1
|
Gong H, Zhu C, Han D, Liu S. Secreted Glycoproteins That Regulate Synaptic Function: the Dispatchers in the Central Nervous System. Mol Neurobiol 2024; 61:2719-2727. [PMID: 37924485 DOI: 10.1007/s12035-023-03731-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023]
Abstract
Glycoproteins are proteins that contain oligosaccharide chains. As widely distributed functional proteins in the body, glycoproteins are essential for cellular development, cellular function maintenance, and intercellular communication. Glycoproteins not only play a role in the cell and the membrane, but they are also secreted in the intercell. These secreted glycoproteins are critical to the central nervous system for neurodevelopment and synaptic transmission. More specifically, secreted glycoproteins play indispensable roles in neurite growth mediation, axon guiding, synaptogenesis, neuronal differentiation, the release of synaptic vesicles, subunit composition of neurotransmitter receptors, and neurotransmitter receptor trafficking among other things. Abnormal expressions of secreted glycoproteins in the central nervous system are associated with abnormal neuron development, impaired synaptic organization/transmission, and neuropsychiatric disorders. This article reviews the secreted glycoproteins that regulate neuronal development and synaptic function in the central nervous system, and the molecular mechanism of these regulations, providing reference for research about synaptic function regulation and related central nervous system diseases.
Collapse
Affiliation(s)
- Haiying Gong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Conglei Zhu
- Department of Pharmacy, Fuyang People's Hospital, Fuyang, Anhui, China
| | - Di Han
- Department of Respiratory and Critical Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Sen Liu
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Basha S, Jin-Smith B, Sun C, Pi L. The SLIT/ROBO Pathway in Liver Fibrosis and Cancer. Biomolecules 2023; 13:785. [PMID: 37238655 PMCID: PMC10216401 DOI: 10.3390/biom13050785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Liver fibrosis is a common outcome of most chronic liver insults/injuries that can develop into an irreversible process of cirrhosis and, eventually, liver cancer. In recent years, there has been significant progress in basic and clinical research on liver cancer, leading to the identification of various signaling pathways involved in tumorigenesis and disease progression. Slit glycoprotein (SLIT)1, SLIT2, and SLIT3 are secreted members of a protein family that accelerate positional interactions between cells and their environment during development. These proteins signal through Roundabout receptor (ROBO) receptors (ROBO1, ROBO2, ROBO3, and ROBO4) to achieve their cellular effects. The SLIT and ROBO signaling pathway acts as a neural targeting factor regulating axon guidance, neuronal migration, and axonal remnants in the nervous system. Recent findings suggest that various tumor cells differ in SLIT/ROBO signaling levels and show varying degrees of expression patterns during tumor angiogenesis, cell invasion, metastasis, and infiltration. Emerging roles of the SLIT and ROBO axon-guidance molecules have been discovered in liver fibrosis and cancer development. Herein, we examined the expression patterns of SLIT and ROBO proteins in normal adult livers and two types of liver cancers: hepatocellular carcinoma and cholangiocarcinoma. This review also summarizes the potential therapeutics of this pathway for anti-fibrosis and anti-cancer drug development.
Collapse
Affiliation(s)
| | | | | | - Liya Pi
- Department of Pathology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| |
Collapse
|
3
|
Ditte Z, Silbern I, Ditte P, Urlaub H, Eichele G. Extracellular vesicles derived from the choroid plexus trigger the differentiation of neural stem cells. J Extracell Vesicles 2022; 11:e12276. [PMID: 36325603 PMCID: PMC9630752 DOI: 10.1002/jev2.12276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/26/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
The choroid plexus secrets cerebrospinal fluid (CSF) composed of electrolytes, cytokines, growth factors, metabolites and extracellular vesicles (EVs) that flow through the interconnected brain ventricles. On their course, CSF components can act as signals that affect, for example, neural stem cells (NSCs) residing in niches of the ventricular wall. We studied EV-born CSF signals in an in vitro culture system. We purified EVs from the secretome of a choroid plexus cell line (Z310 cells), and from primary choroid plexus cultures and co-cultured those EVs with NSCs isolated from the niche of the lateral and the third ventricle. EVsZ310 and EVsCHP were purified by differential centrifugation. This yielded fractions of EVs of 50-150-nm diameter that induced a complex multicellular network formation and NSC differentiation. Both types of EV converted the round NSCs to cells that extended long processes that contacted nearby, alike-shaped cells. Mass spectrometry showed that the differentiation-inducing EVZ310 were enriched for membrane and membrane-associated proteins involved in cell differentiation, membrane trafficking, and membrane organization. We hypothesize that this type of EV Z310 cargo causes changes of stem cell morphology that leads to multicellular networks in the niches. This cell-shape transition may represent an initial step in NSC differentiation.
Collapse
Affiliation(s)
- Zuzana Ditte
- Department of Genes and BehaviorMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Biological RhythmsMax Planck Institute for Dynamics and Self OrganizationGöttingenGermany
| | - Ivan Silbern
- The Bioanalytical Mass Spectrometry GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Institute for Clinical ChemistryUniversity Medical Center GöttingenGöttingenGermany
| | - Peter Ditte
- Department of Genes and BehaviorMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Henning Urlaub
- The Bioanalytical Mass Spectrometry GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Institute for Clinical ChemistryUniversity Medical Center GöttingenGöttingenGermany
| | - Gregor Eichele
- Department of Genes and BehaviorMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Biological RhythmsMax Planck Institute for Dynamics and Self OrganizationGöttingenGermany
| |
Collapse
|
4
|
Ding C, Li Y, Wang S, Xing C, Chen L, Zhang H, Wang Y, Dai M. ROBO2 hampers malignant biological behavior and predicts a better prognosis in pancreatic adenocarcinoma. Scand J Gastroenterol 2021; 56:955-964. [PMID: 34148491 DOI: 10.1080/00365521.2021.1930144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a fatalmalignant cancer with extremely poor prognosis and high mortality. Genome wide studies show that Slit/Robo signaling pathway takes a major effect in the oncogenesis and progression of pancreatic cancer. However, the function and mechanism of ROBO2 in the development of PDAC remains unclear. METHODS In present study, we use Western blot and real-time polymerase chain reaction (RT-PCR) to detect the expression of ROBO2 in pancreatic cell lines. Cell proliferation,Transwellmigration and invasion were conducted inAsPC-1, MIA PaCa-2 and PANC-1cell lines. RNA sequencing, bioinformatics analysisand Western blot were used to explore its mechanism and potential target molecules. The expression of ROBO2 in 95 tumor tissues was detected by immunohistochemistry. RESULTS ROBO2 expression was downregulated in PDAC cell lines and tissue samples. A high expression of ROBO2 was associated with better prognosis. Upregulation of ROBO2 inhibited PDAC cell proliferation, migration, and invasion. However, we found theoppositeresults in the ROBO2 downregulation group. In addition, the function of ROBO2 on cell proliferation was further affirmed by the animal model. Finally, the results of RNA sequencing indicated that ROBO2 partly promoted the antitumor activity by inhibiting ECM1 in PDAC. CONCLUSIONS Our work suggests that ROBO2 inhibits tumor progression in PDAC and may serve as a predictive biomarker and therapeutic target in PDAC.
Collapse
Affiliation(s)
- Cheng Ding
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yatong Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Shunda Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Cheng Xing
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Lixin Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hanyu Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yizhi Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Menghua Dai
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Sherchan P, Travis ZD, Tang J, Zhang JH. The potential of Slit2 as a therapeutic target for central nervous system disorders. Expert Opin Ther Targets 2020; 24:805-818. [PMID: 32378435 PMCID: PMC7529836 DOI: 10.1080/14728222.2020.1766445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/05/2020] [Indexed: 10/24/2022]
Abstract
Introduction: Slit2 is an extracellular matrix protein that regulates migration of developing axons during central nervous system (CNS) development. Roundabout (Robo) receptors expressed by various cell types in the CNS, mediate intracellular signal transduction pathways for Slit2. Recent studies indicate that Slit2 plays important protective roles in a myriad of processes such as cell migration, immune response, vascular permeability, and angiogenesis in CNS pathologies. Areas covered: This review provides an overview of the diverse functions of Slit2 in CNS disorders and discusses the potential of Slit2 as a therapeutic target. We reviewed preclinical studies reporting the role of Slit2 in various CNS disease models, transgenic animal research, and rodent models that utilized Slit2 as a therapy. Expert opinion: Slit2 exerts a wide array of beneficial effects ranging from anti-migration, blood-brain barrier (BBB) protection, inhibition of peripheral immune cell infiltration, and anti-apoptosis in various disease models. However, a dual role of Slit2 in endothelial permeability has been observed in transgenic animals. Further research on Slit2 will be crucial including key issues such as effects of transgenic overexpression versus exogenous Slit2, function of Slit2 dependent on cellular expression of Robo receptors and the underlying pathology for potential clinical translation.
Collapse
Affiliation(s)
- Prativa Sherchan
- Center for Neuroscience Research, Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Zachary D. Travis
- Department of Earth and Biological Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA and Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
- Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - John H. Zhang
- Center for Neuroscience Research, Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
- Departments of Anesthesiology, Neurosurgery and Neurology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| |
Collapse
|
6
|
Sarnat HB. Proteoglycan (Keratan Sulfate) Barrier in Developing Human Forebrain Isolates Cortical Epileptic Networks From Deep Heterotopia, Insulates Axonal Fascicles, and Explains Why Axosomatic Synapses Are Inhibitory. J Neuropathol Exp Neurol 2020; 78:1147-1159. [PMID: 31633782 DOI: 10.1093/jnen/nlz096] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Axons from deep heterotopia do not extend through U-fibers, except transmantle dysplasias. Keratan sulfate (KS) in fetal spinal cord/brainstem median septum selectively repels glutamatergic axons while enabling GABAergic commissural axons. Immunocytochemical demonstration of KS in neocortical resections and forebrain at autopsy was studied in 12 fetuses and neonates 9-41 weeks gestational age (GA), 9 infants, children, and adolescents and 5 patients with focal cortical dysplasias (FCD1a). From 9 to 15 weeks GA, no KS is seen in the cortical plate; 19-week GA reactivity is detected in the molecular zone. By 28 weeks GA, patchy granulofilamentous reactivity appears in extracellular matrix and adheres to neuronal somata with increasing intensity in deep cortex and U-fibers at term. Perifascicular KS surrounds axonal bundles of both limbs of the internal capsule and within basal ganglia from 9 weeks GA. Thalamus and globus pallidus exhibit intense astrocytic reactivity from 9 weeks GA. In FCD1a, U-fiber reactivity is normal, discontinuous or radial. Ultrastructural correlates were not demonstrated; KS is not electron-dense. Proteoglycan barrier of the U-fiber layer impedes participation of deep heterotopia in cortical epileptic networks. Perifascicular KS prevents aberrant axonal exit from or entry into long and short tracts. KS adhesion to neuronal somatic membranes may explain inhibitory axosomatic synapses.
