1
|
Cifric S, Turi M, Folino P, Clericuzio C, Barello F, Maciel T, Anderson KC, Gulla A. DAMPening Tumor Immune Escape: The Role of Endoplasmic Reticulum Chaperones in Immunogenic Chemotherapy. Antioxid Redox Signal 2024; 41:661-674. [PMID: 38366728 DOI: 10.1089/ars.2024.0558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Significance: Preclinical and clinical research in the past two decades has redefined the mechanism of action of some chemotherapeutics that are able to activate the immune system against cancer when cell death is perceived by the immune cells. This immunogenic cell death (ICD) activates antigen-presenting cells (APCs) and T cells to induce immune-mediated tumor clearance. One of the key requirements to achieve this effect is the externalization of the damage-associated molecular patterns (DAMPs), molecules released or exposed by cancer cells during ICD that increase the visibility of the cancer cells by the immune system. Recent Advances: In this review, we focus on the role of calreticulin (CRT) and other endoplasmic reticulum (ER) chaperones, such as the heat-shock proteins (HSPs) and the protein disulfide isomerases (PDIs), as surface-exposed DAMPs. Once exposed on the cell membrane, these proteins shift their role from that of ER chaperone and regulator of Ca2+ and protein homeostasis to act as an immunogenic signal for APCs, driving dendritic cell (DC)-mediated phagocytosis and T-mediated antitumor response. Critical Issues: However, cancer cells exploit several mechanisms of resistance to immune attack, including subverting the exposure of ER chaperones on their surface to avoid immune recognition. Future Directions: Overcoming these mechanisms of resistance represents a potential therapeutic opportunity to improve cancer treatment effectiveness and patient outcomes.
Collapse
Affiliation(s)
- Selma Cifric
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Marcello Turi
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Pietro Folino
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Cole Clericuzio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Tallya Maciel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Kenneth C Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
2
|
Padula L, Fisher E, Strbo N. "All for One and One for All": The Secreted Heat Shock Protein gp96-Ig Based Vaccines. Cells 2023; 13:72. [PMID: 38201276 PMCID: PMC10778431 DOI: 10.3390/cells13010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
It has been 50 years since Peter Charles Doherty and Rolf M Zinkernagel proposed the principle of "simultaneous dual recognition", according to which adaptive immune cells recognized "self" and "non-self" simultaneously to establish immunological efficacy. These two scientists shared the 1996 Nobel Prize in Physiology or Medicine for this discovery. Their basic immunological principle became the foundation for the development of numerous vaccine approaches against infectious diseases and tumors, including promising strategies grounded on the use of recombinant gp96-Ig developed by our lab over the last two decades. In this review, we will highlight three major principles of the gp96-Ig vaccine strategy: (1) presentation of pathogenic antigens to T cells (specificity); (2) activation of innate immune responses (adjuvanticity); (3) priming of T cells to home to the epithelial compartments (mucosal immunity). In summary, we provide a paradigm for a vaccine approach that can be rapidly engineered and customized for any future pathogens that require induction of effective tissue-resident memory responses in epithelial tissues.
Collapse
Affiliation(s)
| | | | - Natasa Strbo
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.P.); (E.F.)
| |
Collapse
|
3
|
Ramírez-Carreto S, Miranda-Zaragoza B, Simões N, González-Muñoz R, Rodríguez-Almazán C. Marine Bioprospecting: Enzymes and Stress Proteins from the Sea Anemones Anthopleura dowii and Lebrunia neglecta. Mar Drugs 2023; 22:12. [PMID: 38248637 PMCID: PMC10821040 DOI: 10.3390/md22010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
The bioprospecting of sea anemone tissues and secretions has revealed that they are natural libraries of polypeptides with diverse biological activities that can be utilized to develop of biotechnological tools with potential medical and industrial applications. This study conducted a proteomic analysis of crude venom extracts from Anthopleura dowii Verrill, 1869, and Lebrunia neglecta Duchassaing & Michelotti, 1860. The obtained data allowed us to identify 201 polypeptides, of which 39% were present in both extracts. Among the obtained sequences, hydrolase-type enzymes, oxidoreductases, transferases, heat shock proteins, adhesion proteins, and protease inhibitors, among others, were identified. Interaction analysis and functional annotation indicated that these proteins are primarily involved in endoplasmic reticulum metabolic processes such as carbon metabolism and protein processing. In addition, several proteins related to oxidative stress were identified, including superoxide dismutase, peroxiredoxins, thioredoxin, and glutathione oxidase. Our results provide novel information on the polypeptide composition of the crude venom extract from sea anemones, which can be utilized to develop molecules for therapeutic tools and industrial applications.
Collapse
Affiliation(s)
- Santos Ramírez-Carreto
- Instituto Nacional de Salud Pública, Centro de Investigación Sobre Enfermedades Infecciosas, Av. Universidad #655, Santa María Ahuacatitlan, Cuernavaca C.P. 62100, Mexico;
| | - Beatriz Miranda-Zaragoza
- Departamento de Micro y Nanotecnologías, Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Cto. Exterior S/N, C.U., Coyoacán, Ciudad de México C.P. 04510, Mexico;
| | - Nuno Simões
- Unidad Multidisciplinaria de Docencia e Investigación en Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Puerto Abrigo s/n, Sisal C.P. 97356, Mexico;
- International Chair for Coastal and Marine Studies, Harte Research Institute for Gulf of Mexico Studies, Texas A and M University-Corpus Christi, Corpus Christi, TX 78412, USA
- Laboratorio Nacional de Resiliencia Costera (LANRESC), Laboratorios Nacionales, CONACYT, Sisal C.P. 97356, Mexico
| | - Ricardo González-Muñoz
- Instituto de Investigaciones Marinas y Costeras, CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Dean Funes 3350, Mar del Plata C.P. 7600, Argentina;
| | - Claudia Rodríguez-Almazán
- Departamento de Micro y Nanotecnologías, Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Cto. Exterior S/N, C.U., Coyoacán, Ciudad de México C.P. 04510, Mexico;
| |
Collapse
|
4
|
Design of Smart Nanomedicines for Effective Cancer Treatment. Int J Pharm 2022; 621:121791. [PMID: 35525473 DOI: 10.1016/j.ijpharm.2022.121791] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/22/2022]
Abstract
Nanomedicine is a novel field of study that involves the use of nanomaterials to address challenges and issues that are associated with conventional therapeutics for cancer treatment including, but not limited to, low bioavailability, low water-solubility, narrow therapeutic window, nonspecific distribution, and multiple side effects of the drugs. Multiple strategies have been exploited to reduce the nonspecific distribution, and thus the side effect of the active pharmaceutical ingredients (API), including active and passive targeting strategies and externally controllable release of the therapeutic cargo. Site-specific release of the drug prevents it from impacting healthy cells, thereby significantly reducing side effects. API release triggers can be either externally applied, as in ultrasound-mediated activation, or induced by the tumor. To rationally design such nanomedicines, a thorough understanding of the differences between the tumor microenvironment versus that of healthy tissues must be pared with extensive knowledge of stimuli-responsive biomaterials. Herein, we describe the characteristics that differentiate tumor tissues from normal tissues. Then, we introduce smart materials that are commonly used for the development of smart nanomedicines to be triggered by stimuli such as changes in pH, temperature, and enzymatic activity. The most recent advances and their impact on the field of cancer therapy are further discussed.
Collapse
|
5
|
Asadzadeh Z, Safarzadeh E, Safaei S, Baradaran A, Mohammadi A, Hajiasgharzadeh K, Derakhshani A, Argentiero A, Silvestris N, Baradaran B. Current Approaches for Combination Therapy of Cancer: The Role of Immunogenic Cell Death. Cancers (Basel) 2020; 12:E1047. [PMID: 32340275 PMCID: PMC7226590 DOI: 10.3390/cancers12041047] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/08/2020] [Accepted: 04/17/2020] [Indexed: 12/31/2022] Open
Abstract
Cell death resistance is a key feature of tumor cells. One of the main anticancer therapies is increasing the susceptibility of cells to death. Cancer cells have developed a capability of tumor immune escape. Hence, restoring the immunogenicity of cancer cells can be suggested as an effective approach against cancer. Accumulating evidence proposes that several anticancer agents provoke the release of danger-associated molecular patterns (DAMPs) that are determinants of immunogenicity and stimulate immunogenic cell death (ICD). It has been suggested that ICD inducers are two different types according to their various activities. Here, we review the well-characterized DAMPs and focus on the different types of ICD inducers and recent combination therapies that can augment the immunogenicity of cancer cells.
Collapse
Affiliation(s)
- Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (Z.A.); (S.S.); (K.H.); (A.D.)
| | - Elham Safarzadeh
- Department of Immunology and Microbiology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil 5618985991, Iran;
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (Z.A.); (S.S.); (K.H.); (A.D.)
| | - Ali Baradaran
- Research & Development Lab, BSD Robotics, 4500 Brisbane, Australia;
| | - Ali Mohammadi
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark;
| | - Khalil Hajiasgharzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (Z.A.); (S.S.); (K.H.); (A.D.)
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (Z.A.); (S.S.); (K.H.); (A.D.)
| | | | - Nicola Silvestris
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (Z.A.); (S.S.); (K.H.); (A.D.)
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| |
Collapse
|
6
|
Shevtsov M, Huile G, Multhoff G. Membrane heat shock protein 70: a theranostic target for cancer therapy. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0526. [PMID: 29203711 PMCID: PMC5717526 DOI: 10.1098/rstb.2016.0526] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2017] [Indexed: 12/19/2022] Open
Abstract
Members of the 70 kDa stress protein family are found in nearly all subcellular compartments of nucleated cells where they fulfil a number of chaperoning functions. Heat shock protein 70 (HSP70), also termed HSPA1A, the major stress-inducible member of this family is overexpressed in a large variety of different tumour types. Apart from its intracellular localization, a tumour-selective HSP70 membrane expression has been determined. A membrane HSP70–positive tumour phenotype is associated with aggressiveness and therapy resistance, but also serves as a recognition structure for targeted therapies. Furthermore, membrane-bound and extracellularly residing HSP70 derived from tumour cells play pivotal roles in eliciting anti-tumour immune responses. Herein, we want to shed light on the multiplicity of different activities of HSP70, depending on its intracellular, membrane and extracellular localization with the goal to use membrane HSP70 as a target for novel therapies including nanoparticle-based approaches for the treatment of cancer. This article is part of the theme issue ‘Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective’.
