1
|
Zhang F, Wang J, Thakur K, Hu F, Zhang JG, Jiang XF, An SH, Jiang H, Jiang L, Wei ZJ. Isolation functional characterization of allatotropin receptor from the cotton bollworm, Helicoverpa armigera. Peptides 2019; 122:169874. [PMID: 29198647 DOI: 10.1016/j.peptides.2017.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022]
Abstract
Insect allatotropin (AT) plays multi-functions including regulation of juvenile hormone synthesis, growth, development and reproduction. In the present study, the full-length cDNA encoding the AT receptor was cloned from the brain of Helicoverpa armigera (Helar-ATR). The ORF of Helar-ATR exhibited the characteristic seven transmembrane domains of the G protein-coupled receptor (GPCR) and was close to the ATR of Manduca sexta in the phylogenetic tree. The Helar-ATR expressed in vertebrate cell lines can be activated by Helar-AT and each Helar-ATL in a dose-responsive manner, in the following order: Helar-ATLI > Helar-ATLII > Helar-AT > Helar-ATLIII. Helar-ATLI and Helar-ATLII represented the functional ligands to Helar-ATR in vitro, while Helar-AT and Helar-ATLIII behaved as partial agonists. The in vitro functional analysis suggested that the Helar-ATR signal was mainly coupled with elevated levels of Ca2+ and independent of cAMP levels. Helar-ATR mRNA in larvae showed the highest level in the brain, followed by the thorax ganglion, abdomen ganglion, fat body and midgut. Helar-ATR mRNA levels in the complex of the brain-thoracic-abdomen ganglion on the 2nd day of the larval stage and during later pupal stages were observed to be relatively higher than in the wandering and early pupal stages.
Collapse
Affiliation(s)
- Fang Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jun Wang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kiran Thakur
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Fei Hu
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jian-Guo Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xing-Fu Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shi-Hen An
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Hongbo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Li Jiang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Zhao-Jun Wei
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
2
|
Kai ZP, Zhu JJ, Deng XL, Yang XL, Chen SS. Discovery of a Manduca sexta Allatotropin Antagonist from a Manduca sexta Allatotropin Receptor Homology Model. Molecules 2018; 23:molecules23040817. [PMID: 29614008 PMCID: PMC6017089 DOI: 10.3390/molecules23040817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 11/23/2022] Open
Abstract
Insect G protein coupled receptors (GPCRs) have important roles in modulating biology, physiology and behavior. They have been identified as candidate targets for next-generation insecticides, yet these targets have been relatively poorly exploited for insect control. In this study, we present a pipeline of novel Manduca sexta allatotropin (Manse-AT) antagonist discovery with homology modeling, docking, molecular dynamics simulation and structure-activity relationship. A series of truncated and alanine-replacement analogs of Manse-AT were assayed for the stimulation of juvenile hormone biosynthesis. The minimum sequence required to retain potent biological activity is the C-terminal amidated octapeptide Manse-AT (6–13). We identified three residues essential for bioactivity (Thr4, Arg6 and Phe8) by assaying alanine-replacement analogs of Manse-AT (6–13). Alanine replacement of other residues resulted in reduced potency but bioactivity was retained. The 3D structure of the receptor (Manse-ATR) was built and the binding pocket was identified. The binding affinities of all the analogs were estimated by calculating the free energy of binding. The calculated binding affinities corresponded to the biological activities of the analogs, which supporting our localization of the binding pocket. Then, based on the docking and molecular dynamics studies of Manse-AT (10–13), we described it can act as a potent Manse-AT antagonist. The antagonistic effect on JH biosynthesis of Manse-AT (10–13) validated our hypothesis. The IC50 value of antagonist Manse-AT (10–13) is 0.9 nM. The structure-activity relationship of antagonist Manse-AT (10–13) was also studied for the further purpose of investigating theoretically the structure factors influencing activity. These data will be useful for the design of new Manse-AT agonist and antagonist as potential pest control agents.
Collapse
Affiliation(s)
- Zhen-Peng Kai
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Jing-Jing Zhu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
- Institute of Agro-Food Standards and Testing Technologies, Shanghai Academy of agricultural Science, Shanghai 201403, China.
| | - Xi-Le Deng
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Xin-Ling Yang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Shan-Shan Chen
- Institute of Agro-Food Standards and Testing Technologies, Shanghai Academy of agricultural Science, Shanghai 201403, China.
| |
Collapse
|
3
|
Zang YY, Li YM, Yin Y, Chen SS, Kai ZP. Discovery and quantitative structure-activity relationship study of lepidopteran HMG-CoA reductase inhibitors as selective insecticides. PEST MANAGEMENT SCIENCE 2017; 73:1944-1952. [PMID: 28247468 DOI: 10.1002/ps.4561] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND In a previous study we have demonstrated that insect 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) can be a potential selective insecticide target. Three series of inhibitors were designed on the basis of the difference in HMGR structures from Homo sapiens and Manduca sexta, with the aim of discovering potent selective insecticide candidates. RESULTS An in vitro bioassay showed that gem-difluoromethylenated statin analogues have potent effects on JH biosynthesis of M. sexta and high selectivity between H. sapiens and M. sexta. All series II compounds {1,3,5-trisubstituted [4-tert-butyl 2-(5,5-difluoro-2,2-dimethyl-6-vinyl-4-yl) acetate] pyrazoles} have some effect on JH biosynthesis, whereas most of them are inactive on human HMGR. In particular, the IC50 value of compound II-12 (37.8 nm) is lower than that of lovastatin (99.5 nm) and similar to that of rosuvastatin (24.2 nm). An in vivo bioassay showed that I-1, I-2, I-3 and II-12 are potential selective insecticides, especially for lepidopteran pest control. A predictable and statistically meaningful CoMFA model of 23 inhibitors (20 as training sets and three as test sets) was obtained with a value of q2 and r2 of 0.66 and 0.996 respectively. The final model suggested that a potent insect HMGR inhibitor should contain suitable small and non-electronegative groups in the ring part, and electronegative groups in the side chain. CONCLUSION Four analogues were discovered as potent selective lepidopteran HMGR inhibitors, which can specifically be used for lepidopteran pest control. The CoMFA model will be useful for the design of new selective insect HMGR inhibitors that are structurally related to the training set compounds. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang-Yang Zang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Yuan-Mei Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Yue Yin
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Shan-Shan Chen
- Institute of Agro-food Standards and Testing Technologies, Shanghai Academy of Agricultural Science, Shanghai, China
| | - Zhen-Peng Kai
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
4
|
Li YM, Kai ZP, Huang J, Tobe SS. Lepidopteran HMG-CoA reductase is a potential selective target for pest control. PeerJ 2017; 5:e2881. [PMID: 28133568 PMCID: PMC5251934 DOI: 10.7717/peerj.2881] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/07/2016] [Indexed: 11/20/2022] Open
Abstract
As a consequence of the negative impacts on the environment of some insecticides, discovery of eco-friendly insecticides and target has received global attention in recent years. Sequence alignment and structural comparison of the rate-limiting enzyme HMG-CoA reductase (HMGR) revealed differences between lepidopteran pests and other organisms, which suggested insect HMGR could be a selective insecticide target candidate. Inhibition of JH biosynthesis in vitro confirmed that HMGR inhibitors showed a potent lethal effect on the lepidopteran pest Manduca sexta, whereas there was little effect on JH biosynthesis in Apis mellifera and Diploptera punctata. The pest control application of these inhibitors demonstrated that they can be insecticide candidates with potent ovicidal activity, larvicidal activity and insect growth regulatory effects. The present study has validated that Lepidopteran HMGR can be a potent selective insecticide target, and the HMGR inhibitors (especially type II statins) could be selective insecticide candidates and lead compounds. Furthermore, we demonstrated that sequence alignment, homology modeling and structural comparison may be useful for determining potential enzymes or receptors which can be eco-friendly pesticide targets.