Collapse
Affiliation(s)
- Harvey B Sarnat
- Departments of Paediatrics, Pathology (Neuropathology), and Clinical Neurosciences, University of Calgary, Cumming School of Medicine; and Alberta Children's Hospital Research Institute (Owerko Centre), Calgary, Alberta, Canada
| |
Collapse
|
7
|
Sasaki T, Komatsu Y, Yamamori T. Expression patterns of SLIT/ROBO mRNAs reveal a characteristic feature in the entorhinal-hippocampal area of macaque monkeys. BMC Res Notes 2020; 13:262. [PMID: 32460877 PMCID: PMC7251749 DOI: 10.1186/s13104-020-05100-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/19/2020] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE SLITs are secreted glycoproteins that bind to Roundabouts (ROBOs) which are a family member of transmembrane receptors. SLIT signaling has well-conserved roles in mediating axon repulsion in a developing nervous system. We previously reported that SLIT1 mRNA is enriched in middle layers of the prefrontal cortex of macaque monkeys in a developmentally regulated manner. Other SLIT (SLIT2 and SLIT3) mRNAs showed preferential expressions in the prefrontal cortex with a distinct laminar pattern. To obtain further clues to the role of SLIT signaling in the organization of the primate brain, we performed ISH analysis of SLIT and ROBO mRNAs using adult macaque brain tissues. RESULTS In this study, we examined the expression patterns of SLITs and ROBOs (ROBO1 and ROBO2) in other brain regions, and found intense and characteristic expression patterns of these genes in the entorhinal-hippocampal area. In situ hybridization analysis revealed that SLIT1 and SLIT2 mRNAs showed marked complementary distribution in the entorhinal cortex. SLIT and ROBO mRNAs were widely expressed in the hippocampus with modest regional preference. These findings suggest that each SLIT gene has a specialized role that is particularly important for prefrontal as well as hippocampal connectivity in the primate cortex.
Collapse
Affiliation(s)
- Tetsuya Sasaki
- Division of Brain Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki, 444-8585, Japan.
- Department of Anatomy and Neuroscience, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
- Ph.D Program of Neurosciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Yusuke Komatsu
- Division of Brain Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki, 444-8585, Japan
- Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0816, Japan
| | - Tetsuo Yamamori
- Division of Brain Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki, 444-8585, Japan.
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
8
|
Essential tremor pathology: neurodegeneration and reorganization of neuronal connections. Nat Rev Neurol 2020; 16:69-83. [PMID: 31959938 DOI: 10.1038/s41582-019-0302-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2019] [Indexed: 01/26/2023]
Abstract
Essential tremor (ET) is the most common tremor disorder globally and is characterized by kinetic tremor of the upper limbs, although other clinical features can also occur. Postmortem studies are a particularly important avenue for advancing our understanding of the pathogenesis of ET; however, until recently, the number of such studies has been limited. Several recent postmortem studies have made important contributions to our understanding of the pathological changes that take place in ET. These studies identified abnormalities in the cerebellum, which primarily affected Purkinje cells (PCs), basket cells and climbing fibres, in individuals with ET. We suggest that some of these pathological changes (for example, focal PC axonal swellings, swellings in and regression of the PC dendritic arbor and PC death) are likely to be primary and degenerative. By contrast, other changes, such as an increase in PC recurrent axonal collateral formation and hypertrophy of GABAergic basket cell axonal processes, could be compensatory responses to restore cerebellar GABAergic tone and cerebellar cortical inhibitory efficacy. Such compensatory responses are likely to be insufficient, enabling the disease to progress. Here, we review the results of recent postmortem studies of ET and attempt to place these findings into an anatomical-physiological disease model.
Collapse
|
9
|
Melrose J. Keratan sulfate (KS)-proteoglycans and neuronal regulation in health and disease: the importance of KS-glycodynamics and interactive capability with neuroregulatory ligands. J Neurochem 2019; 149:170-194. [PMID: 30578672 DOI: 10.1111/jnc.14652] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 11/26/2018] [Accepted: 12/13/2018] [Indexed: 12/18/2022]
Abstract
Compared to the other classes of glycosaminoglycans (GAGs), that is, chondroitin/dermatan sulfate, heparin/heparan sulfate and hyaluronan, keratan sulfate (KS), have the least known of its interactive properties. In the human body, the cornea and the brain are the two most abundant tissue sources of KS. Embryonic KS is synthesized as a linear poly-N-acetyllactosamine chain of d-galactose-GlcNAc repeat disaccharides which become progressively sulfated with development, sulfation of GlcNAc is more predominant than galactose. KS contains multi-sulfated high-charge density, monosulfated and non-sulfated poly-N-acetyllactosamine regions and thus is a heterogeneous molecule in terms of chain length and charge distribution. A recent proteomics study on corneal KS demonstrated its interactivity with members of the Slit-Robbo and Ephrin-Ephrin receptor families and proteins which regulate Rho GTPase signaling and actin polymerization/depolymerization in neural development and differentiation. KS decorates a number of peripheral nervous system/CNS proteoglycan (PG) core proteins. The astrocyte KS-PG abakan defines functional margins of the brain and is up-regulated following trauma. The chondroitin sulfate/KS PG aggrecan forms perineuronal nets which are dynamic neuroprotective structures with anti-oxidant properties and roles in neural differentiation, development and synaptic plasticity. Brain phosphacan a chondroitin sulfate, KS, HNK-1 PG have roles in neural development and repair. The intracellular microtubule and synaptic vesicle KS-PGs MAP1B and SV2 have roles in metabolite transport, storage, and export of neurotransmitters and cytoskeletal assembly. MAP1B has binding sites for tubulin and actin through which it promotes cytoskeletal development in growth cones and is highly expressed during neurite extension. The interactive capability of KS with neuroregulatory ligands indicate varied roles for KS-PGs in development and regenerative neural processes.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, St. Leonards, New South Wales, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia.,Sydney Medical School, Northern Campus, Royal North Shore Hospital, The University of Sydney, New South Wales, Australia.,Faculty of Medicine and Health, Royal North Shore Hospital, The University of Sydney, St. Leonards, New South Wales, Australia
| |
Collapse
|
10
|
Park SM, Plachez C, Huang S. Sex-Dependent Motor Deficit and Increased Anxiety-Like States in Mice Lacking Autism-Associated Gene Slit3. Front Behav Neurosci 2018; 12:261. [PMID: 30483073 PMCID: PMC6243047 DOI: 10.3389/fnbeh.2018.00261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/15/2018] [Indexed: 12/28/2022] Open
Abstract
Altered neuronal connectivity has been implicated in the pathophysiology of Autism Spectrum Disorder (ASD). SLIT/ROBO signaling plays an important role in developmental processes of neuronal connectivity, including axon guidance, neuronal migration, and axonal and dendritic branching. Genetic evidence supports that SLIT3, one of the genes encoding SLITs, is associated with ASD. Yet the causal link between SLIT3 mutation and autism symptoms has not been examined. Here we assessed ASD-associated behaviors in Slit3 knockout (KO) mice. Our data showed that Slit3-KO mice exhibited reduced marble burying behaviors but normal social behaviors. In addition, Slit3-KO mice displayed hypolocomotion in the open field test and impaired motor coordination in the rotarod test. Anxiety-like behaviors were mainly observed in female KO mice assessed by three types of behavioral tests, namely, the open field test, elevated plus maze test, and light/dark box test. No differences were observed between KO and wildtype mice in recognition memory in the novel object recognition test or depression-like behavior in the tail suspension test. Taken together, loss of Slit3 may result in disrupted neural circuits related to motor function and increased anxiety-like states, which are co-occurring symptoms in ASD.
Collapse
Affiliation(s)
- Su Mi Park
- Laboratory of Neural Circuits & Behavior, Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD, United States
| | - Céline Plachez
- Autism & Brain Development Laboratory, Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD, United States
| | - Shiyong Huang
- Laboratory of Neural Circuits & Behavior, Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD, United States
| |
Collapse
|
11
|
Caterson B, Melrose J. Keratan sulfate, a complex glycosaminoglycan with unique functional capability. Glycobiology 2018; 28:182-206. [PMID: 29340594 PMCID: PMC5993099 DOI: 10.1093/glycob/cwy003] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/20/2017] [Accepted: 01/08/2018] [Indexed: 12/19/2022] Open
Abstract
From an evolutionary perspective keratan sulfate (KS) is the newest glycosaminoglycan (GAG) but the least understood. KS is a sophisticated molecule with a diverse structure, and unique functional roles continue to be uncovered for this GAG. The cornea is the richest tissue source of KS in the human body but the central and peripheral nervous systems also contain significant levels of KS and a diverse range of KS-proteoglycans with essential functional roles. KS also displays important cell regulatory properties in epithelial and mesenchymal tissues and in bone and in tumor development of diagnostic and prognostic utility. Corneal KS-I displays variable degrees of sulfation along the KS chain ranging from non-sulfated polylactosamine, mono-sulfated and disulfated disaccharide regions. Skeletal KS-II is almost completely sulfated consisting of disulfated disaccharides interrupted by occasional mono-sulfated N-acetyllactosamine residues. KS-III also contains highly sulfated KS disaccharides but differs from KS-I and KS-II through 2-O-mannose linkage to serine or threonine core protein residues on proteoglycans such as phosphacan and abakan in brain tissue. Historically, the major emphasis on the biology of KS has focused on its sulfated regions for good reason. The sulfation motifs on KS convey important molecular recognition information and direct cell behavior through a number of interactive proteins. Emerging evidence also suggest functional roles for the poly-N-acetyllactosamine regions of KS requiring further investigation. Thus further research is warranted to better understand the complexities of KS.
Collapse
Affiliation(s)
- Bruce Caterson
- Connective Tissue Biology Laboratories, School of Biosciences, College of Biological & Life Sciences, Cardiff University, Cardiff, Wales, UK
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute of Medical Research, Northern Sydney Local Health District, St. Leonards, NSW, Australia
- Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St. Leonards, NSW, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
12
|
Chen Z. Common cues wire the spinal cord: Axon guidance molecules in spinal neuron migration. Semin Cell Dev Biol 2018; 85:71-77. [PMID: 29274387 DOI: 10.1016/j.semcdb.2017.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 01/28/2023]
Abstract
Topographic arrangement of neuronal cell bodies and axonal tracts are crucial for proper wiring of the nervous system. This involves often-coordinated neuronal migration and axon guidance during development. Most neurons migrate from their birthplace to specific topographic coordinates as they adopt the final cell fates and extend axons. The axons follow temporospatial specific guidance cues to reach the appropriate targets. When neuronal or axonal migration or their coordination is disrupted, severe consequences including neurodevelopmental disorders and neurological diseases, can arise. Neuronal and axonal migration shares some molecular mechanisms, as genes originally identified as axon guidance molecules have been increasingly shown to direct both navigation processes. This review focuses on axon guidance pathways that are shown to also direct neuronal migration in the vertebrate spinal cord.
