1
|
Bess SN, Igoe MJ, Muldoon TJ. The Physiological and Therapeutic Role of CD47 in Macrophage Function and Cancer. Immunol Invest 2025; 54:112-146. [PMID: 39415597 PMCID: PMC11774679 DOI: 10.1080/08820139.2024.2415409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
BACKGROUND Immunotherapy is an emerging strategy in cancer therapeutics aimed at modulating the immune system to inhibit pro-tumor pathways and increase a tumor's sensitivity to chemotherapy. Several clinically approved immunotherapy treatments, such as monoclonal antibody treatments, have been successful in solid tumors such as breast, colorectal, and pancreatic. However, an outstanding challenge of these strategies is tumor cell resistance. One target of interest for immune cell modulation is targeting macrophages that enter the tumor microenvironment. More specifically, an immune checkpoint of interest is CD47. CD47 is a transmembrane protein that inhibits phagocytic activity by acting as a "don't eat me" signal. In both mice and humans, healthy cells can express CD47, while solid malignancies like colorectal and breast cancer express it most strongly. METHODS Analysis of literature data on the physiological and functional roles of tissue-resident macrophages, along with the structure and mechanisms of action of the CD47 pathway was explored. We also explored how CD47 can influence different aspects of the tumor microenvironment (i.e. cellular metabolism and hypoxia) in addition to current clinical strategies and challenges associated with targeting CD47. RESULTS Overall, it was discovered that CD47 is overexpressed in a variety of cancer types in addition to normal tissue, making it a promising treatment regimen to enhance the capability of macrophages to phagocytose tumor cells. However, treatment efficacy is varied in pre-clinical and clinical models due to various challenges such as off-target effects. CONCLUSION This review emphasizes the diverse functionality of macrophages in normal and cancerous tissue, while also emphasizing the importance of macrophage targeting and their clinical significance.
Collapse
Affiliation(s)
- Shelby N. Bess
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701
| | - Matthew J. Igoe
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701
| | - Timothy J. Muldoon
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701
| |
Collapse
|
2
|
Liu Y, Weng L, Wang Y, Zhang J, Wu Q, Zhao P, Shi Y, Wang P, Fang L. Deciphering the role of CD47 in cancer immunotherapy. J Adv Res 2024; 63:129-158. [PMID: 39167629 PMCID: PMC11380025 DOI: 10.1016/j.jare.2023.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/05/2023] [Accepted: 10/18/2023] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Immunotherapy has emerged as a novel strategy for cancer treatment following surgery, radiotherapy, and chemotherapy. Immune checkpoint blockade and Chimeric antigen receptor (CAR)-T cell therapies have been successful in clinical trials. Cancer cells evade immune surveillance by hijacking inhibitory pathways via overexpression of checkpoint genes. The Cluster of Differentiation 47 (CD47) has emerged as a crucial checkpoint for cancer immunotherapy by working as a "don't eat me" signal and suppressing innate immune signaling. Furthermore, CD47 is highly expressed in many cancer types to protect cancer cells from phagocytosis via binding to SIRPα on phagocytes. Targeting CD47 by either interrupting the CD47-SIRPα axis or combing with other therapies has been demonstrated as an encouraging therapeutic strategy in cancer immunotherapy. Antibodies and small molecules that target CD47 have been explored in pre- and clinical trials. However, formidable challenges such as the anemia and palate aggregation cannot be avoided because of the wide presentation of CD47 on erythrocytes. AIM OF VIEW This review summarizes the current knowledge on the regulation and function of CD47, and provides a new perspective for immunotherapy targeting CD47. It also highlights the clinical progress of targeting CD47 and discusses challenges and potential strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW This review provides a comprehensive understanding of targeting CD47 in cancer immunotherapy, it also augments the concept of combination immunotherapy strategies by employing both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Yu'e Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Linjun Weng
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yanjin Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi, Medical Center, 39216 Jackson, MS, USA
| | - Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Pengcheng Zhao
- School of Life Sciences and Medicine, Shandong University of Technology, No.266 Xincun West Road, Zibo 255000, Shandong Province, China
| | - Yufeng Shi
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China; Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai 200092, China.
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Lan Fang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
3
|
Yin N, Li X, Zhang X, Xue S, Cao Y, Niedermann G, Lu Y, Xue J. Development of pharmacological immunoregulatory anti-cancer therapeutics: current mechanistic studies and clinical opportunities. Signal Transduct Target Ther 2024; 9:126. [PMID: 38773064 PMCID: PMC11109181 DOI: 10.1038/s41392-024-01826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 05/23/2024] Open
Abstract
Immunotherapy represented by anti-PD-(L)1 and anti-CTLA-4 inhibitors has revolutionized cancer treatment, but challenges related to resistance and toxicity still remain. Due to the advancement of immuno-oncology, an increasing number of novel immunoregulatory targets and mechanisms are being revealed, with relevant therapies promising to improve clinical immunotherapy in the foreseeable future. Therefore, comprehending the larger picture is important. In this review, we analyze and summarize the current landscape of preclinical and translational mechanistic research, drug development, and clinical trials that brought about next-generation pharmacological immunoregulatory anti-cancer agents and drug candidates beyond classical immune checkpoint inhibitors. Along with further clarification of cancer immunobiology and advances in antibody engineering, agents targeting additional inhibitory immune checkpoints, including LAG-3, TIM-3, TIGIT, CD47, and B7 family members are becoming an important part of cancer immunotherapy research and discovery, as are structurally and functionally optimized novel anti-PD-(L)1 and anti-CTLA-4 agents and agonists of co-stimulatory molecules of T cells. Exemplified by bispecific T cell engagers, newly emerging bi-specific and multi-specific antibodies targeting immunoregulatory molecules can provide considerable clinical benefits. Next-generation agents also include immune epigenetic drugs and cytokine-based therapeutics. Cell therapies, cancer vaccines, and oncolytic viruses are not covered in this review. This comprehensive review might aid in further development and the fastest possible clinical adoption of effective immuno-oncology modalities for the benefit of patients.
Collapse
Affiliation(s)
- Nanhao Yin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xintong Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xuanwei Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Shaolong Xue
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan, PR China
| | - Yu Cao
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
- Institute of Disaster Medicine & Institute of Emergency Medicine, Sichuan University, No. 17, Gaopeng Avenue, Chengdu, 610041, Sichuan, PR China
| | - Gabriele Niedermann
- Department of Radiation Oncology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site DKTK-Freiburg, Robert-Koch-Strasse 3, 79106, Freiburg, Germany.
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
4
|
Levillayer L, Brighelli C, Demeret C, Sakuntabhai A, Bureau JF. Role of two modules controlling the interaction between SKAP1 and SRC kinases comparison with SKAP2 architecture and consequences for evolution. PLoS One 2024; 19:e0296230. [PMID: 38483858 PMCID: PMC10939263 DOI: 10.1371/journal.pone.0296230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
SRC kinase associated phosphoprotein 1 (SKAP1), an adaptor for protein assembly, plays an important role in the immune system such as stabilizing immune synapses. Understanding how these functions are controlled at the level of the protein-protein interactions is necessary to describe these processes and to develop therapeutics. Here, we dissected the SKAP1 modular organization to recognize SRC kinases and compared it to that of its paralog SRC kinase associated phosphoprotein 2 (SKAP2). Different conserved motifs common to either both proteins or specific to SKAP2 were found using this comparison. Two modules harboring different binding properties between SKAP1 and SKAP2 were identified: one composed of two conserved motifs located in the second interdomain interacting at least with the SH2 domain of SRC kinases and a second one composed of the DIM domain modulated by the SH3 domain and the activation of SRC kinases. This work suggests a convergent evolution of the binding properties of some SRC kinases interacting specifically with either SKAP1 or SKAP2.
