1
|
Cinkornpumin JK, Kwon SY, Prandstetter AM, Maxian T, Sirois J, Goldberg J, Zhang J, Saini D, Dasgupta P, Jeyarajah MJ, Renaud SJ, Paul S, Haider S, Pastor WA. Hypoxia and loss of GCM1 expression prevent differentiation and contact inhibition in human trophoblast stem cells. Stem Cell Reports 2025; 20:102481. [PMID: 40280139 DOI: 10.1016/j.stemcr.2025.102481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
During the first stages of embryonic development, the placenta develops under very low oxygen tension (∼1%-2% O2), so we sought to determine the regulatory role of oxygen in human trophoblast stem cells (hTSCs). We find that low oxygen promotes hTSC self-renewal but inhibits differentiation to syncytiotrophoblast (STB) and extravillous trophoblast (EVT). The transcription factor GCM1 (glial cell missing transcription factor 1) is downregulated in low oxygen, and concordantly, there is substantial reduction of GCM1-regulated genes in hypoxic conditions. Knockout of GCM1 in hTSC likewise impaired EVT and STB formation. Treatment with a phosphatidylinositol 3-kinase (PI3K) inhibitor reported to reduce GCM1 protein levels likewise counteracts spontaneous or directed differentiation. Additionally, chromatin immunoprecipitation of GCM1 showed binding near key genes upregulated upon differentiation including the contact inhibition factor CDKN1C. Loss of GCM1 resulted in downregulation of CDKN1C and corresponding loss of contact inhibition, implicating GCM1 in regulation of this critical process.
Collapse
Affiliation(s)
| | - Sin Young Kwon
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Anna-Maria Prandstetter
- Placental Development Group, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Theresa Maxian
- Placental Development Group, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Jacinthe Sirois
- Department of Biochemistry, McGill University, Montreal, QC, Canada; The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - James Goldberg
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Joy Zhang
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Deepak Saini
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Purbasa Dasgupta
- Department of Pathology and Laboratory Medicine, University of Kansas, Kansas City, Kansas, USA
| | - Mariyan J Jeyarajah
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Stephen J Renaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Soumen Paul
- Department of Pathology and Laboratory Medicine, University of Kansas, Kansas City, Kansas, USA; Institute for Reproduction and Developmental Sciences, University of Kansas, Kansas City, Kansas, USA; Department of Obstetrics and Gynecology, University of Kansas, Kansas City, Kansas, USA
| | - Sandra Haider
- Placental Development Group, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - William A Pastor
- Department of Biochemistry, McGill University, Montreal, QC, Canada; The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Dimova T, Alexandrova M, Vangelov I, You Y, Mor G. The modeling of human implantation and early placentation: achievements and perspectives. Hum Reprod Update 2025; 31:133-163. [PMID: 39673726 DOI: 10.1093/humupd/dmae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 10/29/2024] [Indexed: 12/16/2024] Open
Abstract
BACKGROUND Successful implantation is a critical step for embryo survival. The major losses in natural and assisted human reproduction appeared to occur during the peri-implantation period. Because of ethical constraints, the fascinating maternal-fetal crosstalk during human implantation is difficult to study and thus, the possibility for clinical intervention is still limited. OBJECTIVE AND RATIONALE This review highlights some features of human implantation as a unique, ineffective and difficult-to-model process and summarizes the pros and cons of the most used in vivo, ex vivo and in vitro models. We point out the variety of cell line-derived models and how these data are corroborated by well-defined primary cells of the same nature. Important aspects related to the handling, standardization, validation, and modus operandi of the advanced 3D in vitro models are widely discussed. Special attention is paid to blastocyst-like models recapitulating the hybrid phenotype and HLA profile of extravillous trophoblasts, which are a unique yet poorly understood population with a major role in the successful implantation and immune mother-embryo recognition. Despite raising new ethical dilemmas, extended embryo cultures and synthetic embryo models are also in the scope of our review. SEARCH METHODS We searched the electronic database PubMed from inception until March 2024 by using a multi-stage search strategy of MeSH terms and keywords. In addition, we conducted a forward and backward reference search of authors mentioned in selected articles. OUTCOMES Primates and rodents are valuable in vivo models for human implantation research. However, the deep interstitial, glandular, and endovascular invasion accompanied by a range of human-specific factors responsible for the survival of the fetus determines the uniqueness of the human implantation and limits the cross-species extrapolation of the data. The ex vivo models are short-term cultures, not relevant to the period of implantation, and difficult to standardize. Moreover, the access to tissues from elective terminations of pregnancy raises ethical and legal concerns. Easy-to-culture cancer cell lines have many limitations such as being prone to spontaneous transformation and lacking decent tissue characteristics. The replacement of the original human explants, primary cells or cancer cell lines with cultures of immortalized cell lines with preserved stem cell characteristics appears to be superior for in vitro modeling of human implantation and early placentation. Remarkable advances in our understanding of the peri-implantation stages have also been made by advanced three dimensional (3D) models i.e. spheroids, organoids, and assembloids, as placental and endometrial surrogates. Much work remains to be done for the optimization and standardization of these integrated and complex models. The inclusion of immune components in these models would be an asset to delineate mechanisms of immune tolerance. Stem cell-based embryo-like models and surplus IVF embryos for research bring intriguing possibilities and are thought to be the trend for the next decade for in vitro modeling of human implantation and early embryogenesis. Along with this research, new ethical dilemmas such as the moral status of the human embryo and the potential exploitation of women consenting to donate their spare embryos have emerged. The careful appraisal and development of national legal and ethical frameworks are crucial for better regulation of studies using human embryos and embryoids to reach the potential benefits for human reproduction. WIDER IMPLICATIONS We believe that our data provide a systematization of the available information on the modeling of human implantation and early placentation and will facilitate further research in this field. A strict classification of the advanced 3D models with their pros, cons, applicability, and availability would help improve the research quality to provide reliable outputs.
Collapse
Affiliation(s)
- Tanya Dimova
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Marina Alexandrova
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Ivaylo Vangelov
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Yuan You
- C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| |
Collapse
|
3
|
Wilson RL, Davenport BN, Jones HN. Mid-Pregnancy Placental Transcriptome in a Model of Placental Insufficiency with and without Novel Intervention. Reprod Sci 2025; 32:435-443. [PMID: 39707140 PMCID: PMC11917528 DOI: 10.1007/s43032-024-01769-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
Fetal growth restriction (FGR) affects between 5-10% of all live births. Placental insufficiency is a leading cause of FGR, resulting in reduced nutrient and oxygen delivery to the fetus. Currently, there are no effective in utero treatment options for FGR, or placental insufficiency. We have developed a gene therapy to deliver, via a non-viral nanoparticle, human insulin-like 1 growth factor (hIGF1) to the placenta as a potential treatment for placenta insufficiency and FGR. Using a guinea pig maternal nutrient restriction (MNR) model of FGR, we aimed to understand the transcriptional changes within the placenta associated with placental insufficiency that occur prior to/at initiation of FGR, and the impact of short-term hIGF1 nanoparticle treatment. Using RNAsequencing, we analyzed protein coding genes of three experimental groups: Control and MNR dams receiving a sham treatment, and MNR dams receiving hIGF1 nanoparticle treatment. Pathway enrichment analysis comparing differentially expressed genelists in sham-treated MNR placentas to sham-treated Control revealed upregulation of pathways associated with degradation and repair of genetic information and downregulation of pathways associated with transmembrane transport. When compared to sham-treated MNR placentas, MNR + hIGF1 placentas demonstrated changes to genelists associated with transmembrane transporter activity including ion, vitamin and solute carrier transport. Overall, this study identifies the key signaling and metabolic changes occurring in the placenta contributing to placental insufficiency prior to/at initiation of FGR, and increases our understanding of the pathways that our nanoparticle-mediated gene therapy intervention regulates.
Collapse
Affiliation(s)
- Rebecca L Wilson
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA.
- Center for Research in Perinatal Outcomes, College of Medicine, University of Florida, Gainesville, FL, USA.
| | - Baylea N Davenport
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Research in Perinatal Outcomes, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Helen N Jones
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Research in Perinatal Outcomes, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
Rghei AD, Yates JGE, Lopes JA, Zhan X, Guilleman MM, Pei Y, van Lieshout LP, Santry LA, Bridle BW, Karimi K, Thompson B, Susta L, Crowe JE, Wootton SK. Antibody-based protection against respiratory syncytial virus in mice and their offspring through vectored immunoprophylaxis. Gene Ther 2025; 32:38-49. [PMID: 36732618 DOI: 10.1038/s41434-023-00385-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
Respiratory syncytial virus (RSV) causes acute lower respiratory tract infections, with potential lower respiratory tract infections, which can be particularly problematic in infants and the elderly. There are no approved vaccines for RSV. The current standard of care for high-risk individuals is monthly administration of palivizumab, a humanized murine monoclonal antibody (mAb) targeting the RSV fusion protein. Adeno-associated virus (AAV)-mediated expression of mAbs has previously led to sustained expression of therapeutic concentrations of mAbs in several animal models, representing an alternative to repetitive passive administration. Intramuscular (IM) administration of AAV6.2FF expressing RSV antibodies, palivizumab or hRSV90, resulted in high concentrations of human (h)IgG1 mAbs in the serum and at various mucosal surfaces, while intranasal administration limited hIgG expression to the respiratory tract. IM administration of AAV6.2FF-hRSV90 or AAV6.2FF-palivizumab in a murine model provided sterilizing immunity against challenge with RSV A2. Evidence of maternal passive transfer of vectorized hRSV90 was detected in both murine and ovine models, with circulating mAbs providing sterilizing immunity in mouse progeny. Finally, addition of a "kill switch" comprised of LoxP sites flanking the mAb genes resulted in diminished serum hIgG after AAV-DJ-mediated delivery of Cre recombinase to the same muscle group that was originally transduced with the AAV-mAb vector. The ability of this AAV-mAb system to mediate robust, sustained mAb expression for maternal transfer to progeny in murine and ovine models emphasizes the potential of this platform for use as an alternative prophylactic vaccine for protection against neonatal infections, particularly in high-risk infants.
Collapse
Affiliation(s)
- Amira D Rghei
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jacob G E Yates
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jordyn A Lopes
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Xuiaoyan Zhan
- Vanderbilt Vaccine Center, Vanderbilt University, Nashville, TN, 37232-0417, USA
| | - Matthew M Guilleman
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Yanlong Pei
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | - Lisa A Santry
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Byram W Bridle
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Khalil Karimi
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | - Leonardo Susta
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University, Nashville, TN, 37232-0417, USA
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
5
|
Li J, Zhu X, Zhu W, Li L, Wei H, Zhang S. Research Progress on the Impact of Human Chorionic Gonadotropin on Reproductive Performance in Sows. Animals (Basel) 2024; 14:3266. [PMID: 39595318 PMCID: PMC11591456 DOI: 10.3390/ani14223266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/01/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Human chorionic gonadotropin is a glycoprotein hormone produced by human or humanoid syncytiotrophoblasts that differentiate during pregnancy. Due to its superior stability and long-lasting effects compared to luteinizing hormone, it is often used to replace luteinizing hormone to regulate reproductive performance in sows. Human chorionic gonadotropin promotes oocyte maturation, follicle development, and luteinization, thereby increasing conception rates and supporting early embryonic development. In sow reproductive management, the application of human chorionic gonadotropin not only enhances ovulation synchrony but also improves the success rate of embryo implantation by regulating endometrial receptivity and immune mechanisms, significantly enhancing overall reproductive performance. This article primarily reviews the application of human chorionic gonadotropin in sow follicle development, luteal maintenance, and embryo implantation, providing theoretical support for its use in improving reproductive performance in sows.
Collapse
Affiliation(s)
| | | | | | | | | | - Shouquan Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agroanimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510640, China; (J.L.); (X.Z.); (W.Z.); (L.L.); (H.W.)
| |
Collapse
|
6
|
Zang X, Zhang D, Wang W, Ding Y, Wang Y, Gu S, Shang Y, Gan J, Jiang L, Meng F, Shi J, Xu Z, Huang S, Li Z, Wu Z, Gu T, Cai G, Hong L. Cross-Species Insights into Trophoblast Invasion During Placentation Governed by Immune-Featured Trophoblast Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407221. [PMID: 39234818 PMCID: PMC11558115 DOI: 10.1002/advs.202407221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/22/2024] [Indexed: 09/06/2024]
Abstract
Proper development of the placenta, the transient support organ forms after embryo implantation, is essential for a successful pregnancy. However, the regulation of trophoblast invasion, which is most important during placentation, remains largely unknown. Here, rats, mice, and pigs are used as biomedical models, used scRNA-seq to comparatively elucidate the regulatory mechanism of placental trophoblast invasion, and verified it using a human preeclampsia disease model combined with scStereo-seq. A dual-featured type of immune-featured trophoblast (iTrophoblast) is unexpectedly discovered. Interestingly, iTrophoblast only exists in invasive placentas and regulates trophoblast invasion during placentation. In a normally developing placenta, iTrophoblast gradually transforms from an immature state into a functional mature state as it develops. Whereas in the developmentally abnormal preeclamptic placenta, disordered iTrophoblast transformation leads to the accumulation of immature iTrophoblasts, thereby disrupting trophoblast invasion and ultimately leading to the progression of preeclampsia.