Collapse
Affiliation(s)
- Zhe Chen
- Department of MCD Biology, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
13
|
Recombinant Slit2 Reduces Surgical Brain Injury Induced Blood Brain Barrier Disruption via Robo4 Dependent Rac1 Activation in a Rodent Model. Sci Rep 2017; 7:746. [PMID: 28389649 PMCID: PMC5429690 DOI: 10.1038/s41598-017-00827-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/14/2017] [Indexed: 12/25/2022] Open
Abstract
Brain tissue surrounding surgical resection site can be injured inadvertently due to procedures such as incision, retractor stretch, and electrocauterization when performing neurosurgical procedures, which is termed as surgical brain injury (SBI). Blood brain barrier (BBB) disruption due to SBI can exacerbate brain edema in the post-operative period. Previous studies showed that Slit2 exhibited vascular anti-permeability effects outside the brain. However, BBB protective effects of Slit2 following SBI has not been evaluated. The objective of this study was to evaluate whether recombinant Slit2 via its receptor roundabout4 (Robo4) and the adaptor protein, Paxillin were involved in reducing BBB permeability in SBI rat model. Our results showed that endogenous Slit2 increased in the surrounding peri-resection brain tissue post-SBI, Robo4 remained unchanged and Paxillin showed a decreasing trend. Recombinant Slit2 administered 1 h before injury increased BBB junction proteins, reduced BBB permeability, and decreased neurodeficits 24 h post-SBI. Furthermore, recombinant Slit2 administration increased Rac1 activity which was reversed by Robo4 and Paxillin siRNA. Our findings suggest that recombinant Slit2 reduced SBI-induced BBB permeability, possibly by stabilizing BBB tight junction via Robo4 mediated Rac1 activation. Slit2 may be beneficial for BBB protection during elective neurosurgeries.
Collapse
|
14
|
Huang T, Kang W, Cheng ASL, Yu J, To KF. The emerging role of Slit-Robo pathway in gastric and other gastro intestinal cancers. BMC Cancer 2015; 15:950. [PMID: 26674478 PMCID: PMC4682238 DOI: 10.1186/s12885-015-1984-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/08/2015] [Indexed: 01/12/2023] Open
Abstract
Gastric cancer remains one of the most common cancers worldwide and one of the leading cause for cancer-related deaths. Due to the high frequency of metastasis, it is still one of the most lethal malignancies in which kinds of signaling pathways are involved in. The Roundabout (ROBO) receptors and their secreted SLIT glycoprotein ligands, which were originally identified as important axon guidance molecules, have implication in the regulation of neurons and glia, leukocytes, and endothelial cells migration. Recent researches also put high emphasis on the important roles of the Slit-Robo pathway in tumorigenesis, cancer progression and metastasis. Herein we provide a comprehensive review on the role of these molecules and their associated signaling pathway in gastric and other gastrointestinal cancers. Improved knowledge of the Slit-Robo signaling pathway in gastric carcinoma will be useful for deep understanding the mechanisms of tumor development and identifying ideal targets of anticancer therapy in gastric carcinoma.
Collapse
Affiliation(s)
- Tingting Huang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China.
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China.
| | - Alfred S L Cheng
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China.
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, PR China.
| | - Jun Yu
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China.
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, PR China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China.
| |
Collapse
|
15
|
Andrews JL, Fernandez-Enright F. A decade from discovery to therapy: Lingo-1, the dark horse in neurological and psychiatric disorders. Neurosci Biobehav Rev 2015; 56:97-114. [PMID: 26143511 DOI: 10.1016/j.neubiorev.2015.06.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 05/15/2015] [Accepted: 06/02/2015] [Indexed: 01/19/2023]
Abstract
Leucine-rich repeat and immunoglobulin domain-containing protein (Lingo-1) is a potent negative regulator of neuron and oligodendrocyte survival, neurite extension, axon regeneration, oligodendrocyte differentiation, axonal myelination and functional recovery; all processes highly implicated in numerous brain-related functions. Although playing a major role in developmental brain functions, the potential application of Lingo-1 as a therapeutic target for the treatment of neurological disorders has so far been under-estimated. A number of preclinical studies have shown that various methods of antagonizing Lingo-1 results in neuronal and oligodendroglial survival, axonal growth and remyelination; however to date literature has only detailed applications of Lingo-1 targeted therapeutics with a focus primarily on myelination disorders such as multiple sclerosis and spinal cord injury; omitting important information regarding Lingo-1 signaling co-factors. Here, we provide for the first time a complete and thorough review of the implications of Lingo-1 signaling in a wide range of neurological and psychiatric disorders, and critically examine its potential as a novel therapeutic target for these disorders.
Collapse
Affiliation(s)
- Jessica L Andrews
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong 2522, NSW, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522, NSW, Australia; Schizophrenia Research Institute, 405 Liverpool St, Darlinghurst 2010, NSW, Australia.
| | - Francesca Fernandez-Enright
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong 2522, NSW, Australia; Faculty of Social Sciences, University of Wollongong, Wollongong 2522, NSW, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522, NSW, Australia; Schizophrenia Research Institute, 405 Liverpool St, Darlinghurst 2010, NSW, Australia.
| |
Collapse
|
16
|
Leto K, Carulli D, Buffo A. Symposium in honor of Ferdinando Rossi: a passionate journey through the cerebellar mysteries. THE CEREBELLUM 2015; 13:791-4. [PMID: 25562085 DOI: 10.1007/s12311-014-0590-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To remember our friend and colleague Ferdinando Rossi, prematurely passed away on 24th January 2014, a symposium was held during the ninth FENS meeting in Milan. It was focused on the development and plasticity of the cerebellum, the main topics of Ferdinando's research. From the talks of the invited speakers, Giacomo Consalez, Karl Schilling, Alain Chédotal, and Chris De Zeeuw, it clearly emerged that Ferdinando had a huge impact on the research of many scientists like them, as well as in the whole field of brain development and regeneration. With this symposium, we celebrated a brilliant scientist, devoted to Neuroscience with tireless passion and curiosity.
Collapse
|
17
|
Gara RK, Kumari S, Ganju A, Yallapu MM, Jaggi M, Chauhan SC. Slit/Robo pathway: a promising therapeutic target for cancer. Drug Discov Today 2015; 20:156-64. [PMID: 25245168 PMCID: PMC4445861 DOI: 10.1016/j.drudis.2014.09.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/19/2014] [Accepted: 09/12/2014] [Indexed: 12/19/2022]
Abstract
Axon guidance molecules, slit glycoprotein (Slit) and Roundabout receptor (Robo), have implications in the regulation of physiological processes. Recent studies indicate that Slit and Robo also have important roles in tumorigenesis, cancer progression and metastasis. The Slit/Robo pathway can be considered a master regulator for multiple oncogenic signaling pathways. Herein, we provide a comprehensive review on the role of these molecules and their associated signaling pathways in cancer progression and metastasis. Overall, the current available data suggest that the Slit/Robo pathway could be a promising target for development of anticancer drugs.
Collapse
Affiliation(s)
- Rishi K Gara
- Department of Pharmaceutical Sciences and Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Sonam Kumari
- Department of Pharmaceutical Sciences and Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Aditya Ganju
- Department of Pharmaceutical Sciences and Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences and Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Meena Jaggi
- Department of Pharmaceutical Sciences and Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences and Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
18
|
Regulation of subventricular zone-derived cells migration in the adult brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 853:1-21. [PMID: 25895704 DOI: 10.1007/978-3-319-16537-0_1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The subventricular zone of the lateral ventricles (SVZ) is the largest source of neural stem cells (NSCs) in the adult mammalian brain. Newly generated neuroblasts from the SVZ form cellular chains that migrate through the rostral migratory stream (RMS) into the olfactory bulb (OB), where they become mature neurons. Migration through the RMS is a highly regulated process of intrinsic and extrinsic factors, orchestrated to achieve direction and integration of neuroblasts into OB circuitry. These factors include internal cytoskeletal and volume regulators, extracellular matrix proteins, and chemoattractant and chemorepellent proteins. All these molecules direct the cells away from the SVZ, through the RMS, and into the OB guaranteeing their correct integration. Following brain injury, some neuroblasts escape the RMS and migrate into the lesion site to participate in regeneration, a phenomenon that is also observed with brain tumors. This review focuses on factors that regulate the migration of SVZ precursor cells in the healthy and pathologic brain. A better understanding of the factors that control the movement of newly generated cells may be crucial for improving the use of NSC-replacement therapy for specific neurological diseases.
Collapse
|
19
|
Liu J, Wang X, Li J, Wang H, Wei G, Yan J. Reconstruction of the gene regulatory network involved in the sonic hedgehog pathway with a potential role in early development of the mouse brain. PLoS Comput Biol 2014; 10:e1003884. [PMID: 25299227 PMCID: PMC4191885 DOI: 10.1371/journal.pcbi.1003884] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/28/2014] [Indexed: 11/18/2022] Open
Abstract
The Sonic hedgehog (Shh) signaling pathway is crucial for pattern formation in early central nervous system development. By systematically analyzing high-throughput in situ hybridization data of E11.5 mouse brain, we found that Shh and its receptor Ptch1 define two adjacent mutually exclusive gene expression domains: Shh+Ptch1− and Shh−Ptch1+. These two domains are associated respectively with Foxa2 and Gata3, two transcription factors that play key roles in specifying them. Gata3 ChIP-seq experiments and RNA-seq assays on Gata3-knockdown cells revealed that Gata3 up-regulates the genes that are enriched in the Shh−Ptch1+ domain. Important Gata3 targets include Slit2 and Slit3, which are involved in the process of axon guidance, as well as Slc18a1, Th and Qdpr, which are associated with neurotransmitter synthesis and release. By contrast, Foxa2 both up-regulates the genes expressed in the Shh+Ptch1− domain and down-regulates the genes characteristic of the Shh−Ptch1+ domain. From these and other data, we were able to reconstruct a gene regulatory network governing both domains. Our work provides the first genome-wide characterization of the gene regulatory network involved in the Shh pathway that underlies pattern formation in the early mouse brain. Recent large-scale projects of high-throughput in situ hybridization (ISH) have generated a wealth of spatiotemporal information on gene expression patterns in the early mouse brain. We have developed a computational approach that combines publicly available high-throughput ISH data with our own experimental data to investigate gene regulation, involving signal molecules and transcription factors (TFs), during early brain development. The analysis indicates that two key TFs, Foxa2 and Gata3, play antagonizing roles in the formation of two mutually exclusive domains established by the Sonic hedgehog signaling pathway in the developing mouse brain. Further ChIP-seq and RNA-seq experiments support this hypothesis and have identified novel target genes of Gata3, including the axon guidance regulators Slit2 and Slit3 as well as three neurotransmitter-associated genes, Slc18a1, Th and Qdpr. The findings have allowed us to reconstruct the gene regulatory network brought into play by the Sonic hedgehog pathway that mediates early mouse brain development.
