1
|
Zhai C, Sun X, Zhang S, Xing L. ROBO1 enhanced esophageal carcinoma cell radioresistance through accelerating G3BP2-mediated eIF3A degradation. Cell Death Dis 2025; 16:256. [PMID: 40188129 PMCID: PMC11972380 DOI: 10.1038/s41419-025-07604-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/13/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
Radiotherapy, as a vital means of esophageal cancer treatment, has benefited countless cancer patients, but owing to the occurrence of radio-resistance, its therapeutic efficiency has been dramatically mitigated. Discovering key biomarkers governing radio-tolerance in esophageal cancer and revealing their inherent molecular mechanisms will be of great significance for clinical cancer treatment. Here, we have found roundabout guidance receptor 1 (ROBO1) was significantly upregulated in esophageal cancerous tissues and showed enhanced expression with the development of cancer staging. Cellular experiments demonstrated ROBO1 directly interacted with eukaryotic translation initiation factor 3A (eIF3A) and accelerated its degradation in esophageal cancer cells after irradiation treatment. Mass spectrum analysis further revealed that in response to irradiation, ROBO1, eIF3A and G3BP2 (Ras GTPase-activating protein-binding protein 2) formed a hetero-complex and triggered lysosomes-mediated protein degradation. Knocking down of G3BP2 abrogated the influence of ROBO1 on eIF3A instability. Besides, ROBO1-mediated eIF3A degradation interrupted P53 translation process which in turn provoked downstream mTOR signaling and increased DNA repair associated genes expressions, resulting in radio-resistance enhancement in cancer cells. In conclusion, our findings revealed a novel role of eIF3A in modulating P53/mTOR signaling activity and provided a drug candidate (ROBO1) for overcoming radio-resistance in esophageal cancer.
Collapse
Affiliation(s)
- Chunmei Zhai
- Shandong Provincial Key Laboratory of Precision Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, Shandong, China
| | - Xiaorong Sun
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Song Zhang
- Shandong Provincial Key Laboratory of Precision Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University Affiliated Tumor Hospital, Jinan, Shandong, China.
| | - Ligang Xing
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute; Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
2
|
Majumder T, Khot B, Suriyaarachchi H, Nathan A, Liu G. MYC regulation of the miR-92-Robo1 axis in Slit-mediated commissural axon guidance. Mol Biol Cell 2025; 36:ar50. [PMID: 40020181 PMCID: PMC12005101 DOI: 10.1091/mbc.e24-12-0534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/15/2025] Open
Abstract
In the developing spinal cord, translational repression of Robo1 expression by microRNA-92 (miR-92) in precrossing commissural axons (CAs) inhibits Slit/Robo1-mediated repulsion facilitating commissural axon projection and midline crossing; however, the regulatory mechanisms governing miR-92 expression in the developing commissural neurons are currently lacking. Here, we propose that the transcription factor MYC regulates miR-92 expression in the developing spinal cord (of either sex) to control Robo1 levels in precrossing CAs, modulating Slit/Robo1-mediated repulsion and midline crossing. MYC, miR-92, and Robo1 are differentially expressed in the developing chicken spinal cord. MYC binds to the promoter region upstream of the gga-miR-92 gene in vitro. MYC knockdown dramatically decreases miR-92 expression and increases chicken Robo1 (cRobo1) levels. In contrast, overexpression of MYC significantly induces miR-92 expression and reduces cRobo1 levels. MYC knockdown or overexpression results in significant inhibition or induction of miR-92 activity in the developing chicken spinal cord, respectively. Disruption of the MYC-dependent regulation of the miR-92-cRobo1 axis affects Slit2-mediated CA growth cone collapse in vitro and impairs CA projection and midline crossing in vivo. These results elucidate the role of the MYC-miR-92-cRobo1 axis in Slit2/Robo1-mediated CA repulsion and midline crossing.
Collapse
Affiliation(s)
- Tanushree Majumder
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| | - Bhakti Khot
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| | | | - Anagaa Nathan
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| | - Guofa Liu
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| |
Collapse
|
3
|
Valcárcel-Hernández V, Vancamp P, Butruille L, Remaud S, Guadaño-Ferraz A. Combined deletion of Mct8 and Dio2 impairs SVZ neurogliogenesis and olfactory function in adult mice. Neurobiol Dis 2024; 199:106572. [PMID: 38901782 DOI: 10.1016/j.nbd.2024.106572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/30/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024] Open
Abstract
Within the adult mouse subventricular zone (SVZ), neural stem cells (NSCs) produce neuroblasts and oligodendrocyte precursor cells (OPCs). T3, the active thyroid hormone, influences renewal and commitment of SVZ progenitors. However, how regulators of T3 availability affect these processes is less understood. Using Mct8/Dio2 knockout mice, we investigated the role of MCT8, a TH transporter, and DIO2, the T3-generating enzyme, in regulating adult SVZ-neurogliogenesis. Single-cell RNA-Seq revealed Mct8 expression in various SVZ cell types in WT mice, while Dio2 was enriched in neurons, astrocytes, and quiescent NSCs. The absence of both regulators in the knockout model dysregulated gene expression, increased the neuroblast/OPC ratio and hindered OPC differentiation. Immunostainings demonstrated compromised neuroblast migration reducing their supply to the olfactory bulbs, impairing interneuron differentiation and odor discrimination. These findings underscore the pivotal roles of MCT8 and DIO2 in neuro- and oligodendrogenesis, offering targets for therapeutic avenues in neurodegenerative and demyelinating diseases.
Collapse
Affiliation(s)
- Víctor Valcárcel-Hernández
- Laboratory of Thyroid hormones and CNS, Department of Neurological Diseases and Aging, Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Arturo Duperier 4, 28029 Madrid, Spain; Laboratory of Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d'Histoire Naturelle, F-75005 Paris, France
| | - Pieter Vancamp
- Laboratory of Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d'Histoire Naturelle, F-75005 Paris, France
| | - Lucile Butruille
- Laboratory of Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d'Histoire Naturelle, F-75005 Paris, France
| | - Sylvie Remaud
- Laboratory of Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d'Histoire Naturelle, F-75005 Paris, France.
| | - Ana Guadaño-Ferraz
- Laboratory of Thyroid hormones and CNS, Department of Neurological Diseases and Aging, Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Arturo Duperier 4, 28029 Madrid, Spain.
| |
Collapse
|
4
|
Ordoñez-Razo RM, Gutierrez-López Y, Araujo-Solis MA, Benitez-King G, Ramírez-Sánchez I, Galicia G. Overexpression of miR-25 Downregulates the Expression of ROBO2 in Idiopathic Intellectual Disability. Int J Mol Sci 2024; 25:3953. [PMID: 38612763 PMCID: PMC11011991 DOI: 10.3390/ijms25073953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Idiopathic intellectual disability (IID) encompasses the cases of intellectual disability (ID) without a known cause and represents approximately 50% of all cases. Neural progenitor cells (NPCs) from the olfactory neuroepithelium (NEO) contain the same information as the cells found in the brain, but they are more accessible. Some miRNAs have been identified and associated with ID of known etiology. However, in idiopathic ID, the effect of miRNAs is poorly understood. The aim of this study was to determine the miRNAs regulating the expression of mRNAs that may be involved in development of IID. Expression profiles were obtained using NPC-NEO cells from IID patients and healthy controls by microarray. A total of 796 miRNAs and 28,869 mRNAs were analyzed. Several miRNAs were overexpressed in the IID patients compared to controls. miR-25 had the greatest expression. In silico analysis showed that ROBO2 was the target for miR-25, with the highest specificity and being the most down-regulated. In vitro assay showed an increase of miR-25 expression induced a decrease in ROBO2 expression. In neurodevelopment, ROBO2 plays a crucial role in episodic learning and memory, so its down-regulation, caused by miR-25, could have a fundamental role in the intellectual disability that, until now, has been considered idiopathic.
Collapse
Affiliation(s)
- Rosa María Ordoñez-Razo
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría “Dr. Silvestre Frenk Freund”, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Mexico City CP 06725, Mexico; (Y.G.-L.); (G.G.)
| | - Yessica Gutierrez-López
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría “Dr. Silvestre Frenk Freund”, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Mexico City CP 06725, Mexico; (Y.G.-L.); (G.G.)
| | - María Antonieta Araujo-Solis
- Departamento Clínico de Genética Médica, Hospital de Pediatría “Dr. Silvestre Frenk Freund”, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Mexico City CP 06725, Mexico;
| | - Gloria Benitez-King
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Calzada México Xochimilco No. 101, Col. San Lorenzo Huipulco, Mexico City CP 14370, Mexico;
| | - Israel Ramírez-Sánchez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City CP 07738, Mexico;
| | - Gabriela Galicia
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría “Dr. Silvestre Frenk Freund”, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Mexico City CP 06725, Mexico; (Y.G.-L.); (G.G.)
| |
Collapse
|
5
|
Smith TJ. Fibrocyte Participation in Thyroid-Associated Ophthalmopathy Suggests New Approaches to Therapy. Ophthalmic Plast Reconstr Surg 2023; 39:S9-S18. [PMID: 38054981 PMCID: PMC10703002 DOI: 10.1097/iop.0000000000002509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
PURPOSE Review the historical context of research and changing therapeutic landscape of thyroid-associated ophthalmopathy (TAO) by focusing on the relationship between TAO, CD34+ fibrocytes, thyrotropin receptor (TSHR), and insulin-like growth factor-I receptor (IGF-IR). METHODS A literature review using search terms, including fibrocytes, IGF-IR, TSHR, TAO, and thyroid eye disease. RESULTS The mechanisms involved in TAO have been partially identified. Substantial progress has been made over several decades, including 1) recognizing the interplay between the professional immune system and orbital tissues; 2) TSHR and IGF-IR act interdependently in mediating the pathogenesis of TAO; 3) Multiple cytokines and specific immune cells are involved in activating and remodeling orbital tissue; 4) Recognition of these mechanisms is allowing the development of target therapies such as teprotumumab, a monoclonal antibody IGF-IR inhibitor approved by the US Food and drug administration for treatment of TAO; and 5) It appears that teprotumumab acts on the systemic immune system peripheral to the orbit. CONCLUSION Additional molecules targeting IGF-IR and other plausible disease mechanisms are currently under development. This activity in the TAO therapeutic space portends even greater improvements in patient care.
Collapse
Affiliation(s)
- Terry J. Smith
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center and Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105
| |
Collapse
|
6
|
Rapti G. Regulation of axon pathfinding by astroglia across genetic model organisms. Front Cell Neurosci 2023; 17:1241957. [PMID: 37941606 PMCID: PMC10628440 DOI: 10.3389/fncel.2023.1241957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/07/2023] [Indexed: 11/10/2023] Open
Abstract
Glia and neurons are intimately associated throughout bilaterian nervous systems, and were early proposed to interact for patterning circuit assembly. The investigations of circuit formation progressed from early hypotheses of intermediate guideposts and a "glia blueprint", to recent genetic and cell manipulations, and visualizations in vivo. An array of molecular factors are implicated in axon pathfinding but their number appears small relatively to circuit complexity. Comprehending this circuit complexity requires to identify unknown factors and dissect molecular topographies. Glia contribute to both aspects and certain studies provide molecular and functional insights into these contributions. Here, I survey glial roles in guiding axon navigation in vivo, emphasizing analogies, differences and open questions across major genetic models. I highlight studies pioneering the topic, and dissect recent findings that further advance our current molecular understanding. Circuits of the vertebrate forebrain, visual system and neural tube in zebrafish, mouse and chick, the Drosophila ventral cord and the C. elegans brain-like neuropil emerge as major contexts to study glial cell functions in axon navigation. I present astroglial cell types in these models, and their molecular and cellular interactions that drive axon guidance. I underline shared principles across models, conceptual or technical complications, and open questions that await investigation. Glia of the radial-astrocyte lineage, emerge as regulators of axon pathfinding, often employing common molecular factors across models. Yet this survey also highlights different involvements of glia in embryonic navigation or pioneer axon pathfinding, and unknowns in the molecular underpinnings of glial cell functions. Future cellular and molecular investigations should complete the comprehensive view of glial roles in circuit assembly.
Collapse
Affiliation(s)
- Georgia Rapti
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, Rome, Italy
- Interdisciplinary Center of Neurosciences, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
7
|
Coll M, Ariño S, Mártinez-Sánchez C, Garcia-Pras E, Gallego J, Moles A, Aguilar-Bravo B, Blaya D, Vallverdú J, Rubio-Tomás T, Lozano JJ, Pose E, Graupera I, Fernández-Vidal A, Pol A, Bataller R, Geng JG, Ginès P, Fernandez M, Sancho-Bru P. Ductular reaction promotes intrahepatic angiogenesis through Slit2-Roundabout 1 signaling. Hepatology 2022; 75:353-368. [PMID: 34490644 PMCID: PMC8766889 DOI: 10.1002/hep.32140] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 07/08/2021] [Accepted: 08/06/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND AIMS Ductular reaction (DR) expands in chronic liver diseases and correlates with disease severity. Besides its potential role in liver regeneration, DR plays a role in the wound-healing response of the liver, promoting periductular fibrosis and inflammatory cell recruitment. However, there is no information regarding its role in intrahepatic angiogenesis. In the current study we investigated the potential contribution of DR cells to hepatic vascular remodeling during chronic liver disease. APPROACH AND RESULTS In mouse models of liver injury, DR cells express genes involved in angiogenesis. Among angiogenesis-related genes, the expression of Slit2 and its receptor Roundabout 1 (Robo1) was localized in DR cells and neoangiogenic vessels, respectively. The angiogenic role of the Slit2-Robo1 pathway in chronic liver disease was confirmed in ROBO1/2-/+ mice treated with 3,5-diethoxycarbonyl-1,4-dihydrocollidine, which displayed reduced intrahepatic neovascular density compared to wild-type mice. However, ROBO1/2 deficiency did not affect angiogenesis in partial hepatectomy. In patients with advanced alcohol-associated disease, angiogenesis was associated with DR, and up-regulation of SLIT2-ROBO1 correlated with DR and disease severity. In vitro, human liver-derived organoids produced SLIT2 and induced tube formation of endothelial cells. CONCLUSIONS Overall, our data indicate that DR expansion promotes angiogenesis through the Slit2-Robo1 pathway and recognize DR cells as key players in the liver wound-healing response.