Collapse
Affiliation(s)
- Xupeng Zang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
| | - Dan Zhang
- Reproductive Medicine CenterGuangdong Provincial Key Laboratory of Reproductive MedicineThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510080P. R. China
| | - Wenjing Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
| | - Yue Ding
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
| | - Yongzhong Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
| | - Shengchen Gu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
| | - Yijun Shang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
| | - Jianyu Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
| | - Lei Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
| | - Fanming Meng
- Guangdong Key Laboratory of Animal Breeding and NutritionInstitute of Animal ScienceGuangdong Academy of Agricultural SciencesGuangzhou510640P. R. China
| | - Junsong Shi
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern AgricultureYunfu527300P. R. China
| | - Zheng Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
- Key Laboratory of South China Modern Biological Seed IndustryMinistry of Agriculture and Rural AffairsGuangzhou510520P. R. China
| | - Sixiu Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
- Key Laboratory of South China Modern Biological Seed IndustryMinistry of Agriculture and Rural AffairsGuangzhou510520P. R. China
| | - Zicong Li
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
- Key Laboratory of South China Modern Biological Seed IndustryMinistry of Agriculture and Rural AffairsGuangzhou510520P. R. China
| | - Zhenfang Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
- Key Laboratory of South China Modern Biological Seed IndustryMinistry of Agriculture and Rural AffairsGuangzhou510520P. R. China
| | - Ting Gu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
- Key Laboratory of South China Modern Biological Seed IndustryMinistry of Agriculture and Rural AffairsGuangzhou510520P. R. China
| | - Gengyuan Cai
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern AgricultureYunfu527300P. R. China
- Key Laboratory of South China Modern Biological Seed IndustryMinistry of Agriculture and Rural AffairsGuangzhou510520P. R. China
| | - Linjun Hong
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
- Key Laboratory of South China Modern Biological Seed IndustryMinistry of Agriculture and Rural AffairsGuangzhou510520P. R. China
| |
Collapse
|
7
|
Cinkornpumin JK, Kwon SY, Prandstetter AM, Maxian T, Sirois J, Goldberg J, Zhang J, Saini D, Dasgupta P, Jeyarajah MJ, Renaud SJ, Paul S, Haider S, Pastor WA. Hypoxia and loss of GCM1 expression prevents differentiation and contact inhibition in human trophoblast stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612343. [PMID: 39314437 PMCID: PMC11419009 DOI: 10.1101/2024.09.10.612343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The placenta develops alongside the embryo and nurtures fetal development to term. During the first stages of embryonic development, due to low blood circulation, the blood and ambient oxygen supply is very low (~1-2% O2) and gradually increases upon placental invasion. While a hypoxic environment is associated with stem cell self-renewal and proliferation, persistent hypoxia may have severe effects on differentiating cells and could be the underlying cause of placental disorders. We find that human trophoblast stem cells (hTSC) thrive in low oxygen, whereas differentiation of hTSC to trophoblast to syncytiotrophoblast (STB) and extravillous trophoblast (EVT) is negatively affected by hypoxic conditions. The pro-differentiation factor GCM1 (human Glial Cell Missing-1) is downregulated in low oxygen, and concordantly there is substantial reduction of GCM1-regulated genes in hypoxic conditions. Knockout of GCM1 in hTSC caused impaired EVT and STB formation and function, reduced expression of differentiation-responsive genes, and resulted in maintenance of self-renewal genes. Treatment with a PI3K inhibitor reported to reduce GCM1 protein levels likewise counteracts spontaneous or directed differentiation. Additionally, chromatin immunoprecipitation of GCM1 showed enrichment of GCM1-specific binding near key transcription factors upregulated upon differentiation including the contact inhibition factor CDKN1C. Loss of GCM1 resulted in downregulation of CDKN1C and corresponding loss of contact inhibition, implicating GCM1 in regulation of this critical process.
Collapse
Affiliation(s)
| | - Sin Young Kwon
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Anna-Maria Prandstetter
- Placental Development Group, Reproductive Biology Unit, Medical University of Vienna, Austria
| | - Theresa Maxian
- Placental Development Group, Reproductive Biology Unit, Medical University of Vienna, Austria
| | - Jacinthe Sirois
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - James Goldberg
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Joy Zhang
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Deepak Saini
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Purbasa Dasgupta
- Department of Pathology and Laboratory Medicine, University of Kansas, Kansas City, United States
| | - Mariyan J Jeyarajah
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario
| | - Stephen J Renaud
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario
| | - Soumen Paul
- Department of Pathology and Laboratory Medicine, University of Kansas, Kansas City, United States
- Institute for Reproduction and Developmental Sciences, University of Kansas, Kansas City, United States
- Department of Obstetrics and Gynecology, University of Kansas, Kansas City, United States
| | - Sandra Haider
- Placental Development Group, Reproductive Biology Unit, Medical University of Vienna, Austria
| | - William A Pastor
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Wilson RL, Davenport BN, Jones HN. Mid-pregnancy placental transcriptome in a model of placental insufficiency with and without novel intervention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597621. [PMID: 38895312 PMCID: PMC11185618 DOI: 10.1101/2024.06.05.597621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Fetal growth restriction (FGR) affects between 5-10% of all live births. Placental insufficiency is a leading cause of FGR, resulting in reduced nutrient and oxygen delivery to the fetus. Currently, there are no effective in utero treatment options for FGR, or placental insufficiency. We have developed a gene therapy to deliver, via a non-viral nanoparticle, human insulin-like 1 growth factor ( hIGF1 ) to the placenta as potential treatment of placenta insufficiency and FGR. Using a guinea pig maternal nutrient restriction (MNR) model of FGR, we aimed to understand the transcriptional changes within the placenta associated with placental insufficiency that occur prior to/at initiation of FGR, and the impact of short-term hIGF1 nanoparticle treatment. Using RNAsequencing, we analyzed protein coding genes of three experimental groups: Control and MNR dams receiving a sham treatment, and MNR dams receiving hIGF1 nanoparticle treatment. Pathway enrichment analysis comparing differentially expressed genelists in sham-treated MNR placentas to Control revealed upregulation of pathways associated with degradation and repair of genetic information and downregulation of pathways associated with transmembrane transport. When compared to sham-treated MNR placentas, MNR + hIGF1 placentas demonstrated changes to genelists associated with transmembrane transporter activity including ion, vitamin and solute carrier transport. Overall, this study identifies the key signaling and metabolic changes occurring in the placenta contributing to placental insufficiency prior to/at initiation of FGR, and increases our understanding of the pathways that our nanoparticle-mediated gene therapy intervention regulates. Statements and Declarations Competing Interests: Authors declare no conflicts of interest.
Collapse
|
9
|
McCready JE, Barboza T. Rodent Pediatrics. Vet Clin North Am Exot Anim Pract 2024; 27:193-219. [PMID: 38102043 DOI: 10.1016/j.cvex.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
This article reviews the development, hand-rearing, feeding, housing, and social behavior of common pet rodent species (rats, mice, hamsters, gerbils, guinea pigs, chinchillas, and degus). In addition, common gastrointestinal, respiratory, cardiovascular, dermatologic, musculoskeletal, neurologic, and ophthalmic disorders in pediatric pet rodents are reviewed. Preventative care and indications for spaying and neutering are discussed.
Collapse
Affiliation(s)
- Julianne E McCready
- Department of Veterinary Clinical Sciences, Zoological Medicine Service, College of Veterinary Medicine, Oklahoma State University, 2065 West Farm Road, Stillwater, OK, USA.
| | - Trinita Barboza
- Department of Clinical Sciences, Zoological Companion Animal Service, Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA, USA
| |
Collapse
|
10
|
Laundon D, Sengers BG, Thompson J, Harris SE, Beasley O, Basford PJ, Katsamenis OL, Goggin P, Derisoud E, Fanelli D, Bocci C, Camillo F, Shotton J, Constable-Dakeyne G, Gostling NJ, Chavatte-Palmer P, Lewis RM. Convergently evolved placental villi show multiscale structural adaptations to differential placental invasiveness. Biol Lett 2024; 20:20240016. [PMID: 38531417 PMCID: PMC10965330 DOI: 10.1098/rsbl.2024.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/01/2024] [Indexed: 03/28/2024] Open
Abstract
Despite having a single evolutionary origin and conserved function, the mammalian placenta exhibits radical structural diversity. The evolutionary drivers and functional consequences of placental structural diversity are poorly understood. Humans and equids both display treelike placental villi, however these villi evolved independently and exhibit starkly different levels of invasiveness into maternal tissue (i.e. the number of maternal tissue layers between placental tissue and maternal blood). The villi in these species therefore serve as a compelling evolutionary case study to explore whether placentas have developed structural adaptations to respond to the challenge of reduced nutrient availability in less invasive placentas. Here, we use three-dimensional X-ray microfocus computed tomography and electron microscopy to quantitatively evaluate key structures involved in exchange in human and equid placental villi. We find that equid villi have a higher surface area to volume ratio and deeper trophoblastic vessel indentation than human villi. Using illustrative computational models, we propose that these structural adaptations have evolved in equids to boost nutrient transfer to compensate for reduced invasiveness into maternal tissue. We discuss these findings in relation to the 'maternal-fetal conflict hypothesis' of placental evolution.
Collapse
Affiliation(s)
- Davis Laundon
- The Institute of Developmental Sciences, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, University Road, Highfield, Southampton SO17 1BJ, UK
| | - Bram G. Sengers
- Institute for Life Sciences, University of Southampton, University Road, Highfield, Southampton SO17 1BJ, UK
- School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - James Thompson
- Biomedical Imaging Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Shelley E. Harris
- The Institute of Developmental Sciences, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Olivia Beasley
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, University Rd, Highfield, Southampton SO17 1BJ, UK
| | - Philip J. Basford
- Institute for Life Sciences, University of Southampton, University Road, Highfield, Southampton SO17 1BJ, UK
- School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
- μ-VIS X-Ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Orestis L. Katsamenis
- Institute for Life Sciences, University of Southampton, University Road, Highfield, Southampton SO17 1BJ, UK
- μ-VIS X-Ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Patricia Goggin
- Institute for Life Sciences, University of Southampton, University Road, Highfield, Southampton SO17 1BJ, UK
- Biomedical Imaging Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Emilie Derisoud
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700 Maisons-Alfort, France
| | - Diana Fanelli
- Dipartimento di Scienze Veterinarie, Università di Pisa, Via Livornese lato monte, 56121 San Piero a Grado, Pisa, Italy
| | - Carlotta Bocci
- Dipartimento di Scienze Veterinarie, Università di Pisa, Via Livornese lato monte, 56121 San Piero a Grado, Pisa, Italy
| | - Francesco Camillo
- Dipartimento di Scienze Veterinarie, Università di Pisa, Via Livornese lato monte, 56121 San Piero a Grado, Pisa, Italy
| | - Justine Shotton
- Marwell Wildlife, Thompson's Lane, Colden Common, Winchester SO21 1JH, UK
| | | | - Neil J. Gostling
- Institute for Life Sciences, University of Southampton, University Road, Highfield, Southampton SO17 1BJ, UK
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, University Rd, Highfield, Southampton SO17 1BJ, UK
| | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700 Maisons-Alfort, France
| | - Rohan M. Lewis
- The Institute of Developmental Sciences, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, University Road, Highfield, Southampton SO17 1BJ, UK
| |
Collapse
|
11
|
Hori T, Okae H, Shibata S, Kobayashi N, Kobayashi EH, Oike A, Sekiya A, Arima T, Kaji H. Trophoblast stem cell-based organoid models of the human placental barrier. Nat Commun 2024; 15:962. [PMID: 38332125 PMCID: PMC10853531 DOI: 10.1038/s41467-024-45279-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
Human placental villi have essential roles in producing hormones, mediating nutrient and waste exchange, and protecting the fetus from exposure to xenobiotics. Human trophoblast organoids that recapitulate the structure of villi could provide an important in vitro tool to understand placental development and the transplacental passage of xenobiotics. However, such organoids do not currently exist. Here we describe the generation of trophoblast organoids using human trophoblast stem (TS) cells. Following treatment with three kinds of culture medium, TS cells form spherical organoids with a single outer layer of syncytiotrophoblast (ST) cells that display a barrier function. Furthermore, we develop a column-type ST barrier model based on the culture condition of the trophoblast organoids. The bottom membrane of the column is almost entirely covered with syndecan 1-positive ST cells. The barrier integrity and maturation levels of the model are confirmed by measuring transepithelial/transendothelial electrical resistance (TEER) and the amount of human chorionic gonadotropin. Further analysis reveals that the model can be used to derive the apparent permeability coefficients of model compounds. In addition to providing a suite of tools for the study of placental development, our trophoblast models allow the evaluation of compound transfer and toxicity, which will facilitate drug development.
Collapse
Affiliation(s)
- Takeshi Hori
- Department of Diagnostic and Therapeutic Systems Engineering, Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Hiroaki Okae
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Shun Shibata
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Norio Kobayashi
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Eri H Kobayashi
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Akira Oike
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Asato Sekiya
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Hirokazu Kaji
- Department of Diagnostic and Therapeutic Systems Engineering, Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan.
| |
Collapse
|
12
|
Rodrigues NER, Oliveira ARDS, Lima SMDA, Nunes DM, de Albuquerque PBS, da Cunha MDGC, Wanderley AG, Júnior FMRDS, Silva JBNF, Teixeira ÁAC, da Silva TG. Effect of the Aqueous Extract of Chrysobalanus icaco Leaves on Maternal Reproductive Outcomes and Fetal Development in Wistar Rats. Curr Issues Mol Biol 2023; 45:7617-7629. [PMID: 37754263 PMCID: PMC10529352 DOI: 10.3390/cimb45090479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Toxicological studies on medicinal plants are essential to ensure their safety and effectiveness in treating various diseases. Despite the species Chrysobalanus icaco L. being popularly used in the treatment of several diseases due to the pharmacological properties of its bioactive compounds, there are few studies in the literature regarding its toxicity regarding reproduction. Therefore, the purpose of this study was to assess the potential embryotoxic and teratogenic effects of the aqueous extract of C. icaco leaves (AECi) on Wistar rats. Animals were given AECi at doses of 100, 200, and 400 mg/kg during the pre-implantation and organogenesis periods. Data were analyzed using ANOVA followed by Tukey's test and Kruskal-Wallis. Pregnant rats treated during the pre-implantation period showed no signs of reproductive toxicity. Rats that received AECi at 100, 200, and 400 mg/kg during organogenesis did not exhibit any signs of maternal systemic toxicity or significant differences in gestational and embryotoxic parameters. Some skeletal changes were observed in the treated groups. Therefore, it can be suggested that AECi at doses of 100, 200, and 400 mg/kg is safe for treated animals and does not induce reproductive toxicity under the experimental conditions applied, but it also caused low systemic toxicity.
Collapse
Affiliation(s)
- Natalie Emanuelle Ribeiro Rodrigues
- Laboratory of Farmatoxicological Prospecting of Bioactive Products (BIOFARMATOX), Department of Antibiotics, Federal University of Pernambuco (UFPE), Recife 54740-520, Pernambuco, Brazil; (A.R.d.S.O.); (S.M.d.A.L.)