Collapse
Affiliation(s)
- Jinhua Liu
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xuelong Wang
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Juan Li
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Haifang Wang
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Gang Wei
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jun Yan
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
20
|
Zhang QP, Zhang HY, Zhang XF, Zhao JH, Ma ZJ, Zhao D, Yi XN. srGAP3 promotes neurite outgrowth of dorsal root ganglion neurons by inactivating RAC1. ASIAN PAC J TROP MED 2014; 7:630-638. [DOI: 10.1016/s1995-7645(14)60106-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/15/2014] [Accepted: 07/15/2014] [Indexed: 11/30/2022] Open
|
21
|
Tran C, Wigg KG, Zhang K, Cate-Carter TD, Kerr E, Field LL, Kaplan BJ, Lovett MW, Barr CL. Association of the ROBO1 gene with reading disabilities in a family-based analysis. GENES, BRAIN, AND BEHAVIOR 2014; 13:430-8. [PMID: 24612512 PMCID: PMC4930671 DOI: 10.1111/gbb.12126] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 01/10/2014] [Accepted: 02/18/2014] [Indexed: 01/28/2023]
Abstract
Linkage studies have identified a locus on chromosome 3 as reading disabilities (RD) and speech and sound disorder (SSD) susceptibility region, with both RD and SSD sharing similar phonological processing and phonological memory difficulties. One gene in this region, roundabout homolog 1 (ROBO1), has been indicated as a RD candidate and has shown significant association with measures of phonological memory in a population-based sample. In this study, we conducted a family-based association analysis using two independent samples collected in Toronto and Calgary, Canada. Using the two samples, we tested for association between ROBO1 single nucleotide polymorphisms (SNPs) and RD, along with quantitative measures for reading, spelling and phonological memory. One SNP, rs331142, which was selected based on its correlation with ROBO1 expression in brain tissue, was found to be significantly associated with RD in the Toronto sample with over transmission of the minor C allele (P = 0.001), correlated with low expression. This SNP is located ~200 bp from a putative enhancer and results for a marker within the enhancer, rs12495133, showed evidence for association with the same allele in both the Toronto and Calgary samples (P = 0.005 and P = 0.007). These results support previous associations between ROBO1 and RD, as well as correlation with low gene expression, suggesting a possible mechanism of risk conferred by this gene.
Collapse
Affiliation(s)
- C. Tran
- Genetics and Development Division, Toronto Western Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario
- Institute of Medical Science, University of Toronto, Toronto, Ontario
| | - K. G. Wigg
- Genetics and Development Division, Toronto Western Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario
| | - K. Zhang
- Genetics and Development Division, Toronto Western Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario
| | - T. D. Cate-Carter
- Neurosciences & Mental Health Program, The Hospital for Sick Children, Toronto, Ontario
| | - E. Kerr
- Neurosciences & Mental Health Program, The Hospital for Sick Children, Toronto, Ontario
| | - L. L. Field
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia
| | - B. J. Kaplan
- Department of Paediatrics, Faculty of Medicine, Alberta Children’s Hospital, University of Calgary, Calgary, Alberta, Canada
| | - M. W. Lovett
- Neurosciences & Mental Health Program, The Hospital for Sick Children, Toronto, Ontario
| | - C. L. Barr
- Genetics and Development Division, Toronto Western Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario
- Institute of Medical Science, University of Toronto, Toronto, Ontario
- Neurosciences & Mental Health Program, The Hospital for Sick Children, Toronto, Ontario
| |
Collapse
|
22
|
Chen WF, Gao WD, Li QL, Zhou PH, Xu MD, Yao LQ. SLIT2 inhibits cell migration in colorectal cancer through the AKT-GSK3β signaling pathway. Int J Colorectal Dis 2013; 28:933-40. [PMID: 23314850 DOI: 10.1007/s00384-013-1641-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/03/2013] [Indexed: 02/04/2023]
Abstract
PURPOSE Colorectal cancer is a common malignancy and one of the major causes of cancer-related deaths worldwide. Similar to other human cancers, tumor metastasis is the biggest obstacle in the clinical treatment of colorectal cancer. In this study, we explored the functional role of SLIT2 in colon tumor metastasis and the relevant molecular mechanisms. METHODS Immunohistochemistry, Western blotting, and quantitative reverse transcription-polymerase chain reaction were used to measure SLIT2 expression in colorectal tumor tissues in the presence or absence of metastasis. Wound-healing assays, Transwell assays, Western blotting, and immunofluorescence assays were used to examine the effects of SLIT2 on SW480 and NCM460 cell migration and the epithelial-to-mesenchymal transition (EMT). An AKT inhibitor was introduced to examine the mechanism underlying SLIT2-mediated suppression of NCM460 cell migration. RESULTS Higher SLIT2 expression was detected in metastasis-positive tumor tissues, and this upregulation was beneficial for the overall survival of patients with colorectal cancer. Either the addition of purified SLIT2 or overexpression of SLIT2 inhibited SW480 cell migration, whereas the depletion of SLIT2 with shRNA enhanced the migratory ability of NCM460 cells. Meanwhile, SLIT2 depletion also induced β-catenin accumulation and altered the expression levels of several molecules related to EMT in NCM460 cells. AKT inhibition abrogated the effects of SLIT2 depletion on EMT and migration in NCM460 cells. CONCLUSIONS SLIT2 suppresses colon tumor metastasis, and it exerts its suppressive activity against colorectal cancer metastasis by restraining AKT signaling and EMT, thus making it a potential clinical prognosis marker in colorectal cancer.
Collapse
Affiliation(s)
- Wei-Feng Chen
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, 180 FengLin Road, 200032, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
23
|
Hansen M, Walmod PS. IGSF9 family proteins. Neurochem Res 2013; 38:1236-51. [PMID: 23417431 DOI: 10.1007/s11064-013-0999-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 02/06/2013] [Accepted: 02/08/2013] [Indexed: 12/22/2022]
Abstract
The Drosophila protein Turtle and the vertebrate proteins immunoglobulin superfamily (IgSF), member 9 (IGSF9/Dasm1) and IGSF9B are members of an evolutionarily ancient protein family. A bioinformatics analysis of the protein family revealed that invertebrates contain only a single IGSF9 family gene, whereas vertebrates contain two to four genes. In cnidarians, the gene appears to encode a secreted protein, but transmembrane isoforms of the protein have also evolved, and in many species, alternative splicing facilitates the expression of both transmembrane and secreted isoforms. In most species, the longest isoforms of the proteins have the same general organization as the neural cell adhesion molecule family of cell adhesion molecule proteins, and like this family of proteins, IGSF9 family members are expressed in the nervous system. A review of the literature revealed that Drosophila Turtle facilitates homophilic cell adhesion. Moreover, IGSF9 family proteins have been implicated in the outgrowth and branching of neurites, axon guidance, synapse maturation, self-avoidance, and tiling. However, despite the few published studies on IGSF9 family proteins, reports on the functions of both Turtle and mammalian IGSF9 proteins are contradictory.
Collapse
Affiliation(s)
- Maria Hansen
- Protein Laboratory, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, Panum Institute, University of Copenhagen, Building 24.2, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | | |
Collapse
|
24
|
The brake within: Mechanisms of intrinsic regulation of axon growth featuring the Cdh1-APC pathway. Transl Neurosci 2013. [DOI: 10.2478/s13380-013-0125-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractNeurons of the central nervous system (CNS) form a magnificent network destined to control bodily functions and human behavior for a lifetime. During development of the CNS, neurons extend axons that establish connections to other neurons. Axon growth is guided by extrinsic cues and guidance molecules. In addition to environmental signals, intrinsic programs including transcription and the ubiquitin proteasome system (UPS) have been implicated in axon growth regulation. Over the past few years it has become evident that the E3 ubiquitin ligase Cdh1-APC together with its associated pathway plays a central role in axon growth suppression. By elucidating the intricate interplay of extrinsic and intrinsic mechanisms, we can enhance our understanding of why axonal regeneration in the CNS fails and obtain further insight into how to stimulate successful regeneration after injury.
Collapse
|
25
|
McCormick AM, Leipzig ND. Neural regenerative strategies incorporating biomolecular axon guidance signals. Ann Biomed Eng 2012; 40:578-97. [PMID: 22218702 DOI: 10.1007/s10439-011-0505-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 12/28/2011] [Indexed: 01/19/2023]
Abstract
There are currently no acceptable cures for central nervous system injuries, and damage induced large gaps in the peripheral nervous system have been challenging to bridge to restore neural functionality. Innervation by neurons is made possible by the growth cone. This dynamic structure is unique to neurons, and can directly sense physical and chemical activity in its environment, utilizing these cues to propel axons to precisely reach their targets. Guidance can occur through chemoattractive factors such as neurotrophins and netrins, chemorepulsive agents like semaphorins and slits, or contact-mediated molecules such as ephrins and those located in the extracellular matrix. The understanding of biomolecular activity during nervous system development and injury has generated new techniques and tactics for improving and restoring function to the nervous system after injury. This review will focus on the major neuronal guidance molecules and their utility in current tissue engineering and neural regenerative strategies.