Collapse
MESH Headings
- Animals
- Blood Vessels/metabolism
- Chronic Disease
- Disease Progression
- Gene Expression
- Gene Ontology
- Hepatitis, Alcoholic/pathology
- Hepatitis, Alcoholic/physiopathology
- Humans
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Liver/metabolism
- Liver/physiopathology
- Liver Diseases, Alcoholic/genetics
- Liver Diseases, Alcoholic/metabolism
- Liver Diseases, Alcoholic/pathology
- Liver Diseases, Alcoholic/physiopathology
- Mice
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Neovascularization, Physiologic/genetics
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Organoids
- Patient Acuity
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Signal Transduction/genetics
- Stem Cells
- Up-Regulation
- Vascular Remodeling
- Wound Healing
- Roundabout Proteins
Collapse
Affiliation(s)
- Mar Coll
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Medicine department, Faculty of Medicine, University of Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Catalonia, Spain
| | - Silvia Ariño
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Celia Mártinez-Sánchez
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Ester Garcia-Pras
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Catalonia, Spain
| | - Javier Gallego
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Catalonia, Spain
| | - Anna Moles
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona, Spanish National Research Council, Barcelona, Catalonia, Spain
- Liver Unit, Hospital Clínic, Barcelona, Catalonia, Spain
| | - Beatriz Aguilar-Bravo
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Delia Blaya
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Julia Vallverdú
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Teresa Rubio-Tomás
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Juan Jose Lozano
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Catalonia, Spain
| | - Elisa Pose
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Catalonia, Spain
- Liver Unit, Hospital Clínic, Barcelona, Catalonia, Spain
| | - Isabel Graupera
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Medicine department, Faculty of Medicine, University of Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Catalonia, Spain
- Liver Unit, Hospital Clínic, Barcelona, Catalonia, Spain
| | - Andrea Fernández-Vidal
- Cell compartments and Signaling Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Albert Pol
- Cell compartments and Signaling Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Ramón Bataller
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jian-Guo Geng
- Department of Biologic and Material Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Pere Ginès
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Medicine department, Faculty of Medicine, University of Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Catalonia, Spain
- Liver Unit, Hospital Clínic, Barcelona, Catalonia, Spain
| | - Mercedes Fernandez
- Medicine department, Faculty of Medicine, University of Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Catalonia, Spain
| | - Pau Sancho-Bru
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Medicine department, Faculty of Medicine, University of Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Catalonia, Spain
| |
Collapse
|
8
|
Kirolos SA, Gomer RH. A chemorepellent inhibits local Ras activation to inhibit pseudopod formation to bias cell movement away from the chemorepellent. Mol Biol Cell 2021; 33:ar9. [PMID: 34788129 PMCID: PMC8886819 DOI: 10.1091/mbc.e20-10-0656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of cells to sense chemical gradients is essential during development, morphogenesis, and immune responses. Although much is known about chemoattraction, chemorepulsion remains poorly understood. Proliferating Dictyostelium cells secrete a chemorepellent protein called AprA. AprA prevents pseudopod formation at the region of the cell closest to the source of AprA, causing the random movement of cells to be biased away from the AprA. Activation of Ras proteins in a localized sector of a cell cortex helps to induce pseudopod formation, and Ras proteins are needed for AprA chemorepulsion. Here we show that AprA locally inhibits Ras cortical activation through the G protein–coupled receptor GrlH, the G protein subunits Gβ and Gα8, Ras protein RasG, protein kinase B, the p21-activated kinase PakD, and the extracellular signal–regulated kinase Erk1. Diffusion calculations and experiments indicate that in a colony of cells, high extracellular concentrations of AprA in the center can globally inhibit Ras activation, while a gradient of AprA that naturally forms at the edge of the colony allows cells to activate Ras at sectors of the cell other than the sector of the cell closest to the center of the colony, effectively inducing both repulsion from the colony and cell differentiation. Together, these results suggest that a pathway that inhibits local Ras activation can mediate chemorepulsion.
Collapse
Affiliation(s)
- Sara A Kirolos
- Department of Biology, Texas A&M University, 301 Old Main Drive, College Station, Texas, 77843-3474 USA
| | - Richard H Gomer
- Department of Biology, Texas A&M University, 301 Old Main Drive, College Station, Texas, 77843-3474 USA
| |
Collapse
|
9
|
Blockus H, Rolotti SV, Szoboszlay M, Peze-Heidsieck E, Ming T, Schroeder A, Apostolo N, Vennekens KM, Katsamba PS, Bahna F, Mannepalli S, Ahlsen G, Honig B, Shapiro L, de Wit J, Losonczy A, Polleux F. Synaptogenic activity of the axon guidance molecule Robo2 underlies hippocampal circuit function. Cell Rep 2021; 37:109828. [PMID: 34686348 PMCID: PMC8605498 DOI: 10.1016/j.celrep.2021.109828] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 07/06/2021] [Accepted: 09/22/2021] [Indexed: 01/03/2023] Open
Abstract
Synaptic connectivity within adult circuits exhibits a remarkable degree of cellular and subcellular specificity. We report that the axon guidance receptor Robo2 plays a role in establishing synaptic specificity in hippocampal CA1. In vivo, Robo2 is present and required postsynaptically in CA1 pyramidal neurons (PNs) for the formation of excitatory (E) but not inhibitory (I) synapses, specifically in proximal but not distal dendritic compartments. In vitro approaches show that the synaptogenic activity of Robo2 involves a trans-synaptic interaction with presynaptic Neurexins, as well as binding to its canonical extracellular ligand Slit. In vivo 2-photon Ca2+ imaging of CA1 PNs during spatial navigation in awake behaving mice shows that preventing Robo2-dependent excitatory synapse formation cell autonomously during development alters place cell properties of adult CA1 PNs. Our results identify a trans-synaptic complex linking the establishment of synaptic specificity to circuit function.
Collapse
Affiliation(s)
- Heike Blockus
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Sebi V Rolotti
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Miklos Szoboszlay
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Eugénie Peze-Heidsieck
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Tiffany Ming
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Anna Schroeder
- VIB Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Department of Neurosciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Nuno Apostolo
- VIB Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Department of Neurosciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Kristel M Vennekens
- VIB Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Department of Neurosciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Phinikoula S Katsamba
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Fabiana Bahna
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Seetha Mannepalli
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Goran Ahlsen
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Barry Honig
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Joris de Wit
- VIB Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Department of Neurosciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA.
| | - Franck Polleux
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
10
|
Hunyenyiwa T, Hendee K, Matus K, Kyi P, Mammoto T, Mammoto A. Obesity Inhibits Angiogenesis Through TWIST1-SLIT2 Signaling. Front Cell Dev Biol 2021; 9:693410. [PMID: 34660572 PMCID: PMC8511494 DOI: 10.3389/fcell.2021.693410] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/30/2021] [Indexed: 01/22/2023] Open
Abstract
Angiogenesis is required for functional adipose tissue maintenance, remodeling, and expansion. Physiologically balanced adipogenesis and angiogenesis are inhibited in subcutaneous adipose tissue in obese humans. However, the mechanism by which angiogenesis is inhibited in obese adipose tissue is not fully understood. Transcription factor TWIST1 controls angiogenesis and vascular function. TWIST1 expression is lower in obese human adipose tissues. Here, we have demonstrated that angiogenesis is inhibited in endothelial cells (ECs) isolated from adipose tissues of obese humans through TWIST1-SLIT2 signaling. The levels of TWIST1 and SLIT2 are lower in ECs isolated from obese human adipose tissues compared to those from lean tissues. Knockdown of TWIST1 in lean human adipose ECs decreases, while overexpression of TWIST1 in obese adipose ECs restores SLIT2 expression. DNA synthesis and cell migration are inhibited in obese adipose ECs and the effects are restored by TWIST1 overexpression. Obese adipose ECs also inhibit blood vessel formation in the gel subcutaneously implanted in mice, while these effects are restored when gels are mixed with SLIT2 or supplemented with ECs overexpressing TWIST1. These findings suggest that obesity impairs adipose tissue angiogenesis through TWIST1-SLIT2 signaling.
Collapse
Affiliation(s)
- Tendai Hunyenyiwa
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kathryn Hendee
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kienna Matus
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Priscilla Kyi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tadanori Mammoto
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Akiko Mammoto
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
11
|
Kivimäki M, Walker KA, Pentti J, Nyberg ST, Mars N, Vahtera J, Suominen SB, Lallukka T, Rahkonen O, Pietiläinen O, Koskinen A, Väänänen A, Kalsi JK, Goldberg M, Zins M, Alfredsson L, Westerholm PJM, Knutsson A, Theorell T, Ervasti J, Oksanen T, Sipilä PN, Tabak AG, Ferrie JE, Williams SA, Livingston G, Gottesman RF, Singh-Manoux A, Zetterberg H, Lindbohm JV. Cognitive stimulation in the workplace, plasma proteins, and risk of dementia: three analyses of population cohort studies. BMJ 2021; 374:n1804. [PMID: 34407988 PMCID: PMC8372196 DOI: 10.1136/bmj.n1804] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To examine the association between cognitively stimulating work and subsequent risk of dementia and to identify protein pathways for this association. DESIGN Multicohort study with three sets of analyses. SETTING United Kingdom, Europe, and the United States. PARTICIPANTS Three associations were examined: cognitive stimulation and dementia risk in 107 896 participants from seven population based prospective cohort studies from the IPD-Work consortium (individual participant data meta-analysis in working populations); cognitive stimulation and proteins in a random sample of 2261 participants from one cohort study; and proteins and dementia risk in 13 656 participants from two cohort studies. MAIN OUTCOME MEASURES Cognitive stimulation was measured at baseline using standard questionnaire instruments on active versus passive jobs and at baseline and over time using a job exposure matrix indicator. 4953 proteins in plasma samples were scanned. Follow-up of incident dementia varied between 13.7 to 30.1 years depending on the cohort. People with dementia were identified through linked electronic health records and repeated clinical examinations. RESULTS During 1.8 million person years at risk, 1143 people with dementia were recorded. The risk of dementia was found to be lower for participants with high compared with low cognitive stimulation at work (crude incidence of dementia per 10 000 person years 4.8 in the high stimulation group and 7.3 in the low stimulation group, age and sex adjusted hazard ratio 0.77, 95% confidence interval 0.65 to 0.92, heterogeneity in cohort specific estimates I2=0%, P=0.99). This association was robust to additional adjustment for education, risk factors for dementia in adulthood (smoking, heavy alcohol consumption, physical inactivity, job strain, obesity, hypertension, and prevalent diabetes at baseline), and cardiometabolic diseases (diabetes, coronary heart disease, stroke) before dementia diagnosis (fully adjusted hazard ratio 0.82, 95% confidence interval 0.68 to 0.98). The risk of dementia was also observed during the first 10 years of follow-up (hazard ratio 0.60, 95% confidence interval 0.37 to 0.95) and from year 10 onwards (0.79, 0.66 to 0.95) and replicated using a repeated job exposure matrix indicator of cognitive stimulation (hazard ratio per 1 standard deviation increase 0.77, 95% confidence interval 0.69 to 0.86). In analysis controlling for multiple testing, higher cognitive stimulation at work was associated with lower levels of proteins that inhibit central nervous system axonogenesis and synaptogenesis: slit homologue 2 (SLIT2, fully adjusted β -0.34, P<0.001), carbohydrate sulfotransferase 12 (CHSTC, fully adjusted β -0.33, P<0.001), and peptidyl-glycine α-amidating monooxygenase (AMD, fully adjusted β -0.32, P<0.001). These proteins were associated with increased dementia risk, with the fully adjusted hazard ratio per 1 SD being 1.16 (95% confidence interval 1.05 to 1.28) for SLIT2, 1.13 (1.00 to 1.27) for CHSTC, and 1.04 (0.97 to 1.13) for AMD. CONCLUSIONS The risk of dementia in old age was found to be lower in people with cognitively stimulating jobs than in those with non-stimulating jobs. The findings that cognitive stimulation is associated with lower levels of plasma proteins that potentially inhibit axonogenesis and synaptogenesis and increase the risk of dementia might provide clues to underlying biological mechanisms.
