs, short cis-acting elements flanking each of the genes and one polymerase. However, from these minimal elements, the virus is able to generate an array of capped, methylated and polyadenylated mRNAs and encapsidated antigenome and genome RNAs, all in the appropriate ratios to facilitate virus replication. The apparent simplicity of genome expression and replication is a consequence of considerable complexity in the polymerase structure and its cognate cis-acting sequences; here, our understanding of mechanisms by which the RSV polymerase proteins interact with signals in the RNA template to produce different RNA products is reviewed.
Collapse
MESH Headings
- Base Sequence
- DNA-Directed RNA Polymerases/metabolism
- Genome, Viral
- Humans
- Models, Biological
- Molecular Sequence Data
- Mononegavirales/genetics
- Mononegavirales/physiology
- Nucleocapsid/biosynthesis
- Nucleocapsid/genetics
- RNA, Antisense/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/biosynthesis
- RNA, Viral/genetics
- Respiratory Syncytial Virus, Human/genetics
- Respiratory Syncytial Virus, Human/pathogenicity
- Respiratory Syncytial Virus, Human/physiology
- Transcription, Genetic
- Viral Proteins/metabolism
- Virus Replication
Collapse
Affiliation(s)
- Vanessa M Cowton
- Division of Pathology and Neuroscience, University of Dundee Medical School, Dundee DD1 9SY, UK
| | - David R McGivern
- Division of Pathology and Neuroscience, University of Dundee Medical School, Dundee DD1 9SY, UK
| | - Rachel Fearns
- Division of Pathology and Neuroscience, University of Dundee Medical School, Dundee DD1 9SY, UK
| |
Collapse
|
50
|
Michael K, Klupp BG, Mettenleiter TC, Karger A. Composition of pseudorabies virus particles lacking tegument protein US3, UL47, or UL49 or envelope glycoprotein E. J Virol 2006; 80:1332-9. [PMID: 16415010 PMCID: PMC1346971 DOI: 10.1128/jvi.80.3.1332-1339.2006] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Proteins located in the tegument layer of herpesvirus particles play important roles in the replicative cycle at both early and late times after infection. As major constituents of the virion, they execute important functions in particular during formation of progeny virions. These functions have mostly been elucidated by construction and analysis of mutant viruses deleted in single or multiple tegument protein-encoding genes (reviewed in the work of T. C. Mettenleiter, Virus Res. 106:167-180, 2004). However, since tegument proteins have been shown to be involved in numerous protein-protein interactions, the impact of single protein deletions on the composition of the virus particle is unknown, but they could impair correct interpretation of the results. To analyze how the absence of single virion constituents influences virion composition, we established a procedure to assay relative amounts of virion structural proteins in deletion mutants of the alphaherpesvirus Pseudorabies virus (PrV) in comparison to wild-type particles. The assay is based on the mass spectrometric quantitation of virion protein-derived peptides carrying stable isotope mass tags. After deletion of the US3, UL47, UL49, or glycoprotein E gene, relative amounts of a capsid protein (UL38), a capsid-associated protein (UL25), several tegument proteins (UL36 and UL47, if present), and glycoprotein H were unaffected, whereas the content of other tegument proteins (UL46, UL48, and UL49, if present) varied significantly. In the case of the UL48 gene product, a specific increase in incorporation of a smaller isoform was observed after deletion of the UL47 or UL49 gene, whereas a larger isoform remained unaffected. The cellular protein actin was enriched in virions of mutants deficient in any of the tegument proteins UL47, UL49, or US3. By two-dimensional gel electrophoresis multiple isoforms of host cell-derived heat shock protein 70 and annexins A1 and A2 were also identified as structural components of PrV virions.
Collapse
Affiliation(s)
- Kathrin Michael
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Boddenblick 5A, 17493 Greifswald-Insel Riems, Germany
| | | | | | | |
Collapse
|