Collapse
Affiliation(s)
- Aleesha M McCormick
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325-3906, USA
| | | |
Collapse
|
26
|
Wilkinson AE, McCormick AM, Leipzig ND. Central Nervous System Tissue Engineering: Current Considerations and Strategies. ACTA ACUST UNITED AC 2011. [DOI: 10.2200/s00390ed1v01y201111tis008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Bauer K, Dowejko A, Bosserhoff AK, Reichert TE, Bauer R. Slit-2 facilitates interaction of P-cadherin with Robo-3 and inhibits cell migration in an oral squamous cell carcinoma cell line. Carcinogenesis 2011; 32:935-43. [PMID: 21459757 DOI: 10.1093/carcin/bgr059] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Slits are a group of secreted glycoproteins that act as molecular guidance cues in cellular migration. Recently, several studies demonstrated that Slit-2 can operate as candidate tumour suppressor protein in various tissues. In this study, we show Slit-2 expression in basal cell layers of normal oral mucosa colocalized with P-cadherin expression. In contrast, there is a loss of Slit-2 and P-cadherin expression in mucosa of oral squamous cell carcinoma (OSCC). Our in vitro investigations reveal a correlation of P-cadherin and Slit-2 expression: OSCC cells with induced P-cadherin expression (PCI52_PC) display an increased Slit-2 expression. However, abrogating P-cadherin function with a function-blocking antibody decreases Slit-2 secretion confirming a direct link between P-cadherin and Slit-2. Moreover, experiments with OSCC cells show that Slit-2 interferes with a Wnt related signalling pathway, which in turn affects Slit-2 expression in a feedback loop. Functionally, transwell migration assays demonstrate a Slit-2 dose-dependent decrease of PCI52_PC cell migration. However, there is no influence on migration in mock control cells. Responsible for this migration block might be an interaction of P-cadherin with Roundabout (Robo)-3, a high affinity receptor of Slit-2. Indeed, proximity ligation assays exhibit P-cadherin/Robo-3 interactions on PCI52_PC cells. Additionally, we detect a modulation of this interaction by addition of recombinant Slit-2. Down-regulation of Robo-3 expression via small interfering RNA neutralizes Slit-2 induced migration block in PCI52_PC cells. In summary, our experiments show antitumorigenic effects of Slit-2 on P-cadherin expressing OSCC cells supposedly via modulation of Robo-3 interaction.
Collapse
MESH Headings
- Blotting, Western
- Cadherins/genetics
- Cadherins/metabolism
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Movement
- Humans
- Immunoenzyme Techniques
- Immunoprecipitation
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Laryngeal Neoplasms/genetics
- Laryngeal Neoplasms/metabolism
- Laryngeal Neoplasms/pathology
- Mouth Mucosa/metabolism
- Mouth Neoplasms/genetics
- Mouth Neoplasms/metabolism
- Mouth Neoplasms/pathology
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Phosphorylation
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Receptors, Cell Surface
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
- beta Catenin/antagonists & inhibitors
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Karin Bauer
- Department of Oral and Maxillofacial Surgery, University of Regensburg, Franz-Josef-Strauss-Allee 11, D-93053Regensburg, Germany
| | | | | | | | | |
Collapse
|
28
|
Bioinformatic analyses identifies novel protein-coding pharmacogenomic markers associated with paclitaxel sensitivity in NCI60 cancer cell lines. BMC Med Genomics 2011; 4:18. [PMID: 21314952 PMCID: PMC3050680 DOI: 10.1186/1755-8794-4-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 02/11/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Paclitaxel is a microtubule-stabilizing drug that has been commonly used in treating cancer. Due to genetic heterogeneity within patient populations, therapeutic response rates often vary. Here we used the NCI60 panel to identify SNPs associated with paclitaxel sensitivity. Using the panel's GI50 response data available from Developmental Therapeutics Program, cell lines were categorized as either sensitive or resistant. PLINK software was used to perform a genome-wide association analysis of the cellular response to paclitaxel with the panel's SNP-genotype data on the Affymetrix 125 k SNP array. FastSNP software helped predict each SNP's potential impact on their gene product. mRNA expression differences between sensitive and resistant cell lines was examined using data from BioGPS. Using Haploview software, we investigated for haplotypes that were more strongly associated with the cellular response to paclitaxel. Ingenuity Pathway Analysis software helped us understand how our identified genes may alter the cellular response to paclitaxel. RESULTS 43 SNPs were found significantly associated (FDR<0.005) with paclitaxel response, with 10 belonging to protein-coding genes (CFTR, ROBO1, PTPRD, BTBD12, DCT, SNTG1, SGCD, LPHN2, GRIK1, ZNF607). SNPs in GRIK1, DCT, SGCD and CFTR were predicted to be intronic enhancers, altering gene expression, while SNPs in ZNF607 and BTBD12 cause conservative missense mutations. mRNA expression analysis supported these findings as GRIK1, DCT, SNTG1, SGCD and CFTR showed significantly (p<0.05) increased expression among sensitive cell lines. Haplotypes found in GRIK1, SGCD, ROBO1, LPHN2, and PTPRD were more strongly associated with response than their individual SNPs. CONCLUSIONS Our study has taken advantage of available genotypic data and its integration with drug response data obtained from the NCI60 panel. We identified 10 SNPs located within protein-coding genes that were not previously shown to be associated with paclitaxel response. As only five genes showed differential mRNA expression, the remainder would not have been detected solely based on expression data. The identified haplotypes highlight the role of utilizing SNP combinations within genomic loci of interest to improve the risk determination associated with drug response. These genetic variants represent promising biomarkers for predicting paclitaxel response and may play a significant role in the cellular response to paclitaxel.
Collapse
|
29
|
Dityatev A, Seidenbecher CI, Schachner M. Compartmentalization from the outside: the extracellular matrix and functional microdomains in the brain. Trends Neurosci 2011; 33:503-12. [PMID: 20832873 DOI: 10.1016/j.tins.2010.08.003] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 08/13/2010] [Accepted: 08/13/2010] [Indexed: 10/19/2022]
Abstract
The extracellular matrix (ECM) of the central nervous system is well recognized as a migration and diffusion barrier that allows for the trapping and presentation of growth factors to their receptors at the cell surface. Recent data highlight the importance of ECM molecules as synaptic and perisynaptic scaffolds that direct the clustering of neurotransmitter receptors in the postsynaptic compartment and that present barriers to reduce the lateral diffusion of membrane proteins away from synapses. The ECM also contributes to the migration and differentiation of stem cells in the neurogenic niche and organizes the polarized localization of ion channels and transporters at contacts between astrocytic processes and blood vessels. Thus, the ECM contributes to functional compartmentalization in the brain.
Collapse
Affiliation(s)
- Alexander Dityatev
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology, via Morego 30, Genova, Italy.
| | | | | |
Collapse
|
30
|
Potkin SG, Macciardi F, Guffanti G, Fallon JH, Wang Q, Turner JA, Lakatos A, Miles MF, Lander A, Vawter MP, Xie X. Identifying gene regulatory networks in schizophrenia. Neuroimage 2010; 53:839-47. [PMID: 20600988 PMCID: PMC3055795 DOI: 10.1016/j.neuroimage.2010.06.036] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 04/07/2010] [Accepted: 06/11/2010] [Indexed: 11/17/2022] Open
Abstract
The imaging genetics approach to studying the genetic basis of disease leverages the individual strengths of both neuroimaging and genetic studies by visualizing and quantifying the brain activation patterns in the context of genetic background. Brain imaging as an intermediate phenotype can help clarify the functional link among genes, the molecular networks in which they participate, and brain circuitry and function. Integrating genetic data from a genome-wide association study (GWAS) with brain imaging as a quantitative trait (QT) phenotype can increase the statistical power to identify risk genes. A QT analysis using brain imaging (DLPFC activation during a working memory task) as a quantitative trait has identified unanticipated risk genes for schizophrenia. Several of these genes (RSRC1, ARHGAP18, ROBO1-ROBO2, GPC1, TNIK, and CTXN3-SLC12A2) have functions related to progenitor cell proliferation, migration, and differentiation, cytoskeleton reorganization, axonal connectivity, and development of forebrain structures. These genes, however, do not function in isolation but rather through gene regulatory networks. To obtain a deeper understanding how the GWAS-identified genes participate in larger gene regulatory networks, we measured correlations among transcript levels in the mouse and human postmortem tissue and performed a gene set enrichment analysis (GSEA) that identified several microRNA associated with schizophrenia (448, 218, 137). The results of such computational approaches can be further validated in animal experiments in which the networks are experimentally studied and perturbed with specific compounds. Glypican 1 and FGF17 mouse models for example, can be used to study such gene regulatory networks. The model demonstrates epistatic interactions between FGF and glypican on brain development and may be a useful model of negative symptom schizophrenia.
Collapse
Affiliation(s)
- Steven G Potkin
- Department of Psychiatry & Human Behavior, 5251 California Avenue, Suite 240, University of California, Irvine, CA 92617, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ye BQ, Geng ZH, Ma L, Geng JG. Slit2 regulates attractive eosinophil and repulsive neutrophil chemotaxis through differential srGAP1 expression during lung inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:6294-305. [PMID: 20944010 DOI: 10.4049/jimmunol.1001648] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Directional migration of leukocytes is an essential step in leukocyte trafficking during inflammatory responses. However, the molecular mechanisms governing directional chemotaxis of leukocytes remain poorly understood. The Slit family of guidance cues has been implicated for inhibition of leuocyte migration. We report that Clara cells in the bronchial epithelium secreted Slit2, whereas eosinophils and neutrophils expressed its cell-surface receptor, Robo1. Compared to neutrophils, eosinophils exhibited a significantly lower level of Slit-Robo GTPase-activating protein 1 (srGAP1), leading to activation of Cdc42, recruitment of PI3K to Robo1, enhancment of eotaxin-induced eosinophil chemotaxis, and exaggeration of allergic airway inflammation. Notably, OVA sensitization elicited a Slit2 gradient at so-called bronchus-alveoli axis, with a higher level of Slit2 in the bronchial epithelium and a lower level in the alveolar tissue. Aerosol administration of rSlit2 accelerated eosinophil infiltration, whereas i.v. administered Slit2 reduced eosinophil deposition. In contrast, Slit2 inactivated Cdc42 and suppressed stromal cell-derived factor-1α-induced chemotaxis of neutrophils for inhibiting endotoxin-induced lung inflammation, which were reversed by blockade of srGAP1 binding to Robo1. These results indicate that the newly identified Slit2 gradient at the bronchus-alveoli axis induces attractive PI3K signaling in eosinophils and repulsive srGAP1 signaling in neutrophils through differential srGAP1 expression during lung inflammation.
Collapse
Affiliation(s)
- Bu-Qing Ye
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | |
Collapse
|
32
|
Sasaki T, Komatsu Y, Watakabe A, Sawada K, Yamamori T. Prefrontal-enriched SLIT1 expression in Old World monkey cortex established during the postnatal development. Cereb Cortex 2010; 20:2496-510. [PMID: 20123755 PMCID: PMC2936805 DOI: 10.1093/cercor/bhp319] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To elucidate the molecular basis of the specialization of cortical architectures, we searched for genes differentially expressed among neocortical areas of Old World monkeys by restriction landmark cDNA scanning . We found that mRNA of SLIT1, an axon guidance molecule, was enriched in the prefrontal cortex but with developmentally related changes. In situ hybridization analysis revealed that SLIT1 mRNA was mainly distributed in the middle layers of most cortical areas, robustly in the prefrontal cortex and faintly in primary sensory areas. The lowest expression was in the primary visual area. Analyses of other SLIT (SLIT2 and SLIT3) mRNAs showed preferential expression in the prefrontal cortex with a distinct laminar pattern. By contrast, the receptor Roundabout (ROBO1 and ROBO2) mRNAs were widely distributed throughout the cortex. Perinatally, SLIT1 mRNA was abundantly expressed in the cortex with modest area specificity. Downregulation of expression initially occurred in early sensory areas around postnatal day 60 and followed in the association areas. The prefrontal area-enriched SLIT1 mRNA expression results from a relatively greater attenuation of this expression in the other areas. These results suggest that its role is altered postnatally and that this is particularly important for prefrontal connectivity in the Old World monkey cortex.