Collapse
Affiliation(s)
- Laurine Levillayer
- Institut Pasteur, Institut National de Recherche pour l’Agriculture, Université de Paris-Cité, CNRS UMR 2000, l’Alimentation et l’Environnement (INRAE) USC 1510, Unité Écologie et Émergence des Pathogènes Transmis par les Arthropodes (EEPTA), Paris, France
| | - Camille Brighelli
- Institut Pasteur, Institut National de Recherche pour l’Agriculture, Université de Paris-Cité, CNRS UMR 2000, l’Alimentation et l’Environnement (INRAE) USC 1510, Unité Écologie et Émergence des Pathogènes Transmis par les Arthropodes (EEPTA), Paris, France
| | - Caroline Demeret
- Institut Pasteur, Université de Paris-Cité, Laboratoire Interactomique, ARN et Immunité ‐ Interactomics, RNA and Immunity, Paris, France
| | - Anavaj Sakuntabhai
- Institut Pasteur, Institut National de Recherche pour l’Agriculture, Université de Paris-Cité, CNRS UMR 2000, l’Alimentation et l’Environnement (INRAE) USC 1510, Unité Écologie et Émergence des Pathogènes Transmis par les Arthropodes (EEPTA), Paris, France
| | - Jean-François Bureau
- Institut Pasteur, Institut National de Recherche pour l’Agriculture, Université de Paris-Cité, CNRS UMR 2000, l’Alimentation et l’Environnement (INRAE) USC 1510, Unité Écologie et Émergence des Pathogènes Transmis par les Arthropodes (EEPTA), Paris, France
| |
Collapse
|
5
|
Liu X, Qiu Z, Zhang X, Su Z, Yi R, Zou D, Xie C, Jin N, Long W, Liu X. Generalized machine learning based on multi-omics data to profile the effect of ferroptosis pathway on prognosis and immunotherapy response in patients with bladder cancer. ENVIRONMENTAL TOXICOLOGY 2024; 39:680-694. [PMID: 37647346 DOI: 10.1002/tox.23949] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/26/2023] [Accepted: 08/13/2023] [Indexed: 09/01/2023]
Abstract
INTRODUCTION Bladder cancer (BLCA) affects millions of people worldwide, with high rates of incidence and mortality. Ferroptosis proves to be a novel form of cell death process that is triggered by oxidative stress. METHODS We procured a total of 25 single nuclear RNA-seq (snRNA-seq) samples from GSE169379 in GEO database. We obtained different cohorts of BLCA patients from the TCGA and GEO databases for model training and validation. A total of 369 ferroptosis-related genes (FRGs) were selected from the FerrDb database. AUCell analysis was performed to assign ferroptosis scores to all the cell types. Weighted Gene Co-Expression Network Analysis (WGCNA), COX, and LASSO regression analysis were conducted to retain and finalize the genes of prognostic values. Various bioinformatic approaches were utilized to depict immune infiltration profile. We conducted a series of colony formation analysis, flow cytometry and western blot (WB) analysis to determine the role of SKAP1 in BLCA. RESULTS We divided the cells into high ferroptosis group and low ferroptosis group according to ferroptosis activity score, and then screened 2150 genes most associated with ferroptosis by differential expression analysis, which are related to UV-induced DNA damage, male hormone response, fatty acid metabolism and hypoxia. Subsequently, WGCNA algorithm further screened 741 ferroptosis related genes from the 2150 genes for the construction of prognostic model. Lasso-Cox regression analysis was used to construct the prognostic model, and the prognostic model consisting of 6 genes was obtained, namely JUN, SYT1, MAP3K8, GALNT14, TCIRG1, and SKAP1. Next, we constructed a nomogram model that integrated clinical factors to improving the accuracy. In addition, we performed drug sensitivity analyses in different subgroups and found that Staurosporine, Rapamycin, Gemcitabine, and BI-2536 may be candidates for the drugs treatment in high-risk populations. The ESTIMATE results showed higher stromal scores, immune scores, and ESTIMATE scores in the low-risk group, indicating a higher overall immunity level and immunogenicity of tumor microenvironment (TME) in this group, and tumor immune dysfunction and exclusion (TIDE) analysis confirmed a better response to immunotherapy in the low-risk group. Finally, we selected the oncogene SKAP1 in the prognostic gene for in vitro validation, and found that SKAP1 directly regulated BLCA cell proliferation and apoptosis. CONCLUSION We identified a set of six genes, JUN, SYT1, MAP3K8, GALNT14, TCIRG1, and SKAP1, that exhibited significant potential in stratification of BLCA patients with varying prognosis. In addition, we uncovered the direct regulatory effect of SKAP1 on BLCA cell proliferation and apoptosis, shedding some light on the role of FRGs in pathogenesis of BLCA.
Collapse
Affiliation(s)
- Xinyu Liu
- Department of Urology, Loudi City Central Hospital, Loudi, China
| | - Ziran Qiu
- Department of Surgical Oncology, Loudi City Central Hospital, Loudi, China
| | - Xiongfeng Zhang
- Department of Urology, Loudi City Central Hospital, Loudi, China
| | - Zhouhua Su
- Department of Urology, Loudi City Central Hospital, Loudi, China
| | - Renzheng Yi
- Department of Urology, Loudi City Central Hospital, Loudi, China
| | - Debo Zou
- Department of Urology, Loudi City Central Hospital, Loudi, China
| | - Chaoqun Xie
- Department of Urology, Loudi City Central Hospital, Loudi, China
| | - Na Jin
- Department of Surgical Oncology, Loudi City Central Hospital, Loudi, China
| | - Weibing Long
- Department of Urology, Loudi City Central Hospital, Loudi, China
| | - Xiaobing Liu
- Department of Urology, Loudi City Central Hospital, Loudi, China
| |
Collapse
|
6
|
Xie D, Feng Z, Yang W, Wang Y, Li R, Zhang S, Zhou Z. A mAb to SIRPα downregulates the priming of naive CD4 + T cell in Primary immune thrombocytopenia. Cell Immunol 2023; 391-392:104757. [PMID: 37660478 DOI: 10.1016/j.cellimm.2023.104757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
SIRPα is a transmembrane protein that binds the protein tyrosine phosphatases SHP-1 and SHP-2 through its cytoplasmic region and is abundantly expressed on monocytes, dendritic cells, and macrophages. Studies recently showed that SIRPα is essential for priming of CD4 + T cells by DCs and for development of Th17 cell-mediated autoimmune diseases. We have now further evaluated the importance of SIRPα and that of its ligand CD47 in primary immune thrombocytopenia (ITP). In this study, we show that there was a low expression state of SIRPα on the surface of monocytes. Treatment of cells culture from ITP patients with a mAb to SIRPα that blocks the binding of SIRPα to CD47 downregulated the ITP response. The abilities of monocytes from ITP patients to stimulate an allogenic MLR were reduced. The proliferation of, and production of IL-2, by CD4 + T cells from ITP patients were inhibited, the Treg cell numbers and the production of IL-10 pairs were upregulated, and the production of TGF-β not was inhibited, by a mAb to SIRPα. Moreover, a mAb to SIRPα, the expression of HLA-DR and CD86 were markedly inhibited and the expression of CD80 was slightly upregulated, on the surface of CD14 + monocytes from ITP patients as compared with healthy subjects. However, blockade of SIRPα increased the secretion of TLR-dependent cytokines TNF-α, IL-6 and IL-1β by PBMCs, which may be considered as a reserve in response to danger signals. These results suggest that SIRPα on monocytes is essential for the priming of naive T cells and the development of ITP. Therefore, SIRPα is a potential therapeutic target for ITP and other autoimmune diseases.
Collapse
Affiliation(s)
- Dongmei Xie
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Zhihui Feng
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Wen Yang
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Yacan Wang
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Renxia Li
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Shiqi Zhang
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Zeping Zhou
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Yunnan, China.
| |
Collapse
|
7
|
Emerging phagocytosis checkpoints in cancer immunotherapy. Signal Transduct Target Ther 2023; 8:104. [PMID: 36882399 PMCID: PMC9990587 DOI: 10.1038/s41392-023-01365-z] [Citation(s) in RCA: 134] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Cancer immunotherapy, mainly including immune checkpoints-targeted therapy and the adoptive transfer of engineered immune cells, has revolutionized the oncology landscape as it utilizes patients' own immune systems in combating the cancer cells. Cancer cells escape immune surveillance by hijacking the corresponding inhibitory pathways via overexpressing checkpoint genes. Phagocytosis checkpoints, such as CD47, CD24, MHC-I, PD-L1, STC-1 and GD2, have emerged as essential checkpoints for cancer immunotherapy by functioning as "don't eat me" signals or interacting with "eat me" signals to suppress immune responses. Phagocytosis checkpoints link innate immunity and adaptive immunity in cancer immunotherapy. Genetic ablation of these phagocytosis checkpoints, as well as blockade of their signaling pathways, robustly augments phagocytosis and reduces tumor size. Among all phagocytosis checkpoints, CD47 is the most thoroughly studied and has emerged as a rising star among targets for cancer treatment. CD47-targeting antibodies and inhibitors have been investigated in various preclinical and clinical trials. However, anemia and thrombocytopenia appear to be formidable challenges since CD47 is ubiquitously expressed on erythrocytes. Here, we review the reported phagocytosis checkpoints by discussing their mechanisms and functions in cancer immunotherapy, highlight clinical progress in targeting these checkpoints and discuss challenges and potential solutions to smooth the way for combination immunotherapeutic strategies that involve both innate and adaptive immune responses.