Collapse
Affiliation(s)
- Yuan-mei Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Zhen-peng Kai
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Juan Huang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen S. Tobe
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Bednár B, Roller L, Čižmár D, Mitrová D, Žitňan D. Developmental and sex-specific differences in expression of neuropeptides derived from allatotropin gene in the silkmoth Bombyx mori. Cell Tissue Res 2017; 368:259-275. [PMID: 28091775 DOI: 10.1007/s00441-016-2556-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/06/2016] [Indexed: 01/01/2023]
Abstract
Allatotropin (AT) and related neuropeptides are widespread bioactive molecules that regulate development, food intake and muscle contractions in insects and other invertebrates. In moths, alternative splicing of the at gene generates three mRNA precursors encoding AT with different combinations of three structurally similar AT-like peptides (ATLI-III). We used in situ hybridization and immunohistochemistry to map the differential expression of these transcripts during the postembryonic development of Bombyx mori. Transcript encoding AT alone was expressed in numerous neurons of the central nervous system and frontal ganglion, whereas transcripts encoding AT with ATLs were produced by smaller specific subgroups of neurons in larval stages. Metamorphosis was associated with considerable developmental changes and sex-specific differences in the expression of all transcripts. The most notable was the appearance of AT/ATL transcripts (1) in the brain lateral neurosecretory cells producing prothoracicotropic hormone; (2) in the male-specific cluster of about 20 neurons in the posterior region of the terminal abdominal ganglion; (3) in the female-specific medial neurons in the abdominal ganglia AG2-7. Immunohistochemical staining showed that these neurons produced a mixture of various neuropeptides and innervated diverse peripheral organs. Our data suggest that AT/ATL neuropeptides are involved in multiple stage- and sex-specific functions during the development of B. mori.
Collapse
Affiliation(s)
- Branislav Bednár
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Ladislav Roller
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Daniel Čižmár
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Diana Mitrová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Dušan Žitňan
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia.
| |
Collapse
|
6
|
Deng XL, Kai ZP, Chamberlin ME, Horodyski FM, Yang XL. The discovery of a novel antagonist - Manduca sexta allatotropin analogue - as an insect midgut active ion transport inhibitor. PEST MANAGEMENT SCIENCE 2016; 72:2176-2180. [PMID: 26853385 DOI: 10.1002/ps.4251] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND The midgut is an important site for both nutrient absorption and ionic regulation in lepidopteran larvae, major pests in agriculture. The larval lepidopteran midgut has become a potent insecticide target over the past few decades. Recent studies have shown that an insect neuropeptide, Manduca sexta allatotropin (Manse-AT), exhibits inhibition of active ion transport (AIT) across the larval midgut epithelium. The full characteristic of the AIT inhibition capacity of Manse-AT is essential to assay. In this study, AIT inhibition across the M. sexta midgut by Manse-AT and its analogues in a range of concentrations was assayed. The structure-activity relationship of Manse-AT was also studied by truncated and alanine-replacement strategies. RESULTS Our results identified three residues, Thr4, Arg6 and Phe8, as the most important components for activity on the midgut. Replacement of Glu1, Met2 and Met3 reduced the potency of the analogues. The conservative substitution of Gly7 with alanine had little effect on the potency of the analogues. We demonstrated for the first time that Manse-AT (10-13) behaves as a potent antagonist in vitro on active ion transport across the epithelium of the posterior midgut in M. sexta. CONCLUSION Structure-activity studies of Manse-AT are useful in developing lead compounds for the design and testing of synthetic antagonists, ultimately to develop potent and specific pest control strategies. Manse-AT (10-13) has been discovered as the first Manse-AT antagonist, with a significant effect and a short sequence compared with other insect neuropeptides. It may be a new potential pest control agent in the future. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xi-le Deng
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Zhen-Peng Kai
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China.
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| | | | - Frank M Horodyski
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Xin-Ling Yang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China.
| |
Collapse
|
7
|
Verlinden H, Gijbels M, Lismont E, Lenaerts C, Vanden Broeck J, Marchal E. The pleiotropic allatoregulatory neuropeptides and their receptors: A mini-review. JOURNAL OF INSECT PHYSIOLOGY 2015; 80:2-14. [PMID: 25982521 DOI: 10.1016/j.jinsphys.2015.04.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 06/04/2023]
Abstract
Juvenile hormones (JH) are highly pleiotropic insect hormones essential for post-embryonic development. The circulating JH titer in the hemolymph of insects is influenced by enzymatic degradation, binding to JH carrier proteins, uptake and storage in target organs, but evidently also by rates of production at its site of synthesis, the corpora allata (CA). The multiple processes in which JH is involved alongside the critical significance of JH in insect development emphasize the importance for elucidating the control of JH production. Production of JH in CA cells is regulated by different factors: by neurotransmitters, such as dopamine and glutamate, but also by allatoregulatory neuropeptides originating from the brain and axonally transported to the CA where they bind to their G protein-coupled receptors (GPCRs). Different classes of allatoregulatory peptides exist which have other functions aside from acting as influencers of JH production. These pleiotropic neuropeptides regulate different processes in different insect orders. In this mini-review, we will give an overview of allatotropins and allatostatins, and their recently characterized GPCRs with a view to better understand their modes of action and different action sites.