Collapse
Affiliation(s)
- Tetsuya Sasaki
- Division of Brain Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | - Yusuke Komatsu
- Division of Brain Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Present address: Section of Primate Model Development for Brain Research, National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
| | - Akiya Watakabe
- Division of Brain Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | - Kaoru Sawada
- Division of Brain Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Present address: Center for Radioisotope Facilities, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
| | - Tetsuo Yamamori
- Division of Brain Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
- National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| |
Collapse
|
33
|
Kubilus JK, Linsenmayer TF. Developmental guidance of embryonic corneal innervation: roles of Semaphorin3A and Slit2. Dev Biol 2010; 344:172-84. [PMID: 20471970 PMCID: PMC4283142 DOI: 10.1016/j.ydbio.2010.04.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 04/26/2010] [Accepted: 04/27/2010] [Indexed: 11/23/2022]
Abstract
The cornea is one of the most densely innervated structures of the body. In the developing chicken embryo, nerves from the ophthalmic trigeminal ganglion (OTG) innervate the cornea in a series of spatially and temporally regulated events. However, little is known concerning the signals that regulate these events. Here we have examined the involvement of the axon guidance molecules Semaphorin3A and Slit2, and their respective receptors, Neuropilin-1 and Robo2. Expression analyses of early corneas suggest an involvement of both Semaphorin3A and Slit2 in preventing nerves from entering the corneal stroma until the proper time (i.e., they serve as negative regulators), and analyses of their receptors support this conclusion. At later stages of development the expression of Semaphorin3A is again consistent with its serving as a negative regulator-this time for nerves entering the corneal epithelium. However, expression analyses of Robo2 at this stage raised the possibility that Slit2 had switched from a negative regulator to a positive regulator. In support of such a switch, functional analyses-by addition of recombinant Slit2 protein or immunoneutralization with a Slit2 antibody-showed that at an early stage Slit2 negatively regulates the outgrowth of nerves from the OTG, whereas at the later stage it positively regulated the growth of nerves by increasing nerve branching within the corneal epithelium.
Collapse
Affiliation(s)
- James K. Kubilus
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Department of Anatomy and Cellular Biology, Tufts University School of Medicine, 136 Harrison Ave, Boston, Massachusetts 02111
| | - Thomas F. Linsenmayer
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Department of Anatomy and Cellular Biology, Tufts University School of Medicine, 136 Harrison Ave, Boston, Massachusetts 02111
| |
Collapse
|
34
|
Coleman HA, Labrador JP, Chance RK, Bashaw GJ. The Adam family metalloprotease Kuzbanian regulates the cleavage of the roundabout receptor to control axon repulsion at the midline. Development 2010; 137:2417-26. [PMID: 20570941 PMCID: PMC2889607 DOI: 10.1242/dev.047993] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2010] [Indexed: 11/20/2022]
Abstract
Slits and their Roundabout (Robo) receptors mediate repulsive axon guidance at the Drosophila ventral midline and in the vertebrate spinal cord. Slit is cleaved to produce fragments with distinct signaling properties. In a screen for genes involved in Slit-Robo repulsion, we have identified the Adam family metalloprotease Kuzbanian (Kuz). Kuz does not regulate midline repulsion through cleavage of Slit, nor is Slit cleavage essential for repulsion. Instead, Kuz acts in neurons to regulate repulsion and Kuz can cleave the Robo extracellular domain in Drosophila cells. Genetic rescue experiments using an uncleavable form of Robo show that this receptor does not maintain normal repellent activity. Finally, Kuz activity is required for Robo to recruit its downstream signaling partner, Son of sevenless (Sos). These observations support the model that Kuz-directed cleavage is important for Robo receptor activation.
Collapse
Affiliation(s)
- Hope A Coleman
- Department of Neuroscience, University of Pennsylvania School of Medicine, 1113 BRB2/3, 421 Curie Boulevard, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
35
|
Potkin SG, Turner JA, Guffanti G, Lakatos A, Fallon JH, Nguyen DD, Mathalon D, Ford J, Lauriello J, Macciardi F. A genome-wide association study of schizophrenia using brain activation as a quantitative phenotype. Schizophr Bull 2009; 35:96-108. [PMID: 19023125 PMCID: PMC2643953 DOI: 10.1093/schbul/sbn155] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Genome-wide association studies (GWASs) are increasingly used to identify risk genes for complex illnesses including schizophrenia. These studies may require thousands of subjects to obtain sufficient power. We present an alternative strategy with increased statistical power over a case-control study that uses brain imaging as a quantitative trait (QT) in the context of a GWAS in schizophrenia. METHODS Sixty-four subjects with chronic schizophrenia and 74 matched controls were recruited from the Functional Biomedical Informatics Research Network (FBIRN) consortium. Subjects were genotyped using the Illumina HumanHap300 BeadArray and were scanned while performing a Sternberg Item Recognition Paradigm in which they learned and then recognized target sets of digits in an functional magnetic resonance imaging protocol. The QT was the mean blood oxygen level-dependent signal in the dorsolateral prefrontal cortex during the probe condition for a memory load of 3 items. RESULTS Three genes or chromosomal regions were identified by having 2 single-nucleotide polymorphisms (SNPs) each significant at P < 10(-6) for the interaction between the imaging QT and the diagnosis (ROBO1-ROBO2, TNIK, and CTXN3-SLC12A2). Three other genes had a significant SNP at <10(-6) (POU3F2, TRAF, and GPC1). Together, these 6 genes/regions identified pathways involved in neurodevelopment and response to stress. CONCLUSION Combining imaging and genetic data from a GWAS identified genes related to forebrain development and stress response, already implicated in schizophrenic dysfunction, as affecting prefrontal efficiency. Although the identified genes require confirmation in an independent sample, our approach is a screening method over the whole genome to identify novel SNPs related to risk for schizophrenia.
Collapse
Affiliation(s)
- Steven G Potkin
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92617, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Slit was identified in Drosophila embryo as a gene involved in the patterning of larval cuticle. It was later shown that Slit is synthesized in the fly central nervous system by midline glia cells. Slit homologues have since been found in C. elegans and many vertebrate species, from amphibians, fishes, birds to mammals. A single slit was isolated in invertebrates, whereas there are three slit genes (slit1-slit3) in mammals, that have around 60% homology. All encodes large ECM glycoproteins of about 200 kDa (Fig. 1A), comprising, from their N terminus to their C terminus, a long stretch of four leucine rich repeats (LRR) connected by disulphide bonds, seven to nine EGF repeats, a domain, named ALPS (Agrin, Perlecan, Laminin, Slit) or laminin G-like module (see ref 17), and a cystein knot (Fig. 1A). Alternative spliced transcripts have been reported for Drosophila Slit2, human Slit2 and Slit3, and Slit1. Moreover, two Slit1 isoforms exist in zebrafish as a consequence of gene duplication. Last, in mammals, two Slit2 isoforms can be purified from brain extracts, a long 200 kDa one and a shorter 150 kDa form (Slit2-N) that was shown to result from the proteolytic processing of full-length Slit2. Human Slit and Slit3 and Drosophila Slit are also cleaved by an unknown protease in a large N-terminal fragment and a shorter C-terminal fragment, suggesting conserved mechanisms for Slit cleavage across species. Moreover, Slit fragments have different cell association characteristics in cell culture suggesting that they may also have different extents of diffusion, different binding properties, and, hence, different functional activities in vivo. This conclusion is supported by in vitro data showing that full-length Slit2 functions as an antagonist of Slit2-N in the DRG branching assay, and that Slit2-N, not full-length Slit2, causes collapse of OB growth cones. In addition, Slit1-N and full-length Slit1 can induce branching of cortical neurons (see below), but only full-length Slit1 repels cortical axons. Structure-function analysis in vertebrates and Drosophila demonstrated that the LRRs of Slits are required and sufficient to mediate their repulsive activities in neurons. More recent detailed structure function analysis of the LRR domains of Drosophila Slit, revealed that the active site of Slit (at least regarding its pro-angiogenic activity) is located on the second of the fourth LRR (LRR2), which is highly conserved between Slits. Slit can also dimerize through the LRR4 domain and the cystein knot.However, a Slit1 spliced-variant that lacks the cysteine knot and does not dimerize is still able to repel OB axons.
Collapse
|
37
|
Abstract
Zebrafish is now becoming one of the most useful model organisms in neurobiology. In addition to its general advantageous properties (external fertilization, rapid development, transparency of embryos, etc.), the zebrafish is amenable to various genetic engineering technologies such as transgenesis, mutagenesis, gene knockdown, and transposon-mediated gene transfer. A transgenic approach unraveled two segregated neural circuits originating from ciliated and microvillous sensory neurons in the olfactory epithelium to distinct regions of the olfactory bulb, which likely convey different types of olfactory information (e.g., pheromones and odorants) to the higher olfactory centers. Furthermore, the two basic principles identified in mice, so-called one neuron-one receptor rule and convergence of like axons to target glomeruli, are basically preserved also in the zebrafish, rendering this organism a suitable model vertebrate for studies of the olfactory system. This review summarizes recent advances in our knowledge on genetic, molecular, and cellular mechanisms underlying the development and functional architecture of the olfactory neural circuitry in the zebrafish.