Collapse
|
8
|
Takagane K, Umakoshi M, Itoh G, Kuriyama S, Goto A, Tanaka M. SKAP2 suppresses inflammation-mediated tumorigenesis by regulating SHP-1 and SHP-2. Oncogene 2022; 41:1087-1099. [PMID: 35034964 DOI: 10.1038/s41388-021-02153-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 12/29/2022]
Abstract
Inflammatory bowel diseases, like ulcerative colitis and Crohn's disease are frequently accompanied by colorectal cancers. However, the mechanisms underlying colitis-associated cancers are not fully understood. Src Kinase Associated Phosphoprotein 2 (SKAP2), a substrate of Src family kinases, is highly expressed in macrophages. Here, we examined the effects of SKAP2 on inflammatory responses in a mouse model of tumorigenesis with colitis induced by azoxymethane/dextran sulfate sodium. SKAP2 knockout increased the severity of colitis and tumorigenesis, as well as lipopolysaccharide (LPS) induced acute inflammation. SKAP2 attenuated inflammatory signaling in macrophages induced by uptake of cancer cell-derived exosomes. SKAP2-/- mice were characterized by the activation of NF-κB signaling and the upregulation and release of cytokines including TNFα, IL-1β, IL-6, CXCL-9/-10/-13, and sICAM1; SKAP2 overexpression attenuated NF-κB activation. Mechanistically, SKAP2 formed a complex with the SHP-1 tyrosine phosphatase via association with the Sirpα transmembrane receptor. SKAP2 also physically associated with the TIR domain of MyD88, TIRAP, and TRAM, adaptors of toll-like receptor 4 (TLR4). SKAP2-mediated recruitment of the Sirpα/SHP-1 complex to TLR4 attenuated inflammatory responses, whereas direct interaction of SKAP2 with SHP-2 decreased SHP-2 activation. SHP-2 is required for efficient NF-κB activation and suppresses the TRAM/TRIF-INFβ pathway; therefore, SKAP2-mediated SHP-2 inhibition affected two signaling axes from TLR4. The present findings indicate that SKAP2 prevents excess inflammation by inhibiting the TLR4-NF-κB pathway, and it activates the TLR4-IFNβ pathway through SHP-1 and SHP-2, thereby suppressing inflammation-mediated tumorigenesis.
Collapse
Affiliation(s)
- Kurara Takagane
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
- Technical Division, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Michinobu Umakoshi
- Department of Cellular and Organ Pathology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Go Itoh
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Sei Kuriyama
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Akiteru Goto
- Department of Cellular and Organ Pathology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Masamitsu Tanaka
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan.
| |
Collapse
|
9
|
Jiang Z, Sun H, Yu J, Tian W, Song Y. Targeting CD47 for cancer immunotherapy. J Hematol Oncol 2021; 14:180. [PMID: 34717705 PMCID: PMC8557524 DOI: 10.1186/s13045-021-01197-w] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/19/2021] [Indexed: 02/04/2023] Open
Abstract
Much progress has been made in targeting CD47 for cancer immunotherapy in solid tumors (ST) and hematological malignancies. We summarized the CD47-related clinical research and analyzed the research trend both in the USA and in China. As of August 28, 2021, there are a total 23 related therapeutic agents with 46 clinical trials in the NCT registry platform. Among these trials, 29 are in ST, 14 in hematological malignancies and 3 in both solid tumor and hematological malignancy. The ST include gastric cancer, head and neck squamous cell carcinoma and leiomyosarcoma, while the hematological malignancies include non-Hodgkin's lymphoma, acute myeloid leukemia, myelodysplastic syndrome, multiple myeloma and chronic myeloid leukemia. Majority of the CD47-related clinical trials are at the early phases, such as 31 at phase I, 14 at phase II and 1 at phase III in the USA and 9, 6, 1, in China, respectively. The targets and spectrums of mechanism of action include 26 with mono-specific and 20 with bi-specific targets in the USA and 13 with mono-specific and 3 with bi-specific targets in China. The new generation CD47 antibodies have demonstrated promising results, and it is highly hopeful that some candidate agents will emerge and make into clinical application to meet the urgent needs of patients.
Collapse
Affiliation(s)
- Zhongxing Jiang
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Hao Sun
- Department of Radiation Therapy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jifeng Yu
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Henan International Joint Laboratory of Nuclear Protein Gene Regulation, Henan University College of Medicine, Kaifeng, 475004, Henan, China.
| | - Wenzhi Tian
- ImmuneOnco Biopharmaceuticals (Shanghai) Co., Ltd., Shanghai, 201203, China.
| | - Yongping Song
- Department of Hematology, the Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, Henan, China.
| |
Collapse
|
10
|
Rutsch N, Chamberlain CE, Dixon W, Spector L, Letourneau-Freiberg LR, Lwin WW, Philipson LH, Zarbock A, Saintus K, Wang J, German MS, Anderson MS, Lowell CA. Diabetes With Multiple Autoimmune and Inflammatory Conditions Linked to an Activating SKAP2 Mutation. Diabetes Care 2021; 44:1816-1825. [PMID: 34172489 PMCID: PMC8385470 DOI: 10.2337/dc20-2317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 03/09/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Multiple genome-wide association studies have identified a strong genetic linkage between the SKAP2 locus and type 1 diabetes (T1D), but how this leads to disease remains obscure. Here, we characterized the functional consequence of a novel SKAP2 coding mutation in a patient with T1D to gain further insight into how this impacts immune tolerance. RESEARCH DESIGN AND METHODS We identified a 24-year-old individual with T1D and other autoimmune and inflammatory conditions. The proband and first-degree relatives were recruited for whole-exome sequencing. Functional studies of the protein variant were performed using a cell line and primary myeloid immune cells collected from family members. RESULTS Sequencing identified a de novo SKAP2 variant (c.457G>A, p.Gly153Arg) in the proband. Assays using monocyte-derived macrophages from the individual revealed enhanced activity of integrin pathways and a migratory phenotype in the absence of chemokine stimulation, consistent with SKAP2 p.Gly153Arg being constitutively active. The p.Gly153Arg variant, located in the well-conserved lipid-binding loop, induced similar phenotypes when expressed in a human macrophage cell line. SKAP2 p.Gly153Arg is a gain-of-function, pathogenic mutation that disrupts myeloid immune cell function, likely resulting in a break in immune tolerance and T1D. CONCLUSIONS SKAP2 plays a key role in myeloid cell activation and migration. This particular mutation in a patient with T1D and multiple autoimmune conditions implicates a role for activating SKAP2 variants in autoimmune T1D.