Collapse
Affiliation(s)
- Mika Kivimäki
- Department of Epidemiology and Public Health, University College London, London, UK
- Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Keenan A Walker
- Department of Neurology, The Johns Hopkins University, Baltimore, MD, USA
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Jaana Pentti
- Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Finnish Institute of Occupational Health, Helsinki, Finland
- Department of Public Health, University of Turku, Turku, Finland
| | - Solja T Nyberg
- Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nina Mars
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jussi Vahtera
- Department of Public Health, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Sakari B Suominen
- Department of Public Health, University of Turku, Turku, Finland
- School of Health Science, University of Skövde, Skövde, Sweden
| | - Tea Lallukka
- Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ossi Rahkonen
- Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Pietiläinen
- Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Aki Koskinen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Ari Väänänen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Jatinderpal K Kalsi
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Marcel Goldberg
- Inserm UMS 011, Population-Based Epidemiological Cohorts Unit, Villejuif, France
- Université de Paris, INSERM U1153, Epidemiology of Ageing and Neurodegenerative Diseases, Paris, France
| | - Marie Zins
- Inserm UMS 011, Population-Based Epidemiological Cohorts Unit, Villejuif, France
- Université de Paris, INSERM U1153, Epidemiology of Ageing and Neurodegenerative Diseases, Paris, France
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | | | - Anders Knutsson
- Department of Health Sciences, Mid Sweden University, Sundsvall, Sweden
| | - Töres Theorell
- Stress Research Institute, Stockholm University, Stockholm, Sweden
| | - Jenni Ervasti
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Tuula Oksanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Pyry N Sipilä
- Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Adam G Tabak
- Department of Epidemiology and Public Health, University College London, London, UK
- Department of Internal Medicine and Oncology and Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Jane E Ferrie
- Department of Epidemiology and Public Health, University College London, London, UK
- Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Gill Livingston
- Division of Psychiatry, University College London, London, UK
- Camden and Islington NHS Foundation Trust, London, UK
| | | | - Archana Singh-Manoux
- Department of Epidemiology and Public Health, University College London, London, UK
- Université de Paris, INSERM U1153, Epidemiology of Ageing and Neurodegenerative Diseases, Paris, France
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease and UK Dementia Research Institute, University College London, London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, and Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Joni V Lindbohm
- Department of Epidemiology and Public Health, University College London, London, UK
- Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Kirolos SA, Rijal R, Consalvo KM, Gomer RH. Using Dictyostelium to Develop Therapeutics for Acute Respiratory Distress Syndrome. Front Cell Dev Biol 2021; 9:710005. [PMID: 34350188 PMCID: PMC8326840 DOI: 10.3389/fcell.2021.710005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) involves damage to lungs causing an influx of neutrophils from the blood into the lung airspaces, and the neutrophils causing further damage, which attracts more neutrophils in a vicious cycle. There are ∼190,000 cases of ARDS per year in the US, and because of the lack of therapeutics, the mortality rate is ∼40%. Repelling neutrophils out of the lung airspaces, or simply preventing neutrophil entry, is a potential therapeutic. In this minireview, we discuss how our lab noticed that a protein called AprA secreted by growing Dictyostelium cells functions as a repellent for Dictyostelium cells, causing cells to move away from a source of AprA. We then found that AprA has structural similarity to a human secreted protein called dipeptidyl peptidase IV (DPPIV), and that DPPIV is a repellent for human neutrophils. In animal models of ARDS, inhalation of DPPIV or DPPIV mimetics blocks neutrophil influx into the lungs. To move DPPIV or DPPIV mimetics into the clinic, we need to know how this repulsion works to understand possible drug interactions and side effects. Combining biochemistry and genetics in Dictyostelium to elucidate the AprA signal transduction pathway, followed by drug studies in human neutrophils to determine similarities and differences between neutrophil and Dictyostelium chemorepulsion, will hopefully lead to the safe use of DPPIV or DPPIV mimetics in the clinic.
Collapse
Affiliation(s)
| | | | | | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
13
|
Teprotumumab in Thyroid-Associated Ophthalmopathy: Rationale for Therapeutic Insulin-Like Growth Factor-I Receptor Inhibition. J Neuroophthalmol 2021; 40:74-83. [PMID: 32040069 DOI: 10.1097/wno.0000000000000890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Thyroid-associated ophthalmopathy (TAO) is an autoimmune component of Graves' disease for which no currently available medical therapy provides reliable and safe benefit. Based on insights generated experimentally over the past several decades, the insulin-like growth factor-I receptor (IGF-IR) has been implicated in the pathogenesis of TAO. Furthermore, an IGF-IR inhibitor, teprotumumab, has emerged from 2 clinical trials as a promising treatment for active, moderate to severe TAO. This brief review intends to provide an overview of the rationale underlying the development of teprotumumab for this disease. It is possible that teprotumumab will soon take its place in our therapeutic armamentarium for active TAO.
Collapse
|
14
|
Mathews E, Dewees K, Diaz D, Favero C. White matter abnormalities in fetal alcohol spectrum disorders: Focus on axon growth and guidance. Exp Biol Med (Maywood) 2021; 246:812-821. [PMID: 33423552 DOI: 10.1177/1535370220980398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Fetal Alcohol Spectrum Disorders (FASDs) describe a range of deficits, affecting physical, mental, cognitive, and behavioral function, arising from prenatal alcohol exposure. FASD causes widespread white matter abnormalities, with significant alterations of tracts in the cerebral cortex, cerebellum, and hippocampus. These brain regions present with white-matter volume reductions, particularly at the midline. Neural pathways herein are guided primarily by three guidance cue families: Semaphorin/Neuropilin, Netrin/DCC, and Slit/Robo. These guidance cue/receptor pairs attract and repulse axons and ensure that they reach the proper target to make functional connections. In several cases, these signals cooperate with each other and/or additional molecular partners. Effects of alcohol on guidance cue mechanisms and their associated effectors include inhibition of growth cone response to repellant cues as well as changes in gene expression. Relevant to the corpus callosum, specifically, developmental alcohol exposure alters GABAergic and glutamatergic cell populations and glial cells that serve as guidepost cells for callosal axons. In many cases, deficits seen in FASD mirror aberrancies in guidance cue/receptor signaling. We present evidence for the need for further study on how prenatal alcohol exposure affects the formation of neural connections which may underlie disrupted functional connectivity in FASD.
Collapse
Affiliation(s)
- Erin Mathews
- Biology Department, Ursinus College, Collegeville, PA 19426-1000, USA
| | - Kevyn Dewees
- Biology Department, Ursinus College, Collegeville, PA 19426-1000, USA
| | - Deborah Diaz
- Biology Department, Ursinus College, Collegeville, PA 19426-1000, USA
| | - Carlita Favero
- Biology Department, Ursinus College, Collegeville, PA 19426-1000, USA
| |
Collapse
|
15
|
Mascheretti S, Riva V, Feng B, Trezzi V, Andreola C, Giorda R, Villa M, Dionne G, Gori S, Marino C, Facoetti A. The Mediation Role of Dynamic Multisensory Processing Using Molecular Genetic Data in Dyslexia. Brain Sci 2020; 10:brainsci10120993. [PMID: 33339203 PMCID: PMC7765588 DOI: 10.3390/brainsci10120993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/21/2022] Open
Abstract
Although substantial heritability has been reported and candidate genes have been identified, we are far from understanding the etiopathogenetic pathways underlying developmental dyslexia (DD). Reading-related endophenotypes (EPs) have been established. Until now it was unknown whether they mediated the pathway from gene to reading (dis)ability. Thus, in a sample of 223 siblings from nuclear families with DD and 79 unrelated typical readers, we tested four EPs (i.e., rapid auditory processing, rapid automatized naming, multisensory nonspatial attention and visual motion processing) and 20 markers spanning five DD-candidate genes (i.e., DYX1C1, DCDC2, KIAA0319, ROBO1 and GRIN2B) using a multiple-predictor/multiple-mediator framework. Our results show that rapid auditory and visual motion processing are mediators in the pathway from ROBO1-rs9853895 to reading. Specifically, the T/T genotype group predicts impairments in rapid auditory and visual motion processing which, in turn, predict poorer reading skills. Our results suggest that ROBO1 is related to reading via multisensory temporal processing. These findings support the use of EPs as an effective approach to disentangling the complex pathways between candidate genes and behavior.
Collapse
Affiliation(s)
- Sara Mascheretti
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
| | - Valentina Riva
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
| | - Bei Feng
- École de Psychologie, Laval University, Québec, QC G1V 0A6, Canada; (B.F.); (G.D.)
| | - Vittoria Trezzi
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
| | - Chiara Andreola
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
- Laboratoire de Psychologie du Développement et de l’Éducation de l’Enfant (LaPsyDÉ), Universitè de Paris, 75005 Paris, France
| | - Roberto Giorda
- Molecular Biology Laboratory, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (R.G.); (M.V.)
| | - Marco Villa
- Molecular Biology Laboratory, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (R.G.); (M.V.)
| | - Ginette Dionne
- École de Psychologie, Laval University, Québec, QC G1V 0A6, Canada; (B.F.); (G.D.)
| | - Simone Gori
- Department of Human and Social Sciences, University of Bergamo, 24100 Bergamo, Italy;
| | - Cecilia Marino
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- The Division of Child and Youth Psychiatry, Centre for Addiction and Mental Health (CAMH), Toronto, ON M6J 1H4, Canada
- Correspondence: (C.M.); (A.F.)
| | - Andrea Facoetti
- Developmental Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, 35131 Padua, Italy
- Correspondence: (C.M.); (A.F.)
| |
Collapse
|
16
|
Jurkowski MP, Bettio L, K. Woo E, Patten A, Yau SY, Gil-Mohapel J. Beyond the Hippocampus and the SVZ: Adult Neurogenesis Throughout the Brain. Front Cell Neurosci 2020; 14:576444. [PMID: 33132848 PMCID: PMC7550688 DOI: 10.3389/fncel.2020.576444] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/19/2020] [Indexed: 12/31/2022] Open
Abstract
Convincing evidence has repeatedly shown that new neurons are produced in the mammalian brain into adulthood. Adult neurogenesis has been best described in the hippocampus and the subventricular zone (SVZ), in which a series of distinct stages of neuronal development has been well characterized. However, more recently, new neurons have also been found in other brain regions of the adult mammalian brain, including the hypothalamus, striatum, substantia nigra, cortex, and amygdala. While some studies have suggested that these new neurons originate from endogenous stem cell pools located within these brain regions, others have shown the migration of neurons from the SVZ to these regions. Notably, it has been shown that the generation of new neurons in these brain regions is impacted by neurologic processes such as stroke/ischemia and neurodegenerative disorders. Furthermore, numerous factors such as neurotrophic support, pharmacologic interventions, environmental exposures, and stem cell therapy can modulate this endogenous process. While the presence and significance of adult neurogenesis in the human brain (and particularly outside of the classical neurogenic regions) is still an area of debate, this intrinsic neurogenic potential and its possible regulation through therapeutic measures present an exciting alternative for the treatment of several neurologic conditions. This review summarizes evidence in support of the classic and novel neurogenic zones present within the mammalian brain and discusses the functional significance of these new neurons as well as the factors that regulate their production. Finally, it also discusses the potential clinical applications of promoting neurogenesis outside of the classical neurogenic niches, particularly in the hypothalamus, cortex, striatum, substantia nigra, and amygdala.
Collapse
Affiliation(s)
- Michal P. Jurkowski
- Island Medical Program, University of British Columbia, Vancouver, BC, Canada
| | - Luis Bettio
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Emma K. Woo
- Island Medical Program, University of British Columbia, Vancouver, BC, Canada
| | - Anna Patten
- Centre for Interprofessional Clinical Simulation Learning (CICSL), Royal Jubilee Hospital, Victoria, BC, Canada
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Joana Gil-Mohapel
- Island Medical Program, University of British Columbia, Vancouver, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
17
|
Deboux C, Spigoni G, Caillava C, Garcia-Diaz B, Ypsilanti A, Sarrazin N, Bachelin C, Chédotal A, Baron-Van Evercooren A. Slit1 Protein Regulates SVZ-Derived Precursor Mobilization in the Adult Demyelinated CNS. Front Cell Neurosci 2020; 14:168. [PMID: 32670024 PMCID: PMC7332780 DOI: 10.3389/fncel.2020.00168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/19/2020] [Indexed: 01/03/2023] Open
Abstract
Slit1 is a secreted axon guidance molecule, also involved in adult neurogenesis. In physiological conditions, Slit1 loss promotes ectopic dispersal of SVZ-derived neural precursors (SVZ-NPCs) into periventricular structures such as the corpus callosum. Demyelination of the corpus callosum triggers SVZ-NPC migration to ectopic locations and their recruitment by the lesion, suggesting a possible role for Slit1 in SVZ-NPCs ectopic dispersal regulation in pathological conditions. Here, we have investigated the function of Slit1 protein in the recruitment of SVZ-NPCs after CNS demyelination. We find that the dynamics of oligodendrogenesis and temporal profile of developmental myelination in Slit1–/– mice are similar to Slit1+/− controls. SVZ micro-dissection and RT-PCR from wild-type mice, show that Slits and Robos are physiologically regulated at the transcriptional level in response to corpus callosum demyelination suggesting their role in the process of SVZ-NPC ectopic migration in demyelinating conditions. Moreover, we find that the number of SVZ-NPCs recruited by the lesion increases in Sli1–/– mice compared to Slit1+/− mice, leading to higher numbers of Olig2+ cells within the lesion. Time-lapse video-microscopy of immuno-purified NPCs shows that Slit1-deficient cells migrate faster and make more frequent directional changes than control NPCs, supporting a cell-autonomous mechanism of action of Slit1 in NPC migration. In conclusion, while Slit1 does not affect the normal developmental process of oligodendrogenesis and myelination, it regulates adult SVZ-NPC ectopic migration in response to demyelination, and consequently oligodendrocyte renewal within the lesion.
