1
|
Cho H, Lai CC, Bonnavion R, Alnouri MW, Wang S, Roquid KA, Kawase H, Campos D, Chen M, Weinstein LS, Martínez A, Looso M, Sanda M, Offermanns S. Endothelial insulin resistance induced by adrenomedullin mediates obesity-associated diabetes. Science 2025; 387:674-682. [PMID: 39913566 DOI: 10.1126/science.adr4731] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/17/2024] [Indexed: 04/23/2025]
Abstract
Insulin resistance is a hallmark of obesity-associated type 2 diabetes. Insulin's actions go beyond metabolic cells and also involve blood vessels, where insulin increases capillary blood flow and delivery of insulin and nutrients. We show that adrenomedullin, whose plasma levels are increased in obese humans and mice, inhibited insulin signaling in human endothelial cells through protein-tyrosine phosphatase 1B-mediated dephosphorylation of the insulin receptor. In obese mice lacking the endothelial adrenomedullin receptor, insulin-induced endothelial nitric oxide-synthase activation and skeletal muscle perfusion were increased. Treating mice with adrenomedullin mimicked the effect of obesity and induced endothelial and systemic insulin resistance. Endothelial loss or blockade of the adrenomedullin receptor improved obesity-induced insulin resistance. These findings identify a mechanism underlying obesity-induced systemic insulin resistance and suggest approaches to treat obesity-associated type 2 diabetes.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Adrenomedullin/blood
- Adrenomedullin/pharmacology
- Adrenomedullin/metabolism
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/metabolism
- Endothelial Cells/metabolism
- Endothelium, Vascular/metabolism
- Insulin/metabolism
- Insulin Resistance
- Mice, Inbred C57BL
- Mice, Obese
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Obesity/complications
- Obesity/metabolism
- Phosphorylation
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism
- Receptor, Insulin/metabolism
- Receptors, Adrenomedullin/metabolism
- Receptors, Adrenomedullin/genetics
- Receptors, Adrenomedullin/antagonists & inhibitors
- Signal Transduction
- Female
Collapse
Affiliation(s)
- Haaglim Cho
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Chien-Cheng Lai
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Rémy Bonnavion
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Mohamad Wessam Alnouri
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - ShengPeng Wang
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Kenneth Anthony Roquid
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Haruya Kawase
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Diana Campos
- Max Planck Institute for Heart and Lung Research, Biomolecular Mass Spectrometry, Bad Nauheim, Germany
| | - Min Chen
- Metabolic Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lee S Weinstein
- Metabolic Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alfredo Martínez
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Mario Looso
- Max Planck Institute for Heart and Lung Research, Bioinformatics, Bad Nauheim, Germany
- Cardiopulmonary Institute (CPI), Bad Nauheim, Germany
| | - Miloslav Sanda
- Max Planck Institute for Heart and Lung Research, Biomolecular Mass Spectrometry, Bad Nauheim, Germany
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Cardiopulmonary Institute (CPI), Bad Nauheim, Germany
- Center for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), partner site Frankfurt/Rhine-Main, Bad Nauheim, Germany
| |
Collapse
|
2
|
Dong Y, Vipin VA, Blesson CS, Yallampalli C. Impact of adrenomedullin on mitochondrial respiratory capacity in human adipocyte. Sci Rep 2023; 13:9578. [PMID: 37311963 DOI: 10.1038/s41598-023-36622-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023] Open
Abstract
Mitochondrial function in adipocyte is an important aspect in maintaining metabolic homeostasis. Our previous observation showed that circulating levels of adrenomedullin (ADM) and mRNA and protein for ADM in omental adipose tissue were higher in patients with gestational diabetes mellitus (GDM), and these alterations are accompanied by glucose and lipid metabolic dysregulation, but the impact of ADM on mitochondrial biogenesis and respiration in human adipocyte remain elusive. The present study demonstrated that: (1) Increasing doses of glucose and ADM inhibit human adipocyte mRNA expressions of mitochondrial DNA (mtDNA)-encoded subunits of electron transport chain, including nicotinamide adenine dinucleotide dehydrogenase (ND) 1 and 2, cytochrome (CYT) b, as well as ATPase 6; (2) ADM significantly increases human adipocyte mitochondrial reactive oxygen species generation and this increase is reversed by ADM antagonist, ADM22-52, but treatment with ADM does not significantly affect mitochondrial contents in the adipocytes; (3) Adipocyte basal and maximal oxygen consumption rate are dose-dependently suppressed by ADM, thus results in impaired mitochondrial respiratory capacity. We conclude that elevated ADM observed in diabetic pregnancy may be involved in glucose and lipid dysregulation through compromising adipocyte mitochondrial function, and blockade of ADM action may improve GDM-related glucose and adipose tissue dysfunction.
Collapse
Affiliation(s)
- Yuanlin Dong
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine/Texas Children's Hospital, 1102 Bates Street, Room #1850.34, Houston, TX, 77030, USA
| | - Vidyadharan Alukkal Vipin
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine/Texas Children's Hospital, 1102 Bates Street, Room #1850.34, Houston, TX, 77030, USA
| | - Chellakkan Selvanesan Blesson
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine/Texas Children's Hospital, 1102 Bates Street, Room #1850.34, Houston, TX, 77030, USA
| | - Chandrasekhar Yallampalli
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine/Texas Children's Hospital, 1102 Bates Street, Room #1850.34, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Dong Y, Vipin VA, Blesson CS, Yallampalli C. Impact of Adrenomedullin on Mitochondrial Respiratory Capacity in Human Adipocyte. RESEARCH SQUARE 2023:rs.3.rs-2600140. [PMID: 36945563 PMCID: PMC10029071 DOI: 10.21203/rs.3.rs-2600140/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
For metabolic homeostasis adequate mitochondrial function in adipocytes is essential. Our previous observation showed that circulating levels of adrenomedullin (ADM) and mRNA and protein for ADM in omental adipose tissue were higher in patients with gestational diabetes mellitus (GDM) compared with normal pregnancy, and these alterations are accompanied by glucose and lipid metabolic dysregulation, but the impact of ADM on mitochondrial biogenesis and respiration in human adipocyte remain elusive. In this study we demonstrated that: (1) Increasing doses of glucose and ADM inhibit human adipocyte mRNA expressions of mitochondrial DNA (mtDNA)-encoded subunits of electron transport chain (ETC), including nicotinamide adenine dinucleotide dehydrogenase (ND) 1 and 2, cytochrome (CYT) b, as well as ATPase 6; (2) ADM significantly increases human adipocyte mitochondrial reactive oxygen species (ROS) generation and this increase is reversed by ADM antagonist, ADM22-52, but does not significantly affect adipocyte mitochondrial contents; (3) Adipocyte basal and maximal oxygen consumption rate (OCR) are dose-dependently suppressed by ADM, and results in impaired mitochondrial respiratory capacity. We conclude that elevatedADM observed in diabetic pregnancy may be involved in glucose and lipid dysregulation through compromising adipocyte mitochondrial function, and blockade of ADM actions in adipocytes may improve GDM-related metabolic complications.
Collapse
|
4
|
Yao X, Chen X, Adam REH, Zhang Z, Ge Y, Li Y, Huang S, Shi Y, Lv P, Wang S, Zhao R, Hao L, Lu Z, Yang X. Higher serum adrenomedullin concentration is associated with an increased risk of gestational diabetes mellitus: A nested case-control study in Wuhan, China. Nutr Res 2022; 107:117-127. [PMID: 36215885 DOI: 10.1016/j.nutres.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 12/27/2022]
Abstract
Adrenomedullin (ADM) is thought to play a significant role in regulating insulin secretion and glucose metabolism. However, studies on the relationship between ADM and gestational diabetes mellitus (GDM) are limited. We hypothesized that a higher serum ADM concentration would be associated with an increased risk of GDM. Therefore, a nested case-control study of 65 GDM cases and 130 prepregnancy body mass index, age, parity, and gestational age of blood collection-matched controls was conducted to prospectively evaluate the association between circulating ADM concentrations in early pregnancy and the risk of GDM in pregnant women based on the Tongji Birth Cohort. Serum ADM concentrations in the GDM group were higher than those in the control group (2125.04 ± 644.97 vs 1880.76 ± 581.13 pg/mL) (P = .008). Serum ADM concentration was positively associated with the risk of developing GDM (Ptrend < .05). The adjusted odds ratio (OR) comparing the highest tertile of ADM with the lowest was 2.74 (95% CI, 1.17-6.43). The risk of GDM increased by 49% (OR, 1.49; 95% CI, 1.05-2.12) for each SD increment of serum ADM. Moreover, serum ADM concentration was positively correlated with circulating total cholesterol (r = 0.204), triglycerides (r = 0.197), and systolic blood pressure (r = 0.173), but negatively correlated with circulating high-density lipoprotein cholesterol concentration (r = -0.176). Pregnant women with higher serum ADM concentrations have a markedly increased risk of developing GDM. Further studies are warranted to explore the possible thresholds of ADM that increase the risk of GDM and to confirm and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Xueqiong Yao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiuzhi Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rabab Elhadi Hikreldour Adam
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhen Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanyan Ge
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shanshan Huang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuxin Shi
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Lv
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shanshan Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rui Zhao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liping Hao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongxin Lu
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Xuefeng Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Dong Y, Betancourt A, Belfort MA, Yallampalli C. Lipid dysfunction and adrenomedullin expression in omental versus subcutaneous adipose tissues in diabetic pregnancies. PLoS One 2022; 17:e0265419. [PMID: 35390031 PMCID: PMC8989323 DOI: 10.1371/journal.pone.0265419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 03/01/2022] [Indexed: 11/19/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the most common complications of pregnancy but the underlying mechanism remains obscure. The aims of this study are to examine if omental adipose tissue (OMAT) and subcutaneous AT (SCAT) differentially express proinflammatory and lipid metabolic adipokines, and if so, whether their regional differences have implications on lipid metabolism in GDM. Paired samples of OMAT and SCAT were excised from pregnant women in scheduled Cesarean sections with non-obese (NOBS), obese (OBS) and GDM. The results showed that the mRNA of monocyte chemoattractant protein (MCP)-1, macrophage marker CD68, and cytokines IL-6, IL-8, and TNF-α are increased in OMAT from GDM women compared to that in NOBS and OBS women (P<0.05). Glucose and TNF-α dose-dependently enhanced ADM and its receptor components CRLR and RAMPs in human adipocytes. Immunofluorescence showed that ADM and its receptor components are higher in OMAT from GDM women compared to non-GDM women. Further, basal lipolysis was greater in OMAT than in SCAT and ADM stimulates further glycerol release in OMAT, but not in SCAT, and these increases are reduced by ADM antagonist, ADM22-52. We therefore conclude that elevated ADM and its receptor expressions by OMAT, but not by SCAT appear to contribute to the lipid dysregulation in GDM women, and manipulation of ADM may represent one of the novel approaches in minimizing the risk of GDM-related fetal overgrowth.
