1
|
Sharma S, Kapoor S, Ansari A, Tyagi AK. The general transcription factors (GTFs) of RNA polymerase II and their roles in plant development and stress responses. Crit Rev Biochem Mol Biol 2024; 59:267-309. [PMID: 39361782 PMCID: PMC12051360 DOI: 10.1080/10409238.2024.2408562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/03/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024]
Abstract
In eukaryotes, general transcription factors (GTFs) enable recruitment of RNA polymerase II (RNA Pol II) to core promoters to facilitate initiation of transcription. Extensive research in mammals and yeast has unveiled their significance in basal transcription as well as in diverse biological processes. Unlike mammals and yeast, plant GTFs exhibit remarkable degree of variability and flexibility. This is because plant GTFs and GTF subunits are often encoded by multigene families, introducing complexity to transcriptional regulation at both cellular and biological levels. This review provides insights into the general transcription mechanism, GTF composition, and their cellular functions. It further highlights the involvement of RNA Pol II-related GTFs in plant development and stress responses. Studies reveal that GTFs act as important regulators of gene expression in specific developmental processes and help equip plants with resilience against adverse environmental conditions. Their functions may be direct or mediated through their cofactor nature. The versatility of GTFs in controlling gene expression, and thereby influencing specific traits, adds to the intricate complexity inherent in the plant system.
Collapse
Affiliation(s)
- Shivam Sharma
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Sanjay Kapoor
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, USA
| | - Akhilesh Kumar Tyagi
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
2
|
Zhai L, Liang H, Du J, Sun M, Qiu W, Tang H, Luo H. PARP-1 via regulation of p53 and p16, is involved in the hydroquinone-induced malignant transformation of TK6 cells by decelerating the cell cycle. Toxicol In Vitro 2021; 74:105153. [PMID: 33771647 DOI: 10.1016/j.tiv.2021.105153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/23/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022]
Abstract
Poly(ADP-ribose)polymerase-1 (PARP-1) plays a crucial role in DNA damage repair and could be viewed as both a tumor promoter and tumor-suppressor gene. However, the effects of PARP-1 in hydroquinone-induced malignant transformation of TK6 cells remain to be further elucidated. The present research evaluated the potential mechanism of PARP-1 in hydroquinone-induced malignant transformation of TK6 cells. The results indicated that high PARP-1 inhibited TK6 cells malignant transformation after chronic exposure to HQ. We further confirmed that PARP-1 overexpression blocked cell proliferation, and decelerated cell cycle progression in vitro and in vivo. The immunoblotting analysis indicated that PARP-1 regulated cell cycle progression via p16/Rb and p53. Therefore, we conclude that PARP-1 is involved in HQ-induced malignant transformation associated with increasing p16/Rb and p53 which resulting in decelerating the cell cycle progression.
Collapse
Affiliation(s)
- Lu Zhai
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Hairong Liang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jinlin Du
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Mingwei Sun
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Weifeng Qiu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Huanwen Tang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China.
| | - Hao Luo
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
3
|
Vessoni AT, Guerra CCC, Kajitani GS, Nascimento LLS, Garcia CCM. Cockayne Syndrome: The many challenges and approaches to understand a multifaceted disease. Genet Mol Biol 2020; 43:e20190085. [PMID: 32453336 PMCID: PMC7250278 DOI: 10.1590/1678-4685-gmb-2019-0085] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 01/15/2020] [Indexed: 01/04/2023] Open
Abstract
The striking and complex phenotype of Cockayne syndrome (CS) patients combines progeria-like features with developmental deficits. Since the establishment of the in vitro culture of skin fibroblasts derived from patients with CS in the 1970s, significant progress has been made in the understanding of the genetic alterations associated with the disease and their impact on molecular, cellular, and organismal functions. In this review, we provide a historic perspective on the research into CS by revisiting seminal papers in this field. We highlighted the great contributions of several researchers in the last decades, ranging from the cloning and characterization of CS genes to the molecular dissection of their roles in DNA repair, transcription, redox processes and metabolism control. We also provide a detailed description of all pathological mutations in genes ERCC6 and ERCC8 reported to date and their impact on CS-related proteins. Finally, we review the contributions (and limitations) of many genetic animal models to the study of CS and how cutting-edge technologies, such as cell reprogramming and state-of-the-art genome editing, are helping us to address unanswered questions.
Collapse
Affiliation(s)
| | - Camila Chaves Coelho Guerra
- Universidade Federal de Ouro Preto, Instituto de Ciências Exatas e
Biológicas, Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências
Biológicas, Ouro Preto, MG, Brazil
| | - Gustavo Satoru Kajitani
- Universidade Federal de Ouro Preto, Instituto de Ciências Exatas e
Biológicas, Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências
Biológicas, Ouro Preto, MG, Brazil
- Universidade de São Paulo, Instituto de Ciências Biomédicas,
Departamento de Microbiologia, São Paulo,SP, Brazil
| | - Livia Luz Souza Nascimento
- Universidade de São Paulo, Instituto de Ciências Biomédicas,
Departamento de Microbiologia, São Paulo,SP, Brazil
| | - Camila Carrião Machado Garcia
- Universidade Federal de Ouro Preto, Instituto de Ciências Exatas e
Biológicas, Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências
Biológicas, Ouro Preto, MG, Brazil
| |
Collapse
|
4
|
Latimer JJ, Majekwana VJ, Pabón-Padín YR, Pimpley MR, Grant SG. Regulation and disregulation of mammalian nucleotide excision repair: a pathway to nongermline breast carcinogenesis. Photochem Photobiol 2014; 91:493-500. [PMID: 25393451 DOI: 10.1111/php.12387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/27/2014] [Indexed: 12/13/2022]
Abstract
Nucleotide excision repair (NER) is an important modulator of disease, especially in constitutive deficiencies such as the cancer predisposition syndrome Xeroderma pigmentosum. We have found profound variation in NER capacity among normal individuals, between cell-types and during carcinogenesis. NER is a repair system for many types of DNA damage, and therefore many types of genotoxic carcinogenic exposures, including ultraviolet light, products of organic combustion, metals and oxidative stress. Because NER is intimately related to cellular metabolism, requiring components of both the DNA replicative and transcription machinery, it has a narrow range of functional viability. Thus, genes in the NER pathway are expressed at the low levels manifested by, for example, nuclear transcription factors. As NER activity and gene expression vary by cell-type, it is inherently epigenetically regulated. Furthermore, this epigenetic modulation is disregulated during sporadic breast carcinogenesis. Loss of NER is one basis of genomic instability, a required element in cellular transformation, and one that potentially influences response to therapy. In this study, we demonstrate differences in NER capacity in eight adult mouse tissues, and place this result into the context of our previous work on mouse extraembryonic tissues, normal human tissues and sporadic early stage human breast cancer.
Collapse
Affiliation(s)
- Jean J Latimer
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL
| | | | | | | | | |
Collapse
|
5
|
Meira LB, Calvo JA, Shah D, Klapacz J, Moroski-Erkul CA, Bronson RT, Samson LD. Repair of endogenous DNA base lesions modulate lifespan in mice. DNA Repair (Amst) 2014; 21:78-86. [PMID: 24994062 PMCID: PMC4125484 DOI: 10.1016/j.dnarep.2014.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/30/2014] [Accepted: 05/20/2014] [Indexed: 12/21/2022]
Abstract
The accumulation of DNA damage is thought to contribute to the physiological decay associated with the aging process. Here, we report the results of a large-scale study examining longevity in various mouse models defective in the repair of DNA alkylation damage, or defective in the DNA damage response. We find that the repair of spontaneous DNA damage by alkyladenine DNA glycosylase (Aag/Mpg)-initiated base excision repair and O(6)-methylguanine DNA methyltransferase (Mgmt)-mediated direct reversal contributes to maximum life span in the laboratory mouse. We also uncovered important genetic interactions between Aag, which excises a wide variety of damaged DNA bases, and the DNA damage sensor and signaling protein, Atm. We show that Atm plays a role in mediating survival in the face of both spontaneous and induced DNA damage, and that Aag deficiency not only promotes overall survival, but also alters the tumor spectrum in Atm(-/-) mice. Further, the reversal of spontaneous alkylation damage by Mgmt interacts with the DNA mismatch repair pathway to modulate survival and tumor spectrum. Since these aging studies were performed without treatment with DNA damaging agents, our results indicate that the DNA damage that is generated endogenously accumulates with age, and that DNA alkylation repair proteins play a role in influencing longevity.
Collapse
Affiliation(s)
- Lisiane B Meira
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Jennifer A Calvo
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Dharini Shah
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Joanna Klapacz
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Catherine A Moroski-Erkul
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Roderick T Bronson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Rodent Histopathology Core, Harvard Medical School, 126 Goldenson Building, Boston, MA 02115, United States
| | - Leona D Samson
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Biology Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Rodent Histopathology Core, Harvard Medical School, 126 Goldenson Building, Boston, MA 02115, United States.
| |
Collapse
|
6
|
Theil AF, Nonnekens J, Steurer B, Mari PO, de Wit J, Lemaitre C, Marteijn JA, Raams A, Maas A, Vermeij M, Essers J, Hoeijmakers JHJ, Giglia-Mari G, Vermeulen W. Disruption of TTDA results in complete nucleotide excision repair deficiency and embryonic lethality. PLoS Genet 2013; 9:e1003431. [PMID: 23637614 PMCID: PMC3630102 DOI: 10.1371/journal.pgen.1003431] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/19/2013] [Indexed: 12/01/2022] Open
Abstract
The ten-subunit transcription factor IIH (TFIIH) plays a crucial role in transcription and nucleotide excision repair (NER). Inactivating mutations in the smallest 8-kDa TFB5/TTDA subunit cause the neurodevelopmental progeroid repair syndrome trichothiodystrophy A (TTD-A). Previous studies have shown that TTDA is the only TFIIH subunit that appears not to be essential for NER, transcription, or viability. We studied the consequences of TTDA inactivation by generating a Ttda knock-out (Ttda−/−) mouse-model resembling TTD-A patients. Unexpectedly, Ttda−/− mice were embryonic lethal. However, in contrast to full disruption of all other TFIIH subunits, viability of Ttda−/− cells was not affected. Surprisingly, Ttda−/− cells were completely NER deficient, contrary to the incomplete NER deficiency of TTD-A patient-derived cells. We further showed that TTD-A patient mutations only partially inactivate TTDA function, explaining the relatively mild repair phenotype of TTD-A cells. Moreover, Ttda−/− cells were also highly sensitive to oxidizing agents. These findings reveal an essential role of TTDA for life, nucleotide excision repair, and oxidative DNA damage repair and identify Ttda−/− cells as a unique class of TFIIH mutants. DNA is under constant attack of various environmental and cellular produced DNA damaging agents. DNA damage hampers normal cell function; however, different DNA repair mechanisms protect our genetic information. Nucleotide Excision Repair is one of the most versatile repair processes, as it removes a large variety of DNA helix-distorting lesions induced by UV light and various chemicals. To remove these lesions, the DNA helix needs to be opened by the transcription/repair factor II H (TFIIH). TFIIH is a multifunctional complex that consists of 10 subunits and plays a fundamental role in opening the DNA helix in both NER and transcription. TTDA, the smallest subunit of TFIIH, was thought to be dispensable for both NER and transcription. However, in this paper, we show for the first time that TTDA is in fact a crucial component of TFIIH for NER. We demonstrate that Ttda−/− mice are embryonic lethal. We also show that Ttda−/− mouse cells are the first known viable TFIIH subunit knock-out cells, which are completely NER deficient and sensitive to oxidative agents (showing a new role for TFIIH outside NER and transcription).