Collapse
Affiliation(s)
- Niklas Rutsch
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, San Francisco, CA.,The Program in Immunology, University of California, San Francisco, San Francisco, San Francisco, CA.,Department of Anesthesiology, Intensive Care, and Pain Medicine, University Hospital Münster, University of Münster, Münster, Germany
| | - Chester E Chamberlain
- Diabetes Center, University of California, San Francisco, San Francisco, San Francisco, CA.,Department of Medicine, University of California, San Francisco, San Francisco, San Francisco, CA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, San Francisco, CA
| | - Wesley Dixon
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, San Francisco, CA.,The Program in Immunology, University of California, San Francisco, San Francisco, San Francisco, CA
| | - Lauren Spector
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, San Francisco, CA.,The Program in Immunology, University of California, San Francisco, San Francisco, San Francisco, CA
| | - Lisa R Letourneau-Freiberg
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism and the Kovler Diabetes Center, The University of Chicago, Chicago, IL
| | - Wint W Lwin
- Diabetes Center, University of California, San Francisco, San Francisco, San Francisco, CA.,Department of Medicine, University of California, San Francisco, San Francisco, San Francisco, CA
| | - Louis H Philipson
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism and the Kovler Diabetes Center, The University of Chicago, Chicago, IL
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care, and Pain Medicine, University Hospital Münster, University of Münster, Münster, Germany
| | - Karline Saintus
- Diabetes Center, University of California, San Francisco, San Francisco, San Francisco, CA.,Department of Medicine, University of California, San Francisco, San Francisco, San Francisco, CA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, San Francisco, CA
| | - Juehu Wang
- Diabetes Center, University of California, San Francisco, San Francisco, San Francisco, CA.,Department of Medicine, University of California, San Francisco, San Francisco, San Francisco, CA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, San Francisco, CA
| | - Michael S German
- Diabetes Center, University of California, San Francisco, San Francisco, San Francisco, CA .,Department of Medicine, University of California, San Francisco, San Francisco, San Francisco, CA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, San Francisco, CA
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, San Francisco, CA .,Department of Medicine, University of California, San Francisco, San Francisco, San Francisco, CA
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, San Francisco, CA .,The Program in Immunology, University of California, San Francisco, San Francisco, San Francisco, CA
| |
Collapse
|
11
|
Dadwal N, Mix C, Reinhold A, Witte A, Freund C, Schraven B, Kliche S. The Multiple Roles of the Cytosolic Adapter Proteins ADAP, SKAP1 and SKAP2 for TCR/CD3 -Mediated Signaling Events. Front Immunol 2021; 12:703534. [PMID: 34295339 PMCID: PMC8290198 DOI: 10.3389/fimmu.2021.703534] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
T cells are the key players of the adaptive immune response. They coordinate the activation of other immune cells and kill malignant and virus-infected cells. For full activation T cells require at least two signals. Signal 1 is induced after recognition of MHC/peptide complexes presented on antigen presenting cells (APCs) by the clonotypic TCR (T-cell receptor)/CD3 complex whereas Signal 2 is mediated via the co-stimulatory receptor CD28, which binds to CD80/CD86 molecules that are present on APCs. These signaling events control the activation, proliferation and differentiation of T cells. In addition, triggering of the TCR/CD3 complex induces the activation of the integrin LFA-1 (leukocyte function associated antigen 1) leading to increased ligand binding (affinity regulation) and LFA-1 clustering (avidity regulation). This process is termed "inside-out signaling". Subsequently, ligand bound LFA-1 transmits a signal into the T cells ("outside-in signaling") which enhances T-cell interaction with APCs (adhesion), T-cell activation and T-cell proliferation. After triggering of signal transducing receptors, adapter proteins organize the proper processing of membrane proximal and intracellular signals as well as the activation of downstream effector molecules. Adapter proteins are molecules that lack enzymatic or transcriptional activity and are composed of protein-protein and protein-lipid interacting domains/motifs. They organize and assemble macromolecular complexes (signalosomes) in space and time. Here, we review recent findings regarding three cytosolic adapter proteins, ADAP (Adhesion and Degranulation-promoting Adapter Protein), SKAP1 and SKAP2 (Src Kinase Associated Protein 1 and 2) with respect to their role in TCR/CD3-mediated activation, proliferation and integrin regulation.
Collapse
Affiliation(s)
- Nirdosh Dadwal
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Charlie Mix
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty of the Otto-von-Guericke University, Magdeburg, Germany
| | - Annegret Reinhold
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty of the Otto-von-Guericke University, Magdeburg, Germany
| | - Amelie Witte
- Coordination Center of Clinical Trials, University Medicine Greifswald, Greifswald, Germany
| | - Christian Freund
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty of the Otto-von-Guericke University, Magdeburg, Germany
| | - Stefanie Kliche
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty of the Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
12
|
Kelley SM, Ravichandran KS. Putting the brakes on phagocytosis: "don't-eat-me" signaling in physiology and disease. EMBO Rep 2021; 22:e52564. [PMID: 34041845 DOI: 10.15252/embr.202152564] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/12/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Timely removal of dying or pathogenic cells by phagocytes is essential to maintaining host homeostasis. Phagocytes execute the clearance process with high fidelity while sparing healthy neighboring cells, and this process is at least partially regulated by the balance of "eat-me" and "don't-eat-me" signals expressed on the surface of host cells. Upon contact, eat-me signals activate "pro-phagocytic" receptors expressed on the phagocyte membrane and signal to promote phagocytosis. Conversely, don't-eat-me signals engage "anti-phagocytic" receptors to suppress phagocytosis. We review the current knowledge of don't-eat-me signaling in normal physiology and disease contexts where aberrant don't-eat-me signaling contributes to pathology.
Collapse
Affiliation(s)
- Shannon M Kelley
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Kodi S Ravichandran
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.,VIB-UGent Center for Inflammation Research, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
13
|
Mao XW, Nishiyama NC, Byrum SD, Stanbouly S, Jones T, Holley J, Sridharan V, Boerma M, Tackett AJ, Willey JS, Pecaut MJ, Delp MD. Spaceflight induces oxidative damage to blood-brain barrier integrity in a mouse model. FASEB J 2020; 34:15516-15530. [PMID: 32981077 PMCID: PMC8191453 DOI: 10.1096/fj.202001754r] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/18/2022]
Abstract
Many factors contribute to the health risks encountered by astronauts on missions outside Earth's atmosphere. Spaceflight-induced potential adverse neurovascular damage and late neurodegeneration are a chief concern. The goal of the present study was to characterize the effects of spaceflight on oxidative damage in the mouse brain and its impact on blood-brain barrier (BBB) integrity. Ten-week-old male C57BL/6 mice were launched to the International Space Station (ISS) for 35 days as part of Space-X 12 mission. Ground control (GC) mice were maintained on Earth in flight hardware cages. Within 38 ± 4 hours after returning from the ISS, mice were euthanized and brain tissues were collected for analysis. Quantitative assessment of brain tissue demonstrated that spaceflight caused an up to 2.2-fold increase in apoptosis in the hippocampus compared to the control group. Immunohistochemical analysis of the mouse brain revealed an increased expression of aquaporin4 (AQP4) in the flight hippocampus compared to the controls. There was also a significant increase in the expression of platelet endothelial cell adhesion molecule-1 (PECAM-1) and a decrease in the expression of the BBB-related tight junction protein, Zonula occludens-1 (ZO-1). These results indicate a disturbance of BBB integrity. Quantitative proteomic analysis showed significant alterations in pathways responsible for neurovascular integrity, mitochondrial function, neuronal structure, protein/organelle transport, and metabolism in the brain after spaceflight. Changes in pathways associated with adhesion and molecular remodeling were also documented. These data indicate that long-term spaceflight may have pathological and functional consequences associated with neurovascular damage and late neurodegeneration.
Collapse
Affiliation(s)
- Xiao W Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine and Medical Center, Loma Linda, CA, USA
| | - Nina C Nishiyama
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine and Medical Center, Loma Linda, CA, USA
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Seta Stanbouly
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine and Medical Center, Loma Linda, CA, USA
| | - Tamako Jones
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine and Medical Center, Loma Linda, CA, USA
| | - Jacob Holley
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine and Medical Center, Loma Linda, CA, USA
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Jeffrey S Willey
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Michael J Pecaut
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine and Medical Center, Loma Linda, CA, USA
| | - Michael D Delp
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
14
|
Nguyen GT, Shaban L, Mack M, Swanson KD, Bunnell SC, Sykes DB, Mecsas J. SKAP2 is required for defense against K. pneumoniae infection and neutrophil respiratory burst. eLife 2020; 9:56656. [PMID: 32352382 PMCID: PMC7250567 DOI: 10.7554/elife.56656] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/29/2020] [Indexed: 12/11/2022] Open
Abstract
Klebsiella pneumoniae is a respiratory, blood, liver, and bladder pathogen of significant clinical concern. We show that the adaptor protein, SKAP2, is required for protection against K. pneumoniae (ATCC 43816) pulmonary infections. Skap2-/- mice had 100-fold higher bacterial burden when compared to wild-type and burden was controlled by SKAP2 expression in innate immune cells. Skap2-/- neutrophils and monocytes were present in infected lungs, and the neutrophils degranulated normally in response to K. pneumoniae infection in mice; however, K. pneumoniae-stimulated reactive oxygen species (ROS) production in vitro was abolished. K. pneumoniae-induced neutrophil ROS response required the activity of SFKs, Syk, Btk, PLCγ2, and PKC. The loss of SKAP2 significantly hindered the K. pneumoniae-induced phosphorylation of SFKs, Syk, and Pyk2 implicating SKAP2 as proximal to their activation in pathogen-signaling pathways. In conclusion, SKAP2-dependent signaling in neutrophils is essential for K. pneumoniae-activated ROS production and for promoting bacterial clearance during infection. Klebsiella pneumoniae is a type of bacteria that can cause life-threatening infections – including pneumonia, blood stream infections, and urinary tract infections – in hospitalized patients. These infections can be difficult to treat because some K. pneumoniae are resistant to antibiotics. The bacteria are normally found in the human intestine, and they do not usually cause infections in healthy people. This implies that healthy people’s immune systems are better able to fend off K. pneumoniae infections; learning how could help scientists develop new ways to treat or prevent infections in hospitalized patients. In healthy people, a type of immune cell called neutrophils are the first line of defense against bacterial infections. Several different proteins are needed to activate neutrophils, including a protein called SKAP2. But the role of this protein in fighting K. pneumoniae infections is not clear. To find out what role SKAP2 plays in the defense against pneumonia caused by K. pneumoniae, Nguyen et al. compared infections in mice with and without the protein. Mice lacking SKAP2 in their white blood cells had more bacteria in their lungs than normal mice. The experiments showed that neutrophils from mice with SKAP2 produce a burst of chemicals called “reactive oxygen species”, which can kill bacteria. But neutrophils without the protein do not. Without SKAP2, several proteins that help produce reactive oxygen species do not work. Understanding the role of SKAP2 in fighting infections may help scientists better understand the immune system. This could help clinicians to treat conditions that cause it to be hyperactive or ineffective. More studies are needed to determine if SKAP2 works the same way in human neutrophils and if it works against all types of K. pneumoniae. If it does, then scientists might be able use this information to develop therapies that help the immune system fight infections.
