1
|
Gao Y, Liu J, Qian X, He X. Identification of markers associated with brain metastasis from breast cancer through bioinformatics analysis and verification in clinical samples. Gland Surg 2021; 10:924-942. [PMID: 33842237 PMCID: PMC8033074 DOI: 10.21037/gs-20-767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/11/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND Brain metastasis from breast cancer (BC) is an important cause of BC-related death. The present study aimed to identify markers of brain metastasis from BC. METHODS Datasets were downloaded from the public databases Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). Weighted gene co-expression network analysis (WGCNA) was performed to identify metastasis-associated genes (MAGs). Least absolute shrinkage and selection operator (LASSO) Cox proportional hazards regression models were constructed for screening key MAGs. Survival analysis and receiver operating characteristic (ROC) curves were used for evaluating the prognostic value. The factors associated with tumor metastasis were integrated to create a nomogram of TCGA data using R software. Gene Set Enrichment Analyses (GSEA) was performed for detecting the potential mechanisms of identified MAGs. Immunohistochemistry (IHC) was used to verify the expression of the key genes in clinical samples. RESULTS The genes in 2 modules were identified to be significantly associated with metastasis through WGCNA. LASSO Cox proportional hazards regression models were constructed successfully. Subsequently, a clinical prediction model was constructed, and a nomogram was mapped, which had better sensitivity and specificity for BC metastasis. Two key genes, discs large homolog 3 (DLG3) and growth factor independence 1 (GFI1), were highly expressed in clinical samples, and the expression of these 2 genes was associated with patients' survival time. CONCLUSIONS We successfully constructed a clinical prediction model for brain metastasis from BC, and identified that the expression of DLG3 and GFI1 were strongly associated with brain metastasis from BC.
Collapse
Affiliation(s)
- Yongchang Gao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianjing Liu
- Department of Nuclear Medicine and Molecular Imaging, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Xiaolong Qian
- Department of Breast Cancer Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Xianghui He
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
2
|
The Scribble Complex PDZ Proteins in Immune Cell Polarities. J Immunol Res 2020; 2020:5649790. [PMID: 32411799 PMCID: PMC7210543 DOI: 10.1155/2020/5649790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 04/13/2020] [Indexed: 12/24/2022] Open
Abstract
hScrib and hDlg belong to the PDZ family of proteins. Since the identification of these highly phylogenetically conserved scaffolds, an increasing amount of experiments has elucidated the roles of hScrib and hDlg in a variety of cell functions. Remarkably, their participation during the establishment of polarity in epithelial cells is well documented. Although the role of both proteins in the immune system is scantly known, it has become a growing field of investigation. Here, we summarize the interactions and functions of hScrib and hDlg1, which participate in diverse functions involving cell polarization in immune cells, and discuss their relevance in the immune cell biology. The fundamental role of hScrib and hDlg1 during the establishment of the immunological synapse, hence T cell activation, and the recently described role of hScrib in reactive oxygen species production in macrophages and of hDlg1 in cytokine production by dendritic cells highlight the importance of both proteins in immune cell biology. The expression of these proteins in other leukocytes can be anticipated and needs to be confirmed. Due to their multiple interaction domains, there is a wide range of possible interactions of hScrib and hDlg1 that remains to be explored in the immune system.
Collapse
|
3
|
Liu J, Li P, Wang R, Li J, Zhang M, Song Z, Liu P. High expression of DLG3 is associated with decreased survival from breast cancer. Clin Exp Pharmacol Physiol 2019; 46:937-943. [PMID: 31271664 PMCID: PMC6771499 DOI: 10.1111/1440-1681.13132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/31/2019] [Accepted: 07/01/2019] [Indexed: 11/26/2022]
Abstract
Abnormal expression or activity of proteins that regulate cell polarity can contribute to tumour progression. Discs large homolog (DLG) proteins play crucial roles in the maintenance of cell polarity and tissue morphogenesis. Previous studies of breast cancer patients showed that DLG3 had greater expression in the cancerous tissues than non‐cancerous tissues, but the relationship between DLG3 expression and breast cancer progression and prognosis is not clear. Here, we investigated the association of DLG3 expression with breast cancer progression and prognosis using data on clinicopathological parameters from The Cancer Genome Atlas (TCGA) database, with different clinicopathological parameters using ualcan and linkedomics, and with different stages and subtypes using immunohistochemical staining. The results indicated greater DLG3 expression in cancerous breast tissues than normal breast tissues and in luminal and Her2+ subtypes than in the triple‐negative subtype. DLG3 expression also had a positive correlation with pathologic stage and decreased survival rate. Our data suggest that DLG3 should be considered as a new diagnostic and prognostic biomarker for breast cancer.
Collapse
Affiliation(s)
- Jie Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumour Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pingping Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumour Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruiqi Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumour Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Juan Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumour Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Miao Zhang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumour Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhangjun Song
- Mammary Department, Tumour Hospital of Shaanxi Province, Xi'an, China
| | - Peijun Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumour Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
4
|
Portela M, Yang L, Paul S, Li X, Veraksa A, Parsons LM, Richardson HE. Lgl reduces endosomal vesicle acidification and Notch signaling by promoting the interaction between Vap33 and the V-ATPase complex. Sci Signal 2018; 11:11/533/eaar1976. [PMID: 29871910 DOI: 10.1126/scisignal.aar1976] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epithelial cell polarity is linked to the control of tissue growth and tumorigenesis. The tumor suppressor and cell polarity protein lethal-2-giant larvae (Lgl) promotes Hippo signaling and inhibits Notch signaling to restrict tissue growth in Drosophila melanogaster Notch signaling is greater in lgl mutant tissue than in wild-type tissue because of increased acidification of endosomal vesicles, which promotes the proteolytic processing and activation of Notch by γ-secretase. We showed that the increased Notch signaling and tissue growth defects of lgl mutant tissue depended on endosomal vesicle acidification mediated by the vacuolar adenosine triphosphatase (V-ATPase). Lgl promoted the activity of the V-ATPase by interacting with Vap33 (VAMP-associated protein of 33 kDa). Vap33 physically and genetically interacted with Lgl and V-ATPase subunits and repressed V-ATPase-mediated endosomal vesicle acidification and Notch signaling. Vap33 overexpression reduced the abundance of the V-ATPase component Vha44, whereas Lgl knockdown reduced the binding of Vap33 to the V-ATPase component Vha68-3. Our data indicate that Lgl promotes the binding of Vap33 to the V-ATPase, thus inhibiting V-ATPase-mediated endosomal vesicle acidification and thereby reducing γ-secretase activity, Notch signaling, and tissue growth. Our findings implicate the deregulation of Vap33 and V-ATPase activity in polarity-impaired epithelial cancers.
Collapse
Affiliation(s)
- Marta Portela
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.,Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002, Australia.,Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Avenida Doctor Arce, 37, Madrid 28002, Spain
| | - Liu Yang
- Department of Biology, University of Massachusetts, Boston, MA 02125, USA
| | - Sayantanee Paul
- Department of Biology, University of Massachusetts, Boston, MA 02125, USA
| | - Xia Li
- Department of Mathematics and Statistics, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Alexey Veraksa
- Department of Biology, University of Massachusetts, Boston, MA 02125, USA
| | - Linda M Parsons
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Helena E Richardson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia. .,Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002, Australia.,Sir Peter MacCallum Department of Oncology, Department of Anatomy and Neuroscience, Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
5
|
Saito Y, Desai RR, Muthuswamy SK. Reinterpreting polarity and cancer: The changing landscape from tumor suppression to tumor promotion. Biochim Biophys Acta Rev Cancer 2018; 1869:103-116. [DOI: 10.1016/j.bbcan.2017.12.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 12/21/2022]
|
6
|
Stephens R, Lim K, Portela M, Kvansakul M, Humbert PO, Richardson HE. The Scribble Cell Polarity Module in the Regulation of Cell Signaling in Tissue Development and Tumorigenesis. J Mol Biol 2018; 430:3585-3612. [PMID: 29409995 DOI: 10.1016/j.jmb.2018.01.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 01/22/2023]
Abstract
The Scribble cell polarity module, comprising Scribbled (Scrib), Discs-large (Dlg) and Lethal-2-giant larvae (Lgl), has a tumor suppressive role in mammalian epithelial cancers. The Scribble module proteins play key functions in the establishment and maintenance of different modes of cell polarity, as well as in the control of tissue growth, differentiation and directed cell migration, and therefore are major regulators of tissue development and homeostasis. Whilst molecular details are known regarding the roles of Scribble module proteins in cell polarity regulation, their precise mode of action in the regulation of other key cellular processes remains enigmatic. An accumulating body of evidence indicates that Scribble module proteins play scaffolding roles in the control of various signaling pathways, which are linked to the control of tissue growth, differentiation and cell migration. Multiple Scrib, Dlg and Lgl interacting proteins have been discovered, which are involved in diverse processes, however many function in the regulation of cellular signaling. Herein, we review the components of the Scrib, Dlg and Lgl protein interactomes, and focus on the mechanism by which they regulate cellular signaling pathways in metazoans, and how their disruption leads to cancer.