- Department of Medicine, University of Pernambuco (UPE), Garanhuns 53294-902, Pernambuco, Brazil; (D.M.N.); (P.B.S.d.A.)
| | - Alisson Rodrigo da Silva Oliveira
- Laboratory of Farmatoxicological Prospecting of Bioactive Products (BIOFARMATOX), Department of Antibiotics, Federal University of Pernambuco (UFPE), Recife 54740-520, Pernambuco, Brazil; (A.R.d.S.O.); (S.M.d.A.L.)
| | - Sandrine Maria de Arruda Lima
- Laboratory of Farmatoxicological Prospecting of Bioactive Products (BIOFARMATOX), Department of Antibiotics, Federal University of Pernambuco (UFPE), Recife 54740-520, Pernambuco, Brazil; (A.R.d.S.O.); (S.M.d.A.L.)
| | - Daniel Medeiros Nunes
- Department of Medicine, University of Pernambuco (UPE), Garanhuns 53294-902, Pernambuco, Brazil; (D.M.N.); (P.B.S.d.A.)
| | | | | | - Almir Gonçalves Wanderley
- Department of Physiology and Pharmacology, Federal University of Pernambuco (UFPE), Recife 50670-901, Pernambuco, Brazil;
- Department of Pharmaceutical Sciences, Federal Univesity of São Paulo, São Paulo 09913-030, Brazil
| | | | - José Bruno Nunes Ferreira Silva
- Laboratory of Biotechnology, Immunology and Health Studies, Medicine Course, Federal University of Tocantins (UFT), Palmas 77001-923, Tocantins, Brazil;
| | - Álvaro Aguiar Coelho Teixeira
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco (UFPE), Recife 52171-900, Pernambuco, Brazil;
| | - Teresinha Gonçalves da Silva
- Laboratory of Farmatoxicological Prospecting of Bioactive Products (BIOFARMATOX), Department of Antibiotics, Federal University of Pernambuco (UFPE), Recife 54740-520, Pernambuco, Brazil; (A.R.d.S.O.); (S.M.d.A.L.)
| |
Collapse
|
13
|
Stenhouse C, Bazer FW, Ashworth CJ. Sexual dimorphism in placental development and function: Comparative physiology with an emphasis on the pig. Mol Reprod Dev 2023; 90:684-696. [PMID: 35466463 DOI: 10.1002/mrd.23573] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 11/10/2022]
Abstract
Across mammalian species, it has been demonstrated that sex influences birth weight, with males being heavier than females; a characteristic that can be observed from early gestation. Male piglets are more likely to be stillborn and have greater preweaning mortality than their female littermates, despite the additional maternal investment into male fetal growth. Given the conserved nature of the genome between the sexes, it is hypothesized that these developmental differences between males and females are most likely orchestrated by differential placental adaptation. This review summarizes the current understanding of fetal sex-specific differences in placental and endometrial structure and function, with an emphasis on pathways found to be differentially regulated in the pig including angiogenesis, apoptosis, and proliferation. Given the importance of piglet sex in agricultural enterprises, and the potential for skewed litter sex ratios, it is imperative to improve understanding of the relationship between fetal sex and molecular signaling in both the placenta and endometria across gestation.
Collapse
Affiliation(s)
- Claire Stenhouse
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
- Functional Genetics and Development Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Cheryl J Ashworth
- Functional Genetics and Development Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| |
Collapse
|
14
|
Orzeł A, Unrug-Bielawska K, Filipecka-Tyczka D, Berbeka K, Zeber-Lubecka N, Zielińska M, Kajdy A. Molecular Pathways of Altered Brain Development in Fetuses Exposed to Hypoxia. Int J Mol Sci 2023; 24:10401. [PMID: 37373548 DOI: 10.3390/ijms241210401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Perinatal hypoxia is a major cause of neurodevelopmental impairment and subsequent motor and cognitive dysfunctions; it is associated with fetal growth restriction and uteroplacental dysfunction during pregnancy. This review aims to present the current knowledge on brain development resulting from perinatal asphyxia, including the causes, symptoms, and means of predicting the degree of brain damage. Furthermore, this review discusses the specificity of brain development in the growth-restricted fetus and how it is replicated and studied in animal models. Finally, this review aims at identifying the least understood and missing molecular pathways of abnormal brain development, especially with respect to potential treatment intervention.
Collapse
Affiliation(s)
- Anna Orzeł
- Centre of Postgraduate Medical Education, I-st Department of Obstetrics and Gynecology, 01-813 Warsaw, Poland
| | - Katarzyna Unrug-Bielawska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 00-001 Warsaw, Poland
| | - Dagmara Filipecka-Tyczka
- Centre of Postgraduate Medical Education, I-st Department of Obstetrics and Gynecology, 01-813 Warsaw, Poland
| | - Krzysztof Berbeka
- Centre of Postgraduate Medical Education, I-st Department of Obstetrics and Gynecology, 01-813 Warsaw, Poland
| | - Natalia Zeber-Lubecka
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 00-001 Warsaw, Poland
- Centre of Postgraduate Medical Education, Department of Gastroenterology, Hepatology and Clinical Oncology, 01-813 Warsaw, Poland
| | - Małgorzata Zielińska
- Centre of Postgraduate Medical Education, I-st Department of Obstetrics and Gynecology, 01-813 Warsaw, Poland
| | - Anna Kajdy
- Centre of Postgraduate Medical Education, I-st Department of Obstetrics and Gynecology, 01-813 Warsaw, Poland
| |
Collapse
|
15
|
Dusza HM, van Boxel J, van Duursen MBM, Forsberg MM, Legler J, Vähäkangas KH. Experimental human placental models for studying uptake, transport and toxicity of micro- and nanoplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160403. [PMID: 36417947 DOI: 10.1016/j.scitotenv.2022.160403] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Micro- and nanoplastics (MNPs) are ubiquitous in the environment and have recently been found in human lungs, blood and placenta. However, data on the possible effects of MNPs on human health is extremely scarce. The potential toxicity of MNPs during pregnancy, a period of increased susceptibility to environmental insults, is of particular concern. The placenta provides a unique interface between maternal and fetal circulation which is essential for in utero survival and healthy pregnancy. Placental toxicokinetics and toxicity of MNPs are still largely unexplored and the limited studies performed up to now focus mainly on polystyrene particles. Practical and ethical considerations limit research options in humans, and extrapolation from animal studies is challenging due to marked differences between species. Nevertheless, diverse in vitro and ex vivo human placental models exist e.g., plasma membrane vesicles, mono-culture and co-culture of placental cells, placenta-on-a-chip, villous tissue explants, and placental perfusion that can be used to advance this research area. The objective of this concise review is to recapitulate different human placental models, summarize the current understanding of placental uptake, transport and toxicity of MNPs and define knowledge gaps. Moreover, we provide perspectives for future research urgently needed to assess the potential hazards and risks of MNP exposure to maternal and fetal health.
Collapse
Affiliation(s)
- Hanna M Dusza
- Division of Toxicology, Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - Jeske van Boxel
- Amsterdam Institute for Life and Environment, Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Majorie B M van Duursen
- Amsterdam Institute for Life and Environment, Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Markus M Forsberg
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Juliette Legler
- Division of Toxicology, Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Kirsi H Vähäkangas
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
16
|
Wilson RL, Lampe K, Gupta MK, Duvall CL, Jones HN. Nanoparticle-mediated transgene expression of insulin-like growth factor 1 in the growth restricted guinea pig placenta increases placenta nutrient transporter expression and fetal glucose concentrations. Mol Reprod Dev 2022; 89:540-553. [PMID: 36094907 PMCID: PMC10947605 DOI: 10.1002/mrd.23644] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/23/2022] [Accepted: 08/28/2022] [Indexed: 12/25/2022]
Abstract
Fetal growth restriction (FGR) significantly contributes to neonatal and perinatal morbidity and mortality. Currently, there are no effective treatment options for FGR during pregnancy. We have developed a nanoparticle gene therapy targeting the placenta to increase expression of human insulin-like growth factor 1 (hIGF1) to correct fetal growth trajectories. Using the maternal nutrient restriction guinea pig model of FGR, an ultrasound-guided, intraplacental injection of nonviral, polymer-based hIGF1 nanoparticle containing plasmid with the hIGF1 gene and placenta-specific Cyp19a1 promotor was administered at mid-pregnancy. Sustained hIGF1 expression was confirmed in the placenta 5 days after treatment. Whilst increased hIGF1 did not change fetal weight, circulating fetal glucose concentration were 33%-67% higher. This was associated with increased expression of glucose and amino acid transporters in the placenta. Additionally, hIGF1 nanoparticle treatment increased the fetal capillary volume density in the placenta, and reduced interhaemal distance between maternal and fetal circulation. Overall, our findings, that trophoblast-specific increased expression of hIGF1 results in changes to glucose transporter expression and increases fetal glucose concentrations within a short time period, highlights the translational potential this treatment could have in correcting impaired placental nutrient transport in human pregnancies complicated by FGR.
Collapse
Affiliation(s)
- Rebecca L. Wilson
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Kristin Lampe
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital and Medical Center, Cincinnati, Ohio, USA
| | - Mukesh K. Gupta
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Craig L. Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Helen N. Jones
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
17
|
Mao Q, Chen X. An update on placental drug transport and its relevance to fetal drug exposure. MEDICAL REVIEW (2021) 2022; 2:501-511. [PMID: 37724167 PMCID: PMC10388746 DOI: 10.1515/mr-2022-0025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/27/2022] [Indexed: 09/20/2023]
Abstract
Pregnant women are often complicated with diseases that require treatment with medication. Most drugs administered to pregnant women are off-label without the necessary dose, efficacy, and safety information. Knowledge concerning drug transfer across the placental barrier is essential for understanding fetal drug exposure and hence drug safety and efficacy to the fetus. Transporters expressed in the placenta, including adenosine triphosphate (ATP)-binding cassette efflux transporters and solute carrier uptake transporters, play important roles in determining drug transfer across the placental barrier, leading to fetal exposure to the drugs. In this review, we provide an update on placental drug transport, including in vitro cell/tissue, ex vivo human placenta perfusion, and in vivo animal studies that can be used to determine the expression and function of drug transporters in the placenta as well as placental drug transfer and fetal drug exposure. We also describe how the knowledge of placental drug transfer through passive diffusion or active transport can be combined with physiologically based pharmacokinetic modeling and simulation to predict systemic fetal drug exposure. Finally, we highlight knowledge gaps in studying placental drug transport and predicting fetal drug exposure and discuss future research directions to fill these gaps.
Collapse
Affiliation(s)
- Qingcheng Mao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Xin Chen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| |
Collapse
|
18
|
Aslanian-Kalkhoran L, Esparvarinha M, Nickho H, Aghebati-Maleki L, Heris JA, Danaii S, Yousefi M. Understanding main pregnancy complications through animal models. J Reprod Immunol 2022; 153:103676. [PMID: 35914401 DOI: 10.1016/j.jri.2022.103676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/27/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022]
Abstract
Since human pregnancy is an inefficient process, achieving desired and pleasant outcome of pregnancy - the birth of a healthy and fit baby - is the main goal in any pregnancy. Spontaneous pregnancy failure is actually the most common complication of pregnancy and Most of these pregnancy losses are not known. Animal models have been utilized widely to investigate the system of natural biological adaptation to pregnancy along with increasing our comprehension of the most important hereditary and non-hereditary factors that contribute to pregnancy disorders. We use model organisms because their complexity better reproduces the human condition. A useful animal model for the disease should be pathologically similar to the disease conditions in humans. Animal models deserve a place in research because of the ethical limitations that apply to pregnant women's experiments. The present review provides insights into the overall risk factors involved in recurrent miscarriage, recurrent implant failure and preeclampsia and animal models developed to help researchers identify the source of miscarriage and the best research and treatment strategy for women with Repeated miscarriage and implant failure.
Collapse
Affiliation(s)
- Lida Aslanian-Kalkhoran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Mojgan Esparvarinha
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Hamid Nickho
- Department of Immuunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Shahla Danaii
- Gynecology Department, Eastern Azerbaijan ACECR ART Centre, Eastern Azerbaijan Branch of ACECR, Tabriz, Islamic Republic of Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.
| |
Collapse
|
19
|
Davenport BN, Wilson RL, Jones HN. Interventions for placental insufficiency and fetal growth restriction. Placenta 2022; 125:4-9. [PMID: 35414477 PMCID: PMC10947607 DOI: 10.1016/j.placenta.2022.03.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/09/2022] [Accepted: 03/28/2022] [Indexed: 01/16/2023]
Abstract
Pregnancy complications adversely impact both mother and/or fetus throughout the lifespan. Fetal growth restriction (FGR) occurs when a fetus fails to reach their intrauterine potential for growth, it is the second highest leading cause of infant mortality, and leads to increased risk of developing non-communicable diseases in later life due 'fetal programming'. Abnormal placental development, growth and/or function underlies approximately 75% of FGR cases and there is currently no treatment save delivery, often prematurely. We previously demonstrated in a murine model of FGR that nanoparticle mediated, intra-placental human IGF-1 gene therapy maintains normal fetal growth. Multiple models of FGR currently exist reflecting the etiologies of human FGR and have been used by us and others to investigate the development of in utero therapeutics as discussed here. In addition to the in vivo models discussed herein, utilizing human models including in vitro (Choriocarcinoma cell lines and primary trophoblasts) and ex vivo (term villous fragments and placenta cotyledon perfusion) we have demonstrated robust nanoparticle uptake, transgene expression, nutrient transporter regulation without transfer to the fetus. For translational gene therapy application in the human placenta, there are multiple avenues that require investigation including syncytial uptake from the maternal circulation, transgene expression, functionality and longevity of treatment, impact of treatment on the mother and developing fetus. The potential impact of treating the placenta during gestation is high, wide-ranging across pregnancy complications, and may offer reduced risk of developing associated cardio-metabolic diseases in later life impacting at both an individual and societal level.
Collapse
Affiliation(s)
- Baylea N Davenport
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, United States
| | - Rebecca L Wilson
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, United States
| | - Helen N Jones
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, United States.
| |
Collapse
|
20
|
Tan C, Huang Z, Xiong W, Ye H, Deng J, Yin Y. A review of the amino acid metabolism in placental function response to fetal loss and low birth weight in pigs. J Anim Sci Biotechnol 2022; 13:28. [PMID: 35232472 PMCID: PMC8889744 DOI: 10.1186/s40104-022-00676-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/09/2022] [Indexed: 11/10/2022] Open
Abstract
The fertility of sows mainly depends on the embryo losses during gestation and the survival rate of the post-farrowing piglets. The selection of highly-prolific sows has been mainly focused on the selection of genotypes with high ovulatory quota. However, in the early- and post-implantation stages, the rate of embryo losses was increased with the increase of zygotes. Among the various factors, placental growth and development is the vital determinant for fetal survival, growth, and development. Despite the potential survival of fetuses with deficient placental development, their life-conditions and growth can be damaged by a process termed intrauterine growth retardation (IUGR). The newborn piglets affected by IUGR are prone to increased morbidity and mortality rates; meanwhile, the growth, health and welfare of the surviving piglets will remain hampered by these conditions, with a tendency to exacerbate with age. Functional amino acids such as glycine, proline, and arginine continue to increase with the development of placenta, which are not only essential to placental growth (including vascular growth) and development, but can also be used as substrates for the production of glutathione, polyamines and nitric oxide to benefit placental function in many ways. However, the exact regulation mechanism of these amino acids in placental function has not yet been clarified. In this review, we provide evidence from literature and our own work for the role and mechanism of dietary functional amino acids during pregnancy in regulating the placental functional response to fetal loss and birth weight of piglets. This review will provide novel insights into the response of nutritionally nonessential amino acids (glycine and proline) to placental development as well as feasible strategies to enhance the fertility of sows.