Collapse
|
38
|
Qu Q, Crandall JE, Luo T, McCaffery PJ, Smith FI. Defects in tangential neuronal migration of pontine nuclei neurons in the Largemyd mouse are associated with stalled migration in the ventrolateral hindbrain. Eur J Neurosci 2006; 23:2877-86. [PMID: 16819976 DOI: 10.1111/j.1460-9568.2006.04836.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The LARGE gene encodes a putative glycosyltransferase that is required for normal glycosylation of dystroglycan, and defects in LARGE can cause abnormal neuronal migration in congenital muscular dystrophy (CMD). Previous studies have focused on radial migration, which is disrupted at least in part due to breaks in the basal lamina. Through analysis of precerebellar nuclei development in the Large(myd) mouse hindbrain, we show that tangential migration of a subgroup of hindbrain neurons may also be disrupted. Within the precerebellar nuclei, the pontine nuclei (PN) are severely disrupted, whereas the inferior olive (IO), external cuneate nuclei (ECN) and lateral reticular nuclei (LRN) appear unaffected. Large and dystroglycan are widely expressed in the hindbrain, including in the pontine neurons migrating in the anterior extramural migratory stream (AES). BrdU labeling and immunohistochemical studies suggest normal numbers of neurons begin their journey towards the ventral midline in the AES in the Large(myd) mouse. However, migration stalls and PN neurons fail to reach the midline, surviving as ectopic clusters of cells located under the pial surface dorsally and laterally to where they normally would finish their migration near the ventral midline. Stalling of PN neurons at this location is also observed in other migration disorders in mice. These observations suggest that glycan-dependent dystroglycan interactions are required for PN neurons to correctly respond to signals at this important migrational checkpoint.
Collapse
Affiliation(s)
- Qiang Qu
- University of Massachusetts Medical School, Shriver Center, 200 Trapelo Road, Waltham, MA 02452, USA
| | | | | | | | | |
Collapse
|
39
|
Pereanu W, Spindler S, Cruz L, Hartenstein V. Tracheal development in the Drosophila brain is constrained by glial cells. Dev Biol 2006; 302:169-80. [PMID: 17046740 PMCID: PMC1885555 DOI: 10.1016/j.ydbio.2006.09.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 09/07/2006] [Accepted: 09/08/2006] [Indexed: 01/24/2023]
Abstract
The Drosophila brain is tracheated by the cerebral trachea, a branch of the first segmental trachea of the embryo. During larval stages the cerebral trachea splits into several main (primary) branches that grow around the neuropile, forming a perineuropilar tracheal plexus (PNP) at the neuropile surface. Five primary tracheal branches whose spatial relationship to brain compartments is relatively invariant can be distinguished, although the exact trajectories and branching pattern of the brain tracheae are surprisingly variable. Immunohistochemical and electron microscopic studies demonstrate that all brain tracheae grow in direct contact with the glial cell processes that surround the neuropile. To investigate the effect of glia on tracheal development, embryos and larvae lacking glial cells as a result of a genetic mutation or a directed ablation were analyzed. In these animals, the tracheal branching pattern was highly abnormal. In particular, the number of secondary branches entering the central neuropile was increased. Wild-type larvae possess only two central tracheae, typically associated with the mushroom body and the antennocerebral tract. In larvae lacking glial cells, six to ten tracheal branches penetrate the neuropile in a variable pattern. This finding indicates that glia-derived signals constrained tracheal growth in the Drosophila brain and restrict the number of branches entering the neuropile.
Collapse
Affiliation(s)
- Wayne Pereanu
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
40
|
Tousseyn T, Jorissen E, Reiss K, Hartmann D. (Make) stick and cut loose--disintegrin metalloproteases in development and disease. ACTA ACUST UNITED AC 2006; 78:24-46. [PMID: 16622847 DOI: 10.1002/bdrc.20066] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
"A disintegrin and metalloprotease" (ADAM) proteases form a still growing family of about 40 type 1 transmembrane proteins. They are defined by a common modular ectodomain architecture that combines cell deadhesion/adhesion and fusion motifs (disintegrin and cysteine-rich domains), with a Zn-protease domain capped by a large prodomain. Their ectodomain thus strikingly resembles snake venom disintegrin proteases, which by combined integrin blocking and extracellular proteolysis, can cause extensive tissue damage after snake bites. A surprisingly large proportion (13 ADAMs) is exclusively expressed in the male gonads, and only a minority can be found throughout all tissues. As predicted by their amino acid sequence, a major proportion of this family has not maintained a functional protease domain, most probably rendering them into pure adhesion and/or fusion proteins. For most ADAMs, the respective key function has remained elusive. Despite their overall conserved ectodomain structure, ADAMs appear to be subdivided into those with a predominant role in direct adhesion (e.g., ADAMs 1, 2, and 3) and those mainly acting as proteases (e.g., ADAMs 10 and 17). Only for a few of them are functions of more than one domain documented (e.g., ADAM9 in cell fusion and proteolysis). Several ADAMs exist in both membrane-resident and secreted isoforms; the functional significance of this dichotomy is in most cases still unclear. Knockout phenotypes have been informative only in a few cases (ADAMs 1, 2, 10, 12, 15, 17, and 19) and are mainly related to their protease function. A common denominator of ADAM-mediated proteolysis is the ectodomain shedding of a broad spectrum of substrates, including paracrine growth factors like epidermal growth factor receptor (EGFR) ligands, cell adhesion molecules like CD44 or cadherins, and the initiation of regulated intramembrane proteolysis (RIP), whereby the transmembrane fragment of the respective substrate is further cleaved by an intramembrane cleaving protease to release an intracellular domain acting as a nuclear transcription regulator. Most ADAMs feature a significant overlap of substrate specificities, explaining why an inactivation of individual ADAMs only rarely causes major phenotypes.
Collapse
Affiliation(s)
- Thomas Tousseyn
- Laboratory for Neuronal Cell Biology and Gene Transfer, Department for Human Genetics, K.U. Leuven and Flanders Interuniversity Institute for Biotechnology, Leuven/Flanders, Belgium
| | | | | | | |
Collapse
|
41
|
Seth A, Culverwell J, Walkowicz M, Toro S, Rick JM, Neuhauss SCF, Varga ZM, Karlstrom RO. belladonna/(Ihx2) is required for neural patterning and midline axon guidance in the zebrafish forebrain. Development 2006; 133:725-35. [PMID: 16436624 DOI: 10.1242/dev.02244] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Some of the earliest axon pathways to form in the vertebrate forebrain are established as commissural and retinal axons cross the midline of the diencephalon and telencephalon. To better understand axon guidance in the forebrain, we characterized the zebrafish belladonna (bel) mutation, which disrupts commissural and retinal axon guidance in the forebrain. Using a positional cloning strategy, we determined that the bel locus encodes zebrafish Lhx2, a lim-homeodomain transcription factor expressed in the brain, eye and fin buds. We show that bel(Ihx2) function is required for patterning in the ventral forebrain and eye, and that loss of bel function leads to alterations in regulatory gene expression, perturbations in axon guidance factors, and the absence of an optic chiasm and forebrain commissures. Our analysis reveals new roles for Ihx2 in midline axon guidance, forebrain patterning and eye morphogenesis.
Collapse
Affiliation(s)
- Anandita Seth
- Biology Department, University of Massachusetts, Amherst, MA 01003-9297, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Imamura F, Nagao H, Naritsuka H, Murata Y, Taniguchi H, Mori K. A leucine-rich repeat membrane protein, 5T4, is expressed by a subtype of granule cells with dendritic arbors in specific strata of the mouse olfactory bulb. J Comp Neurol 2006; 495:754-68. [PMID: 16506198 DOI: 10.1002/cne.20896] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Segregation of neuron-type-specific synaptic connections in different strata is a characteristic feature shared by the olfactory bulb (OB) and retina. In the mammalian OB, mitral cells form dendrodendritic synapses with granule cells (GCs) in the deep stratum of the external plexiform layer (EPL), whereas tufted cells form dendrodendritic synapses in the superficial stratum. In the search for membrane proteins with strata-specific expression patterns, we found that a leucine-rich repeat membrane protein (5T4 oncofetal trophoblast glycoprotein) was expressed selectively by a subset of superficial GCs. The somata of 5T4-positive GCs were localized in or near the mitral cell layer, and their apical dendrites ramified preferentially in the superficial stratum of the EPL, where tufted cell dendrites ramified. Strata-specific expression of 5T4 was found also in the retina: 5T4 was expressed selectively by rod-bipolar cells and a subset of amacrine cells whose dendrites ramified in a specific sublamina of the inner plexiform layer. During the perinatal and postnatal development of the OB, 5T4 expression paralleled in time the formation of dendrodendritic synapses in the EPL. Odor deprivation during the first postnatal month selectively reduced the thickness of the superficial stratum of the EPL and the number of 5T4-positive GCs. Because 5T4 is known to interact with actin cytoskeleton, these observations suggest that 5T4 is involved in the formation or maintenance of strata-specific dendritic ramification or synaptic connection of subsets of local interneurons.
Collapse
Affiliation(s)
- Fumiaki Imamura
- Department of Physiology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
At the vertebrate optic chiasm there is major change in fibre order and, in many animals, a separation of fibres destined for different hemispheres of the brain. However, the structure of this region is not uniform among all species but rather shows marked variations both in terms of its gross architecture and the pathways taken by different fibres. There also are striking differences in the developmental mechanisms sculpting this region even between closely related animals. In spite of this, recent studies have provided strong evidence for a remarkable degree of conservation in the molecular nature of the guidance signals and regulatory genes driving chiasmatic development. Here differences and similarities in chiasmatic organisation and development between separate groups of animals will be reviewed. While it may not be possible to ascribe a single set of factors that are universal components of the vertebrate chiasm, there are both strikingly similar elements as well as diverse features to the development, organisation and architecture of this region. This review aims to highlight key issues in the organisation and development of the vertebrate optic chiasm with a focus on comparing and contrasting the data that has been gleaned to date from different vertebrate groups.
Collapse
Affiliation(s)
- Glen Jeffery
- Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK.
| | | |
Collapse
|
44
|
Chédotal A, Kerjan G, Moreau-Fauvarque C. The brain within the tumor: new roles for axon guidance molecules in cancers. Cell Death Differ 2005; 12:1044-56. [PMID: 16015381 DOI: 10.1038/sj.cdd.4401707] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Slits, semaphorins and netrins are three families of proteins that can attract or repel growing axons and migrating neurons in the developing nervous system of vertebrates and invertebrates. Recent studies have shown that they are widely expressed outside the nervous system and that they may play important roles in cancers. Several of the genes encoding these proteins are localized on chromosomal region associated with frequent loss-of-heterozygosity in tumors and cancer cell lines and there is also significant hypermethylation of their promoter suggesting that they may act as tumor suppressors. In addition, proteins in all these families and their receptors appear to control the vascularization of the tumors. Last, many axon guidance molecules also regulate cell migration and apoptosis in normal and tumorigenic tissues. Overall, this suggests that molecules that could mimick or block the activity of axon guidance molecules may be used as therapeutic agents for the treatment of malignancy.