Collapse
Affiliation(s)
- Yuanlin Dong
- Department of Obstetrics and Gynecology, Baylor College of Medicine/Texas Children’s Hospital, Houston, Texas, United States of America
| | - Ancizar Betancourt
- Department of Obstetrics and Gynecology, Baylor College of Medicine/Texas Children’s Hospital, Houston, Texas, United States of America
| | - Michael A. Belfort
- Department of Obstetrics and Gynecology, Baylor College of Medicine/Texas Children’s Hospital, Houston, Texas, United States of America
| | - Chandrasekhar Yallampalli
- Department of Obstetrics and Gynecology, Baylor College of Medicine/Texas Children’s Hospital, Houston, Texas, United States of America
| |
Collapse
|
6
|
Dong Y, Ruano SH, Mishra A, Pennington KA, Yallampalli C. Adrenomedullin and its receptors are expressed in mouse pancreatic β-cells and suppresses insulin synthesis and secretion. PLoS One 2022; 17:e0265890. [PMID: 35324977 PMCID: PMC8947024 DOI: 10.1371/journal.pone.0265890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/09/2022] [Indexed: 11/22/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is associated with defective pancreatic β-cell adaptation in pregnancy, but the underlying mechanism remains obscure. Our previous studies demonstrated that GDM women display increased plasma adrenomedullin (ADM) levels, and non-obese GDM mice show decreased serum concentrations of insulin and the number of β-cells in pancreas islets. The aims of this study is to examine if ADM and its receptors are expressed in female mouse pancreas, and if so, whether insulin secretion is regulated by ADM in mouse β-cell line, NIT-1 cells and isolated mouse pancreatic islets. Present study shows that ADM and its receptor components CRLR, RAMPs are present in mouse pancreatic islets and co-localized with insulin. The expressions of ADM, CRLR and RAMP2 in islets from pregnant mice are reduced compared to that of non-pregnant mice. NIT-1-β cells express ADM and its receptor mRNA, and glucose dose-dependently stimulates expressions. Furthermore, ADM inhibits NIT-1-β cell growth, and this inhibition is reversed by ADM antagonist, ADM22-52. The glucose-induced insulin secretion was suppressed by ADM in NIT-1-β cells and isolated pancreatic islets from pregnant mice. These inhibitory effects are accompanied by upregulation of endoplasmic reticulum (ER) stress biomarker genes in NIT-1-β cells. This study unveils that reduced ADM and its receptors may play a role in β-cell adaptation during pregnancy, while increased plasma ADM in GDM may contribute to the β-cells dysfunction, and blockade of ADM may reverse β-cell insulin production.
Collapse
Affiliation(s)
- Yuanlin Dong
- Department of Obstetrics and Gynecology, Baylor College of Medicine/Texas Children’s Hospital, Houston, Texas, United States of America
| | - Simone Hernandez Ruano
- Department of Obstetrics and Gynecology, Baylor College of Medicine/Texas Children’s Hospital, Houston, Texas, United States of America
| | - Akansha Mishra
- Department of Obstetrics and Gynecology, Baylor College of Medicine/Texas Children’s Hospital, Houston, Texas, United States of America
| | - Kathleen A. Pennington
- Department of Obstetrics and Gynecology, Baylor College of Medicine/Texas Children’s Hospital, Houston, Texas, United States of America
| | - Chandrasekhar Yallampalli
- Department of Obstetrics and Gynecology, Baylor College of Medicine/Texas Children’s Hospital, Houston, Texas, United States of America
| |
Collapse
|
7
|
García-Sanmartín J, Narro-Íñiguez J, Rodríguez-Barbero A, Martínez A. Endoglin and Activin Receptor-like Kinase 1 (Alk1) Modify Adrenomedullin Expression in an Organ-Specific Manner in Mice. BIOLOGY 2022; 11:biology11030358. [PMID: 35336733 PMCID: PMC8945164 DOI: 10.3390/biology11030358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 01/23/2023]
Abstract
Simple Summary Hereditary hemorrhagic telangiectasia (HHT) is called a rare disease because it affects relatively few people. It is characterized by malformations in some blood vessels and usually results in profuse nose bleedings. In a recent article, we found that these patients have higher levels of adrenomedullin (AM), a molecule with cardiovascular activities, than healthy people. Thus we wanted to know whether the mutations that cause the HHT disease are directly responsible for these higher levels of AM. To investigate this issue, we used mutant mice, which express lower levels of the genes involved in the disease (called Eng and Acvrl1), and measured how much AM was found in different tissues. Although we expected a higher amount of AM in all organs, that was not the case. Some organs showed no variation, some had lower levels of AM than normal mice (fat, skin, and adrenals), and others had a higher expression (cerebellum and colon). Interestingly, our results suggest that these genes and the related molecule BMP-9 may have novel functions, which have not been yet investigated, which may shed more light on the physiopathology of HHT. Abstract Hereditary hemorrhagic telangiectasia (HHT) is a rare disease characterized by vascular malformations and profuse bleeding. The disease is caused by mutations in the components of the BMP-9 receptor: endoglin (ENG) and activin receptor-like kinase 1 (ACVRL1) genes. Recently, we reported that HHT patients expressed higher serum levels of adrenomedullin (AM) than healthy volunteers; thus, we studied the expression of AM (by enzyme immunoassay, qRT-PCR, immunohistochemistry, and Western blotting) in mice deficient in either one of the receptor components to investigate whether these defects may be the cause of that elevated AM in patients. We found that AM expression is not affected by these mutations in a consistent pattern. On the contrary, in some organs (blood, lungs, stomach, pancreas, heart, kidneys, ovaries, brain cortex, hippocampus, foot skin, and microvessels), there were no significant changes, whereas in others we found either a reduced expression (fat, skin, and adrenals) or an enhanced production of AM (cerebellum and colon). These results contradict our initial hypothesis that the increased AM expression found in HHT patients may be due directly to the mutations, but open intriguing questions about the potential phenotypic manifestations of Eng and Acvrl1 mutants that have not yet been studied and that may offer, in the future, a new focus for research on HHT.
Collapse
Affiliation(s)
- Josune García-Sanmartín
- Angiogenesis Unit, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logrono, Spain; (J.G.-S.); (J.N.-Í.)
| | - Judit Narro-Íñiguez
- Angiogenesis Unit, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logrono, Spain; (J.G.-S.); (J.N.-Í.)
| | - Alicia Rodríguez-Barbero
- Vascular Endothelium Pathophysiology (ENDOVAS) Unit, Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain;
- Biomedical Research Institute of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Alfredo Martínez
- Angiogenesis Unit, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logrono, Spain; (J.G.-S.); (J.N.-Í.)
- Correspondence: ; Tel.: +34-941278775
| |
Collapse
|
8
|
Martínez-Herrero S, Martínez A. Adrenomedullin: Not Just Another Gastrointestinal Peptide. Biomolecules 2022; 12:biom12020156. [PMID: 35204657 PMCID: PMC8961556 DOI: 10.3390/biom12020156] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/11/2022] Open
Abstract
Adrenomedullin (AM) and proadrenomedullin N-terminal 20 peptide (PAMP) are two bioactive peptides derived from the same precursor with several biological functions including vasodilation, angiogenesis, or anti-inflammation, among others. AM and PAMP are widely expressed throughout the gastrointestinal (GI) tract where they behave as GI hormones, regulating numerous physiological processes such as gastric emptying, gastric acid release, insulin secretion, bowel movements, or intestinal barrier function. Furthermore, it has been recently demonstrated that AM/PAMP have an impact on gut microbiome composition, inhibiting the growth of bacteria related with disease and increasing the number of beneficial bacteria such as Lactobacillus or Bifidobacterium. Due to their wide functions in the GI tract, AM and PAMP are involved in several digestive pathologies such as peptic ulcer, diabetes, colon cancer, or inflammatory bowel disease (IBD). AM is a key protective factor in IBD onset and development, as it regulates cytokine production in the intestinal mucosa, improves vascular and lymphatic regeneration and function and mucosal epithelial repair, and promotes a beneficial gut microbiome composition. AM and PAMP are relevant GI hormones that can be targeted to develop novel therapeutic agents for IBD, other GI disorders, or microbiome-related pathologies.
Collapse
|
9
|
Adrenomedullin Is a Diagnostic and Prognostic Biomarker for Acute Intracerebral Hemorrhage. Curr Issues Mol Biol 2021; 43:324-334. [PMID: 34208106 PMCID: PMC8928941 DOI: 10.3390/cimb43010027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022] Open
Abstract
Hemorrhagic stroke remains an important health challenge. Adrenomedullin (AM) is a vasoactive peptide with an important role in cardiovascular diseases, including stroke. Serum AM and nitrate-nitrite and S-nitroso compounds (NOx) levels were measured and compared between healthy volunteers (n = 50) and acute hemorrhagic stroke patients (n = 64). Blood samples were taken at admission (d0), 24 h later (d1), and after 7 days or at the time of hospital discharge (d7). Neurological severity (NIHSS) and functional prognosis (mRankin) were measured as clinical outcomes. AM levels were higher in stroke patients at all times when compared with healthy controls (p < 0.0001). A receiving operating characteristic curve analysis identified that AM levels at admission > 69.0 pg/mL had a great value as a diagnostic biomarker (area under the curve = 0.89, sensitivity = 80.0%, specificity = 100%). Furthermore, patients with a favorable outcome (NIHSS ≤ 3; mRankin ≤ 2) experienced an increase in AM levels from d0 to d1, and a decrease from d1 to d7, whereas patients with unfavorable outcome had no significant changes over time. NOx levels were lower in patients at d0 (p = 0.04) and d1 (p < 0.001) than in healthy controls. In conclusion, AM levels may constitute a new diagnostic and prognostic biomarker for this disease, and identify AM as a positive mediator for hemorrhagic stroke resolution.
Collapse
|
10
|
Iriarte A, Ochoa-Callejero L, García-Sanmartín J, Cerdà P, Garrido P, Narro-Íñiguez J, Mora-Luján JM, Jucglà A, Sánchez-Corral MA, Cruellas F, Gamundi E, Ribas J, Castellote J, Viñals F, Martínez A, Riera-Mestre A. Adrenomedullin as a potential biomarker involved in patients with hereditary hemorrhagic telangiectasia. Eur J Intern Med 2021; 88:89-95. [PMID: 33888392 DOI: 10.1016/j.ejim.2021.03.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Adrenomedullin (AM) is a vasoactive peptide mostly secreted by endothelial cells with an important role in preserving endothelial integrity. The relationship between AM and hereditary hemorrhagic telangiectasia (HHT) is unknown. We aimed to compare the serum levels and tissue expression of AM between HHT patients and controls. METHODS Serum AM levels were measured by radioimmunoassay and compared between control and HHT groups. AM levels were also compared among HHT subgroups according to clinical characteristics. The single nucleotide polymorphism (SNP) rs4910118 was assessed by restriction analysis and sequencing. AM immunohistochemistry was performed on biopsies of cutaneous telangiectasia from eight HHT patients and on the healthy skin from five patients in the control group. RESULTS Forty-five HHT patients and 50 healthy controls were included, mean age (SD) was 50.7 (14.9) years and 46.4 (9.9) years (p = 0.102), respectively. HHT patients were mostly female (60% vs 38%, p = 0.032). Median [Q1-Q3] serum AM levels were 68.3 [58.1-80.6] pg/mL in the HHT group and 47.7 [43.2-53.8] pg/mL in controls (p<0.001), with an optimal AM cut-off according to Youden's J statistic of 55.32 pg/mL (J:0.729). Serum AM levels were similar in the HHT subgroups. No patient with HHT had the SNP rs4910118. AM immunoreactivity was found with high intensity in the abnormal blood vessels of HHT biopsies. CONCLUSIONS We detected higher AM serum levels and tissue expression in patients with HHT than in healthy controls. The role of AM in HHT, and whether AM may constitute a novel biomarker and therapeutic target, needs further investigation.