Collapse
Affiliation(s)
- Rebecca Stephens
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Krystle Lim
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Marta Portela
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute (CSIC), Avenida Doctor Arce, 37, Madrid 28002, Spain
| | - Marc Kvansakul
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Patrick O Humbert
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia; Department of Biochemistry & Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Helena E Richardson
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia; Department of Biochemistry & Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Anatomy & Neurobiology, University of Melbourne, Melbourne, Victoria 3010, Australia.
| |
Collapse
|
7
|
Ghosh A, Ramagopal UA, Bonanno JB, Brenowitz M, Almo SC. Structures of the L27 Domain of Disc Large Homologue 1 Protein Illustrate a Self-Assembly Module. Biochemistry 2018; 57:1293-1305. [PMID: 29261291 DOI: 10.1021/acs.biochem.7b01074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Disc large 1 (Dlg1) proteins, members of the MAGUK protein family, are linked to cell polarity via their participation in multiprotein assemblies. At their N-termini, Dlg1 proteins contain a L27 domain. Typically, the L27 domains participate in the formation of obligate hetero-oligomers with the L27 domains from their cognate partners. Among the MAGUKs, Dlg1 proteins exist as homo-oligomers, and the oligomerization is solely dependent on the L27 domain. Here we provide biochemical and structural evidence of homodimerization via the L27 domain of Dlg1 from Drosophila melanogaster. The structure reveals that the core of the dimer is formed by a distinctive six-helix assembly, involving all three conserved helices from each subunit (monomer). The homodimer interface is extended by the C-terminal tail of the L27 domain of Dlg1, which forms a two-stranded antiparallel β-sheet. The structure reconciles and provides a structural context for a large body of available mutational data. From our analyses, we conclude that the observed L27 homodimerization is most likely a feature unique to the Dlg1 orthologs within the MAGUK family.
Collapse
Affiliation(s)
- Agnidipta Ghosh
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Udupi A Ramagopal
- Biological Sciences Division, Poornaprajna Institute of Scientific Research , Sadashivanagar, Bangalore 560080, India
| | - Jeffrey B Bonanno
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Michael Brenowitz
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| |
Collapse
|
8
|
Milgrom-Hoffman M, Humbert PO. Regulation of cellular and PCP signalling by the Scribble polarity module. Semin Cell Dev Biol 2017; 81:33-45. [PMID: 29154823 DOI: 10.1016/j.semcdb.2017.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
Abstract
Since the first identification of the Scribble polarity module proteins as a new class of tumour suppressors that regulate both cell polarity and proliferation, an increasing amount of evidence has uncovered a broader role for Scribble, Dlg and Lgl in the control of fundamental cellular functions and their signalling pathways. Here, we review these findings as well as discuss more specifically the role of the Scribble module in PCP signalling.
Collapse
Affiliation(s)
- Michal Milgrom-Hoffman
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Patrick O Humbert
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia; Department of Biochemistry & Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia.
| |
Collapse
|
9
|
Lin WH, Asmann YW, Anastasiadis PZ. Expression of polarity genes in human cancer. Cancer Inform 2015; 14:15-28. [PMID: 25991909 PMCID: PMC4390136 DOI: 10.4137/cin.s18964] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 01/01/2023] Open
Abstract
Polarity protein complexes are crucial for epithelial apical–basal polarity and directed cell migration. Since alterations of these processes are common in cancer, polarity proteins have been proposed to function as tumor suppressors or oncogenic promoters. Here, we review the current understanding of polarity protein functions in epithelial homeostasis, as well as tumor formation and progression. As most previous studies focused on the function of single polarity proteins in simplified model systems, we used a genomics approach to systematically examine and identify the expression profiles of polarity genes in human cancer. The expression profiles of polarity genes were distinct in different human tissues and classified cancer types. Additionally, polarity expression profiles correlated with disease progression and aggressiveness, as well as with identified cancer types, where specific polarity genes were commonly altered. In the case of Scribble, gene expression analysis indicated its common amplification and upregulation in human cancer, suggesting a tumor promoting function.
Collapse
Affiliation(s)
- Wan-Hsin Lin
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Yan W Asmann
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | | |
Collapse
|
10
|
Walch L. Emerging role of the scaffolding protein Dlg1 in vesicle trafficking. Traffic 2014; 14:964-73. [PMID: 23829493 DOI: 10.1111/tra.12089] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/02/2013] [Accepted: 07/06/2013] [Indexed: 01/23/2023]
Abstract
Discs large 1 (Dlg1) is a modular scaffolding protein implicated in the control of cell polarity through assembly of specific multiprotein complexes, including receptors, ion channels and signaling proteins, at specialized zones of the plasma membrane. Recent data have shown that in addition to these well-known interaction partners, Dlg1 may also recruit components of the vesicle trafficking machinery either to the plasma membrane or to transport vesicles. Here, we discuss Dlg1 function in vesicle formation, targeting, tethering and fusion, in both the exocytotic and endocytotic pathways. These pathways contribute to cell functions as major and diverse as glutamatergic activity in the neurons, membrane homeostasis in Schwann cell myelination, insulin stimulation of glucose transport in adipocytes, or endothelial secretion of the hemostatic protein, von Willebrand factor (VWF).
Collapse
Affiliation(s)
- Laurence Walch
- INSERM U698, Université Paris 7, Hemostasis, Bio-engineering and Cardiovascular Remodeling, CHU X. Bichat, Paris, France.
| |
Collapse
|
11
|
Gene expression profiling analysis reveals that DLG3 is down-regulated in glioblastoma. J Neurooncol 2014; 116:465-76. [PMID: 24381070 DOI: 10.1007/s11060-013-1325-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 12/23/2013] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is the most malignant glioma. In the current study, 149 astrocytoma gene expression datasets were classified by prediction analysis of microarray. Strikingly, disks large homolog 3 (DLG3), a membrane-associated guanylate kinase-family gene, had the highest score in the GBM subset. DLG3 mRNA expression is significantly down-regulated in GBM relative to normal tissue and grade II or grade III astrocytoma according to the results of real-time polymerase chain reaction, and its protein expression shows an obvious difference by immunohistochemistry. Further assays show that DLG3 over-expression induces mitotic cell cycle arrest and apoptosis, and it inhibits proliferation and migration. However, DLG3 over-expression has almost no affect on invasion. The DLG3 protein expression in human brain GBM tissue and its effects on GBM cell invasion were not expected. Our data suggest that DLG3 is down-regulated in this cancer type. To our knowledge, this is the first report to clearly demonstrate the possible involvement of DLG3 in GBM.
Collapse
|
12
|
Molecular Expression of the Scribble Complex Genes, Dlg, Scrib and Lgl, in Silkworm, Bombyx mori. Genes (Basel) 2013; 4:264-74. [PMID: 24705163 PMCID: PMC3899976 DOI: 10.3390/genes4020264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/07/2013] [Accepted: 05/15/2013] [Indexed: 12/23/2022] Open
Abstract
The Scribble protein complex genes, consisting of lethal giant larvae (Lgl), discs large (Dlg) and scribble (Scrib) genes, are components of an evolutionarily conserved genetic pathway that links the cell polarity in cells of humans and Drosophila. The tissue expression and developmental changes of the Scribble protein complex genes were documented using qRT-RCR method. The Lgl and Scrib genes could be detected in all the experimental tissues, including fat body, midgut, testis/ovary, wingdisc, trachea, malpighian tubule, hemolymph, prothoracic gland and silk gland. The Dlg gene, mainly expressed only in testis/ovary, could not be detected in prothoracic gland and hemolymph. In fat body, there were two higher expression stages of the three genes. The highest peak of the expression of the Lgl and Scrib genes in wingdisc lay at the 1st day of the 5th instar, but the Dlg gene was at 3rd day of 5th instar. The above results indicate that Scribble complex genes are involved in the process of molting and development of the wingdisc in the silkworm. This will be useful in the future for the elucidation of the detailed biological function of the three genes Scrib, Dlg and Lgl in B. mori.
Collapse
|
13
|
Requirement for Dlgh-1 in planar cell polarity and skeletogenesis during vertebrate development. PLoS One 2013; 8:e54410. [PMID: 23349879 PMCID: PMC3551758 DOI: 10.1371/journal.pone.0054410] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 12/13/2012] [Indexed: 01/20/2023] Open
Abstract
The development of specialized organs is tightly linked to the regulation of cell growth, orientation, migration and adhesion during embryogenesis. In addition, the directed movements of cells and their orientation within the plane of a tissue, termed planar cell polarity (PCP), appear to be crucial for the proper formation of the body plan. In Drosophila embryogenesis, Discs large (dlg) plays a critical role in apical-basal cell polarity, cell adhesion and cell proliferation. Craniofacial defects in mice carrying an insertional mutation in Dlgh-1 suggest that Dlgh-1 is required for vertebrate development. To determine what roles Dlgh-1 plays in vertebrate development, we generated mice carrying a null mutation in Dlgh-1. We found that deletion of Dlgh-1 caused open eyelids, open neural tube, and misorientation of cochlear hair cell stereociliary bundles, indicative of defects in planar cell polarity (PCP). Deletion of Dlgh-1 also caused skeletal defects throughout the embryo. These findings identify novel roles for Dlgh-1 in vertebrates that differ from its well-characterized roles in invertebrates and suggest that the Dlgh-1 null mouse may be a useful animal model to study certain human congenital birth defects.
