1
|
Lee JY, Park JH, Cho DW. Comparison of tracheal reconstruction with allograft, fresh xenograft and artificial trachea scaffold in a rabbit model. J Artif Organs 2018; 21:325-331. [PMID: 29752586 DOI: 10.1007/s10047-018-1045-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/04/2018] [Indexed: 12/31/2022]
Abstract
This study evaluated the possibility of tracheal reconstruction with allograft, pig-to-rabbit fresh xenograft or use of a tissue-engineered trachea, and compared acute rejection of three different transplanted tracheal segments in rabbits. Eighteen healthy New Zealand White rabbits weighing 2.5-3.1 kg were transplanted with three different types of trachea substitutes. Two rabbits and two alpha 1, 3-galactosyltransferase gene-knockout pigs weighing 5 kg were used as donors. The rabbits were divided into three groups: an allograft control group consisting of rabbit-to-rabbit allotransplantation animals (n = 6), a fresh xenograft group consisting of pig-to-rabbit xenotransplantation animals (n = 6), and an artificial trachea scaffold group (n = 6). All animals were monitored for 4 weeks for anastomotic complications or infection. The recipients were sacrificed at 28 days after surgery and the grafts were evaluated. On bronchoscopy, all of the fresh xenograft group animals showed ischemic and necrotic changes at 28 days after trachea replacement. The allograft rabbits and the tissue-engineered rabbits showed mild mucosal granulation. The levels of interleukin-2 and interferon-γ in the fresh xenograft group were higher than in other groups. Histopathologic examination of the graft in the fresh xenograft rabbits showed ischemic and necrotic changes, including a loss of epithelium, mucosal granulation, and necrosis of cartilaginous rings. The pig-to-rabbit xenografts showed more severe acute rejection within a month than the rabbits with allograft or artificial trachea-mimetic graft. In addition, the artificial tracheal scaffold used in the present experiment is superior to fresh xenograft and may facilitate tracheal reconstruction in the clinical setting.
Collapse
Affiliation(s)
- Jae Yeon Lee
- Department of Mechanical Engineering, POSTECH, Pohang, 790-784, Republic of Korea
| | - Jeong Hun Park
- Department of Mechanical Engineering, POSTECH, Pohang, 790-784, Republic of Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, POSTECH, Pohang, 790-784, Republic of Korea.
| |
Collapse
|
2
|
Santra A, Li Y, Yu H, Slack TJ, Wang PG, Chen X. Highly efficient chemoenzymatic synthesis and facile purification of α-Gal pentasaccharyl ceramide Galα3nLc 4βCer. Chem Commun (Camb) 2018; 53:8280-8283. [PMID: 28695219 DOI: 10.1039/c7cc04090c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A highly efficient chemoenzymatic method for synthesizing glycosphingolipids using α-Gal pentasaccharyl ceramide as an example is reported here. Enzymatic extension of the chemically synthesized lactosyl sphingosine using efficient sequential one-pot multienzyme (OPME) reactions allowed glycosylation to be carried out in aqueous solutions. Facile C18 cartridge-based quick (<30 minutes) purification protocols were established using minimal amounts of green solvents (CH3CN and H2O). Simple acylation in the last step led to the formation of the target glycosyl ceramide in 4 steps with an overall yield of 57%.
Collapse
Affiliation(s)
- Abhishek Santra
- Department of Chemistry, University of California, One shields Avenue, Davis, CA 95616, USA.
| | | | | | | | | | | |
Collapse
|
3
|
Larsson LC, Anderson P, Widner H, Korsgren O. Enhanced Survival of Porcine Neural Xenografts in Mice Lacking CD1d1, But No Effect of NK1.1 Depletion. Cell Transplant 2017; 10:295-304. [DOI: 10.3727/000000001783986765] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Transplantation of embryonic porcine neurons may restore neurological function in patients with Parkinson's disease, if immunological rejection could be prevented. This study was performed to investigate the role of natural killer cells (NK cells) and NK1.1+ T cells (NK T cells) in the rejection of neural xenografts. A cell suspension was prepared from the ventral mesencephalon of 26 – 27-day-old pig embryos, and 2 μl was implanted in the right striata of mutant CD1d1 null (CD1.1-/-) mice, NK1.1-depleted mice, and controls. The CD1.1-/- mice are deficient in NK T cells and the antigen-presenting molecule CD1d1. Graft survival and host responses were determined immunohistochemically using markers for dopamine neurons, CD4-, CD8- cells, microglia, and macrophages. At 2 weeks, the grafts were significantly larger in CD1.1-/- mice, 0.09 ± 0.02 μl (mean ± SEM), compared with controls, 0.05 ± 0.01 μl. There was no significant difference between NK1.1-depleted mice, 0.02 ± 0.01 μl, and controls. At 5 weeks, two grafts were still present in the CD1-/- mice, whereas only scars remained in the controls and in the NK1.1-depleted mice. Immune reactions were strong at 2 weeks and less pronounced at 5 weeks in all groups. Microglial activation was lower in NK-depleted mice than in the controls at 2 weeks. In contrast to organ xenografting, NK1.1+ cells do not seem to be important mediators of the rejection of discordant cellular neural xenografts. However, our results suggest that the antigen-presenting molecule CD1d1 may be involved in the rejection process.
Collapse
Affiliation(s)
- Lena C. Larsson
- Wallenberg Neuroscience Center, Lund University, Sölvegatan 17, S-223 62 Lund, Sweden
| | - Per Anderson
- Wallenberg Neuroscience Center, Lund University, Sölvegatan 17, S-223 62 Lund, Sweden
| | - Håkan Widner
- Wallenberg Neuroscience Center, Lund University, Sölvegatan 17, S-223 62 Lund, Sweden
| | - Olle Korsgren
- Department of Clinical Immunology and Transfusion Medicine, Rudbeck Laboratory, Uppsala University, S-751 85 Uppsala, Sweden
| |
Collapse
|
4
|
Park JY, Park MR, Bui HT, Kwon DN, Kang MH, Oh M, Han JW, Cho SG, Park C, Shim H, Kim HM, Kang MJ, Park JK, Lee JW, Lee KK, Kim JH. α1,3-galactosyltransferase deficiency in germ-free miniature pigs increases N-glycolylneuraminic acids as the xenoantigenic determinant in pig-human xenotransplantation. Cell Reprogram 2012; 14:353-63. [PMID: 22775484 DOI: 10.1089/cell.2011.0083] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this study, we examined whether Hanganutziu-Deicher (H-D) antigens are important as an immunogenic non-α1,3-galactose (Gal) epitope in pigs with a disrupted α1,3-galactosyltransferase gene. The targeting efficiency of the AO blood genotype was achieved (2.2%) in pig fibroblast cells. A total of 1800 somatic cell nuclear transfer (SCNT) embryos were transferred to 10 recipients. One recipient developed to term and naturally delivered two piglets. The α1,3-galactosyltransferase activity in lung, liver, spleen, and testis of heterozygote α1,3-galactosyltransferase gene knockout (GalT-KO) pigs was significantly decreased, whereas brain and heart showed very low decreasing levels of α1,3-galactosyltransferase activity when compared to those of control. Enzyme-linked lectinosorbent assay showed that the heterozygote GalT-KO pig had more sialylα2,6- and sialylα2,3-linked glycan than the control. Furthermore, the heart, liver, and kidney of the heterozygote GalT-KO pig had a higher N-glycolylneuraminic acid (Neu5Gc) content than the control, whereas the lung of the heterozygote GalT-KO pig had Neu5Gc content similar to the control. Collectively, the data strongly indicated that Neu5Gc is a more critical xenoantigen to overcoming the next acute immune rejection in pig to human xenotransplantation.