Collapse
Affiliation(s)
- Arjan F. Theil
- Department of Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Julie Nonnekens
- Department of Genetics, Erasmus MC, Rotterdam, The Netherlands
- CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS) and Université de Toulouse, UPS, Toulouse, France
| | - Barbara Steurer
- Department of Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Pierre-Olivier Mari
- Department of Genetics, Erasmus MC, Rotterdam, The Netherlands
- CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS) and Université de Toulouse, UPS, Toulouse, France
| | - Jan de Wit
- Department of Genetics, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Anja Raams
- Department of Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Alex Maas
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Marcel Vermeij
- Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Jeroen Essers
- Department of Genetics, Erasmus MC, Rotterdam, The Netherlands
- Department of Vascular Surgery, Erasmus MC, Rotterdam, The Netherlands
- Department of Radiation Oncology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Giuseppina Giglia-Mari
- Department of Genetics, Erasmus MC, Rotterdam, The Netherlands
- CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS) and Université de Toulouse, UPS, Toulouse, France
- * E-mail: (WV); (GG-M)
| | - Wim Vermeulen
- Department of Genetics, Erasmus MC, Rotterdam, The Netherlands
- * E-mail: (WV); (GG-M)
| |
Collapse
|
7
|
Li C, Yin M, Wang LE, Amos CI, Zhu D, Lee JE, Gershenwald JE, Grimm EA, Wei Q. Polymorphisms of nucleotide excision repair genes predict melanoma survival. J Invest Dermatol 2013; 133:1813-21. [PMID: 23407396 PMCID: PMC3660504 DOI: 10.1038/jid.2012.498] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Melanoma is the most highly malignant skin cancer, and nucleotide excision repair (NER) is involved in melanoma susceptibility. In this analysis of 1,042 melanoma patients, we evaluated whether genetic variants of NER genes may predict survival outcome of melanoma patients. We used genotyping data of 74 tagging single-nucleotide polymorphisms (tagSNPs) in eight core NER genes from our genome-wide association study (including two in XPA, 14 in XPC, three in XPE, four in ERCC1, 10 in ERCC2, eight in ERCC3, 14 in ERCC4, and 19 in ERCC5) and evaluated their associations with prognosis of melanoma patients. Using the Cox proportional hazards model and Kaplan-Meier analysis, we found a predictive role of XPE rs28720291, ERCC5 rs4150314, XPC rs2470458, and ERCC2 rs50871 SNPs in the prognosis of melanoma patients (rs28720291: AG vs. GG, adjusted hazard ratio (adjHR)=11.2, 95% confidence interval (CI) 3.04-40.9, P=0.0003; rs4150314: AG vs. GG, adjHR=4.76, 95% CI 1.09-20.8, P=0.038; rs2470458: AA vs. AG/GG, adjHR=2.11, 95% CI 1.03-4.33, P=0.040; and rs50871: AA vs. AC/CC adjHR=2.27, 95% CI 1.18-4.35, P=0.015). Patients with an increasing number of unfavorable genotypes had markedly increased death risk. Genetic variants of NER genes, particularly XPE rs28720291, ERCC5 rs4150314, XPC rs2470458, and ERCC2 rs50871, may independently or jointly modulate survival outcome of melanoma patients. Because our results were based on a median follow-up of 3 years without multiple test corrections, additional large prospective studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Effects of compound heterozygosity at the Xpd locus on cancer and ageing in mouse models. DNA Repair (Amst) 2012; 11:874-83. [PMID: 23046824 DOI: 10.1016/j.dnarep.2012.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 08/20/2012] [Accepted: 08/22/2012] [Indexed: 02/04/2023]
Abstract
XPD is a helicase subunit of transcription factor IIH, an eleven-protein complex involved in a wide range of cellular activities including transcription and nucleotide excision DNA repair (NER). Mutations in NER genes including XPD can lead to a variety of overlapping syndromes with three general categories of symptoms in addition to sun (UV) sensitivity: severe skin cancer predisposition as in xeroderma pigmentosum (XP), segmental progeria as in trichothiodystrophy (TTD) and Cockayne syndrome (CS), and a combination of both as in XP/CS and XP/TTD. Genetic background and compound heterozygosity are two factors potentially complicating straightforward interpretations of genotype-phenotype relationship at the XPD locus. Previously we showed that the presence of two different mutant Xpd alleles in compound heterozygous mice could in principle contribute to disease heterogeneity through biallelic effects, including dominance of one mutant allele over another and interallelic complementation between mutant alleles, in a tissue-specific manner. Here we report on the interaction between different mutant alleles in compound heterozygous mice carrying one XP/CS-associated allele (Xpd(G602D)) and one TTD-associated allele (Xpd(R722W)) relative to homozygous controls in an isogenic background over a range of metabolic and UV-induced DNA damage-related phenotypes. We found complementation of metabolic phenotypes including body weight and insulin sensitivity, but none for any of the measured responses to UV irradiation. Instead, we found dominance of the partially functional TTD allele over the XPCS allele in most aspects of the response to UV irradiation including sunburn and skin cancer in vivo or cellular proliferation and DNA damage foci formation in vitro. These data support to a model of genotype-phenotype relationship at the XPD locus in which interactions between different recessive diseases alleles are a potent source of disease heterogeneity in compound heterozygous patients.
Collapse
|
9
|
Dantas TJ, Daly OM, Morrison CG. Such small hands: the roles of centrins/caltractins in the centriole and in genome maintenance. Cell Mol Life Sci 2012; 69:2979-97. [PMID: 22460578 PMCID: PMC11114748 DOI: 10.1007/s00018-012-0961-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 02/20/2012] [Accepted: 03/12/2012] [Indexed: 01/11/2023]
Abstract
Centrins are small, highly conserved members of the EF-hand superfamily of calcium-binding proteins that are found throughout eukaryotes. They play a major role in ensuring the duplication and appropriate functioning of the ciliary basal bodies in ciliated cells. They have also been localised to the centrosome, which is the major microtubule organising centre in animal somatic cells. We describe the identification, cloning and characterisation of centrins in multiple eukaryotic species. Although centrins have been implicated in centriole biogenesis, recent results have indicated that centrosome duplication can, in fact, occur in the absence of centrins. We discuss these data and the non-centrosomal functions that are emerging for the centrins. In particular, we discuss the involvement of centrins in nucleotide excision repair, a process that repairs the DNA lesions that are induced primarily by ultraviolet irradiation. We discuss how centrin may be involved in these diverse processes and contribute to nuclear and cytoplasmic events.
Collapse
Affiliation(s)
- Tiago J. Dantas
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland
| | - Owen M. Daly
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland
| | - Ciaran G. Morrison
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland
| |
Collapse
|
10
|
Diderich KEM, Nicolaije C, Priemel M, Waarsing JH, Day JS, Brandt RMC, Schilling AF, Botter SM, Weinans H, van der Horst GTJ, Hoeijmakers JHJ, van Leeuwen JPTM. Bone fragility and decline in stem cells in prematurely aging DNA repair deficient trichothiodystrophy mice. AGE (DORDRECHT, NETHERLANDS) 2012; 34:845-861. [PMID: 21814739 PMCID: PMC3682057 DOI: 10.1007/s11357-011-9291-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 06/14/2011] [Indexed: 05/31/2023]
Abstract
Trichothiodystrophy (TTD) is a rare, autosomal recessive nucleotide excision repair (NER) disorder caused by mutations in components of the dual functional NER/basal transcription factor TFIIH. TTD mice, carrying a patient-based point mutation in the Xpd gene, strikingly resemble many features of the human syndrome and exhibit signs of premature aging. To examine to which extent TTD mice resemble the normal process of aging, we thoroughly investigated the bone phenotype. Here, we show that female TTD mice exhibit accelerated bone aging from 39 weeks onwards as well as lack of periosteal apposition leading to reduced bone strength. Before 39 weeks have passed, bones of wild-type and TTD mice are identical excluding a developmental defect. Albeit that bone formation is decreased, osteoblasts in TTD mice retain bone-forming capacity as in vivo PTH treatment leads to increased cortical thickness. In vitro bone marrow cell cultures showed that TTD osteoprogenitors retain the capacity to differentiate into osteoblasts. However, after 13 weeks of age TTD females show decreased bone nodule formation. No increase in bone resorption or the number of osteoclasts was detected. In conclusion, TTD mice show premature bone aging, which is preceded by a decrease in mesenchymal stem cells/osteoprogenitors and a change in systemic factors, identifying DNA damage and repair as key determinants for bone fragility by influencing osteogenesis and bone metabolism.