Collapse
|
14
|
Stella SL, Vila A, Hung AY, Rome ME, Huynh U, Sheng M, Kreienkamp HJ, Brecha NC. Association of shank 1A scaffolding protein with cone photoreceptor terminals in the mammalian retina. PLoS One 2012; 7:e43463. [PMID: 22984429 PMCID: PMC3440378 DOI: 10.1371/journal.pone.0043463] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/19/2012] [Indexed: 11/21/2022] Open
Abstract
Photoreceptor terminals contain post-synaptic density (PSD) proteins e.g., PSD-95/PSD-93, but their role at photoreceptor synapses is not known. PSDs are generally restricted to post-synaptic boutons in central neurons and form scaffolding with multiple proteins that have structural and functional roles in neuronal signaling. The Shank family of proteins (Shank 1–3) functions as putative anchoring proteins for PSDs and is involved in the organization of cytoskeletal/signaling complexes in neurons. Specifically, Shank 1 is restricted to neurons and interacts with both receptors and signaling molecules at central neurons to regulate plasticity. However, it is not known whether Shank 1 is expressed at photoreceptor terminals. In this study we have investigated Shank 1A localization in the outer retina at photoreceptor terminals. We find that Shank 1A is expressed presynaptically in cone pedicles, but not rod spherules, and it is absent from mice in which the Shank 1 gene is deleted. Shank 1A co-localizes with PSD-95, peanut agglutinin, a marker of cone terminals, and glycogen phosphorylase, a cone specific marker. These findings provide convincing evidence for Shank 1A expression in both the inner and outer plexiform layers, and indicate a potential role for PSD-95/Shank 1 complexes at cone synapses in the outer retina.
Collapse
Affiliation(s)
- Salvatore L Stella
- Department of Ophthalmology, University of Missouri-Kansas City, School of Medicine, Kansas City, Missouri, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Technological advances in biology have begun to dramatically change the way we think about evolution, development, health and disease. The ability to sequence the genomes of many individuals within a population, and across multiple species, has opened the door to the possibility of answering some long-standing and perplexing questions about our own genetic heritage. One such question revolves around the nature of cellular hyperproliferation. This cellular behavior is used to effect wound healing in most animals, as well as, in some animals, the regeneration of lost body parts. Yet at the same time, cellular hyperproliferation is the fundamental pathological condition responsible for cancers in humans. Here, I will discuss why microevolution, macroevolution and developmental biology all have to be taken into consideration when interpreting studies of both normal and malignant hyperproliferation. I will also illustrate how a synthesis of evolutionary sciences and developmental biology through the study of diverse model organisms can inform our understanding of both health and disease.
Collapse
|
16
|
Roberts S, Delury C, Marsh E. The PDZ protein discs-large (DLG): the 'Jekyll and Hyde' of the epithelial polarity proteins. FEBS J 2012; 279:3549-3558. [PMID: 22846345 DOI: 10.1111/j.1742-4658.2012.08729.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 07/16/2012] [Accepted: 07/26/2012] [Indexed: 12/25/2022]
Abstract
Discs-large (DLG) is a multi-PDZ domain-containing protein that belongs to the family of molecular scaffolding proteins known as membrane guanylate kinases or MAGUKs. DLG is a component of the Scribble polarity complex and genetic analyses of DLG in Drosophila have identified a role for the protein in several key biological processes including the regulation of apico-basal polarity of epithelial cells, as well as other polarity processes such as asymmetric cell division and cell invasion. Disturbance of DLG function leads to uncontrolled epithelial cell proliferation and neoplastic transformation, thereby defining DLG as a potential tumour suppressor. However, whether mammalian homologues of DLG (DLG1, DLG2, DLG3 and DLG4) also possess tumour suppressor functions is not known. In this minireview, we focus on the biological functions of DLG1 in human epithelial cells and on how the function of this MAGUK relates to its intracellular location. We examine some of the evidence that implies that DLG has both tumour suppressor and, paradoxically, oncogenic functions depending upon the precise cellular context.
Collapse
Affiliation(s)
- Sally Roberts
- School of Cancer Sciences, University of Birmingham, UK
| | - Craig Delury
- School of Cancer Sciences, University of Birmingham, UK
| | | |
Collapse
|
17
|
Massimi P, Zori P, Roberts S, Banks L. Differential regulation of cell-cell contact, invasion and anoikis by hScrib and hDlg in keratinocytes. PLoS One 2012; 7:e40279. [PMID: 22792261 PMCID: PMC3391271 DOI: 10.1371/journal.pone.0040279] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 06/04/2012] [Indexed: 01/31/2023] Open
Abstract
The components of the Scrib/Dlg tumour suppressor complex have complementary roles in Drosophila and loss of both proteins is a common event in many different human tumours. However no studies have directly addressed the respective contributions of loss of hScrib and hDlg in the same human cell background to cellular phenotypes associated with cell transformation. In human HaCaT keratinocytes we show that removal of hScrib greatly reduces cell-cell contact and cell-matrix interactions, and promotes an invasive phenotype. Conversely, in cells lacking hDlg1 cell-cell contacts are maintained and there are decreases in both cell growth and invasion. However, hDlg-depleted cells show increased resistance to a specialized form of apoptosis known as anoikis, to which cells lacking hScrib are highly susceptible. Thus whilst it has been widely assumed that hScrib and hDlg have complementary roles, these studies in fact demonstrate that hScrib and hDlg1 have distinct and opposing functions in human keratinocytes.
Collapse
Affiliation(s)
- Paola Massimi
- International Centre For Genetic Engineering and Biotechnology Padriciano 99, Trieste, Italy
| | - Patrizia Zori
- International Centre For Genetic Engineering and Biotechnology Padriciano 99, Trieste, Italy
| | - Sally Roberts
- Department of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Lawrence Banks
- International Centre For Genetic Engineering and Biotechnology Padriciano 99, Trieste, Italy
- * E-mail:
| |
Collapse
|
18
|
Wang S, Yang J, Tsai A, Kuca T, Sanny J, Lee J, Dong K, Harden N, Krieger C. Drosophila adducin regulates Dlg phosphorylation and targeting of Dlg to the synapse and epithelial membrane. Dev Biol 2011; 357:392-403. [PMID: 21791202 DOI: 10.1016/j.ydbio.2011.07.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 07/06/2011] [Accepted: 07/07/2011] [Indexed: 12/20/2022]
Abstract
Adducin is a cytoskeletal protein having regulatory roles that involve actin filaments, functions that are inhibited by phosphorylation of adducin by protein kinase C. Adducin is hyperphosphorylated in nervous system tissue in patients with the neurodegenerative disease amyotrophic lateral sclerosis, and mice lacking β-adducin have impaired synaptic plasticity and learning. We have found that Drosophila adducin, encoded by hu-li tai shao (hts), is localized to the post-synaptic larval neuromuscular junction (NMJ) in a complex with the scaffolding protein Discs large (Dlg), a regulator of synaptic plasticity during growth of the NMJ. hts mutant NMJs are underdeveloped, whereas over-expression of Hts promotes Dlg phosphorylation, delocalizes Dlg away from the NMJ, and causes NMJ overgrowth. Dlg is a component of septate junctions at the lateral membrane of epithelial cells, and we show that Hts regulates Dlg localization in the amnioserosa, an embryonic epithelium, and that embryos doubly mutant for hts and dlg exhibit defects in epithelial morphogenesis. The phosphorylation of Dlg by the kinases PAR-1 and CaMKII has been shown to disrupt Dlg targeting to the NMJ and we present evidence that Hts regulates Dlg targeting to the NMJ in muscle and the lateral membrane of epithelial cells by controlling the protein levels of PAR-1 and CaMKII, and consequently the extent of Dlg phosphorylation.
Collapse
Affiliation(s)
- Simon Wang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Froldi F, Ziosi M, Tomba G, Parisi F, Garoia F, Pession A, Grifoni D. Drosophila lethal giant larvae neoplastic mutant as a genetic tool for cancer modeling. Curr Genomics 2011; 9:147-54. [PMID: 19440511 PMCID: PMC2679652 DOI: 10.2174/138920208784340786] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 03/23/2008] [Accepted: 03/28/2008] [Indexed: 11/30/2022] Open
Abstract
Drosophila lethal giant larvae (lgl) is a tumour suppressor gene whose function in establishing apical-basal cell polarity as well as in exerting proliferation control in epithelial tissues is conserved between flies and mammals. Individuals bearing lgl null mutations show a gradual loss of tissue architecture and an extended larval life in which cell proliferation never ceases and no differentiation occurs, resulting in prepupal lethality. When tissues from those individuals are transplanted into adult normal recipients, a subset of cells, possibly the cancer stem units, are again able to proliferate and give rise to metastases which migrate to distant sites killing the host. This phenotype closely resembles that of mammalian epithelial cancers, in which loss of cell polarity is one of the hallmarks of a malignant, metastatic behaviour associated with poor prognosis. Lgl protein shares with its human counterpart Human giant larvae-1 (Hugl-1) significant stretches of sequence similarity that we demonstrated to translate into a complete functional conservation, pointing out a role in cell proliferation control and tumorigenesis also for the human homologue. The functional conservation and the power of fly genetics, that allows the researcher to manipulate the fly genome at a level of precision that exceeds that of any other multicellular genetic system, make this Drosophila mutant a very suitable model in which to investigate the mechanisms underlying epithelial tumour formation, progression and metastatisation. In this review, we will summarise the results obtained in these later years using this model for the study of cancer biology. Moreover, we will discuss how recent advances in developmental genetics techniques have succeeded in enhancing the similarities between fly and human tumorigenesis, giving Drosophila a pivotal role in the study of such a complex genetic disease.