Collapse
Affiliation(s)
- Giang T Nguyen
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, United States
| | - Lamyaa Shaban
- Graduate Program in Molecular Microbiology, Tufts Graduate School of Biomedical Sciences, Boston, United States
| | - Matthias Mack
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Kenneth D Swanson
- Brain Tumor Center and Neuro-Oncology Unit, Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, United States
| | - Stephen C Bunnell
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, United States.,Department of Immunology, School of Medicine, Tufts University, Boston, United States
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, United States
| | - Joan Mecsas
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, United States.,Graduate Program in Molecular Microbiology, Tufts Graduate School of Biomedical Sciences, Boston, United States.,Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, United States
| |
Collapse
|
15
|
Bureau JF, Cassonnet P, Grange L, Dessapt J, Jones L, Demeret C, Sakuntabhai A, Jacob Y. The SRC-family tyrosine kinase HCK shapes the landscape of SKAP2 interactome. Oncotarget 2018; 9:13102-13115. [PMID: 29568343 PMCID: PMC5862564 DOI: 10.18632/oncotarget.24424] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/30/2018] [Indexed: 11/25/2022] Open
Abstract
The SRC Kinase Adaptor Phosphoprotein 2 (SKAP2) is a broadly expressed adaptor associated with the control of actin-polymerization, cell migration, and oncogenesis. After activation of different receptors at the cell surface, this dimeric protein serves as a platform for assembling other adaptors such as FYB and some SRC family kinase members, although these mechanisms are still poorly understood. The goal of this study is to map the SKAP2 interactome and characterize which domains or binding motifs are involved in these interactions. This is a prerequisite to finely analyze how these pathways are integrated in the cell machinery and to study their role in cancer and other human diseases when this network of interactions is perturbed. In this work, the domain and the binding motif of fourteen proteins interacting with SKAP2 were precisely defined and a new interactor, FAM102A was discovered. Herein, a fine-tuning between the binding of SRC kinases and their activation was identified. This last process, which depends on SKAP2 dimerization, indirectly affects the binding of FYB protein. Analysis of conformational changes associated with activation/inhibition of SRC family members, presently limited to their effect on kinase activity, is extended to their interactive network, which paves the way for therapeutic development.
Collapse
Affiliation(s)
- Jean-François Bureau
- Unité de Génétique Fonctionnelle des Maladies Infectieuses, Département Génome et Génétique, Institut Pasteur, Paris, France.,CNRS URA3012, Paris, France
| | - Patricia Cassonnet
- Unité de Génétique Moléculaire des Virus à ARN, Département Virologie, Institut Pasteur, Paris, France.,UMR3569, Centre National de la Recherche Scientifique, Paris, France.,Université Paris Diderot, Paris, France
| | - Laura Grange
- Unité de Génétique Fonctionnelle des Maladies Infectieuses, Département Génome et Génétique, Institut Pasteur, Paris, France.,CNRS URA3012, Paris, France
| | - Julien Dessapt
- Unité de Génétique Fonctionnelle des Maladies Infectieuses, Département Génome et Génétique, Institut Pasteur, Paris, France.,CNRS URA3012, Paris, France
| | - Louis Jones
- Unité de Génétique Moléculaire des Virus à ARN, Département Virologie, Institut Pasteur, Paris, France.,UMR3569, Centre National de la Recherche Scientifique, Paris, France.,Université Paris Diderot, Paris, France
| | - Caroline Demeret
- Unité de Génétique Moléculaire des Virus à ARN, Département Virologie, Institut Pasteur, Paris, France.,UMR3569, Centre National de la Recherche Scientifique, Paris, France.,Université Paris Diderot, Paris, France
| | - Anavaj Sakuntabhai
- Unité de Génétique Fonctionnelle des Maladies Infectieuses, Département Génome et Génétique, Institut Pasteur, Paris, France.,CNRS URA3012, Paris, France
| | - Yves Jacob
- Unité de Génétique Moléculaire des Virus à ARN, Département Virologie, Institut Pasteur, Paris, France.,UMR3569, Centre National de la Recherche Scientifique, Paris, France.,Université Paris Diderot, Paris, France
| |
Collapse
|
16
|
Ratnikova NM, Lezhnin YN, Frolova EI, Kravchenko JE, Chumakov SP. CD47 receptor as a primary target for cancer therapy. Mol Biol 2017. [DOI: 10.1134/s0026893317010150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Regulation of Phagocyte Migration by Signal Regulatory Protein-Alpha Signaling. PLoS One 2015; 10:e0127178. [PMID: 26057870 PMCID: PMC4461249 DOI: 10.1371/journal.pone.0127178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 04/13/2015] [Indexed: 01/13/2023] Open
Abstract
Signaling through the inhibitory receptor signal regulatory protein-alpha (SIRPα) controls effector functions in phagocytes. However, there are also indications that interactions between SIRPα and its ligand CD47 are involved in phagocyte transendothelial migration. We have investigated the involvement of SIRPα signaling in phagocyte migration in vitro and in vivo using mice that lack the SIRPα cytoplasmic tail. During thioglycolate-induced peritonitis in SIRPα mutant mice, both neutrophil and macrophage influx were found to occur, but to be significantly delayed. SIRPα signaling appeared to be essential for an optimal transendothelial migration and chemotaxis, and for the amoeboid type of phagocyte migration in 3-dimensional environments. These findings demonstrate, for the first time, that SIRPα signaling can directly control phagocyte migration, and this may contribute to the impaired inflammatory phenotype that has been observed in the absence of SIRPα signaling.
Collapse
|
18
|
Zhang H, Li F, Yang Y, Chen J, Hu X. SIRP/CD47 signaling in neurological disorders. Brain Res 2015; 1623:74-80. [PMID: 25795378 DOI: 10.1016/j.brainres.2015.03.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 11/26/2022]
Abstract
Microglia play important roles in the process of neuronal injury and recovery. Numeous surface receptors have been described to regulate microglial activation. These receptors tightly mediate normal microglial functions including cell mobility, phagocytosis, and production of inflammatory mediators or trophic factors. In recent years, significant progresses have been achieved for understanding the signaling mechanisms underlying these receptors. Their specific roles in neurological diseases have been documented. This review will focus on the signal regulatory protein (SIRP) and its ligand CD47, two surface receptors expressed on microglia and other cells in the central nervous system (CNS) such as neurons. We will discuss the involvement of SIRP/CD47 signaling in microglial activation and in the interplay between microglia and other CNS cells. Current studies reveal the importance of CD47 and SIRPα in the process of neuroinflammation in the CNS disorders. The dual and contradictory role of CD47 suggests that targeting the SIRPα/CD47 signaling may achieve different effects depending on disease stage. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.