Collapse
Affiliation(s)
- Heleen Verlinden
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Marijke Gijbels
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Els Lismont
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Cynthia Lenaerts
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Jozef Vanden Broeck
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Elisabeth Marchal
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| |
Collapse
|
8
|
Lismont E, Vleugels R, Marchal E, Badisco L, Van Wielendaele P, Lenaerts C, Zels S, Tobe SS, Vanden Broeck J, Verlinden H. Molecular cloning and characterization of the allatotropin precursor and receptor in the desert locust, Schistocerca gregaria. Front Neurosci 2015; 9:84. [PMID: 25814925 PMCID: PMC4357254 DOI: 10.3389/fnins.2015.00084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/25/2015] [Indexed: 12/25/2022] Open
Abstract
Allatotropins (ATs) are pleiotropic neuropeptides initially isolated from the tobacco hornworm, Manduca sexta. In 2008, the first receptor for AT-like peptides (ATR) was characterized in Bombyx mori. Since then, ATRs have also been characterized in M. sexta, Tribolium castaneum, Aedes aegypti and Bombus terrestris. These receptors show sequence similarity to vertebrate orexin (ORX) receptors. When generating an EST-database of the desert locust (Schistocerca gregaria) central nervous system, we found cDNA sequences encoding the Schgr-AT precursor and a fragment of its putative receptor. This receptor cDNA has now been completed and functionally expressed in mammalian cell lines. Activation of this receptor, designated as Schgr-ATR, by Schgr-AT caused an increase in intracellular calcium ions, as well as cyclic AMP (cAMP), with an EC50 value in the nanomolar range. In addition, the transcript distribution of both the Schgr-AT precursor and Schgr-ATR was investigated by means of quantitative real-time PCR. Moreover, we found more evidence for the myotropic and allatostimulatory actions of Schgr-AT in the desert locust. These data are discussed and situated in a broader context by comparison with literature data on AT and ATR in insects.
Collapse
Affiliation(s)
- Els Lismont
- Molecular Developmental Physiology and Signal Transduction, KU Leuven Leuven, Belgium
| | - Rut Vleugels
- Molecular Developmental Physiology and Signal Transduction, KU Leuven Leuven, Belgium
| | - Elisabeth Marchal
- Molecular Developmental Physiology and Signal Transduction, KU Leuven Leuven, Belgium ; Department of Cell and Systems Biology, University of Toronto Toronto, ON, Canada
| | - Liesbeth Badisco
- Molecular Developmental Physiology and Signal Transduction, KU Leuven Leuven, Belgium
| | | | - Cynthia Lenaerts
- Molecular Developmental Physiology and Signal Transduction, KU Leuven Leuven, Belgium
| | - Sven Zels
- Molecular Developmental Physiology and Signal Transduction, KU Leuven Leuven, Belgium
| | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto Toronto, ON, Canada
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven Leuven, Belgium
| | - Heleen Verlinden
- Molecular Developmental Physiology and Signal Transduction, KU Leuven Leuven, Belgium
| |
Collapse
|
9
|
Choi MY, Köhler R, Vander Meer RK, Neupert S, Predel R. Identification and expression of capa gene in the fire ant, Solenopsis invicta. PLoS One 2014; 9:e94274. [PMID: 24718032 PMCID: PMC3981796 DOI: 10.1371/journal.pone.0094274] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 03/14/2014] [Indexed: 11/18/2022] Open
Abstract
Recent genome analyses suggested the absence of a number of neuropeptide genes in ants. One of the apparently missing genes was the capa gene. Capa gene expression in insects is typically associated with the neuroendocrine system of abdominal ganglia; mature CAPA peptides are known to regulate diuresis and visceral muscle contraction. The apparent absence of the capa gene raised questions about possible compensation of these functions. In this study, we re-examined this controversial issue and searched for a potentially unrecognized capa gene in the fire ant, Solenopsis invicta. We employed a combination of data mining and a traditional PCR-based strategy using degenerate primers designed from conserved amino acid sequences of insect capa genes. Our findings demonstrate that ants possess and express a capa gene. As shown by MALDI-TOF mass spectrometry, processed products of the S. invicta capa gene include three CAPA periviscerokinins and low amounts of a pyrokinin which does not have the C-terminal WFGPRLa motif typical of CAPA pyrokinins in other insects. The capa gene was found with two alternative transcripts in the CNS. Within the ventral nerve cord, two capa neurons were immunostained in abdominal neuromeres 2–5, respectively, and projected into ventrally located abdominal perisympathetic organs (PSOs), which are the major hormone release sites of abdominal ganglia. The ventral location of these PSOs is a characteristic feature and was also found in another ant, Atta sexdens.
Collapse
Affiliation(s)
- Man-Yeon Choi
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Center of Medical, Agricultural and Veterinary Entomology (CMAVE), Gainesville, Florida, United States of America
- * E-mail: (MYC); (RP)
| | - Rene Köhler
- Zoological Institute, Biocenter University of Cologne, Cologne, Germany
| | - Robert K. Vander Meer
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Center of Medical, Agricultural and Veterinary Entomology (CMAVE), Gainesville, Florida, United States of America
| | - Susanne Neupert
- Zoological Institute, Biocenter University of Cologne, Cologne, Germany
| | - Reinhard Predel
- Zoological Institute, Biocenter University of Cologne, Cologne, Germany
- * E-mail: (MYC); (RP)
| |
Collapse
|
10
|
Vanderveken M, O'Donnell MJ. Effects of diuretic hormone 31, drosokinin, and allatostatin A on transepithelial K⁺ transport and contraction frequency in the midgut and hindgut of larval Drosophila melanogaster. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2014; 85:76-93. [PMID: 24408875 DOI: 10.1002/arch.21144] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Recent studies have identified paracrine and endocrine cells in the midgut of larval Drosophila melanogaster as well as midgut and hindgut receptors for multiple neuropeptides implicated in the control of fluid and ion balance. Although the effects of diuretic factors on fluid secretion by isolated Malpighian tubules of D. melanogaster have been examined extensively, relatively little is known about the effects of such factors on gut peristalsis or ion transport across the gut. We have measured the effects of diuretic hormone 31 (DH31), drosokinin and allatostatin A (AST-A) on both K(+) transport and muscle contraction frequency in the isolated gut of larval D. melanogaster. K(+) absorption across the gut was measured using K(+) -selective microelectrodes and the scanning ion-selective electrode technique. Allatostatin A (AST-A; 1 μM) increased K(+) absorption across the anterior midgut but reduced K(+) absorption across the copper cells and large flat cells of the middle midgut. AST-A strongly inhibited gut contractions in the anterior midgut but had no effect on contractions of the pyloric sphincter induced by proctolin. DH31 (1 μM) increased the contraction frequency in the anterior midgut, but had no effect on K(+) flux across the anterior, middle, or posterior midgut or across the ileum. Drosokinin (1 μM) did not affect either contraction frequency or K(+) flux across any of the gut regions examined. Possible functions of AST-A, DH31, and drosokinin in regulating midgut physiology are discussed.