Collapse
Affiliation(s)
- Karin E. M. Diderich
- MGC Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Claudia Nicolaije
- Department of Internal Medicine, Erasmus MC, Room Ee585, P.O Box 2040, CA Rotterdam, The Netherlands
| | - Matthias Priemel
- Center of Biomechanics and Skeletal Biology, Department of Trauma Surgery, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Jan H. Waarsing
- Department of Orthopaedics, Erasmus MC, 3000 DR Rotterdam, The Netherlands
| | - Judd S. Day
- Department of Orthopaedics, Erasmus MC, 3000 DR Rotterdam, The Netherlands
| | - Renata M. C. Brandt
- MGC Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Arndt F. Schilling
- Center of Biomechanics and Skeletal Biology, Department of Trauma Surgery, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
- Biomechanics Section, Hamburg University of Technology, 21073 Hamburg, Germany
| | - Sander M. Botter
- MGC Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus MC, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, Room Ee585, P.O Box 2040, CA Rotterdam, The Netherlands
| | - Harrie Weinans
- Department of Orthopaedics, Erasmus MC, 3000 DR Rotterdam, The Netherlands
| | | | - Jan H. J. Hoeijmakers
- MGC Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | | |
Collapse
|
11
|
Wang C, George B, Chen S, Feng B, Li X, Chakrabarti S. Genotoxic stress and activation of novel DNA repair enzymes in human endothelial cells and in the retinas and kidneys of streptozotocin diabetic rats. Diabetes Metab Res Rev 2012; 28:329-37. [PMID: 22228707 DOI: 10.1002/dmrr.2279] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Mammalian excision repair cross-complementing 1 (ERCC1) and ERCC4 (a.k.a xeroderma pigmentosum complementation group F) are nucleotide excision repair enzymes, which excise the 5' end of damaged DNA. ERCC1 and ERCC4 have an interactive relationship with poly (adenosine diphosphate ribose) polymerase (PARP). We studied the role of ERCC1 and ERCC4 in glucose-induced extracellular matrix protein production in human endothelial cells and in the retinas and kidneys of streptozotocin diabetic rats. METHODS Human umbilical vein endothelial cells were grown with low (5 mM) and high glucose (25 mM). The cells were subjected to ERCC1 and ERCC4 small interfering RNA transfections, PARP blocker (3-aminobenzamide, ABA) and p300 blocker (curcumin). Retinas and kidneys from 1-month-old streptozotocin diabetic rats with or without treatment with curcumin and ABA were examined. Cells and tissues were studied for oxidative stress markers, fibronectin, ERCC1 and ERCC4, PARP and p300 mRNA. Western blot of nuclear proteins was performed. RESULTS ERCC1 and ERCC4 messenger RNA and protein levels were higher in high glucose than in low glucose, along with increasing oxidative stress and augmented p300 and fibronectin production. ABA, curcumin, ERCC1 and ERCC4 silencing reduced such upregulations and oxidative stress. Similar changes were seen in the kidneys and retinas of diabetic rats. ABA and curcumin treatment significantly reduced such changes. CONCLUSIONS These data indicate that glucose-induced ERCC1 and ERCC4 upregulation leads to increased fibronectin production via a p300-dependent pathway in umbilical endothelial cells, as well as in the retina and in the kidneys of streptozotocin diabetic rats. ERCC1 and ERCC4 may play important roles in the development of diabetic retinopathy and nephropathy.
Collapse
Affiliation(s)
- Chunyan Wang
- Department of Pathology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Nicolaije C, Diderich KEM, Botter SM, Priemel M, Waarsing JH, Day JS, Brandt RMC, Schilling AF, Weinans H, Van der Eerden BC, van der Horst GTJ, Hoeijmakers JHJ, van Leeuwen JPTM. Age-related skeletal dynamics and decrease in bone strength in DNA repair deficient male trichothiodystrophy mice. PLoS One 2012; 7:e35246. [PMID: 22506075 PMCID: PMC3323647 DOI: 10.1371/journal.pone.0035246] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 03/12/2012] [Indexed: 11/20/2022] Open
Abstract
Accumulation of DNA damage caused by oxidative stress is thought to be one of the main contributors of human tissue aging. Trichothiodystrophy (TTD) mice have a mutation in the Ercc2 DNA repair gene, resulting in accumulation of DNA damage and several features of segmental accelerated aging. We used male TTD mice to study the impact of DNA repair on bone metabolism with age. Analysis of bone parameters, measured by micro-computed tomography, displayed an earlier decrease in trabecular and cortical bone as well as a loss of periosteal apposition and a reduction in bone strength in TTD mice with age compared to wild type mice. Ex vivo analysis of bone marrow differentiation potential showed an accelerated reduction in the number of osteogenic and osteoprogenitor cells with unaltered differentiation capacity. Adipocyte differentiation was normal. Early in life, osteoclast number tended to be increased while at 78 weeks it was significantly lower in TTD mice. Our findings reveal the importance of genome stability and proper DNA repair for skeletal homeostasis with age and support the idea that accumulation of damage interferes with normal skeletal maintenance, causing reduction in the number of osteoblast precursors that are required for normal bone remodeling leading to a loss of bone structure and strength.
Collapse
Affiliation(s)
- Claudia Nicolaije
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Karin E. M. Diderich
- MGC Department of Cell Biology & Genetics, Center for Biomedical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - S. M. Botter
- MGC Department of Cell Biology & Genetics, Center for Biomedical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Matthias Priemel
- Department of Trauma, Hand, and Reconstructive Surgery, School of Medicine, Hamburg University, Hamburg, Germany
| | - Jan H. Waarsing
- Department of Orthopedics, Erasmus MC, Rotterdam, The Netherlands
| | - Judd S. Day
- Department of Orthopedics, Erasmus MC, Rotterdam, The Netherlands
| | - Renata M. C. Brandt
- MGC Department of Cell Biology & Genetics, Center for Biomedical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Arndt F. Schilling
- Department of Trauma, Hand, and Reconstructive Surgery, School of Medicine, Hamburg University, Hamburg, Germany
| | - Harrie Weinans
- Department of Orthopedics, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Jan H. J. Hoeijmakers
- MGC Department of Cell Biology & Genetics, Center for Biomedical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | | |
Collapse
|
13
|
Stergiou L, Eberhard R, Doukoumetzidis K, Hengartner MO. NER and HR pathways act sequentially to promote UV-C-induced germ cell apoptosis in Caenorhabditis elegans. Cell Death Differ 2011; 18:897-906. [PMID: 21151025 PMCID: PMC3131928 DOI: 10.1038/cdd.2010.158] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 09/07/2010] [Accepted: 09/20/2010] [Indexed: 11/08/2022] Open
Abstract
Ultraviolet (UV) radiation-induced DNA damage evokes a complex network of molecular responses, which culminate in DNA repair, cell cycle arrest and apoptosis. Here, we provide an in-depth characterization of the molecular pathway that mediates UV-C-induced apoptosis of meiotic germ cells in the nematode Caenorhabditis elegans. We show that UV-C-induced DNA lesions are not directly pro-apoptotic. Rather, they must first be recognized and processed by the nucleotide excision repair (NER) pathway. Our data suggest that NER pathway activity transforms some of these lesions into other types of DNA damage, which in turn are recognized and acted upon by the homologous recombination (HR) pathway. HR pathway activity is in turn required for the recruitment of the C. elegans homolog of the yeast Rad9-Hus1-Rad1 (9-1-1) complex and activation of downstream checkpoint kinases. Blocking either the NER or HR pathway abrogates checkpoint pathway activation and UV-C-induced apoptosis. Our results show that, following UV-C, multiple DNA repair pathways can cooperate to signal to the apoptotic machinery to eliminate potentially hazardous cells.
Collapse
Affiliation(s)
- L Stergiou
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - R Eberhard
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
- PhD Program in Molecular Life Sciences, Life Science Zurich Graduate School and MD/PhD Program, University of Zurich, Zurich, Switzerland
| | - K Doukoumetzidis
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - M O Hengartner
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| |
Collapse
|
14
|
Stefanini M, Botta E, Lanzafame M, Orioli D. Trichothiodystrophy: from basic mechanisms to clinical implications. DNA Repair (Amst) 2010; 9:2-10. [PMID: 19931493 DOI: 10.1016/j.dnarep.2009.10.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2009] [Indexed: 10/20/2022]
Abstract
Trichothiodystrophy (TTD) is an autosomal recessive disorder with symptoms affecting several tissues and organs. The most relevant features are hair abnormalities, physical and mental retardation, ichthyosis, signs of premature aging and cutaneous photosensitivity. The clinical spectrum of TTD varies widely from patients with only brittle, fragile hair to patients with the most severe neuroectodermal symptoms. To date, four genes have been identified as responsible for TTD: XPD, XPB, p8/TTDA, and TTDN1. Whereas the function of TTDN1 is still unknown, the former three genes encode subunits of TFIIH, the multiprotein complex involved in basal and activated transcription and in nucleotide excision repair (NER). Ongoing investigations on TTD are elucidating not only the pathogenesis of the disease, which appears to be mainly related to transcriptional impairment, but also the modalities of NER and transcription in human cells and how TFIIH operates in these two fundamental cellular processes.
Collapse
Affiliation(s)
- M Stefanini
- Istituto di Genetica Molecolare CNR, via Abbiategrasso 207, Pavia, Italy.
| | | | | | | |
Collapse
|
15
|
Susa D, De Bruin RWF, Mitchell JR, Roest HP, Hoeijmakers JHJ, Ijzermans JNM. Mechanisms of ageing in chronic allograft nephropathy. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/17471060600756058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Piskunova TS, Yurova MN, Ovsyannikov AI, Semenchenko AV, Zabezhinski MA, Popovich IG, Wang ZQ, Anisimov VN. Deficiency in Poly(ADP-ribose) Polymerase-1 (PARP-1) Accelerates Aging and Spontaneous Carcinogenesis in Mice. Curr Gerontol Geriatr Res 2008; 2008:754190. [PMID: 19415146 PMCID: PMC2672038 DOI: 10.1155/2008/754190] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 12/04/2007] [Accepted: 02/13/2008] [Indexed: 01/14/2023] Open
Abstract
Genetic and biochemical studies have shown that PARP-1 and poly(ADP-ribosyl)ation play an important role in DNA repair, genomic stability, cell death, inflammation, telomere maintenance, and suppressing tumorigenesis, suggesting that the homeostasis of poly(ADP-ribosyl)ation and PARP-1 may also play an important role in aging. Here we show that PARP-1(-/-) mice exhibit a reduction of life span and a significant increase of population aging rate. Analysis of noninvasive parameters, including body weight gain, body temperature, estrous function, behavior, and a number of biochemical indices suggests the acceleration of biological aging in PARP-1(-/-) mice. The incidence of spontaneous tumors in both PARP-1(-/-) and PARP-1(+/+) groups is similar; however, malignant tumors including uterine tumors, lung adenocarcinomas and hepatocellular carcinomas, develop at a significantly higher frequency in PARP-1(-/-) mice than PARP-1(+/+) mice (72% and 49%, resp.; P < .05). In addition, spontaneous tumors appear earlier in PARP-1(-/-) mice compared to the wild type group. Histopathological studies revealed a wide spectrum of tumors in uterus, ovaries, liver, lungs, mammary gland, soft tissues, and lymphoid organs in both groups of the mice. These results demonstrate that inactivation of DNA repair gene PARP-1 in mice leads to acceleration of aging, shortened life span, and increased spontaneous carcinogenesis.