Collapse
Affiliation(s)
- Maxim Shevtsov
- Klinikum rechts der Isar, Department of Radiation Oncology, Technische Universität München, Ismaninger Strasse 22, Munich 81675, Germany.,Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Avenue, 4, St Petersburg 194064, Russia
| | - Gao Huile
- West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Gabriele Multhoff
- Klinikum rechts der Isar, Department of Radiation Oncology, Technische Universität München, Ismaninger Strasse 22, Munich 81675, Germany
| |
Collapse
|
7
|
Yang M, Xu Z, Wang Q, Zhang AQ, Min J. A hyposensitive anticancer drug induces higher surface expression and release of heat shock proteins in a human hepatocellular carcinoma cell line. Mol Med Rep 2015; 12:2879-85. [PMID: 25955691 DOI: 10.3892/mmr.2015.3727] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 03/24/2015] [Indexed: 11/05/2022] Open
Abstract
Heat shock proteins (HSPs) respond to multiple stresses and have been implicated as essential immune chaperones that regulate innate and adaptive immunity. The exposure of HSPs containing tumour peptide complex to immune surveillance elements may elicit a specific anti-tumour response. The present study examined the potential of anticancer drugs to induce apoptosis of HepG2 cells and elicit the expression of HSP proteins, including HSP70 and gp96, on the membrane or their release to the extracellular environment, leading to HSP exposure. In the present study, etoposide and carboplatin were classified by an adenosine triphosphate assay as representatives of hypersensitive and hyposensitive anticancer drugs, respectively. Flow cytometry, immunofluorescence, ELIZA and reverse transcription quantitative polymerase chain reaction were all used to detect changes in the HSPs. The results demonstrated that etoposide and carboplatin induced apoptosis of HepG2 cells. In addition, following treatment with etoposide or carboplatin, HSP70/gp96 expression increased, demonstrating a 'transfer expression' pattern: The cytosol expression decreased while the surface expression increased. These alterations progressed steadily with notable alterations following treatment with etoposide for 24 h or carboplatin for 72 h. Additionally, at the end of treatment, release of HSP70/gp96 to the extracellular environment increased. Notably, following treatment with the hyposensitive anticancer drug carboplatin for 72 h, the surface expression of gp96 in HepG2 cells was significantly increased. These results suggest that when combined with cancer cell apoptosis, anticancer drugs induce the membrane expression and release of HSP70/gp96 in hepatocellular carcinoma (HCC) cells, which may represent a crucial event in the immune anti-tumour response. Notably, treatment with the hyposensitive anticancer drug for a longer time period resulted in greater surface expression and release of gp96, which suggests a potential use for hyposensitive anticancer drugs in HSP-based dendritic cell vaccine preparation and chemoimmunotherapy for HCC patients.
Collapse
Affiliation(s)
- Mei Yang
- Breast Disease Center, Guangdong Women and Children Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510010, P.R. China
| | - Zhe Xu
- Department of Ophthalmology, General Hospital of Guangzhou Military Command of PLA, Guangzhou, Guangdong 510010, P.R. China
| | - Qi Wang
- Breast Disease Center, Guangdong Women and Children Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510010, P.R. China
| | - An-Qin Zhang
- Breast Disease Center, Guangdong Women and Children Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510010, P.R. China
| | - Jun Min
- Department of Hepatobiliary Surgery, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
8
|
Jaiswal AK, Khare P, Joshi S, Kushawaha PK, Sundar S, Dube A. Th1 stimulatory proteins of Leishmania donovani: comparative cellular and protective responses of rTriose phosphate isomerase, rProtein disulfide isomerase and rElongation factor-2 in combination with rHSP70 against visceral leishmaniasis. PLoS One 2014; 9:e108556. [PMID: 25268700 PMCID: PMC4182492 DOI: 10.1371/journal.pone.0108556] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 08/29/2014] [Indexed: 11/25/2022] Open
Abstract
In visceral leishmaniasis, the recovery from the disease is always associated with the generation of Th1-type of cellular responses. Based on this, we have previously identified several Th1-stimulatory proteins of Leishmania donovani -triose phosphate isomerase (TPI), protein disulfide isomerase (PDI) and elongation factor-2 (EL-2) etc. including heat shock protein 70 (HSP70) which induced Th1-type of cellular responses in both cured Leishmania patients/hamsters. Since, HSPs, being the logical targets for vaccines aimed at augmenting cellular immunity and can be early targets in the immune response against intracellular pathogens; they could be exploited as vaccine/adjuvant to induce long-term immunity more effectively. Therefore, in this study, we checked whether HSP70 can further enhance the immunogenicity and protective responses of the above said Th1-stimulatory proteins. Since, in most of the studies, immunogenicity of HSP70 of L. donovani was assessed in native condition, herein we generated recombinant HSP70 and tested its potential to stimulate immune responses in lymphocytes of cured Leishmania infected hamsters as well as in the peripheral blood mononuclear cells (PBMCs) of cured patients of VL either individually or in combination with above mentioned recombinant proteins. rLdHSP70 alone elicited strong cellular responses along with remarkable up-regulation of IFN-γ and IL-12 cytokines and extremely lower level of IL-4 and IL-10. Among the various combinations, rLdHSP70 + rLdPDI emerged as superior one augmenting improved cellular responses followed by rLdHSP70 + rLdEL-2. These combinations were further evaluated for its protective potential wherein rLdHSP70 + rLdPDI again conferred utmost protection (∼80%) followed by rLdHSP70 + rLdEL-2 (∼75%) and generated a strong cellular immune response with significant increase in the levels of iNOS transcript as well as IFN-γ and IL-12 cytokines which was further supported by the high level of IgG2 antibody in vaccinated animals. These observations indicated that vaccine(s) based on combination of HSP70 with Th1-stimulatory protein(s) may be a viable proposition against intracellular pathogens.
Collapse
Affiliation(s)
- Anil Kumar Jaiswal
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Prashant Khare
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sumit Joshi
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Anuradha Dube
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
- * E-mail:
| |
Collapse
|
9
|
The complex function of hsp70 in metastatic cancer. Cancers (Basel) 2013; 6:42-66. [PMID: 24362507 PMCID: PMC3980608 DOI: 10.3390/cancers6010042] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/05/2013] [Accepted: 12/11/2013] [Indexed: 12/26/2022] Open
Abstract
Elevated expression of the inducible heat shock protein 70 (Hsp70) is known to correlate with poor prognosis in many cancers. Hsp70 confers survival advantage as well as resistance to chemotherapeutic agents, and promotes tumor cell invasion. At the same time, tumor-derived extracellular Hsp70 has been recognized as a "chaperokine", activating antitumor immunity. In this review we discuss localization dependent functions of Hsp70 in the context of invasive cancer. Understanding the molecular principles of metastasis formation steps, as well as interactions of the tumor cells with the microenvironment and the immune system is essential for fighting metastatic cancer. Although Hsp70 has been implicated in different steps of the metastatic process, the exact mechanisms of its action remain to be explored. Known and potential functions of Hsp70 in controlling or modulating of invasion and metastasis are discussed.
Collapse
|
10
|
Abstract
Heat shock protein 70 (Hsp70) is a powerful chaperone whose expression is induced in response to a wide variety of physiological and environmental insults, including anticancer chemotherapy, thus allowing the cell to survive to lethal conditions. Hsp70 cytoprotective properties may be explained by its anti-apoptotic function. Indeed, this protein can inhibit key effectors of the apoptotic machinery at the pre- and postmitochondrial level. In cancer cells, the expression of Hsp70 is abnormally high, and Hsp70 may participate in oncogenesis and in resistance to chemotherapy. In rodent models, Hsp70 overexpression increases tumor growth and metastatic potential. Depletion or inhibition of Hsp70 frequently reduces the size of the tumors and even can cause their complete involution. But Hsp70 can also be found in the extracellular medium. Its role is then immunogenic and the term chaperokine to define the extracellular chaperones has been advanced. Hsp70 tumorigenic functions as well as the strategies that are being developed in cancer therapy in order to inhibit Hsp70 are commented in this chapter.
Collapse
|
11
|
Multhoff G. Activation of natural killer cells by heat shock protein 70. 2002. Int J Hyperthermia 2009; 25:169-75. [PMID: 19437234 DOI: 10.1080/02656730902902001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Intracellular heat shock proteins (HSP) function as molecular chaperones, they support folding and transport mechanisms of other proteins under physiological conditions and following physical or chemical stress. More recently, extracellular localized HSP have been found to play key roles in the induction of a cellular immune response. Either they act as carrier molecules for immunogenic peptides that are presented on Antigen Presenting Cells (APC) to cytotoxic T-cells or they themselves act as activatory molecules for the innate immune system. Binding of uncomplexed HSP to HSP-receptors on APC has been found to induce the secretion of inflammatory cytokines. Furthermore, an unusual tumor-selective membrane-localization of non-conserved regions of the 72 000 Da HSP (Hsp70) has been found to act as a recognition structure for natural killer (NK) cells. In this review the interaction of NK cells with Hsp70 or peptides derived thereof will be eluciated in more detail.
Collapse
Affiliation(s)
- Gabriele Multhoff
- Department of Hematology and Oncology, University Hospital Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
12
|
The immune system and chronic heart failure: is the heart in control? J Am Coll Cardiol 2009; 53:1013-20. [PMID: 19298913 DOI: 10.1016/j.jacc.2008.11.046] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 10/09/2008] [Accepted: 11/02/2008] [Indexed: 11/21/2022]
Abstract
Despite current treatment options, the clinical course of patients with chronic heart failure is notoriously difficult to predict. Among those with similar etiologies, ejection fractions, and patient demographics, our understanding of why such variations in outcomes exist remains limited. Evidence that has been progressively gathered implicates an important role of the immune system in the propagation of heart failure. This has been derived mainly from observations that cytokines are progressively elevated in patients with poor outcomes. However, attempts at introducing various immunomodulatory therapies as a new treatment strategy have been largely unsuccessful to date. This possibly reflects a failure in recognizing the complexity of the immune system's role in chronic heart failure, which has led to an oversimplified approach to treatment. This review critically analyzes the immune treatments attempted to date and hypothesizes what is required to develop a successful future treatment strategy.
Collapse
|
13
|
Gao J, Zhang B, Yang S, Li K, Xu H, Xiong Y, Wang Y, Wang Y, Xu W, Cheng Y, Zheng G. Construction and expression of a eukaryotic expression vector containing a fusion gene of the Hantaan virus S gene and hsp70 gene. Curr Microbiol 2008; 58:30-4. [PMID: 18810536 DOI: 10.1007/s00284-008-9261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 07/28/2008] [Accepted: 08/25/2008] [Indexed: 11/25/2022]
Abstract
Hantavirus (HV) infection leads to a kind of severe systematic syndrome, hemorrhagic fever with renal syndrome (HFRS). Heat shock proteins (HSPs) can be used as adjuvants assisting soluble antigens to produce specific targets which can be attacked by cytotoxic T lymphocytes. For further research on HFRS vaccine, this study aimed to express Hantaan virus nucleocapsid protein (HTNV NP)-HSP70 fusion protein in COS-7 cells. First, an HTNV S gene encoding NP was amplified by PCR with a mutated termination code and cloned into eukaryotic expression vector pCDNA3.1(+), into which the full-length hsp70 gene had already been inserted, to form the S-hsp70 fusion expression vector pCDNA3.1(+)/S-hsp70. Then this recombinant plasmid was transfected into COS-7 cells by liposome, and eukaryotic expression of NP-HSP70 fusion protein was detected by immunocytochemistry and western blot. The results show that the eukaryotic expression vector pCDNA3.1(+)/S-hsp70 was successfully constructed and the NP-HSP70 fusion protein was effectively expressed in COS-7 cells. This study demonstrates that the NP-HSP70 fusion protein was expressed effectively from the pCDNA3.1(+)/S-hsp70 vector in a eukaryotic system and thus provides a basis for using this plasmid as a new DNA vaccine against HV infection.