Collapse
Affiliation(s)
- Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Zihao Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Wenyu Xiong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Hongxuan Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| | - Yulong Yin
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China.
| |
Collapse
|
21
|
Neto da Silva AC, Costa AL, Teixeira A, Alpoim-Moreira J, Fernandes C, Fradinho MJ, Rebordão MR, Silva E, Ferreira da Silva J, Bliebernicht M, Alexandre-Pires G, Ferreira-Dias G. Collagen and Microvascularization in Placentas From Young and Older Mares. Front Vet Sci 2022; 8:772658. [PMID: 35059454 PMCID: PMC8764314 DOI: 10.3389/fvets.2021.772658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
In older mares, increasing collagen fibers (fibrosis) in the endometrium and oviduct predisposes to sub-fertility and infertility. In this study, (i) gene transcription of collagen (qPCR: COL1A1, COL1A2, COL3A1, COL5A1); (ii) total collagen protein (hydroxyproline); (iii) collagen distribution (Picrosirius red staining; polarized light microscopy); and (iv) microvascular density (Periodic acid-Schiff staining), were evaluated in mares' placenta, and related to mares age, and placenta and neonate weights. Samples were collected from the gravid horn, non-gravid horn, and body of the placenta from younger (n = 7), and older mares (n = 9) of different breeds. Transcripts of COL1A1, COL3A1 and COL5A1, total collagen protein, chorionic plate connective tissue thickness, and microvascularization increased in the gravid horn of older mares' placentas, compared to the youngest (P < 0.05). Although in other species placenta fibrosis may indicate placental insufficiency and reduced neonate weight, this was not observed here. It appears that older fertile mares, with more parities, may develop a heavier, more vascularized functional placenta with more collagen, throughout a longer gestation, which enables the delivery of heavier foals. Thus, these features might represent morphological and physiological adaptations of older fertile mares' placentas to provide the appropriate nutrition to the equine fetus.
Collapse
Affiliation(s)
- Ana Catarina Neto da Silva
- Faculdade de Medicina Veterinária, CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| | | | - Ana Teixeira
- Pole Reprodución Haras de La Gesse, Boulogne-sur-Gesse, France
| | - Joana Alpoim-Moreira
- Faculdade de Medicina Veterinária, CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| | - Carina Fernandes
- Faculdade de Medicina Veterinária, CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| | - Maria João Fradinho
- Faculdade de Medicina Veterinária, CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| | - Maria Rosa Rebordão
- Faculdade de Medicina Veterinária, CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal.,Coimbra College of Agriculture, Polytechnic Institute of Coimbra, Coimbra, Portugal
| | - Elisabete Silva
- Faculdade de Medicina Veterinária, CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| | - José Ferreira da Silva
- Faculdade de Medicina Veterinária, CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| | | | - Graça Alexandre-Pires
- Faculdade de Medicina Veterinária, CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| | - Graça Ferreira-Dias
- Faculdade de Medicina Veterinária, CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
22
|
Almeida FRCL, Dias ALNA. Pregnancy in pigs: the journey of an early life. Domest Anim Endocrinol 2022; 78:106656. [PMID: 34474228 DOI: 10.1016/j.domaniend.2021.106656] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 01/12/2023]
Abstract
Embryo mortality is responsible for greater losses in litter size in pigs. It is well known that pregnancy establishment is a complex process, and important changes occur continuously in both the corpora lutea and the endometrium, which varies depending on the pre-natal development phase: embryonic, pre-implantation or fetal stages. The placenta is a key organ responsible for the exchange of nutrients, metabolites and respiratory gases between mother and fetuses. The porcine placenta is diffuse, epitheliochorial, and placentation begins with implantation, which involves specialized cell adhesion and cell migration, leading to the attachment of the trophectoderm to the uterine endometrial lumen epithelium. The efficiency with which the placenta provides adequate amounts of nutrients and oxygen to the fetus is crucial for proper fetal growth and development. In the last decades, emphasis on selection for sow prolificacy has resulted in a substantial increase in the number of piglets born per litter, which had a direct effect on piglet quality, compromising birth weight and litter uniformity. Placental insufficiency will lead to fetal intrauterine growth restriction. This review addresses the main events of early embryo development, including preimplantation and implantation periods. In addition, placentation and its role on fetal development are covered, as well as intrauterine growth restriction, as it is a natural condition in the pig, with long lasting detrimental effects to the production chain.
Collapse
Affiliation(s)
- F R C L Almeida
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, CEP 31207-901, Belo Horizonte, MG, Brazil.
| | - A L N Alvarenga Dias
- Faculty of Veterinary Medicine, Federal University of Uberlandia, Rodovia BR-050, km 78 - CEP 38410-337, Uberlandia, MG, Brazil
| |
Collapse
|
23
|
Stenhouse C, Suva LJ, Gaddy D, Wu G, Bazer FW. Phosphate, Calcium, and Vitamin D: Key Regulators of Fetal and Placental Development in Mammals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1354:77-107. [PMID: 34807438 DOI: 10.1007/978-3-030-85686-1_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Normal calcium and bone homeostasis in the adult is virtually fully explained by the interactions of several key regulatory hormones, including parathyroid hormone, 1,25 dihydroxy vitamin D3, fibroblast growth factor-23, calcitonin, and sex steroids (estradiol and testosterone). In utero, bone and mineral metabolism is regulated differently from the adult. During development, it is the placenta and not the fetal kidneys, intestines, or skeleton that is the primary source of minerals for the fetus. The placenta is able to meet the almost inexhaustible needs of the fetus for minerals by actively driving the transport of calcium and phosphorus from the maternal circulation to the growing fetus. These fundamentally important minerals are maintained in the fetal circulation at higher concentrations than those in maternal blood. Maintenance of these inordinately higher fetal levels is necessary for the developing skeleton to accrue sufficient minerals by term. Importantly, in livestock species, prenatal mineralization of the skeleton is crucial for the high levels of offspring activity soon after birth. Calcium is required for mineralization, as well as a plethora of other physiological functions. Placental calcium and phosphate transport are regulated by several mechanisms that are discussed in this review. It is clear that phosphate and calcium metabolism is intimately interrelated and, therefore, placental transport of these minerals cannot be considered in isolation.
Collapse
Affiliation(s)
- Claire Stenhouse
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Larry J Suva
- Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Dana Gaddy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Kleberg Center, Texas A&M University, College Station, TX, 77843-2471, USA.
| |
Collapse
|
24
|
Andersen MHG, Zuri G, Knudsen LE, Mathiesen L. Placental transport of parabens studied using an ex-vivo human perfusion model. Placenta 2021; 115:121-128. [PMID: 34601208 DOI: 10.1016/j.placenta.2021.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/16/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Parabens are a group of chemicals widely used as preservatives in daily consumer products such as cosmetics, food items, pharmaceuticals and household commodities. They have been broadly detected in human samples indicating a general human exposure, and concerns arose from their potential endocrine disrupting effect. Especially the exposure to parabens during pregnancy is concerning, as the time of fetal development is a particularly vulnerable period. The aim of this study was to investigate the transport and metabolism of four commonly used parabens: methyl-, ethyl-, propyl- and butylparaben (MeP, EtP, PrP and BuP) and the metabolite para-hydroxybenzoic acid (PHBA) across the human placenta. METHODS An ex-vivo human placental perfusion model was used. The test compounds were added in the maternal compartment (with initial concentrations of 1 mM or 0.1 mM). Placental transport was evaluated by fetal-maternal concentration ratios (FM-ratio), transport index (TI) and indicative permeability (IP). RESULTS Information about parabens kinetics was taken from 10 perfusions and PHBA from 7 perfusions. Paraben metabolism was not detected. The placental transport of MeP, EtP, PrP, BuP and PHBA revealed a transfer from maternal to fetal circulations with FM120 of 0.86 ± 0.27 (MeP), 0.98 ± 0.28 (EtP), 1.00 ± 0.28 (PrP), 1.12 ± 0.59 (BuP) and 0.82 ± 0.37 (PHBA). The test substances accumulated in the perfused tissue in some degree. The average kinetic parameters FM-ratio, TI and IP were not different between chemicals. DISCUSSION The present study shows that the placenta barrier is permeable to all four parabens and the metabolite, which implies potential fetal exposure.
Collapse
Affiliation(s)
- Maria Helena Guerra Andersen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014, Copenhagen K, Denmark; The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-1014, Copenhagen Ø, Denmark
| | - Giuseppina Zuri
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014, Copenhagen K, Denmark
| | - Lisbeth E Knudsen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014, Copenhagen K, Denmark
| | - Line Mathiesen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014, Copenhagen K, Denmark.
| |
Collapse
|
25
|
Sharma A, Sah N, Kannan S, Kannan RM. Targeted drug delivery for maternal and perinatal health: Challenges and opportunities. Adv Drug Deliv Rev 2021; 177:113950. [PMID: 34454979 PMCID: PMC8544131 DOI: 10.1016/j.addr.2021.113950] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/06/2021] [Accepted: 08/24/2021] [Indexed: 12/18/2022]
Abstract
Pre-existing conditions at reproductive age, and complications arising during pregnancy can be detrimental to maternal and fetal health. Current therapies to combat obstetric disorders are limited due to the inherent complexity of pregnancy, and can have harmful effects on developing fetus. Emerging research shows intricate signaling between the cells from mother and fetus at maternal-fetal interface, providing unique opportunities for interventions specifically targeted to the mother, fetus, or placenta. Advancements in nanotechnology, stem-cell biology and gene therapy have resulted in target-specific treatments with promising results in pre-clinical maternal and fetal disorder models. Comprehensive understanding of the effect of physicochemical properties of delivery systems on their uptake, retention and accumulation across placenta will help in the better diagnosis and treatment of perinatal disorders. This review describes the factors leading to obstetric complications along with their effect on pregnancy outcomes, and discusses key targeted therapeutic strategies for addressing conditions related to maternal and fetal health.
Collapse
Affiliation(s)
- Anjali Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Nirnath Sah
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sujatha Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore MD, 21205, USA
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore MD, 21205, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore MD, 21218, USA.
| |
Collapse
|
26
|
Jacquier M, Arthuis C, Grévent D, Bussières L, Henry C, Millischer-Bellaiche AE, Mahallati H, Ville Y, Siauve N, Salomon LJ. Dynamic contrast enhanced magnetic resonance imaging: A review of its application in the assessment of placental function. Placenta 2021; 114:90-99. [PMID: 34507031 DOI: 10.1016/j.placenta.2021.08.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 06/02/2021] [Accepted: 08/23/2021] [Indexed: 01/02/2023]
Abstract
It is important to develop a better understanding of placental insufficiency given its role in common maternofetal complications such as preeclampsia and fetal growth restriction. Functional magnetic resonance imaging offers unprecedented techniques for exploring the placenta under both normal and pathological physiological conditions. Dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) is an established and very robust method to investigate the microcirculatory parameters of an organ and more specifically its perfusion. It is currently a gold standard in the physiological and circulatory evaluation of an organ. Its application to the human placenta could enable to access many microcirculatory parameters relevant to the placental function such as organ blood flow, fractional blood volume, and permeability surface area, by the acquisition of serial images, before, during, and after administration of an intravenous contrast agent. Widely used in animal models with gadolinium-based contrast agents, its application to the human placenta could be possible if the safety of contrast agents in pregnancy is established or they are confirmed to not cross the placenta.
Collapse
Affiliation(s)
- Mathilde Jacquier
- Obstetrics and Gynecology Department, Assistance Publique - Hôpitaux de Paris, Hôpital Necker - Enfants Malades, 149 Rue de Sèvres, 75015, Paris, France; EA FETUS 7328 and LUMIERE Unit, Université de Paris, France
| | - Chloé Arthuis
- EA FETUS 7328 and LUMIERE Unit, Université de Paris, France; Obstetrics and Gynecology Department, CHU Nantes, 38 Boulevard Jean Monnet, 44000, Nantes, France
| | - David Grévent
- EA FETUS 7328 and LUMIERE Unit, Université de Paris, France; Radiology Department, Assistance Publique - Hôpitaux de Paris, Hôpital Necker - Enfants Malades, 149 Rue de Sèvres, 75015, Paris, France
| | - Laurence Bussières
- Obstetrics and Gynecology Department, Assistance Publique - Hôpitaux de Paris, Hôpital Necker - Enfants Malades, 149 Rue de Sèvres, 75015, Paris, France; EA FETUS 7328 and LUMIERE Unit, Université de Paris, France
| | - Charline Henry
- EA FETUS 7328 and LUMIERE Unit, Université de Paris, France
| | - Anne-Elodie Millischer-Bellaiche
- EA FETUS 7328 and LUMIERE Unit, Université de Paris, France; Radiology Department, Assistance Publique - Hôpitaux de Paris, Hôpital Necker - Enfants Malades, 149 Rue de Sèvres, 75015, Paris, France
| | - Houman Mahallati
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Yves Ville
- Obstetrics and Gynecology Department, Assistance Publique - Hôpitaux de Paris, Hôpital Necker - Enfants Malades, 149 Rue de Sèvres, 75015, Paris, France; EA FETUS 7328 and LUMIERE Unit, Université de Paris, France
| | - Nathalie Siauve
- Radiology Department, Assistance Publique - Hôpitaux de Paris, Hôpital Louis Mourier, 178 Rue des Renouillers, 92700, Colombes, France; INSERM, U970, Paris Cardiovascular Research Center - PARCC, Paris, France
| | - Laurent J Salomon
- Obstetrics and Gynecology Department, Assistance Publique - Hôpitaux de Paris, Hôpital Necker - Enfants Malades, 149 Rue de Sèvres, 75015, Paris, France; EA FETUS 7328 and LUMIERE Unit, Université de Paris, France.
| |
Collapse
|
27
|
Time Mating Guinea Pigs by Monitoring Changes to the Vaginal Membrane throughout the Estrus Cycle and with Ultrasound Confirmation. Methods Protoc 2021; 4:mps4030058. [PMID: 34564304 PMCID: PMC8482275 DOI: 10.3390/mps4030058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 02/04/2023] Open
Abstract
One of the greatest challenges to the development and implementation of pregnancy therapeutics is the ability to rigorously test treatments in clinically relevant animal models. Guinea pigs offer a unique advantage in studying the placenta, fetal development, and reproductive health as they have similar developmental milestones to humans, both throughout gestation and following birth. Tracking the guinea pig estrus cycle is imperative to ensuring appropriately timed mating and can be performed by monitoring the guinea pig vaginal membrane. Here, we describe a methodology to efficiently and accurately time mate guinea pigs, and provide a picture representation of changes to the guinea pig vaginal membrane throughout the estrus cycle. Utilization of this monitoring enabled a 100% pregnancy success rate on the first mating attempt in a cohort of five guinea pigs. This approach, along with early pregnancy ultrasounds as a secondary method to confirm pregnancy, offers a reliable approach to timed mating in the guinea pig.