Collapse
Affiliation(s)
- A Iriarte
- HHT Unit. Hospital Universitari de Bellvitge, Barcelona Spain; Internal Medicine Department. Hospital Universitari de Bellvitge, Barcelona Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona Spain
| | - L Ochoa-Callejero
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño Spain
| | - J García-Sanmartín
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño Spain
| | - P Cerdà
- HHT Unit. Hospital Universitari de Bellvitge, Barcelona Spain; Internal Medicine Department. Hospital Universitari de Bellvitge, Barcelona Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona Spain
| | - P Garrido
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño Spain
| | - J Narro-Íñiguez
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño Spain
| | - J M Mora-Luján
- HHT Unit. Hospital Universitari de Bellvitge, Barcelona Spain; Internal Medicine Department. Hospital Universitari de Bellvitge, Barcelona Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona Spain
| | - A Jucglà
- HHT Unit. Hospital Universitari de Bellvitge, Barcelona Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona Spain; Dermatology Department. Hospital Universitari de Bellvitge, Barcelona Spain
| | - M A Sánchez-Corral
- HHT Unit. Hospital Universitari de Bellvitge, Barcelona Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona Spain; Cardiology Department. Hospital Universitari de Bellvitge, Barcelona Spain
| | - F Cruellas
- HHT Unit. Hospital Universitari de Bellvitge, Barcelona Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona Spain; Otorhinolaryngology Department. Hospital Universitari de Bellvitge, Barcelona Spain
| | - E Gamundi
- Hematology Department. Hospital Universitari de Bellvitge, Barcelona Spain
| | - J Ribas
- HHT Unit. Hospital Universitari de Bellvitge, Barcelona Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona Spain; Pneumology Department. Hospital Universitari de Bellvitge, Barcelona Spain
| | - J Castellote
- HHT Unit. Hospital Universitari de Bellvitge, Barcelona Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona Spain; Liver Transplant Unit, Gastroenterology Department. Hospital Universitari de Bellvitge, Barcelona Spain; Physiological Sciences Department. Faculty of Medicine and Health Sciences. Universitat de Barcelona, Barcelona, Spain
| | - F Viñals
- Physiological Sciences Department. Faculty of Medicine and Health Sciences. Universitat de Barcelona, Barcelona, Spain; Program Against Cancer Therapeutic Resistance, Institut Catala d'Oncologia, Hospital Duran i Reynals, Barcelona Spain; Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - A Martínez
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño Spain
| | - A Riera-Mestre
- HHT Unit. Hospital Universitari de Bellvitge, Barcelona Spain; Internal Medicine Department. Hospital Universitari de Bellvitge, Barcelona Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona Spain; Faculty of Medicine and Health Sciences. Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
11
|
Pennington KA, Dong Y, Ruano SH, van der Walt N, Sangi-Haghpeykar H, Yallampalli C. Brief high fat high sugar diet results in altered energy and fat metabolism during pregnancy in mice. Sci Rep 2020; 10:20866. [PMID: 33257770 PMCID: PMC7705687 DOI: 10.1038/s41598-020-77529-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/10/2020] [Indexed: 11/09/2022] Open
Abstract
During pregnancy several maternal adaptations occur in order to support the growing fetus which are further exacerbated by gestational diabetes mellitus (GDM). Previously we developed a mouse model of GDM, however we did not evaluate alterations to energy and fat metabolism. We have also shown that alterations in lipid metabolism are mediated by adrenomedullin (ADM) in normal and GDM pregnancies. Our objectives were: (1) evaluate energy and fat homeostasis in our GDM mouse model and (2) determine if ADM may play a role in these changes. Female mice were placed on either control (P-CD) or high fat, high sucrose diet (P-HFHS) 1 week prior to and throughout pregnancy. Mice were placed into comprehensive lab animal monitoring system (CLAMS) chambers throughout pregnancy. Visceral adipose tissue (VAT) was collected at d17.5 of pregnancy for analysis. Energy Expenditure was significantly increased (p < 0.05) in P-HFHS dams compared to all other groups. VAT ex-vivo lipolysis was increased (p < 0.05) in P-HFHS compared to P-CD dams. VAT gene expression of ADM receptors Crlr, Ramp2, and Ramp3 was increased (p < 0.05) in P-HFHS dams. ADM dose dependently increased ex vivo lipolysis. This data further validates our animal model of GDM and is usefulness in investigating the pathophysiology of GDM.
Collapse
Affiliation(s)
- Kathleen A Pennington
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, 1102 Bates Street, Room #1850.36, Houston, TX, 77030, USA.
| | - Yuanlin Dong
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, 1102 Bates Street, Room #1850.36, Houston, TX, 77030, USA
| | - Simone Hernandez Ruano
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, 1102 Bates Street, Room #1850.36, Houston, TX, 77030, USA
| | - Nicola van der Walt
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, 1102 Bates Street, Room #1850.36, Houston, TX, 77030, USA
| | - Haleh Sangi-Haghpeykar
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, 1102 Bates Street, Room #1850.36, Houston, TX, 77030, USA
| | - Chandrasekhar Yallampalli
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, 1102 Bates Street, Room #1850.36, Houston, TX, 77030, USA
| |
Collapse
|
12
|
Dong Y, van der Walt N, Pennington KA, Yallampalli C. Impact of adrenomedullin blockage on lipid metabolism in female mice exposed to high-fat diet. Endocrine 2019; 65:278-285. [PMID: 31025262 PMCID: PMC6901288 DOI: 10.1007/s12020-019-01927-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 04/08/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Adrenomedullin (ADM) levels are elevated in gestational and type 2 diabetic patients. ADM also stimulates lipolysis in vitro. Disturbed lipid metabolism has been implicated in the pathogenesis of diabetes. Here, we explore whether blockade of ADM is beneficial for metabolic homeostasis in a diabetic mouse model. METHODS C57BL/6J female mice were placed on either a control or a high fat high sucrose (HFHS) diet for 8 weeks. At week 4, osmotic mini-pumps were implanted for constant infusion of either saline or ADM antagonist, ADM22-52. Glucose tolerance tests were performed prior to infusion and 4 weeks after infusion began. Animals were then sacrificed and visceral adipose tissue collected for further analysis. RESULTS Mice fed HFHS displayed glucose intolerance, increased mRNA expressions in VAT for Adm and its receptor components, Crlr. HFHS fed mice also had increased basal and isoprenaline-induced glycerol release by VAT explants. ADM22-52 did not significantly affect glucose intolerance. ADM22-52 did suppress basal and isoprenaline-induced glycerol release by VAT explants. This alteration was associated with enhanced mRNA expression of insulin signaling factors Insr and Glut4, and adipogenic factor Pck1. CONCLUSIONS HFHS diet induces glucose intolerance and enhances ADM and its receptor expressions in VAT in female mice. ADM22-52 treatment did not affect glucose intolerance in HFHS mice, but reduced both basal and isoprenaline-induced lipolysis, which is associated with enhanced expression of genes involved in adipogenesis. These results warrant further research on the effects of ADM blockade in improving lipid homeostasis in diabetic patients.
Collapse
Affiliation(s)
- Yuanlin Dong
- Department of Obstetrics and Gynecology, Baylor College of Medicine/Texas Children's Hospital, Houston, TX, 77030, USA
| | - Nicola van der Walt
- Department of Obstetrics and Gynecology, Baylor College of Medicine/Texas Children's Hospital, Houston, TX, 77030, USA
| | - Kathleen A Pennington
- Department of Obstetrics and Gynecology, Baylor College of Medicine/Texas Children's Hospital, Houston, TX, 77030, USA
| | - Chandra Yallampalli
- Department of Obstetrics and Gynecology, Baylor College of Medicine/Texas Children's Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
13
|
Bech EM, Voldum-Clausen K, Pedersen SL, Fabricius K, Rudkjær LC, Hansen HH, Jelsing J. Adrenomedullin and glucagon-like peptide-1 have additive effects on food intake in mice. Biomed Pharmacother 2019; 109:167-173. [DOI: 10.1016/j.biopha.2018.10.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 01/20/2023] Open
|
14
|
Dong Y, Betancourt A, Belfort M, Yallampalli C. Targeting Adrenomedullin to Improve Lipid Homeostasis in Diabetic Pregnancies. J Clin Endocrinol Metab 2017; 102:3425-3436. [PMID: 28666334 PMCID: PMC5587055 DOI: 10.1210/jc.2017-00920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/23/2017] [Indexed: 12/29/2022]
Abstract
Context Gestational diabetes mellitus (GDM) is associated with disturbances in maternal lipid metabolism. Hypertriacylglycerolemia in GDM is associated with an increased risk of large for gestational age neonates, but the pathogenesis of disrupted lipid homeostasis remains unclear. Objectives To determine the role of adrenomedullin (AM), a multifunctional peptide, in lipid metabolism in GDM. Design Omental adipose biopsies were collected in term pregnancy from women with normal glucose tolerance (NGT, n = 10) and GDM (n = 10). Results AM and its receptor components, calcitonin receptor-like receptor, receptor activity-modifying protein 2, and receptor activity-modifying protein 3, were higher in adipose tissues from GDM compared with NGT pregnancies, and these expressions in normal adipose tissues were enhanced by glucose and tumor necrosis factor-αin vitro. AM dose- and time-dependently stimulated lipolysis in human adipocytes, and this effect was reversed by AM antagonist AM22-52. Furthermore, AM inhibited phosphorylation of insulin receptor-β and insulin receptor substrate-1 and enhanced the protein expression of leptin and resistin in adipose tissue from NGT women. The increased messenger RNA expression of leptin and resistin in adipose tissue from GDM was reduced by AM22-52 treatment. Conclusions GDM pregnancies are associated with increased AM and its receptor expression in adipose tissues. AM stimulates lipolysis and leptin and resistin expression, and these effects can be reversed by AM antagonist. To our knowledge, manipulation of AM and its receptors in adipocytes might represent an approach in reducing the risk of GDM and fetal overgrowth.
Collapse
Affiliation(s)
- Yuanlin Dong
- Department of Obstetrics and Gynecology, Baylor College of Medicine/Texas Children’s Hospital, Houston, Texas 77030
| | - Ancizar Betancourt
- Department of Obstetrics and Gynecology, Baylor College of Medicine/Texas Children’s Hospital, Houston, Texas 77030
| | - Michael Belfort
- Department of Obstetrics and Gynecology, Baylor College of Medicine/Texas Children’s Hospital, Houston, Texas 77030
| | - Chandrasekhar Yallampalli
- Department of Obstetrics and Gynecology, Baylor College of Medicine/Texas Children’s Hospital, Houston, Texas 77030
| |
Collapse
|
15
|
Martínez-Herrero S, Martínez A. Adrenomedullin regulates intestinal physiology and pathophysiology. Domest Anim Endocrinol 2016; 56 Suppl:S66-83. [PMID: 27345325 DOI: 10.1016/j.domaniend.2016.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 02/08/2023]
Abstract
Adrenomedullin (AM) and proadrenomedullin N-terminal 20 peptide (PAMP) are 2 biologically active peptides produced by the same gene, ADM, with ubiquitous distribution and many physiological functions. Adrenomedullin is composed of 52 amino acids, has an internal molecular ring composed by 6 amino acids and a disulfide bond, and shares structural similarities with calcitonin gene-related peptide, amylin, and intermedin. The AM receptor consists of a 7-transmembrane domain protein called calcitonin receptor-like receptor in combination with a single transmembrane domain protein known as receptor activity-modifying protein. Using morphologic techniques, it has been shown that AM and PAMP are expressed throughout the gastrointestinal tract, being specially abundant in the neuroendocrine cells of the gastrointestinal mucosa; in the enterochromaffin-like and chief cells of the gastric fundus; and in the submucosa of the duodenum, ileum, and colon. This wide distribution in the gastrointestinal tract suggests that AM and PAMP may act as gut hormones regulating many physiological and pathologic conditions. To date, it has been proven that AM and PAMP act as autocrine/paracrine growth factors in the gastrointestinal epithelium, play key roles in the protection of gastric mucosa from various kinds of injury, and accelerate healing in diseases such as gastric ulcer and inflammatory bowel diseases. In addition, both peptides are potent inhibitors of gastric acid secretion and gastric emptying; they regulate the active transport of sugars in the intestine, regulate water and ion transport in the colon, modulate colonic bowel movements and small-intestine motility, improve endothelial barrier function, and stabilize circulatory function during gastrointestinal inflammation. Furthermore, AM and PAMP are antimicrobial peptides, and they contribute to the mucosal host defense system by regulating gut microbiota. To get a formal demonstration of the effects that endogenous AM and PAMP may have in gut microbiota, we developed an inducible knockout of the ADM gene. Using this model, we have shown, for the first time, that lack of AM/PAMP leads to changes in gut microbiota composition in mice. Further studies are needed to investigate whether this lack of AM/PAMP may have an impact in the development and/or progression of intestinal diseases through their effect on microbiota composition.