Collapse
Affiliation(s)
- Juan Gao
- Department of Digestive Diseases, Wuhan General Hospital of Guangzhou Command PLA, Wuhan, 430070, Hubei province, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Taglia L, Matusiak D, Benya RV. GRP-induced up-regulation of Hsp72 promotes CD16+/94+ natural killer cell binding to colon cancer cells causing tumor cell cytolysis. Clin Exp Metastasis 2008; 25:451-63. [PMID: 18350254 DOI: 10.1007/s10585-008-9151-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 02/13/2008] [Indexed: 11/30/2022]
Abstract
Gastrin-releasing peptide (GRP) and its receptor (GRPR) are not normally expressed by epithelial cells lining the adult human colon. However post malignant transformation both GRP and its receptor are aberrantly expressed in the colon where we have previously shown they act to retard metastasis by enhancing tumor cell attachment to the extracellular matrix. In the present study, we show that GRP signaling via its cognate receptor when both are aberrantly expressed in human colon cancer cells causes heat shock protein 72 (Hsp72) to be expressed. We show that GRP/GRPR induces expression of Hsp72 by signaling via focal adhesion kinase. When expressed, Hsp72 promotes the binding of CD16+ and CD94+ natural killer cells, resulting in tumor cell cytolysis. These findings demonstrate the presence of a novel mechanism whereby aberrantly expressed GRP/GRPR in human colorectal cancer attenuates tumor progression and may promote a favorable outcome.
Collapse
Affiliation(s)
- Lauren Taglia
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | |
Collapse
|
15
|
Multhoff G. Heat shock protein 70 (Hsp70): membrane location, export and immunological relevance. Methods 2008; 43:229-37. [PMID: 17920520 DOI: 10.1016/j.ymeth.2007.06.006] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Accepted: 06/25/2007] [Indexed: 10/22/2022] Open
Abstract
Stress or heat shock proteins (HSPs) are remarkably conserved in all living organisms. Their expression is induced in response to a variety of physiological and environmental insults. In the cytosol these proteins play an essential role as molecular chaperones by assisting the correct folding of nascent and stress-accumulated misfolded proteins, preventing protein aggregation, transport of proteins, and supporting antigen processing and presentation. Following stress, intracellularly located HSPs fulfill protective functions and thus prevent lethal damage. In contrast, membrane-bound or extracellularly located HSPs act as danger signals and elicit immune responses mediated either by the adaptive or innate immune system. Here, HSPs act as carriers for immunogenic peptides, induce cytokine release or provide recognition sites for natural killer (NK) cells. This article will discuss methods for the detection of membrane-bound and extracellular HSPs and methods for determining their immunological functions.
Collapse
Affiliation(s)
- Gabriele Multhoff
- Department of Radiotherapy and Radiooncology, Technical University Munich, Ismaningerstr. 22, 81675 Munich, Germany.
| |
Collapse
|
16
|
Abstract
Apoptotic cell death is initiated by a morphologically homogenous entity that was considered to be non-immunogenic and non-inflammatory in nature. However, recent advances suggest that apoptosis, under certain circumstances, can be immunogenic. In particular, some characteristics of the plasma membrane, acquired at preapoptotic stage, can cause immune effectors to recognize and attack preapoptotic tumor cells. The signals that mediate the immunogenicity of tumor cells involve elements of the DNA damage response (such as ataxia telangiectasia mutated and p53 activation), elements of the endoplasmic reticulum stress response (such as eukaryotic initiation factor 2alpha phosphorylation), as well as elements of the apoptotic response (such as caspase activation). Depending on the signal-transduction pathway, tumor cells responding to chemotherapy or radiotherapy can express 'danger' and 'eat me' signals on the cell surface (such as NKG2D ligands, heat-shock proteins and calreticulin) or can secrete/release immunostimulatory factors (such as cytokines and high-mobility group box 1) to stimulate innate immune effectors. Likewise, the precise sequence of such events influences the 'decision' of the immune system to mount a cognate response or not. We therefore anticipate that the comprehension of the mechanisms governing the immunogenicity of cell death will have a profound impact on the design of anticancer therapies.
Collapse
|
17
|
Koido S, Hara E, Homma S, Mitsunaga M, Takahara A, Nagasaki E, Kawahara H, Watanabe M, Toyama Y, Yanagisawa S, Kobayashi S, Yanaga K, Fujise K, Gong J, Tajiri H. Synergistic Induction of Antigen-Specific CTL by Fusions of TLR-Stimulated Dendritic Cells and Heat-Stressed Tumor Cells. THE JOURNAL OF IMMUNOLOGY 2007; 179:4874-83. [PMID: 17878387 DOI: 10.4049/jimmunol.179.7.4874] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dendritic cell (DC)/tumor cell fusion cells (FCs) can induce potent CTL responses. The therapeutic efficacy of a vaccine requires the improved immunogenicity of both DCs and tumor cells. The DCs stimulated with the TLR agonist penicillin-killed Streptococcus pyogenes (OK-432; OK-DCs) showed higher expression levels of MHC class I and II, CD80, CD86, CD83, IL-12, and heat shock proteins (HSPs) than did immature DCs. Moreover, heat-treated autologous tumor cells displayed a characteristic phenotype with increased expression of HSPs, carcinoembryonic Ag (CEA), MUC1, and MHC class I (HLA-A2 and/or A24). In this study, we have created four types of FC preparation by alternating fusion cell partners: 1) immature DCs fused with unheated tumor cells; 2) immature DCs fused with heat-treated tumor cells; 3) OK-DCs fused with unheated tumor cells; and 4) OK-DCs fused with heat-treated tumor cells. Although OK-DCs fused with unheated tumor cells efficiently enhanced CTL induction, OK-DCs fused with heat-treated tumor cells were most active, as demonstrated by: 1) up-regulation of multiple HSPs, MHC class I and II, CEA, CD80, CD86, CD83, and IL-12; 2) activation of CD4+ and CD8+ T cells able to produce IFN- gamma at higher levels; 3) efficient induction of CTL activity specific for CEA or MUC1 or both against autologous tumor; and 4) superior abilities to induce CD107+ IFN-gamma+ CD8+ T cells and CD154+ IFN-gamma+ CD4+ T cells. These results strongly suggest that synergism between OK-DCs and heat-treated tumor cells enhances the immunogenicity of FCs and provides a promising means of inducing therapeutic antitumor immunity.
Collapse
Affiliation(s)
- Shigeo Koido
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Pfister K, Radons J, Busch R, Tidball JG, Pfeifer M, Freitag L, Feldmann HJ, Milani V, Issels R, Multhoff G. Patient survival by Hsp70 membrane phenotype: association with different routes of metastasis. Cancer 2007; 110:926-35. [PMID: 17580361 DOI: 10.1002/cncr.22864] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Heat shock proteins (HSPs) play important roles in tumor immunity. The authors prospectively investigated the correlation between the tumor-specific Hsp70 membrane expression as an independent clinicopathological marker and overall survival in tumor entities that differ in their route of metastasis. METHODS Hsp70 membrane expression was examined by flow cytometry in 58 colon, 19 gastric, 54 lower rectal carcinoma, and 19 squamous cell carcinoma specimens and the corresponding normal tissues at time of first diagnosis. Kaplan-Meier survival curves were analyzed to determine the relation of Hsp70 expression to the patients' prognosis. RESULTS An Hsp70 membrane-positive phenotype was found in 40% (colon), 37% (gastric), 43% (lower rectal), and 42% (squamous cell) of the analyzed tumor specimens. None of the corresponding normal tissues was found to be Hsp70 membrane-positive. In patients with colon (P = .032) and gastric (P = .045) carcinomas, an Hsp70 membrane expression correlated significantly with an improved overall survival; a negative association was seen in lower rectal (P = .085) and squamous cell carcinoma (P = .048). CONCLUSIONS The authors hypothesized that differing relations between surface expression of Hsp70 on tumor cells and clinical outcomes may reflect differences in the route of metastases. Colon and gastric carcinomas metastasize into the liver where hepatic natural killer cells may have the capacity to recognize and kill Hsp70 membrane-positive tumor cells and thus account for a better overall survival.
Collapse
Affiliation(s)
- Karin Pfister
- Department for Surgery, University Hospital Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
NK cell-based immunotherapies against tumors. Open Med (Wars) 2006. [DOI: 10.2478/s11536-006-0023-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractNatural killer (NK) cells provide the first line of defence against pathogens and tumors. Their activation status is regulated by pro-inflammatory cytokines and by ligands that either target inhibitory or activating cell surface receptors belonging to the immunoglobulin-like, C-type lectin or natural cytotoxicity receptor families. Apart from non-classical HLA-E, membrane-bound heat shock protein 70 (Hsp70) has been identified as a tumor-specific recognition structure for NK cells expressing high amounts of the C-type lectin receptor CD94, acting as one component of an activating heterodimeric receptor complex. Full-length Hsp70 protein (Hsp70) or the 14-mer Hsp70 peptide T-K-D-N-N-L-L-G-R-F-E-L-S-G (TKD) in combination with pro-inflammatory cytokines enhances the cytolytic activity of NK cells towards Hsp70 membrane-positive tumors. Based on these findings cytokine/TKD-activated NK cells were adoptively transferred in tumor patients. These findings were compared to results of clinical trials using cytokine-activated NK cells.
Collapse
|
20
|
Schmitt E, Gehrmann M, Brunet M, Multhoff G, Garrido C. Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. J Leukoc Biol 2006; 81:15-27. [PMID: 16931602 DOI: 10.1189/jlb.0306167] [Citation(s) in RCA: 417] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Stress or heat shock proteins (HSPs) are the most conserved proteins present in both prokaryotes and eukaryotes. Their expression is induced in response to a wide variety of physiological and environmental insults. These proteins play an essential role as molecular chaperones by assisting the correct folding of nascent and stress-accumulated misfolded proteins, and preventing their aggregation. HSPs have a dual function depending on their intracellular or extracellular location. Intracellular HSPs have a protective function. They allow the cells to survive lethal conditions. Various mechanisms have been proposed to account for the cytoprotective functions of HSPs. Several HSPs have also been demonstrated to directly interact with various components of the tightly regulated programmed cell death machinery, upstream and downstream of the mitochondrial events. On the other hand, extracellular located or membrane-bound HSPs mediate immunological functions. They can elicit an immune response modulated either by the adaptive or innate immune system. This review will focus on HSP27, HSP70, and HSP90. We will discuss the dual role of these HSPs, protective vs. immunogenic properties, making a special emphasis in their utility as targets in cancer therapy.
Collapse
Affiliation(s)
- E Schmitt
- INSERM U-517, 7 Boulevard Jeanne d'Arc, Faculty of Medicine and Pharmacy, Dijon 21079, France, and Department of Hematology/Oncology, University Hospital Regensburg, Germany
| | | | | | | | | |
Collapse
|
21
|
Warger T, Hilf N, Rechtsteiner G, Haselmayer P, Carrick DM, Jonuleit H, von Landenberg P, Rammensee HG, Nicchitta CV, Radsak MP, Schild H. Interaction of TLR2 and TLR4 ligands with the N-terminal domain of Gp96 amplifies innate and adaptive immune responses. J Biol Chem 2006; 281:22545-53. [PMID: 16754684 DOI: 10.1074/jbc.m502900200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of dendritic cells by ligands for Toll-like receptors (TLR) is a crucial event in the initiation of innate and adaptive immune responses. Several classes of TLR ligands have been identified that interact with distinct members of the TLR-family. TLR4 ligands include lipopolysaccharide derived from different Gram-negative bacteria and viral proteins. Recent reports have demonstrated the TLR-mediated activation of dendritic cells by heat shock proteins (HSPs). However, doubts were raised as to what extent this effect was due to lipopolysaccharide contaminations of the HSP preparations. We re-examined this phenomenon using Gp96 or its N-terminal domain, nominally endotoxin-free (<0.5 enzyme units/mg). As described previously, innate immune cells are activated by Gp96 at high concentrations (> or =50 microg/ml) but not at lower concentrations. However, preincubation of low amounts of Gp96 with TLR2 and TLR4 ligands at concentrations unable to activate dendritic cells by themselves results in the production of high levels of proinflammatory cytokines, up-regulation of activation markers, and amplification of T cell activation. Our results provide significant new insights into the mechanism of HSP-mediated dendritic cell activation and present a new function of HSPs in the amplification of dendritic cell activation by bacterial products and induction of adaptive immune responses.