Collapse
Affiliation(s)
- Jong-Yi Park
- Department of Animal Biotechnology, Konkuk University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Shimizu A, Yamada K. Histopathology of xenografts in pig to non-human primate discordant xenotransplantation. Clin Transplant 2010; 24 Suppl 22:11-5. [PMID: 20590687 DOI: 10.1111/j.1399-0012.2010.01270.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Xenotransplantation could provide a solution to the critical shortage of organs for transplantation in humans. Swine have been proposed as a suitable donor species. Swine organs, however, when transplanted to primates, are rapidly rejected by hyperacute rejection (HAR) and acute humoral xenograft rejection (AHXR). Both HAR and AHXR are triggered by xenoreactive natural antibodies directed against a specific epitope (galactose alpha1-3 galactose: Gal) on porcine vascular endothelium. In attempt to prevent HAR and AHXR, alpha1,3-galactosyltransferase gene knockout (GalT-KO) pigs have been produced. GalT-KO pig organs do not express the Gal epitope (antigen), and it therefore can eliminate the anti-Gal antibody--Gal antigen immunoreaction in xenotransplantation. We reported our initial study of kidney transplantation from GalT-KO miniature swine to baboons with either immunosuppression protocol or with a tolerance inducing protocol. Here, we discussed the pathology of xenografts in GalT-KO pig to non-human primate kidney transplantation.
Collapse
Affiliation(s)
- Akira Shimizu
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
6
|
Petersen B, Ramackers W, Tiede A, Lucas-Hahn A, Herrmann D, Barg-Kues B, Schuettler W, Friedrich L, Schwinzer R, Winkler M, Niemann H. Pigs transgenic for human thrombomodulin have elevated production of activated protein C. Xenotransplantation 2009; 16:486-95. [DOI: 10.1111/j.1399-3089.2009.00537.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Christiansen D, Milland J, Mouhtouris E, Vaughan H, Pellicci DG, McConville MJ, Godfrey DI, Sandrin MS. Humans lack iGb3 due to the absence of functional iGb3-synthase: implications for NKT cell development and transplantation. PLoS Biol 2008; 6:e172. [PMID: 18630988 PMCID: PMC2459210 DOI: 10.1371/journal.pbio.0060172] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 06/06/2008] [Indexed: 11/18/2022] Open
Abstract
The glycosphingolipid isoglobotrihexosylceramide, or isogloboside 3 (iGb3), is believed to be critical for natural killer T (NKT) cell development and self-recognition in mice and humans. Furthermore, iGb3 may represent an important obstacle in xenotransplantation, in which this lipid represents the only other form of the major xenoepitope Galα(1,3)Gal. The role of iGb3 in NKT cell development is controversial, particularly with one study that suggested that NKT cell development is normal in mice that were rendered deficient for the enzyme iGb3 synthase (iGb3S). We demonstrate that spliced iGb3S mRNA was not detected after extensive analysis of human tissues, and furthermore, the iGb3S gene contains several mutations that render this product nonfunctional. We directly tested the potential functional activity of human iGb3S by expressing chimeric molecules containing the catalytic domain of human iGb3S. These hybrid molecules were unable to synthesize iGb3, due to at least one amino acid substitution. We also demonstrate that purified normal human anti-Gal immunoglobulin G can bind iGb3 lipid and mediate complement lysis of transfected human cells expressing iGb3. Collectively, our data suggest that iGb3S is not expressed in humans, and even if it were expressed, this enzyme would be inactive. Consequently, iGb3 is unlikely to represent a primary natural ligand for NKT cells in humans. Furthermore, the absence of iGb3 in humans implies that it is another source of foreign Galα(1,3)Gal xenoantigen, with obvious significance in the field of xenotransplantation. Identification of endogenous antigens that regulate natural killer T (NKT) cell development and function is a major goal in immunology. Originally the glycosphingolipid, iGb3, was suggested to be the main endogenous ligand in both mice and humans. However, recent studies have challenged this hypothesis. From a xenotransplantation (animal to human transplants) perspective, iGb3 expression is also important as it represents another form of the major xenoantigen Galα(1,3)Gal. In this study, we assessed whether humans expressed a functional iGb3 synthase (iGb3S), the enzyme responsible for lipid synthesis. We showed that spliced iGb3S mRNA was not detected in any human tissue analysed. Furthermore, chimeric molecules composed of the catalytic domain of human iGb3S were unable to synthesize iGb3 lipid, due to at least one amino acid substitution. We also demonstrated that purified human anti-Gal antibodies bound iGb3 lipid and mediated destruction of cells transfected to express iGb3. A nonfunctional iGb3S in humans has two major consequences: (1) iGb3 is unlikely to be a natural human NKT ligand and (2) natural human anti-Gal antibodies in human serum could react with iGb3 on the surface of organs from pigs, marking these tissues for immunological destruction. Controversy surrounds the glycolipid iGb3. Our data show that humans do not express this lipid. This has important implications in natural killer T cell development, self-recognition, and transplantation.
Collapse
Affiliation(s)
- Dale Christiansen
- Department of Surgery, The University of Melbourne, Austin Health/Northern Health, Heidelberg, Victoria, Australia
| | - Julie Milland
- Department of Surgery, The University of Melbourne, Austin Health/Northern Health, Heidelberg, Victoria, Australia
| | - Effie Mouhtouris
- Department of Surgery, The University of Melbourne, Austin Health/Northern Health, Heidelberg, Victoria, Australia
| | - Hilary Vaughan
- Department of Surgery, The University of Melbourne, Austin Health/Northern Health, Heidelberg, Victoria, Australia
| | - Daniel G Pellicci
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Malcolm J McConville
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Melbourne, Victoria, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Mauro S Sandrin
- Department of Surgery, The University of Melbourne, Austin Health/Northern Health, Heidelberg, Victoria, Australia
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
8
|
|
9
|
Christiansen D, Mouhtouris E, Milland J, Zingoni A, Santoni A, Sandrin MS. Recognition of a carbohydrate xenoepitope by human NKRP1A (CD161). Xenotransplantation 2006; 13:440-6. [PMID: 16925668 DOI: 10.1111/j.1399-3089.2006.00332.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Many immunologically important interactions are mediated by leukocyte recognition of carbohydrates via cell surface receptors. Uncharacterized receptors on human natural killer (NK) cells interact with ligands containing the terminal Galalpha(1,3)Gal xenoepitope. The aim of this work was to isolate and characterize carbohydrate binding proteins from NK cells that bind alphaGal or other potential xenoepitopes, such as N-acetyllactosamine (NAcLac), created by the deletion of alpha1,3galactosyltransferase (GT) in animals. METHODS AND RESULTS Initial analysis suggested the human C-type lectin NKRP1A bound to a pool of glycoconjugates, the majority of which contained the terminal Galalpha(1,3)Gal epitope. This was confirmed by high level binding of cells expressing NKRP1A to mouse laminin, which contains a large number of N-linked oligosaccharides with the Galalpha(1,3)Gal structure. The consequence of removing the terminal alphaGal was then investigated. Elevated NAcLac levels were observed on thymocytes from GT-/- mice. Exposing NAcLac on laminin, by alpha-galactosidase treatment, resulted in a significant increase in NKRP1A binding. CONCLUSIONS NKRPIA binds to the alphaGal epitope. Moreover, exposing NAcLac by removal of alphaGal resulted in an increase in binding. This may be relevant in the later phases of xenotransplant rejection if GT-/- pigs, like GT-/- mice, display increased NAcLac expression.
Collapse
Affiliation(s)
- Dale Christiansen
- Department of Surgery, The University of Melbourne, Austin Health/Northern Health, Heidelberg, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
10
|
Horvath-Arcidiacono JA, Porter CM, Bloom ET. Human NK cells can lyse porcine endothelial cells independent of their expression of Galalpha(1,3)-Gal and killing is enhanced by activation of either effector or target cells. Xenotransplantation 2006; 13:318-27. [PMID: 16768725 DOI: 10.1111/j.1399-3089.2006.00316.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Xenotransplantation of pig organs may provide an approach to alleviate the severe shortage of human organs. Natural antibodies against Galalpha(1,3)-Gal (alphaGal) epitopes cause hyperacute rejection of pig organs in primates. However, evidence for the role of alphaGal in the natural killer (NK) cell-mediated xenoresponse has been contradictory. METHODS We investigated the recognition of alphaGal by human NK cells using endo-beta-galactosidase C, an enzyme that cleaves alphaGal, and endothelial cells (EC) from alpha1,3-galactosyltransferase null pigs that do not synthesize alphaGal. Endo-beta-galactosidase C treatment variably reduced the susceptibility of porcine EC to lysis by fresh human NK cells. RESULTS Removal of alphaGal from porcine EC using endo-beta-galactosidase C, produced variable results, i.e. cytotoxicity was decreased in half of the human NK cell donors tested. The two EC strains from alphaGal-/- pigs were marginally, and not significantly, less susceptible to lysis by naïve human NK cells compared with alphaGal-expressing cells obtained from animals from the same herd, but these differences were not statistically significant (P > 0.10). Treatment of porcine EC with recombinant human tumor necrosis factor (TNF)-alpha, which is known to activate porcine EC, enhanced the susceptibility of all target cells to lysis by fresh human NK cells. Surface expression of MHC or adhesion molecules on alphaGal-/- cells, compared with wild type cells, showed no consistent difference in either MHC or adhesion molecules CD106 (VCAM-1), CD31 (PECAM) or CD62E (E-selectin), either with or without TNF-alpha stimulation, that could explain the differential susceptibility to lysis. Strikingly, all alphaGal-/- and wild type EC exhibited similar susceptibility to human NK cells that had been cultured for 5 days with or without interleukin-2. CONCLUSIONS These findings demonstrate that human NK cells can kill porcine targets in the absence of alphaGal, and donor variability plays a major role in whether alphaGal has a role in determining susceptibility of porcine EC to lysis. Moreover, susceptibility to lysis of alphaGal null EC is enhanced to the level of wild type EC by activation of either effector or target cells. Elimination of alphaGal alone from source pigs will be insufficient to circumvent the NK cell mediated destruction of porcine EC.