Collapse
Affiliation(s)
- S Martínez-Herrero
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, La Rioja 26006, Spain
| | - A Martínez
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, La Rioja 26006, Spain.
| |
Collapse
|
16
|
Martínez-Herrero S, Larrayoz IM, Ochoa-Callejero L, Fernández LJ, Allueva A, Ochoa I, Martínez A. Prevention of Bone Loss in a Model of Postmenopausal Osteoporosis through Adrenomedullin Inhibition. Front Physiol 2016; 7:280. [PMID: 27445864 PMCID: PMC4928306 DOI: 10.3389/fphys.2016.00280] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/21/2016] [Indexed: 11/23/2022] Open
Abstract
Despite recent advances in the understanding and treatment options for osteoporosis, this condition remains a serious public health issue. Adrenomedullin (AM) is a regulatory peptide with reported activity on bone remodeling. To better understand this relationship we built an inducible knockout for AM. An outstanding feature of knockout mice is their heavier weight due, in part, to the presence of denser bones. The femur of knockout animals was denser, had more trabeculae, and a thicker growth plate than wild type littermates. The endocrine influence of AM on bone seems to be elicited through an indirect mechanism involving, at least, the regulation of insulin, glucose, ghrelin, and calcitonin gene-related peptide (CGRP). To confirm the data we performed a pharmacological approach using the AM inhibitor 16311 in a mouse model of osteoporosis. Ovariectomized females showed significant bone mass loss, whereas ovariectomized females treated with 16311 had similar bone density to sham operated females. In conclusion, we propose the use of AM inhibitors for the treatment of osteoporosis and other conditions leading to the loss of bone mass.
Collapse
Affiliation(s)
- Sonia Martínez-Herrero
- Angiogenesis Interest Group, Oncology Area, Center for Biomedical Research of La Rioja, Fundación Rioja Salud Logroño, Spain
| | - Ignacio M Larrayoz
- Angiogenesis Interest Group, Oncology Area, Center for Biomedical Research of La Rioja, Fundación Rioja Salud Logroño, Spain
| | - Laura Ochoa-Callejero
- Angiogenesis Interest Group, Oncology Area, Center for Biomedical Research of La Rioja, Fundación Rioja Salud Logroño, Spain
| | - Luis J Fernández
- Centro de Investigación Biomédica en Red, Aragon Institute of Health SciencesZaragoza, Spain; Group of Structural Mechanics and Materials Modelling, Aragón Institute of Engineering Research (I3A), University of ZaragozaZaragoza, Spain
| | - Alexis Allueva
- Centro de Investigación Biomédica en Red, Aragon Institute of Health SciencesZaragoza, Spain; Group of Structural Mechanics and Materials Modelling, Aragón Institute of Engineering Research (I3A), University of ZaragozaZaragoza, Spain
| | - Ignacio Ochoa
- Centro de Investigación Biomédica en Red, Aragon Institute of Health SciencesZaragoza, Spain; Group of Structural Mechanics and Materials Modelling, Aragón Institute of Engineering Research (I3A), University of ZaragozaZaragoza, Spain
| | - Alfredo Martínez
- Angiogenesis Interest Group, Oncology Area, Center for Biomedical Research of La Rioja, Fundación Rioja Salud Logroño, Spain
| |
Collapse
|
17
|
Serrano-Ponz M, Rodrigo-Gasqué C, Siles E, Martínez-Lara E, Ochoa-Callejero L, Martínez A. Temporal profiles of blood pressure, circulating nitric oxide, and adrenomedullin as predictors of clinical outcome in acute ischemic stroke patients. Mol Med Rep 2016; 13:3724-34. [PMID: 27035412 PMCID: PMC4838158 DOI: 10.3892/mmr.2016.5001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/18/2016] [Indexed: 12/12/2022] Open
Abstract
Stroke remains an important health and social challenge. The present study investigated whether blood pressure (BP) parameters and circulating levels of nitric oxide metabolites (NOx) and adrenomedullin (AM) may predict clinical outcomes of stroke. Patients (n=76) diagnosed with acute ischemic stroke were admitted to the stroke unit and clinical history data and monitored parameters were recorded. Blood plasma was collected at days 1, 2, and 7 to measure NOx and AM levels. Infarct volume, neurological severity [on the National Institutes of Health Stroke Scale (NIHSS)], and functional prognosis (on the Rankin scale) were measured as clinical outcomes. Patients with higher BP had more severe symptoms (NIHSS >3; P<0.01) and BP variability predicted neurological severity and growth of infarct volume. NOx values were significantly lower in stroke patients than in healthy controls (P<0.01). An increase in NOx levels from day 1 to day 2 was beneficial for the patients as measured by NIHSS at 7 days and 3 months, and by Rankin at 3 months [odds ratio (OR), 0.91] whereas a steep increase from day 2 to day 7 was detrimental and associated with an increase in infarct volume (OR, 35.3). AM levels were significantly higher in patients at day 1 and 2 than in healthy individuals (P<0.01) and these levels returned to normal at day 7. Patients with high AM levels at day 2 had significantly higher NIHSS scores measured at day 1 (P<0.05) and 7 (P<0.01). A receiving operating characteristic curve analysis identified that AM levels at day 2 of >522.13 pg/ml predicted increased neurological severity at day 7 (area under the curve=0.721). Multivariate logistic regression indicated that AM levels at day 2 predicted increased neurological severity at 7 days and at 3 months. BP parameters and changing levels for NOx and AM predicted long-term clinical outcomes as measured by infarct volume, neurological severity scale, and functional prognosis.
Collapse
Affiliation(s)
- Marta Serrano-Ponz
- Stroke Unit, Neurology Service, Hospital San Pedro, 26006 Logroño, Spain
| | | | - Eva Siles
- Experimental Biology Department, University of Jaén, 23071 Jaén, Spain
| | | | - Laura Ochoa-Callejero
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Alfredo Martínez
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| |
Collapse
|
18
|
Larráyoz IM, Martínez-Herrero S, García-Sanmartín J, Ochoa-Callejero L, Martínez A. Adrenomedullin and tumour microenvironment. J Transl Med 2014; 12:339. [PMID: 25475159 PMCID: PMC4272513 DOI: 10.1186/s12967-014-0339-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/21/2014] [Indexed: 01/03/2023] Open
Abstract
Adrenomedullin (AM) is a regulatory peptide whose involvement in tumour progression is becoming more relevant with recent studies. AM is produced and secreted by the tumour cells but also by numerous stromal cells including macrophages, mast cells, endothelial cells, and vascular smooth muscle cells. Most cancer patients present high levels of circulating AM and in some cases these higher levels correlate with a worst prognosis. In some cases it has been shown that the high AM levels return to normal following surgical removal of the tumour, thus indicating the tumour as the source of this excessive production of AM. Expression of this peptide is a good investment for the tumour cell since AM acts as an autocrine/paracrine growth factor, prevents apoptosis-mediated cell death, increases tumour cell motility and metastasis, induces angiogenesis, and blocks immunosurveillance by inhibiting the immune system. In addition, AM expression gets rapidly activated by hypoxia through a HIF-1α mediated mechanism, thus characterizing AM as a major survival factor for tumour cells. Accordingly, a number of studies have shown that inhibition of this peptide or its receptors results in a significant reduction in tumour progression. In conclusion, AM is a great target for drug development and new drugs interfering with this system are being developed.
Collapse
Affiliation(s)
- Ignacio M Larráyoz
- Oncology Area, Center for Biomedical Research of La Rioja CIBIR, C/Piqueras 98, Logroño, 26006, Spain.
| | - Sonia Martínez-Herrero
- Oncology Area, Center for Biomedical Research of La Rioja CIBIR, C/Piqueras 98, Logroño, 26006, Spain.
| | - Josune García-Sanmartín
- Oncology Area, Center for Biomedical Research of La Rioja CIBIR, C/Piqueras 98, Logroño, 26006, Spain.
| | - Laura Ochoa-Callejero
- Oncology Area, Center for Biomedical Research of La Rioja CIBIR, C/Piqueras 98, Logroño, 26006, Spain.
| | - Alfredo Martínez
- Oncology Area, Center for Biomedical Research of La Rioja CIBIR, C/Piqueras 98, Logroño, 26006, Spain.
| |
Collapse
|
19
|
Wong HK, Tang F, Cheung TT, Cheung BMY. Adrenomedullin and diabetes. World J Diabetes 2014; 5:364-371. [PMID: 24936257 PMCID: PMC4058740 DOI: 10.4239/wjd.v5.i3.364] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/19/2013] [Accepted: 05/08/2014] [Indexed: 02/05/2023] Open
Abstract
Adrenomedullin (ADM) is a peptide hormone widely expressed in different tissues, especially in the vasculature. Apart from its vasodilatatory and hypotensive effect, it plays multiple roles in the regulation of hormonal secretion, glucose metabolism and inflammatory response. ADM regulates insulin balance and may participate in the development of diabetes. The plasma level of ADM is increased in people with diabetes, while in healthy individuals the plasma ADM concentration remains low. Plasma ADM levels are further increased in patients with diabetic complications. In type 1 diabetes, plasma ADM level is correlated with renal failure and retinopathy, while in type 2 diabetes its level is linked with a wider range of complications. The elevation of ADM level in diabetes may be due to hyperinsulinemia, oxidative stress and endothelial injury. At the same time, a rise in plasma ADM level can trigger the onset of diabetes. Strategies to reduce ADM level should be explored so as to reduce diabetic complications.
Collapse
|
20
|
Aggarwal G, Ramachandran V, Javeed N, Arumugam T, Dutta S, Klee GG, Klee EW, Smyrk TC, Bamlet W, Han JJ, Rumie Vittar NB, De Andrade M, Mukhopadhyay D, Petersen GM, Fernandez-Zapico ME, Logsdon CD, Chari ST. Adrenomedullin is up-regulated in patients with pancreatic cancer and causes insulin resistance in β cells and mice. Gastroenterology 2012; 143:1510-1517.e1. [PMID: 22960655 PMCID: PMC3787599 DOI: 10.1053/j.gastro.2012.08.044] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 08/14/2012] [Accepted: 08/30/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS New-onset diabetes in patients with pancreatic cancer is likely to be a paraneoplastic phenomenon caused by tumor-secreted products. We aimed to identify the diabetogenic secretory product(s) of pancreatic cancer. METHODS Using microarray analysis, we identified adrenomedullin as a potential mediator of diabetes in patients with pancreatic cancer. Adrenomedullin was up-regulated in pancreatic cancer cell lines, in which supernatants reduced insulin signaling in beta cell lines. We performed quantitative reverse-transcriptase polymerase chain reaction and immunohistochemistry on human pancreatic cancer and healthy pancreatic tissues (controls) to determine expression of adrenomedullin messenger RNA and protein, respectively. We studied the effects of adrenomedullin on insulin secretion by beta cell lines and whole islets from mice and on glucose tolerance in pancreatic xenografts in mice. We measured plasma levels of adrenomedullin in patients with pancreatic cancer, patients with type 2 diabetes mellitus, and individuals with normal fasting glucose levels (controls). RESULTS Levels of adrenomedullin messenger RNA and protein were increased in human pancreatic cancer samples compared with controls. Adrenomedullin and conditioned media from pancreatic cell lines inhibited glucose-stimulated insulin secretion from beta cell lines and islets isolated from mice; the effects of conditioned media from pancreatic cancer cells were reduced by small hairpin RNA-mediated knockdown of adrenomedullin. Conversely, overexpression of adrenomedullin in mice with pancreatic cancer led to glucose intolerance. Mean plasma levels of adrenomedullin (femtomoles per liter) were higher in patients with pancreatic cancer compared with patients with diabetes or controls. Levels of adrenomedullin were higher in patients with pancreatic cancer who developed diabetes compared those who did not. CONCLUSIONS Adrenomedullin is up-regulated in patients with pancreatic cancer and causes insulin resistance in β cells and mice.