Collapse
Affiliation(s)
- C Deboux
- Institut du Cerveau et de la Moelle épinière-Groupe Hospitalier Pitié-Salpêtrière, INSERM U1127, CNRS, UMR 7225, Sorbonne Université, UM75, Paris, France
| | - G Spigoni
- Institut du Cerveau et de la Moelle épinière-Groupe Hospitalier Pitié-Salpêtrière, INSERM U1127, CNRS, UMR 7225, Sorbonne Université, UM75, Paris, France
| | - C Caillava
- Institut du Cerveau et de la Moelle épinière-Groupe Hospitalier Pitié-Salpêtrière, INSERM U1127, CNRS, UMR 7225, Sorbonne Université, UM75, Paris, France
| | - B Garcia-Diaz
- Institut du Cerveau et de la Moelle épinière-Groupe Hospitalier Pitié-Salpêtrière, INSERM U1127, CNRS, UMR 7225, Sorbonne Université, UM75, Paris, France
| | - A Ypsilanti
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - N Sarrazin
- Institut du Cerveau et de la Moelle épinière-Groupe Hospitalier Pitié-Salpêtrière, INSERM U1127, CNRS, UMR 7225, Sorbonne Université, UM75, Paris, France
| | - C Bachelin
- Institut du Cerveau et de la Moelle épinière-Groupe Hospitalier Pitié-Salpêtrière, INSERM U1127, CNRS, UMR 7225, Sorbonne Université, UM75, Paris, France
| | - A Chédotal
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - A Baron-Van Evercooren
- Institut du Cerveau et de la Moelle épinière-Groupe Hospitalier Pitié-Salpêtrière, INSERM U1127, CNRS, UMR 7225, Sorbonne Université, UM75, Paris, France
| |
Collapse
|
18
|
Seo J, Youn W, Choi JY, Cho H, Choi H, Lanara C, Stratakis E, Choi IS. Neuro-taxis: Neuronal movement in gradients of chemical and physical environments. Dev Neurobiol 2020; 80:361-377. [PMID: 32304173 DOI: 10.1002/dneu.22749] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 04/13/2020] [Indexed: 12/15/2022]
Abstract
Environmental chemical and physical cues dynamically interact with migrating neurons and sprouting axons, and in particular, the gradients of environmental cues are regarded as one of the factors intimately involved in the neuronal movement. Since a growth cone was first described by Cajal, more than one century ago, chemical gradients have been suggested as one of the mechanisms by which the neurons determine proper paths and destinations. However, the gradients of physical cues, such as stiffness and topography, which also interact constantly with the neurons and their axons as a component of the extracellular environments, have rarely been noted regarding the guidance of neurons, despite their gradually increasingly reported influences in the case of nonneuronal-cell migration. In this review, we discuss chemical (i.e., chemo- and hapto-) and physical (i.e., duro-) taxis phenomena on the movement of neurons including axonal elongation. In addition, we suggest topotaxis, the most recently proposed physical-taxis phenomenon, as another potential mechanism in the neuronal movement, based on the reports of neuronal recognition of and responses to nanotopography.
Collapse
Affiliation(s)
| | - Wongu Youn
- Department of Chemistry, KAIST, Daejeon, Korea
| | - Ji Yu Choi
- Department of Chemistry, KAIST, Daejeon, Korea
| | | | | | - Christina Lanara
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete, Greece
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete, Greece.,Physics Department, University of Crete, Heraklion, Crete, Greece
| | - Insung S Choi
- Department of Chemistry, KAIST, Daejeon, Korea.,Department of Bio and Brain Engineering, KAIST, Daejeon, Korea
| |
Collapse
|
19
|
Zhao Y, Xie L. Unique bone marrow blood vessels couple angiogenesis and osteogenesis in bone homeostasis and diseases. Ann N Y Acad Sci 2020; 1474:5-14. [PMID: 32242943 DOI: 10.1111/nyas.14348] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 02/05/2023]
Abstract
Blood vessels serve as a versatile transport system and play crucial roles in organ development, regeneration, and stem cell behavior. In the skeletal system, certain capillaries support perivascular stem cells or osteoprogenitor cells and thereby regulate bone formation. Recent studies reported that a specialized capillary subtype, termed type H vessels, is shown to couple angiogenesis and osteogenesis in rodents and humans. They can be distinguished by specific cell surface markers, as the endothelial cells in the metaphysis and endosteum highly express the junctional protein CD31 and the sialoglycoprotein endomucin. Here, we provide an overview of the role of type H vessels in bone homeostasis and summarize their linkage with various cytokines to control bone cell behavior and bone formation. We also discuss the potential clinical application for bone disorders by targeting these specific vessels according to their physiological and pathobiological settings.
Collapse
Affiliation(s)
- Yifan Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Liang Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Taroc EZM, Lin JM, Tulloch AJ, Jaworski A, Forni PE. GnRH-1 Neural Migration From the Nose to the Brain Is Independent From Slit2, Robo3 and NELL2 Signaling. Front Cell Neurosci 2019; 13:70. [PMID: 30881290 PMCID: PMC6406018 DOI: 10.3389/fncel.2019.00070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/12/2019] [Indexed: 11/28/2022] Open
Abstract
Gonadotropin releasing hormone-1 (GnRH-1) neurons play a pivotal role in controlling pubertal onset and fertility once they reach their hypothalamic location. During embryonic development, GnRH-1 neurons migrate from the nasal area to the hypothalamus where they modulate gonadotropin release from the pituitary gland. Defective migration of the GnRH-1 neurons to the brain, lack of GnRH-1 secretion or signaling cause hypogonadotropic hypogonadism (HH), a pathology characterized by delayed or absence of puberty. Binding of the guidance cue Slit2 to the receptor roundabout 3 (Robo3) has been proposed to modulate GnRH-1 cell motility and basal forebrain (bFB) access during migration. However, evidence suggests that Neural EGFL Like 2 (NELL2), not Slit2, binds to Robo3. To resolve this discrepancy, we analyzed GnRH-1 neuronal migration in NELL2, Robo3, and Slit2 knock-out mouse lines. Our data do not confirm a negative effect for monogenic Robo3 and Slit2 mutations on GnRH-1 neuronal migration from the nasal area to the brain. Moreover, we found no changes in GnRH-1 neuronal migration in the brain after NELL2 loss-of-function. However, we found that Slit2 loss-of-function alters the patterning of GnRH-1 cells in the brain, suggesting that Slit2 loss-of-function affects GnRH-1 cell positioning in the brain in a Robo3 independent fashion. Our results challenge previous theories on GnRH-1 neuronal migration mechanisms and provide a new impetus to identify and understand the complex genetic mechanisms causing disorders like Kallmann syndrome (KS) and HH.
Collapse
Affiliation(s)
- Ed Zandro M Taroc
- Department of Biological Sciences, University at Albany, Albany, NY, United States
| | - Jennifer M Lin
- Department of Biological Sciences, University at Albany, Albany, NY, United States
| | - Alastair J Tulloch
- Department of Neuroscience, Brown University, Providence, RI, United States
| | - Alexander Jaworski
- Department of Neuroscience, Brown University, Providence, RI, United States
| | - Paolo E Forni
- Department of Biological Sciences, University at Albany, Albany, NY, United States
| |
Collapse
|
21
|
Gil V, Del Río JA. Functions of Plexins/Neuropilins and Their Ligands during Hippocampal Development and Neurodegeneration. Cells 2019; 8:E206. [PMID: 30823454 PMCID: PMC6468495 DOI: 10.3390/cells8030206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 12/22/2022] Open
Abstract
There is emerging evidence that molecules, receptors, and signaling mechanisms involved in vascular development also play crucial roles during the development of the nervous system. Among others, specific semaphorins and their receptors (neuropilins and plexins) have, in recent years, attracted the attention of researchers due to their pleiotropy of functions. Their functions, mainly associated with control of the cellular cytoskeleton, include control of cell migration, cell morphology, and synapse remodeling. Here, we will focus on their roles in the hippocampal formation that plays a crucial role in memory and learning as it is a prime target during neurodegeneration.
Collapse
Affiliation(s)
- Vanessa Gil
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Parc Científic de Barcelona, 08028 Barcelona, Spain.
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, 08028 Barcelona, Spain.
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08028 Barcelona, Spain.
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain.
| | - José Antonio Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Parc Científic de Barcelona, 08028 Barcelona, Spain.
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, 08028 Barcelona, Spain.
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08028 Barcelona, Spain.
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
22
|
Lindenmaier LB, Parmentier N, Guo C, Tissir F, Wright KM. Dystroglycan is a scaffold for extracellular axon guidance decisions. eLife 2019; 8:42143. [PMID: 30758284 PMCID: PMC6395066 DOI: 10.7554/elife.42143] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/13/2019] [Indexed: 12/13/2022] Open
Abstract
Axon guidance requires interactions between extracellular signaling molecules and transmembrane receptors, but how appropriate context-dependent decisions are coordinated outside the cell remains unclear. Here we show that the transmembrane glycoprotein Dystroglycan interacts with a changing set of environmental cues that regulate the trajectories of extending axons throughout the mammalian brain and spinal cord. Dystroglycan operates primarily as an extracellular scaffold during axon guidance, as it functions non-cell autonomously and does not require signaling through its intracellular domain. We identify the transmembrane receptor Celsr3/Adgrc3 as a binding partner for Dystroglycan, and show that this interaction is critical for specific axon guidance events in vivo. These findings establish Dystroglycan as a multifunctional scaffold that coordinates extracellular matrix proteins, secreted cues, and transmembrane receptors to regulate axon guidance.
Collapse
Affiliation(s)
| | - Nicolas Parmentier
- Institiute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Caiying Guo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Fadel Tissir
- Institiute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Kevin M Wright
- Vollum Institute, Oregon Health & Science University, Portland, United States
| |
Collapse
|
23
|
Smith TJ. Potential Roles of CD34+ Fibrocytes Masquerading as Orbital Fibroblasts in Thyroid-Associated Ophthalmopathy. J Clin Endocrinol Metab 2019; 104:581-594. [PMID: 30445529 PMCID: PMC6320239 DOI: 10.1210/jc.2018-01493] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022]
Abstract
CONTEXT Orbital tissues in thyroid-associated ophthalmopathy exhibit particular reactivity and undergo characteristic remodeling. Mechanisms underlying these changes have remained largely unexplained. Studies have characterized orbital connective tissues and derivative fibroblasts to gain insights into local manifestations of a systemic autoimmune syndrome. EVIDENCE ACQUISITION A systematic search of PubMed was undertaken for studies related to thyroid-associated ophthalmopathy (TAO), orbital fibroblasts, and fibrocytes involved in pathogenesis. EVIDENCE SYNTHESIS Orbital tissues display marked cellular heterogeneity. Fibroblast subsets, putatively derived from multiple precursors, inhabit the orbit in TAO. Among them are cells displaying the CD34+CXC chemokine receptor 4+collagen I+ phenotype, identifying them as fibrocytes, derived from the monocyte lineage. Their unique presence in the TAO orbit helps explain the tissue reactivity and characteristic remodeling that occurs in the disease. Their unanticipated expression of several proteins traditionally thought to be thyroid gland specific, including the TSH receptor and thyroglobulin, may underlie orbital involvement in Graves disease. Although no currently available information unambiguously establishes that CD34+ orbital fibroblasts originate from circulating fibrocytes, inferences from animal models of lung disease suggest that they derive from bone marrow. Further studies are necessary to determine whether fibrocyte abundance and activity in the orbit determine the clinical behavior of TAO. CONCLUSION Evidence supports a role for fibrocytes in the pathogenesis of TAO. Recognition of their presence in the orbit now allows development of therapies specifically targeting these cells that ultimately could allow the restoration of immune tolerance within the orbit and perhaps systemically.
Collapse
Affiliation(s)
- Terry J Smith
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Ann Arbor, Michigan
- Division of Diabetes, Endocrinology, and Metabolism, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
- Correspondence and Reprint Requests: Terry J. Smith, MD, Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Kellogg Eye Center, Brehm Tower, 1000 Wall Street, Ann Arbor, Michigan 48105. E-mail:
| |
Collapse
|
24
|
Abstract
The creation of complex neuronal networks relies on ligand-receptor interactions that mediate attraction or repulsion towards specific targets. Roundabouts comprise a family of single-pass transmembrane receptors facilitating this process upon interaction with the soluble extracellular ligand Slit protein family emanating from the midline. Due to the complexity and flexible nature of Robo receptors , their overall structure has remained elusive until now. Recent structural studies of the Robo 1 and Robo 2 ectodomains have provided the basis for a better understanding of their signalling mechanism. These structures reveal how Robo receptors adopt an auto-inhibited conformation on the cell surface that can be further stabilised by cis and/or trans oligmerisation arrays. Upon Slit -N binding Robo receptors must undergo a conformational change for Ig4 mediated dimerisation and signaling, probably via endocytosis. Furthermore, it's become clear that Robo receptors do not only act alone, but as large and more complex cell surface receptor assemblies to manifest directional and growth effects in a concerted fashion. These context dependent assemblies provide a mechanism to fine tune attractive and repulsive signals in a combinatorial manner required during neuronal development. While a mechanistic understanding of Slit mediated Robo signaling has advanced significantly further structural studies on larger assemblies are required for the design of new experiments to elucidate their role in cell surface receptor complexes. These will be necessary to understand the role of Slit -Robo signaling in neurogenesis, angiogenesis, organ development and cancer progression. In this chapter, we provide a review of the current knowledge in the field with a particular focus on the Roundabout receptor family.
Collapse
Affiliation(s)
- Francesco Bisiak
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue Des Martyrs, 38042, Grenoble, France.
| | - Andrew A McCarthy
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue Des Martyrs, 38042, Grenoble, France.
| |
Collapse
|
25
|
Tawarayama H, Yamada H, Shinmyo Y, Tanaka H, Ikawa S. The chemorepellent draxin is involved in hippocampal mossy fiber projection. Biochem Biophys Res Commun 2018; 500:217-223. [PMID: 29634927 DOI: 10.1016/j.bbrc.2018.04.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/06/2018] [Indexed: 02/05/2023]
Abstract
Lamina-specific afferent innervation of the mammalian hippocampus is critical for its function. We investigated the relevance of the chemorepellent draxin to the laminar projections of three principal hippocampal afferents: mossy fibers, entorhinal, and associational/commissural fibers. We observed that draxin deficiency led to abnormal projection of mossy fibers but not other afferents. Immunohistochemical analysis indicated that draxin is expressed in the dentate gyrus and cornu ammonis (CA) 3 at postnatal day 0, when dentate granule cells begin to extend mossy fibers towards CA3. Furthermore, a neurite growth assay using dissociated cells of the neonatal dentate gyrus revealed that draxin inhibited the growth of calbindin-D28k-expressing mossy fibers in vitro. Taken together, we conclude that draxin is a key molecule in the regulation of mossy fiber projections.