Collapse
Affiliation(s)
- Judith A Horvath-Arcidiacono
- Gene Transfer and Immunogenicity Branch, Division of Cellular and Gene Therapies, Office of Cellular, Tissue, and Gene Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
11
|
Shimizu A, Yamada K. Pathology of renal xenograft rejection in pig to non-human primate transplantation. Clin Transplant 2006; 20 Suppl 15:46-52. [PMID: 16848876 DOI: 10.1111/j.1399-0012.2006.00550.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Xenotransplantation has the potential to alleviate the critical shortage of organs for transplantation in humans. Miniature swine are a promising donor species for xenotransplantation. However, when swine organs are transplanted into primates, hyperacute rejection (HAR), acute humoral xenograft rejection (AHXR), acute cellular xenograft rejection (ACXR), and chronic xenograft rejection prevent successful engraftment. Developing a suitable regimen for preventing xenograft rejection requires the ability to accurately diagnosis the severity and type of rejection in the graft. For this purpose, histopathology remains the most definitive and reliable tool. We discuss here the characteristic features of xenograft rejection in a preclinical pig-to-non-human primate transplantation model. In miniature swine to baboon xenotransplantation, marked interstitial hemorrhage develops in HAR, and renal microvascular injury develops with multiple platelet-fibrin microthrombi in both HAR and AHXR. T-cell-mediated cellular immunity plays an important role in ACXR. Chronic humoral and cellular rejection may induce chronic xenograft rejection, and will be a major cause of graft loss in discordant xenotransplantation.
Collapse
Affiliation(s)
- Akira Shimizu
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
12
|
Milland J, Christiansen D, Lazarus BD, Taylor SG, Xing PX, Sandrin MS. The Molecular Basis for Galα(1,3)Gal Expression in Animals with a Deletion of the α1,3Galactosyltransferase Gene. THE JOURNAL OF IMMUNOLOGY 2006; 176:2448-54. [PMID: 16456004 DOI: 10.4049/jimmunol.176.4.2448] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The production of homozygous pigs with a disruption in the GGTA1 gene, which encodes alpha1,3galactosyltransferase (alpha1,3GT), represented a critical step toward the clinical reality of xenotransplantation. Unexpectedly, the predicted complete elimination of the immunogenic Galalpha(1,3)Gal carbohydrate epitope was not observed as Galalpha(1,3)Gal staining was still present in tissues from GGTA1(-/-) animals. This shows that, contrary to previous dogma, alpha1,3GT is not the only enzyme able to synthesize Galalpha(1,3)Gal. As iGb3 synthase (iGb3S) is a candidate glycosyltransferase, we cloned iGb3S cDNA from GGTA1(-/-) mouse thymus and confirmed mRNA expression in both mouse and pig tissues. The mouse iGb3S gene exhibits alternative splicing of exons that results in a markedly different cytoplasmic tail compared with the rat gene. Transfection of iGb3S cDNA resulted in high levels of cell surface Galalpha(1,3)Gal synthesized via the isoglobo series pathway, thus demonstrating that mouse iGb3S is an additional enzyme capable of synthesizing the xenoreactive Galalpha(1,3)Gal epitope. Galalpha(1,3)Gal synthesized by iGb3S, in contrast to alpha1,3GT, was resistant to down-regulation by competition with alpha1,2fucosyltransferase. Moreover, Galalpha(1,3)Gal synthesized by iGb3S was immunogenic and elicited Abs in GGTA1 (-/-) mice. Galalpha(1,3)Gal synthesized by iGb3S may affect survival of pig transplants in humans, and deletion of this gene, or modification of its product, warrants consideration.
Collapse
Affiliation(s)
- Julie Milland
- The Austin Research Institute, Austin Health, Heidelberg, Australia
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Carbohydrate antigens have a central role in the hyperacute rejection of animal-to-human organ grafts (xenotransplantation) and they are emerging in importance in the immunotherapy of cancer. This article traces the historical origins of the discovery of key carbohydrate antigens and explores the future impact of recent technological advances of the field of glycobiology as it relates to xenotransplantation and cancer.
Collapse
Affiliation(s)
- Paula Ramsland
- StructuralImmunology Laboratory, Austin Research Institute, Melbourne, Victoria, Australia.
| |
Collapse
|
14
|
Simeonovic CJ, Ziolkowski AF, Popp SK, Milburn PJ, Lynch CA, Hamilton P, Harris K, Brown DJ, Bain SAF, Wilson JD, Gibbs AJ. Porcine endogenous retrovirus encodes xenoantigens involved in porcine cellular xenograft rejection by mice. Transplantation 2005; 79:1674-82. [PMID: 15973168 DOI: 10.1097/01.tp.0000164316.55216.07] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Identification of the antigens that stimulate transplant rejection can help develop graft-specific antirejection strategies. The xenoantigens recognized during rejection of porcine cellular xenografts have not been clearly defined, but it has been assumed that major histocompatibility complex (MHC) xenoantigens are involved. METHODS The role of porcine endogenous retrovirus (PERV) as a source of xenoantigens was examined. The authors used morphometry to compare the kinetics of swine leukocyte antigen (SLA) pig thyroid xenograft rejection in control mice and mice immunized with PERV PK15 cells (porcine kidney epithelial cells), PERV SLA pig peripheral blood lymphocytes (PBL), PERV virions purified from PK15 cells, and PERV or PERV A pseudotypes produced from infected human 293 cells. The tempo of rejection for cellular xenografts of PERV A pseudotype-producing human 293 cells, uninfected human 293 cells, and PK15 cells in PERV-preimmunized and control mice was also compared. RESULTS Mice immunized with PK15 cells rejected pig thyroid xenografts significantly faster at day 5 than control mice and mice immunized with pig PBL. This correlated with the amount of PERV RNA and virions produced, but not with the amount of SLA class I MHC expressed by PK15 cells. Immunization of mice with PERV virions purified from porcine PK15 cells and with PERV virions or PERV A pseudotypes produced by human 293 cells also induced accelerated xenograft rejection by 5 days. Accelerated rejection induced by virus pretreatment was CD4 T-cell dependent and restricted to PERV-expressing cellular xenografts of porcine or nonporcine origin. CONCLUSIONS PERV acts as a significant source of xenoantigens that target porcine cellular xenografts for rejection.