Collapse
|
28
|
Integrated Insight into the Molecular Mechanisms of Spontaneous Abortion during Early Pregnancy in Pigs. Int J Mol Sci 2021; 22:ijms22126644. [PMID: 34205766 PMCID: PMC8235555 DOI: 10.3390/ijms22126644] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/17/2022] Open
Abstract
Due to the high rate of spontaneous abortion (SAB) in porcine pregnancy, there is a major interest and concern on commercial pig farming worldwide. Whereas the perturbed immune response at the maternal–fetal interface is an important mechanism associated with the spontaneous embryo loss in the early stages of implantation in porcine, data on the specific regulatory mechanism of the SAB at the end stage of the implantation remains scant. Therefore, we used high-throughput sequencing and bioinformatics tools to analyze the healthy and arresting endometrium on day 28 of pregnancy. We identified 639 differentially expressed lncRNAs (DELs) and 2357 differentially expressed genes (DEGs) at the end stage of implantation, and qRT-PCR was used to verify the sequencing data. Gene set variation analysis (GSVA), gene set enrichment analysis (GSEA), and immunohistochemistry analysis demonstrated weaker immune response activities in the arresting endometrium compared to the healthy one. Using the lasso regression analysis, we screened the DELs and constructed an immunological competitive endogenous RNA (ceRNA) network related to SAB, including 4 lncRNAs, 11 miRNAs, and 13 genes. In addition, Blast analysis showed the applicability of the constructed ceRNA network in different species, and subsequently determined HOXA-AS2 in pigs. Our study, for the first time, demonstrated that the SAB events at the end stages of implantation is associated with the regulation of immunobiological processes, and a specific molecular regulatory network was obtained. These novel findings may provide new insight into the possibility of increasing the litter size of sows, making pig breeding better and thus improving the efficiency of animal husbandry production.
Collapse
|
29
|
Bidarimath M, Lingegowda H, Miller JE, Koti M, Tayade C. Insights Into Extracellular Vesicle/Exosome and miRNA Mediated Bi-Directional Communication During Porcine Pregnancy. Front Vet Sci 2021; 8:654064. [PMID: 33937376 PMCID: PMC8081834 DOI: 10.3389/fvets.2021.654064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/11/2021] [Indexed: 12/19/2022] Open
Abstract
Spontaneous fetal loss is one of the most important challenges that commercial pig industry is still facing in North America. Research over the decade provided significant insights into some of the associated mechanisms including uterine capacity, placental efficiency, deficits in vasculature, and immune-inflammatory alterations at the maternal-fetal interface. Pigs have unique epitheliochorial placentation where maternal and fetal layers lay in opposition without any invasion. This has provided researchers opportunities to accurately tease out some of the mechanisms associated with maternal-fetal interface adaptations to the constantly evolving needs of a developing conceptus. Another unique feature of porcine pregnancy is the conceptus derived recruitment of immune cells during the window of conceptus attachment. These immune cells in turn participate in pregnancy associated vascular changes and contribute toward tolerance to the semi-allogeneic fetus. However, the precise mechanism of how maternal-fetal cells communicate during the critical times in gestation is not fully understood. Recently, it has been established that bi-directional communication between fetal trophoblasts and maternal cells/tissues is mediated by extracellular vesicles (EVs) including exosomes. These EVs are detected in a variety of tissues and body fluids and their role has been described in modulating several physiological and pathological processes including vascularization, immune-modulation, and homeostasis. Recent literature also suggests that these EVs (exosomes) carry cargo (nucleic acids, protein, and lipids) as unique signatures associated with some of the pregnancy associated pathologies. In this review, we provide overview of important mechanisms in porcine pregnancy success and failure and summarize current knowledge about the unique cargo containing biomolecules in EVs. We also discuss how EVs (including exosomes) transfer their contents into other cells and regulate important biological pathways critical for pregnancy success.
Collapse
Affiliation(s)
- Mallikarjun Bidarimath
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | | | - Jessica E. Miller
- Department Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Madhuri Koti
- Department Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
- Department of Obstetrics and Gynecology, Queen's University, Kingston, ON, Canada
| | - Chandrakant Tayade
- Department Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
30
|
Olivier E, Wakx A, Fouyet S, Dutot M, Rat P. JEG-3 placental cells in toxicology studies: a promising tool to reveal pregnancy disorders. Anat Cell Biol 2021; 54:83-92. [PMID: 33281121 PMCID: PMC8017447 DOI: 10.5115/acb.20.234] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/16/2020] [Accepted: 11/03/2020] [Indexed: 01/08/2023] Open
Abstract
Placental alterations are responsible for adverse pregnancy outcomes like preeclampsia and intrauterine growth restriction. And yet, placenta toxicology has not become a fully-fledged toxicology field. Because placenta is very often seen only as a barrier between the mother and the fetus, there is a lack and therefore a need for an experimental human model with technical recommendations to study placenta toxicology. In vitro approaches are recommended in experimental toxicology as they focus on a specific biological process and yield high-throughput screening methods. In the present study, we first established incubation conditions to preserve signatures of the human JEG-3 cell line identity while enabling toxicity detection. JEG-3 cells prepared in our incubation conditions were renamed JEG-Tox cells. As placental alterations are mainly triggered by uncontrolled apoptosis, we second used known apoptotic agents pregnant women are exposed to, to check that JEG-Tox cells can trigger apoptosis. Ethanol, bisphenol F, quinalphos, 4,4'-DDT, benzalkonium chloride, phenoxyethanol, propylparaben, and perfluorooctanic acid all induced chromatin condensation in JEG-Tox cells. Our incubation conditions allow JEG-Tox cells to keep placental cell identity and to respond to toxic chemicals. JEG-Tox cells are a pertinent model for placenta toxicology and could be used to better understand pregnancy alterations.
Collapse
Affiliation(s)
- Elodie Olivier
- UMR CNRS 8038 CiTCoM, Laboratoire de Chimie-Toxicologie Analytique et Cellulaire, Université de Paris, Faculté de Pharmacie de Paris, Paris, France
| | - Anaïs Wakx
- UMR CNRS 8038 CiTCoM, Laboratoire de Chimie-Toxicologie Analytique et Cellulaire, Université de Paris, Faculté de Pharmacie de Paris, Paris, France
| | - Sophie Fouyet
- UMR CNRS 8038 CiTCoM, Laboratoire de Chimie-Toxicologie Analytique et Cellulaire, Université de Paris, Faculté de Pharmacie de Paris, Paris, France
| | - Mélody Dutot
- UMR CNRS 8038 CiTCoM, Laboratoire de Chimie-Toxicologie Analytique et Cellulaire, Université de Paris, Faculté de Pharmacie de Paris, Paris, France.,Recherche & Développement, YSLAB, Quimper, France
| | - Patrice Rat
- UMR CNRS 8038 CiTCoM, Laboratoire de Chimie-Toxicologie Analytique et Cellulaire, Université de Paris, Faculté de Pharmacie de Paris, Paris, France
| |
Collapse
|
31
|
Teng C, Jiang C, Gao S, Liu X, Zhai S. Fetotoxicity of Nanoparticles: Causes and Mechanisms. NANOMATERIALS 2021; 11:nano11030791. [PMID: 33808794 PMCID: PMC8003602 DOI: 10.3390/nano11030791] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
The application of nanoparticles in consumer products and nanomedicines has increased dramatically in the last decade. Concerns for the nano-safety of susceptible populations are growing. Due to the small size, nanoparticles have the potential to cross the placental barrier and cause toxicity in the fetus. This review aims to identify factors associated with nanoparticle-induced fetotoxicity and the mechanisms involved, providing a better understanding of nanotoxicity at the maternal–fetal interface. The contribution of the physicochemical properties of nanoparticles (NPs), maternal physiological, and pathological conditions to the fetotoxicity is highlighted. The underlying molecular mechanisms, including oxidative stress, DNA damage, apoptosis, and autophagy are summarized. Finally, perspectives and challenges related to nanoparticle-induced fetotoxicity are also discussed.
Collapse
Affiliation(s)
- Chuanfeng Teng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| | - Cuijuan Jiang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China;
| | - Sulian Gao
- Jinan Eco-Environmental Monitoring Center of Shandong Province, Jinan 250101, China;
| | - Xiaojing Liu
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China;
| | - Shumei Zhai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
- Correspondence: ; Tel.: +86-531-8836-4464
| |
Collapse
|
32
|
Block LN, Bowman BD, Schmidt JK, Keding LT, Stanic AK, Golos TG. The promise of placental extracellular vesicles: models and challenges for diagnosing placental dysfunction in utero†. Biol Reprod 2021; 104:27-57. [PMID: 32856695 PMCID: PMC7786267 DOI: 10.1093/biolre/ioaa152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/04/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Monitoring the health of a pregnancy is of utmost importance to both the fetus and the mother. The diagnosis of pregnancy complications typically occurs after the manifestation of symptoms, and limited preventative measures or effective treatments are available. Traditionally, pregnancy health is evaluated by analyzing maternal serum hormone levels, genetic testing, ultrasonographic imaging, and monitoring maternal symptoms. However, researchers have reported a difference in extracellular vesicle (EV) quantity and cargo between healthy and at-risk pregnancies. Thus, placental EVs (PEVs) may help to understand normal and aberrant placental development, monitor pregnancy health in terms of developing placental pathologies, and assess the impact of environmental influences, such as infection, on pregnancy. The diagnostic potential of PEVs could allow for earlier detection of pregnancy complications via noninvasive sampling and frequent monitoring. Understanding how PEVs serve as a means of communication with maternal cells and recognizing their potential utility as a readout of placental health have sparked a growing interest in basic and translational research. However, to date, PEV research with animal models lags behind human studies. The strength of animal pregnancy models is that they can be used to assess placental pathologies in conjunction with isolation of PEVs from fluid samples at different time points throughout gestation. Assessing PEV cargo in animals within normal and complicated pregnancies will accelerate the translation of PEV analysis into the clinic for potential use in prognostics. We propose that appropriate animal models of human pregnancy complications must be established in the PEV field.
Collapse
Affiliation(s)
- Lindsey N Block
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Brittany D Bowman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jenna Kropp Schmidt
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Logan T Keding
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Aleksandar K Stanic
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
33
|
Io S, Kondoh E, Chigusa Y, Kawasaki K, Mandai M, Yamada AS. New era of trophoblast research: integrating morphological and molecular approaches. Hum Reprod Update 2020; 26:611-633. [PMID: 32728695 DOI: 10.1093/humupd/dmaa020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/24/2020] [Accepted: 04/20/2020] [Indexed: 12/27/2022] Open
Abstract
Many pregnancy complications are the result of dysfunction in the placenta. The pathogenic mechanisms of placenta-mediated pregnancy complications, however, are unclear. Abnormal placental development in these conditions begins in the first trimester, but no symptoms are observed during this period. To elucidate effective preventative treatments, understanding the differentiation and development of human placenta is crucial. This review elucidates the uniqueness of the human placenta in early development from the aspect of structural characteristics and molecular markers. We summarise the morphogenesis of human placenta based on human specimens and then compile molecular markers that have been clarified by immunostaining and RNA-sequencing data across species. Relevant studies were identified using the PubMed database and Google Scholar search engines up to March 2020. All articles were independently screened for eligibility by the authors based on titles and abstracts. In particular, the authors carefully examined literature on human placentation. This review integrates the development of human placentation from morphological approaches in comparison with other species and provides new insights into trophoblast molecular markers. The morphological features of human early placentation are described in Carnegie stages (CS), from CS3 (floating blastocyst) to CS9 (emerging point of tertiary villi). Molecular markers are described for each type of trophoblast involved in human placental development. We summarise the character of human trophoblast cell lines and explain how long-term culture system of human cytotrophoblast, both monolayer and spheroid, established in recent studies allows for the generation of human trophoblast cell lines. Due to differences in developmental features among species, it is desirable to understand early placentation in humans. In addition, reliable molecular markers that reflect normal human trophoblast are needed to advance trophoblast research. In the clinical setting, these markers can be valuable means for morphologically and functionally assessing placenta-mediated pregnancy complications and provide early prediction and management of these diseases.
Collapse
Affiliation(s)
- Shingo Io
- Department of Life Science Frontiers, Center for iPS Cell Research & Application, Kyoto University, Kyoto, Japan.,Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Eiji Kondoh
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshitsugu Chigusa
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kaoru Kawasaki
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - And Shigehito Yamada
- Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
34
|
Gräfe C, Müller EK, Gresing L, Weidner A, Radon P, Friedrich RP, Alexiou C, Wiekhorst F, Dutz S, Clement JH. Magnetic hybrid materials interact with biological matrices. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2019-0114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Abstract
Magnetic hybrid materials are a promising group of substances. Their interaction with matrices is challenging with regard to the underlying physical and chemical mechanisms. But thinking matrices as biological membranes or even structured cell layers they become interesting with regard to potential biomedical applications. Therefore, we established in vitro blood-organ barrier models to study the interaction and processing of superparamagnetic iron oxide nanoparticles (SPIONs) with these cellular structures in the presence of a magnetic field gradient. A one-cell-type–based blood-brain barrier model was used to investigate the attachment and uptake mechanisms of differentially charged magnetic hybrid materials. Inhibition of clathrin-dependent endocytosis and F-actin depolymerization led to a dramatic reduction of cellular uptake. Furthermore, the subsequent transportation of SPIONs through the barrier and the ability to detect these particles was of interest. Negatively charged SPIONs could be detected behind the barrier as well as in a reporter cell line. These observations could be confirmed with a two-cell-type–based blood-placenta barrier model. While positively charged SPIONs heavily interact with the apical cell layer, neutrally charged SPIONs showed a retarded interaction behavior. Behind the blood-placenta barrier, negatively charged SPIONs could be clearly detected. Finally, the transfer of the in vitro blood-placenta model in a microfluidic biochip allows the integration of shear stress into the system. Even without particle accumulation in a magnetic field gradient, the negatively charged SPIONs were detectable behind the barrier. In conclusion, in vitro blood-organ barrier models allow the broad investigation of magnetic hybrid materials with regard to biocompatibility, cell interaction, and transfer through cell layers on their way to biomedical application.