Collapse
Affiliation(s)
- Hiroshi Tawarayama
- Department of Developmental Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan; Department of Project Programs, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan; Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan.
| | - Hirohisa Yamada
- Department of Developmental Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yohei Shinmyo
- Department of Developmental Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hideaki Tanaka
- Department of Developmental Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Shuntaro Ikawa
- Department of Project Programs, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
26
|
Xu R, Yallowitz A, Qin A, Wu Z, Shin DY, Kim JM, Debnath S, Ji G, Bostrom MP, Yang X, Zhang C, Dong H, Kermani P, Lalani S, Li N, Liu Y, Poulos MG, Wach A, Zhang Y, Inoue K, Di Lorenzo A, Zhao B, Butler JM, Shim JH, Glimcher LH, Greenblatt MB. Targeting skeletal endothelium to ameliorate bone loss. Nat Med 2018; 24:823-833. [PMID: 29785024 PMCID: PMC5992080 DOI: 10.1038/s41591-018-0020-z] [Citation(s) in RCA: 255] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 03/22/2018] [Indexed: 11/08/2022]
Abstract
Recent studies have identified a specialized subset of CD31hiendomucinhi (CD31hiEMCNhi) vascular endothelium that positively regulates bone formation. However, it remains unclear how CD31hiEMCNhi endothelium levels are coupled to anabolic bone formation. Mice with an osteoblast-specific deletion of Shn3, which have markedly elevated bone formation, demonstrated an increase in CD31hiEMCNhi endothelium. Transcriptomic analysis identified SLIT3 as an osteoblast-derived, SHN3-regulated proangiogenic factor. Genetic deletion of Slit3 reduced skeletal CD31hiEMCNhi endothelium, resulted in low bone mass because of impaired bone formation and partially reversed the high bone mass phenotype of Shn3-/- mice. This coupling between osteoblasts and CD31hiEMCNhi endothelium is essential for bone healing, as shown by defective fracture repair in SLIT3-mutant mice and enhanced fracture repair in SHN3-mutant mice. Finally, administration of recombinant SLIT3 both enhanced bone fracture healing and counteracted bone loss in a mouse model of postmenopausal osteoporosis. Thus, drugs that target the SLIT3 pathway may represent a new approach for vascular-targeted osteoanabolic therapy to treat bone loss.
Collapse
Affiliation(s)
- Ren Xu
- Department of Pathology and Laboratory Medicine, Cornell University, New York, NY, USA
| | - Alisha Yallowitz
- Department of Pathology and Laboratory Medicine, Cornell University, New York, NY, USA
| | - An Qin
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhuhao Wu
- Laboratory of Brain Development and Repair, The Rockefeller University, New York, NY, USA
| | - Dong Yeon Shin
- Department of Pathology and Laboratory Medicine, Cornell University, New York, NY, USA
| | - Jung-Min Kim
- Division of Rheumatology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Shawon Debnath
- Department of Pathology and Laboratory Medicine, Cornell University, New York, NY, USA
| | - Gang Ji
- Research Division, Hospital for Special Surgery, New York, NY, USA
- Department of Joint Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Mathias P Bostrom
- Research Division, Hospital for Special Surgery, New York, NY, USA
- Division of Adult Reconstruction and Joint Replacement, Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | - Xu Yang
- Research Division, Hospital for Special Surgery, New York, NY, USA
| | - Chao Zhang
- Institute for Computational Biomedicine, Cornell University, New York, NY, USA
| | - Han Dong
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard University Medical School, Boston, MA, USA
- Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Pouneh Kermani
- Division of Regenerative Medicine, Department of Medicine, Ansary Stem Cell Institute, Cornell University, New York, NY, USA
| | - Sarfaraz Lalani
- Department of Pathology and Laboratory Medicine, Cornell University, New York, NY, USA
| | - Na Li
- Department of Pathology and Laboratory Medicine, Cornell University, New York, NY, USA
| | - Yifang Liu
- Department of Pathology and Laboratory Medicine, Cornell University, New York, NY, USA
| | - Michael G Poulos
- Division of Regenerative Medicine, Department of Medicine, Ansary Stem Cell Institute, Cornell University, New York, NY, USA
| | - Amanda Wach
- Department of Biomechanics, Hospital for Special Surgery, New York, NY, USA
| | - Yi Zhang
- Department of Pathology and Laboratory Medicine, Cornell University, New York, NY, USA
| | - Kazuki Inoue
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Annarita Di Lorenzo
- Department of Pathology and Laboratory Medicine, Cornell University, New York, NY, USA
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Jason M Butler
- Division of Regenerative Medicine, Department of Medicine, Ansary Stem Cell Institute, Cornell University, New York, NY, USA
| | - Jae-Hyuck Shim
- Division of Rheumatology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Laurie H Glimcher
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard University Medical School, Boston, MA, USA.
- Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
27
|
Weinberg P, Berkseth M, Zarkower D, Hobert O. Sexually Dimorphic unc-6/Netrin Expression Controls Sex-Specific Maintenance of Synaptic Connectivity. Curr Biol 2018; 28:623-629.e3. [PMID: 29429615 DOI: 10.1016/j.cub.2018.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/29/2017] [Accepted: 01/01/2018] [Indexed: 12/17/2022]
Abstract
Nervous systems display intriguing patterns of sexual dimorphisms across the animal kingdom, but the mechanisms that generate such dimorphisms remain poorly characterized. In the nematode Caenorhabditis elegans, a number of neurons present in both sexes are synaptically connected to one another in a sexually dimorphic manner as a result of sex-specific synaptic pruning and maintenance [1-3]. We define here a mechanism for the male-specific maintenance of the synaptic connections of the phasmid sensory neuron PHB and its male-specific target, the sex-shared AVG interneuron. We show that the C. elegans Netrin ortholog UNC-6, signaling through its cognate receptor UNC-40/DCC and the CED-5/DOCK180 guanine nucleotide exchange factor, is both required and sufficient for male-specific synaptic maintenance. The dimorphism of unc-6 activity is brought about by sex-specific regulation of unc-6 transcription. Although unc-6 is transcribed in the AVG neuron of males and hermaphrodites during juvenile stages, unc-6 expression is downregulated in AVG in hermaphrodites during sexual maturation but is maintained during sexual maturation of males. unc-6 downregulation in hermaphrodites is conferred by the master regulator of hermaphrodite sexual identity, the Gli/CI homolog TRA-1, which antagonizes the non-sex-specific function of the LIM homeobox gene lin-11, a terminal selector and activator of unc-6 in AVG. Preventing the downregulation of unc-6 in AVG of hermaphrodites through ectopic expression of unc-6 in transgenic animals results in the maintenance of the PHB>AVG synapses in hermaphrodites. Taken together, intersectional transcriptional regulation of unc-6/Netrin is required and sufficient to cell autonomously pattern sexually dimorphic synapses.
Collapse
Affiliation(s)
- Peter Weinberg
- Department of Biological Sciences and Howard Hughes Medical Institute, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027, USA
| | - Matthew Berkseth
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA
| | - David Zarkower
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA
| | - Oliver Hobert
- Department of Biological Sciences and Howard Hughes Medical Institute, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027, USA.
| |
Collapse
|
28
|
Emerich DF, Skinner SJM, Borlongan CV, Thanos CG. A Role of the Choroid Plexus in Transplantation Therapy. Cell Transplant 2017; 14:715-25. [PMID: 16454346 DOI: 10.3727/000000005783982576] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The choroid plexuses (CPs) play pivotal roles in the most basic aspects of neural function. Some of the roles of the CP include maintaining the extracellular milieu of the brain by actively modulating chemical exchange between the CSF and brain parenchyma, surveying the chemical and immunological status of the brain, detoxifying the brain, secreting a nutritive “cocktail” of polypeptides, and participating in repair processes following trauma. This diversity of functions suggests that even modest changes in the CP can have far reaching effects. Indeed, changes in the anatomy and physiology of the CP have been linked to several CNS diseases. It is also possible that replacing diseased CP or transplanting healthy CP might be useful for treating acute and chronic brain diseases. Here we describe the wide-ranging functions of the CP, alterations of these functions in aging and neurodegeneration, and recent demonstrations of the therapeutic potential of transplanted CP for neural trauma.
Collapse
|
29
|
Huang YJ, Schiapparelli P, Kozielski K, Green J, Lavell E, Guerrero-Cazares H, Quinones-Hinojosa A, Searson P. Electrophoresis of cell membrane heparan sulfate regulates galvanotaxis in glial cells. J Cell Sci 2017; 130:2459-2467. [PMID: 28596239 DOI: 10.1242/jcs.203752] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/02/2017] [Indexed: 12/12/2022] Open
Abstract
Endogenous electric fields modulate many physiological processes by promoting directional migration, a process known as galvanotaxis. Despite the importance of galvanotaxis in development and disease, the mechanism by which cells sense and migrate directionally in an electric field remains unknown. Here, we show that electrophoresis of cell surface heparan sulfate (HS) critically regulates this process. HS was found to be localized at the anode-facing side in fetal neural progenitor cells (fNPCs), fNPC-derived astrocytes and brain tumor-initiating cells (BTICs), regardless of their direction of galvanotaxis. Enzymatic removal of HS and other sulfated glycosaminoglycans significantly abolished or reversed the cathodic response seen in fNPCs and BTICs. Furthermore, Slit2, a chemorepulsive ligand, was identified to be colocalized with HS in forming a ligand gradient across cellular membranes. Using both imaging and genetic modification, we propose a novel mechanism for galvanotaxis in which electrophoretic localization of HS establishes cell polarity by functioning as a co-receptor and provides repulsive guidance through Slit-Robo signaling.
Collapse
Affiliation(s)
- Yu-Ja Huang
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Paula Schiapparelli
- Department of Neurosurgery and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Kristen Kozielski
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Jordan Green
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Emily Lavell
- Department of Neurosurgery and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Hugo Guerrero-Cazares
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Neurosurgery and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Alfredo Quinones-Hinojosa
- Department of Neurosurgery and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Peter Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA .,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
30
|
Ke C, Gao F, Tian X, Li C, Shi D, He W, Tian Y. Slit2/Robo1 Mediation of Synaptic Plasticity Contributes to Bone Cancer Pain. Mol Neurobiol 2017; 54:295-307. [PMID: 26738857 DOI: 10.1007/s12035-015-9564-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/29/2015] [Indexed: 12/11/2022]
Abstract
Synaptic plasticity is fundamental to spinal sensitivity of bone cancer pain. Here, we have shown that excitatory synaptogenesis contributes to bone cancer pain. New synapse formation requires neurite outgrowth and an interaction between axons and dendrites, accompanied by the appositional organization of presynaptic and postsynaptic specializations. We have shown that Slit2, Robo1, and RhoA act as such cues that promote neurite outgrowth and guide the axon for synapse formation. Sarcoma inoculation induces excitatory synaptogenesis and bone cancer pain which are reversed by Slit2 knockdown but aggravated by Robo1 knockdown. Synaptogenesis of cultured neurons are inhibited by Slit2 knockdown but enhanced by Robo1 knockdown. Sarcoma implantation induces an increase in Slit2 and decreases Robo1 and RhoA, while Slit2 knockdown results in an increase of Robo1 and RhoA. These results have demonstrated a molecular mechanism of synaptogenesis in bone cancer pain.
Collapse
Affiliation(s)
- Changbin Ke
- Institute of Anesthesiology and Pain (IAP) and Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan City, 442000, Hubei Province, China
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xuebi Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Caijuan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dai Shi
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wensheng He
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuke Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
31
|
The Caenorhabditis elegans NF2/Merlin Molecule NFM-1 Nonautonomously Regulates Neuroblast Migration and Interacts Genetically with the Guidance Cue SLT-1/Slit. Genetics 2016; 205:737-748. [PMID: 27913619 DOI: 10.1534/genetics.116.191957] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/23/2016] [Indexed: 11/18/2022] Open
Abstract
During nervous system development, neurons and their progenitors migrate to their final destinations. In Caenorhabditis elegans, the bilateral Q neuroblasts and their descendants migrate long distances in opposite directions, despite being born in the same posterior region. QR on the right migrates anteriorly and generates the AQR neuron positioned near the head, and QL on the left migrates posteriorly, giving rise to the PQR neuron positioned near the tail. In a screen for genes required for AQR and PQR migration, we identified an allele of nfm-1, which encodes a molecule similar to vertebrate NF2/Merlin, an important tumor suppressor in humans. Mutations in NF2 lead to neurofibromatosis type II, characterized by benign tumors of glial tissues. Here we demonstrate that in C. elegans, nfm-1 is required for the ability of Q cells and their descendants to extend protrusions and to migrate, but is not required for direction of migration. Using a combination of mosaic analysis and cell-specific expression, we show that NFM-1 is required nonautonomously, possibly in muscles, to promote Q lineage migrations. We also show a genetic interaction between nfm-1 and the C. elegans Slit homolog slt-1, which encodes a conserved secreted guidance cue. Our results suggest that NFM-1 might be involved in the generation of an extracellular cue that promotes Q neuroblast protrusion and migration that acts with or in parallel to SLT-1 In vertebrates, NF2 and Slit2 interact in axon pathfinding, suggesting a conserved interaction of NF2 and Slit2 in regulating migratory events.
Collapse
|
32
|
Schachtschneider KM, Liu Y, Rund LA, Madsen O, Johnson RW, Groenen MAM, Schook LB. Impact of neonatal iron deficiency on hippocampal DNA methylation and gene transcription in a porcine biomedical model of cognitive development. BMC Genomics 2016; 17:856. [PMID: 27809765 PMCID: PMC5094146 DOI: 10.1186/s12864-016-3216-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/26/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Iron deficiency is a common childhood micronutrient deficiency that results in altered hippocampal function and cognitive disorders. However, little is known about the mechanisms through which neonatal iron deficiency results in long lasting alterations in hippocampal gene expression and function. DNA methylation is an epigenetic mark involved in gene regulation and altered by environmental factors. In this study, hippocampal DNA methylation and gene expression were assessed via reduced representation bisulfite sequencing and RNA-seq on samples from a previous study reporting reduced hippocampal-based learning and memory in a porcine biomedical model of neonatal iron deficiency. RESULTS In total 192 differentially expressed genes (DEGs) were identified between the iron deficient and control groups. GO term and pathway enrichment analysis identified DEGs associated with hypoxia, angiogenesis, increased blood brain barrier (BBB) permeability, and altered neurodevelopment and function. Of particular interest are genes previously implicated in cognitive deficits and behavioral disorders in humans and mice, including HTR2A, HTR2C, PAK3, PRSS12, and NETO1. Altered genome-wide DNA methylation was observed across 0.5 million CpG and 2.4 million non-CpG sites. In total 853 differentially methylated (DM) CpG and 99 DM non-CpG sites were identified between groups. Samples clustered by group when comparing DM non-CpG sites, suggesting high conservation of non-CpG methylation in response to neonatal environment. In total 12 DM sites were associated with 9 DEGs, including genes involved in angiogenesis, neurodevelopment, and neuronal function. CONCLUSIONS Neonatal iron deficiency leads to altered hippocampal DNA methylation and gene regulation involved in hypoxia, angiogenesis, increased BBB permeability, and altered neurodevelopment and function. Together, these results provide new insights into the mechanisms through which neonatal iron deficiency results in long lasting reductions in cognitive development in humans.