Collapse
Affiliation(s)
- Charmaine J Simeonovic
- Division of Immunology and Genetics, The John Curtin School of Medical Research, The Australian National University, PO Box 334, Canberra, ACT 2601, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Shimizu A, Yamada K, Yamamoto S, Lavelle JM, Barth RN, Robson SC, Sachs DH, Colvin RB. Thrombotic Microangiopathic Glomerulopathy in Human Decay Accelerating Factor–Transgenic Swine-to-Baboon Kidney Xenografts. J Am Soc Nephrol 2005; 16:2732-45. [PMID: 16049072 DOI: 10.1681/asn.2004121148] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Models of pig-to-baboon xenografting were examined to identify the mechanisms and pathologic characteristics of acute humoral xenograft rejection (AHXR). Thymus and kidney (composite thymokidney) from human decay accelerating factor-transgenic swine were transplanted into baboons (n = 16) that were treated with an immunosuppressive regimen that included extracorporeal immunoadsorption of anti-alphaGal antibody and inhibition of complement activation. Morphologic and immunohistochemical studies were performed on protocol biopsies and graftectomy samples. All renal xenografts avoided hyperacute rejection. However, graft rejection coincided with the increase of anti-alphaGal antibody in the recipient's circulation. The 16 xenografts studied were divided into two groups dependent on the rapid return (group 1) or gradual return (group 2) of anti-alphaGal antibody after immunoadsorption. In group 1 (n = 6), grafts were rejected to day 27 with development of typical AHXR, characterized by marked interstitial hemorrhage and thrombotic microangiopathy in the renal vasculature. In group 2 (n = 10), grafts also developed thrombotic microangiopathy affecting mainly the glomeruli by day 30 but also showed minimal evidence of interstitial injury and hemorrhage. In the injured glomeruli, IgM and C4d deposition, subsequent endothelial cell death and activation with upregulation of von Willebrand factor and tissue factor, and a decrease of CD39 expression developed with the formation of fibrin-platelet multiple microthrombi. In this model, the kidney xenografts, from human decay accelerating factor-transgenic swine, in baboons undergo AHXR. In slowly evolving AHXR, graft loss is associated with the development of thrombotic microangiopathic glomerulopathy. Also, anti-alphaGal IgM deposition and subsequent complement activation play an important role in the mechanism of glomerular endothelial injury and activation and the formation of multiple microthrombi.
Collapse
Affiliation(s)
- Akira Shimizu
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Wang Y, Yan Q, Wu J, Zhang LH, Ye XS. A new one-pot synthesis of α-Gal epitope derivatives involved in the hyperacute rejection response in xenotransplantation. Tetrahedron 2005. [DOI: 10.1016/j.tet.2005.02.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Affiliation(s)
- Dale I Godfrey
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
18
|
Wang Y, Huang X, Zhang LH, Ye XS. A Four-Component One-Pot Synthesis of α-Gal Pentasaccharide. Org Lett 2004; 6:4415-7. [PMID: 15548039 DOI: 10.1021/ol0483246] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A four-component one-pot sequential synthesis of alpha-Gal pentasaccharide 2 with minimal protecting group manipulations in a very short period of time is described in this paper. [structure: see text]
Collapse
Affiliation(s)
- Yuhang Wang
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd 38, Beijing 100083, China
| | | | | | | |
Collapse
|
19
|
Zhan Y, Brady JL, Irawaty W, Thomas HE, Kay TW, Lew AM. Activated macrophages require T cells for xenograft rejection under the kidney capsule. Immunol Cell Biol 2003. [DOI: 10.1046/j.1440-1711.2003.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yifan Zhan
- Walter and Eliza Hall Institute of Medical Research Parkville Victoria Australia
| | - Jamie L Brady
- Walter and Eliza Hall Institute of Medical Research Parkville Victoria Australia
| | - Windy Irawaty
- St. Vincent's Institute of Medical Research Melbourne Victoria Australia
| | - Helen E Thomas
- St. Vincent's Institute of Medical Research Melbourne Victoria Australia
| | - Thomas W Kay
- St. Vincent's Institute of Medical Research Melbourne Victoria Australia
| | - Andrew M Lew
- Walter and Eliza Hall Institute of Medical Research Parkville Victoria Australia
| |
Collapse
|
20
|
Zhan Y, Brady JL, Irawaty W, Thomas HE, Kay TW, Lew AM. Activated macrophages require T cells for xenograft rejection under the kidney capsule. Immunol Cell Biol 2003; 81:451-8. [PMID: 14636242 DOI: 10.1046/j.1440-1711.2003..x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transplantation of tissues from other species has been advocated as a way to overcome the extreme shortage of human donors. Rejection, however, remains a major hurdle for clinical xenotransplantation. Although activation of macrophages by T cells is critical for the cellular rejection of xenografts, what other important interactions between these two types of cells remain less defined. When we activated macrophages of immuno-deficient mice (SCID or Rag-/-) using interferon-gamma and lipopolysacharide, xenogeneic cells were rejected by activated macrophages in the peritoneal cavity (which has an abundance of resident macrophages), but were not rejected under the kidney capsule (which requires the recruitment of effectors). This difference between the two sites implies that activated macrophages are inefficient for self-recruitment to peripheral graft sites and that T cells may still be required for the process. To test this hypothesis further, immunodeficient mice that had received xenogeneic cells were infused with peritoneal exudate cells (containing activated macrophages and activated T cells) from preimmunized immunocompetent mice. Xenogeneic cells at both the kidney capsule and peritoneal sites were rejected soon after cell transfer. However, when the exudate cells were transferred into SCID recipients that first had been injected with T cell depleting antibodies, xenograft rejection was only prominent at the peritoneal site but not kidney capsule site. These results argue that activated macrophages (as the result of T cell activation) still require T cells for xenograft rejection at peripheral sites.
Collapse
Affiliation(s)
- Yifan Zhan
- Walter and Eliza Hall Institute of Medical Research and St. Vincent's Institute of Medical Research, Melbourne, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
21
|
Palmer EM, Baum LG, van Seventer GA. Small intestinal submucosa induces loss of mitochondrial integrity and caspase-dependent apoptosis in human T cells. TISSUE ENGINEERING 2003; 9:307-14. [PMID: 12740093 DOI: 10.1089/107632703764664774] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Porcine small intestinal submucosa (SIS) is a cell-free biomaterial used in humans for wound healing and as scaffold material for constructive remodeling of damaged or missing tissue. We have previously shown that SIS contains a factor that suppresses human helper T cell subset differentiation and expansion by inducing programmed cell death. Our aims here were to identify in detail the processes involved in SIS-induced T cell apoptosis and to perform the first characterization of the apoptosis-inducing factor present in SIS. In in vitro experiments, we utilized human T cell lines, Jurkat and CEM, to identify the processes involved in SIS-induced T cell apoptosis. Two types of sterile SIS material were used: hydrated sheets and rehydrated clinical-grade sheets. We found that SIS-mediated apoptosis as detected by induction of membrane annexin V staining involved the loss of mitochondrial membrane potential and was dependent on caspase activation. We eliminated transforming growth factor beta (TGF-beta), Fas ligand (FasL), and galectin family members as factors in SIS-mediated T cell apoptosis. We further established that processes required to prepare SIS for clinical use, freeze-drying, and gas sterilization destroyed the apoptosis-inducing factor. SIS contains a factor that induces loss of mitochondrial integrity and caspase-dependent apoptosis in human T cells. This factor is destroyed by freeze-drying and gas sterilization and is not TGF-beta, FasL, or a galectin family member. Normal T cell homeostasis in gut-associated tissues may be regulated in part by this unknown factor.
Collapse
Affiliation(s)
- E M Palmer
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
22
|
Phelps CJ, Koike C, Vaught TD, Boone J, Wells KD, Chen SH, Ball S, Specht SM, Polejaeva IA, Monahan JA, Jobst PM, Sharma SB, Lamborn AE, Garst AS, Moore M, Demetris AJ, Rudert WA, Bottino R, Bertera S, Trucco M, Starzl TE, Dai Y, Ayares DL. Production of alpha 1,3-galactosyltransferase-deficient pigs. Science 2003; 299:411-4. [PMID: 12493821 PMCID: PMC3154759 DOI: 10.1126/science.1078942] [Citation(s) in RCA: 826] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The enzyme alpha1,3-galactosyltransferase (alpha1,3GT or GGTA1) synthesizes alpha1,3-galactose (alpha1,3Gal) epitopes (Galalpha1,3Galbeta1,4GlcNAc-R), which are the major xenoantigens causing hyperacute rejection in pig-to-human xenotransplantation. Complete removal of alpha1,3Gal from pig organs is the critical step toward the success of xenotransplantation. We reported earlier the targeted disruption of one allele of the alpha1,3GT gene in cloned pigs. A selection procedure based on a bacterial toxin was used to select for cells in which the second allele of the gene was knocked out. Sequencing analysis demonstrated that knockout of the second allele of the alpha1,3GT gene was caused by a T-to-G single point mutation at the second base of exon 9, which resulted in inactivation of the alpha1,3GT protein. Four healthy alpha1,3GT double-knockout female piglets were produced by three consecutive rounds of cloning. The piglets carrying a point mutation in the alpha1,3GT gene hold significant value, as they would allow production of alpha1,3Gal-deficient pigs free of antibiotic-resistance genes and thus have the potential to make a safer product for human use.