Collapse
|
11
|
Heuer CM, Kollmann M, Binzer M, Schachtner J. Neuropeptides in insect mushroom bodies. ARTHROPOD STRUCTURE & DEVELOPMENT 2012; 41:199-226. [PMID: 22401884 DOI: 10.1016/j.asd.2012.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 05/31/2023]
Abstract
Owing to their experimental amenability, insect nervous systems continue to be in the foreground of investigations into information processing in - ostensibly - simple neuronal networks. Among the cerebral neuropil regions that hold a particular fascination for neurobiologists are the paired mushroom bodies, which, despite their function in other behavioral contexts, are most renowned for their role in learning and memory. The quest to understand the processes that underlie these capacities has been furthered by research focusing on unraveling neuroanatomical connections of the mushroom bodies and identifying key players that characterize the molecular machinery of mushroom body neurons. However, on a cellular level, communication between intrinsic and extrinsic mushroom body neurons still remains elusive. The present account aims to provide an overview on the repertoire of neuropeptides expressed in and utilized by mushroom body neurons. Existing data for a number of insect representatives is compiled and some open gaps in the record are filled by presenting additional original data.
Collapse
Affiliation(s)
- Carsten M Heuer
- Philipps-University Marburg, Department of Biology, Animal Physiology, Marburg, Germany.
| | | | | | | |
Collapse
|
12
|
Nouzova M, Brockhoff A, Mayoral JG, Goodwin M, Meyerhof W, Noriega FG. Functional characterization of an allatotropin receptor expressed in the corpora allata of mosquitoes. Peptides 2012; 34:201-8. [PMID: 21839791 PMCID: PMC3233642 DOI: 10.1016/j.peptides.2011.07.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 07/13/2011] [Accepted: 07/14/2011] [Indexed: 11/28/2022]
Abstract
Allatotropin is an insect neuropeptide with pleiotropic actions on a variety of different tissues. In the present work we describe the identification, cloning and functional and molecular characterization of an Aedes aegypti allatotropin receptor (AeATr) and provide a detailed quantitative study of the expression of the AeATr gene in the adult mosquito. Analysis of the tissue distribution of AeATr mRNA in adult female revealed high transcript levels in the nervous system (brain, abdominal, thoracic and ventral ganglia), corpora allata-corpora cardiaca complex and ovary. The receptor is also expressed in heart, hindgut and male testis and accessory glands. Separation of the corpora allata (CA) and corpora cardiaca followed by analysis of gene expression in the isolated glands revealed expression of the AeATr primarily in the CA. In the female CA, the AeATr mRNA levels were low in the early pupae, started increasing 6h before adult eclosion and reached a maximum 24h after female emergence. Blood feeding resulted in a decrease in transcript levels. The pattern of changes of AeATr mRNA resembles the changes in JH biosynthesis. Fluorometric Imaging Plate Reader recordings of calcium transients in HEK293 cells expressing the AeATr showed a selective response to A. aegypti allatotropin stimulation in the low nanomolar concentration range. Our studies suggest that the AeATr play a role in the regulation of JH synthesis in mosquitoes.
Collapse
Affiliation(s)
| | - Anne Brockhoff
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Germany
| | | | | | - Wolfgang Meyerhof
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Germany
| | | |
Collapse
|
13
|
Nagata S, Matsumoto S, Mizoguchi A, Nagasawa H. Identification of cDNAs encoding allatotropin and allatotropin-like peptides from the silkworm, Bombyx mori. Peptides 2012; 34:98-105. [PMID: 22265806 DOI: 10.1016/j.peptides.2012.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 01/02/2012] [Accepted: 01/04/2012] [Indexed: 11/22/2022]
Abstract
The cDNAs encoding allatotropin (AT) and allatotropin-like peptides (ATLPs) were isolated from the silkworm, Bombyx mori. Similar to those of the tobacco hornworm, Manduca sexta, four peptides (AT, ATLP1, ATLP2, and ATLP3) are present in three different variants generated by alternative splicing. RT-PCR analyses showed that these splice variants are expressed in the central nervous system with differing expression patterns in each ganglion. Immunohistochemistry using an anti-AT antibody confirmed that AT-expressing cells were located in these central nervous ganglia as well as in two large anterior cells of the frontal ganglia. Injection of synthetic AT and ATLP-1 into B. mori larvae increased the latency to feed, indicating that AT and ATLP might function in the regulation of feeding behavior in B. mori.
Collapse
Affiliation(s)
- Shinji Nagata
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan.
| | | | | | | |
Collapse
|
14
|
Horodyski FM, Verlinden H, Filkin N, Vandersmissen HP, Fleury C, Reynolds SE, Kai ZP, Broeck JV. Isolation and functional characterization of an allatotropin receptor from Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:804-814. [PMID: 21699978 DOI: 10.1016/j.ibmb.2011.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 06/01/2011] [Accepted: 06/06/2011] [Indexed: 05/31/2023]
Abstract
Manduca sexta allatotropin (Manse-AT) is a multifunctional neuropeptide whose actions include the stimulation of juvenile hormone biosynthesis, myotropic stimulation, cardioacceleratory functions, and inhibition of active ion transport. Manse-AT is a member of a structurally related peptide family that is widely found in insects and also in other invertebrates. Its precise role depends on the insect species and developmental stage. In some lepidopteran insects including M. sexta, structurally-related AT-like (ATL) peptides can be derived from alternatively spliced mRNAs transcribed from the AT gene. We have isolated a cDNA for an AT receptor (ATR) from M. sexta by a PCR-based approach using the sequence of the ATR from Bombyx mori. The sequence of the M. sexta ATR is similar to several G protein-coupled receptors from other insect species and to the mammalian orexin receptor. We demonstrate that the M. sexta ATR expressed in vertebrate cell lines is activated in a dose-responsive manner by Manse-AT and each Manse-ATL peptide in the rank order ATL-I > ATL-II > ATL-III > AT, and functional analysis in multiple cell lines suggest that the receptor is coupled through elevated levels of Ca(2+) and cAMP. In feeding larvae, Manse-ATR mRNA is present at highest levels in the Malpighian tubules, followed by the midgut, hindgut, testes, and corpora allata, consistent with its action on multiple target tissues. In the adult corpora cardiaca--corpora allata complex, Manse-ATR mRNA is present at relatively low levels in both sexes.