Collapse
Affiliation(s)
- Kyle M. Schachtschneider
- Department of Animal Sciences, University of Illinois, 1201 W Gregory Drive, Urbana, IL 61801 USA
- Animal Breeding and Genomics Centre, Wageningen University, P.O. Box 338, Wageningen, 6700AH The Netherlands
| | - Yingkai Liu
- Department of Animal Sciences, University of Illinois, 1201 W Gregory Drive, Urbana, IL 61801 USA
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, Huimin Road #221, Chengdu, 610000 China
| | - Laurie A. Rund
- Department of Animal Sciences, University of Illinois, 1201 W Gregory Drive, Urbana, IL 61801 USA
| | - Ole Madsen
- Animal Breeding and Genomics Centre, Wageningen University, P.O. Box 338, Wageningen, 6700AH The Netherlands
| | - Rodney W. Johnson
- Department of Animal Sciences, University of Illinois, 1201 W Gregory Drive, Urbana, IL 61801 USA
| | - Martien A. M. Groenen
- Animal Breeding and Genomics Centre, Wageningen University, P.O. Box 338, Wageningen, 6700AH The Netherlands
| | - Lawrence B. Schook
- Department of Animal Sciences, University of Illinois, 1201 W Gregory Drive, Urbana, IL 61801 USA
- Institute for Genomic Biology, University of Illinois, 1206 W Gregory Drive, Urbana, IL 61801 USA
| |
Collapse
|
33
|
Lim DA, Alvarez-Buylla A. The Adult Ventricular-Subventricular Zone (V-SVZ) and Olfactory Bulb (OB) Neurogenesis. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a018820. [PMID: 27048191 DOI: 10.1101/cshperspect.a018820] [Citation(s) in RCA: 431] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A large population of neural stem/precursor cells (NSCs) persists in the ventricular-subventricular zone (V-SVZ) located in the walls of the lateral brain ventricles. V-SVZ NSCs produce large numbers of neuroblasts that migrate a long distance into the olfactory bulb (OB) where they differentiate into local circuit interneurons. Here, we review a broad range of discoveries that have emerged from studies of postnatal V-SVZ neurogenesis: the identification of NSCs as a subpopulation of astroglial cells, the neurogenic lineage, new mechanisms of neuronal migration, and molecular regulators of precursor cell proliferation and migration. It has also become evident that V-SVZ NSCs are regionally heterogeneous, with NSCs located in different regions of the ventricle wall generating distinct OB interneuron subtypes. Insights into the developmental origins and molecular mechanisms that underlie the regional specification of V-SVZ NSCs have also begun to emerge. Other recent studies have revealed new cell-intrinsic molecular mechanisms that enable lifelong neurogenesis in the V-SVZ. Finally, we discuss intriguing differences between the rodent V-SVZ and the corresponding human brain region. The rapidly expanding cellular and molecular knowledge of V-SVZ NSC biology provides key insights into postnatal neural development, the origin of brain tumors, and may inform the development regenerative therapies from cultured and endogenous human neural precursors.
Collapse
Affiliation(s)
- Daniel A Lim
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF, Department of Neurological Surgery, University of California, San Francisco, California 94143
| | - Arturo Alvarez-Buylla
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF, Department of Neurological Surgery, University of California, San Francisco, California 94143
| |
Collapse
|
34
|
Liu D, Xiao Y, Subramanian RR, Okamoto EI, Wilcox JN, Anderson L, De Leon H. Potential Role of Axonal Chemorepellent Slit2 in Modulating Adventitial Inflammation in a Rat Carotid Artery Balloon Injury Model. J Cardiovasc Pharmacol 2016; 67:433-41. [PMID: 26841069 PMCID: PMC4861666 DOI: 10.1097/fjc.0000000000000369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Leukocyte infiltration of adventitial and perivascular tissues is an early event in the development of vascular remodeling after injury. We investigated whether Slit/Robo-an axonal chemorepellent system in vertebrate and invertebrate development-is activated during the inflammatory phase that follows endothelial denudation. Using the rat carotid artery model of angioplasty, we conducted a time course analysis of mRNAs encoding Slit ligands (Slit2 and Slit3) and Robo receptors (Robo1, Robo2, and Robo4), as well as proinflammatory cell adhesion molecule (CAM) genes. Adventitial inflammatory cells were counted in immunostained arterial sections. E-selectin, vascular CAM-1, and intercellular CAM-1 were upregulated 2-3 hours after injury, followed by infiltration of neutrophils and monocytes as evidenced by real-time polymerase chain reaction, in situ hybridization, and immunohistochemistry. Slit2, Slit3, and Robo genes exhibited no expression changes at 3 hours; however, they were markedly upregulated 1 day after angioplasty. Intercellular CAM-1 expression was reduced by 50%, and the number of adventitial neutrophils decreased by >75% 1 day after angioplasty. Slit2 has been shown to be a potent chemorepelent of leukocytes, endothelial cells, and smooth muscle cells. Thus, we decided to further investigate the localization of Slit2 in injured vessels. Immunohistochemical stainings revealed the presence of Slit2 within the vessel wall and in the perivascular vasa vasorum of naive and injured arteries. Double immunohistochemical analyses showed that infiltrating monocytes expressed Slit2 in the perivascular and adventitial tissues of injured arteries 1 and 3 days postangioplasty. In addition, recombinant full-length Slit2 and Slit2-N/1118, an N-terminal fragment of Slit2, inhibited stromal cell-derived factor 1-mediated migration of circulating rat peripheral blood mononuclear cells. In summary, adventitial activation of CAM genes and neutrophil infiltration preceded upregulation of Slit/Robo genes. Sli2 expression colocalized with infiltrating inflammatory cells in the adventitial layer. This temporospatial association suggests that leukocyte chemorepellent Slit2 may be involved in halting the adventitial accumulation of inflammatory cells in injured vessels.
Collapse
Affiliation(s)
- Dong Liu
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, GA 30310
| | - Yan Xiao
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, GA 30310
| | | | - Ei-ichi Okamoto
- The Winship Cancer Institute, Emory University School of Medicine, Atlanta GA 30322
| | - Josiah N. Wilcox
- The Winship Cancer Institute, Emory University School of Medicine, Atlanta GA 30322
| | - Leonard Anderson
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, GA 30310
| | - Hector De Leon
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, GA 30310
| |
Collapse
|
35
|
McConnell RE, Edward van Veen J, Vidaki M, Kwiatkowski AV, Meyer AS, Gertler FB. A requirement for filopodia extension toward Slit during Robo-mediated axon repulsion. J Cell Biol 2016; 213:261-74. [PMID: 27091449 PMCID: PMC5084274 DOI: 10.1083/jcb.201509062] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 03/04/2016] [Indexed: 12/11/2022] Open
Abstract
Axons navigate long distances through complex 3D environments to interconnect the nervous system during development. Although the precise spatiotemporal effects of most axon guidance cues remain poorly characterized, a prevailing model posits that attractive guidance cues stimulate actin polymerization in neuronal growth cones whereas repulsive cues induce actin disassembly. Contrary to this model, we find that the repulsive guidance cue Slit stimulates the formation and elongation of actin-based filopodia from mouse dorsal root ganglion growth cones. Surprisingly, filopodia form and elongate toward sources of Slit, a response that we find is required for subsequent axonal repulsion away from Slit. Mechanistically, Slit evokes changes in filopodium dynamics by increasing direct binding of its receptor, Robo, to members of the actin-regulatory Ena/VASP family. Perturbing filopodium dynamics pharmacologically or genetically disrupts Slit-mediated repulsion and produces severe axon guidance defects in vivo. Thus, Slit locally stimulates directional filopodial extension, a process that is required for subsequent axonal repulsion downstream of the Robo receptor.
Collapse
Affiliation(s)
- Russell E McConnell
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 01239
| | - J Edward van Veen
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 01239 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 01239
| | - Marina Vidaki
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 01239
| | - Adam V Kwiatkowski
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 01239
| | - Aaron S Meyer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 01239 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239
| | - Frank B Gertler
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 01239 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 01239
| |
Collapse
|
36
|
A Secreted Slit2 Fragment Regulates Adipose Tissue Thermogenesis and Metabolic Function. Cell Metab 2016; 23:454-66. [PMID: 26876562 PMCID: PMC4785066 DOI: 10.1016/j.cmet.2016.01.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/07/2015] [Accepted: 01/13/2016] [Indexed: 12/15/2022]
Abstract
Activation of brown and beige fat can reduce obesity and improve glucose homeostasis through nonshivering thermogenesis. Whether brown or beige fat also secretes paracrine or endocrine factors to promote and amplify adaptive thermogenesis is not fully explored. Here we identify Slit2, a 180 kDa member of the Slit extracellular protein family, as a PRDM16-regulated secreted factor from beige fat cells. In isolated cells and in mice, full-length Slit2 is cleaved to generate several smaller fragments, and we identify an active thermogenic moiety as the C-terminal fragment. This Slit2-C fragment of 50 kDa promotes adipose thermogenesis, augments energy expenditure, and improves glucose homeostasis in vivo. Mechanistically, Slit2 induces a robust activation of PKA signaling, which is required for its prothermogenic activity. Our findings establish a previously unknown peripheral role for Slit2 as a beige fat secreted factor that has therapeutic potential for the treatment of obesity and related metabolic disorders.
Collapse
|
37
|
Hwang DY, Kohl S, Fan X, Vivante A, Chan S, Dworschak GC, Schulz J, van Eerde AM, Hilger AC, Gee HY, Pennimpede T, Herrmann BG, van de Hoek G, Renkema KY, Schell C, Huber TB, Reutter HM, Soliman NA, Stajic N, Bogdanovic R, Kehinde EO, Lifton RP, Tasic V, Lu W, Hildebrandt F. Mutations of the SLIT2-ROBO2 pathway genes SLIT2 and SRGAP1 confer risk for congenital anomalies of the kidney and urinary tract. Hum Genet 2015; 134:905-16. [PMID: 26026792 PMCID: PMC4497857 DOI: 10.1007/s00439-015-1570-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/18/2015] [Indexed: 12/26/2022]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) account for 40-50% of chronic kidney disease that manifests in the first two decades of life. Thus far, 31 monogenic causes of isolated CAKUT have been described, explaining ~12% of cases. To identify additional CAKUT-causing genes, we performed whole-exome sequencing followed by a genetic burden analysis in 26 genetically unsolved families with CAKUT. We identified two heterozygous mutations in SRGAP1 in 2 unrelated families. SRGAP1 is a small GTPase-activating protein in the SLIT2-ROBO2 signaling pathway, which is essential for development of the metanephric kidney. We then examined the pathway-derived candidate gene SLIT2 for mutations in cohort of 749 individuals with CAKUT and we identified 3 unrelated individuals with heterozygous mutations. The clinical phenotypes of individuals with mutations in SLIT2 or SRGAP1 were cystic dysplastic kidneys, unilateral renal agenesis, and duplicated collecting system. We show that SRGAP1 is expressed in early mouse nephrogenic mesenchyme and that it is coexpressed with ROBO2 in SIX2-positive nephron progenitor cells of the cap mesenchyme in developing rat kidney. We demonstrate that the newly identified mutations in SRGAP1 lead to an augmented inhibition of RAC1 in cultured human embryonic kidney cells and that the SLIT2 mutations compromise the ability of the SLIT2 ligand to inhibit cell migration. Thus, we report on two novel candidate genes for causing monogenic isolated CAKUT in humans.