Collapse
Affiliation(s)
- Carol J. Phelps
- PPL Therapeutics Inc., 1700 Kraft Drive, Blacksburg, VA 24060, USA
| | - Chihiro Koike
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center (UPMC) and Children's Hospital, Pittsburgh, PA 15213, USA
- Department of Surgery, University of Pittsburgh Medical Center (UPMC) and Children's Hospital, Pittsburgh, PA 15213, USA
| | - Todd D. Vaught
- PPL Therapeutics Inc., 1700 Kraft Drive, Blacksburg, VA 24060, USA
| | - Jeremy Boone
- PPL Therapeutics Inc., 1700 Kraft Drive, Blacksburg, VA 24060, USA
| | - Kevin D. Wells
- PPL Therapeutics Inc., 1700 Kraft Drive, Blacksburg, VA 24060, USA
| | - Shu-Hung Chen
- PPL Therapeutics Inc., 1700 Kraft Drive, Blacksburg, VA 24060, USA
| | - Suyapa Ball
- PPL Therapeutics Inc., 1700 Kraft Drive, Blacksburg, VA 24060, USA
| | - Susan M. Specht
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center (UPMC) and Children's Hospital, Pittsburgh, PA 15213, USA
- Department of Surgery, University of Pittsburgh Medical Center (UPMC) and Children's Hospital, Pittsburgh, PA 15213, USA
| | | | - Jeff A. Monahan
- PPL Therapeutics Inc., 1700 Kraft Drive, Blacksburg, VA 24060, USA
| | - Pete M. Jobst
- PPL Therapeutics Inc., 1700 Kraft Drive, Blacksburg, VA 24060, USA
| | - Sugandha B. Sharma
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center (UPMC) and Children's Hospital, Pittsburgh, PA 15213, USA
- Department of Surgery, University of Pittsburgh Medical Center (UPMC) and Children's Hospital, Pittsburgh, PA 15213, USA
| | | | - Amy S. Garst
- PPL Therapeutics Inc., 1700 Kraft Drive, Blacksburg, VA 24060, USA
| | - Marilyn Moore
- PPL Therapeutics Ltd., Roslin, Midlothian, EH25 9PP, UK
| | - Anthony J. Demetris
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center (UPMC) and Children's Hospital, Pittsburgh, PA 15213, USA
- Department of Pathology, University of Pittsburgh Medical Center (UPMC) and Children's Hospital, Pittsburgh, PA 15213, USA
| | - William A. Rudert
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center (UPMC) and Children's Hospital, Pittsburgh, PA 15213, USA
- Department of Pediatrics (Division of Immunogenetics) of University of Pittsburgh Medical Center (UPMC) and Children's Hospital, Pittsburgh, PA 15213, USA
| | - Rita Bottino
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center (UPMC) and Children's Hospital, Pittsburgh, PA 15213, USA
- Department of Pediatrics (Division of Immunogenetics) of University of Pittsburgh Medical Center (UPMC) and Children's Hospital, Pittsburgh, PA 15213, USA
| | - Suzanne Bertera
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center (UPMC) and Children's Hospital, Pittsburgh, PA 15213, USA
- Department of Pediatrics (Division of Immunogenetics) of University of Pittsburgh Medical Center (UPMC) and Children's Hospital, Pittsburgh, PA 15213, USA
| | - Massimo Trucco
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center (UPMC) and Children's Hospital, Pittsburgh, PA 15213, USA
- Department of Pediatrics (Division of Immunogenetics) of University of Pittsburgh Medical Center (UPMC) and Children's Hospital, Pittsburgh, PA 15213, USA
| | - Thomas E. Starzl
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center (UPMC) and Children's Hospital, Pittsburgh, PA 15213, USA
- Department of Surgery, University of Pittsburgh Medical Center (UPMC) and Children's Hospital, Pittsburgh, PA 15213, USA
| | - Yifan Dai
- PPL Therapeutics Inc., 1700 Kraft Drive, Blacksburg, VA 24060, USA
| | - David L. Ayares
- PPL Therapeutics Inc., 1700 Kraft Drive, Blacksburg, VA 24060, USA
| |
Collapse
|
23
|
Abstract
For nearly a century, xenotransplantation has been seen as a potential approach to replacing organs and tissues damaged by disease. Until recently, however, the application of xenotransplantation has seemed only a remote possibility. What has changed this perspective is the advent of genetic engineering of large animals; that is, the ability to add genes to and remove genes from lines of animals that could provide an enduring source of tissues and organs for clinical application. Genetic engineering could address the immunologic, physiologic and infectious barriers to xenotransplantation, and could allow xenotransplantation to provide a source of cells with defined and even controlled expression of exogenous genes. This communication will consider one perspective on the application of genetic engineering in xenotransplantation.
Collapse
Affiliation(s)
- J L Platt
- Transplantation Biology, Department of Surgery, Medical Sciences Building 2-66, Mayo Clinic, 200 1st Street S.W., Rochester, MN 55905, USA.
| |
Collapse
|
24
|
Taylor SG, Osman N, McKenzie IFC, Sandrin MS. Reduction of alpha-Gal expression by relocalizing alpha-galactosidase to the trans-Golgi network and cell surface. Glycobiology 2002; 12:729-39. [PMID: 12460941 DOI: 10.1093/glycob/cwf076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Historically, the most effective means of modifying cell surface carbohydrates has required the intracellular overexpression of glycosyltransferases or glycosidases and is dependent on the enzymes occupying a cellular localization close to the carbohydrate structures they modify. We report on relocalizing the lysosomal resident glycosidase human alpha-galactosidase to other regions of the cell, Golgi and cell surface, where it is in closer proximity for cleaving the carbohydrate structure Galalpha(1,3)Gal. Relocalization of alpha-galactosidase was achieved by using the transmembrane and cytoplasmic domains from the human protein furin, which is known to localize in the trans-Golgi network (TGN) and cell surface. Two chimeric forms of alpha-galactosidase were generated, one directing it to the TGN of the cell and the other to the cell surface, as shown by confocal microscopy. The relocalized enzymes have the ability to cleave terminal alpha-galactose as detected by expression on the cell surface. Furthermore, when expressed as a transgene in mice, the TGN form of alpha-galactosidase was more effective at decreasing cell surface terminal alpha-galactose than was the native lysosomal form. When expressed in conjunction with the alpha1,2fucosyltransferase that also decreases Galalpha(1,3)Gal, the reduction was additive. The ability to relocalize enzymes that modify cell surface carbohydrate structures has far-reaching implications in biology and may be useful in such fields as xenotransplantation and treatment of glycosidase disorders.
Collapse
Affiliation(s)
- Simon G Taylor
- John Connell Laboratory of Glycobiology, Austin Research Institute, Austin, USA
| | | | | | | |
Collapse
|
25
|
Tsuyuki S, Kono M, Bloom ET. Cloning and potential utility of porcine Fas ligand: overexpression in porcine endothelial cells protects them from attack by human cytolytic cells. Xenotransplantation 2002; 9:410-21. [PMID: 12371937 DOI: 10.1034/j.1399-3089.2002.01114.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Endothelial cells (EC) are primary targets of the recipient's immune response to transplanted organs and constitutively express Fas (CD95) ligand (FasL) on their surface. We investigated the role of porcine FasL in the generation of the human anti-pig response in vitro. Porcine aortic endothelial cells (PAEC) lysed a Fas+ human T-cell line, Jurkat. Anti-human Fas monoclonal antibody (mAb) specifically inhibited this killing in a dose-dependent manner, suggesting that porcine FasL recognizes and binds human Fas to induce apoptosis of human Fas+ cells. We next cloned porcine FasL, identifying an open reading frame of 849 base pairs predicting a protein of 282 amino acids. The predicted amino acid sequence was 85, 76, and 75% homologous to the predicted amino acid sequences of human, mouse, and rat, respectively, and found that PAEC expressed both FasL mRNA and protein. Transient transfection was used to increase or induce porcine FasL expression in PAEC or COS-7 cells. Transfection of PAEC with a plasmid encoding porcine FasL increased their ability to induce apoptosis in Jurkat cells, fresh human T cells activated with IL-2 and anti-CD3, and fresh IL-2-activated human (natural killer) NK cells. Moreover, porcine Fas L-transfected COS-7 cells induced significant apoptosis in Jurkat cells compared with that induced by mock-transfected COS-7 cells. Finally, the overexpression of porcine FasL in PAEC reduced their susceptibility as target cells to lysis by activated human NK or T cells. These findings suggest that porcine FasL overexpression in EC of vascularized xenografts may provide protection from cellular xenograft rejection.