Collapse
Affiliation(s)
- F Froldi
- Alma Mater Studiorum, Departments of Biologia Evoluzionistica Sperimentale and Patologia Sperimentale, Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The correct establishment and maintenance of cell polarity are crucial for normal cell physiology and tissue homeostasis. Conversely, loss of cell polarity, tissue disorganisation and excessive cell growth are hallmarks of cancer. In this review, we focus on identifying the stages of tumoural development that are affected by the loss or deregulation of epithelial cell polarity. Asymmetric division has recently emerged as a major regulatory mechanism that controls stem cell numbers and differentiation. Links between cell polarity and asymmetric cell division in the context of cancer will be examined. Apical–basal polarity and cell–cell adhesion are tightly interconnected. Hence, how loss of cell polarity in epithelial cells may promote epithelial mesenchymal transition and metastasis will also be discussed. Altogether, we present the argument that loss of epithelial cell polarity may have an important role in both the initiation of tumourigenesis and in later stages of tumour development, favouring the progression of tumours from benign to malignancy.
Collapse
|
21
|
Papagiannouli F, Mechler BM. Discs large in the Drosophila testis: an old player on a new task. Fly (Austin) 2010; 4:294-8. [PMID: 20798604 DOI: 10.4161/fly.4.4.13149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gamete development requires a coordinated soma-germ line interaction that ensures renewal and differentiation of germline and somatic stem cells. The physical contact between the germline and somatic cell populations is crucial because it allows the exchange of diffusible signals among them. The tumor suppressor gene discs large (dlg) encodes a septate junction protein with functions in epithelial cell polarity, asymmetric neuroblast division and formation of neuromuscular junctions. Our recent work reveals a new role of dlg in the Drosophila testis, as mutations in dlg lead to testis defects and cell death. Dlg is required throughout spermatogenesis in the somatic lineage and its localization changes from a uniform distribution along the plasma membrane of somatic cells in the testis apex, to a restricted localization on the distally located somatic cell in growing cysts. The extensive defects in dlg testis underline the importance of the somatic cells in the establishment and maintenance of the male stem cell niche and somatic cell differentiation. Here, we discuss our latest findings on the role of dlg in the Drosophila testis, supporting the view that junction proteins are dynamic structures, which can provide guiding cues to recruit scaffold proteins or other signaling molecules.
Collapse
Affiliation(s)
- Fani Papagiannouli
- Cell Networks-Cluster of Excellence and BIOQUANT Center, University of Heidelberg, Heidelberg, Germany.
| | | |
Collapse
|
22
|
Thomas U, Kobler O, Gundelfinger ED. TheDrosophilaLarval Neuromuscular Junction as a Model for Scaffold Complexes at Glutamatergic Synapses: Benefits and Limitations. J Neurogenet 2010; 24:109-19. [DOI: 10.3109/01677063.2010.493589] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
23
|
Abstract
Loss of polarity and disruption of cell junctions are common features of epithelial-derived cancer cells, and mounting evidence indicates that such defects have a direct function in the pathology of cancer. Supporting this idea, results with several different human tumor viruses indicate that their oncogenic potential depends in part on a common ability to inactivate key cell polarity proteins. For example, adenovirus (Ad) type 9 is unique among human Ads by causing exclusively estrogen-dependent mammary tumors in experimental animals and in having E4 region-encoded open reading frame 1 (E4-ORF1) as its primary oncogenic determinant. The 125-residue E4-ORF1 protein consists of two separate protein-interaction elements, one of which defines a PDZ domain-binding motif (PBM) required for E4-ORF1 to induce both cellular transformation in vitro and tumorigenesis in vivo. Most notably, the E4-ORF1 PBM mediates interactions with a selected group of cellular PDZ proteins, three of which include the cell polarity proteins Dlg1, PATJ and ZO-2. Data further indicate that these interactions promote disruption of cell junctions and a loss of cell polarity. In addition, one or more of the E4-ORF1-interacting cell polarity proteins, as well as the cell polarity protein Scribble, are common targets for the high-risk human papillomavirus (HPV) E6 or human T-cell leukemia virus type 1 (HTLV-1) Tax oncoproteins. Underscoring the significance of these observations, in humans, high-risk HPV and HTLV-1 are causative agents for cervical cancer and adult T-cell leukemia, respectively. Consequently, human tumor viruses should serve as powerful tools for deciphering mechanisms whereby disruption of cell junctions and loss of cell polarity contribute to the development of many human cancers. This review article discusses evidence supporting this hypothesis, with an emphasis on the human Ad E4-ORF1 oncoprotein.
Collapse
|
24
|
Narayan N, Massimi P, Banks L. CDK phosphorylation of the discs large tumour suppressor controls its localisation and stability. J Cell Sci 2009; 122:65-74. [DOI: 10.1242/jcs.024554] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Discs Large (Dlg) protein is known to be involved in the regulation of cellular proliferation and polarity in a variety of tissues. The human homologue DLG1 is thought to be a tumour suppressor, through formation of a complex with the APC (adenomatous polyposis coli) protein, causing negative regulation of the cell cycle. An alternative oncogenic role has also been proposed, in which the PI3-kinase pathway is activated under the influence of the adenovirus E4 ORF1 protein. The differing roles seem to be related to differences in the precise pattern of expression. However, the biochemical pathways involved in regulating DLG1 function during different phases of the cell cycle remain unclear. In this study we show that phosphorylation is a major post-translational modification of the protein and it affects both location and function. DLG1 lies at the cellular junctions in G1, is enriched in the cytoplasm in S phase and locates to the mitotic spindle in M phase. We also show that DLG1 is phosphorylated by both CDK1 and CDK2 on Ser158 and Ser442. These phosphorylated sites together affect the nuclear localisation of the protein, and implicate the role of phosphorylation on Ser158 and Ser442 in its putative nuclear functions as a tumour suppressor. In addition, the mutants at these sites demonstrate different half-lives as well as different susceptibilities to ubiquitylation, suggesting a role for these phosphorylation events in controlling DLG1 protein stability. These findings establish phosphorylation events as key regulators of DLG1 localisation and function.
Collapse
Affiliation(s)
- Nisha Narayan
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Paola Massimi
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Lawrence Banks
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| |
Collapse
|
25
|
Surena AL, de Faria GP, Studler JM, Peiretti F, Pidoux M, Camonis J, Chneiweiss H, Formstecher E, Junier MP. DLG1/SAP97 modulates transforming growth factor alpha bioavailability. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:264-72. [PMID: 18930083 DOI: 10.1016/j.bbamcr.2008.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 08/06/2008] [Accepted: 09/11/2008] [Indexed: 11/27/2022]
Abstract
TGFalpha and its receptor EGFR participate in the development of a wide range of tumors including gliomas, the main adult primary brain tumors. TGFalpha soluble form results from the cleavage by the metalloprotease TACE/ADAM17 of the extracellular part of its transmembrane precursor, pro-TGFalpha. To gain insights into the mechanisms underlying TGFalpha bioavailability, a yeast two-hybrid screen was performed to identify proteins interacting with pro-TGFalpha intracellular domain (ICD). DLG1/SAP97 (Discs Large Gene 1 or Synapse Associated Protein 97) was found to interact with both pro-TGFalpha and TACE ICDs through distinct PDZ domains. An in vivo pro-TGFalpha-DLG1-TACE complex was detected in U251 glioma cells and in gliomas-derived tumor initiating cells. Interaction between DLG1 and TACE diminished in response to stimulations promoting pro-TGFalpha shedding. Manipulation of DLG1 levels revealed dual actions of DLG1 on pro-TGFalpha shedding, favoring approximation of pro-TGFalpha and TACE, while limiting TACE full shedding activity. These results show that DLG1 participates in the control of TGFalpha bioavailability through its dynamic interaction with the growth factor precursor and TACE.
Collapse
|
26
|
Massimi P, Narayan N, Thomas M, Gammoh N, Strand S, Strand D, Banks L. Regulation of the hDlg/hScrib/Hugl-1 tumour suppressor complex. Exp Cell Res 2008; 314:3306-17. [PMID: 18793635 DOI: 10.1016/j.yexcr.2008.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 08/19/2008] [Accepted: 08/20/2008] [Indexed: 10/21/2022]
Abstract
The proper function of the Scribble tumour suppressor complex is dependent upon the correct localisation of its components. Previously we observed dynamic relocalisation of the hDlg component under conditions of osmotic stress. We now show that the other two components of the complex, hScrib and Hugl-1 display similar patterns of expression. We demonstrate, by shRNA ablation of hScrib expression, that hDlg and Hugl-1 are in part dependent upon hScrib for their correct localization. However under conditions of osmotic stress this apparent dependency no longer exists: hDlg and Hugl-1 localise to cell membranes independently of hScrib. We also demonstrate an interaction between the three components of the hScrib complex and the tSNARE syntaxin 4, and show that correct localization of the Scrib complex is in part tSNARE dependent. This is the first detailed analysis of the co-localisation and function of the hScrib complex in mammalian cells and demonstrates a direct link between the control of the hScrib complex and vesicle transport pathways.
Collapse
Affiliation(s)
- Paola Massimi
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34012 Trieste, Italy.
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The development of cancer is a multistep process in which the DNA of a single cell accumulates mutations in genes that control essential cellular processes. Loss of cell-cell adhesion and cell polarity is commonly observed in advanced tumours and correlates well with their invasion into adjacent tissues and the formation of metastases. Growing evidence indicates that loss of cell-cell adhesion and cell polarity may also be important in early stages of cancer. The strongest hints in this direction come from studies on tumour suppressor genes in the fruitfly Drosophila melanogaster, which have revealed their importance in the control of apical-basal cell polarity.