Collapse
Affiliation(s)
- Frank M Horodyski
- Department of Biomedical Sciences, College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Dircksen H, Neupert S, Predel R, Verleyen P, Huybrechts J, Strauss J, Hauser F, Stafflinger E, Schneider M, Pauwels K, Schoofs L, Grimmelikhuijzen CJP. Genomics, transcriptomics, and peptidomics of Daphnia pulex neuropeptides and protein hormones. J Proteome Res 2011; 10:4478-504. [PMID: 21830762 DOI: 10.1021/pr200284e] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report 43 novel genes in the water flea Daphnia pulex encoding 73 predicted neuropeptide and protein hormones as partly confirmed by RT-PCR. MALDI-TOF mass spectrometry identified 40 neuropeptides by mass matches and 30 neuropeptides by fragmentation sequencing. Single genes encode adipokinetic hormone, allatostatin-A, allatostatin-B, allatotropin, Ala(7)-CCAP, CCHamide, Arg(7)-corazonin, DENamides, CRF-like (DH52) and calcitonin-like (DH31) diuretic hormones, two ecdysis-triggering hormones, two FIRFamides, one insulin, two alternative splice forms of ion transport peptide (ITP), myosuppressin, neuroparsin, two neuropeptide-F splice forms, three periviscerokinins (but no pyrokinins), pigment dispersing hormone, proctolin, Met(4)-proctolin, short neuropeptide-F, three RYamides, SIFamide, two sulfakinins, and three tachykinins. There are two genes for a preprohormone containing orcomyotropin-like peptides and orcokinins, two genes for N-terminally elongated ITPs, two genes (clustered) for eclosion hormones, two genes (clustered) for bursicons alpha, beta, and two genes (clustered) for glycoproteins GPA2, GPB5, three genes for different allatostatins-C (two of them clustered) and three genes for IGF-related peptides. Detailed comparisons of genes or their products with those from insects and decapod crustaceans revealed that the D. pulex peptides are often closer related to their insect than to their decapod crustacean homologues, confirming that branchiopods, to which Daphnia belongs, are the ancestor group of insects.
Collapse
|
16
|
Cardioacceleratory and myostimulatory activity of allatotropin in Triatoma infestans. Comp Biochem Physiol A Mol Integr Physiol 2010; 155:371-7. [DOI: 10.1016/j.cbpa.2009.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 11/10/2009] [Accepted: 12/03/2009] [Indexed: 11/23/2022]
|
17
|
Santini MS, Ronderos JR. Daily variation of an allatotropin-like peptide in the Chagas disease vectorTriatoma infestans(klug). BIOL RHYTHM RES 2009. [DOI: 10.1080/09291010802214583] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Clynen E, Schoofs L. Peptidomic survey of the locust neuroendocrine system. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:491-507. [PMID: 19524670 DOI: 10.1016/j.ibmb.2009.06.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 06/02/2009] [Accepted: 06/04/2009] [Indexed: 05/27/2023]
Abstract
Neuropeptides are important controlling agents in animal physiology. In order to understand their role and the ways in which neuropeptides behave and interact with one another, information on their time and sites of expression is required. We here used a combination of MALDI-TOF and ESI-Q-TOF mass spectrometry to make an inventory of the peptidome of different parts (ganglia and nerves) of the central nervous system from the desert locust Schistocerca gregaria and the African migratory locust Locusta migratoria. This way, we analysed the brain, suboesophageal ganglion, retrocerebral complex, stomatogastric nervous system, thoracic ganglia, abdominal ganglia and abdominal neurohemal organs. The result is an overview of the distribution of sixteen neuropeptide families, i.e. pyrokinins, pyrokinin-like peptides, periviscerokinins, tachykinins, allatotropin, accessory gland myotropin, FLRFamide, (short) neuropeptide F, allatostatins, insulin-related peptide co-peptide, ion-transport peptide co-peptide, corazonin, sulfakinin, orcokinin, hypertrehalosaemic hormone and adipokinetic hormones (joining peptides) throughout the locust neuroendocrine system.
Collapse
Affiliation(s)
- Elke Clynen
- Research Group Functional Genomics and Proteomics, K.U. Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | | |
Collapse
|
19
|
Alternative splicing in exon 9 of glucocorticoid receptor pre-mRNA is regulated by SRp40. Mol Biol Rep 2009; 37:1427-33. [PMID: 19343537 DOI: 10.1007/s11033-009-9529-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 03/20/2009] [Indexed: 10/21/2022]
Abstract
Increasing evidence indicates that alternative splicing of human glucocorticoid receptor (GR) transcripts is implicated in the development of glucocorticoid resistance but the underlying mechanism was not well known. Serine/arginine-rich (SR) proteins and heterogeneous nuclear ribonucleoprotein (hnRNP) A1 play an important role in the spliceosome assembly. In this study, we analyzed the effects of different SR proteins and hnRNP A1 on the alternative splicing of GR pre-mRNA in HeLa and 293T cells using a minigene transfection assay. Our results revealed that only SRp40 could induce a GRalpha to GRbeta shift of pre-mRNA splicing in exon 9 in HeLa cells and this effect induced by SRp40 was further confirmed by small interfering RNA study. However, in 293T cells, SRp40 could not induce this shift. These results indicated that SRp40 may influence the alternative splicing of GR pre-mRNA to regulate the ratio of GRalpha to GRbeta, and this effect is cell-dependent.
Collapse
|
20
|
Neupert S, Schattschneider S, Predel R. Allatotropin-related peptide in cockroaches: identification via mass spectrometric analysis of single identified neurons. Peptides 2009; 30:489-94. [PMID: 19071174 DOI: 10.1016/j.peptides.2008.10.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 10/30/2008] [Accepted: 10/30/2008] [Indexed: 11/23/2022]
Abstract
The first insect allatotropin-related peptide (ATRP) was isolated from head extracts of the adult sphinx moth Manduca sexta [Kataoka H, Toschi A, Li JP, Carney RL, Schooley DA, Kramer SJ. Identification of an allatotropin from adult Manduca sexta. Science 1989;243:1481-3.]. Meanwhile ATRPs are known from different holometabolous insects but only a single ATRP could be identified from hemimetabolous insects [Paemen L, Tips A, Schoofs L, Proost P, Van Damme J, De Loof A. Lom-AG-myotropin: a novel myotropic peptide from the male accessory glands of Locusta migratoria. Peptides 1991;12:7-10.]. This means that the extensive analysis of neuropeptides from Leucophaea maderae and Periplaneta americana, which led to the discovery of many novel insect neuropeptides, did not result in the detection of any ATRP. In this study, we used another approach to find a cockroach ATRP by first identifying Manse-AT immunoreactive neurons in the terminal ganglion that can be stained by retrograde labeling and are suitable for dissection and subsequent mass spectrometric analysis. The peptidomic analysis of these putative ATRP neurons paved the way for the identification of the first cockroach ATRP. MALDI-TOF/TOF tandem mass spectrometry revealed a sequence identity with Locmi-AG-MT-1 which classifies this ATRP as a highly conserved neuropeptide. A mass spectrometric screening of the nervous system allowed the detection of ATRP-ion signals in different parts of the CNS of P. americana as well as L. maderae. The data obtained in this study will be incorporated in a map of peptidergic neurons from the CNS of the American cockroach, P. americana.