Collapse
Affiliation(s)
- Shigeru Tsuyuki
- Laboratory of Immunology and Virology, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
26
|
Platt J, DiSesa V, Gail D, Massicot-Fisher J. Recommendations of the National Heart, Lung, and Blood Institute Heart and Lung Xenotransplantation Working Group. Circulation 2002; 106:1043-7. [PMID: 12196325 DOI: 10.1161/01.cir.0000031064.67525.28] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The National Heart, Lung, and Blood Institute (NHLBI) recently convened the Heart and Lung Xenotransplantation Working Group to identify hurdles to the clinical application of xenotransplantation, defined as the use of animal organs or tissue for transplantation, and to recommend possible solutions to these problems. The group consisted of experts in xenotransplantation from academia, industry, and federal agencies, and the discussions focused on those areas within the mission of the NHLBI. The areas covered included immunologic and physiological barriers to xenotransplantation, the limitations of the current animal models, the need for collaboration among groups, the high costs of studies using nonhuman primates and genetic engineering of pigs, and the unique problems of lung xenotransplantation. This report is a summary of those discussions.
Collapse
Affiliation(s)
- Jeffrey Platt
- Department of Surgery, Immunology, and Pediatrics, Mayo Clinic, Rochester, Minn, USA
| | | | | | | |
Collapse
|
27
|
Abstract
alpha-Galactosylated xenoantigens (Galalpha1-3Galbeta1-4GlcNAcbeta1 and Galalpha1-3Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc) are often detected with the alpha-Gal specific lectin Griffonia simplicifolia 1 isolectin B4 (GS1 B4). However, this lectin exhibits a broad and variable specificity for carbohydrates terminating in alpha-Gal. Thus, both false positive and false negative results may occur when GS1 B4 is used to determine natural antigens in xeno (pig-to-primate) transplantation research. To refine the tools for detecting alpha-galactosylated antigens we have studied the binding of various alpha-galactophilic lectins to alpha-galactosylated neoglycoproteins. The lectins were: Euonymus europaeus agglutinin (EEA), Griffonia simplicifolia 1 isolectin B4 (GS1 B4), Maclura pomifera agglutinin (MPA) and Pseudomonas aeruginosa agglutinin (PA-IL). Although both GS1 B4 and MPA strongly bound glycoconjugates terminating in Gal there seems to be some differentiation in their sugar binding preferences. MPA was the only lectin that showed high affinity for the pentasaccharide Galalpha1-3Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc and for the Galalpha-glycans on non-primate thyroglobulin. The length of the xenoantigenic carbohydrate chain may influence the nature of the inhibition when a simple sugar is used to inhibit GS1 B4 binding to the xenoantigen. Inhibition studies of MPA GS1 B4 interaction further suggest that both lectins attach to the same site of the carbohydrate antigen and that GS1 B4 in addition binds to at least one other site that has no affinity for MPA. When lectins are used for recognition and investigation of natural Galalpha-antigens, we propose that GS1 B4 and MPA should accompany each other.
Collapse
Affiliation(s)
- Svend Kirkeby
- Department of Oral Function and Physiology, Dental School, Copenhagen, Denmark.
| | | |
Collapse
|
28
|
Tacke SJ, Bodusch K, Berg A, Denner J. Sensitive and specific immunological detection methods for porcine endogenous retroviruses applicable to experimental
and clinical xenotransplantation. Xenotransplantation 2002. [DOI: 10.1034/j.1399-3089.2001.00080.x-i1] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Kuddus R, Patzer JF, Lopez R, Mazariegos GV, Meighen B, Kramer DJ, Rao AS. Clinical and laboratory evaluation of the safety of a bioartificial liver assist device for potential transmission of porcine endogenous retrovirus. Transplantation 2002; 73:420-9. [PMID: 11884940 DOI: 10.1097/00007890-200202150-00017] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The potential risk of transmission of porcine endogenous retroviruses (PERV) from xenogeneic donors into humans has been widely debated. Because we were involved in a phase I/II clinical trial using a bioartificial liver support system (BLSS), we proceeded to evaluate the biosafety of this device. MATERIALS AND METHODS The system being evaluated contains primary porcine hepatocytes freshly isolated from pathogen-free, purpose-raised herd. Isolated hepatocytes were installed in the shell, which is separated by a semipermeable membrane (100-kD nominal cutoff) from the lumen through which the patients' whole blood is circulated. Both before and at defined intervals posthemoperfusion, patients' blood was obtained for screening. Additionally, effluent collected from a clinical bioreactor was analyzed. The presence of viral particles was estimated by reverse transcriptase-polymerase chain reaction (RT-PCR) and RT assays. For the detection of pig genomic and mitochondrial DNA, sequence-specific PCR (SS-PCR) was used. Finally, the presence of infectious viral particles in the samples was ascertained by exposure to the PERV-susceptible human cell line HEK-293. RESULTS PERV transcripts, RT activity, and infectious PERV particles were not detected in the luminal effluent of a bioreactor. Culture supernatant from untreated control or mitogen-treated porcine hepatocytes (cleared of cellular debris) also failed to infect HEK-293 cell lines. Finally, RT-PCR, SS-PCR, and PERV-specific RT assay detected no PERV infection in the blood samples obtained from five study patients both before and at various times post-hemoperfusion. CONCLUSION Although longer patient follow-up is required and mandated to unequivocally establish the biosafety of this device and related bioartificial organ systems, these analyses support the conclusion that when used under standard operational conditions, the BLSS is safe.
Collapse
Affiliation(s)
- R Kuddus
- Thomas E. Starzl Transplantation Institute, and the Department of Surgery, University of Pittsburgh Medical Center-Health System, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Allman AJ, McPherson TB, Merrill LC, Badylak SF, Metzger DW. The Th2-restricted immune response to xenogeneic small intestinal submucosa does not influence systemic protective immunity to viral and bacterial pathogens. TISSUE ENGINEERING 2002; 8:53-62. [PMID: 11886654 DOI: 10.1089/107632702753503054] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Implantation of mice with xenogeneic extracellular matrix (ECM) not only results in tissue remodeling but also elicits a strong Th2 immune response. It is possible that the Th2 cytokines induced by ECM act systemically and result in immune suppression to unrelated antigens. In this case, the recipient would be predisposed to immune dysfunction and have increased susceptibility to various pathogens. The purpose of this study was to determine if ECM implantation does, in fact, influence the immune response to other antigens. Four models were examined to determine the effects of ECM implantation on systemic immunity. In the first model, mice were subcutaneously implanted with porcine small intestinal submucosa (SIS) and immunized with a T-dependent subunit vaccine against influenza virus. The antibody response and protection against lethal infection were then measured. The second model consisted of similar experiments performed using a T-independent polysaccharide vaccine against S. pneumoniae. In the third model, mice were implanted and the cell-mediated response to dinitrofluorobenzene (DNFB) challenge was determined. The fourth model involved examining the influence of SIS implantation on rejection of xenogeneic skin grafts. We found that antibody levels of mice vaccinated against influenza virus or S. pneumoniae were not affected by SIS implantation and these mice did not exhibit increased or decreased susceptibility to either infectious agent. Similarly, mice implanted with ECM showed no cell-mediated immune dysfunction upon challenge with DNFB or xenogeneic skin grafts. The results of this study demonstrate that the Th2-restricted response induced by xenogeneic ECM implantation does not cause generalized immune suppression. Therefore, SIS implantation does not increase susceptibility to viral or bacterial pathogenic agents.