Collapse
Affiliation(s)
- Tatiana S. Piskunova
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov Research Institute of Oncology, Pesochny-2, St. Petersburg 197758, Russia
| | - Maria N. Yurova
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov Research Institute of Oncology, Pesochny-2, St. Petersburg 197758, Russia
| | - Anton I. Ovsyannikov
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov Research Institute of Oncology, Pesochny-2, St. Petersburg 197758, Russia
| | - Anna V. Semenchenko
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov Research Institute of Oncology, Pesochny-2, St. Petersburg 197758, Russia
| | - Mark A. Zabezhinski
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov Research Institute of Oncology, Pesochny-2, St. Petersburg 197758, Russia
| | - Irina G. Popovich
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov Research Institute of Oncology, Pesochny-2, St. Petersburg 197758, Russia
| | - Zhao-Qi Wang
- Leibniz Institute for Age Research, Fritz Lipman e.V., 07745 Jena, Germany
- Faculty of Biology and Pharmacy, Friedrich-Schiller-University of Jena, 07737 Jena, Germany
| | - Vladimir N. Anisimov
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov Research Institute of Oncology, Pesochny-2, St. Petersburg 197758, Russia
| |
Collapse
|
17
|
Saldivar JS, Wu X, Follen M, Gershenson D. Nucleotide excision repair pathway review I: Implications in ovarian cancer and platinum sensitivity. Gynecol Oncol 2007; 107:S56-71. [PMID: 17884153 DOI: 10.1016/j.ygyno.2007.07.043] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 07/06/2007] [Indexed: 02/03/2023]
Abstract
Platinum-based chemotherapy has been the mainstay of treatment for advanced gynecological cancers following cytoreductive surgery and in radiation sensitization of cervical cancer. Despite its initial high overall clinical response rate, a significant number of patients develop resistance to platinum combination therapies. The precise mechanism of platinum-resistance is multifactorial and accumulation of multiple genetic changes may lead to the drug-resistant phenotype. Platinum chemotherapy exerts its cytotoxic effect by forming DNA adducts and subsequently inhibiting DNA replication. It is now clear that the nucleotide excision repair (NER) pathway repairs platinum-DNA adducts in cellular DNA. Evaluation of genetic polymorphisms in cancer susceptibility as one etiology for platinum resistance may help us to understand the significance of these factors in the identification of individuals at higher risk of developing resistance to anti-cancer drug therapies. In this review, we summarized the relevant studies, both in vitro and in vivo, that pertain to NER in ovarian cancer and platinum resistance. It is evident also that there are a few limited studies in genetic polymorphisms of NER and ovarian cancer. These studies reviewed suggest that concurrent up-regulation of genes involved in NER may be important in clinical resistance to platinum-based chemotherapy in ovarian cancer. In the future, larger and well-designed population-based studies will be needed for a more complete understanding of relevant genetic factors that may result in improved strategies for determining both chemotherapy choice and efficacy in patients with advanced ovarian and cervical cancer. Review II will focus on the NER pathway in cervical cancer and platinum sensitivity.
Collapse
Affiliation(s)
- J Salvador Saldivar
- Center for Biomedical Engineering, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | | | | | | |
Collapse
|
18
|
Saldivar JS, Lu KH, Liang D, Gu J, Huang M, Vlastos AT, Follen M, Wu X. Moving toward individualized therapy based on NER polymorphisms that predict platinum sensitivity in ovarian cancer patients. Gynecol Oncol 2007; 107:S223-9. [PMID: 17825393 DOI: 10.1016/j.ygyno.2007.07.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 07/06/2007] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Platinum-based chemotherapy exerts its cytotoxic effect by forming DNA adducts and subsequently inhibiting DNA replication. Removing platinum DNA adducts requires the nucleotide excision repair (NER) pathway. The xeroderma pigmentosum (XP) complementation group of genes plays an essential role in the NER pathway. We hypothesized that genetic polymorphisms in XP genes may predict clinical response to platinum chemotherapeutic treatment and survival in women with gynecological cancers. METHOD We genotyped 146 cases of advanced epithelial ovarian cancer for XP gene polymorphisms using the PCR-RFLP method. Kaplan-Meier plots and the log-rank test were used to assess associations between survival and recurrence-free interval and the XP gene polymorphisms. Hazard ratio of response was estimated from an adjusted multivariate Cox proportional hazard model. RESULTS Women with a heterozygous variant XPA allele had shorter median survival (21.5 months, P=0.03) and shorter median time to recurrence (11.3 months, P=0.05) than women with the homozygous wild-type allele (37.9 and 13.9 months, respectively). Women with a homozygous variant XPG allele had significantly shorter median survival (8.3 months, P=0.006) compared with women with the homozygous XPG wild-type allele (24.6 months). Polymorphisms in XPC, XPD exon10, and XPD exon23 were associated with a decreased risk of recurrence and death, but were not statistically significant. CONCLUSIONS This study suggests that NER gene polymorphisms may correlate with recurrence and patient survival. A larger sample size is needed to assess platinum chemotherapy response with these polymorphisms. These findings may help identify subgroups of cancer patients likely to benefit from individualized treatment strategies. Our next study will examine NER gene polymorphisms in cervical cancer patients.
Collapse
Affiliation(s)
- J Salvador Saldivar
- Department of Gynecology Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
This review provides an overview of a selection of the most pertinent molecular pathways that link cancer and aging and focuses on those where recent advances were most important. When organizing the bulk of information on this subject, I became aware of the fact that the most evident partition, namely, mechanisms that influence aging and mechanisms that influence cancer occurrence, is difficult to apply. Most mechanisms explaining the aging process are also those that influence carcinogenesis. Mechanisms that are described in tumor suppressor pathways are also contributors to the aging process. From an intuitive point of view, there are phenomena that have traditionally been contributed to aging others to cancer-inducing factors and they are presented herein.
Collapse
Affiliation(s)
- Irmgard Irminger-Finger
- Laboratory of Molecular Gynecology and Obstetrics, Department of Gynecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland.
| |
Collapse
|
20
|
Marchetto MCN, Correa RG, Menck CFM, Muotri AR. Functional lentiviral vectors for xeroderma pigmentosum gene therapy. J Biotechnol 2006; 126:424-30. [PMID: 16857285 DOI: 10.1016/j.jbiotec.2006.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2006] [Revised: 05/03/2006] [Accepted: 05/19/2006] [Indexed: 11/26/2022]
Abstract
Xeroderma pigmentosum (XP) is a genetic disease characterized by an autosomal-transmitted genodermatosis involving impaired DNA repair activity, where XP patients present severe sensitivity to sunlight (UVB radiation) and are highly victimized by skin cancer. Complementing XP genes by gene therapy is one potential strategy for helping XP patients. However, current viral-based protocols still lack long-term and stable expression, due to limited post-mitotic infection and gene silencing (in the case of retroviruses) or transient expression and activation of immune response (in the case of adenoviruses). Here we demonstrate that the use of third-generation lentiviral vectors can overcome some of these limitations, rescuing the aberrant phenotype in different categories of the disease (XPA, XPC and XPD). Our results show that lentiviruses are efficient tools to transduce XP fibroblasts and correct repair-defective cellular phenotypes by recovering proper gene expression, normal UV survival and unscheduled DNA synthesis after UV radiation. We propose lentiviral vectors as an attractive alternative for gene therapy protocols focusing on DNA repair genetic diseases.
Collapse
|
21
|
Aguilar-Fuentes J, Valadez-Graham V, Reynaud E, Zurita M. TFIIH trafficking and its nuclear assembly during early Drosophila embryo development. J Cell Sci 2006; 119:3866-75. [PMID: 16940351 DOI: 10.1242/jcs.03150] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present the first analysis of the dynamics of the transcription DNA-repair factor TFIIH at the onset of transcription in early Drosophila development. TFIIH is composed of ten polypeptides that are part of two complexes - the core and the CAK. We found that the TFIIH core is initially located in the cytoplasm of syncytial blastoderm embryos, and that after mitotic division ten and until the cellular blastoderm stage, the core moves from the cytoplasm to the nucleus. By contrast, the CAK complex is mostly cytoplasmic during cellularization and during gastrulation. However, both components are positioned at promoters of genes that are activated at transcription onset. Later in development, the CAK complex becomes mostly nuclear and co-localizes in most chromosomal regions with the TFIIH core, but not in all sites, suggesting that the CAK complex could have a TFIIH-independent role in transcription of some loci. We also demonstrate that even though the CAK and the core coexist in the early embryo cytoplasm, they do not interact until they are in the nucleus and suggest that the complete assembly of the ten subunits of TFIIH occurs in the nucleus at the mid-blastula transition. In addition, we present evidence that suggests that DNA helicase subunits XPB and XPD are assembled in the core when they are transported into the nucleus and are required for the onset of transcription.
Collapse
Affiliation(s)
- Javier Aguilar-Fuentes
- Department of Developmental Genetics and Molecular Physiology, Institute of Biotechnology, National Autonomous University of México, Av. Universidad 2001, Cuernavaca Morelos 62250, Mexico
| | | | | | | |
Collapse
|
22
|
Kemp ZE, Carvajal-Carmona LG, Barclay E, Gorman M, Martin L, Wood W, Rowan A, Donohue C, Spain S, Jaeger E, Evans DG, Maher ER, Bishop T, Thomas H, Houlston R, Tomlinson I. Evidence of linkage to chromosome 9q22.33 in colorectal cancer kindreds from the United Kingdom. Cancer Res 2006; 66:5003-6. [PMID: 16707420 DOI: 10.1158/0008-5472.can-05-4074] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
About 30% of all colorectal cancers are thought to have a genetic basis and the known predisposing genes can only account for a small fraction of cases. A previous report suggested that a colorectal cancer candidate gene, explaining at least 20% of colorectal cancer cases with family history, was located within a 25 cM region on chromosome 9q22.2-q31.3. We typed 16 polymorphic markers encompassing the region of putative linkage in 57 colorectal tumor families from the United Kingdom. Known Mendelian syndromes had been excluded. We found suggestive evidence of linkage, as positive parametric (HLOD = 1.23) and nonparametric (NPL = 1.21, P = 0.11) LOD scores were obtained by analysis of the whole family set. Enrichment for cases with a priori genetic etiology by analyzing families with at least one person affected at <45 years of age (n = 39 families) gave a maximum multipoint NPL score of 2.65 (P = 0.007). In this group, significant NPL scores >1.67 (P < 0.05) were found in a 6.5 cM region between D9S1851 and D9S277. With a more stringent threshold (NPL>2.4, P < 0.01), the linked region was 1.7 cM between D9S971 and D9S272/D9S173. Exclusion from the analysis of kindreds with a phenotype of multiple polyposis also found evidence of linkage in the same region (NPL = 2.47 at close to D9S277, P = 0.009). The type I transforming growth factor-beta receptor, a prime candidate gene, was excluded as a cause of disease. The results presented here further support the existence of a colorectal cancer susceptibility gene on chromosome 9q and refine its likely location.