Collapse
Affiliation(s)
- Tobias Warger
- Institute of Immunology, University of Mainz, Obere Zahlbacherstrasse 67, 55131 Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Galazka G, Stasiolek M, Walczak A, Jurewicz A, Zylicz A, Brosnan CF, Raine CS, Selmaj KW. Brain-derived heat shock protein 70-peptide complexes induce NK cell-dependent tolerance to experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2006; 176:1588-99. [PMID: 16424188 DOI: 10.4049/jimmunol.176.3.1588] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Heat shock proteins (Hsp) are markedly up-regulated at sites of inflammation during autoimmune diseases like experimental autoimmune encephalomyelitis (EAE). In this study, we show that Hsp70-peptide complexes (pc) isolated from brains of mice with EAE prevented the development of EAE clinically and pathologically when administered before proteolipid protein 139-151 (PLP139-151) immunization. In contrast, pure Hsp70 or Hsp70-pc derived from brains of healthy mice or other inflamed tissue did not modulate the expression of EAE. In animals in which EAE had been suppressed by Hsp70-pc, lymphocytes showed increased cell death in response to PLP139-151 that correlated with elevated IFN-gamma and NO production. Coculture of spleen cells from Hsp70-pc immunized mice with spleen cells from untreated EAE mice, in addition to depletion experiments, showed that NK cells reduced reactivity to PLP139-151. Transfer of NK cells from Hsp70-pc-immunized mice to recipients sensitized for EAE abolished disease development. Thus, we propose that Hsp70 demonstrate the ability to bind to peptides generated during brain inflammation and to induce a regulatory NK cell population that is capable of preventing subsequent autoimmunization for EAE.
Collapse
Affiliation(s)
- Grazyna Galazka
- Department of Neurology, Medical University of Lodz, Lodz, Poland
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Ramirez SR, Singh-Jasuja H, Warger T, Braedel-Ruoff S, Hilf N, Wiemann K, Rammensee HG, Schild H. Glycoprotein 96-activated dendritic cells induce a CD8-biased T cell response. Cell Stress Chaperones 2005; 10:221-9. [PMID: 16184767 PMCID: PMC1226020 DOI: 10.1379/csc-117r.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Heat shock proteins (Hsps) are able to induce protective immune responses against pathogens and tumors after injection into immunocompetent hosts. The activation of components of the adaptive immune system, including cytotoxic T lymphocytes specific for pathogen- or tumor-derived peptides, is crucial for the establishment of immunoprotection. Hsps acquire these peptides during intracellular protein degradation and when released during necrotic cell death, facilitate their uptake and Minor Histocompatibility Complex (MHC)-restricted representation by professional antigen-presenting cells (APCs). In addition, the interaction of Hsps with APCs, including the Endoplasmatic Reticulum (ER)-resident chaperone glycoprotein 96 (Gp96), induces the maturation of these cells by Toll-like receptor (TLR)-mediated signaling events. We now provide evidence that in contrast to lipopolysaccharides (LPS)-mediated dendritic cell (DC) maturation, the interaction of Gp96 with DCs leads to the preferential expansion of antigen-specific CD8-positive T cells in vitro and in vivo. This CD8 preference induced by mouse and human DCs did not correlate with enhanced levels of interleukin-12 secretion. Thus, despite the fact that both LPS and Gp96 activate DCs in a TLR4-dependent manner, the experiments of this study clearly demonstrate qualitative differences in the outcome of this maturation process, which preferentially favors the expansion of CD8-positive T cells.
Collapse
Affiliation(s)
- Sabina Rayo Ramirez
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, D-72076 Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Krause SW, Gastpar R, Andreesen R, Gross C, Ullrich H, Thonigs G, Pfister K, Multhoff G. Treatment of colon and lung cancer patients with ex vivo heat shock protein 70-peptide-activated, autologous natural killer cells: a clinical phase i trial. Clin Cancer Res 2004; 10:3699-707. [PMID: 15173076 DOI: 10.1158/1078-0432.ccr-03-0683] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The 14 amino acid sequence (aa(450-463)) TKDNNLLGRFELSG (TKD) of heat shock protein 70 (Hsp70) was identified as a tumor-selective recognition structure for natural killer (NK) cells. Incubation of peripheral blood lymphocyte cells with TKD plus low-dose interleukin 2 (IL-2) enhances the cytolytic activity of NK cells against Hsp70 membrane-positive tumors, in vitro and in vivo. These data encouraged us to test tolerability, feasibility, and safety of TKD-activated NK cells in a clinical Phase I trial. EXPERIMENTAL DESIGN Patients with metastatic colorectal cancer (n = 11) and non-small cell lung cancer (n = 1) who had failed standard therapies were enrolled. After ex vivo stimulation of autologous peripheral blood lymphocytes with Hsp70-peptide TKD (2 microg/ml) plus low-dose IL-2 (100 units/ml), TKD was removed by extensive washing, and activated cells were reinfused i.v. The procedure was repeated for up to six cycles, applying a dose escalation schedule in 4 patients. RESULTS The percentage of activated NK cells in the reinfused leukapheresis products ranged between 8 and 20% of total lymphocytes, corresponding to total NK cell counts of 0.1 up to 1.5 x 10(9). Apart from restless feeling in 1 patient and itching in 2 patients, no negative side effects were observed. Concomitant with an enhanced CD94 cell surface density, the cytolytic activity of NK cells against Hsp70 membrane-positive colon carcinoma cells was enhanced after TKD/IL-2 stimulation in 10 of 12 patients. Concerning tumor response, 1 patient was in stable disease during therapy by formal staging criteria and another patient showed stable disease in one metastases and progression in another. CONCLUSIONS Reinfusion of Hsp70-activated autologous NK cells is safe. Immunological results warrant additional studies in patients with lower tumor burden.
Collapse
Affiliation(s)
- Stefan W Krause
- Department of Hematology/Oncology, Institute for Clinical Chemistry, University Hospital Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Hunter-Lavin C, Davies EL, Bacelar MMFVG, Marshall MJ, Andrew SM, Williams JHH. Hsp70 release from peripheral blood mononuclear cells. Biochem Biophys Res Commun 2004; 324:511-7. [PMID: 15474457 DOI: 10.1016/j.bbrc.2004.09.075] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Indexed: 11/15/2022]
Abstract
There are an increasing number of studies reporting the presence of Hsps in human serum. We have investigated the release of Hsp70 into blood and culture medium from peripheral blood mononuclear cells (PBMCs), and whether this release is due to cell damage or active secretion from the cells. Intact Hsp70 was released from cells within whole blood and from purified PBMCs under normal culture conditions. Hsp70 release was rapid (0.1 ng/10(6) cells/h) over the first 2 h of culture and continued at a reduced rate up to 24 h (<0.025 ng/10(6) cells/h). Using viable cell counts and lactate dehydrogenase release we were able to confirm that the release of Hsp70 was not due to cellular damage. Hsp70 release was inhibited by monensin, methyl-beta-cyclodextrin, and methylamine, but not by brefeldin A. These data suggest that Hsp70 is released from cells via a non-classical pathway, possibly involving lysosomal lipid rafts.
Collapse
Affiliation(s)
- Claire Hunter-Lavin
- Chester Centre for Stress Research, Biological Sciences, University College Chester, Parkgate Road, Chester CH1 4BJ, United Kingdom
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
An adjuvant is defined as a product that increases or modulates the immune response against an antigen (Ag). Based on this general definition many authors have postulated that the ideal adjuvant should increase the potency of the immune response, while being non-toxic and safe. Although dozens of different adjuvants have been shown to be effective in preclinical and clinical studies, only aluminium-based salts (Alum) and squalene-oil-water emulsion (MF59) have been approved for human use. However, for the development of therapeutic vaccines to treat cancer patients, the prerequisites for an ideal cancer adjuvant differ from conventional adjuvants for many reasons. First, the patients that will receive the vaccines are immuno-compromised because of, for example, impaired mechanisms of antigen presentation, non-responsiveness of activated T cells and enhanced inhibition of self-reactivity by regulatory T cells. Second, the tumour Ag are usually self-derived and are, therefore, poorly immunogenic. Third, tumours develop escape mechanisms to avoid the immune system, such as tumour editing, low or non-expression of MHC class I molecules or secretion of suppressive cytokines. Thus, adjuvants for cancer vaccines need to be more potent than for prophylactic vaccines and consequently may be more toxic and may even induce autoimmune reactions. In summary, the ideal cancer adjuvant should rescue and increase the immune response against tumours in immuno-compromised patients, with acceptable profiles of toxicity and safety. The present review discusses the role of cancer adjuvants at the different phases of the generation of antitumour immunity following vaccination.
Collapse
Affiliation(s)
- Circe Mesa
- Vaccine's Department, Centre of Molecular Immunology, Havana, Cuba.
| | | |
Collapse
|
27
|
Ye J, Chen GS, Song HP, Li ZS, Huang YY, Qu P, Sun YJ, Zhang XM, Sui YF. Heat shock protein 70 / MAGE-1 tumor vaccine can enhance the potency of MAGE-1-specific cellular immune responses in vivo. Cancer Immunol Immunother 2004; 53:825-34. [PMID: 15127237 PMCID: PMC11034208 DOI: 10.1007/s00262-004-0536-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Accepted: 03/09/2004] [Indexed: 11/26/2022]
Abstract
The cancer-testis antigen encoded by the MAGE-1 gene is an attractive antigen in tumor immunotherapy because it can be processed as a foreign antigen by the immune system and generate tumor-specific cellular immune response in vivo. However, increase of the potency of MAGE-1 DNA vaccines is still needed. The high degree of sequence homology and intrinsic immunogenicity of heat shock protein 70 (HSP70) have prompted the suggestion that HSP70 might have immunotherapeutic potential, as HSP70 purified from malignant and virally infected cells can transfer and deliver antigenic peptides to antigen-presenting cells to elicit peptide-specific immunity. In this research, we evaluated the enhancement of linkage of Mycobacterium tuberculosis HSP70 to MAGE-1 gene of the potency of antigen-specific immunity elicited by naked DNA vaccines. We found that vaccines containing MAGE-1-HSP70 fusion genes enhanced the frequency of MAGE-1-specific cytotoxic T cells in contract to vaccines containing the MAGE-1 gene alone. More importantly, the fusion converted a less effective DNA vaccine into one with significant potency against established MAGE-1-expressing tumors. These results indicate that linkage of HSP70 to MAGE-1 gene may greatly enhance the potency of DNA vaccines, and generate specific antitumor immunity against MAGE-1-expressing tumors.