Collapse
Affiliation(s)
- Haiyue Zhang
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Xianaya School of Medicine, Central South University, Changsha, Hunan, China
| | - Fengwu Li
- China-America Institute of Neuroscience, Luhe Teaching Hospital, Capital Medical University, Beijing, China
| | - Yuanyuan Yang
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Xianaya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jun Chen
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | - Xiaoming Hu
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; China-America Institute of Neuroscience, Luhe Teaching Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
19
|
Barclay AN, van den Berg TK. The Interaction Between Signal Regulatory Protein Alpha (SIRPα) and CD47: Structure, Function, and Therapeutic Target. Annu Rev Immunol 2014; 32:25-50. [DOI: 10.1146/annurev-immunol-032713-120142] [Citation(s) in RCA: 448] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- A. Neil Barclay
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK;
| | - Timo K. van den Berg
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, The Netherlands;
| |
Collapse
|
20
|
CD47: A Cell Surface Glycoprotein Which Regulates Multiple Functions of Hematopoietic Cells in Health and Disease. ISRN HEMATOLOGY 2013; 2013:614619. [PMID: 23401787 PMCID: PMC3564380 DOI: 10.1155/2013/614619] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/19/2012] [Indexed: 12/22/2022]
Abstract
Interactions between cells and their surroundings are important for proper function and homeostasis in a multicellular organism. These interactions can either be established between the cells and molecules in their extracellular milieu, but also involve interactions between cells. In all these situations, proteins in the plasma membranes are critically involved to relay information obtained from the exterior of the cell. The cell surface glycoprotein CD47 (integrin-associated protein (IAP)) was first identified as an important regulator of integrin function, but later also was shown to function in ways that do not necessarily involve integrins. Ligation of CD47 can induce intracellular signaling resulting in cell activation or cell death depending on the exact context. By binding to another cell surface glycoprotein, signal regulatory protein alpha (SIRPα), CD47 can regulate the function of cells in the monocyte/macrophage lineage. In this spotlight paper, several functions of CD47 will be reviewed, although some functions may be more briefly mentioned. Focus will be on the ways CD47 regulates hematopoietic cells and functions such as CD47 signaling, induction of apoptosis, and regulation of phagocytosis or cell-cell fusion.
Collapse
|
21
|
Alenghat FJ, Baca QJ, Rubin NT, Pao LI, Matozaki T, Lowell CA, Golan DE, Neel BG, Swanson KD. Macrophages require Skap2 and Sirpα for integrin-stimulated cytoskeletal rearrangement. J Cell Sci 2012; 125:5535-45. [PMID: 22976304 DOI: 10.1242/jcs.111260] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Macrophages migrate to sites of insult during normal inflammatory responses. Integrins guide such migration, but the transmission of signals from integrins into the requisite cytoskeletal changes is poorly understood. We have discovered that the hematopoietic adaptor protein Skap2 is necessary for macrophage migration, chemotaxis, global actin reorganization and local actin reorganization upon integrin engagement. Binding of phosphatidylinositol [3,4,5]-triphosphate to the Skap2 pleckstrin-homology (PH) domain, which relieves its conformational auto-inhibition, is critical for this integrin-driven cytoskeletal response. Skap2 enables integrin-induced tyrosyl phosphorylation of Src-family kinases (SFKs), Adap, and Sirpα, establishing their roles as signaling partners in this process. Furthermore, macrophages lacking functional Sirpα unexpectedly have impaired local integrin-induced responses identical to those of Skap2(-/-) macrophages, and Skap2 requires Sirpα for its recruitment to engaged integrins and for coordinating downstream actin rearrangement. By revealing the positive-regulatory role of Sirpα in a Skap2-mediated mechanism connecting integrin engagement with cytoskeletal rearrangement, these data demonstrate that Sirpα is not exclusively immunoinhibitory, and illuminate previously unexplained observations implicating Skap2 and Sirpα in mouse models of inflammatory disease.
Collapse
Affiliation(s)
- Francis J Alenghat
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Burger P, de Korte D, van den Berg TK, van Bruggen R. CD47 in Erythrocyte Ageing and Clearance - the Dutch Point of View. ACTA ACUST UNITED AC 2012; 39:348-52. [PMID: 23801927 DOI: 10.1159/000342231] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/27/2012] [Indexed: 12/18/2022]
Abstract
Recently, an important role for CD47, a well-known 'don't eat me' signal, in the clearance of aged erythrocytes was revealed. Experimental data support the conversion of CD47 from a 'don't eat me' to an 'eat me' signal through a conformational change in CD47. Intriguingly, erythrocyte phagocytosis after this switch seems to be mediated by the same receptor that normally signals inhibition of phagocytosis, SIRPα. In this review, the possible molecular mechanisms leading to this conformational change in CD47 as well as the possible signal transduction events leading to phagocytosis after this switch are discussed. Lastly, the consequences of this newly identified mode of erythrocyte phagocytosis for the clearance of aged erythrocytes during normal turnover and after erythrocyte transfusion are addressed.
Collapse
Affiliation(s)
- Patrick Burger
- Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, the Netherlands
| | | | | | | |
Collapse
|
23
|
Maruyama T, Kusakari S, Sato-Hashimoto M, Hayashi Y, Kotani T, Murata Y, Okazawa H, Oldenborg PA, Kishi S, Matozaki T, Ohnishi H. Hypothermia-induced tyrosine phosphorylation of SIRPα in the brain. J Neurochem 2012; 121:891-902. [DOI: 10.1111/j.1471-4159.2012.07748.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Dubois NC, Craft AM, Sharma P, Elliott DA, Stanley EG, Elefanty AG, Gramolini A, Keller G. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat Biotechnol 2011; 29:1011-8. [PMID: 22020386 DOI: 10.1038/nbt.2005] [Citation(s) in RCA: 399] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 09/19/2011] [Indexed: 11/09/2022]
Abstract
To identify cell-surface markers specific to human cardiomyocytes, we screened cardiovascular cell populations derived from human embryonic stem cells (hESCs) against a panel of 370 known CD antibodies. This screen identified the signal-regulatory protein alpha (SIRPA) as a marker expressed specifically on cardiomyocytes derived from hESCs and human induced pluripotent stem cells (hiPSCs), and PECAM, THY1, PDGFRB and ITGA1 as markers of the nonmyocyte population. Cell sorting with an antibody against SIRPA allowed for the enrichment of cardiac precursors and cardiomyocytes from hESC/hiPSC differentiation cultures, yielding populations of up to 98% cardiac troponin T-positive cells. When plated in culture, SIRPA-positive cells were contracting and could be maintained over extended periods of time. These findings provide a simple method for isolating populations of cardiomyocytes from human pluripotent stem cell cultures, and thereby establish a readily adaptable technology for generating large numbers of enriched cardiomyocytes for therapeutic applications.
Collapse
Affiliation(s)
- Nicole C Dubois
- McEwen Centre for Regenerative Medicine, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Shen X, Xi G, Radhakrishnan Y, Clemmons DR. Recruitment of Pyk2 to SHPS-1 signaling complex is required for IGF-I-dependent mitogenic signaling in vascular smooth muscle cells. Cell Mol Life Sci 2010; 67:3893-903. [PMID: 20521079 PMCID: PMC11115943 DOI: 10.1007/s00018-010-0411-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 04/30/2010] [Accepted: 05/17/2010] [Indexed: 10/25/2022]
Abstract
In vascular smooth muscle cells, IGF-I stimulates SHPS-1/SHP2/Src complex formation which is required for IGF-I-stimulated cell proliferation. Using SHP2/Src silencing and a Pyk2/Y402F mutant, we showed that Pyk2 was also recruited to the SHPS-1 complex. Pyk2 recruitment to SHPS-1 is mediated via the interaction of Pyk2 Tyr402 and the Src in response to IGF-I. Following Src/Pyk2 association, Src phosphorylates Pyk2 on Tyr881 providing a binding site for Grb2. Cells expressing Pyk2/Y881F showed decreased Grb2 recruitment to SHPS-1 and impaired Shc/Grb2 association. This change led to reduced Erk1/2 (MAP kinase) activation and cell proliferation in response to IGF-I. Our results show that, following its recruitment to the SHPS-1 signaling complex, Pyk2 localizes Grb2 in close proximity to Shc thereby facilitating Shc/Grb2 association which leads to Erk1/2 activation in response to IGF-I. Thus, Pyk2 recruitment to SHPS-1 plays an important role in regulating the IGF-I-stimulated mitogenic response.
Collapse
Affiliation(s)
- Xinchun Shen
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Gang Xi
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Yashwanth Radhakrishnan
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599 USA
| | - David R. Clemmons
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599 USA
- Division of Endocrinology, University of North Carolina at Chapel Hill, CB# 7170, 8024 Burnett-Womack, Chapel Hill, NC 27599-7170 USA
| |
Collapse
|
26
|
Reinhold A, Reimann S, Reinhold D, Schraven B, Togni M. Expression of SKAP-HOM in DCs is required for an optimal immune response in vivo. J Leukoc Biol 2009; 86:61-71. [PMID: 19369640 DOI: 10.1189/jlb.0608344] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The cytosolic adaptor molecule SKAP-HOM, similar to the T cell-specific homologue SKAP55, interacts directly with ADAP, and both molecules are involved in inside-out signaling. Previous studies have shown that in the absence of SKAP-HOM, antigen receptor-triggered integrin-mediated adhesion is impaired severely in B cells but not in T cells. In addition, loss of SKAP-HOM results in a less severe clinical course of EAE. DCs are the most potent APCs and express SKAP-HOM. However, the role of SKAP-HOM in DCs remains unknown. Here, we assessed whether the reduced severity of EAE observed in SKAP-HOM-deficient mice is at least partially a result of an impaired cooperation between APCs and T cells. We demonstrate that migration of LC in vivo and the spontaneous motility of BMDCs in vitro are increased in the absence of SKAP-HOM. In contrast, triggering of the integrin results in a drastic decrease of DC motility and in enhanced actin polymerization in SKAP-HOM-deficient DCs. Furthermore, the antigen-dependent conjugate formed between wild-type T cells and SKAP-HOM(-/-) DCs is delayed in comparison with wild-type DCs. Strikingly, fewer antigen-specific T cells are induced by immunization with SKAP-HOM(-/-) BMDCs as compared with wild-type BMDCs in vivo. Thus, these findings suggest that SKAP-HOM expression in DCs is required for the induction of an optimal immune response.