Collapse
Affiliation(s)
- Zoe E Kemp
- Molecular and Population Genetics Laboratory, Cancer Research UK, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Gillet LCJ, Schärer OD. Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem Rev 2006; 106:253-76. [PMID: 16464005 DOI: 10.1021/cr040483f] [Citation(s) in RCA: 477] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ludovic C J Gillet
- Institute for Molecular Cancer Research, University of Zürich, Switzerland
| | | |
Collapse
|
24
|
Abstract
Aging of somatic cells can be defined as the gradual loss of the information embedded in the global and local properties of complex macromolecular networks. This loss of information may reflect the dynamic interplay between stochastic factors, such as the accumulation of unrepaired somatic damage, and gene-encoded programmatic responses. This would ultimately result in loss of function, impaired response to environmental challenge, and a progressively increased incidence of disease. Here the authors present the case for aging as a continuous battle between maintaining genomic integrity and ensuring sufficient cell functional mass. Focusing on aging of the liver in rodents, evidence is presented that normal aging is associated with a gradual accumulation of random alterations in the DNA of the genome as a consequence of imperfect DNA repair and a decrease in the rate of DNA damage-induced apoptosis. Apoptosis is the cell's genome maintenance mechanism of last resort and an imbalance towards apoptosis can contribute to manifestations of aging-related phenotypes, as exemplified by mouse models of premature aging due to genetic defects in genome maintenance. Prospects to reset the clock in this zero sum game between survival and the maintenance of phenotypic integrity will be discussed.
Collapse
Affiliation(s)
- Yousin Suh
- Department of Molecular Medicine and Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, Texas 78425, USA.
| | | |
Collapse
|
25
|
Dollé MET, Busuttil RA, Garcia AM, Wijnhoven S, van Drunen E, Niedernhofer LJ, van der Horst G, Hoeijmakers JHJ, van Steeg H, Vijg J. Increased genomic instability is not a prerequisite for shortened lifespan in DNA repair deficient mice. Mutat Res 2006; 596:22-35. [PMID: 16472827 DOI: 10.1016/j.mrfmmm.2005.11.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 10/31/2005] [Accepted: 11/01/2005] [Indexed: 11/16/2022]
Abstract
Genetic defects in nucleotide excision repair (NER) are associated with premature aging, including cancer, in both humans and mice. To investigate the possible role of increased somatic mutation accumulation in the accelerated appearance of symptoms of aging as a consequence of NER deficiency, we crossed four different mouse mutants, Xpa-/-, Ercc6(Csb)-/-, Ercc2(Xpd)m/m and Ercc1-/m, with mice harboring lacZ-reporter genes to assess mutant frequencies and spectra in different organs during aging. The results indicate an accelerated accumulation of mutations in both liver and kidney of Xpa defective mice, which correlated with a trend towards a decreased lifespan. Until 52 weeks, Xpa deficiency resulted mainly in 1-bp deletions. At old age (104 weeks), the spectrum had undergone a shift, in both organs, to G:C-->T:A transversions, a signature mutation of oxidative DNA damage. Ercc1-/m mice, with their short lifespan of 6 months and severe symptoms of premature aging, especially in liver and kidney, displayed an even faster lacZ-mutant accumulation in liver. In this case, the excess mutations were mostly genome rearrangements. Csb-/- mice, with mild premature aging features and no reduction in lifespan, and Xpdm/m mice, exhibiting prominent premature aging features and about 20% reduction in lifespan, did not have elevated lacZ-mutant frequencies. It is concluded that while increased genomic instability could play a causal role in the mildly accelerated aging phenotype in the Xpa-null mice or in the severe progeroid symptoms of the Ercc1-mutant mice, shortened lifespan in mice with defects in transcription-related repair do not depend upon increased mutation accumulation.
Collapse
Affiliation(s)
- Martijn E T Dollé
- National Institute of Public Health and Environment, Bilthoven, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Tsai PS, Nielen M, van der Horst GTJ, Colenbrander B, Heesterbeek JAP, van Vlissingen JMF. The Effect of DNA Repair Defects on Reproductive Performance in Nucleotide Excision Repair (NER) Mouse Models: An Epidemiological Approach. Transgenic Res 2005; 14:845-57. [PMID: 16315091 DOI: 10.1007/s11248-005-1772-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 08/05/2005] [Indexed: 10/25/2022]
Abstract
In this study, we used an epidemiological approach to analyze an animal database of DNA repair deficient mice on reproductive performance in five Nucleotide Excision Repair (NER) mutant mouse models on a C57BL/6 genetic background, namely CSA, CSB, XPA, XPC [models for the human DNA repair disorders Cockayne Syndrome (CS) and xeroderma pigmentosum (XP), respectively] and mHR23B (not associated with human disease). This approach allowed us to detect and quantify reproductive effects based on a relatively small number of matings. We measured and quantified the scale of the effect between factors that might influence reproductive performance (i.e. age at co-housing, seasons) and reproductive parameters (i.e. litter size and pairing-to-birth interval -'pbi'). Besides, we detected and quantified the differences in reproductive performance between wild type mice and heterozygous/homozygous NER mutant mice. From our analyses, we found impaired reproduction in heterozygous and homozygous knock out mice; in particular, reduced litter size and lengthened pbi was related to the NER mutation-mHR23B, in heterozygous couples, even if they were otherwise phenotypically normal. Heterozygous mHR23B couples produced a 6.6-fold lower number of mHR23B(-/-) pups than indicated by Mendelian expectation; other genetic deficiencies studied were not statistically significant from each other or wild type controls. We concluded that careful epidemiological evaluations by analysis of animal database could provide reliable information on reproductive performance and detect deviations that would remain unnoticed without this. Also, some managerial aspects of mouse breeding could be evaluated.
Collapse
Affiliation(s)
- P S Tsai
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | | | | | | | | | | |
Collapse
|
27
|
Backendorf C, de Wit J, van Oosten M, Stout GJ, Mitchell JR, Borgstein AM, van der Horst GT, de Gruijl FR, Brouwer J, Mullenders LHF, Hoeijmakers JHJ. Repair characteristics and differentiation propensity of long-term cultures of epidermal keratinocytes derived from normal and NER-deficient mice. DNA Repair (Amst) 2005; 4:1325-36. [PMID: 16182615 DOI: 10.1016/j.dnarep.2005.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 07/20/2005] [Accepted: 07/21/2005] [Indexed: 01/15/2023]
Abstract
Epidermal keratinocytes constitute the most relevant cellular system in terms of DNA damage because of their continuous exposure to UV light and genotoxic chemicals from the environment. Here, we describe the establishment of long-term keratinocyte cultures from the skin of wild-type and nucleotide excision repair (NER) deficient mouse mutants. The use of media with a lowered calcium concentration and the inclusion of keratinocyte growth factor (KGF) permitted repeated passaging of the cultures and resulted in the generation of stable cell lines that proliferated efficiently. The cells retained their normal ability to engage into terminal differentiation when triggered with high calcium concentrations or after suspension in semi-solid medium. The cultures reflected the cellular characteristics (i.e. repair and transcription profiles) of the Xpa(-/-), Xpc(-/-), Csb(-/-) and Xpd(TTD) mouse models from which they were derived. For instance, in line with earlier in vivo results, Xpd(TTD) keratinocytes were disturbed in their ability to terminally differentiate in vitro. This was concluded from a delay in calcium-induced stratification and by reduced transcription of both early (keratin 10) and late (loricrin) terminal differentiation marker genes. UDS measurements in wild-type cells committed to terminal differentiation did not reveal any reduction in global DNA repair that could be indicative of differentiation associated repair (DAR) as found in neurons. UV sensitivity data revealed that in keratinocytes global genome repair contributes more to cell survival than previously concluded from fibroblast studies. It is inferred that these fully controllable in vitro cultures will be a valuable tool to assess critical parameters of genome care-taking systems in cell proliferation and differentiation.
Collapse
Affiliation(s)
- Claude Backendorf
- Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Stout GJ, Oosten MV, Acherrat FZ, Wit JD, Vermeij WP, Mullenders LHF, Gruijl FRD, Backendorf C. Selective DNA damage responses in murine Xpa-/-, Xpc-/- and Csb-/- keratinocyte cultures. DNA Repair (Amst) 2005; 4:1337-44. [PMID: 16182614 DOI: 10.1016/j.dnarep.2005.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 07/20/2005] [Accepted: 07/21/2005] [Indexed: 11/18/2022]
Abstract
Cellular DNA damage responses (DDRs) are induced by unrepaired DNA lesions and constitute a protective back-up system that prevents the expansion of damaged cells. These cellular signaling pathways trigger either growth arrest or cell death and are believed to be major components of an early anti-cancer barrier. Cultures of C57BL/6J keratinocytes with various defects in NER sub-pathways allowed us to follow the kinetics of DDRs in an isogenic background and in the proper (physiologically relevant) target cells, supplementing earlier studies in heterogenic human fibroblasts. In a series of well-controlled parallel experiments we have shown that, depending on the NER deficiency, murine keratinocytes elicited highly selective DDRs. After a dose of UV-B that did not affect wild-type keratinocytes, Xpa(-/-) keratinocytes (complete NER deficiency) showed a rapid depletion of DNA replicating S-phase cells, a transient increase in quiescent S-phase cells (not replicating DNA), followed by massive apoptosis. Csb(-/-) keratinocytes (TC-NER deficient) responded by a more sustained increase in QS-phase cells and appeared more resistant to UV-B induced apoptosis than Xpa(-/-). In irradiated Xpc(-/-) keratinocytes (GG-NER deficient) the loss of replicating S-phase cells was associated with a gradual build-up of both QS-phase cells and cells arrested in late-S phase, in complete absence of apoptosis. Our analysis complements and extends previous in vivo investigations and highlights both similarities and differences with earlier fibroblast studies. In vitro cultures of murine keratinocytes provide a new tool to unravel the molecular mechanisms of UV-induced cellular stress responses in great detail and in a physiologically relevant background. This will be essential to fully appreciate the implications of DDRs in tumor suppression and cancer prevention.
Collapse
Affiliation(s)
- Gerdine J Stout
- Department of Dermatology, Leiden University Medical Centre, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Latonen L, Laiho M. Cellular UV damage responses--functions of tumor suppressor p53. Biochim Biophys Acta Rev Cancer 2005; 1755:71-89. [PMID: 15921859 DOI: 10.1016/j.bbcan.2005.04.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 04/07/2005] [Accepted: 04/21/2005] [Indexed: 02/06/2023]
Abstract
DNA damage, provoked by ultraviolet (UV) radiation, evokes a cellular damage response composed of activation of stress signaling and DNA checkpoint functions. These are translated to responses of replicative arrest, damage repair, and apoptosis aimed at cellular recovery from the damage. p53 tumor suppressor is a central stress response protein, activated by multiple endogenous and environmental insults, including UV radiation. The significance of p53 in the DNA damage responses has frequently been reviewed in the context of ionizing radiation or other double strand break (DSB)-inducing agents. Despite partly similar patterns, the molecular events following UV radiation are, however, distinct from the responses induced by DSBs and are profoundly coupled with transcriptional stress. These are illustrated, e.g., by the UV damage-specific translocations of Mdm2, promyelocytic leukemia protein, and nucleophosmin and their interactions with p53. In this review, we discuss UV damage-provoked cellular responses and the functions of p53 in damage recovery and cell death.