Collapse
Affiliation(s)
- Jing Ye
- Laboratory of Cancer Immunology and Immunotherapy, Department of Pathology, Fourth Military Medical University, Xi’an, 710032 Shaanxi Province China
| | - Guang-Sheng Chen
- Laboratory of Cancer Immunology and Immunotherapy, Department of Pathology, Fourth Military Medical University, Xi’an, 710032 Shaanxi Province China
| | - Hong-Ping Song
- Laboratory of Cancer Immunology and Immunotherapy, Department of Pathology, Fourth Military Medical University, Xi’an, 710032 Shaanxi Province China
| | - Zeng-Shan Li
- Laboratory of Cancer Immunology and Immunotherapy, Department of Pathology, Fourth Military Medical University, Xi’an, 710032 Shaanxi Province China
| | - Ya-Yu Huang
- Department of Haematology, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032 Shaanxi Province China
| | - Ping Qu
- Laboratory of Cancer Immunology and Immunotherapy, Department of Pathology, Fourth Military Medical University, Xi’an, 710032 Shaanxi Province China
| | - Yu-Jing Sun
- Laboratory of Cancer Immunology and Immunotherapy, Department of Pathology, Fourth Military Medical University, Xi’an, 710032 Shaanxi Province China
| | - Xiu-Min Zhang
- Laboratory of Cancer Immunology and Immunotherapy, Department of Pathology, Fourth Military Medical University, Xi’an, 710032 Shaanxi Province China
| | - Yan-Fang Sui
- Laboratory of Cancer Immunology and Immunotherapy, Department of Pathology, Fourth Military Medical University, Xi’an, 710032 Shaanxi Province China
| |
Collapse
|
28
|
Becker B, Multhoff G, Farkas B, Wild PJ, Landthaler M, Stolz W, Vogt T. Induction of Hsp90 protein expression in malignant melanomas and melanoma metastases. Exp Dermatol 2004; 13:27-32. [PMID: 15009113 DOI: 10.1111/j.0906-6705.2004.00114.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The heat-shock protein Hsp90 has been shown to be essential for the functional integrity of the telomerase complex. The telomerase activity is enhanced in melanoma and stabilizes the chromosomal integrity in proliferating cells. Furthermore, overexpression of Hsp90 induces silencing of point mutations in transcription factors which, otherwise, would result in a loss-of-function phenotype. In melanocytic lesions there is a higher risk of mutations caused by the enhanced proliferation in melanocytic cells. By analyzing microdissected melanocytic tumors by semiquantitative PCR, we demonstrate an overexpression of Hsp90 mRNA in malignant melanomas (10/14) and in melanoma metastases (6/6) as well as in melanoma cell lines (9/9) when compared with melanocytic nevi (2/9). These results could be confirmed on protein level by immunohistochemistry. While melanocytic nevi show discrete Hsp90 expression only in a minor fraction (2/9), malignant melanomas and metastases show a positive Hsp90 immunohistochemistry in the majority of cases; (7/9) and (13/14), respectively. In addition, by analyzing melanoma metastases by flow cytometry we show that Hsp90 is expressed on the surface of tumor cells (7/8). From these data we conclude that Hsp90 is present in advanced malignant melanomas and may have a stabilizing effect on the cellular functions in proliferating cells of melanocytic lesions and could thereby be a prerequisite for the tumor progression. As Hsp90 is expressed on the cell surface, it might also be a potential immunorelevant target structure for immunotherapy of melanoma.
Collapse
Affiliation(s)
- B Becker
- Department of Dermatology, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
29
|
Rivoltini L, Castelli C, Carrabba M, Mazzaferro V, Pilla L, Huber V, Coppa J, Gallino G, Scheibenbogen C, Squarcina P, Cova A, Camerini R, Lewis JJ, Srivastava PK, Parmiani G. Human tumor-derived heat shock protein 96 mediates in vitro activation and in vivo expansion of melanoma- and colon carcinoma-specific T cells. THE JOURNAL OF IMMUNOLOGY 2004; 171:3467-74. [PMID: 14500642 DOI: 10.4049/jimmunol.171.7.3467] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heat shock proteins (hsp) 96 play an essential role in protein metabolism and exert stimulatory activities on innate and adaptive immunity. Vaccination with tumor-derived hsp96 induces CD8(+) T cell-mediated tumor regressions in different animal models. In this study, we show that hsp96 purified from human melanoma or colon carcinoma activate tumor- and Ag-specific T cells in vitro and expand them in vivo. HLA-A*0201-restricted CD8(+) T cells recognizing Ags expressed in human melanoma (melanoma Ag recognized by T cell-1 (MART-1)/melanoma Ag A (Melan-A)) or colon carcinoma (carcinoembryonic Ag (CEA)/epithelial cell adhesion molecule (EpCAM)) were triggered to release IFN-gamma and to mediate cytotoxic activity by HLA-A*0201-matched APCs pulsed with hsp96 purified from tumor cells expressing the relevant Ag. Such activation occurred in class I HLA-restricted fashion and appeared to be significantly higher than that achieved by direct peptide loading. Immunization with autologous tumor-derived hsp96 induced a significant increase in the recognition of MART-1/Melan-A(27-35) in three of five HLA-A*0201 melanoma patients, and of CEA(571-579) and EpCAM(263-271) in two of five HLA-A*0201 colon carcinoma patients, respectively, as detected by ELISPOT and HLA/tetramer staining. These increments in Ag-specific T cell responses were associated with a favorable disease course after hsp96 vaccination. Altogether, these data provide evidence that hsp96 derived from human tumors can present antigenic peptides to CD8(+) T cells and activate them both in vitro and in vivo, thus representing an important tool for vaccination in cancer patients.
Collapse
Affiliation(s)
- Licia Rivoltini
- Unit of Immunotherapy of Human Tumor, Gastrointestinal and Liver Surgery Unit, and. Colorectal Surgery Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Liu C, Ewing N, DeFilippo M. Analytical challenges and strategies for the characterization of gp96-associated peptides. Methods 2004; 32:32-7. [PMID: 14624875 DOI: 10.1016/s1046-2023(03)00185-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This paper describes the methods that were used for the preparation of gp96-associated peptides and the analysis of these peptides using mass spectrometry. A general approach for stripping, enriching, and separating peptides associated with gp96 is presented. Protocols for the demonstration of the diversity of gp96-associated peptides using mass spectrometry and the identification of these peptides using a combination of tandem mass spectrometry and protein database searching are described. Important parameters and factors that affect the outcome of the experiments are discussed.
Collapse
|
31
|
Abstract
gp96 plays a central role in innate as well as acquired immunity, maturation and chemotaxis of dendritic cells, Ab production, and cross-priming, and is a peptide acceptor in endoplasmic reticulum and an accessory to peptide loading of MHC class I molecules. The remarkable conservation of essential immunological properties of gp96 suggests their important roles during the evolution of the immune system. Considering their importance in immunity, immune evasion mechanisms of pathogens by modulating gp96 expression have been speculated. By differential display PCR, we observed that obligate intracellular bacteria, Orientia tsutsugamushi, inhibit gp96 expression of a macrophage cell line, J774A.1. Not only gp96 transcripts but also protein was lower than for null-infected cells. The down-regulation was also consistent in an endothelial cell line, HMEC-1, and in murine peritoneal cells. These data support the idea that gp96 may be one of the target molecules for the immune evasion by intracellular bacteria.
Collapse
Affiliation(s)
- Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Korea
| | | | | |
Collapse
|
32
|
Kleinjung T, Arndt O, Feldmann HJ, Bockmühl U, Gehrmann M, Zilch T, Pfister K, Schönberger J, Marienhagen J, Eilles C, Rossbacher L, Multhoff G. Heat shock protein 70 (Hsp70) membrane expression on head-and-neck cancer biopsy-a target for natural killer (NK) cells. Int J Radiat Oncol Biol Phys 2003; 57:820-6. [PMID: 14529789 DOI: 10.1016/s0360-3016(03)00629-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
PURPOSE Heat shock protein 70 (Hsp70) was detected on the cell membrane of human tumor cell lines, but not on normal cells. Here we studied Hsp70 membrane expression as a target for natural killer (NK) cells on tumor material and control tissues of head-and-neck cancer patients. METHODS AND MATERIALS Membrane-bound Hsp70 was determined by flow cytometry on single-cell suspensions of tumors and the corresponding normal tissues of head-and-neck cancer patients. The cytolytic activity of NK cells against Hsp70-positive tumor cells was measured in a standard cytotoxicity assay. RESULTS In total, 54 of 74 primary tumors were found to be Hsp70 membrane-positive (73%); tongue/mouth, 21 of 24 (88%); oropharynx, 13 of 20 (65%); hypopharynx, 3 of 6 (50%); larynx, 8 of 11 (73%); trachea 1 of 2 (50%); esophagus, 4 of 5 (80%); lymph node metastases, 4 of 6 (67%). The corresponding control tissue was negative for membrane-bound Hsp70. Biopsies (6 of 6) of patients after in vivo gamma-irradiation (fractionated 5 x 2 Gy) were strongly Hsp70 membrane-positive. Irradiated, Hsp70-positive tumor cells are targets for Hsp70-peptide stimulated NK cells. CONCLUSION An irradiation-inducible, tumor-selective Hsp70 membrane localization provides a target structure for Hsp70-peptide stimulated human NK cells.
Collapse
Affiliation(s)
- Tobias Kleinjung
- Department of Ear, Nose, and Throat Medicine (ENT), Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Gross C, Koelch W, DeMaio A, Arispe N, Multhoff G. Cell surface-bound heat shock protein 70 (Hsp70) mediates perforin-independent apoptosis by specific binding and uptake of granzyme B. J Biol Chem 2003; 278:41173-81. [PMID: 12874291 DOI: 10.1074/jbc.m302644200] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell surface-bound heat shock protein 70 (Hsp70) renders tumor cells more sensitive to the cytolytic attack mediated by natural killer (NK) cells. A 14-amino acid Hsp70 sequence, termed TKD (TKDNNLLGRFELSG, aa450-463) could be identified as the extracellular localized recognition site for NK cells. Here, we show by affinity chromatography that both, full-length Hsp70-protein and Hsp70-peptide TKD, specifically bind a 32-kDa protein derived from NK cell lysates. The serine protease granzyme B was uncovered as the 32-kDa Hsp70-interacting protein using matrix-assisted laser desorption ionization time-of-flight mass peptide fingerprinting. Incubation of tumor cells with increasing concentrations of perforin-free, isolated granzyme B shows specific binding and uptake in a dose-dependent manner and results in initiation of apoptosis selectively in tumor cells presenting Hsp70 on the cell surface. Remarkably, Hsp70 cation channel activity was also determined selectively in purified phospholipid membranes of Hsp70 membrane-positive but not in membrane-negative tumor cells. The physiological role of our findings was demonstrated in primary NK cells showing elevated cytoplasmic granzyme B levels following contact with TKD. Furthermore, an increased lytic activity of Hsp70 membrane-positive tumor cells could be associated with granzyme B release by NK cells. Taken together we propose a novel perforin-independent, granzyme B-mediated apoptosis pathway for Hsp70 membrane-positive tumor cells.
Collapse
Affiliation(s)
- Catharina Gross
- University Hospital Regensburg, Department of Hematology, 93053 Regensburg, Germany
| | | | | | | | | |
Collapse
|
34
|
Abstract
Amongst the families of intracellular molecules that chaperone and assist with the trafficking of other proteins, notably during conditions of cellular stress, heat shock protein (hsp) 70 is one of the most studied. Although its name suggests that expression is exclusively induced during cellular hyperthermia, members of the hsp70 family of proteins can be constitutively expressed and/or induced by a range of other cellular insults. The ubiquitous presence of hsp70 in eukaryotic and prokaryotic cells, combined with its high degree of sequence homology and intrinsic immunogenicity, have prompted the suggestion that inappropriate immune reactivity to hsp70 might lead to pro-inflammatory responses and the development of autoimmune disease. Indeed, hsp70 has been shown to be a potent activator of innate immunity and aberrant expression of hsp70 in certain organs promotes immunopathology. However, studies also suggest that hsp70 might have immunotherapeutic potential, as hsp70 purified from malignant and virally infected cells can transfer and deliver antigenic peptides to antigen-presenting cells to elicit peptide-specific immunity and, in contrast to its reported pro-inflammatory effects, the administration of recombinant hsp70 can attenuate experimental autoimmune disease. This review focuses on the immunoregulatory capacity of hsp70 and its potential therapeutic value.