Collapse
Affiliation(s)
- Susanne Neupert
- Institute of General Zoology and Animal Physiology, Friedrich-Schiller-University Jena, Erbertstrasse 1, 07743 Jena, Germany.
| | | | | |
Collapse
|
21
|
Santini MS, Ronderos JR. Allatotropin-like peptide in Malpighian tubules: insect renal tubules as an autonomous endocrine organ. Gen Comp Endocrinol 2009; 160:243-9. [PMID: 19118556 DOI: 10.1016/j.ygcen.2008.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 10/13/2008] [Accepted: 12/02/2008] [Indexed: 11/23/2022]
Abstract
Malpighian tubules (MTs) are recognised as the main excretory organ in insects, ensuring water and mineral balance. Haematophagous insects incorporate with each meal a large quantity of blood, producing a particularly large volume of urine in a few hours. In the present study, we report the presence of an allatotropin-like (AT-like) peptide in MTs of Triatoma infestans (Klug). The AT-like content in MTs decreased during the first hours after blood-intake, correlating with the post-prandial diuresis. In vivo artificial dilution of haemolymph showed a similar effect. Isolated MTs challenged with a diluted saline solution resulted in an autonomous and reversible response of the organ regulating the quantity of peptide released to the medium, and suggesting that MTs synthesise the AT-like peptide. While MTs are recognised as the target for several hormones, our results corroborate that they also have the ability to produce and secrete a hormone in an autonomous way.
Collapse
Affiliation(s)
- Maria Soledad Santini
- Centro Regional de Estudios Genomicos (CREG), Universidad Nacional de La Plata, Parque Tecnologico Florencio Varela, Buenos Aires, Argentina
| | | |
Collapse
|
22
|
Audsley N, Matthews HJ, Price NR, Weaver RJ. Allatoregulatory peptides in Lepidoptera, structures, distribution and functions. JOURNAL OF INSECT PHYSIOLOGY 2008; 54:969-980. [PMID: 18377924 DOI: 10.1016/j.jinsphys.2008.01.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 01/18/2008] [Accepted: 01/22/2008] [Indexed: 05/26/2023]
Abstract
Allatoregulatory peptides either inhibit (allatostatins) or stimulate (allatotropins) juvenile hormone (JH) synthesis by the corpora allata (CA) of insects. However, these peptides are pleitropic, the regulation of JH biosynthesis is not their only function. There are currently three allatostatin families (A-, B-, and C-type allatostatins) that inhibit JH biosynthesis, and two structurally unrelated allatotropins. The C-type allatostatin, characterised by its blocked N-terminus and a disulphide bridge between its two cysteine residues, was originally isolated from Manduca sexta. This peptide exists only in a single from in Lepidoptera and is the only peptide that has been shown to inhibit JH synthesis by the CA in vitro in this group of insects. The C-type allatostatin also inhibits spontaneous contractions of the foregut. The A-type allatostatins, which exist in multiple forms in a single insect, have also been characterised from Lepidoptera. This family of peptides does not appear to have any regulatory effect on JH biosynthesis, but does inhibit foregut muscle contractions. Two structurally unrelated allatotropins stimulate JH biosynthesis in Lepidoptera. The first was identified in M. sexta (Manse-AT) and occurs in other moths. The second (Spofr AT2) has only been identified in Spodoptera frugiperda. Manduca sexta allatotropin also stimulates heart muscle contractions and gut peristalsis, and inhibits ion transport across the midgut of larval M. sexta. The C-terminal (amide) pentapeptide of Manse-AT is important for JH biosynthesis activity. The most active conformation of Manse-AS requires the disulphide bridge, although the aromatic residues also have a significant effect on biological activity. Both A- and C-type allatostatins and Manse-AT are localised in neurosecretory cells of the brain and are present in the corpora cardiaca, CA and ventral nerve cord, although variations in localisation exist in different moths and at different stages of development. The presence of Manse-AS and Manse-AT in the CA correlates with the biological activity of these peptides on JH biosynthesis. There is currently no explanation for the presence of A-type allatostatins in the CA. The three peptide types are also co-localised in neurosecretory cells of the frontal ganglion, and are present in the recurrent nerve that supplies the muscles of the gut, particularly the crop and stomodeal valve, in agreement with their role in the regulation of gut peristalsis. There is also evidence that they are expressed in the midgut and reproductive tissues.
Collapse
Affiliation(s)
- N Audsley
- Central Science Laboratory, Sand Hutton, York YO41 1LZ, UK.
| | | | | | | |
Collapse
|
23
|
Utz S, Huetteroth W, Vömel M, Schachtner J. Mas-allatotropin in the developing antennal lobe of the sphinx mothManduca sexta: Distribution, time course, developmental regulation, and colocalization with other neuropeptides. Dev Neurobiol 2008; 68:123-42. [DOI: 10.1002/dneu.20579] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Santini MS, Ronderos JR. Allatotropin-like peptide released by Malpighian tubules induces hindgut activity associated with diuresis in the Chagas disease vector Triatoma infestans (Klug). J Exp Biol 2007; 210:1986-91. [PMID: 17515423 DOI: 10.1242/jeb.004291] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
SUMMARY
Haematophagous insects incorporate a large amount of blood with each meal,producing a big quantity of urine in a few hours to eliminate the excess water and Na+. Malpighian tubules (MTs) have traditionally been seen as a system that responds to neuroendocrine stimulus. In a related paper, we demonstrated that MTs of Triatoma infestans produce an autonomous endocrine secretion of an allatotropin-like (AT-like) peptide. In the present study, we report a myostimulatory activity of AT at the level of the hindgut(HG), associated with endocrine mechanisms regulating post-prandial diuresis. Allatotropin induced an increase in frequency and intensity of peristaltic contractions at the level of the HG. The release of the HG content in MTs–HG in vitro preparations undergoing an osmotic shock occurred at different times, depending on the number of MTs present, and there was no release in treatments without MTs. The application of an AT-antiserum to MTs–HG preparations undergoing osmotic shock produced a delay or a long-term blockade of diuresis, depending on the antiserum dilution applied. Similar results were obtained when AT-antiserum was applied in vivoprior to blood intake, decreasing the volume of urine eliminated during the first 2 h. Our results allow us to assign a specific endocrine function to the AT-like peptide released by MTs that is linked to the elimination of urine after blood meals.