Collapse
Affiliation(s)
- Gaurav Aggarwal
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | | | - Naureen Javeed
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | | | - Shamit Dutta
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - George G. Klee
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Eric W. Klee
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Thomas C. Smyrk
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - William Bamlet
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Jing Jing Han
- Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Natalia B. Rumie Vittar
- Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Mariza De Andrade
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Gloria M. Petersen
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Martin E. Fernandez-Zapico
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota
- Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Craig D. Logsdon
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, Texas
| | - Suresh T. Chari
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
21
|
Lenhart PM, Caron KM. Adrenomedullin and pregnancy: perspectives from animal models to humans. Trends Endocrinol Metab 2012; 23:524-32. [PMID: 22425034 PMCID: PMC3380178 DOI: 10.1016/j.tem.2012.02.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/17/2012] [Accepted: 02/22/2012] [Indexed: 01/22/2023]
Abstract
A healthy pregnancy requires strict coordination of genetic, physiologic and environmental factors. The relatively common incidence of infertility and pregnancy complications has resulted in increased interest in understanding the mechanisms that underlie normal versus abnormal pregnancy. The peptide hormone adrenomedullin (AM) has recently been the focus of some exciting breakthroughs in the pregnancy field. Supported by mechanistic studies in genetic animal models, there continues to be a growing body of evidence demonstrating the importance of AM protein levels in a variety of human pregnancy complications. With more extensive mechanistic studies and improved consistency in clinical measurements of AM, there is great potential for the development of AM as a clinically-relevant biomarker in pregnancy and pregnancy complications.
Collapse
Affiliation(s)
- Patricia M. Lenhart
- Department of Cell & Molecular Physiology, The University of North Carolina, Chapel Hill, North Carolina, USA 27599
| | - Kathleen M. Caron
- Department of Cell & Molecular Physiology, The University of North Carolina, Chapel Hill, North Carolina, USA 27599
- Corresponding Author: Kathleen M. Caron, Department of Cell and Molecular Physiology, CB #7545, 6340B MBRB 111 Mason Farm Road, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599. Tel: (919) 966-5215, FAX: (919) 966-5230.
| |
Collapse
|
22
|
Sahin I, Celik O, Celik N, Keskin L, Dogru A, Dogru I, Yürekli M, Yologlu S. Adrenomedullin: possible predictor of insulin resistance in women with polycystic ovary syndrome. J Endocrinol Invest 2012; 35:553-6. [PMID: 21791966 DOI: 10.3275/7872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The aim of the study was to investigate adrenomedullin (ADM) levels and its relation with insulin resistance in women with polycystic ovary syndrome (PCOS). Twenty-nine women with PCOS and 29 age- and body mass index (BMI)- matched control subjects were included in the study. PCOS was defined according to criteria by the Rotterdam European Society of Human Reproduction and Embryology/American Society for Reproductive Medicine (ESHRE/ASRM)-sponsored PCOS consensus workshop group. A full clinical and biochemical examination including basal hormones and metabolic profile was performed. Insulin resistance was calculated by using the homeostasis model assessment of insulin resistance index (HOMA-IR). Plasma ADM levels were measured by high performance liquid chromatographic (HPLC) method. Plasma ADM, fasting insulin levels and HOMA-IR were significantly higher in patients with PCOS than the control group. ADM levels were positively correlated with insulin levels and HOMA-IR index. The best cut-off value of ADM levels to identify the presence of insulin resistance (HOMA-IR≥2.7) was 30.44 ng/ml. Calculated odds ratio of insulin resistance by using logistic regression analysis, as predicted by ADM, was 0.15 (95% confidence interval, 0.037-0.628; p=0.009). In multiple regression analysis, ADM level was an independent predictor of HOMA-IR index. Our finding indicated that ADM levels increased in women with PCOS in accordance with HOMA-IR. ADM could be a significant independent determinant of insulin resistance in women with PCOS.
Collapse
Affiliation(s)
- I Sahin
- Endocrinology and Metabolism, Inönü University, Malatya, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Wu AHB, Tabas J, Stein J, Potocki M, Mueller C, McCord J, Richards M, Hartmann O, Nowak R, Peacock WF, Ponikowski P, Moeckel M, Hogan C, Filippatos GS, Di Somma S, Anand I, Ng L, Neath SX, Christenson R, Morgenthaler NG, Anker SD, Maisel AS. The effect of diabetes on the diagnostic and prognostic performance of mid-region pro-atrial natriuretic peptide and mid-region pro-adrenomedullin in patients with acute dyspnea. Biomarkers 2012; 17:490-7. [PMID: 22616939 DOI: 10.3109/1354750x.2012.687014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Serum mid-regional pro-atrial natriuretic peptide (MR-proANP) and pro-adrenomedullin (MR-proADM) are novel biomarkers for acute heart failure (AHF). Like other AFH biomarkers, the performance of these tests are affected by the presence of clinical variables such as renal failure and obesity. In a substudy of the Biomarkers from Acute Heart Failure Study, we show that diabetes did not influence the performance of these markers with regards to AHF diagnosis or 90-day all cause death. However, in patients without AHF, increased MR-proADM alone was associated with the presence of diabetes.
Collapse
Affiliation(s)
- Alan H B Wu
- University of California, San Francisco, San Francisco, CA 94110, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Blom JJ, Giove TJ, Favazza TL, Akula JD, Eldred WD. Inhibition of the adrenomedullin/nitric oxide signaling pathway in early diabetic retinopathy. J Ocul Biol Dis Infor 2012; 4:70-82. [PMID: 23316263 DOI: 10.1007/s12177-011-9072-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 12/05/2011] [Indexed: 12/18/2022] Open
Abstract
The nitric oxide (NO) signaling pathway is integrally involved in visual processing and changes in the NO pathway are measurable in eyes of diabetic patients. The small peptide adrenomedullin (ADM) can activate a signaling pathway to increase the enzyme activity of neuronal nitric oxide synthase (nNOS). ADM levels are elevated in eyes of diabetic patients and therefore, ADM may play a role in the pathology of diabetic retinopathy. The goal of this research was to test the effects of inhibiting the ADM/NO signaling pathway in early diabetic retinopathy. Inhibition of this pathway decreased NO production in high-glucose retinal cultures. Treating diabetic mice with the PKC β inhibitor ruboxistaurin for 5 weeks lowered ADM mRNA levels and ADM-like immunoreactivity and preserved retinal function as assessed by electroretinography. The results of this study indicate that inhibiting the ADM/NO signaling pathway prevents neuronal pathology and functional losses in early diabetic retinopathy.
Collapse
Affiliation(s)
- Jan J Blom
- Department of Biology, Boston University, Boston, MA USA
| | | | | | | | | |
Collapse
|
25
|
Karpinich NO, Hoopes SL, Kechele DO, Lenhart PM, Caron KM. Adrenomedullin Function in Vascular Endothelial Cells: Insights from Genetic Mouse Models. Curr Hypertens Rev 2011; 7:228-239. [PMID: 22582036 PMCID: PMC3349984 DOI: 10.2174/157340211799304761] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/18/2011] [Accepted: 08/21/2011] [Indexed: 01/29/2023]
Abstract
Adrenomedullin is a highly conserved peptide implicated in a variety of physiological processes ranging from pregnancy and embryonic development to tumor progression. This review highlights past and present studies that have contributed to our current appreciation of the important roles adrenomedullin plays in both normal and disease conditions. We provide a particular emphasis on the functions of adrenomedullin in vascular endothelial cells and how experimental approaches in genetic mouse models have helped to drive the field forward.
Collapse
Affiliation(s)
- Natalie O Karpinich
- Department of Cell and Molecular Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | |
Collapse
|
26
|
Zhang J, Zhang BH, Yu YR, Tang CS, Qi YF. Adrenomedullin protects against fructose-induced insulin resistance and myocardial hypertrophy in rats. Peptides 2011; 32:1415-21. [PMID: 21664393 DOI: 10.1016/j.peptides.2011.05.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/25/2011] [Accepted: 05/25/2011] [Indexed: 01/13/2023]
Abstract
Adrenomedullin (ADM) has been recognized as a multipotent multifunctional peptide. To explore the pathophysiological roles of ADM in insulin resistance (IR), we studied the changes in ADM mRNA level in the myocardium and vessels and the effect of ADM supplementation on rats with IR induced by fructose feeding. Rats were fed 4% fructose in drinking water for 8 weeks, and ADM was administered subcutaneously in pure water through an Alzet Mini-osmotic Pump at 300 ng/kg/h for the last 4 weeks. Compared with controls, rats with IR showed increased levels of fasting blood sugar and serum insulin, by 95% and 67%, respectively (all P<0.01), and glycogen synthesis and glucose transport activity of the soleus decreased by 54% and 55% (all P<0.01). mRNA level and content of brain natriuretic peptide (BNP) in myocardial were all increased significantly. Fructose-fed rats showed increased immunoreactive-ADM content in plasma by 110% and in myocardia by 55% and increased mRNA level in myocardia and vessels (all P<0.01). ADM administration ameliorated the induced IR and myocardial hypertrophy. The glycogen synthesis and glucose transport activity of the soleus muscle increased by 41% (P<0.01) and 32% (P<0.05). ADM therapy attenuated myocardial and soleus lipid peroxidation injury and enhanced the antioxidant ability. Our results showed upregulation of endogenous ADM during fructose-induced IR and the protective effect of ADM on fructose-induced IR and concomitant cardiovascular hypertrophy probably by its antioxidant effect, which suggests that ADM could be an endogenous protective factor in IR.
Collapse
Affiliation(s)
- Jing Zhang
- School of P.E. and Sports Science, Beijing Normal University, Beijing 100875, China
| | | | | | | | | |
Collapse
|
27
|
Ong KL, Tso AWK, Leung RYH, Cherny SS, Sham PC, Lam TH, Cheung BMY, Lam KSL. A genetic variant in the gene encoding adrenomedullin predicts the development of dysglycemia over 6.4 years in Chinese. Clin Chim Acta 2010; 412:353-7. [PMID: 21075100 DOI: 10.1016/j.cca.2010.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 11/04/2010] [Accepted: 11/04/2010] [Indexed: 12/20/2022]
Abstract
BACKGROUND Adrenomedullin, a vasodilatory peptide, facilitates the differentiation of pre-adipocytes, and affects lipolysis and glucose uptake. We investigated the association of common single nucleotide polymorphisms (SNPs) in the gene encoding adrenomedullin (ADM) with dysglycemia in the Hong Kong Chinese population. METHODS Four SNPs were genotyped in 1391 subjects without dysglycemia at baseline from the Hong Kong Cardiovascular Risk Factor Prevalence Study-2, which had a median follow-up time of 6.4 years. Dysglycemia included impaired fasting glucose, impaired glucose tolerance, and diabetes according to the WHO 1998 criteria. At follow-up, 382 subjects had developed dysglycemia. RESULTS In stepwise logistic regression, the SNP rs11042725 was a significant independent predictor of the development of dysglycemia (OR=1.31, P=0.012), together with baseline age (P<0.001), plasma triglycerides (P<0.001), body mass index (P=0.004), 2-h glucose after oral glucose tolerance test (P<0.001), homeostasis model assessment of insulin resistance index (P=0.045), and follow-up duration (P=0.009). The association was more significant in women (P=0.002) and in subjects without regular exercise (P=0.001). CONCLUSIONS Our study suggests a potential role of genetic variants in the ADM gene in the development of dysglycemia in our local Chinese population.
Collapse
Affiliation(s)
- Kwok Leung Ong
- Department of Medicine, University of Hong Kong, Hong Kong
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Li Y, Jiang C, Wang X, Zhang Y, Shibahara S, Takahashi K. Adrenomedullin is a novel adipokine: adrenomedullin in adipocytes and adipose tissues. Peptides 2007; 28:1129-43. [PMID: 17433499 DOI: 10.1016/j.peptides.2007.03.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 03/01/2007] [Accepted: 03/01/2007] [Indexed: 01/23/2023]
Abstract
Adrenomedullin (AM) is a multifunctional regulatory peptide that is produced and secreted by various types of cells. The production and the secretion of AM have been demonstrated in cultured adipocytes and adipose tissues. Inflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha) and lipopolysaccharide are strong stimulators for AM expression in adipocytes. Furthermore, AM expression in the adipose tissue is increased in obesity, and plasma concentrations of AM are increased in obese subjects. One possible (patho)physiological role of AM secreted by adipose tissue may be actions against complications of the metabolic syndrome characterized by obesity, type 2 diabetic mellitus and hypertension, via its antioxidant and potent vasodilator effects. These findings indicate that AM is a new member of the adipokine family.