Collapse
Affiliation(s)
- Andreas Wodarz
- Department of Stem Cell Biology, DFG Research Center for Molecular Physiology of the Brain (CMPB), University of Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| | | |
Collapse
|
28
|
The nuclear RhoA exchange factor Net1 interacts with proteins of the Dlg family, affects their localization, and influences their tumor suppressor activity. Mol Cell Biol 2007; 27:8683-97. [PMID: 17938206 DOI: 10.1128/mcb.00157-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Net1 is a RhoA-specific guanine nucleotide exchange factor which localizes to the nucleus at steady state. A deletion in its N terminus redistributes the protein to the cytosol, where it activates RhoA and can promote transformation. Net1 contains a PDZ-binding motif at the C terminus which is essential for its transformation properties. Here, we found that Net1 interacts through its PDZ-binding motif with tumor suppressor proteins of the Dlg family, including Dlg1/SAP97, SAP102, and PSD95. The interaction between Net1 and its PDZ partners promotes the translocation of the PDZ proteins to nuclear subdomains associated with PML bodies. Interestingly, the oncogenic mutant of Net1 is unable to shuttle the PDZ proteins to the nucleus, although these proteins still associate as clusters in the cytosol. Our results suggest that the ability of oncogenic Net1 to transform cells may be in part related to its ability to sequester tumor suppressor proteins like Dlg1 in the cytosol, thereby interfering with their normal cellular function. In agreement with this, the transformation potential of oncogenic Net1 is reduced when it is coexpressed with Dlg1 or SAP102. Together, our results suggest that the interaction between Net1 and Dlg1 may contribute to the mechanism of Net1-mediated transformation.
Collapse
|
29
|
Roberts S, Calautti E, Vanderweil S, Nguyen HO, Foley A, Baden HP, Viel A. Changes in localization of human discs large (hDlg) during keratinocyte differentiation is associated with expression of alternatively spliced hDlg variants. Exp Cell Res 2007; 313:2521-30. [PMID: 17574238 DOI: 10.1016/j.yexcr.2007.05.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 04/18/2007] [Accepted: 05/15/2007] [Indexed: 10/23/2022]
Abstract
Alternative spliced variants of the human discs large (hDlg) tumour suppressor are characterized by combinations of insertions. Here, using insertions I2- and I3-specific antibodies, we show that I2 and I3 variants have distinct distributions in epidermal and cervical epithelia. In skin and cervix, I3 variants are found in the cytoplasm. Cytoplasmic localization of I3 variants decreases as cervical keratinocytes differentiate, concomitant with relocalization to the cell periphery. I2 variants are found at the cell periphery of differentiated epidermal and cervical keratinocytes. Nuclear localization of I2 variants was evident in both tissues, with concentration of nuclear I2 variants in basal and parabasal cervical keratinocytes. A prominent nuclear localization of hDlg in cells of hyperproliferative layers of psoriatic lesions, but not in mature differentiated keratinocytes, together with I2 redistribution in differentiating keratinocytes, suggests that nuclear hDlg functions may be pertinent to growth of undifferentiated cells. Supporting our findings in squamous tissues, a decrease of nuclear hDlg and an increase of membrane-bound and cytoplasmic hDlg upon calcium-induced keratinocyte differentiation were not concomitant processes. Furthermore, we confirm that the exit of I2 variants from the nucleus is linked to stimulation of epithelial differentiation. The dynamic redistribution of hDlg also correlated with a marked increase in the expression of I3 variants while the level of I2 variants showed only a moderate decrease. Because changes in the intracellular distribution of hDlg splice variants, and in their expression levels, correlate with changes in differentiation state we hypothesize that the different hDlg isoforms play distinct roles at various stages of epithelial differentiation.
Collapse
Affiliation(s)
- S Roberts
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Edgbaston, Birmingham, UK.
| | | | | | | | | | | | | |
Collapse
|
30
|
González-Mariscal L, Lechuga S, Garay E. Role of tight junctions in cell proliferation and cancer. ACTA ACUST UNITED AC 2007; 42:1-57. [PMID: 17502225 DOI: 10.1016/j.proghi.2007.01.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The acquisition of a cancerous phenotype by epithelial cells involves the disruption of intercellular adhesions. The reorganization of the E-cadherin/beta-catenin complex in adherens junctions during cell transformation is widely recognized. Instead the implication of tight junctions (TJs) in this process is starting to be unraveled. The aim of this article is to review the role of TJ proteins in cell proliferation and cancer.
Collapse
Affiliation(s)
- Lorenza González-Mariscal
- Center for Research and Advanced Studies (Cinvestav), Department of Physiology, Biophysics and Neuroscience, Ave. Instituto Politécnico Nacional 2508, México, DF 07360, México.
| | | | | |
Collapse
|
31
|
Chung SH, Frese KK, Weiss RS, Prasad BVV, Javier RT. A new crucial protein interaction element that targets the adenovirus E4-ORF1 oncoprotein to membrane vesicles. J Virol 2007; 81:4787-97. [PMID: 17314165 PMCID: PMC1900153 DOI: 10.1128/jvi.02855-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human adenovirus type 9 exclusively elicits mammary tumors in experimental animals, and the primary oncogenic determinant of this virus is the E4-ORF1 oncogene, as opposed to the well-known E1A and E1B oncogenes. The tumorigenic potential of E4-ORF1, as well as its ability to oncogenically stimulate phosphatidylinositol 3-kinase (PI3K), depends on a carboxyl-terminal PDZ domain-binding motif (PBM) that mediates interactions with several different membrane-associated cellular PDZ proteins, including MUPP1, PATJ, MAGI-1, ZO-2, and Dlg1. Nevertheless, because certain E4-ORF1 mutations that alter neither the sequence nor the function of the PBM abolish E4-ORF1-induced PI3K activation and cellular transformation, we reasoned that E4-ORF1 must possess an additional crucial protein element. In the present study, we identified seven E4-ORF1 amino acid residues that define this new element, designated domain 2, and showed that it mediates binding to a 70-kDa cellular phosphoprotein. We also discovered that domain 2 or the PBM independently promotes E4-ORF1 localization to cytoplasmic membrane vesicles and that this activity of domain 2 depends on E4-ORF1 trimerization. Consistent with the latter observation, molecular-modeling analyses predicted that E4-ORF1 trimerization brings together six out of seven domain 2 residues at each of the three subunit interfaces. These findings importantly demonstrate that PI3K activation and cellular transformation induced by E4-ORF1 require two separate protein interaction elements, domain 2 and the PBM, each of which targets E4-ORF1 to vesicle membranes in cells.
Collapse
Affiliation(s)
- Sang-Hyuk Chung
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
32
|
Mauceri D, Gardoni F, Marcello E, Di Luca M. Dual role of CaMKII-dependent SAP97 phosphorylation in mediating trafficking and insertion of NMDA receptor subunit NR2A. J Neurochem 2007; 100:1032-46. [PMID: 17156128 DOI: 10.1111/j.1471-4159.2006.04267.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synapse Associated Protein 97 (SAP97), a member of membrane-associated guanylate kinase (MAGUK) protein family, has been involved in the correct targeting and clustering of ionotropic glutamate receptors (iGluRs) at postsynaptic sites. Calcium/calmodulin kinase II (CaMKII) phosphorylates SAP97 on two major sites in vivo; one located in the N-terminal domain (Ser39) and the other in the first postsynaptic density disc large ZO1 (PDZ) domain (Ser232). CaMKII-mediated phosphorylation of SAP97-Ser39 is necessary and sufficient to drive SAP97 to the postsynaptic compartment in cultured hippocampal neurons. CaMKII-dependent phosphorylation of Ser232 disrupts SAP97 interaction with NR2A subunit, thereby regulating synaptic targeting of this NMDA receptor subunit. Here we show by means of phospho-specific antibodies that SAP97-Ser39 phosphorylation represents the driving force to release SAP97/NR2A complex from the endoplasmic reticulum. Ser39 phosphorylation does not interfere with SAP97 capability to bind NR2A. On the contrary, SAP97-Ser232 phosphorylation occurs within the postsynaptic compartment and is responsible for both the disruption of NR2A/SAP97 complex and, consequently, for NR2A insertion in the postsynaptic membrane. Thus, CaMKII-dependent phosphorylation of SAP97 in different time frames and locations within the neurons controls both NR2A trafficking and insertion.
Collapse
Affiliation(s)
- D Mauceri
- Department of Pharmacological Sciences and Centre of Excellence on Neurodegenerative Diseases, University of Milan, Milan, Italy
| | | | | | | |
Collapse
|
33
|
Bohl J, Brimer N, Lyons C, Vande Pol SB. The stardust family protein MPP7 forms a tripartite complex with LIN7 and DLG1 that regulates the stability and localization of DLG1 to cell junctions. J Biol Chem 2007; 282:9392-9400. [PMID: 17237226 DOI: 10.1074/jbc.m610002200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MPP7, a previously uncharacterized member of the p55 Stardust family of membrane-associated guanylate kinase (MAGUK) proteins, was found in a tripartite complex with DLG1 and LIN7A or LIN7C. MPP7 dimerizes with all three LIN7 family members (LIN7A, -B, and -C) through interaction of the single L27 domain of LIN7 with the carboxyl-terminal L27 domain of MPP7, thereby stabilizing both proteins. The dimer of MPP7 with LIN7A or LIN7C associates with DLG1 through an interaction requiring the amino-terminal L27 domain of MPP7. The amino-terminal L27 domain of MPP7 is not sufficient for interaction with DLG1 but interacts efficiently only if MPP7 is in a complex with LIN7A or -C. Thus the specificity of interaction of DLG1 with the LIN7-MPP7 complex is determined by L27 interactions with both MPP7 and LIN7. The tripartite complex forms in a ratio of 1:1:1 and localizes to epithelial adherens junctions in a manner dependent upon MPP7. Expression of MPP7 stabilizes DLG1 in an insoluble compartment. Expression of MPP7 deleted of the PDZ or Src homology 3 domain redistributes MPP7, DLG1, and LIN7 out of adherens junctions and into the soluble cytoplasmic fraction without changing the localization of E-cadherin. Thus, the stability and localization of DLG1 to cell-cell junctions are complex functions determined by the expression and association of particular Stardust family members together with particular LIN7 family members.