Collapse
Affiliation(s)
- Maria Soledad Santini
- Centro Regional de Estudios Genomicos (CREG-UNLP) and Catedra Histol, Embriol, Animal (FCNyM-UNLP), La Plata, Argentina
| | | |
Collapse
|
25
|
Utz S, Huetteroth W, Wegener C, Kahnt J, Predel R, Schachtner J. Direct peptide profiling of lateral cell groups of the antennal lobes ofManduca sextareveals specific composition and changes in neuropeptide expression during development. Dev Neurobiol 2007; 67:764-77. [PMID: 17443823 DOI: 10.1002/dneu.20381] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The paired antennal lobes are the first integration centers for odor information in the insect brain. In the sphinx moth Manduca sexta, like in other holometabolous insects, they are formed during metamorphosis. To further understand mechanisms involved in the formation of this particularly well investigated brain area, we performed a direct peptide profiling of a well defined cell group (the lateral cell group) of the antennal lobe throughout development by MALDI-TOF mass spectrometry. Although the majority of the about 100 obtained ion signals represent still unknown substances, this first peptidomic characterization of this cell group indicated the occurrence of 12 structurally known neuropeptides. Among these peptides are helicostatin 1, cydiastatins 2, 3, and 4, M. sexta-allatotropin (Mas-AT), M. sexta-FLRFamide (Mas-FLRFamide) I, II, and III, nonblocked Mas-FLRFamide I, and M. sexta-myoinhibitory peptides (Mas-MIPs) III, V, and VI. The identity of two of the allatostatins (cydiastatins 3 and 4) and Mas-AT were confirmed by tandem mass spectrometry (MALDI-TOF/TOF). During development of the antennal lobe, number and frequency of ion signals including those representing known peptides generally increased at the onset of glomeruli formation at pupal Stage P7/8, with cydiastatin 2, helicostatin 1, and Mas-MIP V being the exceptions. Cydiastatin 2 showed transient occurrence mainly during the period of glomerulus formation, helicostatin 1 was restricted to late pupae and adults, while Mas-MIP V occurred exclusively in adult antennal lobes. The power of the applied direct mass spectrometric profiling lies in the possibility of chemically identifying neuropeptides of a given cell population in a fast and reliable manner, at any developmental stage in single specimens. The identification of neuropeptides in the antennal lobes now allows to specifically address the function of these signaling molecules during the formation of the antennal lobe network.
Collapse
Affiliation(s)
- Sandra Utz
- Fachbereich Biologie, Tierphysiologie, Philipps Universität, Marburg, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Bede JC, McNeil JN, Tobe SS. The role of neuropeptides in caterpillar nutritional ecology. Peptides 2007; 28:185-96. [PMID: 17161504 DOI: 10.1016/j.peptides.2006.08.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 08/10/2006] [Accepted: 08/10/2006] [Indexed: 11/17/2022]
Abstract
Plant diet strongly impacts the fitness of insect herbivores. Immediately, we think of plant defensive compounds that may act as feeding deterrents or toxins. We are, probably, less aware that plants also influence insect growth and fecundity through their nutritional quality. However, most herbivores respond to their environment and select the diet which optimizes their growth and development. This regulation of nutritional balance may occur on many levels: through selecting and ingesting appropriate plant tissue and nutrient digestion, absorption and utilization. Here, we review evidence of how nutritional requirements, particularly leaf protein to digestible carbohydrate ratios, affect caterpillar herbivores. We propose a model where midgut endocrine cells assess and integrate hemolymph nutritional status and gut content and release peptides which influence digestive processes. Understanding the effects of diet on the insect herbivore is essential for the rational design and implementation of sustainable pest management practices.
Collapse
Affiliation(s)
- Jacqueline C Bede
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, Que., Canada H9X 3V9.
| | | | | |
Collapse
|
27
|
Lee KY, Horodyski FM. Effects of starvation and mating on corpora allata activity and allatotropin (Manse-AT) gene expression in Manduca sexta. Peptides 2006; 27:567-74. [PMID: 16488512 DOI: 10.1016/j.peptides.2005.08.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Accepted: 08/01/2005] [Indexed: 11/28/2022]
Abstract
The levels of three alternatively spliced mRNAs from the Manduca sexta allatotropin (Manse-AT) gene were determined following physiological manipulations during the larval, pupal and adult stages; starvation of larvae, induction of pupal diapause and adult mating experience. The juvenile hormone biosynthetic activity of the corpora allata (CA) was also determined in starved larvae and in mated and unmated females. Starvation of early fifth instar larvae specifically increased the amount of one Manse-AT mRNA that is predicted to encode Manse-AT and two related peptides, Manse-ATL-I and -II. The normal rapid decrease in the activity of the CA in last instar larvae was not observed in starved insects which maintained a relatively high rate of JH biosynthesis for at least 3 days. Diapause induction resulted in a small increase in one Manse-AT mRNA, but levels were much lower compared to those observed in larvae or adults. During the first 4 days of adult life, Manse-AT mRNA levels were not changed as a result of mating. However, in mated females, the rate of JH biosynthesis gradually increased, in sharp contrast to the relatively low level of CA activity seen in virgin females. These observations suggest the elevated activity of the CA in mated females is not simply due to the increased level of Manse-AT mRNA.
Collapse
Affiliation(s)
- Kyeong-Yeoll Lee
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, South Korea
| | | |
Collapse
|
28
|
Yin H, Zhang TY, Xu WH. Structural organization and expression analysis of the cDNA encoding allatotropin in the cotton bollworm, Helicoverpa armigera. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2005; 60:71-83. [PMID: 16175534 DOI: 10.1002/arch.20082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The cDNA encoding allatotropin (AT), which stimulates juvenile hormone (JH) biosynthesis by the adult corpora allata (CA) of Lepidoptera, was cloned from Helicoverpa armigera (Har). Har-AT cDNA encodes a 135-amino acid polypeptide precursor containing a 13-amino acid AT sequence identical to Manduca sexta AT (Mas-AT). Three other H. armigera AT cDNAs encoding 172, 213, and 246 amino acids were also cloned. The four isoforms were produced by alternative splicing and termed Har-AT1, -AT2, -AT3, and -AT4, respectively. The basic organization of the Har-AT1 polypeptide precursor is similar to that of known ATs from other Lepidoptera with 80-97% identity at amino acid level. From the processing of the polypeptide precursor, three AT-like peptides named Har-ATL-I, -II, and -III were predicted. However, functions of the three AT-like peptides remain to be further elucidated. The evidence of Northern blots showed that a 0.7-kb Har-AT1 transcript is present in the brain and 0.7-kb Har-AT1 and 1.0-kb Har-AT4 transcripts are present in the abdominal ganglion (AG). Using quantitative RT-PCR, Har-AT mRNAs were detectable at much lower levels in other neural tissues, such as suboesophageal ganglion (SG) and thoracic ganglion (TG), but not in non-neural tissue, such as the epidermis, midgut, and fat body. We investigated the spatial and temporal expression of Har-AT gene in the central nervous system, and showed that expression patterns of four isoforms are distinct from each other. The results from immunocytochemistry showed that Har-AT transcript is located in the central nervous system, mainly in the brain and terminal abdominal ganglion (TAG). Thus, the AT gene products, besides affecting JH biosynthesis, might have broad influence on many biological processes in H. armigera.