Collapse
Affiliation(s)
- A Chédotal
- CNRS UMR7102, Equipe Développement Neuronal, Université Paris 6, Batiment B, Case 12, 9 Quai Saint-Bernard, 75005 Paris, France.
| | | | | |
Collapse
|
45
|
Barallobre MJ, Pascual M, Del Río JA, Soriano E. The Netrin family of guidance factors: emphasis on Netrin-1 signalling. ACTA ACUST UNITED AC 2005; 49:22-47. [PMID: 15960985 DOI: 10.1016/j.brainresrev.2004.11.003] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Revised: 10/14/2004] [Accepted: 11/29/2004] [Indexed: 12/13/2022]
Abstract
During the development of the nervous system, neurons respond to the coordinated action of a variety of attractive and repulsive signals from the embryonic environment. Netrins form a family of extracellular proteins that regulate the migration of neurons and axonal growth cones. These proteins are bifunctional signals that are chemoattractive for some neurons and chemorepellent for others. Netrins mainly interact with the specific receptors DCC and UNC-5 family. To date, several Netrins have been described in mouse and humans: Netrin-1, -3/NTL2, -4/beta and G-Netrins. Netrin-1 is the most studied member of the family. It is involved in the development many projections of the nervous system. When Netrin-1 interacts with its specific receptors, a cascade of local cytoplasmic events is triggered. Several signal transduction pathways and effector molecules have been implicated in the response to Netrin-1: small Rho-GTPases, MAP-Kinases, second messengers and the Microtubule Associated Protein 1B (MAP1B).
Collapse
Affiliation(s)
- María J Barallobre
- Department of Cell Biology and IRBB-Barcelona Science Park, University of Barcelona, Barcelona E-08028, Spain.
| | | | | | | |
Collapse
|
46
|
Hammamieh R, Bi S, Mani S, Chakraborty N, Mendis C, Das R, Jett M. Genetic variations in peripheral blood mononuclear cells in piglets used as an animal model for staphylococcal enterotoxin exposures. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2004; 7:401-9. [PMID: 14683612 DOI: 10.1089/153623103322637706] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have used piglets as an animal model for studying the toxic effects of staphylococcal enterotoxins (SEs). Piglets are easy to handle, easy to carry out vital measurements, inexpensive, and more importantly, express remarkably similar pathological symptoms and responses to SE intoxication as humans at comparable doses. Microarray analyses are used to study the effect of many infections on gene expression profile in peripheral blood mononuclear cells. This high throughput application offers detailed depiction of alteration at the molecular levels. When using high throughput gene expression analysis, there is a high possibility of finding genes that vary normally in the tissues under study. It is necessary to verify genes that are normally differentially expressed between piglets. To evaluate the normal physiological variation in gene expression in vivo in piglets, we used cDNA microarray to measure gene expression levels in peripheral blood mononuclear cells from 10 normal Yorkshire piglets. We used analysis of variance to determine genes that showed statistically significant variations across piglets. Out of 1185 genes, 19 (1.6%) genes revealed statistically significant variance between RNA samples. Some of these varying genes are involved in stress response, immune response, and transcription. This study facilitates the characterization of gene expression base line needed for meaningful interpretation of microarray data.
Collapse
Affiliation(s)
- Rasha Hammamieh
- Division of Pathology, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Nelson BR, Claes K, Todd V, Chaverra M, Lefcort F. NELL2 promotes motor and sensory neuron differentiation and stimulates mitogenesis in DRG in vivo. Dev Biol 2004; 270:322-35. [PMID: 15183717 DOI: 10.1016/j.ydbio.2004.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2003] [Revised: 03/01/2004] [Accepted: 03/01/2004] [Indexed: 10/26/2022]
Abstract
We previously identified a secreted glycoprotein, neural epidermal growth factor-like like 2 (NELL2), in a subtraction screen designed to identify molecules regulating sensory neurogenesis and differentiation in the chick dorsal root ganglion (DRG). Characterization of NELL2 expression during embryogenesis revealed that NELL2 was specifically expressed during the peak periods of both sensory and motor neuron differentiation, and within the neural crest was restricted to the sensory lineage. We now provide evidence for a function for NELL2 during neuronal development. We report here that NELL2 acts cell autonomously within CNS and PNS progenitors, in vivo, to promote their differentiation into neurons. Additionally, neuron-secreted NELL2 acts paracrinely to stimulate the mitogenesis of adjacent cells within the nascent DRG. These studies implicate dual functions for NELL2 in both the cell autonomous differentiation of neural progenitor cells while simultaneously exerting paracrine proliferative activity.
Collapse
Affiliation(s)
- Branden R Nelson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | | | | | | | | |
Collapse
|
48
|
Shi Y, Zhao X, Yu L, Tao R, Tang J, La Y, Duan Y, Gao B, Gu N, Xu Y, Feng G, Zhu S, Liu H, Salter H, He L. Genetic structure adds power to detect schizophrenia susceptibility at SLIT3 in the Chinese Han population. Genome Res 2004; 14:1345-1349. [PMID: 15231749 PMCID: PMC442150 DOI: 10.1101/gr.1758204] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2003] [Accepted: 04/28/2004] [Indexed: 11/25/2022]
Abstract
The Chinese Han population, the largest population in the world, has traditionally been geographically divided into two parts, the Southern Han and Northern Han. In practice, however, these commonly used ethnic labels are both insufficient and inaccurate as descriptors of inferred genetic clustering, and can lead to the observation of "spurious association" as well as the concealment of real association. In this study, we attempted to address this problem by using 14 microsatellite markers to reconstruct the population genetic structure in 768 Han Chinese samples, including 384 Southern Han and 384 Northern Han, and in samples from Chinese minorities including 48 Yao and 48 BouYei subjects. Furthermore, with a dense set of markers around the region 5q34-35, we built fine-scale haplotype networks for each population/subpopulation and tested for association to schizophrenia susceptibility. We found that more variants in SLIT3 tend to associate with schizophrenia susceptibility in the genetically structured samples, compared to geographically structured samples and samples without identified population substructure. Our results imply that identifying the hidden genetic substructure adds power when detecting association, and suggest that SLIT3 or a nearby gene is associated with schizophrenia.
Collapse
Affiliation(s)
- YongYong Shi
- Bio-X Life Science Research Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Carim-Todd L, Escarceller M, Estivill X, Sumoy L. LRRN6A/LERN1 (leucine-rich repeat neuronal protein 1), a novel gene with enriched expression in limbic system and neocortex. Eur J Neurosci 2004; 18:3167-82. [PMID: 14686891 DOI: 10.1111/j.1460-9568.2003.03003.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human chromosome 15q24-q26 is a very complex genomic region containing several blocks of segmental duplications to which susceptibility to anxiety disorders has been mapped (Gratacos et al., 2001, Cell, 106, 367-379; Pujana et al., 2001, Genome Res., 11, 98-111). Through an in silico gene content analysis of the 15q24-q26 region we have identifie1d a novel gene, LRRN6A (leucine-rich repeat neuronal 6A), and confirmed its location to the centromeric end of this complex region. LRRN6A encodes a transmembrane leucine-rich repeat protein, LERN1 (leucine-rich repeat neuronal protein 1), with similarity to proteins involved in axonal guidance and migration, nervous system development and regeneration processes. The identification of homologous genes to LRRN6A on chromosomes 9 and 19 and the orthologous genes in the mouse genome and other organisms suggests that LERN proteins constitute a novel subfamily of LRR (leucine-rich repeat)-containing proteins. The LRRN6A expression pattern is specific to the central nervous system, highly and broadly expressed during early stages of development and gradually restricted to forebrain structures as development proceeds. Expression level in adulthood is lower in general but remains stable and significantly enriched in the limbic system and cerebral cortex. Taken together, the confirmation of LRRN6A's expression profile, its predicted protein structure and its similarity to nervous system-expressed LRR proteins with essential roles in nervous system development and maintenance suggest that LRRN6A is a novel gene of relevance in the molecular and cellular neurobiology of vertebrates.
Collapse
Affiliation(s)
- Laura Carim-Todd
- Programme of Bioinformatics and Genomics, Centre de Regulació Genòmica (CRG), Passeig Marítim 37-49, 08003 Barcelona, Spain
| | | | | | | |
Collapse
|
50
|
Mi S, Lee X, Shao Z, Thill G, Ji B, Relton J, Levesque M, Allaire N, Perrin S, Sands B, Crowell T, Cate RL, McCoy JM, Pepinsky RB. LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci 2004; 7:221-8. [PMID: 14966521 DOI: 10.1038/nn1188] [Citation(s) in RCA: 637] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Accepted: 12/24/2003] [Indexed: 02/02/2023]
Abstract
Axon regeneration in the adult CNS is prevented by inhibitors in myelin. These inhibitors seem to modulate RhoA activity by binding to a receptor complex comprising a ligand-binding subunit (the Nogo-66 receptor NgR1) and a signal transducing subunit (the neurotrophin receptor p75). However, in reconstituted non-neuronal systems, NgR1 and p75 together are unable to activate RhoA, suggesting that additional components of the receptor may exist. Here we describe LINGO-1, a nervous system-specific transmembrane protein that binds NgR1 and p75 and that is an additional functional component of the NgR1/p75 signaling complex. In non-neuronal cells, coexpression of human NgR1, p75 and LINGO-1 conferred responsiveness to oligodendrocyte myelin glycoprotein, as measured by RhoA activation. A dominant-negative human LINGO-1 construct attenuated myelin inhibition in transfected primary neuronal cultures. This effect on neurons was mimicked using an exogenously added human LINGO-1-Fc fusion protein. Together these observations suggest that LINGO-1 has an important role in CNS biology.
Collapse
MESH Headings
- Amino Acid Sequence/genetics
- Animals
- Animals, Newborn
- Astrocytes/metabolism
- Axons/metabolism
- Base Sequence/genetics
- Cells, Cultured
- DNA, Complementary/analysis
- DNA, Complementary/genetics
- Fetus
- GPI-Linked Proteins
- Humans
- Macromolecular Substances
- Membrane Proteins/genetics
- Membrane Proteins/isolation & purification
- Membrane Proteins/metabolism
- Molecular Sequence Data
- Mutation/genetics
- Myelin Proteins/metabolism
- Myelin Sheath/metabolism
- Myelin-Associated Glycoprotein/genetics
- Myelin-Associated Glycoprotein/isolation & purification
- Myelin-Associated Glycoprotein/metabolism
- Myelin-Oligodendrocyte Glycoprotein
- Nerve Regeneration/physiology
- Nerve Tissue Proteins
- Nogo Receptor 1
- Protein Structure, Tertiary/genetics
- Rats
- Receptor, Nerve Growth Factor
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/isolation & purification
- Receptors, Cell Surface/metabolism
- Receptors, Nerve Growth Factor/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Signal Transduction/genetics
- rhoA GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Sha Mi
- Department of Discovery Biology, Biogen Idec, Inc., 14 Cambridge Center, Cambridge, Massachusetts 02142, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|