Collapse
Affiliation(s)
- Stephen M Todryk
- Immune Regulation Research Group, Department of Biochemistry, Trinity College, Dublin, Ireland.
| | | | | |
Collapse
|
35
|
Schirmbeck R, Fissolo N, Chaplin P, Reimann J. Enhanced priming of multispecific, murine CD8+ T cell responses by DNA vaccines expressing stress protein-binding polytope peptides. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:1240-6. [PMID: 12874211 DOI: 10.4049/jimmunol.171.3.1240] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A polytope DNA vaccine (pCI/pt10) was used that encodes within a 106-residue sequence 10-well characterized epitopes binding MHC class I molecules encoded by the K, D, or L locus (of H-2(d), H-2(b), and H-2(k) haplotype mice). The pCI/pt10 DNA vaccine efficiently primed all four K(b)/D(b)-restricted CD8(+) T cell responses in H-2(b) mice, but was deficient in stimulating most CD8(+) T cell responses in H-2(d) mice. Comparing CD8(+) T cell responses elicited with the pCI/pt10 DNA vaccine in L(d+) BALB/c and L(d-) BALB/c(dm2) (dm2) mice revealed that L(d)-restricted CD8(+) T cell responses down-regulated copriming of CD8(+) T cell responses to other epitopes regardless of their restriction or epitope specificity. Although the pt10 vaccine could thus efficiently co prime multispecific CD8(+) T cell responses, this priming was impaired by copriming L(d)-restricted CD8(+) T cell responses. When the pt10 sequence was fused to a 77-residue DnaJ-homologous, heat shock protein 73-binding domain (to generate a 183-residue cT(77)-pt10 fusion protein), expression and immunogenicity (for CD8(+) T cells) of the chimeric Ag were greatly enhanced. Furthermore, priming of multispecific CD8(+) T cell responses was readily elicited even under conditions in which the suppressive, L(d)-dependent immunodominance operated. The expression of polytope vaccines as chimeric peptides that endogenously capture stress proteins during in situ production thus facilitates copriming of CD8(+) T cell populations with a diverse repertoire.
Collapse
MESH Headings
- Animals
- Antigen Presentation/genetics
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Carrier Proteins/administration & dosage
- Carrier Proteins/genetics
- Carrier Proteins/immunology
- Carrier Proteins/metabolism
- Chickens
- Cytotoxicity, Immunologic/genetics
- Down-Regulation/genetics
- Down-Regulation/immunology
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Female
- Genetic Vectors
- H-2 Antigens/biosynthesis
- H-2 Antigens/immunology
- H-2 Antigens/metabolism
- HSC70 Heat-Shock Proteins
- HSP70 Heat-Shock Proteins
- Histocompatibility Antigen H-2D
- Injections, Intramuscular
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Peptide Fragments/administration & dosage
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Protein Binding/genetics
- Protein Binding/immunology
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Tumor Cells, Cultured
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, DNA/metabolism
Collapse
Affiliation(s)
- Reinhold Schirmbeck
- Institute of Medical Microbiology and Immunology, University of Ulm, Ulm, Germany
| | | | | | | |
Collapse
|
36
|
Farkas B, Hantschel M, Magyarlaki M, Becker B, Scherer K, Landthaler M, Pfister K, Gehrmann M, Gross C, Mackensen A, Multhoff G. Heat shock protein 70 membrane expression and melanoma-associated marker phenotype in primary and metastatic melanoma. Melanoma Res 2003; 13:147-52. [PMID: 12690297 DOI: 10.1097/00008390-200304000-00006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cell membrane localization of the 72 kDa heat shock protein 70 (Hsp70) has been found on different tumour cell lines, on biopsy material from solid tumours and metastases and on leukaemic blasts from acute myelogenous leukaemia patients, but not on the corresponding normal tissues, as determined by flow cytometry using the Hsp70-specific monoclonal antibody C92F3B1. In the present study Hsp70 membrane expression was studied on primary malignant melanomas, melanoma metastases, melanocytes, human skin fibroblasts and peripheral blood lymphocytes, together with expression of the melanoma-associated markers Mel-1, Mel-2 and Mel-5, major histocompatibility complex class I and the fibroblast-specific marker ASO2. As previously shown, fibroblasts and peripheral blood lymphocytes from healthy human volunteers were found to be negative for Hsp70 and for the melanoma-associated markers Mel-1, Mel-2 and Mel-5. Human melanocytes from healthy human donors were also negative for Hsp70, but were positive for Mel-1 and Mel-5. Independent of the Clark's level, all the malignant melanomas (n = 9) and metastases (n = 11) exhibited were positive for both Mel-1 and Mel-2. The primary melanomas could be divided into two groups according to their Hsp70 and Mel-5 expression pattern: those with an Hsp70-negative and a Mel-5-positive phenotype (-/+) (five out of nine), and those with an Hsp70-positive and a Mel-5-negative phenotype (+/-) (four out of nine). All the melanoma metastases (n = 11) had an Hsp70-positive, Mel-5-negative phenotype (+/-). These data provide the first hint that the marker combination Hsp70 positive/Mel-5 negative might be useful in estimating the metastatic potential of a melanoma. Investigations on changes in the marker combination Hsp70/Mel-5 during onset of melanoma disease and progression will clarify its potential as a prognostic risk factor.
Collapse
Affiliation(s)
- Beatrix Farkas
- Department of Dermatology, University Hospital Pecs, Pecs, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gross C, Hansch D, Gastpar R, Multhoff G. Interaction of heat shock protein 70 peptide with NK cells involves the NK receptor CD94. Biol Chem 2003; 384:267-79. [PMID: 12675520 DOI: 10.1515/bc.2003.030] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Full-length Hsp70 protein (Hsp70) and the C-terminal domain of Hsp70 (Hsp70C) both stimulate the cytolytic activity of naive natural killer (NK) cells against Hsp70-positive tumor target cells. Here, we describe the characterization of Hsp70-NK cell interaction with binding studies using the human NK cell line YT. Binding of recombinant Hsp70 protein (Hsp70) and the C-terminal domain of Hsp70 (Hsp70C) to YT cells is demonstrated by immunofluorescence studies. A phenotypic characterization revealed that none of the recently described HSP-receptors (alpha2-macroglobulin receptor CD91, Toll-like receptors 2, 4, 9, CD14) are expressed on YT cells. Only the C-type lectin receptor CD94 is commonly expressed by YT cells and Hsp70 reactive NK cells. A correlation of the cell density-dependent, variable CD94 expression and the binding capacity of Hsp70 was detected. Furthermore, Hsp70 binding could be completely abrogated by preincubation of YT cells with a CD94-specific antibody. Competition assays using either unlabeled Hsp70 protein or an unrelated protein (GST) in 20-fold excess and binding studies with escalating doses of Hsp70 protein provide evidence for a specific and concentration-dependent interaction of Hsp70 with YT cells. In addition to Hsp70 and Hsp70C, a 14-mer Hsp70 peptide termed TKD is known to exhibit comparable stimulatory properties on NK cells. Similar to full-length Hsp70 protein (10 microg/ml-50 microg/ml), a specific binding of this peptide to YT cells was observed at 4 degrees C, at equivalent concentrations (2.0 microg/ml-8.0 microg/ml). Following a 30 min incubation period at 37 degrees C, membrane-bound Hsp70 protein and Hsp70 peptide TKD were completely taken up into the cytoplasm.
Collapse
MESH Headings
- Antibodies/pharmacology
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Binding, Competitive
- Cell Count
- Dose-Response Relationship, Drug
- Flow Cytometry
- Fluorescent Antibody Technique
- Glutathione Transferase/metabolism
- HSP70 Heat-Shock Proteins/chemistry
- HSP70 Heat-Shock Proteins/metabolism
- Humans
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Leukemia/immunology
- Leukemia/metabolism
- NK Cell Lectin-Like Receptor Subfamily D
- Oligopeptides/metabolism
- Protein Binding
- Protein Structure, Tertiary
- Receptors, Cell Surface/biosynthesis
- Recombinant Proteins/metabolism
- Statistics as Topic
- Substrate Specificity
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Catharina Gross
- Department of Hematology and Oncology, University Hospital Regensburg, Franz-Josef Strauss Allee 11, D-93053 Regensburg, Germany
| | | | | | | |
Collapse
|
38
|
Ochsenbein AF. Principles of tumor immunosurveillance and implications for immunotherapy. Cancer Gene Ther 2002; 9:1043-55. [PMID: 12522443 DOI: 10.1038/sj.cgt.7700540] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2002] [Indexed: 01/24/2023]
Abstract
Although antigen loss variants, major histocompatibility (MHC) class I down-regulation, or the expression of inhibitory molecules may explain the failure of immunosurveillance against some tumors, this seems not to apply for many other solid peripheral or lymphohematopoietic tumors. Why then is immunosurveillance so ineffective and can it be improved? This review focuses on one important aspect of tumor immunity, namely the relevance of antigen dose and localization. Immune responses in vivo are induced in organized lymphoid tissues, i.e., in lymph nodes and spleen. The antigen dose that reaches secondary lymphoid organs over time is a crucial parameter that drives antiviral and antitumoral immune responses. Tumors use various strategies to prevent efficient presentation of their antigens in lymphoid organs. A major obstacle to the induction of an endogenous tumor-specific cytotoxic T lymphocyte (CTL) response is the inefficient presentation of tumor antigen on MHC class I molecules of professional antigen-presenting cells. Peripheral solid tumors that develop outside lymphoid organs are, therefore, often ignored by the immune system. In other situations, tumors - especially of lymphohematopoietic origin - may tolerize specific CTLs. Understanding tumor immunosurveillance is key to the design of efficient antitumor vaccines. Attempts to improve immunity to tumors include vaccination strategies to (a) provide the tumor antigen to secondary lymphoid organs using recombinant viruses or dendritic cells as carriers, (b) express costimulatory signals on tumor cells, or (c) improve the efficiency of cross-priming.