Collapse
Affiliation(s)
- Leena Latonen
- Molecular and Cancer Biology Program and Haartman Institute, University of Helsinki, PO Box 63, FIN-00014 Helsinki, Finland
| | | |
Collapse
|
30
|
Wijnhoven SWP, Beems RB, Roodbergen M, van den Berg J, Lohman PHM, Diderich K, van der Horst GTJ, Vijg J, Hoeijmakers JHJ, van Steeg H. Accelerated aging pathology in ad libitum fed Xpd(TTD) mice is accompanied by features suggestive of caloric restriction. DNA Repair (Amst) 2005; 4:1314-24. [PMID: 16115803 DOI: 10.1016/j.dnarep.2005.07.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 07/06/2005] [Accepted: 07/06/2005] [Indexed: 11/29/2022]
Abstract
Trichothiodystrophy (TTD) patients with a mutation in the XPD gene of nucleotide excision repair (NER) have a short life span and show various features of premature aging, thereby linking DNA damage to the aging process. Xpd(TTD) mutant mice share many features with TTD patients, including a shorter life span, accompanied by a segmental progeroid phenotype. Here we report new pathology features supportive to the premature aging phenotype of Xpd(TTD) mice. Strikingly, accelerated aging pathology is accompanied by signs suggestive of caloric restriction (CR), a condition usually linked to retardation of age-related pathology and life extension. Accelerated aging symptoms in Xpd(TTD) mice are most likely due to accumulation of endogenously generated DNA damage and compromised transcription leading to cell death, whereas CR symptoms may reflect the need of Xpd(TTD) mice to reduce metabolism (ROS production) in an attempt to extend their life span. Our current findings in Xpd(TTD) mice further strengthen the link between DNA damage, repair and aging.
Collapse
Affiliation(s)
- Susan W P Wijnhoven
- National Institute of Public Health and the Environment, Laboratory of Toxicology, Pathology and Genetics, Bilthoven, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hoogervorst EM, van Steeg H, de Vries A. Nucleotide excision repair- and p53-deficient mouse models in cancer research. Mutat Res 2005; 574:3-21. [PMID: 15914203 DOI: 10.1016/j.mrfmmm.2005.01.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 11/29/2004] [Accepted: 01/10/2005] [Indexed: 05/02/2023]
Abstract
Cancer is caused by the loss of controlled cell growth due to mutational (in)activation of critical genes known to be involved in cell cycle regulation. Three main mechanisms are known to be involved in the prevention of cells from becoming cancerous; DNA repair and cell cycle control, important to remove DNA damage before it will be fixed into mutations and apoptosis, resulting in the elimination of cells containing severe DNA damage. Several human syndromes are known to have (partially) deficiencies in these pathways, and are therefore highly cancer prone. Examples are xeroderma pigmentosum (XP) caused by an inborn defect in the nucleotide excision repair (NER) pathway and the Li-Fraumeni syndrome, which is the result of a germ line mutation in the p53 gene. XP patients develop skin cancer on sun exposed areas at a relatively early age, whereas Li-Fraumeni patients spontaneously develop a wide variety of early onset tumors, including sarcomas, leukemia's and mammary gland carcinomas. Several mouse models have been generated to mimic these human syndromes, providing us information about the role of these particular gene defects in the tumorigenesis process. In this review, spontaneous phenotypes of mice deficient for nucleotide excision repair and/or the p53 gene will be described, together with their responses upon exposure to either chemical carcinogens or radiation. Furthermore, possible applications of these and newly generated mouse models for cancer will be given.
Collapse
Affiliation(s)
- Esther M Hoogervorst
- Laboratory of Toxicology, Pathology and Genetics, National Institute of Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | | | | |
Collapse
|
32
|
Bürkle A, Beneke S, Muiras ML. Poly(ADP-ribosyl)ation and aging. Exp Gerontol 2005; 39:1599-601. [PMID: 15582275 DOI: 10.1016/j.exger.2004.07.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Accepted: 07/30/2004] [Indexed: 11/17/2022]
Abstract
Poly(ADP-ribosyl)ation is a DNA strand break-driven post-translational modification of proteins catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1), with NAD+ serving as substrate. Poly(ADP-ribosyl)ation is triggered by DNA strand breaks, is functionally associated with DNA repair pathways and is a survival factor for cells under low to moderate levels of genotoxic stress. We have previously described a positive correlation between poly(ADP-ribosyl)ation capacity of mononuclear blood cells with longevity of mammalian species. Our comparison of purified recombinant human and rat PARP-1 revealed that this correlation might be explained in part by evolutionary sequence divergence. We have also developed molecular genetic approaches to modulate the poly(ADP-ribosyl)ation status in living cells. Our results revealed that PARP-1 acts as a negative regulator of DNA damage-induced genomic instability, the latter being known as an important driving force for carcinogenesis. Our recent data obtained in transgenic mice with selective expression of a dominant negative version of PARP-1 in basal skin keratinocytes indicate that PARP-1 activity suppresses skin papilloma formation in a two-stage skin carcinogenesis protocol. It is tempting to speculate that increased poly(ADP-ribosyl)ation capacity in long-lived species might help retard the accumulation of DNA damage and of mutations and thus slow down the rate of aging and of carcinogenesis more efficiently as compared with short-lived animals.
Collapse
Affiliation(s)
- Alexander Bürkle
- Department of Gerontology, University of Newcastle, Newcastle upon Tyne, UK.
| | | | | |
Collapse
|
33
|
Hoogervorst EM, van Oostrom CTM, Beems RB, van Benthem J, van den Berg J, van Kreijl CF, Vos JG, de Vries A, van Steeg H. 2-AAF-induced tumor development in nucleotide excision repair-deficient mice is associated with a defect in global genome repair but not with transcription coupled repair. DNA Repair (Amst) 2005; 4:3-9. [PMID: 15533832 DOI: 10.1016/j.dnarep.2004.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Indexed: 11/24/2022]
Abstract
The nucleotide excision repair (NER) pathway comprises two sub-pathways, transcription coupled repair (TCR) and global genome repair (GGR). To establish the importance of these separate sub-pathways in tumor suppression, we exposed mice deficient for either TCR (Csb), GGR (Xpc) or both (Xpa) to 300 ppm 2-acetylaminofluorene (in feed, ad libitum) in a unique comparative exposure experiment. We found that cancer proneness was directly linked to a defect in the GGR pathway of NER as both Xpa and Xpc mice developed significantly more liver tumors upon 2-AAF exposure than wild type or Csb mice. In contrast, a defect in TCR appeared to act tumor suppressive, leading to a lower hepatocellular tumor response in Xpa mice (tumor incidence of 25%) as compared to Xpc mice (53% tumor-bearing mice). The link between deficient GGR and tumor proneness was most pronounced in the liver, but this phenomenon was also found in the urinary bladder. As tumor induction by 2-AAF appeared almost exclusively dependent on a defect in GGR, we examined whether gene mutation induction in the non-transcribed lacZ locus could reliably predict tumor risk. Interestingly, however, short-term 2-AAF exposure induced lacZ mutant levels in Csb mice almost as high as those found in Xpa or Xpc mice. This indicates that lacZ mutant frequencies are not correlated with a specific DNA repair defect and eventual tumor outcome, at least not in the experimental design presented here.
Collapse
Affiliation(s)
- Esther M Hoogervorst
- Laboratory of Toxicology, Pathology and Genetics, National Institute of Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gutiérrez L, Merino C, Vázquez M, Reynaud E, Zurita M. RNA polymerase II 140wimp mutant and mutations in the TFIIH subunit XPB differentially affect homeotic gene expression in Drosophila. Genesis 2005; 40:58-66. [PMID: 15354295 DOI: 10.1002/gene.20066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mutations in the XPB and XPD helicases of the DNA repair/transcription factor TFIIH are involved in several human genetic disorders. An unanswered problem concerning the complexity of the phenotype-genotype relationship is why mutations in individual subunits of TFIIH produce specific phenotypes and not many others. In order to investigate this question we tested whether mutations in the Drosophila XPB homolog, haywire (hay), would modify homeotic derepression phenotypes. In this work, we report that mutations in hay and in the 140-kDa subunit of the RNA polymerase II (RpII140wimp) act as dominant modifiers of the derepression phenotypes of the Sex combs reduced (Scr) and Ultrabithorax (Ubx) genes. The hay mutations only weakly suppress the Scr derepression phenotype caused by the Antp(Scx) mutation but not by Polycomb. In contrast, the RpII140wimp mutation strongly suppresses both Scr derepression phenotypes. In addition, the RpII140wimp also generates phenotypes indicative of loss of Ubx function. On the other hand, all the derepression homeotic phenotypes are sensitive to the generalized reduction of transcription levels when the flies are grown with actinomycin D. We also show that different promoter control regions have differential sensitivity to different hay alleles. All these results support that although TFIIH is a basal transcription factor, mutations in the subunit encoded by hay have specific effects in the transcription of some genes.
Collapse
Affiliation(s)
- Luis Gutiérrez
- Department of Developmental Genetics and Molecular Physiology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, México
| | | | | | | | | |
Collapse
|
35
|
Neumann AS, Sturgis EM, Wei Q. Nucleotide excision repair as a marker for susceptibility to tobacco-related cancers: a review of molecular epidemiological studies. Mol Carcinog 2005; 42:65-92. [PMID: 15682379 DOI: 10.1002/mc.20069] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
DNA repair is a complicated biological process consisting of several distinct pathways that play a central role in maintaining genomic stability. Research on DNA repair and cancer risk is a vital, emerging field that recently has seen rapid advances facilitated by the completion of the Human Genome Project. In this review, we described phenotypic and genotypic markers of nucleotide excision repair (NER) that have been used in molecular epidemiology studies. We summarized the population-based studies to date that have examined the association between DNA repair capacity phenotype and genetic polymorphisms of the NER genes and risk of tobacco-related cancers, including cancers of the lung, head and neck, prostate, bladder, breast, and esophagus. We also included studies of melanoma and nonmelanoma skin cancers because individuals with defective NER, such as patients with xeroderma pigmentosum (XP) are highly susceptible to ultraviolet light (UV)-induced melanoma and nonmelanoma skin cancers. The published data provide emerging evidence that DNA repair capacity may contribute to genetic susceptibility to cancers in the general population. However, many of the studies are limited in terms of the size of the study populations. Furthermore, all published findings are still considered preliminary, the assays used in the studies have yet to be validated, and the results need to be confirmed. Large and well-designed population-based studies are warranted to assess gene-gene and gene-environment interactions and to ultimately determine, which biomarkers of DNA repair capacity are useful for screening high-risk populations for primary prevention and early detection of tobacco-related cancers.