Collapse
Affiliation(s)
- Amy J Allman
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208, USA
| | | | | | | | | |
Collapse
|
31
|
Selbert S, Franz WM. Myocardial tissue engineering. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2002:47-66. [PMID: 11816273 DOI: 10.1007/978-3-662-04816-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Affiliation(s)
- S Selbert
- Universitätsklinikum Lübeck, Medizinische Klinik II, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | | |
Collapse
|
32
|
|
33
|
Niemann H, Verhoeyen E, Wonigeit K, Lorenz R, Hecker J, Schwinzer R, Hauser H, Kues WA, Halter R, Lemme E, Herrmann D, Winkler M, Wirth D, Paul D. Cytomegalovirus early promoter induced expression of hCD59 in porcine organs provides protection against hyperacute rejection. Transplantation 2001; 72:1898-906. [PMID: 11773886 DOI: 10.1097/00007890-200112270-00006] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The critical shortage of human donor organs has generated growing interest for porcine to human xenotransplantation. The major immunological barrier to xenotransplantation is the hyperacute rejection (HAR) response that is mediated by preformed xenoreactive antibodies and complement. A promising strategy to control the complement activation, is the expression of human complement regulatory proteins in transgenic animals. We have used the human early cytomegalovirus (CMV) promoter to drive expression of the human complement regulatory protein CD59 (hCD59) in transgenic pigs. A total of eight live transgenic founder animals was born from which five transgenic lines could be established. mRNA analysis and Western blotting revealed high expression of hCD59 in heart, kidney, skeletal muscle, and skin in animals of lines 1 and 5, as well as in the pancreas of four lines. This pattern of expression was confirmed by immunhistological staining. A cell-specific expression in heart and kidney tissue of transgenic lines 1 and 5 was determined. Primary fibroblasts and endothelial cell cultures derived from the aorta of transgenic pigs showed a significantly diminished sensitivity against the challenge with xenoreactive human antibodies and complement whereas non-transgenic control cells were highly susceptible to complement mediated lysis. Ex vivo perfusion of kidneys with pooled human blood revealed a significant protective effect of hCD59 against HAR. The average survival of transgenic kidneys was significantly extended (P<0.05) over nontransgenic controls (207.5+/-54.6 vs. 57.5+/-64.5 min). These data support the concept that hCD59 protects nonprimate cells against human complement mediated lysis and suggest that donor pigs transgenic for hCD59 could play a crucial role in clinical xenotransplantation. Two of five hCD59 transgenic lines showed strong hCD59 expression in several organs relevant for xenotransplantation and a protective effect against HAR. This indicates that the use of the CMV-promoter can facilitate the selection process for optimized transgene expression.
Collapse
Affiliation(s)
- H Niemann
- Department of Biotechnology, Institut für Tierzucht und Tierverhalten, Mariensee, 31535 Neustadt, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
This article summarizes recent progress in reproductive biotechnology in swine with special reference to in vitro production of embryos, generation of identical multiples, and transgenic pigs useful for xenotransplantation. In vitro production (in vitro maturation, in vitro fertilization, and in vitro culture) of viable porcine embryos is possible, although with much lower success rates than in cattle. The main problems are insufficient cytoplasmic maturation of porcine oocytes, a high proportion of polyspermic fertilization and a low proportion of blastocysts that, in addition, are characterized by a low number of cells, hampering their development in vivo upon transfer to recipients. Microsurgical bisection of morula and blastocyst stage embryos leads to a 2 to 3% monozygotic twinning rate of the transferred demiembryos, which is similar to that in rabbits and mice but considerably lower than in ruminants. It was found that with decreasing quality an increasing proportion of demi-embryos did not possess an inner cell mass. Porcine individual blastomeres derived from 4- and 8-cell embryos can be cultured in defined medium to the blastocyst stage. Leukemia inhibitory factor has been shown to be effective at defined embryonic stages and supports the formation of the inner cell mass in cultured isolated blastomeres in a concentration-dependent manner. For maintaining pregnancies with micromanipulated porcine embryos, it is not necessary to transfer extraordinarily high numbers of embryos. Porcine nuclear transfer is still struggling from the inefficiency of producing normally functioning blastocysts. Blastomeres, blastocyst-derived cells, fibroblasts and granulosa cells have been employed as donor cells in porcine nuclear transfer and have yielded blastocysts. Recently, the generation of the first piglets from somatic cell nuclear transfer has been achieved. DNA-microinjection into pronuclei of porcine zygotes has reliably resulted in the generation of transgenic pigs, which have special importance for the production of valuable pharmaceutical proteins in milk and xenotransplantation. It has been demonstrated that by expression of human complement regulatory proteins in transgenic pigs the hyperacute rejection response occurring after xenotransplantation can be overcome in a clinically relevant manner. Although biotechnological procedures in swine have recently undergone tremendous progress, the development is still lagging behind that in cattle and sheep. With regard to genetic engineering, considerable progress will originate from the possibility of employing homologous recombination in somatic cell lines and their subsequent use in nuclear transfer. In combination with the increasing knowledge in gene sequences this will allow in the foreseeable future widespread use in the pig industry either for agricultural or biomedical purposes.
Collapse
Affiliation(s)
- H Niemann
- Department of Biotechnology, Institute of Animal Science and Behavior, Mariensee (FAL), Neustadt, Germany
| | | |
Collapse
|
35
|
Allman AJ, McPherson TB, Badylak SF, Merrill LC, Kallakury B, Sheehan C, Raeder RH, Metzger DW. Xenogeneic extracellular matrix grafts elicit a TH2-restricted immune response. Transplantation 2001; 71:1631-40. [PMID: 11435976 DOI: 10.1097/00007890-200106150-00024] [Citation(s) in RCA: 291] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Porcine small intestinal submucosa (SIS) is an acellular, naturally derived extracellular matrix (ECM) that has been used for tissue remodeling and repair in numerous xenotransplantations. Although a vigorous immune response to xenogeneic extracellular matrix biomaterials is expected, to date there has been evidence for only normal tissue regeneration without any accompanying rejection. The purpose of this study was to determine the reason for a lack of rejection. METHODS Mice were implanted s.c. with xenogeneic tissue, syngeneic tissue, or SIS, and the graft site analyzed histologically for rejection or acceptance. Additionally, graft site cytokine levels were determined by reverse transcriptase polymerase chain reaction and SIS-specific serum antibody isotype levels were determined by ELISA. RESULTS Xenogeneically implanted mice showed an acute inflammatory response followed by chronic inflammation and ultimately graft necrosis, consistent with rejection. Syngeneically or SIS implanted mice, however, showed an acute inflammatory response that diminished such that the graft ultimately became indistinguishable from native tissue, observations that are consistent with graft acceptance. Graft site cytokine analysis showed an increase in interleukin-4 and an absence of interferon-gamma. In addition, mice implanted with SIS produced a SIS-specific antibody response that was restricted to the IgG1 isotype. Reimplantation of SIS into mice led to a secondary anti-SIS antibody response that was still restricted to IgG1. Similar results were observed with porcine submucosa derived from urinary bladder. To determine if the observed immune responses were T cell dependent, T cell KO mice were implanted with SIS. These mice expressed neither interleukin-4 at the implant site nor anti-SIS-specific serum antibodies but they did accept the SIS graft. CONCLUSIONS Porcine extracellular matrix elicits an immune response that is predominately Th2-like, consistent with a remodeling reaction rather than rejection.