Collapse
Affiliation(s)
- Annegret Reinhold
- Institute of Molecular and Clinical Immunology, Otto von Guericke University, Magdeburg, Germany
| | | | | | | | | |
Collapse
|
27
|
Shen X, Xi G, Radhakrishnan Y, Clemmons DR. Identification of novel SHPS-1-associated proteins and their roles in regulation of insulin-like growth factor-dependent responses in vascular smooth muscle cells. Mol Cell Proteomics 2009; 8:1539-51. [PMID: 19299420 DOI: 10.1074/mcp.m800543-mcp200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tyrosine phosphatase non-receptor type substrate-1 (SHPS-1), a transmembrane protein, plays a vital role in cell migration and proliferation. Our previous studies have shown that insulin-like growth factor-I (IGF-I) stimulates SHPS-1 phosphorylation, leading to recruitment of SHP-2, c-Src, Shc, and Grb2.p85 to phosphorylated SHPS-1. Assembly of this signaling complex is required for optimal stimulation of both mitogen-activated protein and phosphatidylinositol 3-kinase pathways. The main aim of the present study was to identify novel proteins that interacted with the cytoplasmic domain of SHPS-1 (SHPS-1/CD) in response to IGF-I stimulation and define the role of these interactions in mediating specific biological functions. We performed a functional proteomic screening to identify SHPS-1 binding partners using combination of mRNA display and the tandem affinity purification-tag methods. Screening identified a number of proteins not previously known to interact with phosphorylated SHPS-1/CD. These novel SHPS-1 binding partners represent several functional categories including heat shock proteins, protein kinases and phosphatases, and proteins that regulate transcription or translation. In Vivo and in vitro studies suggested that most of the proteins bound to SHPS-1 via binding to one of the four SH2 domain containing proteins, SHP-2, CTK, SUPT6H, and STAT1, that directly bound to SHPS-1. Although the binding of most of these proteins to SHPS-1 was positively regulated by IGF-I, a few were negatively regulated, suggesting differential regulation of protein complexes assembled on SHPS-1/CD in response to IGF-I. Further studies showed that truncation of SHPS-1/CD significantly impaired IGF-I-dependent AKT signal transduction and subsequent biological functions including cell survival, protein synthesis, protein aggregation, and prevention of apoptosis. The results emphasize the importance of formation of SHPS-1 signaling complex induced by IGF-I and provide novel insights into our knowledge of the role of this molecular scaffold in regulation of IGF-I-stimulated signal transduction and biological actions.
Collapse
Affiliation(s)
- Xinchun Shen
- Department of Medicine, University of North Carolina, School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
28
|
Swanson KD, Tang Y, Ceccarelli DF, Poy F, Sliwa JP, Neel BG, Eck MJ. The Skap-hom dimerization and PH domains comprise a 3'-phosphoinositide-gated molecular switch. Mol Cell 2009; 32:564-75. [PMID: 19026786 DOI: 10.1016/j.molcel.2008.09.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Revised: 08/12/2008] [Accepted: 09/29/2008] [Indexed: 12/20/2022]
Abstract
PH domains, by binding to phosphoinositides, often serve as membrane-targeting modules. Using crystallographic, biochemical, and cell biological approaches, we have uncovered a mechanism that the integrin-signaling adaptor Skap-hom uses to mediate cytoskeletal interactions. Skap-hom is a homodimer containing an N-terminal four-helix bundle dimerization domain, against which its two PH domains pack in a conformation incompatible with phosphoinositide binding. The isolated PH domains bind PI[3,4,5]P(3), and mutations targeting the dimerization domain or the PH domain's PI[3,4,5]P(3)-binding pocket prevent Skap-hom localization to ruffles. Targeting is retained when the PH domain is deleted or by combined mutation of the PI[3,4,5]P(3)-binding pocket and the PH/dimerization domain interface. Thus, the dimerization and PH domain form a PI[3,4,5]P(3)-responsive molecular switch that controls Skap-hom function.
Collapse
Affiliation(s)
- Kenneth D Swanson
- Cancer Biology Program, Division of Hematology-Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Matozaki T, Murata Y, Okazawa H, Ohnishi H. Functions and molecular mechanisms of the CD47-SIRPalpha signalling pathway. Trends Cell Biol 2009; 19:72-80. [PMID: 19144521 DOI: 10.1016/j.tcb.2008.12.001] [Citation(s) in RCA: 362] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/01/2008] [Accepted: 12/02/2008] [Indexed: 12/30/2022]
Abstract
Signal regulatory protein (SIRP)alpha, also known as SHPS-1 or SIRPA, is a transmembrane protein that binds to the protein tyrosine phosphatases SHP-1 and SHP-2 through its cytoplasmic region and is predominantly expressed in neurons, dendritic cells and macrophages. CD47, a widely expressed transmembrane protein, is a ligand for SIRPalpha, with the two proteins constituting a cell-cell communication system. The interaction of SIRPalpha with CD47 is important for the regulation of migration and phagocytosis. Recent studies have implicated the CD47-SIRPalpha signalling pathway in immune homeostasis and in regulation of neuronal networks. Advances in the structural and functional analyses of the CD47-SIRPalpha signalling pathway now provide exciting hints of the therapeutic benefits of manipulating this signalling system in autoimmune diseases and neurological disorders.
Collapse
Affiliation(s)
- Takashi Matozaki
- Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-Machi, Maebashi, Gunma, Japan.
| | | | | | | |
Collapse
|
30
|
Abstract
Receptors carrying immunoreceptor tyrosine-based inhibition motifs (ITIMs) in their cytoplasmic tail control a vast array of cellular responses, ranging from autoimmunity, allergy, phagocytosis of red blood cells, graft versus host disease, to even neuronal plasticity in the brain. The inhibitory function of many receptors has been deduced on the basis of cytoplasmic ITIM sequences. Tight regulation of natural killer (NK) cell cytotoxicity and cytokine production by inhibitory receptors specific for major histocompatibility complex class I molecules has served as a model system to study the negative signaling pathway triggered by an ITIM-containing receptor in the physiological context of NK-target cell interactions. Advances in our understanding of the molecular details of inhibitory signaling in NK cells have provided a conceptual framework to address how ITIM-mediated regulation controls cellular reactivity in diverse cell types.
Collapse
Affiliation(s)
- Eric O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
31
|
Eminaga S, Bennett AM. Noonan syndrome-associated SHP-2/Ptpn11 mutants enhance SIRPalpha and PZR tyrosyl phosphorylation and promote adhesion-mediated ERK activation. J Biol Chem 2008; 283:15328-38. [PMID: 18378677 PMCID: PMC2397460 DOI: 10.1074/jbc.m801382200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 03/27/2008] [Indexed: 11/06/2022] Open
Abstract
Noonan syndrome (NS) is an autosomal dominant disorder that is associated with multiple developmental abnormalities. Activated mutations of the protein-tyrosine phosphatase, SHP-2/PTPN11, have been reported in approximately 50% of NS cases. Despite being activated, NS-associated SHP-2 mutants require plasma membrane proximity to evoke disease-associated signaling. Here we show that NS-associated SHP-2 mutants induce hypertyrosyl phosphorylation of the transmembrane glycoproteins, SIRPalpha (signal-regulatory protein alpha) and PZR (protein zero-related), resulting in their increased association with NS-associated SHP-2 mutants. NS-associated SHP-2 mutants enhanced SIRPalpha and PZR tyrosyl phosphorylation either by impairing SIRPalpha dephosphorylation or by promoting PZR tyrosyl phosphorylation. Importantly, during embryogenesis in a mouse model of NS, SIRPalpha and PZR were hypertyrosyl-phosphorylated and bound increased levels of the NS-associated SHP-2 mutant. SIRPalpha and PZR have been implicated in extracellular matrix-dependent signaling. Mouse embryonic fibroblasts derived from a mouse model of NS displayed enhanced ERK activation in response to fibronectin plating. Knockdown of SIRPalpha and PZR in these cells attenuated the enhanced activation of ERK following fibronectin plating. Thus, SIRPalpha and PZR serve as scaffolds that facilitate plasma membrane recruitment and signaling of NS-associated SHP-2 mutants.