Collapse
Affiliation(s)
- Yin Li
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100083, PR China
| | | | | | | | | | | |
Collapse
|
29
|
Go AGG, Chow KHM, Hwang ISS, Tang F. Adrenomedullin and its receptor components in adipose tissues: Differences between white and brown fats and the effects of adrenergic stimulation. Peptides 2007; 28:920-7. [PMID: 17250927 DOI: 10.1016/j.peptides.2006.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 12/06/2006] [Accepted: 12/07/2006] [Indexed: 11/22/2022]
Abstract
Male Sprague-Dawley rats were subcutaneously injected with 2.5mg/kg phenylephrine or 2.5mg/kg isoproterenol or both (2.5mg/kg for each drug) for 4 days, twice a day. Samples of scapular brown adipose tissue (BAT) and epididymal white adipose tissue (WAT) were collected for the measurement of adrenomedullin (AM) levels and the gene expression of preproAM, calcitonin receptor like receptor (CRLR) and its activity modifying proteins (RAMPs) by radioimmunoassay and RT-PCR. These values were compared with those in the rats that received 0.9% saline. The gene expression of AM and AM receptor components in BAT are much less than that in epididymal WAT. In BAT there were an increase in AM peptide level after a combined treatment of alpha(1) and beta adrenoceptor agonists and increases in preproAM mRNA levels for rats treated with alpha(1) and beta receptor agonists alone or in combination. Both CRLR and RAMP2 mRNA levels of alphabeta group were increased significantly. In WAT, AM peptide level, RAMP1 and RAMP2 mRNA expression levels were augmented in the alpha group while CRLR mRNA level was enhanced in the beta group. The levels of AM, its receptor and RAMPs are much less in BAT than in WAT but adrenergic stimulation has a greater effect on the AM and its receptor components in BAT than those in WAT. AM stimulates lipolysis and increases the level of uncoupling protein-1 (UCP-1) in BAT. It may therefore enhance thermogenesis by increasing the availability of free fatty acids substrate as well as the UCP-1 level on the mitochondrial membrane.
Collapse
MESH Headings
- Adipose Tissue, Brown/chemistry
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, White/chemistry
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Adrenergic Agents/administration & dosage
- Adrenergic Agents/pharmacology
- Adrenomedullin/genetics
- Adrenomedullin/metabolism
- Animals
- Blotting, Western
- Body Weight/drug effects
- Calcitonin Receptor-Like Protein
- Gene Expression Regulation/drug effects
- Injections, Subcutaneous
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Ion Channels/metabolism
- Isoproterenol/administration & dosage
- Isoproterenol/pharmacology
- Lipolysis/drug effects
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mitochondrial Proteins/metabolism
- Phenylephrine/administration & dosage
- Phenylephrine/pharmacology
- Protein Precursors/genetics
- Protein Precursors/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Radioimmunoassay
- Rats
- Rats, Sprague-Dawley
- Receptor Activity-Modifying Proteins
- Receptors, Adrenomedullin
- Receptors, Calcitonin/genetics
- Receptors, Calcitonin/metabolism
- Receptors, Peptide/genetics
- Receptors, Peptide/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Uncoupling Protein 1
Collapse
Affiliation(s)
- Adi G G Go
- Department of Physiology, Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | | | | | | |
Collapse
|
30
|
Harmancey R, Senard JM, Rouet P, Pathak A, Smih F. Adrenomedullin inhibits adipogenesis under transcriptional control of insulin. Diabetes 2007; 56:553-63. [PMID: 17327422 DOI: 10.2337/db06-0857] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We generated preadipocyte cell lines impaired in adrenomedullin production through integration of an adrenomedullin small interfering RNA expression vector. The reduction of adrenomedullin synthesis strongly accelerated adipose differentiation. These results were bolstered when overexpression of active adrenomedullin peptide led to delayed differentiation. Therefore, we propose that adrenomedullin is an antiadipogenic factor. Moreover, we checked whether insulin, a proadipogenic factor, regulates expression of adrenomedullin. We observed that insulin had an inhibitory effect on adrenomedullin expression in isolated human adipocyte cells. This response was dose dependent and was reversed by resistin, a new anti-insulin agent. We quantified circulating adrenomedullin in healthy obese patients and observed a threefold increase of adrenomedullin compared with lean patients. Furthermore, adrenomedullin plasma levels are negatively correlated to plasma insulin levels in these obese patients. The insulin inhibitory response was also observed in vivo in Sprague-Dawley rats but not in the insulin-resistant Zucker rat, suggesting that adrenomedullin expression is upregulated in insulin-resistant adipose cells. Using adrenomedullin promoter-luciferase reporter gene constructs, we have shown that the adrenomedullin response to insulin is mediated by insulin-responsive elements. These findings provide new insight into fat mass development and the relationship between obesity and elevated circulating adrenomedullin levels in diabetic patients.
Collapse
Affiliation(s)
- Romain Harmancey
- I2MR INSERM U858, Laboratoire de Pharmacologie, Faculté de Médecine, Universite Paul Sabatier, Institut Louis Bugnard IFR31, 37 allées Jules Guesde, 31000 Toulouse, France
| | | | | | | | | |
Collapse
|
31
|
Goralski KB, Sinal CJ. Type 2 diabetes and cardiovascular disease: getting to the fat of the matterThis paper is one of a selection of papers published in this Special Issue, entitled Young Investigators' Forum. Can J Physiol Pharmacol 2007; 85:113-32. [PMID: 17487251 DOI: 10.1139/y06-092] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The increasing national prevalence of obesity is a major public health concern and a substantial burden on the health care resources of Canada. In addition to the direct health impact of obesity, this condition is a well-established risk factor for the development of various prevalent comorbidities including type 2 diabetes, hypertension, and cardiovascular disease. Historically, adipose tissue has been regarded primarily as an organ for energy storage. However, the discovery of leptin in the mid 1990’s revolutionized our understanding of this tissue and has focused attention on the endocrine function of adipose tissue as a source of secreted bioactive peptides. These compounds, collectively termed adipokines, regulate a number of biological functions including appetite and energy balance, insulin sensitivity, lipid metabolism, blood pressure, and inflammation. The physiological importance of adipokines has led to the hypothesis that changes in the synthesis and secretion of these compounds in the obese are a causative factor contributing to the development of obesity and obesity-related diseases in these individuals. Following from this it has been proposed that pharmacologic manipulation of adipokine levels may provide novel effective therapeutic strategies to treat and prevent obesity, type 2 diabetes, and cardiovascular disease.
Collapse
Affiliation(s)
- Kerry B Goralski
- College of Pharmacy, Department of Pharmacology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| | | |
Collapse
|
32
|
Ucar B, Noyan V, Caglayan O, Yucel A, Sagsoz N. Plasma adrenomedullin levels in patients with polycystic ovary syndrome. Fertil Steril 2006; 86:942-8. [PMID: 16963041 DOI: 10.1016/j.fertnstert.2006.02.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 02/25/2006] [Accepted: 02/25/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To evaluate adrenomedullin levels in patients with polycystic ovary syndrome (PCOS). DESIGN Prospective study. SETTING Department of obstetrics and gynecology in a university hospital. PATIENT(S) Thirty-eight women with PCOS and 29 healthy control subjects were enrolled in the study. INTERVENTION(S) Plasma adrenomedullin, serum androstenedione, free T, T, DHEAS, SHBG, thyrotropin, PRL, FSH, LH, and E2 were measured in each subject. Insulin resistance was estimated by fasting insulin level, fasting glucose:insulin ratio and 75-g glucose tolerance test for 2 hours. MAIN OUTCOME MEASURE(S) Plasma adrenomedullin levels and correlations among adrenomedullin and gonadotropins, female sex steroids, androgens, and insulin resistance. RESULT(S) There was no significant difference concerning plasma adrenomedullin concentrations between the groups. In patients with PCOS, fasting glucose, fasting insulin, body mass index, and free T were inversely correlated with the plasma adrenomedullin. Plasma adrenomedullin was significantly correlated with glucose:insulin ratio. After controlling for body mass index, there were no significant correlations between the above-mentioned parameters. CONCLUSION(S) Adrenomedullin may play a role in regulating the insulin metabolism in patients with PCOS.
Collapse
Affiliation(s)
- Banu Ucar
- Department of Obstetrics and Gynecology, Kirikkale University School of Medicine, Kirikkale, Turkey.
| | | | | | | | | |
Collapse
|
33
|
García MA, Martín-Santamaría S, de Pascual-Teresa B, Ramos A, Julián M, Martínez A. Adrenomedullin: a new and promising target for drug discovery. Expert Opin Ther Targets 2006; 10:303-17. [PMID: 16548778 DOI: 10.1517/14728222.10.2.303] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Adrenomedullin (AM) is a 52 amino acid peptide that plays a critical role in several diseases such as hypertension, cancer, diabetes, cardiovascular and renal disorders, among others. Interestingly, AM behaves as a protective agent against some pathologies, yet is a stimulating factor for other disorders. Thus, AM can be considered as a new and promising target for the design of non-peptidic modulators that could be useful for the treatment of those pathologies, by regulating AM levels or the activity of AM. A full decade on from its discovery, much more is known about AM molecular biology and pharmacology, but this knowledge still needs to be applied to the development of clinically useful drugs.
Collapse
Affiliation(s)
- Mario A García
- Universidad San Pablo CEU, Departamento de Química, Facultad de Farmacia, Urbanización Montepríncipe, 28668 Boadilla del Monte, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
34
|
Julián M, Cacho M, García MA, Martín-Santamaría S, de Pascual-Teresa B, Ramos A, Martínez A, Cuttitta F. Adrenomedullin: a new target for the design of small molecule modulators with promising pharmacological activities. Eur J Med Chem 2005; 40:737-50. [PMID: 15927308 DOI: 10.1016/j.ejmech.2004.10.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Revised: 10/26/2004] [Accepted: 10/27/2004] [Indexed: 10/25/2022]
Abstract
Adrenomedullin (AM) is a 52-amino acid peptide with a pluripotential activity. AM is expressed in many tissues throughout the body, and plays a critical role in several diseases such as cancer, diabetes, cardiovascular and renal disorders, among others. While AM is a protective agent against cardiovascular disorders, it behaves as a stimulating factor in other pathologies such as cancer and diabetes. Therefore, AM is a new and promising target for the development of molecules which, through their ability to regulate AM levels, could be used in the treatment of these pathologies.
Collapse
Affiliation(s)
- Miguel Julián
- Departamento de Química, Facultad de Farmacia, Universidad San Pablo CEU, Urbanización Montepríncipe, 28668 Boadilla del Monte, Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
García MA, Martín-Santamaría S, Cacho M, de la Llave FM, Julián M, Martínez A, de Pascual-Teresa B, Ramos A. Synthesis, Biological Evaluation, and Three-Dimensional Quantitative Structure−Activity Relationship Study of Small-Molecule Positive Modulators of Adrenomedullin. J Med Chem 2005; 48:4068-75. [PMID: 15943480 DOI: 10.1021/jm050021+] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Adrenomedullin (AM) is a peptide hormone implicated in blood pressure regulation and in the pathophysiology of several diseases such as hypertension, cancer, diabetes, and renal disorders, becoming an interesting new target for the development of drugs. In a recent high-throughput screening study, a positive modulator with a bistriazole structure has been identified.(1) In this work, a new series of structurally related compounds has been synthesized by reaction of phenoxyacetic acid with the corresponding dihydrazide, followed by treatment of the formed bisoxadiazoles with benzylamine. The affinity toward AM of the lead compound, and a structurally related family obtained from the small-molecule NCI library together with the synthesized series, has been determined. A three-dimensional quantitative structure-activity relationship (3D-QSAR) study and conformational and molecular dynamics simulations have shown that the presence of a free NH and a phenyl group is essential for the interaction of these compounds with AM.