Collapse
|
39
|
Harmala LAE, Ingulli EG, Curtsinger JM, Lucido MM, Schmidt CS, Weigel BJ, Blazar BR, Mescher MF, Pennell CA. The adjuvant effects of Mycobacterium tuberculosis heat shock protein 70 result from the rapid and prolonged activation of antigen-specific CD8+ T cells in vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:5622-9. [PMID: 12421941 DOI: 10.4049/jimmunol.169.10.5622] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Heat shock protein 70 (hsp70) is a potent adjuvant that links innate and adaptive immune responses. To study how hsp70 activates naive CD8(+) T cells in vivo, we tracked Ag-specific CD8(+) T cells in mice immunized with a fusion protein containing chicken OVA linked to hsp70 derived from Mycobacterium tuberculosis (OVA.TBhsp70). On a molar basis, OVA.TBhsp70 was several hundred times more effective than OVA peptide plus CFA in eliciting specific CD8(+) T cell responses. Immunization with OVA.TBhsp70 activated >90% of detectable OVA-specific CD8(+) T cells within 3 days and led to the persistence of cytotoxic effectors for at least 17 days. These studies demonstrate that the potent adjuvant effect of M. tuberculosis hsp70 results from the relatively complete, rapid, and durable activation of Ag-specific CD8(+) T cells.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/physiology
- Adoptive Transfer
- Animals
- Antigens, Differentiation/biosynthesis
- Bacterial Proteins
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/microbiology
- CD8-Positive T-Lymphocytes/transplantation
- Cell Division/genetics
- Cell Division/immunology
- Cell Line/transplantation
- Cells, Cultured
- Cytotoxicity Tests, Immunologic
- Egg Proteins/administration & dosage
- Egg Proteins/genetics
- Egg Proteins/immunology
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Freund's Adjuvant/administration & dosage
- Genetic Vectors/administration & dosage
- Genetic Vectors/analysis
- Genetic Vectors/immunology
- HSP70 Heat-Shock Proteins/administration & dosage
- HSP70 Heat-Shock Proteins/genetics
- HSP70 Heat-Shock Proteins/physiology
- Lipopolysaccharides/analysis
- Lipopolysaccharides/pharmacology
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Lymphocyte Count
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Mycobacterium tuberculosis/genetics
- Mycobacterium tuberculosis/immunology
- Ovalbumin/administration & dosage
- Ovalbumin/genetics
- Ovalbumin/immunology
- Peptide Fragments
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/analysis
- Recombinant Fusion Proteins/immunology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/transplantation
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Lisa A E Harmala
- Department of Laboratory Medicine and Pathology, Center for Immunology, Cancer Center, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Noessner E, Gastpar R, Milani V, Brandl A, Hutzler PJS, Kuppner MC, Roos M, Kremmer E, Asea A, Calderwood SK, Issels RD. Tumor-derived heat shock protein 70 peptide complexes are cross-presented by human dendritic cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:5424-32. [PMID: 12421917 DOI: 10.4049/jimmunol.169.10.5424] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Our study demonstrates that tumor-derived heat shock protein (HSP)70 chaperones a tyrosinase peptide and mediates its transfer to human immature dendritic cells (DCs) by receptor-dependent uptake. Human tumor-derived HSP70 peptide complexes (HSP70-PC) thus have the immunogenic potential to instruct DCs to cross-present endogenously expressed, nonmutated, and tumor antigenic peptides that are shared among tumors of the melanocytic lineage for T cell recognition. T cell stimulation by HSP70-instructed DCs is dependent on the Ag bound to HSP70 in that only DCs incubated with HSP70-PC purified from tyrosinase-positive (HSP70-PC/tyr(+)) but not from tyrosinase-negative (HSP70-PC/tyr(-)) melanoma cells resulted in the specific activation of the HLA-A*0201-restricted tyrosinase peptide-specific cytotoxic T cell clone. HSP70-PC-mediated T cell stimulation is very efficient, delivering the tyrosinase peptide at concentrations as low as 30 ng/ml of HSP70-PC for T cell recognition. Receptor-dependent binding of HSP70-PC and active cell metabolism are prerequisites for MHC class I-restricted cross-presentation and T cell stimulation. T cell stimulation does not require external DC maturation signals (e.g., exogenously added TNF-alpha), suggesting that signaling DC maturation is an intrinsic property of the HSP70-PC itself and related to receptor-mediated binding. The cross-presentation of a shared human tumor Ag together with the exquisite efficacy are important new aspects for HSP70-based immunotherapy in clinical anti-cancer vaccination strategies, and suggest a potential extension of HSP70-based vaccination protocols from a patient-individual treatment modality to its use in an allogeneic setting.
Collapse
Affiliation(s)
- Elfriede Noessner
- Clinical Cooperation Group Hyperthermie, Institute of Molecular Immunology, GSF National Research Center for Environment and Health, 81377 Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Moser C, Schmidbauer C, Gürtler U, Gross C, Gehrmann M, Thonigs G, Pfister K, Multhoff G. Inhibition of tumor growth in mice with severe combined immunodeficiency is mediated by heat shock protein 70 (Hsp70)-peptide-activated, CD94 positive natural killer cells. Cell Stress Chaperones 2002; 7:365-73. [PMID: 12653481 PMCID: PMC514836 DOI: 10.1379/1466-1268(2002)007<0365:iotgim>2.0.co;2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Previously, we reported that the major stress-inducible heat shock protein 70 (Hsp70) acts as a recognition structure for natural killer (NK) cells, if localized on the cell surface of tumor cells. Incubation of purified NK cells with low-dose interleukin (IL)-2 (100 IU/mL) plus recombinant Hsp70-protein or the immunogenic 14-mer Hsp70-peptide TKDNNLLGRFELSG450-463, termed TKD (2 microg/mL), enhances the cytolytic activity against Hsp70 membrane-positive (CX+) but not against Hsp70-negative (CX-) tumor cells. Here, we show that the cytolytic activity against Hsp70-positive tumor cells is inducible by incubation of unseparated peripheral blood mononuclear cells (PBMNC) with low-dose IL-2 plus TKD. Cell sorting experiments revealed that within the PBMNC population CD94(+)/CD3(-) NK cells, and not CD94(-)/CD3(+) T cells, mediate the cytotoxic activity against Hsp70-positive tumor cells. The antitumoral effect of PBMNC stimulated either with IL-2 plus TKD or with IL-2 alone was assessed in tumor-bearing severe combined immunodeficiency/beige mice. A single intravenous (iv) injection of 40 x 10(6) IL-2 plus TKD-stimulated PBMNC (containing 5.2 x 10(6) NK cells) on day 4 results in a 60% reduction in tumor size, from 3.89 g to 1.56 g. In contrast, the adoptive transfer of the identical amount PBMNC stimulated with low-dose IL-2 only (containing 4.4 x 10(8) NK cells) reduces the tumor size only less than 10% (3.64 g). A phenotypic characterization of the excised tumors revealed that predominantly Hsp70-positive tumor cells were eliminated by TKD-activated PBMNC. Kinetic studies demonstrate that the in vivo cytolytic capacity of TKD-stimulated PBMNC is dependent on the effector to target cell ratio. An iv injection of effector cells on day 1 or 2 after tumor cell inoculation results in significantly smaller tumors (0.77 g or 0.89 g) on day 21 as compared with mice that were immunoreconstituted on day 4 or 8 (1.39 g or 2.23 g). The tumor size of nonimmunoreconstituted control animals was 3.55 g.
Collapse
MESH Headings
- Animals
- Antigens, CD/immunology
- Cell Division/drug effects
- Cell Division/immunology
- Dose-Response Relationship, Drug
- Female
- HSP70 Heat-Shock Proteins/immunology
- HSP70 Heat-Shock Proteins/pharmacology
- Humans
- Interleukin-2/pharmacology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Lectins, C-Type/immunology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Male
- Mice
- NK Cell Lectin-Like Receptor Subfamily D
- Neoplasms/drug therapy
- Neoplasms/immunology
- Neoplasms/physiopathology
- Peptide Fragments/pharmacology
- Phenotype
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/pharmacology
- Severe Combined Immunodeficiency/complications
- Severe Combined Immunodeficiency/immunology
- Severe Combined Immunodeficiency/physiopathology
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/immunology
- Tumor Cells, Cultured/transplantation
Collapse
Affiliation(s)
- Christian Moser
- Department of Surgery, University Hospital Regensburg, Franz-Josef Strauss Allee 11, 93053 Regensburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Schirmbeck R, Reimann J. Alternative processing of endogenous or exogenous antigens extends the immunogenic, H-2 class I-restricted peptide repertoire. Mol Immunol 2002; 39:249-59. [PMID: 12200054 DOI: 10.1016/s0161-5890(02)00105-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We investigated the murine, MHC class I-restricted cytotoxic T lymphocyte (CTL) response to a viral antigen delivered by different vaccination strategies to either the endogenous, or an alternative exogenous processing pathway. The immunization techniques used primed distinct (though overlapping) repertoires of CTL epitopes. In vitro studies revealed evidence for the generation of immunogenic, L(d)- and K(b)-binding peptides from endocytosed, exogenous antigen by alternative (endolysosomal) processing. Endogenous antigens expressed by DNA vaccines as a stress protein-associated fusion proteins gains access from the cytosol to endolysosomal processing. Hence, exogenous as well as endogenous protein antigens can gain access to alternative processing pathways and can give rise to an extended repertoire of antigenic epitopes. These studies indicate novel ways for the rational design of vaccine candidates that can prime CTL responses.
Collapse
Affiliation(s)
- Reinhold Schirmbeck
- Institute of Medical Microbiology and Immunology, University of Ulm, Helmholtzstr 8/1, Albert Einstein Allee 11, D-89081, Ulm, Germany
| | | |
Collapse
|
43
|
Schirmbeck R, Kwissa M, Fissolo N, Elkholy S, Riedl P, Reimann J. Priming polyvalent immunity by DNA vaccines expressing chimeric antigens with a stress protein-capturing, viral J-domain. FASEB J 2002; 16:1108-10. [PMID: 12039856 DOI: 10.1096/fj.01-0993fje] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The N-terminal domain of large tumor antigens (T-Ag) of polyomaviruses forms a DnaJ-like structure with a conserved J domain that associates with constitutively expressed stress protein heat shock protein (hsp)73. Mutant (but not wild-type) SV40 T-Ag show stable, ATP-dependent binding to the stress protein hsp73 when expressed in cells from different vertebrate tissues. Intracellular T/hsp73 complexes accumulate to high steady-state levels. From this observation, we designed a vector system that supports stable expression of a large variety of hsp73-capturing, chimeric antigens containing an N-terminal, T-Ag-derived domain, and different C-terminal antigenic domains from unrelated antigens. Most antigenic domains tested could be stably expressed only in eukaryotic cells as fusion protein/hsp73 complexes. The N-terminal 77 residues representing the J domain of T-Ag were required for stable hsp73 binding and efficient expression of chimeric antigens. Hsp73-bound chimeric antigens expressed by DNA vaccines showed strikingly enhanced immunogenicity evident in humoral (antibody) and cellular cytolytic T lymphocytes (CTL) responses. The described system supports efficient expression of chimeric, polyvalent antigens and their codelivery with hsp73 as a "natural adjuvant" for enhanced immunogenicity for T and B cells.
Collapse
Affiliation(s)
- Reinhold Schirmbeck
- Institute of Medical Microbiology and Immunology, University of Ulm, Ulm, Germany.
| | | | | | | | | | | |
Collapse
|
44
|
Vabulas RM, Braedel S, Hilf N, Singh-Jasuja H, Herter S, Ahmad-Nejad P, Kirschning CJ, Da Costa C, Rammensee HG, Wagner H, Schild H. The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway. J Biol Chem 2002; 277:20847-53. [PMID: 11912201 DOI: 10.1074/jbc.m200425200] [Citation(s) in RCA: 334] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The heat shock protein Gp96 has been shown to induce specific immune responses. On one hand, this phenomenon is based on the specific interaction with CD91 that mediates endocytosis and results in major histocompatibility complex class I-restricted representation of the Gp96-associated peptides. On the other hand, Gp96 induces activation of professional antigen-presenting cells, resulting in the production of pro-inflammatory cytokines and up-regulation of costimulatory molecules by unknown mechanisms. In this study, we have analyzed the consequences of Gp96 interaction with cells expressing different Toll-like receptors (TLRs) and with bone marrow-derived dendritic cells from mice lacking functional TLR2 and/or TLR4 molecules. We find that the Gp96-TLR2/4 interaction results in activation of nuclear factor kappaB-driven reporter genes and mitogen- and stress-activated protein kinases and induces IkappaBalpha degradation. Bone marrow-derived dendritic cells of C3H/HeJ and more pronounced C3H/HeJ/TLR2(-/-) mice fail to respond to Gp96. Interestingly, activation of bone marrow-derived dendritic cells depends on endocytosis of Gp96 molecules. Our results provide, for the first time, the molecular basis for understanding the Gp96-mediated activation of antigen-presenting cells by describing the simultaneous stimulation of the innate and adaptive immune system. This feature explains the remarkable ability of Gp96 to induce specific immune responses against tumors and pathogens.