Collapse
Affiliation(s)
- Han Yin
- Department of Molecular and Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | | | | |
Collapse
|
29
|
Rankin SM, Kwok R, Seymour ML, Shaon Rahman U, Tobe SS. Effects of Manduca allatotropin and localization of Manduca allatotropin-immunoreactive cells in earwigs. Comp Biochem Physiol B Biochem Mol Biol 2005; 142:113-22. [PMID: 16019245 DOI: 10.1016/j.cbpc.2005.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 06/14/2005] [Accepted: 06/17/2005] [Indexed: 11/23/2022]
Abstract
Manduca sexta allatotropin (Manse-AT) was first isolated on the basis of its ability to stimulate production of juvenile hormone in that insect. We examined whether this neuropeptide affects corpus allatum activity and visceral muscle contraction in adult females of the earwig, Euborellia annulipes. We also assessed the presence of allatotropin-like material in tissues using immunocytochemistry. Manse-AT at 1 nM to 10 muM stimulated juvenile hormone production in vitro by glands of low activity from 2-day virgin females. In glands of high activity from 12-day mated females, 1 and 100 nM allatotropin were effective, but 10 muM was not. Similarly, hindguts of 2-day and 12-day females significantly increased in motility in vitro in response to Manse-AT. A monoclonal antibody to Manse-AT was used to demonstrate allatotropin-like material throughout the nervous system of 2-day, virgin females. Immunoreactivity was most pronounced within varicosities of the corpora cardiaca and perisympathetic organs. No immunofluorescence was observed in gut tissue. Lastly, we showed that extract of retrocerebral complexes also enhanced in vitro hindgut motility from 2-day virgin females, in a dose-dependent manner. These results indicate material similar to M. sexta allatotropin in female earwigs and that such peptides may modulate juvenile hormone biosynthesis and visceral muscle contractions. Sensitivity to the peptides may change with physiological stage.
Collapse
Affiliation(s)
- Susan M Rankin
- Department of Biology, Allegheny College, Meadville, PA 16335, USA.
| | | | | | | | | |
Collapse
|
30
|
Yu Y, Jawa A, Pan W, Kastin AJ. Effects of peptides, with emphasis on feeding, pain, and behavior A 5-year (1999-2003) review of publications in Peptides. Peptides 2004; 25:2257-89. [PMID: 15572212 DOI: 10.1016/j.peptides.2004.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Accepted: 09/21/2004] [Indexed: 11/28/2022]
Abstract
Novel effects of naturally occurring peptides are continuing to be discovered, and their mechanisms of actions as well as interactions with other substances, organs, and systems have been elucidated. Synthetic analogs may have actions similar or antagonistic to the endogenous peptides, and both the native peptides and analogs have potential as drugs or drug targets. The journal Peptides publishes many leading articles on the structure-activity relationship of peptides as well as outstanding reviews on some families of peptides. Complementary to the reviews, here we extract information from the original papers published during the past five years in Peptides (1999-2003) to summarize the effects of different classes of peptides, their modulation by other chemicals and various pathophysiological states, and the mechanisms by which the effects are exerted. Special attention is given to peptides related to feeding, pain, and other behaviors. By presenting in condensed form the effects of peptides which are essential for systems biology, we hope that this summary of existing knowledge will encourage additional novel research to be presented in Peptides.
Collapse
Affiliation(s)
- Yongmei Yu
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | |
Collapse
|
31
|
Homberg U, Brandl C, Clynen E, Schoofs L, Veenstra JA. Mas-allatotropin/Lom-AG-myotropin I immunostaining in the brain of the locust, Schistocerca gregaria. Cell Tissue Res 2004; 318:439-57. [PMID: 15480799 DOI: 10.1007/s00441-004-0913-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2003] [Accepted: 05/03/2004] [Indexed: 11/26/2022]
Abstract
Mas-allatotropin (Mas-AT) and Lom-accessory gland-myotropin I (Lom-AG-MTI) are two members of a conserved family of insect neuropeptides, collectively termed allatotropins, which have diverse functions, ranging from stimulation of juvenile hormone secretion to myotropic effects on heart and hindgut. In addition, allatotropins appear to be abundant within the nervous system, suggesting neuroactive roles. To identify neurons in the insect brain suitable for a neurophysiological analysis of the roles of allatotropins, we used antisera against Mas-AT and Lom-AG-MTI to map allatotropin-immunoreactive neurons in the brain of a suitable insect, the locust Schistocerca gregaria. Both antisera revealed basically identical staining patterns throughout the locust brain with more than 12,500 immunostained interneurons per brain hemisphere. Neurosecretory cells were not labeled, and the retrocerebral complex was devoid of immunostaining. Prominent immunoreactive cell types include about 9,600 lamina monopolar neurons, medulla to lobula interneurons, local neurons of the antennal lobe, a giant interneuron of the mushroom body, projection neurons of the glomerular lobe to the mushroom body, and three systems of tangential neurons of the central complex. Several groups of neurons showed colocalization of Mas-AT- and gamma-aminobutyric acid immunostaining. Mass spectrometric analysis identified a peptide with a molecular mass identical to Lom-AG-MTI in all major parts of the locust brain but not in the retrocerebral complex. This study strongly suggests that Lom-AG-MTI is highly abundant in the locust brain, and is likely to play a neuroactive role in many brain circuits including all stages of sensory processing, learning and memory, and higher levels of motor control.
Collapse
Affiliation(s)
- Uwe Homberg
- Fachbereich Biologie/Tierphysiologie, Universität Marburg, 35032 Marburg, Germany.
| | | | | | | | | |
Collapse
|
32
|
Elekonich MM, Horodyski FM. Insect allatotropins belong to a family of structurally-related myoactive peptides present in several invertebrate phyla. Peptides 2003; 24:1623-32. [PMID: 14706542 DOI: 10.1016/j.peptides.2003.08.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Originally named for its ability to stimulate juvenile hormone production by lepidopteran corpora allata, allatotropin has emerged as a neuropeptide with multiple neural, endocrine and myoactive roles. This paper describes the experimental evidence for allatotropin action, its localization in several species of insects, and its multiple effects on a variety of different tissues that lead to increased hemolymph circulation and gut motility. The overall physiological effects may also include species-specific effects such as the regulation of nutrient absorption, modulation of the circadian cycle and migratory preparedness. In addition, we present evidence suggesting that allatotropins are members of a family of myoactive peptides found in several invertebrate phyla. Finally, we speculate that the myoactive properties of allatotropins are basal and it is likely that the stimulatory action of allatotropins on juvenile hormone synthesis evolved secondarily.
Collapse
Affiliation(s)
- Michelle M Elekonich
- Department of Biomedical Sciences and the College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | | |
Collapse
|