Collapse
Affiliation(s)
- Ana S Neumann
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | | | | |
Collapse
|
36
|
Ishikawa T, Zhang SSM, Qin X, Takahashi Y, Oda H, Nakatsuru Y, Ide F. DNA repair and cancer: lessons from mutant mouse models. Cancer Sci 2004; 95:112-7. [PMID: 14965359 PMCID: PMC11158213 DOI: 10.1111/j.1349-7006.2004.tb03190.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
DNA damage, if the repair process, especially nucleotide excision repair (NER), is compromised or the lesion is repaired by some other error-prone mechanism, causes mutation and ultimately contributes to neoplastic transformation. Impairment of components of the DNA damage response pathway (e.g., p53) is also implicated in carcinogenesis. We currently have considerable knowledge of the role of DNA repair genes as tumor suppressors, both clinically and experimentally. The deleterious clinical consequences of inherited defects in DNA repair system are apparent from several human cancer predisposition syndromes (e.g., NER-compromised xeroderma pigmentosum [XP] and p53-deficient Li-Fraumeni syndrome). However, experimental studies to support the clinical evidence are hampered by the lack of powerful animal models. Here, we review in vivo experimental data suggesting the protective function of DNA repair machinery in chemical carcinogenesis. We specifically focus on the three DNA repair genes, O(6)-methylguanine-DNA methyltransferase gene (MGMT ), XP group A gene (XPA) and p53. First, mice overexpressing MGMT display substantial resistance to nitrosamine-induced hepatocarcinogenesis. In addition, a reduction of spontaneous liver tumors and longer survival times were evident. However, there are no known mutations in the human MGMT and therefore no associated cancer syndrome. Secondly, XPA mutant mice are indeed prone to spontaneous and carcinogen-induced tumorigenesis in internal organs (which are not exposed to sunlight). The concomitant loss of p53 resulted in accelerated onset of carcinogenesis. Finally, p53 null mice are predisposed to brain tumors upon transplacental exposure to a carcinogen. Accumulated evidence in these three mutant mouse models firmly supports the notion that the DNA repair system is vital for protection against cancer.
Collapse
Affiliation(s)
- Takatoshi Ishikawa
- Department of Pathology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Organisms with renewable tissues use a network of genetic pathways and cellular responses to prevent cancer. The main mammalian tumour-suppressor pathways evolved from ancient mechanisms that, in simple post-mitotic organisms, act predominantly to regulate embryogenesis or to protect the germline. The shift from developmental and/or germline maintenance in simple organisms to somatic maintenance in complex organisms might have evolved at a cost. Recent evidence indicates that some mammalian tumour-suppressor mechanisms contribute to ageing. How might this have happened, and what are its implications for our ability to control cancer and ageing?
Collapse
Affiliation(s)
- Judith Campisi
- Lawrence Berkeley National Laboratory, Life Sciences Division, 1 Cyclotron Road, Berkeley, California 94720, USA.
| |
Collapse
|
38
|
Dollfus H, Porto F, Caussade P, Speeg-Schatz C, Sahel J, Grosshans E, Flament J, Sarasin A. Ocular manifestations in the inherited DNA repair disorders. Surv Ophthalmol 2003; 48:107-22. [PMID: 12559331 DOI: 10.1016/s0039-6257(02)00400-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Deoxyribonucleic acid (DNA) repair is a fundamental process designed to keep the integrity of genomic DNA that is continuously challenged by intrinsic or environmental induced alterations. Numerous genes involved in DNA repair have been cloned and are involved in different DNA repair pathways: base excision repair, nucleotide excision repair, mismatch repair, DNA recombination. Inherited conditions due to mutations in DNA repair genes include mainly: xeroderma pigmentosum, Cockayne syndrome, Trichothiodystrophy, Bloom syndrome, Rothmund-Thomson syndrome, and Werner syndrome. Minor to major ocular manifestations occur in these syndromes. For example, eyelid skin cancers in xeroderma pigmentosum and retinal dystrophy in Cockayne syndrome are major features of these syndromes. This review focuses on the DNA repair pathways, the general and ocular features of the related syndromes, the laboratory tests useful for diagnosis, and the general processes implied with DNA repair (ultraviolet sensitivity, carcinogenesis, apoptosis, oxydative stress, and premature aging).
Collapse
Affiliation(s)
- Hélène Dollfus
- Fédération de Génétique Médicale, Clinique Ophtalmologique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Krtolica A, Campisi J. Cancer and aging: a model for the cancer promoting effects of the aging stroma. Int J Biochem Cell Biol 2002; 34:1401-14. [PMID: 12200035 DOI: 10.1016/s1357-2725(02)00053-5] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The incidence of cancer rises exponentially with age in humans and many other mammalian species. Malignant tumors are caused by an accumulation of oncogenic mutations. In addition, malignant tumorigenesis requires a permissive tissue environment in which mutant cells can survive, proliferate, and express their neoplastic phenotype. We propose that the age-related increase in cancer results from a synergy between the accumulation of mutations and age-related, pro-oncogenic changes in the tissue milieu. Most age-related cancers derive from the epithelial cells of renewable tissues. An important element of epithelial tissues is the stroma, the sub-epithelial layer composed of extracellular matrix and several cell types. The stroma is maintained, remodeled and repaired by resident fibroblasts, supports and instructs the epithelium, and is essential for epithelial function. One change that occurs in tissues during aging is the accumulation of epithelial cells and fibroblasts that have undergone cellular senescence. Cellular senescence irreversibly arrests proliferation in response to damage or stimuli that put cells at risk for neoplastic transformation. Senescent cells secrete factors that can disrupt tissue architecture and/or stimulate nearby cells to proliferate. We therefore speculate that their presence may create a pro-oncogenic tissue environment that synergizes with oncogenic mutations to drive the rise in cancer incidence with age. Recent evidence lends support to this idea, and suggests that senescent stromal fibroblasts may be particularly adept at creating a tissue environment that can promote the development of age-related epithelial cancers.
Collapse
Affiliation(s)
- Ana Krtolica
- Lawrence Berkeley National Laboratory, Life Sciences Division, Mailstop 84-171, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | | |
Collapse
|
40
|
Mo X, Dynan WS. Subnuclear localization of Ku protein: functional association with RNA polymerase II elongation sites. Mol Cell Biol 2002; 22:8088-99. [PMID: 12391174 PMCID: PMC134733 DOI: 10.1128/mcb.22.22.8088-8099.2002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ku is an abundant nuclear protein with an essential function in the repair of DNA double-strand breaks. Various observations suggest that Ku also interacts with the cellular transcription machinery, although the mechanism and significance of this interaction are not well understood. In the present study, we investigated the subnuclear distribution of Ku in normally growing human cells by using confocal microscopy, chromatin immunoprecipitation, and protein immunoprecipitation. All three approaches indicated association of Ku with RNA polymerase II (RNAP II) elongation sites. This association occurred independently of the DNA-dependent protein kinase catalytic subunit and was highly selective. There was no detectable association with the initiating isoform of RNAP II or with the general transcription initiation factors. In vitro protein-protein interaction assays demonstrated that the association of Ku with elongation proteins is mediated, in part, by a discrete C-terminal domain in the Ku80 subunit. Functional disruption of this interaction with a dominant-negative mutant inhibited transcription in vitro and in vivo and suppressed cell growth. These results suggest that association of Ku with transcription sites is important for maintenance of global transcription levels. Tethering of double-strand break repair proteins to defined subnuclear structures may also be advantageous in maintenance of genome stability.
Collapse
Affiliation(s)
- Xianming Mo
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | |
Collapse
|
41
|
Muotri AR, Marchetto MCN, Zerbini LFC, Libermann TA, Ventura AM, Sarasin A, Menck CFM. Complementation of the DNA repair deficiency in human xeroderma pigmentosum group a and C cells by recombinant adenovirus-mediated gene transfer. Hum Gene Ther 2002; 13:1833-44. [PMID: 12396616 DOI: 10.1089/104303402760372936] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nucleotide excision repair (NER) is one of the most versatile DNA repair mechanisms, ensuring the proper functioning and trustworthy transmission of genetic information in all living cells. The phenotypic consequences caused by NER defects in humans are autosomal recessive diseases such as xeroderma pigmentosum (XP). This syndrome is the most sun-sensitive disorder leading to a high frequency of skin cancer. The majority of patients with XP carry mutations in the XPA or XPC genes that encode proteins involved in recognition of DNA damage induced by UV light at the beginning of the NER process. Cells cultured from XPA and XPC patients are hypersensitive to UV light, as a result of malfunctioning DNA repair. So far there is no effective long-term treatment for these patients. Skin cancer prevention can only be achieved by strict avoidance of sunlight exposure or by the use of sunscreen agents. We have constructed recombinant adenoviruses carrying the XPA and XPC genes that were used to infect XP-A and XP-C immortalized and primary fibroblast cell lines. UV survival curves and unscheduled DNA synthesis confirmed complete phenotypic reversion in XP DNA repair deficient cells with no trace of cytotoxicity. Moreover, transgene expression is stable for at least 60 days after infection. This efficient adenovirus gene delivery approach may be an important tool to better understand XP deficiency and the causes of DNA damage induced skin cancer.
Collapse
Affiliation(s)
- Alysson Renato Muotri
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
42
|
Bürkle A, Beneke S, Brabeck C, Leake A, Meyer R, Muiras ML, Pfeiffer R. Poly(ADP-ribose) polymerase-1, DNA repair and mammalian longevity. Exp Gerontol 2002; 37:1203-5. [PMID: 12470832 DOI: 10.1016/s0531-5565(02)00144-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cellular DNA repair activities can be expected to control the rate of the ageing process by keeping the steady-state levels of DNA damage, which is continuously induced by endogenous and exogenous damaging agents, at low levels. Poly(ADP-ribosyl)ation is one of the immediate biochemical reactions of eukaryotic cells to DNA damage and is functionally associated with DNA base-excision repair and strand break repair. Here we review the current state of the art concerning the relationship between DNA strand break repair, poly(ADP-ribosyl)ation, maintenance of genomic stability and mammalian life span.