Collapse
Affiliation(s)
- Ramunas M Vabulas
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, D-72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ikuta Y, Katayama N, Wang L, Okugawa T, Takahashi Y, Schmitt M, Gu X, Watanabe M, Akiyoshi K, Nakamura H, Kuribayashi K, Sunamoto J, Shiku H. Presentation of a major histocompatibility complex class 1-binding peptide by monocyte-derived dendritic cells incorporating hydrophobized polysaccharide-truncated HER2 protein complex: implications for a polyvalent immuno-cell therapy. Blood 2002; 99:3717-24. [PMID: 11986228 DOI: 10.1182/blood.v99.10.3717] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Recognition of the essential role of dendritic cells (DCs) as professional antigen-presenting cells has prompted investigators to search for methods to use DCs as natural adjuvants in immunotherapy. A number of antigenic oligopeptides, recognized by CD8(+) cytotoxic T lymphocytes (CTLs) specific for cancer cells, have been applied in clinical trials using DCs. Such a monovalent vaccine with a single epitope for a particular type of HLA class 1 molecule would be effective. However, a polyvalent vaccine might be more potent. We designed a novel protein delivery system consisting of hydrophobized polysaccharides complexed with target proteins. The truncated HER2 protein encompassing 147 N-terminal amino acids, including the 9-mer HER2p63-71 peptide (HER2p63), TYLPTNASL, the human homologue of an antigenic murine tumor rejection peptide, was prepared. We report here that HLA-A2402(+) DCs could incorporate hydrophobized polysaccharide-truncated HER2 protein complexes and process the protein to present major histocompatibility complex class 1-binding HER2p63 peptide. The complexes enter DCs by phagocytosis, and then the truncated protein is processed through a pathway similar to that for endogenous proteins. DCs sensitized by these complexes primed and boosted HER2p63-specific CD8(+) T cells in the context of HLA-A2402. Vaccination with DCs incorporating these complexes completely suppressed lung metastases in a HER2-expressing murine tumor model. We also generated 3 CD4(+) clones reactive with different HER2- derived 25-mer peptides from lymph node cells in mice treated with CHP/HER2-147. Thus, hydrophobized polysaccharide-protein complexes are promising candidates for the construction of polyvalent vaccines.
Collapse
Affiliation(s)
- Yasushi Ikuta
- Second Department of Internal Medicine, the Department of Obstetrics and Gynecology, Mie University School of Medicine, Tsu, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Savage NDL, Kimzey SL, Bromley SK, Johnson KG, Dustin ML, Green JM. Polar redistribution of the sialoglycoprotein CD43: implications for T cell function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:3740-6. [PMID: 11937524 DOI: 10.4049/jimmunol.168.8.3740] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Contact between T cells and APCs results in the orchestrated segregation of molecules at the cell-cell interface and formation of a specialized structure termed the immunological synapse. This model predicts the topological seclusion of large molecules such as CD43 from the site of closest contact between the T cell and APC, allowing for the close apposition of cell membranes and effective TCR engagement. Similarly, during T cell migration segregation of CD43 to the uropod is thought to aid integrin adhesion at the leading edge of the cell by removing steric hindrance. We show in this work that CD43 distribution on T cells is regulated by a membrane proximal ezrin binding site and that failure to displace CD43 from the immunological synapse has no inhibitory effects on primary T cell activation. We also report that CD43 expression at the contact zone between T cells and matrix does not negatively regulate motility but may regulate LFA-1 de-adhesion. These results suggest that the steric barrier model of CD43 is inadequate and that alternative mechanisms account for the negative regulatory properties of CD43.
Collapse
Affiliation(s)
- Nigel D L Savage
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
47
|
Jantschitsch C, Trautinger F, Klosner G, Gsur A, Herbacek I, Micksche M, Kindås-Mügge I. Overexpression of Hsp25 in K1735 murine melanoma cells enhances susceptibility to natural killer cytotoxicity. Cell Stress Chaperones 2002; 7:107-17. [PMID: 11892982 PMCID: PMC514796 DOI: 10.1379/1466-1268(2002)007<0107:oohikm>2.0.co;2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In the present study we used a murine melanoma model to investigate the effect of the 25-kDa heat shock protein (Hsp25) on natural killer (NK) cytotoxicity. The melanoma lines K1735-C123 (low metastatic potential) and K1735-M2 (high metastatic potential) were transfected with hsp25 and a control plasmid. Highly purified interleukin (IL)-2-stimulated DX-5+ NK cells showed enhanced lysis of Hsp25-overexpressing K1735-C123 targets in comparison with controls. In contrast, there was no difference in susceptibility to lysis by purified IL-2-stimulated DX-5+ NK cells between Hsp25-overexpressing and control-transfected K1735-M2 targets. Fluorescence-activated cell sorter analysis revealed that Hsp25 is displayed on the cell surface independently of Hsp25 overexpression and metastatic phenotype. Thus, surface localization of Hsp25 does not correlate with the target cell susceptibility to killing. To sum up, a cytoplasmic overexpression of Hsp25 is associated with an increased susceptibility to lysis by DX-5+ NK cells in the low-metastatic murine melanoma model investigated.
Collapse
|
48
|
Lüder CG, Seeber F. Toxoplasma gondii and MHC-restricted antigen presentation: on degradation, transport and modulation. Int J Parasitol 2001; 31:1355-69. [PMID: 11566303 DOI: 10.1016/s0020-7519(01)00260-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Resistance against Toxoplasma gondii, an obligate intracellular protozoan parasite surrounded by a parasitophorous vacuolar membrane, is mediated by the cellular arm of the immune system, namely CD8+ and CD4+ T cells. Thus, priming and activation of these cells by presentation of antigenic peptides in the context of major histocompatibility complex class I and class II molecules have to take place. This is despite the fact that the vacuolar membrane avoids fusion with the endocytic compartment and acts like a molecular sieve, restricting passive diffusion of larger molecules. This raises several cell biological and immunological questions which will be discussed in this review in the context of our current knowledge about major histocompatibility complex-restricted antigen presentation in other systems: (1) By which pathways are parasite-derived antigens presented to T cells? (2) Has the parasite evolved mechanisms to interfere with major histocompatibility complex-restricted antigen presentation in order to avoid immune recognition? (3) To what extent and by which mechanism is antigenic material, originating from the parasite, able to pass through the vacuolar membrane into the cytosol of the infected cell and is it then accessible to the antigen presentation machinery of the infected cell? (4) What are the actual antigen-presenting cells which prime specific T cells in lymphoid organs? An understanding of these mechanisms will not only provide new insights into the pathogenesis of Toxoplasma gondii and possibly other intravacuolar parasites, but will also improve vaccination strategies.
Collapse
Affiliation(s)
- C G Lüder
- Department of Bacteriology, Georg-August-Universität Göttingen, Kreuzbergring 57, D-37075 Göttingen, Germany.
| | | |
Collapse
|
49
|
Multhoff G, Pfister K, Gehrmann M, Hantschel M, Gross C, Hafner M, Hiddemann W. A 14-mer Hsp70 peptide stimulates natural killer (NK) cell activity. Cell Stress Chaperones 2001; 6:337-44. [PMID: 11795470 PMCID: PMC434416 DOI: 10.1379/1466-1268(2001)006<0337:amhpsn>2.0.co;2] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Compared with normal cells, tumor cell lines exhibit an unusual plasma membrane localization of heat shock protein 70 (Hsp70). This tumor-selective Hsp70 membrane expression has been found to correlate with an increased sensitivity to lysis mediated by human natural killer (NK) cells that transiently adhere to plastic following cytokine stimulation. A human Hsp70-specific monoclonal antibody (mAb) detects membrane-bound Hsp70 on viable tumor cells and blocks the immune response of NK cells against Hsp70-expressing tumor cells. By peptide scanning (pep-scan) analysis, the epitope of this mAb was mapped as the C-terminal-localized 8-mer NLLGRFEL (NLL, amino acids [aa] 454-461). Most interestingly, similar to full-length Hsp70 protein, the N-terminal-extended 14-mer peptide TKDNNLLGRFELSG (TKD, aa 450-463) was able to stimulate the cytolytic and proliferative activity of NK cells at concentrations equivalent to full-length Hsp70 protein. Blocking studies revealed that an excess of the 14-mer peptide TKDNNLLGRFELSG inhibits the cytolytic activity of NK cells similar to that of Hsp70 protein. In comparison, other TKD-related peptides, including the 8-mer antibody epitope NLLGRFEL (aa 454-461), the 12-mer TKDNNLLGRFEL (aa 450-461), the 13-mer C-terminal-extended peptide NLLGRFELSGIPP (aa 454-466), the 14-mer TKD-equivalent sequences of Hsp70hom TKDNNLLGRFELTG (aa 450-463), Hsc70 TKDNNLLGKFELTG (aa 450-463), and DnaK AADNKSLGQFNLDG (aa 447-460) failed to activate NK activity.
Collapse
Affiliation(s)
- G Multhoff
- Department of Hematology and Oncology, University Hospital Regensburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
50
|
Marañón C, Thomas MC, Planelles L, López MC. The immunization of A2/K(b) transgenic mice with the KMP11-HSP70 fusion protein induces CTL response against human cells expressing the T. cruzi KMP11 antigen: identification of A2-restricted epitopes. Mol Immunol 2001; 38:279-87. [PMID: 11566321 DOI: 10.1016/s0161-5890(01)00059-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cytotoxic T lymphocyte response against Jurkat-A2/K(b) cells expressing the T. cruzi KMP11 protein has been evaluated after immunization of C57BL/6-A2/K(b) transgenic mice with the KMP11 and KMP11-HSP70 recombinant proteins. The results show that mice immunized with KMP11 covalently fused to the T. cruzi HSP70 protein, but not mice immunized with KMP11 alone, elicit a CTL response against the Jurkat-A2/K(b) cells expressing the KMP11 protein. The data also show that spleen cells from mice immunized with the fusion protein and stimulated with the K1 peptide induce lysis of both the Jurkat-A2/K(b) cells transfected with the KMP11 coding gene and the Jurkat-A2-K(b) cells pulsed with the K1 peptide. Splenocytes stimulated with the K3 peptide induce lysis of the Jurkat-A2/K(b) cells loaded with the K3 peptide but they do not recognize the target cells expressing the KMP11 protein. Similar results were obtained using lymph node from mice immunized with the peptides. Thus, we believe there are two cytotoxic T cell epitopes restricted to the A2 molecule (K1(KMP11) (4-12) and K3(KMP11) (41-50)) in the KMP11 protein, and suggest that the K1 peptide could be considered an immunodominant antigen whilst the K3 peptide may be regarded as a cryptic epitope. The fact that the CTL lines induced in B6-A2/K(b) mice recognize human cells expressing KMP11 protein, indicates that the KMP11 antigen fused to HSP70 could be a good candidate for the induction of immunoprotective cytotoxic responses against T. cruzi natural infection.
Collapse
Affiliation(s)
- C Marañón
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra, CSIC, Calle Ventanilla 11, 18001-Granada, Spain
| | | | | | | |
Collapse
|