Collapse
Affiliation(s)
- Christine Gräfe
- Department of Internal Medicine II, Hematology and Medical Oncology , Jena University Hospital , Jena , Germany
| | - Elena K. Müller
- Department of Internal Medicine II, Hematology and Medical Oncology , Jena University Hospital , Jena , Germany
| | - Lennart Gresing
- Department of Internal Medicine II, Hematology and Medical Oncology , Jena University Hospital , Jena , Germany
| | - Andreas Weidner
- Institute of Biomedical Engineering and Informatics (BMTI), Technische Universität Ilmenau , Ilmenau , Germany
| | - Patricia Radon
- Physikalisch-Technische Bundesanstalt , Berlin , Germany
| | - Ralf P. Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON) , Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen , Erlangen , Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON) , Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen , Erlangen , Germany
| | | | - Silvio Dutz
- Institute of Biomedical Engineering and Informatics (BMTI), Technische Universität Ilmenau , Ilmenau , Germany
| | - Joachim H. Clement
- Department of Internal Medicine II, Hematology and Medical Oncology , Jena University Hospital , Jena , Germany
| |
Collapse
|
35
|
Guillard A, Gaultier E, Cartier C, Devoille L, Noireaux J, Chevalier L, Morin M, Grandin F, Lacroix MZ, Coméra C, Cazanave A, de Place A, Gayrard V, Bach V, Chardon K, Bekhti N, Adel-Patient K, Vayssière C, Fisicaro P, Feltin N, de la Farge F, Picard-Hagen N, Lamas B, Houdeau E. Basal Ti level in the human placenta and meconium and evidence of a materno-foetal transfer of food-grade TiO 2 nanoparticles in an ex vivo placental perfusion model. Part Fibre Toxicol 2020; 17:51. [PMID: 33023621 PMCID: PMC7541303 DOI: 10.1186/s12989-020-00381-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Background Titanium dioxide (TiO2) is broadly used in common consumer goods, including as a food additive (E171 in Europe) for colouring and opacifying properties. The E171 additive contains TiO2 nanoparticles (NPs), part of them being absorbed in the intestine and accumulated in several systemic organs. Exposure to TiO2-NPs in rodents during pregnancy resulted in alteration of placental functions and a materno-foetal transfer of NPs, both with toxic effects on the foetus. However, no human data are available for pregnant women exposed to food-grade TiO2-NPs and their potential transfer to the foetus. In this study, human placentae collected at term from normal pregnancies and meconium (the first stool of newborns) from unpaired mothers/children were analysed using inductively coupled plasma mass spectrometry (ICP-MS) and scanning transmission electron microscopy (STEM) coupled to energy-dispersive X-ray (EDX) spectroscopy for their titanium (Ti) contents and for analysis of TiO2 particle deposition, respectively. Using an ex vivo placenta perfusion model, we also assessed the transplacental passage of food-grade TiO2 particles. Results By ICP-MS analysis, we evidenced the presence of Ti in all placentae (basal level ranging from 0.01 to 0.48 mg/kg of tissue) and in 50% of the meconium samples (0.02–1.50 mg/kg), suggesting a materno-foetal passage of Ti. STEM-EDX observation of the placental tissues confirmed the presence of TiO2-NPs in addition to iron (Fe), tin (Sn), aluminium (Al) and silicon (Si) as mixed or isolated particle deposits. TiO2 particles, as well as Si, Al, Fe and zinc (Zn) particles were also recovered in the meconium. In placenta perfusion experiments, confocal imaging and SEM-EDX analysis of foetal exudate confirmed a low transfer of food-grade TiO2 particles to the foetal side, which was barely quantifiable by ICP-MS. Diameter measurements showed that 70 to 100% of the TiO2 particles recovered in the foetal exudate were nanosized. Conclusions Altogether, these results show a materno-foetal transfer of TiO2 particles during pregnancy, with food-grade TiO2 as a potential source for foetal exposure to NPs. These data emphasize the need for risk assessment of chronic exposure to TiO2-NPs during pregnancy.
Collapse
Affiliation(s)
- A Guillard
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - E Gaultier
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - C Cartier
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - L Devoille
- Department of materials, LNE, Trappes, France
| | - J Noireaux
- Department for biomedical and inorganic chemistry, LNE, Paris, France
| | - L Chevalier
- Group Physic of Materials, GPM-UMR6634, CNRS, Rouen University, Rouen, France
| | - M Morin
- Department of Obstetrics and Gynecology, Paule de Viguier Hospital, CHU Toulouse, Toulouse, France
| | - F Grandin
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - M Z Lacroix
- INTHERES, UMR 1436 Toulouse University, INRAE, ENVT, Toulouse, France
| | - C Coméra
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - A Cazanave
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - A de Place
- Department of Obstetrics and Gynecology, Paule de Viguier Hospital, CHU Toulouse, Toulouse, France
| | - V Gayrard
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - V Bach
- Péritox UMR-I 01 (Perinatality and Toxic Risk), Jules Verne University, Amiens, France
| | - K Chardon
- Péritox UMR-I 01 (Perinatality and Toxic Risk), Jules Verne University, Amiens, France
| | - N Bekhti
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191, Gif-sur-Yvette, France
| | - K Adel-Patient
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191, Gif-sur-Yvette, France
| | - C Vayssière
- Department of Obstetrics and Gynecology, Paule de Viguier Hospital, CHU Toulouse, Toulouse, France.,UMR 1027 INSERM, Team SPHERE, Toulouse III University, Toulouse, France
| | - P Fisicaro
- Department for biomedical and inorganic chemistry, LNE, Paris, France
| | - N Feltin
- Department of materials, LNE, Trappes, France
| | - F de la Farge
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - N Picard-Hagen
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - B Lamas
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - E Houdeau
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| |
Collapse
|
36
|
Anoshchenko O, Prasad B, Neradugomma NK, Wang J, Mao Q, Unadkat JD. Gestational Age-Dependent Abundance of Human Placental Transporters as Determined by Quantitative Targeted Proteomics. Drug Metab Dispos 2020; 48:735-741. [PMID: 32591415 PMCID: PMC7469251 DOI: 10.1124/dmd.120.000067] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/11/2020] [Indexed: 11/24/2022] Open
Abstract
Some women take medication during pregnancy to address a variety of clinical conditions. Because of ethical and logistical concerns, it is impossible to determine fetal drug exposure, and therefore fetal risk, during pregnancy. Hence, alternative approaches need to be developed to predict maternal-fetal drug exposure throughout pregnancy. To do so, we previously developed and verified a maternal-fetal physiologically based pharmacokinetic model, which can predict fetal exposure to drugs that passively cross the placenta. However, many drugs are actively transported by the placenta (e.g., human immunodeficiency virus protease inhibitors). To extend our maternal-fetal physiologically based pharmacokinetic model to these actively transported drugs, we determined the gestational age-dependent changes in the protein abundance of placental transporters. Total cellular membrane fractions from first trimester (T1; n = 15), second trimester (T2; n = 19), and term (n = 15) human placentae obtained from uncomplicated pregnancies were isolated by ultracentrifugation. Transporter protein abundance was determined by targeted quantitative proteomics using liquid chromatography tandem mass specrometry. We observed that breast cancer resistance protein and P-glycoprotein abundance significantly decreased from T1 to term by 55% and 69%, respectively (per gram of tissue). Organic anion-transporting polypeptide (OATP) 2B1 abundance significantly decreased from T1 to T2 by 32%. In contrast, organic cation transporter (OCT) 3 and organic anion transporter 4 abundance significantly increased with gestational age (2-fold from T1 to term, 1.6-fold from T2 to term). Serotonin transporter and norepinephrine transporter did not change with gestational age. The abundance of bile salt export pump, multidrug resistance-associated protein 1-5, Na+-taurocholate cotransporting polypeptide, OATP1B1, OATP1B3, OCTN1-2, concentrative nucleoside transporter 1-3, equilibrative nucleoside transporter 2, and multidrug and toxin extrusion 1 could not be quantified. These data can be incorporated into our maternal-fetal physiologically based pharmacokinetic model to predict fetal exposure to drugs that are actively transported across the placenta. SIGNIFICANCE STATEMENT: We quantified the protein abundance of key placental uptake and efflux transporters [organic cation transporter (OCT) 3, P-glycoprotein (P-gp), breast cancer resistance protein (BCRP)] across gestational ages (first trimester, second trimester, and term) using quantitative targeted proteomics. We observed that the protein abundance of P-gp and BCRP decreased, whereas that of OCT3 increased with gestational age. Incorporating the protein abundance determined in this study into maternal-fetal physiologically based pharmacokinetic model can help us better predict fetal drug exposure to substrates of these transporters.
Collapse
Affiliation(s)
- Olena Anoshchenko
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Bhagwat Prasad
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | | | - Joanne Wang
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Qingcheng Mao
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| |
Collapse
|
37
|
Diessler ME, Migliorisi AL, Gomez Castro MG, Favaron PO, Zanuzzi CN, Negrete J, Miglino MA, Barbeito CG. Term placenta of the southern elephant seal (Mirounga leonina). Placenta 2020; 100:24-29. [PMID: 32814234 DOI: 10.1016/j.placenta.2020.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 07/08/2020] [Accepted: 07/31/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION The pinnipeds' placenta has been described as zonary, annular, labyrinthic and endotheliochorial, like that of the terrestrial carnivores. This article describes the placenta of Mirounga leonina, a phocid pinniped, focusing on some morphological features related to fetal nutrition. METHODS Placental samples from three elephant seals were collected and conditioned after natural delivery at the Antarctic Specially Protected Area 132. Histological and ultrastructural studies were conducted; cytokeratins, vimentin, α-smooth muscle actin, and desmin proteins were detected using immunohistochemistry. RESULTS The placentas were zonary, lobed, belt-shaped, and showed multiple vivid orange areas, which corresponded to bilirubin crystalline pigment found among chorionic villi and inside trophoblast cells. In the labyrinth, cytotrophoblast cells were isolated and there was a scant syncytium interposed between maternal and fetal vessels. Fetal vessels were small, round, and frequently intratrophoblastic, while maternal vessels were large, irregular, sinuous, and thin-walled. Vimentin and actin were detected in some scattered non-vascular cells throughout the labyrinth. Broad areas of degenerated and necrotic maternal components were also observed. DISCUSSION The placentas of pinniped and fissiped carnivores share several traits. However, some remarkable features might maximize respiratory efficiency, collaborating to endure deep-diving hypoxia. Some of them, as the notably large sinuous maternal capillaries and fetal capillary indentation into the syncytium, are shared, e.g., by Phocidae and Mustelidae. Besides hemotropic nutrition taking place through an extremely narrow barrier, the abundant necrotic material and hematic products might allow substantial endocytosis of detritus even in term placentas, in this species giving birth to precocious offspring.
Collapse
Affiliation(s)
- Mónica Elizabeth Diessler
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (FCV, UNLP), La Plata, Argentina.
| | | | - María Gimena Gomez Castro
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (FCV, UNLP), La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Phelipe Oliveira Favaron
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil.
| | | | - Javier Negrete
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Departamento de Biología de Predadores Tope, Instituto Antártico Argentino, Dirección Nacional del Antártico, CABA, Argentina.
| | - María Angélica Miglino
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil.
| | - Claudio Gustavo Barbeito
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (FCV, UNLP), La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
38
|
Abduljalil K, Badhan RKS. Drug dosing during pregnancy-opportunities for physiologically based pharmacokinetic models. J Pharmacokinet Pharmacodyn 2020; 47:319-340. [PMID: 32592111 DOI: 10.1007/s10928-020-09698-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/20/2020] [Indexed: 12/15/2022]
Abstract
Drugs can have harmful effects on the embryo or the fetus at any point during pregnancy. Not all the damaging effects of intrauterine exposure to drugs are obvious at birth, some may only manifest later in life. Thus, drugs should be prescribed in pregnancy only if the expected benefit to the mother is thought to be greater than the risk to the fetus. Dosing of drugs during pregnancy is often empirically determined and based upon evidence from studies of non-pregnant subjects, which may lead to suboptimal dosing, particularly during the third trimester. This review collates examples of drugs with known recommendations for dose adjustment during pregnancy, in addition to providing an example of the potential use of PBPK models in dose adjustment recommendation during pregnancy within the context of drug-drug interactions. For many drugs, such as antidepressants and antiretroviral drugs, dose adjustment has been recommended based on pharmacokinetic studies demonstrating a reduction in drug concentrations. However, there is relatively limited (and sometimes inconsistent) information regarding the clinical impact of these pharmacokinetic changes during pregnancy and the effect of subsequent dose adjustments. Examples of using pregnancy PBPK models to predict feto-maternal drug exposures and their applications to facilitate and guide dose assessment throughout gestation are discussed.
Collapse
Affiliation(s)
- Khaled Abduljalil
- Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK.
| | | |
Collapse
|
39
|
Wilson RL, Owens K, Sumser EK, Fry MV, Stephens KK, Chuecos M, Carrillo M, Schlabritz-Loutsevitch N, Jones HN. Nanoparticle mediated increased insulin-like growth factor 1 expression enhances human placenta syncytium function. Placenta 2020; 93:1-7. [PMID: 32090963 DOI: 10.1016/j.placenta.2020.02.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/01/2020] [Accepted: 02/07/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Placental dysfunction is an underlying cause of many major obstetric diseases and treatment options for complications like fetal growth restriction (FGR) are limited .We previously demonstrated nanoparticle delivery of the human insulin-like growth factor 1 (hIGF1) transgene under control of the trophoblast-specific PLAC1 promoter maintains normal fetal growth in a surgically-induced FGR mouse model. However, uptake by human placental syncytiotrophoblast has yet to be determined. METHODS An ex vivo human placenta perfusion model, term placenta villous fragments, and other in vitro syncytiotrophoblast models were used to determine nanoparticle uptake, transgene expression, and functional responses under oxidative stress conditions. RESULTS In the ex vivo perfusion, fluorescence from a Texas-Red conjugated nanoparticle increased in maternal perfusate upon nanoparticle addition and declined by the conclusion of the experiment (P < 0.001. Fluorescent histology confirmed localization in the syncytiotrophoblasts. No Texas-Red fluorescence was detected in the fetal perfusate. Transgene expression of hIGF1 in differentiated BeWo cells, isolated primary trophoblasts and fragments was increased compared to untreated (55,000-fold, P = 0.0003; 95-fold, P = 0.003; 400-fold, P < 0.001, respectively). Functionally, increased hIGF1 expression in villous fragments resulted in translocation of glucose transporter 1 to the syncytiotrophoblast cell membrane and under conditions of oxidative stress in BeWo cells, protected against increased cell death (P < 0.01) and decreased mitochondrial activity (P < 0.01). CONCLUSION The current study confirms that our nanoparticle is capable of uptake in human placental syncytium which results in enhanced transgene expression, functional changes to cellular activity and protection against increased oxidative stress.