Collapse
Affiliation(s)
- Alexander Bürkle
- Department of Gerontology, Institute for Ageing and Health, Wolfson Research Centre, University of Newcastle, NGH, Westgate Road, IHE, Newcastle upon Tyne NE4 6BE, UK.
| | | | | | | | | | | | | |
Collapse
|
43
|
Merino C, Reynaud E, Vázquez M, Zurita M. DNA repair and transcriptional effects of mutations in TFIIH in Drosophila development. Mol Biol Cell 2002; 13:3246-56. [PMID: 12221129 PMCID: PMC124156 DOI: 10.1091/mbc.e02-02-0087] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mutations in XPB and XPD TFIIH helicases have been related with three hereditary human disorders: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. The dual role of TFIIH in DNA repair and transcription makes it difficult to discern which of the mutant TFIIH phenotypes is due to defects in any of these different processes. We used haywire (hay), the Drosophila XPB homolog, to dissect this problem. Our results show that when hay dosage is affected, the fly shows defects in structures that require high levels of transcription. We found a genetic interaction between hay and cdk7, and we propose that some of these phenotypes are due to transcriptional deficiencies. We also found more apoptotic cells in imaginal discs and in the CNS of hay mutant flies than in wild-type flies. Because this abnormal level of apoptosis was not detected in cdk7 flies, this phenotype could be related to defects in DNA repair. In addition the apoptosis induced by p53 Drosophila homolog (Dmp53) is suppressed in heterozygous hay flies.
Collapse
Affiliation(s)
- Carlos Merino
- Department of Genetics and Molecular Physiology, Institute of Biotechnology, Universidad Nacional Autónoma de México, Morelos 62250, México
| | | | | | | |
Collapse
|
44
|
Hays JB. Arabidopsis thaliana, a versatile model system for study of eukaryotic genome-maintenance functions. DNA Repair (Amst) 2002; 1:579-600. [PMID: 12509283 DOI: 10.1016/s1568-7864(02)00093-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The genome of the model plant Arabidopsis thaliana encodes many orthologs of human genome-maintenance proteins, and in several important cases plant DNA repair and mutation-antagonism functions resemble their mammalian counterparts more closely than do those of established microbial models. These orthologs, in conjunction with the powerful tools now available for work with Arabidopsis and the practical advantages of its small size and rapid life cycle, now make it an attractive model system for study of eukaryotic DNA repair and mutagenesis. Already, null mutations that inactivate proteins involved in repair of DNA double-strand breaks or in DNA translesion synthesis and are lethal in mice have proved to be tolerated by plants. This review compares in some detail the genome-maintenance activities encoded by plants, mammals and microbes, and describes important Arabidopsis tools and life cycle characteristics. It concludes with selected examples that illustrate Arabidopsis advantages and/or reveal new insights into genome-maintenance functions of general interest.
Collapse
Affiliation(s)
- John B Hays
- Department of Environmental and Molecular Toxicology, 1007 ALS Building, Oregon State University, Corvallis, OR 97331-7301, USA.
| |
Collapse
|
45
|
Garfinkel DJ, Bailis AM. Nucleotide Excision Repair, Genome Stability, and Human Disease: New Insight from Model Systems. J Biomed Biotechnol 2002; 2:55-60. [PMID: 12488584 PMCID: PMC153785 DOI: 10.1155/s1110724302201023] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Nucleotide excision repair (NER) is one of several DNA repair pathways that are universal throughout phylogeny. NER has a broad substrate specificity and is capable of removing several classes of lesions to the DNA, including those that accumulate upon exposure to UV radiation. The loss of this activity in NER-defective mutants gives rise to characteristic sensitivities to UV that, in humans, is manifested as a greatly elevated sensitivity to exposure to the sun. Xeroderma pigmentosum (XP), Cockaynes syndrome (CS), and trichothiodystrophy (TTD) are three, rare, recessively inherited human diseases that are linked to these defects. Interestingly, some of the symptoms in afflicted individuals appear to be due to defects in transcription, the result of the dual functionality of several components of the NER apparatus as parts of transcription factor IIH (TFIIH). Studies with several model systems have revealed that the genetic and biochemical features of NER are extraordinarily conserved in eukaryotes. One system that has been studied very closely is the budding yeast Saccharomyces cerevisiae. While many yeast NER mutants display the expected increases in UV sensitivity and defective transcription, other interesting phenotypes have also been observed. Elevated mutation and recombination rates, as well as increased frequencies of genome rearrangement by retrotransposon movement and recombination between short genomic sequences have been documented. The potential relevance of these novel phenotypes to disease in humans is discussed.
Collapse
Affiliation(s)
- David J. Garfinkel
- Gene Regulation and Chromosome Biology Laboratory, NCI at Frederick, Frederick, MD 21702, USA
| | - Adam M. Bailis
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
46
|
Mullenders LH, Berneburg M. Photoimmunology and nucleotide excision repair: impact of transcription coupled and global genome excision repair. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2001; 65:97-100. [PMID: 11809364 DOI: 10.1016/s1011-1344(01)00244-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ultraviolet (UV) light generates damage to DNA which is removed by a versatile mechanism called nucleotide excision repair (NER). There are two subpathways for NER: the transcription coupled repair (TCR) pathway which removes DNA damage from actively transcribed genes and the global genome repair pathway which removes damage throughout the genome. Most types of DNA lesions are processed more rapidly by TCR than by GGR. It is widely accepted that immunological processes play a pivotal role in the generation of skin tumours induced by exposure to ultraviolet light and first evidence is emerging that GGR and TCR play different roles in skin reactions such as erythema and delayed type hypersensitivity. The relationship between UV-induced responses of the skin and the two NER subpathways is discussed.
Collapse
Affiliation(s)
- L H Mullenders
- Department of Radiation Genetics and Chemical Mutagenesis-Medical Genetics Center, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL, Leiden, The Netherlands.
| | | |
Collapse
|
47
|
Costa RM, Morgante PG, Berra CM, Nakabashi M, Bruneau D, Bouchez D, Sweder KS, Van Sluys MA, Menck CF. The participation of AtXPB1, the XPB/RAD25 homologue gene from Arabidopsis thaliana, in DNA repair and plant development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 28:385-395. [PMID: 11737776 DOI: 10.1046/j.1365-313x.2001.01162.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nucleotide excision repair in Arabidopsis thaliana differs from other eukaryotes as it contains two paralogous copies of the corresponding XPB/RAD25 gene. In this work, the functional characterization of one copy, AtXPB1, is presented. The plant gene was able to partially complement the UV sensitivity of a yeast rad25 mutant strain, thus confirming its involvement in nucleotide excision repair. The biological role of AtXPB1 protein in A. thaliana was further ascertained by obtaining a homozygous mutant plant containing the AtXPB1 genomic sequence interrupted by a T-DNA insertion. The 3' end of the mutant gene is disrupted, generating the expression of a truncated mRNA molecule. Despite the normal morphology, the mutant plants presented developmental delay, lower seed viability and a loss of germination synchrony. These plants also manifested increased sensitivity to continuous exposure to the alkylating agent MMS, thus suggesting inefficient DNA damage removal. These results indicate that, although the duplication seems to be recent, the features described for the mutant plant imply some functional or timing expression divergence between the paralogous AtXPB genes. The AtXPB1 protein function in nucleotide excision repair is probably required for the removal of lesions during seed storage, germination and early plant development.
Collapse
Affiliation(s)
- R M Costa
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, SP, Brasil
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
After an introduction on the development of biological ageing research in the Netherlands during the past decades, 606 papers on aging published by Dutch institutes in the period 1991-2000, collected from PubMed, were analysed for their relevance to research into biological ageing. For the period 1996-2000, the total number of research papers on biological ageing amounted to 142, which accounts for 23% of all publications on ageing in that period. The number of publications per year did not change. On the basis of these papers and additional information provided by research groups a comprehensive overview of biological ageing research in the Netherlands is presented, together with an extensive literature list. Ageing of the central nervous system (CNS), of the endocrinological system and of the cardiovascular system are the topics most studied. It is concluded that general biological ageing research has not increased in the Netherlands over the last ten years, and that the infrastructure for basic biological ageing research in the Netherlands is weak.
Collapse
Affiliation(s)
- P Huijbers
- Netherlands Institute for Care and Welfare, NIZW, P.O. Box 19152, 3500 DD Utrecht, The Netherlands.
| | | |
Collapse
|
49
|
Itin PH, Sarasin A, Pittelkow MR. Trichothiodystrophy: update on the sulfur-deficient brittle hair syndromes. J Am Acad Dermatol 2001; 44:891-920; quiz 921-4. [PMID: 11369901 DOI: 10.1067/mjd.2001.114294] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Trichothiodystrophy (TTD) refers to a heterogeneous group of autosomal recessive disorders that share the distinctive features of short, brittle hair and an abnormally low sulfur content. Within the spectrum of the TTD syndromes are numerous interrelated neuroectodermal disorders. The TTD syndromes show defective synthesis of high-sulfur matrix proteins. Abnormalities in excision repair of ultraviolet (UV)-damaged DNA are recognized in about half of the patients. Three distinct autosomal recessive syndromes are associated with nucleotide excision repair (NER) defects: the photosensitive form of TTD, xeroderma pigmentosum, and Cockayne syndrome. The unifying feature of these conditions is exaggerated sensitivity to sunlight and UV radiation. In contrast to patients with xeroderma pigmentosum, no increase of skin cancers in patients with TTD has been observed. Genetically, 3 complementation groups have been characterized among photosensitive patients with TTD. Most patients exhibit mutations on the two alleles of the XPD gene. Rarely, mutated XPB gene or an unidentified TTD-A gene may result in TTD. In UV-sensitive TTD, the TFIIH transcription factor containing XPB and XPD helicase activities necessary for both transcription initiation and DNA repair is damaged. Beyond deficiency in the NER pathway, it is hypothesized that basal transcription may be altered leading to decreased transcription of specific genes. Depressed RNA synthesis may account for some clinical features, such as growth retardation, neurologic abnormalities, and brittle hair and nails. Therefore the attenuated expression of some proteins in differentiated cells is most likely explained by a mechanism distinct from DNA repair deficiency. The first transgenic mouse models for NER deficiencies have been generated. The TTD mouse as well as related cell models will provide important tools to understand the complex relationships between defects in DNA repair, low-sulfur hair shaft disorders, and the genotype-phenotype correlates for this constellation of inherited disorders, including the lack of predisposition to cancer in patients with TTD.
Collapse
Affiliation(s)
- P H Itin
- Department of Dermatology, University of Basel and Kantonsspital Aarau, Switzerland
| | | | | |
Collapse
|
50
|
Abstract
The early notion that cancer is caused by mutations in genes critical for the control of cell growth implied that genome stability is important for preventing oncogenesis. During the past decade, knowledge about the mechanisms by which genes erode and the molecular machinery designed to counteract this time-dependent genetic degeneration has increased markedly. At the same time, it has become apparent that inherited or acquired deficiencies in genome maintenance systems contribute significantly to the onset of cancer. This review summarizes the main DNA caretaking systems and their impact on genome stability and carcinogenesis.
Collapse
Affiliation(s)
- J H Hoeijmakers
- MGC Department of Cell Biology and Genetics, Centre for Biomedical Genetics, Erasmus University, PO Box 1738, 3000DR Rotterdam, The Netherlands.
| |
Collapse
|