Collapse
Affiliation(s)
- Daw-Yang Hwang
- Division of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Nephrology, Department of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Stefan Kohl
- Division of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xueping Fan
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, MA, USA
| | - Asaf Vivante
- Division of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Stefanie Chan
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, MA, USA
| | - Gabriel C Dworschak
- Division of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Julian Schulz
- Division of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Albertien M van Eerde
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alina C Hilger
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Heon Yung Gee
- Division of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tracie Pennimpede
- Max Planck Institute for Molecular Genetics, Developmental Genetics Department, Berlin, Germany
| | - Bernhard G Herrmann
- Max Planck Institute for Molecular Genetics, Developmental Genetics Department, Berlin, Germany
| | - Glenn van de Hoek
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kirsten Y Renkema
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christoph Schell
- Renal Division, University Hospital Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University, Freiburg, Germany
| | - Tobias B Huber
- Renal Division, University Hospital Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Germany
| | - Heiko M Reutter
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Neonatology, Children’s Hospital, University of Bonn, Bonn, Germany
| | - Neveen A Soliman
- Department of Pediatrics, Kasr Al Ainy School of Medicine, Cairo University, Cairo, Egypt
- Egyptian Group for Orphan Renal Diseases (EGORD), Cairo, Egypt
| | - Natasa Stajic
- Medical Faculty, University of Belgrade, Belgrade, Serbia
- Institute of Mother and Child Healthcare of Serbia, Belgrade, Serbia
| | - Radovan Bogdanovic
- Medical Faculty, University of Belgrade, Belgrade, Serbia
- Institute of Mother and Child Healthcare of Serbia, Belgrade, Serbia
| | | | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Mendelian Genomics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Velibor Tasic
- Department of Pediatric Nephrology, University Children’s Hospital, Skopje, Macedonia
| | - Weining Lu
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, MA, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
38
|
Squarzoni P, Thion MS, Garel S. Neuronal and microglial regulators of cortical wiring: usual and novel guideposts. Front Neurosci 2015; 9:248. [PMID: 26236185 PMCID: PMC4505395 DOI: 10.3389/fnins.2015.00248] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/30/2015] [Indexed: 12/17/2022] Open
Abstract
Neocortex functioning relies on the formation of complex networks that begin to be assembled during embryogenesis by highly stereotyped processes of cell migration and axonal navigation. The guidance of cells and axons is driven by extracellular cues, released along by final targets or intermediate targets located along specific pathways. In particular, guidepost cells, originally described in the grasshopper, are considered discrete, specialized cell populations located at crucial decision points along axonal trajectories that regulate tract formation. These cells are usually early-born, transient and act at short-range or via cell-cell contact. The vast majority of guidepost cells initially identified were glial cells, which play a role in the formation of important axonal tracts in the forebrain, such as the corpus callosum, anterior, and post-optic commissures as well as optic chiasm. In the last decades, tangential migrating neurons have also been found to participate in the guidance of principal axonal tracts in the forebrain. This is the case for several examples such as guideposts for the lateral olfactory tract (LOT), corridor cells, which open an internal path for thalamo-cortical axons and Cajal-Retzius cells that have been involved in the formation of the entorhino-hippocampal connections. More recently, microglia, the resident macrophages of the brain, were specifically observed at the crossroads of important neuronal migratory routes and axonal tract pathways during forebrain development. We furthermore found that microglia participate to the shaping of prenatal forebrain circuits, thereby opening novel perspectives on forebrain development and wiring. Here we will review the last findings on already known guidepost cell populations and will discuss the role of microglia as a potentially new class of atypical guidepost cells.
Collapse
Affiliation(s)
- Paola Squarzoni
- Centre National de la Recherche Scientifique UMR8197, Ecole Normale Supérieure, Institut de Biologie, Institut National de la Santé et de la Recherche Médicale U1024 Paris, France
| | - Morgane S Thion
- Centre National de la Recherche Scientifique UMR8197, Ecole Normale Supérieure, Institut de Biologie, Institut National de la Santé et de la Recherche Médicale U1024 Paris, France
| | - Sonia Garel
- Centre National de la Recherche Scientifique UMR8197, Ecole Normale Supérieure, Institut de Biologie, Institut National de la Santé et de la Recherche Médicale U1024 Paris, France
| |
Collapse
|
39
|
Wu H, Barik A, Lu Y, Shen C, Bowman A, Li L, Sathyamurthy A, Lin TW, Xiong WC, Mei L. Slit2 as a β-catenin/Ctnnb1-dependent retrograde signal for presynaptic differentiation. eLife 2015; 4. [PMID: 26159615 PMCID: PMC4498096 DOI: 10.7554/elife.07266] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 06/18/2015] [Indexed: 12/12/2022] Open
Abstract
Neuromuscular junction formation requires proper interaction between motoneurons and muscle cells. β-Catenin (Ctnnb1) in muscle is critical for motoneuron differentiation; however, little is known about the relevant retrograde signal. In this paper, we dissected which functions of muscle Ctnnb1 are critical by an in vivo transgenic approach. We show that Ctnnb1 mutant without the transactivation domain was unable to rescue presynaptic deficits of Ctnnb1 mutation, indicating the involvement of transcription regulation. On the other hand, the cell-adhesion function of Ctnnb1 is dispensable. We screened for proteins that may serve as a Ctnnb1-directed retrograde factor and identified Slit2. Transgenic expression of Slit2 specifically in the muscle was able to diminish presynaptic deficits by Ctnnb1 mutation in mice. Slit2 immobilized on beads was able to induce synaptophysin puncta in axons of spinal cord explants. Together, these observations suggest that Slit2 serves as a factor utilized by muscle Ctnnb1 to direct presynaptic differentiation. DOI:http://dx.doi.org/10.7554/eLife.07266.001 Motor nerves are like electrical wires that connect our spinal cord to the muscles in our body. These nerves communicate with muscles across a connection called the neuromuscular junction. To first form a neuromuscular junction, the motor nerves and muscles each produce molecular cues that tell each other to do their part to build a connection. Beta-catenin in the muscle is known to regulate motor nerve development. However, beta-catenin has two different roles: it helps to coordinate whether neighboring cells stick together, and it can regulate which genes are ‘transcribed’ to produce proteins. It was not known which of these roles is necessary for forming neuromuscular junctions. Wu, Barik et al. now investigate this question by creating mice with mutant forms of beta-catenin in their muscles. Some mice had muscle beta-catenin that could not help cells stick together, and others had beta-catenin that could not control gene transcription. Only mutations that affected the ability of beta-catenin to control transcription caused abnormalities in the neuromuscular junction. However, these problems could be fixed by adding either normal beta-catenin or the mutant form that cannot help cells stick together. Wu, Barik et al. then used molecular tools to explore which genes are turned on by beta-catenin. The experiments showed that beta-catenin causes muscle fibers to produce a protein called Slit2—a developmental cue that controls where neurons grow. Furthermore, the neuromuscular junction defects found in mice without beta-catenin in their muscles could be reduced by making the muscle fibers produce more Slit2. However, not all defects in beta-catenin mutant mice are rescued by Slit2. Future research is needed to identify other beta-catenin-controlled signals and to determine whether such a pathway is altered in neuromuscular disorders. DOI:http://dx.doi.org/10.7554/eLife.07266.002
Collapse
Affiliation(s)
- Haitao Wu
- Department of Neurobiology, Institute of Basic Medical Sciences, Beijing, China
| | - Arnab Barik
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, United States
| | - Yisheng Lu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, United States
| | - Chengyong Shen
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, United States
| | - Andrew Bowman
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, United States
| | - Lei Li
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, United States
| | - Anupama Sathyamurthy
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, United States
| | - Thiri W Lin
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, United States
| | - Wen-Cheng Xiong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, United States
| | - Lin Mei
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, United States
| |
Collapse
|
40
|
Samelson BK, Gore BB, Whiting JL, Nygren PJ, Purkey AM, Colledge M, Langeberg LK, Dell'Acqua ML, Zweifel LS, Scott JD. A-kinase Anchoring Protein 79/150 Recruits Protein Kinase C to Phosphorylate Roundabout Receptors. J Biol Chem 2015; 290:14107-19. [PMID: 25882844 DOI: 10.1074/jbc.m115.637470] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Indexed: 01/08/2023] Open
Abstract
Anchoring proteins direct protein kinases and phosphoprotein phosphatases toward selected substrates to control the efficacy, context, and duration of neuronal phosphorylation events. The A-kinase anchoring protein AKAP79/150 interacts with protein kinase A (PKA), protein kinase C (PKC), and protein phosphatase 2B (calcineurin) to modulate second messenger signaling events. In a mass spectrometry-based screen for additional AKAP79/150 binding partners, we have identified the Roundabout axonal guidance receptor Robo2 and its ligands Slit2 and Slit3. Biochemical and cellular approaches confirm that a linear sequence located in the cytoplasmic tail of Robo2 (residues 991-1070) interfaces directly with sites on the anchoring protein. Parallel studies show that AKAP79/150 interacts with the Robo3 receptor in a similar manner. Immunofluorescent staining detects overlapping expression patterns for murine AKAP150, Robo2, and Robo3 in a variety of brain regions, including hippocampal region CA1 and the islands of Calleja. In vitro kinase assays, peptide spot array mapping, and proximity ligation assay staining approaches establish that human AKAP79-anchored PKC selectively phosphorylates the Robo3.1 receptor subtype on serine 1330. These findings imply that anchored PKC locally modulates the phosphorylation status of Robo3.1 in brain regions governing learning and memory and reward.
Collapse
Affiliation(s)
- Bret K Samelson
- From the Howard Hughes Medical Institute, Department of Pharmacology, and
| | - Bryan B Gore
- the Departments of Pharmacology and Psychiatry, University of Washington, Seattle, Washington 98195-7290
| | - Jennifer L Whiting
- From the Howard Hughes Medical Institute, Department of Pharmacology, and
| | - Patrick J Nygren
- From the Howard Hughes Medical Institute, Department of Pharmacology, and
| | - Alicia M Purkey
- the Department of Pharmacology, University of Colorado, Aurora, Colorado 80045, and
| | | | - Lorene K Langeberg
- From the Howard Hughes Medical Institute, Department of Pharmacology, and
| | - Mark L Dell'Acqua
- the Department of Pharmacology, University of Colorado, Aurora, Colorado 80045, and
| | - Larry S Zweifel
- the Departments of Pharmacology and Psychiatry, University of Washington, Seattle, Washington 98195-7290
| | - John D Scott
- From the Howard Hughes Medical Institute, Department of Pharmacology, and
| |
Collapse
|
41
|
Alpár A, Tortoriello G, Calvigioni D, Niphakis MJ, Milenkovic I, Bakker J, Cameron GA, Hanics J, Morris CV, Fuzik J, Kovacs GG, Cravatt BF, Parnavelas JG, Andrews WD, Hurd YL, Keimpema E, Harkany T. Endocannabinoids modulate cortical development by configuring Slit2/Robo1 signalling. Nat Commun 2014; 5:4421. [PMID: 25030704 PMCID: PMC4110686 DOI: 10.1038/ncomms5421] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/16/2014] [Indexed: 11/21/2022] Open
Abstract
Local environmental cues are indispensable for axonal growth and guidance during brain circuit formation. Here, we combine genetic and pharmacological tools, as well as systems neuroanatomy in human fetuses and mouse models, to study the role of endocannabinoid and Slit/Robo signalling in axonal growth. We show that excess 2-arachidonoylglycerol, an endocannabinoid affecting directional axonal growth, triggers corpus callosum enlargement due to the errant CB1 cannabinoid receptor-containing corticofugal axon spreading. This phenotype mechanistically relies on the premature differentiation and end-feet proliferation of CB2R-expressing oligodendrocytes. We further show the dependence of both axonal Robo1 positioning and oligodendroglial Slit2 production on cell-type-specific cannabinoid receptor activation. Accordingly, Robo1 and/or Slit2 manipulation limits endocannabinoid modulation of axon guidance. We conclude that endocannabinoids can configure focal Slit2/Robo1 signalling to modulate directional axonal growth, which may provide a basis for understanding impaired brain wiring associated with metabolic deficits and prenatal drug exposure.
Collapse
Affiliation(s)
- Alán Alpár
- Division of Molecular Neurobiology, Department of Medical Biochemistry & Biophysics, Scheeles väg 1:A1, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Giuseppe Tortoriello
- Division of Molecular Neurobiology, Department of Medical Biochemistry & Biophysics, Scheeles väg 1:A1, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Daniela Calvigioni
- Division of Molecular Neurobiology, Department of Medical Biochemistry & Biophysics, Scheeles väg 1:A1, Karolinska Institutet, SE-17177 Stockholm, Sweden
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | - Micah J Niphakis
- Department of Chemical Physiology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd.,La Jolla, California CA 92037 USA
| | - Ivan Milenkovic
- Institute of Neurology, Medical University of Vienna, AKH 4J, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Joanne Bakker
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | - Gary A Cameron
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - János Hanics
- Department of Anatomy, Histology and Embryology, Semmelweis University, Tűzoltó u. 58, H-1094 Budapest, Hungary
| | - Claudia V Morris
- Icahn School of Medicine at Mount Sinai, New York, 1470 Madison Avenue, New York, NY 10029, USA
| | - János Fuzik
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, AKH 4J, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Benjamin F Cravatt
- Department of Chemical Physiology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd.,La Jolla, California CA 92037 USA
| | - John G Parnavelas
- Department of Cell and Developmental Biology, 21 University Street, University College London, London WC1E 6DE, United Kingdom
| | - William D Andrews
- Department of Cell and Developmental Biology, 21 University Street, University College London, London WC1E 6DE, United Kingdom
| | - Yasmin L Hurd
- Icahn School of Medicine at Mount Sinai, New York, 1470 Madison Avenue, New York, NY 10029, USA
| | - Erik Keimpema
- Division of Molecular Neurobiology, Department of Medical Biochemistry & Biophysics, Scheeles väg 1:A1, Karolinska Institutet, SE-17177 Stockholm, Sweden
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | - Tibor Harkany
- Division of Molecular Neurobiology, Department of Medical Biochemistry & Biophysics, Scheeles väg 1:A1, Karolinska Institutet, SE-17177 Stockholm, Sweden
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| |
Collapse
|
42
|
Li L, Liu S, Lei Y, Cheng Y, Yao C, Zhen X. Robo3.1A suppresses slit-mediated repulsion by triggering degradation of Robo2. J Neurosci Res 2014; 92:835-46. [PMID: 24936616 DOI: 10.1002/jnr.23364] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Slits and Robos control the midline crossing of commissural axons, which are not sensitive to the midline repellent Slit before crossing but gain Slit responsiveness to exit the midline and avoid recrossing. Robo3.1A promotes midline crossing of commissural axons by suppressing the axonal responsiveness to the midline repellent Slit, but the underlying mechanism remains unclear. By using a cell surface binding assay and immunoprecipitation, we observed that Robo3.1A did not bind Slit on its own but prevented the specific binding of Slit to the cell surface when it was coexpressed with its close homologue Robo1 or Robo2 (Robo1/2), which are known to mediate the Slit repulsion. Cotransfection with Robo3.1A significantly reduced the protein level of Robo2 in HEK293 cells, and overexpression of Robo3.1A also significantly decreased Robo2 protein level in cerebellar granule cells. Downregulation of endogenous Robo3 by specific small interference RNA (siRNA) significantly increased Robo1 protein level, Slit binding to the cell surface was significantly elevated, and Slit-triggered growth cone collapse appeared after downregulation of Robo3 in cultured cortical neurons. Immunocytochemical staining showed that Robo2 and Robo3 colocalized in intracellular vesicles positive for the marker of late endosomes and lysosomes, but not trans-Golgi apparatus and early endosomes. Thus Robo3.1A may prevent the Slit responsiveness by recruiting Robo1/2 into a late endosome- and lysosome-dependent degradation pathway.