Collapse
Affiliation(s)
- Rebecca L Wilson
- Center for Fetal and Placental Research, Cincinnati Children's Hospital and Medical Center, Cincinnati, OH, USA, 45229.
| | - Kathryn Owens
- Center for Fetal and Placental Research, Cincinnati Children's Hospital and Medical Center, Cincinnati, OH, USA, 45229
| | - Emily K Sumser
- Center for Fetal and Placental Research, Cincinnati Children's Hospital and Medical Center, Cincinnati, OH, USA, 45229
| | - Matthew V Fry
- Center for Fetal and Placental Research, Cincinnati Children's Hospital and Medical Center, Cincinnati, OH, USA, 45229
| | - Kendal K Stephens
- Center for Fetal and Placental Research, Cincinnati Children's Hospital and Medical Center, Cincinnati, OH, USA, 45229
| | - Marcel Chuecos
- Texas Tech University Health Sciences Center at the Permian Basin, Odessa, TX, USA, 79763
| | - Maira Carrillo
- Texas Tech University Health Sciences Center at the Permian Basin, Odessa, TX, USA, 79763
| | | | - Helen N Jones
- Center for Fetal and Placental Research, Cincinnati Children's Hospital and Medical Center, Cincinnati, OH, USA, 45229
| |
Collapse
|
40
|
Piedimonte G, Harford TJ. Effects of maternal-fetal transmission of viruses and other environmental agents on lung development. Pediatr Res 2020; 87:420-426. [PMID: 31698410 PMCID: PMC6962526 DOI: 10.1038/s41390-019-0657-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/26/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022]
Abstract
New information is emerging concerning the influence of environmental factors (e.g., viruses, pollutants, nutrients) on fetal lung development and the prenatal modulation of cellular and molecular effectors essential to the control of airway function, which may shed new light into the pathogenesis of chronic obstructive pulmonary disease in childhood. In particular, recent studies have shown that nanosize biological and inorganic particles (e.g., respiratory viruses and pollutants) are able to spread hematogenously across the placenta from mother to offspring and interfere with lung development during critical "windows of opportunity". Furthermore, the nutritional balance of maternal diet during pregnancy can affect postnatal lung structure and function. Adverse prenatal environmental conditions can predispose to increased airway reactivity by inducing aberrant cholinergic innervation of the respiratory tract, enhanced contractility of the airway smooth muscle, and impaired innate immunity. Such changes can persist long after birth and might provide a plausible explanation to the development of chronic airway dysfunction in children, even in the absence of atopic predisposition. Insight into maternal-fetal interactions will contribute to a better understanding of the pathogenesis of highly prevalent diseases like bronchiolitis and asthma, and may lead to more precise preventative and therapeutic strategies, or new indications for existing ones.
Collapse
Affiliation(s)
| | - Terri J. Harford
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| |
Collapse
|
41
|
Hitzerd E, Neuman RI, Broekhuizen M, Simons SHP, Schoenmakers S, Reiss IKM, Koch BCP, van den Meiracker AH, Versmissen J, Visser W, Danser AHJ. Transfer and Vascular Effect of Endothelin Receptor Antagonists in the Human Placenta. Hypertension 2019; 75:877-884. [PMID: 31884859 DOI: 10.1161/hypertensionaha.119.14183] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Increasing evidence suggests a role for the ET (endothelin) system in preeclampsia. Hence, blocking this system with endothelin receptor antagonists (ERAs) could be a therapeutic strategy. Yet, clinical studies are lacking due to possible teratogenic effects of ERAs. In this study, we investigated the placental transfer of ERAs and their effect on ET-1-mediated vasoconstriction. Term placentas were dually perfused with the selective ETAR (ET type A receptor) antagonists sitaxentan and ambrisentan or the nonselective ETAR/ETBR antagonist macitentan and subsequently exposed to ET-1 in the fetal circulation. ET-1 concentration-response curves after incubation with sitaxentan, ambrisentan, macitentan, or the selective ETBR antagonist BQ-788 were also constructed in isolated chorionic plate arteries using wire-myography, and gene expression of the ET-system was quantified in healthy and early onset preeclamptic placentas. At steady state, the mean fetal-to-maternal transfer ratios were 0.32±0.05 for sitaxentan, 0.21±0.02 for ambrisentan, and 0.05±0.01 for macitentan. Except for BQ-788, all ERAs lowered the response to ET-1, both in the perfused cotyledon and isolated chorionic plate arteries. Placental gene expression of ECE-1, ETAR, and ETBR were comparable in healthy and preeclamptic placentas, while ET-1 expression was higher in preeclampsia. Our study is the first to show direct transfer of ERAs across the term human placenta. Furthermore, ETAR exclusively mediates ET-1-induced constriction in the fetoplacental vasculature. Given its limited transfer, macitentan could be considered as potential preeclampsia therapy. Extending knowledge on placental transfer to placentas of preeclamptic pregnancies is required to determine whether ERAs might be applied safely in preeclampsia.
Collapse
Affiliation(s)
- Emilie Hitzerd
- From the Department of Internal Medicine, Division of Pharmacology and Vascular Medicine (E.H., R.I.N., M.B., A.H.v.d.M., J.V., A.H.J.D.), Erasmus MC University Medical Center, Rotterdam, the Netherlands.,Department of Pediatrics, division of Neonatology (E.H., M.B., S.H.P.S., I.K.M.R.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Rugina I Neuman
- From the Department of Internal Medicine, Division of Pharmacology and Vascular Medicine (E.H., R.I.N., M.B., A.H.v.d.M., J.V., A.H.J.D.), Erasmus MC University Medical Center, Rotterdam, the Netherlands.,Department of Obstetrics and Gynecology, Division of Obstetrics and Prenatal Medicine (R.I.N., S.S., W.V.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Michelle Broekhuizen
- From the Department of Internal Medicine, Division of Pharmacology and Vascular Medicine (E.H., R.I.N., M.B., A.H.v.d.M., J.V., A.H.J.D.), Erasmus MC University Medical Center, Rotterdam, the Netherlands.,Department of Pediatrics, division of Neonatology (E.H., M.B., S.H.P.S., I.K.M.R.), Erasmus MC University Medical Center, Rotterdam, the Netherlands.,Department of Cardiology, Division of Experimental Cardiology (M.B.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Sinno H P Simons
- Department of Pediatrics, division of Neonatology (E.H., M.B., S.H.P.S., I.K.M.R.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Sam Schoenmakers
- Department of Obstetrics and Gynecology, Division of Obstetrics and Prenatal Medicine (R.I.N., S.S., W.V.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Irwin K M Reiss
- Department of Pediatrics, division of Neonatology (E.H., M.B., S.H.P.S., I.K.M.R.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Birgit C P Koch
- Department of Pharmacy (B.C.P.K.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Anton H van den Meiracker
- From the Department of Internal Medicine, Division of Pharmacology and Vascular Medicine (E.H., R.I.N., M.B., A.H.v.d.M., J.V., A.H.J.D.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Jorie Versmissen
- From the Department of Internal Medicine, Division of Pharmacology and Vascular Medicine (E.H., R.I.N., M.B., A.H.v.d.M., J.V., A.H.J.D.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Willy Visser
- Department of Obstetrics and Gynecology, Division of Obstetrics and Prenatal Medicine (R.I.N., S.S., W.V.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - A H Jan Danser
- From the Department of Internal Medicine, Division of Pharmacology and Vascular Medicine (E.H., R.I.N., M.B., A.H.v.d.M., J.V., A.H.J.D.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
42
|
Ma Z, Sagrillo-Fagundes L, Tran R, Parameshwar PK, Kalashnikov N, Vaillancourt C, Moraes C. Biomimetic Micropatterned Adhesive Surfaces To Mechanobiologically Regulate Placental Trophoblast Fusion. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47810-47821. [PMID: 31773938 DOI: 10.1021/acsami.9b19906] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The placental syncytiotrophoblast is a giant multinucleated cell that forms a tree-like structure and regulates transport between mother and baby during development. It is maintained throughout pregnancy by continuous fusion of trophoblast cells, and disruptions in fusion are associated with considerable adverse health effects including diseases such as preeclampsia. Developing predictive control over cell fusion in culture models is hence of critical importance in placental drug discovery and transport studies, but this can currently be only partially achieved with biochemical factors. Here, we investigate whether biophysical signals associated with budding morphogenesis during development of the placental villous tree can synergistically direct and enhance trophoblast fusion. We use micropatterning techniques to manipulate physical stresses in engineered microtissues and demonstrate that biomimetic geometries simulating budding robustly enhance fusion and alter spatial patterns of synthesis of pregnancy-related hormones. These findings indicate that biophysical signals play a previously unrecognized and significant role in regulating placental fusion and function, in synergy with established soluble signals. More broadly, our studies demonstrate that biomimetic strategies focusing on tissue mechanics can be important approaches to design, build, and test placental tissue cultures for future studies of pregnancy-related drug safety, efficacy, and discovery.
Collapse
Affiliation(s)
- Zhenwei Ma
- Department of Chemical Engineering , McGill University , Montréal , QC H3A 0C5 , Canada
| | - Lucas Sagrillo-Fagundes
- Department of Chemical Engineering , McGill University , Montréal , QC H3A 0C5 , Canada
- INRS-Centre Armand Frappier Santé Biotehnologie and Réseau Intersectoriel de Recherche en Santé de l'Université du Québec , Laval , QC H7V 1B7 , Canada
- Center for Interdisciplinary Research on Well-Being, Health, Society and Environment , Université du Québec à Montréal , Montréal , QC H3C 3P8 , Canada
| | - Raymond Tran
- Department of Chemical Engineering , McGill University , Montréal , QC H3A 0C5 , Canada
| | - Prabu Karthick Parameshwar
- Department of Biological and Biomedical Engineering , McGill University , Montréal , QC H3A 2B4 , Canada
| | - Nikita Kalashnikov
- Department of Chemical Engineering , McGill University , Montréal , QC H3A 0C5 , Canada
| | - Cathy Vaillancourt
- INRS-Centre Armand Frappier Santé Biotehnologie and Réseau Intersectoriel de Recherche en Santé de l'Université du Québec , Laval , QC H7V 1B7 , Canada
- Center for Interdisciplinary Research on Well-Being, Health, Society and Environment , Université du Québec à Montréal , Montréal , QC H3C 3P8 , Canada
| | - Christopher Moraes
- Department of Chemical Engineering , McGill University , Montréal , QC H3A 0C5 , Canada
- Department of Biological and Biomedical Engineering , McGill University , Montréal , QC H3A 2B4 , Canada
- Rosalind and Morris Goodman Cancer Research Centre , McGill University , Montréal , QC H3A 1A3 , Canada
| |
Collapse
|
43
|
Warth B, Preindl K, Manser P, Wick P, Marko D, Buerki-Thurnherr T. Transfer and Metabolism of the Xenoestrogen Zearalenone in Human Perfused Placenta. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:107004. [PMID: 31596610 PMCID: PMC6867367 DOI: 10.1289/ehp4860] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND Pregnancy is a sensitive condition during which adverse environmental exposures should be monitored thoroughly and minimized whenever possible. In particular, the hormone balance during gestation is delicate, and disturbance may cause acute or chronic long-term health effects. A potential endocrine disruption may be provoked by in utero exposure to xenoestrogens mimicking endogenous estrogens. The mycoestrogen zearalenone (ZEN), a toxic fungal secondary metabolite and mycotoxin found frequently in food and feed, constitutes a prominent example. OBJECTIVES We performed a comprehensive assessment of the transfer as well as phase I and phase II metabolism of ZEN at the human placental barrier. METHODS Human placentas were perfused with 1μM (318μg/L) ZEN for 6 h. Samples from the maternal and fetal compartment, placental tissue, and fetal plasma were analyzed by a highly sensitive UHPLC-MS/MS assay to detect ZEN as well as nine key metabolites (α-zearalenol, β-zearalenol, zearalanone, α-zearalanol, β-zearalanol, ZEN-14-glucuronide, α-zearalenol-14-glucuronide, β-zearalenol-14-glucuronide, ZEN-14-sulfate). RESULTS The model revealed a fast maternofetal transfer of ZEN across the human placental barrier. We also unraveled phase I and phase II metabolism of the parent toxin ZEN into the approximately 70-times more estrogenic α-zearalenol and the less active ZEN-14-sulfate conjugate, which are effectively released into the maternal and fetal circulation in considerable amounts. CONCLUSIONS Our findings suggest that exposure to ZEN (such as through consumption of ZEN-contaminated cereal-based products) during pregnancy may result in in utero exposure of the fetus, not only to ZEN but also some of its highly estrogenically active metabolites. In the light of the known affinity of ZEN and potentially co-occurring xenoestrogens to the estrogen receptor, and our results demonstrating placental transfer of ZEN and its metabolites in an ex vivo model, we recommend further research and more comprehensive assessment of gestational exposures in women. https://doi.org/10.1289/EHP4860.
Collapse
Affiliation(s)
- Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Research Network Chemistry, Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Karin Preindl
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Pius Manser
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Peter Wick
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Tina Buerki-Thurnherr
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| |
Collapse
|
44
|
McIntyre KR, Hayward CE, Sibley CP, Greenwood SL, Dilworth MR. Evidence of adaptation of maternofetal transport of glutamine relative to placental size in normal mice, and in those with fetal growth restriction. J Physiol 2019; 597:4975-4990. [PMID: 31400764 PMCID: PMC6790568 DOI: 10.1113/jp278226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/09/2019] [Indexed: 12/18/2022] Open
Abstract
Key points Fetal growth restriction (FGR) is a major risk factor for stillbirth and has significant impact upon lifelong health. A small, poorly functioning placenta, as evidenced by reduced transport of nutrients to the baby, underpins FGR. It remains unclear how a small but normal placenta differs from the small FGR placenta in terms of ability to transfer nutrients to the fetus. Placental transport of glutamine and glutamate, key amino acids for fetal growth, was assessed in normal mice and those with FGR. Glutamine and glutamate transport was greater in the lightest versus heaviest placenta in a litter of normally grown mice. Placentas of mice with FGR had increased transport capacity in mid‐pregnancy, but this adaptation was insufficient in late pregnancy. Placental adaptations, in terms of increased nutrient transport (per gram) to compensate for small size, appear to achieve appropriate fetal growth in normal pregnancy. Failure of this adaptation might contribute to FGR.