Collapse
Affiliation(s)
- Mario A García
- Departamento de Química, Facultad de Farmacia, Universidad San Pablo CEU, Urbanización Montepríncipe, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Harmancey R, Senard JM, Pathak A, Desmoulin F, Claparols C, Rouet P, Smih F. The vasoactive peptide adrenomedullin is secreted by adipocytes and inhibits lipolysis through NO-mediated beta-adrenergic agonist oxidation. FASEB J 2005; 19:1045-7. [PMID: 15788445 DOI: 10.1096/fj.04-2868fje] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Adipocytes are known to secrete a number of adipokines, but many adipocyte secretions and their functional importance remain to be characterized. This work shows that human white adipocytes and 3T3-F442A-derived adipocytes produce adrenomedullin (AM) and that AM acts in an autocrine/paracrine way on lipid metabolism by extracellular inactivation of isoproterenol, a beta-adrenergic agonist. AM is described as a counter-regulatory factor involved in the control of cardiovascular homeostasis. This peptide is believed to protect the heart from several complications implicated in obesity-linked cardiomorbidity, such as arterial hypertension, cardiac fibrosis, and decreased sinusal variability. The exact source of circulating AM remains a matter of debate, although endothelial and vascular smooth muscle cells seem to be important sites of production. We show that human adipose cells and 3T3-F442A-derived adipocytes express AM receptors and secrete AM. The function of this feature was investigated in 3T3-F442A cell line at the level of lipolysis regulation. AM inhibited beta-adrenergic-stimulated lipolysis by a nitric oxide (NO)-dependent mechanism, inducing a significant decrease in pD2 value for isoproterenol (8.6 +/- 0.2 vs. 9.8 +/- 0.1, P<0.001). This effect is cGMP-independent since it occurred in the presence of the NO-sensitive guanylate cyclase inhibitor ODQ. It is apparently mediated by a novel extracellular mechanism. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) demonstrated that AM-produced NO oxidized isoproterenol to generate its aminochrome, namely isoprenochrome. Isoprenochrome amounts were increased 3.62 +/- 1.13-fold in cell culture media (P<0.05). We describe for the first time that AM down-regulates lipolysis in adipocytes through the chemical modification of a beta-agonist.
Collapse
Affiliation(s)
- Romain Harmancey
- INSERM U586, Insitut Louis Bugnard, CHU Rangueil, Université Paul Sabatier, TSA 50032, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
37
|
Fukai N, Yoshimoto T, Sugiyama T, Ozawa N, Sato R, Shichiri M, Hirata Y. Concomitant expression of adrenomedullin and its receptor components in rat adipose tissues. Am J Physiol Endocrinol Metab 2005; 288:E56-62. [PMID: 15315911 DOI: 10.1152/ajpendo.00586.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adrenomedullin (AM) expressed by and secreted from a variety of cells plays pluripotent roles in an autocrine/paracrine fashion. The present study was undertaken to explore the expression of AM and its receptor genes in adipose tissues, their changes during the development of obesity, and the process of preadipocyte differentiation. Both mature adipocytes and stromal vascular cells constituting adipose tissue expressed AM transcript. AM and its receptor component [calcitonin receptor-like receptor and receptor activity-modifying protein-2 (CRLR/RAMP2)] mRNAs were expressed in a variety of rat adipose tissues, including epididymal, mesenteric, retroperitoneal, and subcutaneous adipose tissue. AM mRNA levels in rat and human epididymal adipose tissue were about one-tenth of those in the kidney. Steady-state mRNA levels of AM and CRLR/RAMP2 in epididymal, mesenteric, and retroperitoneal adipose tissues in rats fed a high-fat diet for 4 wk were far greater than those in rats with normal diet accompanied by increased plasma AM levels, whereas steady-state AM mRNA levels conversely decreased in other organs, such as kidney and liver. AM mRNA expressed in a mouse preadipocyte cell line (3T3-L1) transiently decreased by day 3, returned to basal level by day 6, and then increased by day 9 during preadipocyte differentiation, which paralleled AM secretion from the cells. However, the addition of either exogenous AM or AM receptor antagonist calcitonin gene-related peptide-(8-37), to block endogenous AM did not affect lipid droplet accumulation during preadipocyte differentiation. The present study demonstrates for the first time that AM and its receptor component (CRLR/RAMP2) mRNAs were concomitantly expressed in various adipose tissues, whose tissue-specific upregulation was induced during the development of obesity. These data suggest that AM may act as a new member of adipokines, although its functional role, as well as its pathophysiological significance in obesity, remains to be determined.
Collapse
Affiliation(s)
- Nozomi Fukai
- Department of Clinical and Molecular Endocrinology, Tokyo Medical and Dental University Graduate School, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8513, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Yu Y, Jawa A, Pan W, Kastin AJ. Effects of peptides, with emphasis on feeding, pain, and behavior A 5-year (1999-2003) review of publications in Peptides. Peptides 2004; 25:2257-89. [PMID: 15572212 DOI: 10.1016/j.peptides.2004.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Accepted: 09/21/2004] [Indexed: 11/28/2022]
Abstract
Novel effects of naturally occurring peptides are continuing to be discovered, and their mechanisms of actions as well as interactions with other substances, organs, and systems have been elucidated. Synthetic analogs may have actions similar or antagonistic to the endogenous peptides, and both the native peptides and analogs have potential as drugs or drug targets. The journal Peptides publishes many leading articles on the structure-activity relationship of peptides as well as outstanding reviews on some families of peptides. Complementary to the reviews, here we extract information from the original papers published during the past five years in Peptides (1999-2003) to summarize the effects of different classes of peptides, their modulation by other chemicals and various pathophysiological states, and the mechanisms by which the effects are exerted. Special attention is given to peptides related to feeding, pain, and other behaviors. By presenting in condensed form the effects of peptides which are essential for systems biology, we hope that this summary of existing knowledge will encourage additional novel research to be presented in Peptides.
Collapse
Affiliation(s)
- Yongmei Yu
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | |
Collapse
|
39
|
Martínez A, Julián M, Bregonzio C, Notari L, Moody TW, Cuttitta F. Identification of vasoactive nonpeptidic positive and negative modulators of adrenomedullin using a neutralizing antibody-based screening strategy. Endocrinology 2004; 145:3858-65. [PMID: 15107357 DOI: 10.1210/en.2003-1251] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adrenomedullin (AM) is a peptide hormone implicated in blood pressure regulation and in the pathophysiology of important diseases, such as hypertension, cancer, and diabetes. However, nonpeptidic modulators of this peptide that could be used to clinically regulate its actions are not available. We present here an efficient new method to screen a large library of small molecules. This technology was applied to the identification of positive and negative modulators of AM function. A two-tier screening strategy was developed in which the first screening entails disruption of the interaction between the peptide and a neutralizing monoclonal antibody. Selected compounds were further characterized by their ability to modulate second messengers in cells containing specific AM receptors. A parallel screen against gastrin-releasing peptide selected a different subset of molecules, confirming the specificity of the screening method. Identified AM-positive regulators reduced blood pressure in vivo, whereas AM-negative regulators mediated vasoconstriction, as predicted by the vasodilatory activity of AM. Binding of the small molecules to immobilized AM was demonstrated by surface plasmon resonance assays, with K(d) values ranging from 7.76 x 10(-9) to 4.14 x 10(-6) m. Preclinical development of AM modulators may result in useful drugs for the prevention and treatment of hypertension, cancer, and diabetes.
Collapse
Affiliation(s)
- Alfredo Martínez
- Cell and Cancer Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | |
Collapse
|
40
|
White SM, Constantin PE, Claycomb WC. Cardiac physiology at the cellular level: use of cultured HL-1 cardiomyocytes for studies of cardiac muscle cell structure and function. Am J Physiol Heart Circ Physiol 2004; 286:H823-9. [PMID: 14766671 DOI: 10.1152/ajpheart.00986.2003] [Citation(s) in RCA: 309] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HL-1 cells are currently the only cardiomyocyte cell line available that continuously divides and spontaneously contracts while maintaining a differentiated cardiac phenotype. Extensive characterization using microscopic, genetic, immunohistochemical, electrophysiological, and pharmacological techniques has demonstrated how similar HL-1 cells are to primary cardiomyocytes. In the few years that HL-1 cells have been available, they have been used in a variety of model systems designed to answer important questions regarding cardiac biology at the cellular and molecular levels. Whereas HL-1 cells have been used to study normal cardiomyocyte function with regard to signaling, electrical, metabolic, and transcriptional regulation, they have also been used to address pathological conditions such as hypoxia, hyperglycemia-hyperinsulinemia, apoptosis, and ischemia-reperfusion. The availability of an immortalized, contractile cardiac cell line has provided investigators with a tool for probing the intricacies of cardiomyocyte function. In this review, we describe the culture and characterization of HL-1 cardiomyocytes as well as various model systems that have been developed using these cells to gain a better understanding of cardiac biology at the cellular and molecular levels.
Collapse
Affiliation(s)
- Steven M White
- Dept. of Biochemistry and Molecular Biology, Louisiana State Univ. Health Sciences Center, 1901 Perdido St., New Orleans, LA 70112, USA
| | | | | |
Collapse
|
41
|
López J, Martínez A. Cell and molecular biology of the multifunctional peptide, adrenomedullin. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 221:1-92. [PMID: 12455746 DOI: 10.1016/s0074-7696(02)21010-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adrenomedullin (AM) is a recently discovered regulatory peptide involved in many functions including vasodilatation, electrolyte balance, neurotransmission, growth, and hormone secretion regulation, among others. This 52-amino acid peptide is expressed by specific cell types in many organs throughout the body. A complex receptor system has been described for AM; it requires at least the presence of a seven-transmembrane-domain G-protein-coupled receptor, a single-transmembrane-domain receptor activity modifying protein, and a receptor component protein needed to establish the connection with the downstream signal transduction pathway, which usually involves cyclicAMP. In addition, a serum-binding protein regulates the biological actions of AM, frequently by increasing AM functional attributes. Changes in levels of circulating AM correlate with several critical diseases, including cardiovascular and renal disorders, sepsis, cancer, and diabetes. Whether AM is a causal agent, a protective reaction, or just a marker for these diseases is currently under investigation. New technologies seeking to elevate and/or reduce AM levels are being investigated as potential therapeutic avenues.
Collapse
Affiliation(s)
- José López
- Cell Biology Unit, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
42
|
Zudaire E, Cuttitta F, Martínez A. Regulation of pancreatic physiology by adrenomedullin and its binding protein. REGULATORY PEPTIDES 2003; 112:121-30. [PMID: 12667633 DOI: 10.1016/s0167-0115(03)00030-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adrenomedullin (AM) is a 52 amino acid, multifunctional hormone. It is expressed in many tissues of the human body including the pancreas, where it is mainly localized to the periphery of the islets of Langerhans and specifically to the pancreatic polypeptide-expressing cells. The AM receptor, a complex formed by calcitonin receptor-like receptor (CRLR) and receptor activity-modifying proteins (RAMPs), and the recently discovered AM-binding protein, complement factor H (fH), are expressed in the insulin-producing beta-cells. The colocalization of these key elements of the AM system in the endocrine portion of the pancreas implicates AM in the control of both normal and altered pancreatic physiologies. AM inhibits insulin secretion both in vitro (isolated rat islets) and in vivo (oral glucose tolerance test in rats) in a dose-dependent manner. The addition of fH to isolated rat islets produces a further reduction of insulin secretion in the presence of AM. Furthermore, AM is elevated in plasma from patients with pancreatic dysfunctions such as type 1 or type 2 diabetes and insulinoma. Using a diabetic model in rats, we have shown that AM increases circulating glucose levels whereas a blocking monoclonal antibody against AM has the opposite effect and improves postprandial recovery. Such experimental evidence implicates AM as a fundamental factor in maintaining insulin homeostasis and normoglycemia, and suggests the implication of AM as a possible causal agent in diabetes. Further investigation focused on the development of blocking agents for AM could result in new treatments for pancreatic AM-related disorders.