Collapse
Affiliation(s)
- Joanna Bohl
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Nicole Brimer
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Charles Lyons
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Scott B Vande Pol
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia 22908.
| |
Collapse
|
34
|
Reese ML, Dakoji S, Bredt DS, Dötsch V. The guanylate kinase domain of the MAGUK PSD-95 binds dynamically to a conserved motif in MAP1a. Nat Struct Mol Biol 2007; 14:155-63. [PMID: 17220895 DOI: 10.1038/nsmb1195] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 12/27/2006] [Indexed: 11/08/2022]
Abstract
The postsynaptic density protein PSD-95 and related membrane-associated guanylate kinases are scaffolding proteins, whose modular interaction motifs organize protein complexes at cell junctions. The signature guanylate kinase domain (GK) contains elements of the protein's GMP-binding site but does not bind nucleotide. Instead, the GK domain has evolved from an enzyme to a protein-protein interaction motif. Here, we show that this canonical GMP-binding region interacts with microtubule-associated protein-1a (MAP1a) and we present a structural model. We determine the consensus GK-binding sequence in MAP1a and demonstrate that PSD-95 can use a similar interaction mode to bind diverse protein partners. Furthermore, we show that PSD-95 GK has adopted the conformational flexibility of the ancestral enzyme to bind its varied ligands, which suggests a mechanism of regulation.
Collapse
Affiliation(s)
- Michael L Reese
- Graduate Group in Biophysics, University of California, San Francisco, California 94143, USA
| | | | | | | |
Collapse
|
35
|
Hebbar S, Hall RE, Demski SA, Subramanian A, Fernandes JJ. The adult abdominal neuromuscular junction of Drosophila: a model for synaptic plasticity. ACTA ACUST UNITED AC 2006; 66:1140-55. [PMID: 16838368 DOI: 10.1002/neu.20279] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
During its life cycle, Drosophila makes two sets of neuromuscular junctions (NMJs), embryonic/larval and adult, which serve distinct stage-specific functions. During metamorphosis, the larval NMJs are restructured to give rise to their adult counterparts, a process that is integrated into the overall remodeling of the nervous system. The NMJs of the prothoracic muscles and the mesothoracic dorsal longitudinal (flight) muscles have been previously described. Given the diversity and complexity of adult muscle groups, we set out to examine the less complex abdominal muscles. The large bouton sizes of these NMJs are particularly advantageous for easy visualization. Specifically, we have characterized morphological attributes of the ventral abdominal NMJ and show that an embryonic motor neuron identity gene, dHb9, is expressed at these adult junctions. We quantified bouton numbers and size and examined the localization of synaptic markers. We have also examined the formation of boutons during metamorphosis and examined the localization of presynaptic markers at these stages. To test the usefulness of the ventral abdominal NMJs as a model system, we characterized the effects of altering electrical activity and the levels of the cell adhesion molecule, FasciclinII (FasII). We show that both manipulations affect NMJ formation and that the effects are specific as they can be rescued genetically. Our results indicate that both activity and FasII affect development at the adult abdominal NMJ in ways that are distinct from their larval and adult thoracic counterparts
Collapse
Affiliation(s)
- Sarita Hebbar
- Department of Zoology, Miami University, Oxford, Ohio 45056, USA
| | | | | | | | | |
Collapse
|
36
|
Gardiol D, Zacchi A, Petrera F, Stanta G, Banks L. Human discs large and scrib are localized at the same regions in colon mucosa and changes in their expression patterns are correlated with loss of tissue architecture during malignant progression. Int J Cancer 2006; 119:1285-90. [PMID: 16619250 DOI: 10.1002/ijc.21982] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Loss of cell polarity is one of the hallmarks of malignant carcinomas. Most of the understanding about the link between cell polarity and proliferation control comes from studies on the Drosophila tumor suppressors discs large (Dlg), scribble (Scrib) and lethal giant larvae (lgl). Mammalian homologues of these proteins have been described and are conserved in sequence and function. Human Dlg (hDlg) and Scrib were independently shown to be down-regulated during malignant progression. This, and other lines of evidence, points toward the participation of both hDlg and hScrib in a common pathway involved in polarity control and tumor suppression. We investigated the correlation between the expression of both proteins in tissues and their relative contributions to the maintenance of tissue architecture during colon cancer development. We analyzed the levels and distribution of hDlg and hScrib by immunohistochemistry, using serial sections of the same sample. We used normal and neoplastic colon mucosa, since it offers a good model for analyzing these features in progressive dysplastic stages. The results demonstrate that both proteins localize at the same regions in polarized colon epithelia, and that in normal samples the proteins' distribution varies as cells differentiate at the surface mucosa. In neoplasia, alterations in the expression pattern of hDlg and of hScrib increase during tumor progression; down-regulation of both proteins being associated with lack of epithelial cell polarity and disorganized tissue architecture. The results, therefore, demonstrate that there is an inverse relationship between the levels of hDlg and hScrib expression and the loss of cell polarity and tissue architecture in the colon.
Collapse
Affiliation(s)
- Daniela Gardiol
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | | | | | | |
Collapse
|
37
|
Kantardzhieva A, Alexeeva S, Versteeg I, Wijnholds J. MPP3 is recruited to the MPP5 protein scaffold at the retinal outer limiting membrane. FEBS J 2006; 273:1152-65. [PMID: 16519681 DOI: 10.1111/j.1742-4658.2006.05140.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mutations in the human Crumbs homologue 1 (CRB1) gene are a frequent cause of various forms of retinitis pigmentosa. The CRB1-membrane-associated palmitoylated protein (MPP)5 protein complex is thought to organize an intracellular protein scaffold in the retina that is involved in maintenance of photoreceptor-Müller glia cell adhesion. This study focused on the binding characteristics and subcellular localization of MPP3, a novel member of the MPP5 protein scaffold at the outer limiting membrane (OLM), and of the DLG1 protein scaffold at the outer plexiform layer of the retina. MPP3 localized at the photoreceptor synapse and at the subapical region adjacent to adherens junctions at the OLM. Localization studies in human retinae revealed that MPP3 colocalized with MPP5 and CRB1 at the subapical region. MPP3 and MPP4 colocalized with DLG1 at the outer plexiform layer. Mouse Dlg1 formed separate complexes with Mpp3 and Mpp4 in vivo. These data implicate a role for MPP3 in photoreceptor polarity and, by association with MPP5, pinpoint MPP3 as a functional candidate gene for inherited retinopathies. The separate Mpp3/Dlg1 and Mpp4/Dlg1 complexes at the outer plexiform layer point towards additional yet unrecognized functions of these membrane associated guanylate kinase proteins.
Collapse
Affiliation(s)
- Albena Kantardzhieva
- Department of Neuromedical Genetics, The Netherlands Institute for Neurosciences (NIN), KNAW, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
38
|
Regalado MP, Terry-Lorenzo RT, Waites CL, Garner CC, Malenka RC. Transsynaptic signaling by postsynaptic synapse-associated protein 97. J Neurosci 2006; 26:2343-57. [PMID: 16495462 PMCID: PMC6674804 DOI: 10.1523/jneurosci.5247-05.2006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The molecular mechanisms by which postsynaptic modifications lead to precisely coordinated changes in presynaptic structure and function are primarily unknown. To address this issue, we examined the presynaptic consequences of postsynaptic expression of members of the membrane-associated guanylate kinase family of synaptic scaffolding proteins. Postsynaptic expression of synapse-associated protein 97 (SAP97) increased presynaptic protein content and active zone size to a greater extent than comparable amounts of postsynaptic PSD-95 (postsynaptic density-95) or SAP102. In addition, postsynaptic expression of SAP97 enhanced presynaptic function, as measured by increased FM4-64 dye uptake. The structural presynaptic effects of postsynaptic SAP97 required ligand binding through two of its PDZ (PSD-95/Discs large/zona occludens-1) domains as well as intact N-terminal and guanylate kinase domains. Expression of SAP97 recruited a complex of additional postsynaptic proteins to synapses including glutamate receptor 1, Shank1a, SPAR (spine-associated RapGAP), and proSAP2. Furthermore, inhibition of several different transsynaptic signaling proteins including cadherins, integrins, and EphB receptor/ephrinB significantly reduced the presynaptic growth caused by postsynaptic SAP97. These results suggest that SAP97 may play a central role in the coordinated growth of synapses during development and plasticity by recruiting a complex of postsynaptic proteins that enhances presynaptic terminal growth and function via multiple transsynaptic molecular interactions.