Collapse
Affiliation(s)
- A J Allman
- Center for Immunology and Microbial Disease, MC 151, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Switzer WM, Michler RE, Shanmugam V, Matthews A, Hussain AI, Wright A, Sandstrom P, Chapman LE, Weber C, Safley S, Denny RR, Navarro A, Evans V, Norin AJ, Kwiatkowski P, Heneine W. Lack of cross-species transmission of porcine endogenous retrovirus infection to nonhuman primate recipients of porcine cells, tissues, or organs. Transplantation 2001; 71:959-65. [PMID: 11349732 DOI: 10.1097/00007890-200104150-00022] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Nonhuman primates (NHPs) have been widely used in different porcine xenograft procedures inevitably resulting in exposure to porcine endogenous retrovirus (PERV). Surveillance for PERV infection in these NHPs may provide information on the risks of cross-species transmission of PERV, particularly for recipients of vascularized organ xenografts for whom data from human clinical trials is unavailable. METHODS We tested 21 Old World and 2 New World primates exposed to a variety of porcine xenografts for evidence of PERV infection. These NHPs included six baboon recipients of pig hearts, six bonnet macaque recipients of transgenic pig skin grafts, and nine rhesus macaque and two capuchin recipients of encapsulated pig islet cells. Serologic screening for PERV antibody was done by a validated Western blot assay, and molecular detection of PERV sequences in peripheral blood mononuclear cells (PBMCs) and plasma was performed using sensitive polymerase chain reaction and reverse transcriptase-polymerase chain reaction assays, respectively. Spleen and lymph node tissues available from six bonnet macaques and three rhesus macaques were also tested for PERV sequences. RESULTS All plasma samples were negative for PERV RNA suggesting the absence of viremia in these xenografted animals. Similarly, PERV sequences were not detectable in any PBMC and tissue samples, arguing for the lack of latent infection of these compartments. In addition, all plasma samples were negative for PERV antibodies. CONCLUSION These data suggest the absence of PERV infection in all 23 NHPs despite exposure to vascularized porcine organs or tissue xenografts and the use of immunosuppressive therapies in some animals. These findings suggest that PERV is not easily transmitted to these NHP species through these types of xenografts.
Collapse
Affiliation(s)
- W M Switzer
- Division of AIDS, STDs, and TB Research Laboratory, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Cross-species transmission of porcine endogenous retroviruses in xenotransplantation: a PERVerted reality? Curr Opin Organ Transplant 2001. [DOI: 10.1097/00075200-200103000-00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Horvath-Arcidiacono JA, Bloom ET. Characterization of human killer cell reactivity against porcine target cells: differential modulation by cytokines. Xenotransplantation 2001; 8:62-74. [PMID: 11208192 DOI: 10.1034/j.1399-3089.2001.00078.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The cytotoxic cell response to porcine cells by human lymphocytes, and the modulation of cytolytic cellular activity by human cytokines were investigated. Human peripheral blood mononuclear cells (PBMC) and purified lymphocyte subsets were co-cultured with fresh irradiated porcine stimulator cells and examined for the development of lytic activity and for their proliferative response. Porcine target cells included a new cell line, MS-PBMC-J2 (designated J2; SLA-DR+MHC class I+CD2+CD3 CD8+CDI6+CD45+), aortic and microvascular endothelial cells. Initial results showed that natural killer (NK) cells were fivefold more efficient in killing porcine target cells compared with T cells. IL-12 augmented the killing of porcine target cells by human NK cells beyond that induced by stimulation with cells alone. In contrast, IL-2 and IL-15 often induced substantial human NK cell mediated killing of porcine target cells, including endothelial cells in the case of IL-2 where such targets were examined, even in the absence of stimulator cells. Finally, neither IL-18 nor IL-8 had any effect beyond background on NK cell mediated killing of porcine target cells. These findings show that cytokines that would be produced in a xenograft setting clearly modulate the ability of human cytolytic cells to kill porcine targets. In addition, fresh unstimulated human NK cells lysed J2 and porcine aortic endothelial cells, but not porcine microvascular endothelial cells, suggesting the possibility of rapid attack of xenografts by NK cells, and differential susceptibility of endothelial cells from different vascular structures to this attack.
Collapse
Affiliation(s)
- J A Horvath-Arcidiacono
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, Bethesda, MD 20892, USA
| | | |
Collapse
|
39
|
Tsiaoussis J, Newsome PN, Nelson LJ, Hayes PC, Plevris JN. Which hepatocyte will it be? Hepatocyte choice for bioartificial liver support systems. Liver Transpl 2001; 7:2-10. [PMID: 11150414 DOI: 10.1053/jlts.2001.20845] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liver failure, notwithstanding advances in medical management, remains a cause of considerable morbidity and mortality in the developed world. Although bioartificial liver (BAL) support systems offer the potential of significant therapeutic benefit for such patients, many issues relating to their use are still to be resolved. In this review, these issues are examined in terms of the functions required, the cells of choice in such a system, and the most appropriate environment to optimize the function of such cells. The major functions identified to date for a BAL are ammonia detoxification and biotransformation of toxic compounds, although this somewhat belies the complexity of the functions required. Two practical choices for cell type within such a system are xenogenic hepatocytes and immortalized human hepatocyte lines. Both these choices have drawbacks, such as the transmission of zoonoses and malignant infiltration, respectively. Finally, improvements in culture conditions, such as supplemented media, biodegradable scaffolds, and coculture, offer the possibility of prolonging the differentiated function of hepatocytes in a BAL.
Collapse
Affiliation(s)
- J Tsiaoussis
- Department of Internal Medicine, Liver Unit, Royal Infirmary of Edinburgh, Edinburgh, Scotland
| | | | | | | | | |
Collapse
|
40
|
Xenotrasplante: obstáculos y perspectivas. Med Clin (Barc) 2001. [DOI: 10.1016/s0025-7753(01)72123-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
van der Laan LJ, Lockey C, Griffeth BC, Frasier FS, Wilson CA, Onions DE, Hering BJ, Long Z, Otto E, Torbett BE, Salomon DR. Infection by porcine endogenous retrovirus after islet xenotransplantation in SCID mice. Nature 2000; 407:90-4. [PMID: 10993079 DOI: 10.1038/35024089] [Citation(s) in RCA: 260] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Animal donors such as pigs could provide an alternative source of organs for transplantation. However, the promise of xenotransplantation is offset by the possible public health risk of a cross-species infection. All pigs contain several copies of porcine endogenous retroviruses (PERV), and at least three variants of PERV can infect human cell lines in vitro in co-culture, infectivity and pseudotyping experiments. Thus, if xenotransplantation of pig tissues results in PERV viral replication, there is a risk of spreading and adaptation of this retrovirus to the human host. C-type retroviruses related to PERV are associated with malignancies of haematopoietic lineage cells in their natural hosts. Here we show that pig pancreatic islets produce PERV and can infect human cells in culture. After transplantation into NOD/SCID (non-obese diabetic, severe combined immunodeficiency) mice, we detect ongoing viral expression and several tissue compartments become infected. This is the first evidence that PERV is transcriptionally active and infectious cross-species in vivo after transplantation of pig tissues. These results show that a concern for PERV infection risk associated with pig islet xenotransplantation in immunosuppressed human patients may be justified.
Collapse
Affiliation(s)
- L J van der Laan
- The Scripps Research Institute, Department of Molecular and Experimental Medicine, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bösch S, Arnauld C, Jestin A. Study of full-length porcine endogenous retrovirus genomes with envelope gene polymorphism in a specific-pathogen-free Large White swine herd. J Virol 2000; 74:8575-81. [PMID: 10954559 PMCID: PMC116370 DOI: 10.1128/jvi.74.18.8575-8581.2000] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Specific-pathogen-free (SPF) swine appear to be the most appropriate candidate for pig to human xenotransplantation. Still, the risk of endogenous retrovirus transmission represents a major obstacle, since two human-tropic porcine endogenous retroviruses (PERVs) had been characterized in vitro (P. Le Tissier, J. P. Stoye, Y. Takeuchi, C. Patience, and R. A. Weiss, Nature 389:681-682, 1997). Here we addressed the question of PERV distribution in a French Large White SPF pig herd in vivo. First, PCR screening for previously described PERV envelope genes envA, envB, and envC (D. E. Akiyoshi, M. Denaro, H. Zhu, J. L. Greenstein, P. Banerjee, and J. A. Fishman, J. Virol. 72:4503-4507, 1998; Le Tissier et al., op. cit.). demonstrated ubiquity of envA and envB sequences, whereas envC genes were absent in some animals. On this basis, selective out-breeding of pigs of remote origin might be a means to reduce proviral load in organ donors. Second, we investigated PERV genome carriage in envC negative swine. Eleven distinct full-length PERV transcripts were isolated. The sequence of the complete envelope open reading frame was determined. The deduced amino acid sequences revealed the existence of four clones with functional and five clones with defective PERV PK-15 A- and B-like envelope sequences. The occurrence of easily detectable levels of PERV variants in different pig tissues in vivo heightens the need to assess PERV transmission in xenotransplantation animal models.
Collapse
Affiliation(s)
- S Bösch
- Zoopôle Developement, Rond Point du Zoopôle, France
| | | | | |
Collapse
|