Abstract Fetal growth restriction (FGR), a major risk factor for stillbirth, and neonatal and adulthood morbidity, is associated with reduced placental size and decreased placental nutrient transport. In mice, a small, normal placenta increases its nutrient transport, thus compensating for its reduced size and maintaining normal fetal growth. Whether this adaptation occurs for glutamine and glutamate, two key amino acids for placental metabolism and fetal growth, is unknown. Additionally, an assessment of placental transport of glutamine and glutamate between FGR and normal pregnancy is currently lacking. We thus tested the hypothesis that the transport of glutamine and glutamate would be increased (per gram of tissue) in a small normal placenta [C57BL6/J (wild‐type, WT) mice], but that this adaptation fails in the small dysfunctional placenta in FGR [insulin‐like growth factor 2 knockout (P0) mouse model of FGR]. In WT mice, comparing the lightest versus heaviest placenta in a litter, unidirectional maternofetal clearance (Kmf) of 14C‐glutamine and 14C‐glutamate (glutamineKmf and glutamateKmf) was significantly higher at embryonic day (E) 18.5, in line with increased expression of LAT1, a glutamine transporter protein. In P0 mice, glutamineKmf and glutamateKmf were higher (P0 versus wild‐type littermates, WTL) at E15.5. At E18.5, glutamineKmf remained elevated whereas glutamateKmf was similar between groups. In summary, we provide evidence that glutamineKmf and glutamateKmf adapt according to placental size in WT mice. The placenta of the growth‐restricted P0 fetus also elevates transport capacity to compensate for size at E15.5, but this adaptation is insufficient at E18.5; this may contribute to decreased fetal growth. Fetal growth restriction (FGR) is a major risk factor for stillbirth and has significant impact upon lifelong health. A small, poorly functioning placenta, as evidenced by reduced transport of nutrients to the baby, underpins FGR. It remains unclear how a small but normal placenta differs from the small FGR placenta in terms of ability to transfer nutrients to the fetus. Placental transport of glutamine and glutamate, key amino acids for fetal growth, was assessed in normal mice and those with FGR. Glutamine and glutamate transport was greater in the lightest versus heaviest placenta in a litter of normally grown mice. Placentas of mice with FGR had increased transport capacity in mid‐pregnancy, but this adaptation was insufficient in late pregnancy. Placental adaptations, in terms of increased nutrient transport (per gram) to compensate for small size, appear to achieve appropriate fetal growth in normal pregnancy. Failure of this adaptation might contribute to FGR.
Collapse
Affiliation(s)
- Kirsty R McIntyre
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK.,School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Christina E Hayward
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Colin P Sibley
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Susan L Greenwood
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Mark R Dilworth
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
45
|
Surface-Functionalized Nanoparticles as Efficient Tools in Targeted Therapy of Pregnancy Complications. Int J Mol Sci 2019; 20:ijms20153642. [PMID: 31349643 PMCID: PMC6695948 DOI: 10.3390/ijms20153642] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/02/2019] [Accepted: 07/07/2019] [Indexed: 12/12/2022] Open
Abstract
Minimizing exposure of the fetus to medication and reducing adverse off-target effects in the mother are the primary challenges in developing novel drugs to treat pregnancy complications. Nanomedicine has introduced opportunities for the development of novel platforms enabling targeted delivery of drugs in pregnancy. This review sets out to discuss the advances and potential of surface-functionalized nanoparticles in the targeted therapy of pregnancy complications. We first describe the human placental anatomy, which is fundamental for developing placenta-targeted therapy, and then we review current knowledge of nanoparticle transplacental transport mechanisms. Meanwhile, recent surface-functionalized nanoparticles for targeting the uterus and placenta are examined. Indeed, surface-functionalized nanoparticles could help prevent transplacental passage and promote placental-specific drug delivery, thereby enhancing efficacy and improving safety. We have achieved promising results in targeting the placenta via placental chondroitin sulfate A (plCSA), which is exclusively expressed in the placenta, using plCSA binding peptide (plCSA-BP)-decorated nanoparticles. Others have also focused on using placenta- and uterus-enriched molecules as targets to deliver therapeutics via surface-functionalized nanoparticles. Additionally, we propose that placenta-specific exosomes and surface-modified exosomes might be potential tools in the targeted therapy of pregnancy complications. Altogether, surface-functionalized nanoparticles have great potential value as clinical tools in the targeted therapy of pregnancy complications.
Collapse
|
46
|
Endothelin receptor antagonism during preeclampsia: a matter of timing? Clin Sci (Lond) 2019; 133:1341-1352. [PMID: 31221823 DOI: 10.1042/cs20190464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 02/07/2023]
Abstract
Preeclampsia (PE) is a pregnancy complication, featuring elevated blood pressure and proteinuria, with no appropriate treatment. Activation of the endothelin system has emerged as an important pathway in PE pathophysiology based on experimental PE models where endothelin receptor antagonists (ERAs) prevented or attenuated hypertension and proteinuria. Hence, ERAs have been suggested as potential therapy for PE. However, developmental toxicity studies in animals have shown severe teratogenic effects of ERAs, particularly craniofacial malformations. Nonetheless, sporadic cases of pregnancy in women using ERAs to treat pulmonary hypertension have been described. In this review we give an overview of cases describing ERA use in pregnancy and critically address their possible teratogenic effects. A systematic search in literature yielded 18 articles describing 39 cases with ERA exposure during human pregnancy. In most cases there was only exposure in the first trimester, but exposure later or throughout pregnancy was reported in five cases. Elective termination of pregnancy was performed in 12 pregnancies (31%), two ended in a spontaneous miscarriage (5%) and no fetal congenital abnormalities have been described in the remaining cases. These preliminary findings support the idea that ERA treatment for severe, early onset PE might be an option if applied later in pregnancy, when organogenesis is completed to avoid teratogenic risks. However, third trimester toxicology studies are warranted to evaluate drug safety. Subsequently, it remains to be established whether ERA treatment is effective for alleviating maternal symptoms, as demonstrated in preclinical PE models, allowing pregnancy prolongation without leading to adverse neonatal outcomes.
Collapse
|
47
|
Chen HJ, Gur TL. Intrauterine Microbiota: Missing, or the Missing Link? Trends Neurosci 2019; 42:402-413. [PMID: 31053242 PMCID: PMC6604064 DOI: 10.1016/j.tins.2019.03.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/21/2019] [Accepted: 03/19/2019] [Indexed: 12/29/2022]
Abstract
The intrauterine environment provides a key interface between the mother and the developing fetus during pregnancy, and is a target for investigating mechanisms of fetal programming. Studies have demonstrated an association between prenatal stress and neurodevelopmental disorders. The role of the intrauterine environment in mediating this effect is still being elucidated. In this review, we discuss emerging preclinical and clinical evidence suggesting the existence of microbial communities in utero. We also outline possible mechanisms of bacterial translocation to the intrauterine environment and immune responses to the presence of microbes or microbial components. Lastly, we overview the effects of intrauterine inflammation on neurodevelopment. We hypothesize that maternal gestational stress leads to disruptions in the maternal oral, gut, and vaginal microbiome that may lead to the translocation of bacteria to the intrauterine environment, eliciting an inflammatory response and resulting in deficits in neurodevelopment.
Collapse
Affiliation(s)
- Helen J Chen
- Department of Neuroscience, Wexner Medical Center at The Ohio State University, Columbus, OH, USA
| | - Tamar L Gur
- Department of Psychiatry and Behavioral Health, Wexner Medical Center at The Ohio State University, Columbus, OH, USA; Department of Neuroscience, Wexner Medical Center at The Ohio State University, Columbus, OH, USA; Department of Obstetrics and Gynecology, Wexner Medical Center at The Ohio State University, Columbus, OH, USA; Institute of Behavioral Medicine Research, Wexner Medical Center at The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
48
|
Sordo M, Maciel-Ruiz JA, Salazar AM, Robles-Morales R, Veloz-Martínez MG, Pacheco-Limón JH, Nepomuceno-Hernández AE, Ayala-Yáñez R, Gonsebatt ME, Ostrosky-Wegman P. Particulate matter-associated micronuclei frequencies in maternal and cord blood lymphocytes. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:421-427. [PMID: 30702784 DOI: 10.1002/em.22275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/09/2019] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Studies associate particulate matter (PM) exposure with pulmonary, cardiovascular, and neurologic diseases. Elevated levels of coarse (PM10) and fine (PM2.5) PM have been reported in the Mexico City metropolitan area during the last two decades. There is limited information if these conditions affect newborns. We associated maternal exposure to PM reported by the monitoring stations considering the place of residence of each participant with the presence of genotoxic damage (cytome analysis) in maternal and umbilical cord blood (UCB) lymphocytes. Eighty-four healthy women in their last quarter of pregnancy met the inclusion criteria. Each volunteer exposure was estimated according to the average PM2.5 and PM10 levels during the last month of gestation. The micronuclei (MN) frequencies in UCB lymphocyte cultures ranged between 0 and 9. They also showed lower cell proliferation indexes than their mothers. There was a strong correlation between the maternal and the UCB MN frequency (ρ = 0.3767, P = 0.0002). Multiple regression analysis including PM10 and PM2.5 levels, maternal age, and occupation, showed a significant and positive association between UCB MN frequency and PM2.5. A statistically significant increase in the MN frequency in both maternal and UCB lymphocytes was observed in samples obtained during the dry season (higher PM levels) as compared with the MN frequency in blood samples obtained during the rainy season (lower PM levels). These results suggest that PM, mainly PM2.5 , can cross the placenta causing DNA damage in fetal cells which may increase the potential for diseases during childhood or adult life. Environ. Mol. Mutagen. 60:421-427, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Monserrat Sordo
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jorge Alfonso Maciel-Ruiz
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ana María Salazar
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Rogelio Robles-Morales
- División de Investigación de la Unidad Médica de Alta Especialidad, Hospital de Gineco-Obstetricia 3 "Dr. Victor Manuel Espinosa de los Reyes Sánchez", Centro Médico Nacional "La Raza", Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - María Guadalupe Veloz-Martínez
- División de Investigación de la Unidad Médica de Alta Especialidad, Hospital de Gineco-Obstetricia 3 "Dr. Victor Manuel Espinosa de los Reyes Sánchez", Centro Médico Nacional "La Raza", Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Jorge H Pacheco-Limón
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Andrés E Nepomuceno-Hernández
- Centro de Investigación Materno Infantil del Grupo de Estudios al Nacimiento, Asociación Hispano Mexicana, Ciudad de México, Mexico
| | - Rodrigo Ayala-Yáñez
- Centro de Investigación Materno Infantil del Grupo de Estudios al Nacimiento, Asociación Hispano Mexicana, Ciudad de México, Mexico
| | - Maria E Gonsebatt
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Patricia Ostrosky-Wegman
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
49
|
Dominguez-Bello MG, Godoy-Vitorino F, Knight R, Blaser MJ. Role of the microbiome in human development. Gut 2019; 68:1108-1114. [PMID: 30670574 PMCID: PMC6580755 DOI: 10.1136/gutjnl-2018-317503] [Citation(s) in RCA: 493] [Impact Index Per Article: 82.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/15/2018] [Accepted: 12/31/2018] [Indexed: 12/17/2022]
Abstract
The host-microbiome supraorganism appears to have coevolved and the unperturbed microbial component of the dyad renders host health sustainable. This coevolution has likely shaped evolving phenotypes in all life forms on this predominantly microbial planet. The microbiota seems to exert effects on the next generation from gestation, via maternal microbiota and immune responses. The microbiota ecosystems develop, restricted to their epithelial niches by the host immune system, concomitantly with the host chronological development, providing early modulation of physiological host development and functions for nutrition, immunity and resistance to pathogens at all ages. Here, we review the role of the microbiome in human development, including evolutionary considerations, and the maternal/fetal relationships, contributions to nutrition and growth. We also discuss what constitutes a healthy microbiota, how antimicrobial modern practices are impacting the human microbiota, the associations between microbiota perturbations, host responses and diseases rocketing in urban societies and potential for future restoration.
Collapse
Affiliation(s)
- Maria Gloria Dominguez-Bello
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA
| | - Filipa Godoy-Vitorino
- Department of Microbiology and Medical Zoology, University of Puerto Rico, School of Medicine, San Juan, Puerto Rico, USA
| | - Rob Knight
- Department of Computer Science and Engineering, University of California, San Diego, California, USA
| | - Martin J Blaser
- Department of Medicine, New York University Langone Medical Center, New York City, New York, USA
| |
Collapse
|
50
|
Early neuropathological and neurobehavioral consequences of preterm birth in a rabbit model. Sci Rep 2019; 9:3506. [PMID: 30837582 PMCID: PMC6401068 DOI: 10.1038/s41598-019-39922-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/04/2019] [Indexed: 11/22/2022] Open
Abstract
Preterm birth is the most significant problem in contemporary obstetrics accounting for 5–18% of worldwide deliveries. Encephalopathy of prematurity encompasses the multifaceted diffuse brain injury resulting from preterm birth. Current animal models exploring the underlying pathophysiology of encephalopathy of prematurity employ significant insults to generate gross central nervous system abnormalities. To date the exclusive effect of prematurity was only studied in a non-human primate model. Therefore, we aimed to develop a representative encephalopathy of prematurity small animal model only dependent on preterm birth. Time mated New-Zealand white rabbit does were either delivered on 28 (pre-term) or 31 (term) postconceptional days by caesarean section. Neonatal rabbits underwent neurobehavioral evaluation on 32 days post conception and then were transcardially perfuse fixed. Neuropathological assessments for neuron and oligodendrocyte quantification, astrogliosis, apoptosis and cellular proliferation were performed. Lastly, ex-vivo high-resolution Magnetic Resonance Imaging was used to calculate T1 volumetric and Diffusion Tensor Imaging derived fractional anisotropy and mean diffusivity. Preterm birth was associated with a motoric (posture instability, abnormal gait and decreased locomotion) and partial sensory (less pain responsiveness and failing righting reflex) deficits that coincided with global lower neuron densities, less oligodendrocyte precursors, increased apoptosis and less proliferation. These region-specific histological changes corresponded with Magnetic Resonance Diffusion Tensor Imaging differences. The most significant differences were seen in the hippocampus, caudate nucleus and thalamus of the preterm rabbits. In conclusion this model of preterm birth, in the absence of any other contributory events, resulted in measurable neurobehavioral deficits with associated brain structural and Magnetic Resonance Diffusion Tensor Imaging findings.
Collapse
|