Collapse
|
39
|
Frese KK, Latorre IJ, Chung SH, Caruana G, Bernstein A, Jones SN, Donehower LA, Justice MJ, Garner CC, Javier RT. Oncogenic function for the Dlg1 mammalian homolog of the Drosophila discs-large tumor suppressor. EMBO J 2006; 25:1406-17. [PMID: 16511562 PMCID: PMC1422156 DOI: 10.1038/sj.emboj.7601030] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Accepted: 02/08/2006] [Indexed: 12/30/2022] Open
Abstract
The fact that several different human virus oncoproteins, including adenovirus type 9 E4-ORF1, evolved to target the Dlg1 mammalian homolog of the membrane-associated Drosophila discs-large tumor suppressor has implicated this cellular factor in human cancer. Despite a general belief that such interactions function solely to inactivate this suspected human tumor suppressor protein, we demonstrate here that E4-ORF1 specifically requires endogenous Dlg1 to provoke oncogenic activation of phosphatidylinositol 3-kinase (PI3K) in cells. Based on our results, we propose a model wherein E4-ORF1 binding to Dlg1 triggers the resulting complex to translocate to the plasma membrane and, at this site, to promote Ras-mediated PI3K activation. These findings establish the first known function for Dlg1 in virus-mediated cellular transformation and also surprisingly expose a previously unrecognized oncogenic activity encoded by this suspected cellular tumor suppressor gene.
Collapse
Affiliation(s)
- Kristopher K Frese
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Isabel J Latorre
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Sang-Hyuk Chung
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Georgina Caruana
- Department of Anatomy and Cell Biology, Monash University, Clayton, Victoria, Australia
| | - Alan Bernstein
- Program in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Stephen N Jones
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lawrence A Donehower
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Monica J Justice
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Craig C Garner
- Department of Psychiatry and Behavioral Science, Nancy Pritzker Laboratory, Stanford University, Palo Alto, CA, USA
| | - Ronald T Javier
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA. Tel.: +1 713 798 3898; Fax: +1 713 798 3586; E-mail:
| |
Collapse
|
40
|
Ataman B, Budnik V, Thomas U. Scaffolding proteins at the Drosophila neuromuscular junction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2006; 75:181-216. [PMID: 17137929 DOI: 10.1016/s0074-7742(06)75009-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Bulent Ataman
- Department of Neurobiology, University of Massachusetts, Medical School, Worcester, Massachusetts 01605, USA
| | | | | |
Collapse
|
41
|
Thomas M, Massimi P, Navarro C, Borg JP, Banks L. The hScrib/Dlg apico-basal control complex is differentially targeted by HPV-16 and HPV-18 E6 proteins. Oncogene 2005; 24:6222-30. [PMID: 16103886 DOI: 10.1038/sj.onc.1208757] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The E6 proteins of the high-risk Human papillomaviruses (HPV) types have a well-documented ability to target certain cellular proteins for ubiquitin-mediated degradation via the proteasome. Previous studies have shown that E6 proteins interact differently with different target proteins, and that the viral proteins, depending upon the target, may recruit diverse cellular ubiquitin-protein ligases. In this study, we have examined the abilities of E6 proteins from HPV-16 and HPV-18 to interact with and induce the degradation of two PDZ domain-containing targets, Dlg and hScrib. We have also mapped the binding site of E6 on hScrib and shown that the interaction of E6 with hScrib is distinct from its interactions with other PDZ domain-containing targets. This is reflected in the efficiency with which the two viral E6 proteins can inhibit hScrib's suppression of cell transformation.Dlg and hScrib have complementary activities in the control of epithelial cell polarity and the fact that both are targeted by high-risk HPV E6 proteins underlines their importance. Our finding that they are each targeted differently by HPV-16 and HPV-18 E 6 s suggests that the two viruses are subjected to somewhat different constraints and provides a possible explanation for the apparent redundancy in targeting both parts of this important control mechanism.
Collapse
Affiliation(s)
- Miranda Thomas
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34012 Trieste, Italy
| | | | | | | | | |
Collapse
|
42
|
Palmer CL, Cotton L, Henley JM. The molecular pharmacology and cell biology of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Pharmacol Rev 2005; 57:253-77. [PMID: 15914469 PMCID: PMC3314513 DOI: 10.1124/pr.57.2.7] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs) are of fundamental importance in the brain. They are responsible for the majority of fast excitatory synaptic transmission, and their overactivation is potently excitotoxic. Recent findings have implicated AMPARs in synapse formation and stabilization, and regulation of functional AMPARs is the principal mechanism underlying synaptic plasticity. Changes in AMPAR activity have been described in the pathology of numerous diseases, such as Alzheimer's disease, stroke, and epilepsy. Unsurprisingly, the developmental and activity-dependent changes in the functional synaptic expression of these receptors are under tight cellular regulation. The molecular and cellular mechanisms that control the postsynaptic insertion, arrangement, and lifetime of surface-expressed AMPARs are the subject of intense and widespread investigation. For example, there has been an explosion of information about proteins that interact with AMPAR subunits, and these interactors are beginning to provide real insight into the molecular and cellular mechanisms underlying the cell biology of AMPARs. As a result, there has been considerable progress in this field, and the aim of this review is to provide an account of the current state of knowledge.
Collapse
Affiliation(s)
- Claire L Palmer
- Medical Research Council Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, Bristol University, Bristol, UK
| | | | | |
Collapse
|
43
|
Schimanski CC, Schmitz G, Kashyap A, Bosserhoff AK, Bataille F, Schäfer SC, Lehr HA, Berger MR, Galle PR, Strand S, Strand D. Reduced expression of Hugl-1, the human homologue of Drosophila tumour suppressor gene lgl, contributes to progression of colorectal cancer. Oncogene 2005; 24:3100-9. [PMID: 15735678 DOI: 10.1038/sj.onc.1208520] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The human gene, human giant larvae (Hugl-1/Llg1/Lgl1) has significant homology to the Drosophila tumour suppressor gene lethal(2)giant larvae (lgl). The lgl gene codes for a cortical cytoskeleton protein, Lgl, that binds Myosin II and is involved in maintaining cell polarity and epithelial integrity. The human protein, Hugl-1 contains several conserved functional domains found in Lgl, suggesting that these proteins may have closely related functions. Whether loss of Hugl expression plays a role in human tumorigenesis has so far not been extensively investigated. Thus, we evaluated tumour tissues from 94 patients undergoing surgery for colorectal cancer (CRC) for loss of Hugl-1 transcription and compared our findings with the clinical data from each of these patients. We found that Hugl-1 was lost in 75% of tumour samples and these losses were associated with advanced stage and particularly with lymph node metastases. Reduced Hugl-1 expression during the adenoma-carcinoma sequence occurring as early as in colorectal adenomas was detected by both immunohistochemical and reverse transcription-polymerase chain reaction analysis. Functional assays with ecdysone-inducible cell lines revealed that Hugl-1 expression increased cell adhesion and decreased cell migration. Our studies thus indicate that downregulation of Hugl-1 contributes to CRC progression.
Collapse
Affiliation(s)
- Carl C Schimanski
- First Department of Internal Medicine, Johannes Gutenberg University, 55101 Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sierralta J, Mendoza C. PDZ-containing proteins: alternative splicing as a source of functional diversity. ACTA ACUST UNITED AC 2005; 47:105-15. [PMID: 15572166 DOI: 10.1016/j.brainresrev.2004.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2004] [Indexed: 12/30/2022]
Abstract
Scaffold proteins allow specific protein complexes to be assembled in particular regions of the cell at which they organize subcellular structures and signal transduction complexes. This characteristic is especially important for neurons, which are highly polarized cells. Among the domains contained by scaffold proteins, the PSD-95, Discs-large, ZO-1 (PDZ) domains are of particular relevance in signal transduction processes and maintenance of neuronal and epithelial polarity. These domains are specialized in the binding of the carboxyl termini of proteins allowing membrane proteins to be localized by the anchoring to the cytoskeleton mediated by PDZ-containing scaffold proteins. In vivo studies carried out in Drosophila have taught that the role of many scaffold proteins is not limited to a single process; thus, in many cases the same genes are expressed in different tissues and participate in apparently very diverse processes. In addition to the differential expression of interactors of scaffold proteins, the expression of variants of these molecular scaffolds as the result of the alternative processing of the genes that encode them is proving to be a very important source of variability and complexity on a main theme. Alternative splicing in the nervous system is well documented, where specific isoforms play roles in neurotransmission, ion channel function, neuronal cell recognition, and are developmentally regulated making it a major mechanism of functional diversity. Here we review the current state of knowledge about the diversity and the known function of PDZ-containing proteins in Drosophila with emphasis in the role played by alternatively processed forms in the diversity of functions attributed to this family of proteins.
Collapse
Affiliation(s)
- Jimena Sierralta
- Program of Physiology and Biophysics, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Centro de Neurociencias Integradas, Independencia 1027, Santiago, Chile.
| | | |
Collapse
|
45
|
Grifoni D, Garoia F, Schimanski CC, Schmitz G, Laurenti E, Galle PR, Pession A, Cavicchi S, Strand D. The human protein Hugl-1 substitutes for Drosophila lethal giant larvae tumour suppressor function in vivo. Oncogene 2004; 23:8688-94. [PMID: 15467749 DOI: 10.1038/sj.onc.1208023] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Drosophila lethal giant larvae: (lgl), discs large (dlg) and scribble (scrib) are tumour suppressor genes acting in a common pathway, whose loss of function leads to disruption of cell polarity and tissue architecture, uncontrolled proliferation and growth of neoplastic lesions. Mammalian homologues of these genes are highly conserved and evidence is emerging concerning their role in cell proliferation control and tumorigenesis in humans. Here we investigate the functional conservation between Drosophila lethal giant larvae and its human homologue Hugl-1(Llgl1). We first show that Hugl-1 is lost in human solid malignancies, supporting its role as a tumour suppressor in humans. Hugl-1 expression in homozygous lgl Drosophila mutants is able to rescue larval lethality; imaginal tissues do not show any neoplastic features, with Dlg and Scrib exhibiting the correct localization; animals undergo a complete metamorphosis and hatch as viable adults. These data demonstrate that Hugl-1 can act as a tumour suppressor in Drosophila and thus is the functional homologue of lgl. Furthermore, our data suggest that the genetic pathway including the tumour suppressors lgl, dlg and scrib may be conserved in mammals, since human scrib and mammalian dlg can also rescue their respective Drosophila mutations. Our results highlight the usefulness of fruit fly as a model system for investigating in vivo the mechanisms linking loss of cell polarity and cell proliferation control in human cancers.