Collapse
|
43
|
Kato M, Okanoya K, Koike T, Sasaki E, Okano H, Watanabe S, Iriki A. Human speech- and reading-related genes display partially overlapping expression patterns in the marmoset brain. BRAIN AND LANGUAGE 2014; 133:26-38. [PMID: 24769279 DOI: 10.1016/j.bandl.2014.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 03/02/2014] [Accepted: 03/22/2014] [Indexed: 06/03/2023]
Abstract
Language is a characteristic feature of human communication. Several familial language impairments have been identified, and candidate genes for language impairments already isolated. Studies comparing expression patterns of these genes in human brain are necessary to further understanding of these genes. However, it is difficult to examine gene expression in human brain. In this study, we used a non-human primate (common marmoset; Callithrix jacchus) as a biological model of the human brain to investigate expression patterns of human speech- and reading-related genes. Expression patterns of speech disorder- (FoxP2, FoxP1, CNTNAP2, and CMIP) and dyslexia- (ROBO1, DCDC2, and KIAA0319) related genes were analyzed. We found the genes displayed overlapping expression patterns in the ocular, auditory, and motor systems. Our results enhance understanding of the molecular mechanisms underlying language impairments.
Collapse
Affiliation(s)
- Masaki Kato
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Laboratory for Biolinguistics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Center for Advanced Research on Logic and Sensibility (CARLS), Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan.
| | - Kazuo Okanoya
- Laboratory for Biolinguistics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Taku Koike
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Erika Sasaki
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki, Kanagawa 210-0821, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; KEIO-RIKEN Research Center for Human Cognition, Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; KEIO-RIKEN Research Center for Human Cognition, Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan; Keio University Joint Research Laboratory, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shigeru Watanabe
- KEIO-RIKEN Research Center for Human Cognition, Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan; Center for Advanced Research on Logic and Sensibility (CARLS), Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; KEIO-RIKEN Research Center for Human Cognition, Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan; Center for Advanced Research on Logic and Sensibility (CARLS), Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan.
| |
Collapse
|
44
|
Aoki M, Takeuchi H, Nakashima A, Nishizumi H, Sakano H. Possible roles of Robo1+ ensheathing cells in guiding dorsal-zone olfactory sensory neurons in mouse. Dev Neurobiol 2013; 73:828-40. [PMID: 23821580 DOI: 10.1002/dneu.22103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 06/23/2013] [Accepted: 06/24/2013] [Indexed: 11/06/2022]
Abstract
In the mouse olfactory system, the anatomical locations of olfactory sensory neurons (OSNs) correlate with their axonal projection sites along the dorsoventral axis of the olfactory bulb (OB). We have previously reported that Neuropilin-2 expressed by ventral-zone OSNs contributes to the segregation of dorsal and ventral OSN axons, and that Slit is acting as a negative land mark to restrict the projection of Robo2+, early-arriving OSN axons to the embryonic OB. Here, we report that another guidance receptor, Robo1, also plays an important role in guiding OSN axons. Knockout mice for Robo1 demonstrated defects in targeting of OSN axons to the OB. Although Robo1 is colocalized with dorsal-zone OSN axons, it is not produced by OSNs, but instead by olfactory ensheathing cells. These findings indicate a novel strategy of axon guidance in the mouse olfactory system during development.
Collapse
Affiliation(s)
- Mari Aoki
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo, 113-0032, Japan
| | | | | | | | | |
Collapse
|
45
|
A sympathetic neuron autonomous role for Egr3-mediated gene regulation in dendrite morphogenesis and target tissue innervation. J Neurosci 2013; 33:4570-83. [PMID: 23467373 DOI: 10.1523/jneurosci.5481-12.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Egr3 is a nerve growth factor (NGF)-induced transcriptional regulator that is essential for normal sympathetic nervous system development. Mice lacking Egr3 in the germline have sympathetic target tissue innervation abnormalities and physiologic sympathetic dysfunction similar to humans with dysautonomia. However, since Egr3 is widely expressed and has pleiotropic function, it has not been clear whether it has a role within sympathetic neurons and if so, what target genes it regulates to facilitate target tissue innervation. Here, we show that Egr3 expression within sympathetic neurons is required for their normal innervation since isolated sympathetic neurons lacking Egr3 have neurite outgrowth abnormalities when treated with NGF and mice with sympathetic neuron-restricted Egr3 ablation have target tissue innervation abnormalities similar to mice lacking Egr3 in all tissues. Microarray analysis performed on sympathetic neurons identified many target genes deregulated in the absence of Egr3, with some of the most significantly deregulated genes having roles in axonogenesis, dendritogenesis, and axon guidance. Using a novel genetic technique to visualize axons and dendrites in a subpopulation of randomly labeled sympathetic neurons, we found that Egr3 has an essential role in regulating sympathetic neuron dendrite morphology and terminal axon branching, but not in regulating sympathetic axon guidance to their targets. Together, these results indicate that Egr3 has a sympathetic neuron autonomous role in sympathetic nervous system development that involves modulating downstream target genes affecting the outgrowth and branching of sympathetic neuron dendrites and axons.
Collapse
|
46
|
Mirza R, Kivrak BG, Erzurumlu RS. Cooperative slit and netrin signaling in contralateralization of the mouse trigeminothalamic pathway. J Comp Neurol 2013; 521:312-25. [PMID: 22806432 PMCID: PMC3491114 DOI: 10.1002/cne.23188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 05/24/2012] [Accepted: 07/06/2012] [Indexed: 12/13/2022]
Abstract
Ascending somatosensory pathways are crossed pathways representing each side of the body in the contralateral neocortex. The principal sensory nucleus of the trigeminal nerve (PrV) relays the facial sensations to the contralateral somatosensory cortex via the ventrobasal thalamus. In the companion article (Kivrak and Erzurumlu [2012] J. Comp. Neurol. 12-0013) we described the normal development of the trigeminal lemniscal pathway in the mouse. In this study we investigated the role of midline axon navigation signals, the netrin and slit proteins. In situ hybridization assays revealed that both netrin and slit mRNAs are expressed along the midline facing the PrV axons and their receptors are expressed in developing PrV neurons. In wild-type mouse embryos, PrV axons cross the midline and take a sharp rostral turn heading toward the contralateral thalamus. Examination of trigeminal lemniscal axons in dcc knockout mice revealed absence of midline crossing between E11 and E15. However, a few axons crossed the midline at E17 and reached the contralateral thalamus, resulting in a bilateral PrV lemniscal pathway at P0. We also found that slit1, -2 or -3 single or double knockout mice have impaired development of the trigeminal-lemniscal pathway. These include axon stalling along the midline, running within the midline, and recrossing of axons back to the site of origin. Collectively, our studies indicate a cooperative role for netrin and slit proteins in midline attraction and crossing behavior of the ascending facial somatosensory projections during development.
Collapse
Affiliation(s)
- Rusella Mirza
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
47
|
Compagnucci C, Di Siena S, Bustamante MB, Di Giacomo D, Di Tommaso M, Maccarrone M, Grimaldi P, Sette C. Type-1 (CB1) cannabinoid receptor promotes neuronal differentiation and maturation of neural stem cells. PLoS One 2013; 8:e54271. [PMID: 23372698 PMCID: PMC3553153 DOI: 10.1371/journal.pone.0054271] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 12/11/2012] [Indexed: 12/12/2022] Open
Abstract
Neural stem cells (NSCs) are self-renewing cells that can differentiate into multiple neural lineages and repopulate regions of the brain after injury. We have investigated the role of endocannabinoids (eCBs), endogenous cues that modulate neuronal functions including neurogenesis, and their receptors CB(1) and CB(2) in mouse NSCs. Real-time PCR and Western blot analyses indicated that CB(1) is present at higher levels than CB(2) in NSCs. The eCB anandamide (AEA) or the CB(1)-specific agonist ACEA enhanced NSC differentiation into neurons, but not astrocytes and oligodendrocytes, whereas the CB(2)-specific agonist JWH133 was ineffective. Conversely, the effect of AEA was inhibited by CB(1), but not CB(2), antagonist, corroborating the specificity of the response. CB(1) activation also enhanced maturation of neurons, as indicated by morphometric analysis of neurites. CB(1) stimulation caused long-term inhibition of the ERK1/2 pathway. Consistently, pharmacological inhibition of the ERK1/2 pathway recapitulated the effects exerted by CB(1) activation on neuronal differentiation and maturation. Lastly, gene array profiling showed that CB(1) activation augmented the expression of genes involved in neuronal differentiation while decreasing that of stemness genes. These results highlight the role of CB(1) in the regulation of NSC fate and suggest that its activation may represent a pro-neuronal differentiation signal.
Collapse
MESH Headings
- Animals
- Arachidonic Acids/pharmacology
- Cannabinoid Receptor Agonists/pharmacology
- Cannabinoids/pharmacology
- Cell Differentiation/drug effects
- Embryo, Mammalian
- Endocannabinoids/pharmacology
- Gene Expression/drug effects
- Gene Expression Profiling
- Mice
- Mice, Inbred C57BL
- Microarray Analysis
- Mitogen-Activated Protein Kinase 1/antagonists & inhibitors
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/antagonists & inhibitors
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/metabolism
- Neural Stem Cells/cytology
- Neural Stem Cells/drug effects
- Neural Stem Cells/metabolism
- Neurons/cytology
- Neurons/metabolism
- Polyunsaturated Alkamides/pharmacology
- Primary Cell Culture
- Protein Kinase Inhibitors/pharmacology
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Claudia Compagnucci
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome “Tor Vergata”, Rome, Italy
- Laboratory of Neuroembryology, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Sara Di Siena
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome “Tor Vergata”, Rome, Italy
| | - Maria Blaire Bustamante
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome “Tor Vergata”, Rome, Italy
- Laboratory of Neuroembryology, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Daniele Di Giacomo
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome “Tor Vergata”, Rome, Italy
| | - Monia Di Tommaso
- Laboratory of Lipid Neurochemistry, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Biomedical Sciences, University of Teramo, Teramo, Italy
| | - Mauro Maccarrone
- Laboratory of Lipid Neurochemistry, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Biomedical Sciences, University of Teramo, Teramo, Italy
| | - Paola Grimaldi
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome “Tor Vergata”, Rome, Italy
| | - Claudio Sette
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome “Tor Vergata”, Rome, Italy
- Laboratory of Neuroembryology, Fondazione Santa Lucia IRCCS, Rome, Italy
| |
Collapse
|
48
|
Abstract
Growth cone collapse is an easy and efficient test for detecting and characterizing axon guidance activities secreted or expressed by cells. It can also be used to dissect signaling pathways by axon growth inhibitors and to isolate therapeutic compounds that promote axon regeneration. Here, we describe a growth cone collapse assay protocol used to study signal transduction mechanisms of the repulsive axon guidance molecule ephrin-A5 in hippocampal neurons.
Collapse
Affiliation(s)
- Xin Yue
- Department of Chemical Biology, Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | | | | |
Collapse
|
49
|
Schubert T, Denk AE, Ruedel A, Kaufmann S, Hustert E, Bastone P, Bosserhoff AK. Fragments of SLIT3 inhibit cellular migration. Int J Mol Med 2012; 30:1133-7. [PMID: 22922792 DOI: 10.3892/ijmm.2012.1098] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/02/2012] [Indexed: 11/06/2022] Open
Abstract
The repellent factor family of Slit molecules has been described as having a repulsive function in the developing nervous system on growing axons expressing the Roundabout (Robo) receptors. Recent studies determined the effects of Slit molecules on the migratory and invasive potential of several types of tumor cells but also on synovial fibroblasts (SFs) derived from rheumatoid arthritis (RA) patients. To optimize a potential therapeutic application we aimed at generatingfragments of Slit3 showing the same functional ability as the full-length molecule but having the advantage of a smaller size. Recombinant Slit3 proteins were expressed and analyzed by western blotting. Their activity was defined by functional assays such as migration assays with RASF and melanoma cells. Recombinant Slit3 containing only leucine rich repeat domain 2 (D2), the domain important for Robo binding and the minimal functional unit D2 dNC were both able to inhibit migration of RASFs as effectively as Slit3 with all 4 repeats. Collectively, our data showed that the ability of Slit3 to reduce the migratory activity of synovial cells from patients with RA and melanoma cells can be mimicked by small protein fragments derived from Slit3. Slit3 fragments may be helpful in therapeutic attempts; however, further studies are necessary in order to elucidate their activity in vivo.
Collapse
Affiliation(s)
- Thomas Schubert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Larrieu-Lahargue F, Thomas KR, Li DY. Netrin ligands and receptors: lessons from neurons to the endothelium. Trends Cardiovasc Med 2012; 22:44-7. [PMID: 22841834 DOI: 10.1016/j.tcm.2012.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Netrins were initially identified as secreted ligands regulating axon guidance and migration through interaction with canonical receptors. Netrins were then shown to be necessary for development of a range of tissues, including lung, mammary gland, and the vasculature. While new netrin receptors, as well as alternative ligands for classical netrin receptors, were described in the neuronal and epithelial fields, there was a singular focus on canonical netrin receptors in the vascular system, leading to controversy on netrin function and the nature of receptor-mediated netrin signaling in the endothelium. Here, we summarize the current state of knowledge on netrin ligands and receptors and discuss questions, controversies, and perspectives surrounding netrin functions and receptor identity in the vasculature.
Collapse
|