Collapse
Affiliation(s)
- E Zudaire
- Department of Cell and Cancer Biology, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 13N262, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
43
|
Abasolo I, Yang L, Haleem R, Xiao W, Pio R, Cuttitta F, Montuenga LM, Kozlowski JM, Calvo A, Wang Z. Overexpression of adrenomedullin gene markedly inhibits proliferation of PC3 prostate cancer cells in vitro and in vivo. Mol Cell Endocrinol 2003; 199:179-87. [PMID: 12581889 DOI: 10.1016/s0303-7207(02)00229-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The expression of the gene encoding adrenomedullin (AM), a multifunctional peptide hormone, in the prostate is localized to the epithelial cells. Prostate cancer cells are derived from prostatic epithelial cells. To elucidate the potential role of the AM gene in prostate cancer progression, we have stably-transfected the PC3 human prostate cancer cell line with an AM gene expression vector. The AM-transfected PC3 sublines were studied along with parental and empty vector transfected PC3 cells as controls. The average level of AM in the conditioned media of AM-transfected cells was 0.959+/-0.113 nM, a physiologically relevant concentration. The ectopic expression of AM gene inhibited the proliferation of PC3 cells in culture dishes. In addition, anchorage-independent growth of the transfected sublines was virtually abolished in soft agar assays. Flow cytometry studies showed that overexpression of AM gene caused a very significant G(1)/G(0) cell cycle arrest. In vivo experiments demonstrated that AM gene expression markedly inhibited the growth of xenograft tumors in nude mice. Our in vivo and in vitro studies suggest that AM could strongly suppress the malignancy of prostate cancer cells, via autocrine and/or paracrine mechanisms.
Collapse
Affiliation(s)
- Ibane Abasolo
- Department of Urology, Northwestern University Medical School, Tarry 11-715, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ito S, Fujisawa K, Sakamoto T, Ishibashi T. Elevated adrenomedullin in the vitreous of patients with diabetic retinopathy. Ophthalmologica 2003; 217:53-7. [PMID: 12566874 DOI: 10.1159/000068244] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2001] [Indexed: 11/19/2022]
Abstract
Adrenomedullin (AM) is a multifunctional peptide with various physiological actions, including vasodilatation, a defense mechanism against microorganisms, the regulation of growth and the regulation of insulin and glucose. In this study, we measured the vitreous AM levels in patients with diabetes mellitus to determine its potential involvement in the pathogenesis of diabetic retinopathy (DR). We used an immunoradiometric assay to measure the vitreous AM concentrations in a total of 28 eyes: 13 with DR and 15 with macular holes (15 men and 13 women, 62.9 +/- 10.4 years old). The AM levels in the vitreous fluid of patients with DR (22.9 +/- 7.9 fmol/ml) were found to be significantly higher than the corresponding AM levels in patients with macular holes (4.7 +/- 1.1 fmol/ml) (p < 0.05). These results indicate that the increase in the vitreous AM is related to DR.
Collapse
Affiliation(s)
- Shinjo Ito
- Department of Ophthalmology, Faculty of Medicine, Kyushu University, Fukuoka, Japan.
| | | | | | | |
Collapse
|
45
|
Welsch U, Unterberger P, Höfter E, Cuttitta F, Martínez A. Adrenomedullin in mammalian and human skin glands including the mammary gland. Acta Histochem 2002; 104:65-72. [PMID: 11993852 DOI: 10.1078/0065-1281-00623] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Adrenomedullin is a peptide that has been ascribed numerous functions. In the present paper, adrenomedullin has been localized immunhistochemically in a variety of skin glands of humans, elephants and impalas: apocrine scent glands, eccrine sweat glands, holocrine glands and mammary glands. In the apocrine glands expression of adrenomedullin varied with respect to staining intensity and intracellular localization. In general, glands which appeared to be actively secreting were more strongly stained than quiescent glands. However, within a single glandular tubule, individual cells differed considerably in the staining intensity of adrenomedullin. Adrenomedullin was present in both non-lactating and lactating mammary secretory epithelia, both ducts and alveoli reacted positively. In human mammary glands displaying apocrine metaplasia, the apical protrusions were strongly positive. Furthermore, positive immunostaining was found in endothelium and often in smooth muscle cells of small arteries and veins and in mast cells as well. Many of the adrenomedullin-positive epithelial cells were most strongly stained in the area of the Golgi apparatus, the cellular apex and particularly close to the basal side of the cell membrane. This pattern suggests packaging of adrenomedullin into secretory granules and secretion both at the apex of cells and at their basis. The first form of secretion suggests exocrine secretion, the latter form endocrine secretion of adrenomedullin. A possible hormonal function is in line with basally located electron dense small secretory granules, which have been found by electron microscopy in the glandular epithelia studied.
Collapse
Affiliation(s)
- Ulrich Welsch
- Department of Anatomy, University of Munich, Germany.
| | | | | | | | | |
Collapse
|
46
|
Abstract
Adrenomedullin (AM) is a multiregulatory peptide which is expressed in a wide range of tissues. In the pancreas, AM was first found in mammals, including man, and its colocalization with the pancreatic polypeptide (PP) was established in islet F cells. In addition, three different AM receptors have been characterized in B-cells. AM has been also located in the pancreatic cells of other vertebrate classes. The frequency and distribution of AM cells vary between different animals; they can be found scattered among the exocrine tissue, in the islets, or in ductal epithelia. The colocalization of AM with other hormones presents different patterns, although in birds, as in mammals, it seems to colocalize only with PP. The best-determined pancreatic AM function is the inhibition of insulin secretion in B-cells, which seems to be linked to a recently discovered binding protein, factor H. In relation to this physiological role, clinical data show that AM is raised in some groups of both types I and II diabetic patients and AM might have triggered the disease in a subset of them. On the other hand, AM pancreatic cells are also involved in the response to septic shock by increasing AM circulating levels. A third putative function is the inhibition of amylase secretion by the exocrine pancreatic cells. AM has been found in embryonic mammalian pancreas from the earliest stages of the development, colocalizing with all pancreatic hormones, although in adults only coexpression with PP is kept. AM may play a role in the growth and morphogenesis of the pancreas.
Collapse
Affiliation(s)
- José López
- Department of Biology, Cell Biology Unit, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain.
| | | |
Collapse
|
47
|
Garayoa M, Bodegas E, Cuttitta F, Montuenga LM. Adrenomedullin in mammalian embryogenesis. Microsc Res Tech 2002; 57:40-54. [PMID: 11921355 DOI: 10.1002/jemt.10050] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Here are summarized data supporting that adrenomedullin (AM) is a multifunctional factor involved in the complex regulatory mechanisms of mammalian development. During rodent embryogenesis, AM is first expressed in the heart, followed by a broader but also defined spatio-temporal pattern of expression in vascular, neural, and skeletal-forming tissues as well as in the main embryonic internal organs. AM pattern of expression is suggestive of its involvement in the control of embryonic invasion, proliferation, and differentiation processes, probably through autocrine or paracrine modes of action. AM levels in fetoplacental tissues, uterus, maternal and umbilical plasma are highly increased during normal gestation. These findings in addition to other physiological and gene targeting studies support the importance of AM as a vasorelaxant factor implicated in the regulation of maternal vascular adaptation to pregnancy, as well as of fetal and fetoplacental circulations. AM is also present in amniotic fluid and milk, which is suggestive of additional functions in the maturation and immunological protection of the fetus. Altered expression of AM has been found in some gestational pathologies, although it is not yet clear whether this corresponds to causative or compensatory mechanisms. Future studies in regard to the distribution and expression levels of the molecules known to function as AM receptors, together with data on the action of complement factor H (an AM binding protein), may help to better define the roles of AM during embryonic development.
Collapse
Affiliation(s)
- Mercedes Garayoa
- Department of Histology and Pathology, Carcinogenesis Unit, University of Navarra, 31080 Pamplona, Spain.
| | | | | | | |
Collapse
|
48
|
Abstract
Poadrenomedullin N-terminal 20 peptide (PAMP) is a hypotensive peptide derived from the precursor of adrenomedullin. We identified novel actions of proadrenomedullin N-terminal 20 peptide (PAMP) on blood glucose, food intake and gastric emptying after exogenous administration. PAMP elevated blood glucose levels after central injection in fasted mice. PAMP had affinity for bombesin (BN) receptor and the hyperglycemic effect of PAMP was blocked by a BN antagonist, indicating that the elevation of blood glucose after central administration of PAMP was mediated by BN receptor. Centrally administered PAMP inhibited food intake and gastric emptying in fasted conscious mice. However, studies using a BN antagonist and BN receptor knockout mice suggested that the inhibitory effects of PAMP on feeding and gastric emptying were mediated not via BN receptor but via another receptor specific for PAMP. In the present review, we summarize these effects of PAMP and report other novel actions of PAMP on body temperature and oxygen consumption. In addition, the mechanism underlying the cardiovascular functions of PAMP is discussed.
Collapse
Affiliation(s)
- K Ohinata
- Division of Food Bioscience and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho Uji, 611-0011, Kyoto, Japan
| | | | | | | |
Collapse
|
49
|
Pío R, Martínez A, Cuttitta F. Cancer and diabetes: two pathological conditions in which adrenomedullin may be involved. Peptides 2001; 22:1719-29. [PMID: 11754957 DOI: 10.1016/s0196-9781(01)00530-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Adrenomedullin (AM) is a regulatory peptide involved in several physiological processes. Among them, AM has been implicated in the regulation of growth, both with mitogenic and antiproliferative activities on normal cells. AM is widely expressed during embryogenesis and may have a significant role in the proliferation and differentiation processes associated with development. AM is also expressed by cancer cell lines and tumors and has been implicated in the growth of malignant cells. Some additional activities associated with AM (antiapoptotic capabilities, angiogenic potential, and upregulation in hypoxic conditions), together with its wide distribution in cancer, suggest that AM may be an important factor in carcinogenesis. Besides its implication in growth, embryogenesis and tumor biology, AM is also involved in pancreatic regulation and diabetes. AM regulates insulin secretion and is overexpressed in the plasma of diabetic patients. Several findings indicate that AM may participate in the pathogenesis and/or clinical complications of this disease.
Collapse
Affiliation(s)
- R Pío
- Department of Biochemistry, School of Medicine, University of Navarra, 31080, Pamplona, Spain
| | | | | |
Collapse
|
50
|
Abstract
Adrenomedullin (AM) is a novel 52 amino acid peptide hormone, originally isolated from human pheochromocytoma. AM acts as a local autocrine and/or paracrine vasoactive hormone and has vasodilator and blood pressure lowering properties. AM as a vasodilative molecule protects the vascular wall but its exact role is still uncertain. AM is considered to play an important endocrine role in various tissues in maintaining electrolyte and fluid homeostasis. Its plasma concentration in healthy conditions is low. In hypertension, chronic renal failure and congestive heart failure its plasma concentration increases in a parallel manner with the severity of the disease. It is assumed that this peptide plays an important role in physiological and pathological conditions compensating the effects of vasoconstrictive molecules. Investigations have proven that in diabetic angiopathies the levels and production of vasoconstrictive factors and AM are increased, while other relaxing substances such as nitric oxide (NO) are decreased. It is still uncertain whether the increased release of AM is a compensatory mechanism or a coincidental event. Although the precise role of AM in the pathogenesis of diabetic complications is still to be elucidated, the altered concentration of AM in diabetes could indicate a certain interaction between AM induction and vascular function. Hence, the induction of vascular AM can be a new target of therapeutic approach to diabetic complications.
Collapse
Affiliation(s)
- E Ruzicska
- 2nd Department of Medicine, Semmelweis University, Budapest, Hungary.
| | | | | | | |
Collapse
|