Collapse
Affiliation(s)
- Daniela Grifoni
- Alma Mater Studiorum, Dipartimento di Biologia Evoluzionistica Sperimentale, Via Selmi 3, 40126 Bologna, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Six EM, Ndiaye D, Sauer G, Laâbi Y, Athman R, Cumano A, Brou C, Israël A, Logeat F. The Notch Ligand Delta1 Recruits Dlg1 at Cell-Cell Contacts and Regulates Cell Migration. J Biol Chem 2004; 279:55818-26. [PMID: 15485825 DOI: 10.1074/jbc.m408022200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Delta1 acts as a membrane-bound ligand that interacts with the Notch receptor and plays a critical role in cell fate specification. By using peptide affinity chromatography followed by mass spectrometry, we have identified Dlg1 as a partner of the Delta1 C-terminal region. Dlg1 is a human homolog of the Drosophila Discs large tumor suppressor, a member of the membrane-associated guanylate kinase family of molecular scaffolds. We confirmed this interaction by co-immunoprecipitation experiments between endogenous Dlg1 and transduced Delta1 in a 3T3 cell line stably expressing Delta1. Moreover, we showed that deletion of a canonical C-terminal PDZ-binding motif (ATEV) in Delta1 abrogated this interaction. Delta4 also interacted with Dlg1, whereas Jagged1, another Notch ligand, did not. In HeLa cells, transfected Delta1 triggered the accumulation of endogenous Dlg1 at sites of cell-cell contact. Expression of Delta1 also reduced the motility of 3T3 cells. Finally, deletion of the ATEV motif totally abolished these effects but did not interfere with the ability of Delta1 to induce Notch signaling and T cell differentiation in co-culture experiments. These results point to a new, probably cell-autonomous function of Delta1, which is independent of its activity as a Notch ligand.
Collapse
Affiliation(s)
- Emmanuelle M Six
- Unité de Biologie Moléculaire de l'Expression Génique, URA 2582 CNRS, Institut Pasteur, 25 Rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bilder D. Epithelial polarity and proliferation control: links from the Drosophila neoplastic tumor suppressors. Genes Dev 2004; 18:1909-25. [PMID: 15314019 DOI: 10.1101/gad.1211604] [Citation(s) in RCA: 439] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mammalian epithelial tumors lose polarity as they progress toward malignancy, but whether polarity loss might causally contribute to cancer has remained unclear. In Drosophila, mutations in the "neoplastic tumor suppressor genes" (nTSGs) scribble, discs-large, and lethal giant larvae disrupt polarity of epithelia and neuroblasts, and simultaneously induce extensive overproliferation of these cells, which exhibit malignant-like characteristics. Herein I review what is known about the role of the fly nTSGs in controlling cell polarity and cell proliferation. Incorporating data from mammalian studies, I consider how polarity and proliferation can be coupled, and how disruption of polarity could promote cancer.
Collapse
Affiliation(s)
- David Bilder
- Department of Molecular and Cell Biology, University of California, Berkeley, 94720-3200, USA.
| |
Collapse
|
48
|
Yamamoto Y, Irie K, Asada M, Mino A, Mandai K, Takai Y. Direct binding of the human homologue of the Drosophila disc large tumor suppressor gene to seven-pass transmembrane proteins, tumor endothelial marker 5 (TEM5), and a novel TEM5-like protein. Oncogene 2004; 23:3889-97. [PMID: 15021905 DOI: 10.1038/sj.onc.1207495] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human homologue of the Drosophila discs large tumor suppressor gene (hDlg) is a member of the membrane-associated guanylate kinase family with three PSD-95/Dlg/ZO-1 (PDZ) domains. hDlg has been shown to bind tumor suppressor proteins, adenomatous polyposis coli (APC) and protein tyrosine phosphatase and tensin homologue (PTEN), and several viral oncoproteins, and has been implicated in the negative regulation of cell proliferation. hDlg has furthermore been shown to localize at the plasma membrane of synapses and to scaffold cell surface receptors and channels. In epithelial cells, hDlg localizes at the basolateral plasma membrane, but its localization mechanism is unknown. We searched here for a transmembrane protein that directly bound to hDlg. hDlg bound tumor endothelial marker 5 (TEM5), a seven-pass transmembrane protein that is homologous to the family B of G-protein-coupled receptors (GPCRs). TEM5 has previously been reported to display elevated expression during tumor angiogenesis and neoangiogenesis. The PDZ domains of hDlg bound the C-terminal PDZ-binding motif of TEM5. The expression of TEM5 was detected in endothelial cells of embryonic liver, where hDlg colocalized with TEM5. hDlg furthermore bound a novel seven-pass transmembrane protein, which was homologous to TEM5, and was named here a TEM5-like protein (TEM5-like). These results suggest that hDlg localizes at the plasma membrane through TEM5 and TEM5-like and furthermore scaffolds these GPCRs in endothelial cells during tumor angiogenesis and neoangiogenesis.
Collapse
Affiliation(s)
- Yasunori Yamamoto
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Watson RA, Thomas M, Banks L, Roberts S. Activity of the human papillomavirus E6 PDZ-binding motif correlates with an enhanced morphological transformation of immortalized human keratinocytes. J Cell Sci 2004; 116:4925-34. [PMID: 14625386 DOI: 10.1242/jcs.00809] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Human papillomavirus E6 oncoproteins induce the proteasomal degradation of several multi-PDZ (PSD95/Dlg/ZO-1) domain-containing proteins such as the human homologue of Drosophila discs large. Binding to PDZ domain-containing proteins is mediated by a PDZ-binding motif contained within the C-terminus of E6. The ability of E6 proteins to induce degradation of PDZ domain-containing proteins correlates with their oncogenic potential. Here we examined the biological effect of this region of the human papillomavirus type 18 E6 oncoprotein on keratinocyte morphology. Our results show that in simian virus 40-immortalized human keratinocytes, stable expression of E6 correlated with the induction of an exaggerated mesenchymal-like morphology and actin cytoskeleton disorganization compared with parental cells. The altered phenotype was accentuated in cells expressing an E6 protein containing a mutation (Arg153Leu) within a protein kinase A recognition motif that abrogates protein kinase A's negative regulation of the activity of the PDZ-binding domain. The E6-induced changes indicated an epithelial-mesenchymal transition and were supported by the finding that E6-expressing cells contained vimentin. Changes to the epithelial phenotype of cells expressing a mutant E6 protein (Thr156Glu) that is unable to degrade discs large was significantly less marked, although they did show evidence of epithelial-mesenchymal transition. These observations imply that the activity of the E6 PDZ-binding motif contributes only to a part of the transition. Further analysis of the E6 cell lines showed a decrease in adherens junction and desmosome formation. Cells expressing a functional PDZ-binding motif showed the greatest disruption of intercellular junction formation, but this did not correlate with a decrease in total cellular levels of the individual components of adhesion junctions. This suggests that the activity of the PDZ-binding motif may have influenced either the assembly or integrity of functional adhesion complexes. An E6-mediated decrease in peripheral membrane levels of PDZ proteins like discs large could be the basis for the enhanced morphological transformation of immortalized keratinocytes.
Collapse
Affiliation(s)
- Richard A Watson
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Birmingham B15 2TA, United Kingdom
| | | | | | | |
Collapse
|
50
|
Küppers-Munther B, Letzkus JJ, Lüer K, Technau G, Schmidt H, Prokop A. A new culturing strategy optimises Drosophila primary cell cultures for structural and functional analyses. Dev Biol 2004; 269:459-78. [PMID: 15110713 DOI: 10.1016/j.ydbio.2004.01.038] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Revised: 12/08/2003] [Accepted: 01/28/2004] [Indexed: 11/24/2022]
Abstract
Neurons in primary cell cultures provide important experimental possibilities complementing or substituting those in the nervous system. However, Drosophila primary cell cultures have unfortunate limitations: they lack either a range of naturally occurring cell types, or of mature physiological properties. Here, we demonstrate a strategy which supports both aspects integrated in one culture: Initial culturing in conventional serum-supplemented Schneider's medium (SM(20K)) guarantees acquisition of all properties known from 30 years of work on cell type-specific differentiation in this medium. Through subsequent shift to newly developed active Schneider's medium (SM(active)), neurons adopt additional mature properties like the ability to carry out plastic morphological changes, neurotransmitter expression and electrical activity. We introduce long-term FM-dye measurements as a tool for Drosophila primary cell cultures demonstrating the presence of increased, action potential-dependent synaptic activity in SM(active). This is confirmed by patch-clamp recordings, which in addition show that SM(active)-cultured neurons display different spiking patterns. Furthermore, we demonstrate that transmission can be evoked in SM(active) cultures, revealing the existence of synaptic plasticity. Thus, these culture conditions support developmental, structural and physiological properties known or expected from the nervous system, enhancing possibilities for future experiments complementing or substituting those in nervous systems of Drosophila.
Collapse
|