Collapse
Affiliation(s)
| | - Anton M. Bennett
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
32
|
Flanagin S, Nelson JD, Castner DG, Denisenko O, Bomsztyk K. Microplate-based chromatin immunoprecipitation method, Matrix ChIP: a platform to study signaling of complex genomic events. Nucleic Acids Res 2008; 36:e17. [PMID: 18203739 PMCID: PMC2241906 DOI: 10.1093/nar/gkn001] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The chromatin immunoprecipitation (ChIP) assay is a major tool in the study of genomic processes in vivo. This and other methods are revealing that control of gene expression, cell division and DNA repair involves multiple proteins and great number of their modifications. ChIP assay is traditionally done in test tubes limiting the ability to study signaling of the complex genomic events. To increase the throughput and to simplify the assay we have developed a microplate-based ChIP (Matrix ChIP) method, where all steps from immunoprecipitation to DNA purification are done in microplate wells without sample transfers. This platform has several important advantages over the tube-based assay including very simple sample handling, high throughput, improved sensitivity and reproducibility, and potential for automation. 96 ChIP measurements including PCR can be done by one researcher in one day. We illustrate the power of Matrix ChIP by parallel profiling 80 different chromatin and transcription time-course events along an inducible gene including transient recruitment of kinases.
Collapse
Affiliation(s)
- Steve Flanagin
- UW Medicine Lake Union, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
Adapters are multidomain molecules that recruit effector proteins during signal transduction by immunoreceptors and integrins. The absence of these scaffolding molecules profoundly affects development and function of various hematopoietic lineages, underscoring their importance as regulators of signaling cascades. An emerging aspect of the mechanism by which engaged immunoreceptors and integrins transmit signals within the cell is by differential usage of various adapters that function to nucleate formation of distinct signaling complexes in a specific location within the cell. In this review, we discuss the mechanisms by which adapter proteins coordinate signal transduction with an emphasis on the role of subcellular compartmentalization in adapter function.
Collapse
Affiliation(s)
- Natalie Bezman
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
34
|
Abstract
Signal regulatory protein alpha (SIRPalpha, SHPS-1) is a plasma membrane receptor for CD47 and a key regulator of phagocytosis, growth factor signaling, and migration. Phosphorylation of immunoreceptor tyrosine-based inhibition motifs in its cytoplasmic tail is essential for the functional effects of SIRPalpha, at least in part, because the phosphorylated immunoreceptor tyrosine-based inhibition motifs recruit Src homology 2 domain-containing tyrosine phosphatases. Ligation by CD47 and integrin engagement both have been thought to regulate SIRPalpha phosphorylation. However, their distinct contributions have not been distinguished. Here, we show that the importance of CD47 varies with cell type, since ligation of CD47 is not necessary for SIRPalpha phosphorylation in myeloid cells, whereas it is required in endothelial cells. In contrast, integrin-mediated adhesion is required for SIRPalpha phosphorylation in both cell types. This shows that SIRPalpha phosphorylation is dually regulated and demonstrates a new mechanism for functional cooperation between integrins and the integrin-associated protein CD47.
Collapse
Affiliation(s)
- Mette L Johansen
- Program in Microbial Pathogenesis and Host Defense, Genentech Hall, University of California, San Francisco, California 94158, USA
| | | |
Collapse
|
35
|
Kliche S, Breitling D, Togni M, Pusch R, Heuer K, Wang X, Freund C, Kasirer-Friede A, Menasche G, Koretzky GA, Schraven B. The ADAP/SKAP55 signaling module regulates T-cell receptor-mediated integrin activation through plasma membrane targeting of Rap1. Mol Cell Biol 2006; 26:7130-44. [PMID: 16980616 PMCID: PMC1592884 DOI: 10.1128/mcb.00331-06] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Adhesion of T cells after stimulation of the T-cell receptor (TCR) is mediated via signaling processes that have collectively been termed inside-out signaling. The molecular basis for inside-out signaling is not yet completely understood. Here, we show that a signaling module comprising the cytosolic adapter proteins ADAP and SKAP55 is involved in TCR-mediated inside-out signaling and, moreover, that the interaction between ADAP and SKAP55 is mandatory for integrin activation. Disruption of the ADAP/SKAP55 module leads to displacement of the small GTPase Rap1 from the plasma membrane without influencing its GTPase activity. These findings suggest that the ADAP/SKAP55 complex serves to recruit activated Rap1 to the plasma membrane. In line with this hypothesis is the finding that membrane targeting of the ADAP/SKAP55 module induces T-cell adhesion in the absence of TCR-mediated stimuli. However, it appears as if the ADAP/SKAP55 module can exert its signaling function outside of the classical raft fraction of the cell membrane.
Collapse
Affiliation(s)
- Stefanie Kliche
- Institute of Immunology, Otto von Guericke University, 39120 Magdeburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The immune system must be highly regulated to obtain optimal immune responses for the elimination of pathogens without causing undue side effects. This tight regulation involves complex interactions between membrane proteins on leukocytes. Members of the signal-regulatory protein (SIRP) family, which are expressed mainly by myeloid cells, provide one example of these regulatory membrane proteins. There are three SIRP-family genes that encode proteins that have similar extracellular regions but different signalling potentials, and are therefore known as 'paired receptors'. In this Review, we describe recent studies defining the ligands of the SIRP-family members, with particular emphasis on relating the molecular interactions of these proteins to their role in immune-cell regulation.
Collapse
MESH Headings
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/metabolism
- Adjuvants, Immunologic/physiology
- Animals
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- Antigens, Differentiation/physiology
- Humans
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/physiology
- Multigene Family
- Neural Cell Adhesion Molecules/genetics
- Neural Cell Adhesion Molecules/metabolism
- Neural Cell Adhesion Molecules/physiology
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/physiology
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/physiology
Collapse
Affiliation(s)
- A Neil Barclay
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | | |
Collapse
|
37
|
Abstract
The `signal regulatory protein' SIRPα is an Ig superfamily, transmembrane glycoprotein with a pair of cytoplasmic domains that can bind the phosphatase SHP-2 when phosphorylated on tyrosine. SIRPα is prominent in growth cones of rat cortical neurons and located, together with the tetraspanin CD81, in the growth cone periphery. SIRPα is dynamically associated with Triton-X-100-sensitive, but Brij-98-resistant, lipid microdomains, which also contain CD81. Challenge of growth cones with the integrin-binding extracellular-matrix (ECM) protein, laminin, or with the growth factors, IGF-1 or BDNF, increases SIRPα phosphorylation and SHP-2 binding rapidly and transiently, via Src family kinase activation; phosphorylated SIRPα dissociates from the lipid microdomains. A cytoplasmic tail fragment of SIRPα (cSIRPα), when expressed in primary cortical neurons, also is phosphorylated and binds SHP-2. Expression of wild-type cSIRPα, but not of a phosphorylation-deficient mutant, substantially decreases IGF-1-stimulated axonal growth on laminin. On poly-D-lysine and in control conditions, axonal growth is slower than on laminin, but there is no further reduction in growth rate induced by the expression of cSIRPα. Thus, the effect of cSIRPα on axon growth is dependent upon integrin activation by laminin. These results suggest that SIRPα functions in the modulation of axonal growth by ECM molecules, such as laminin.
Collapse
Affiliation(s)
- Xiaoxin X Wang
- Department of Cell and Developmental Biology, University of Colorado School of Medicine and University of Colorado Cancer Center, Aurora, CO 80010, USA
| | | |
Collapse
|
38
|
Togni M, Swanson KD, Reimann S, Kliche S, Pearce AC, Simeoni L, Reinhold D, Wienands J, Neel BG, Schraven B, Gerber A. Regulation of in vitro and in vivo immune functions by the cytosolic adaptor protein SKAP-HOM. Mol Cell Biol 2005; 25:8052-63. [PMID: 16135797 PMCID: PMC1234325 DOI: 10.1128/mcb.25.18.8052-8063.2005] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
SKAP-HOM is a cytosolic adaptor protein representing a specific substrate for the Src family protein tyrosine kinase Fyn. Previously, several groups have provided experimental evidence that SKAP-HOM (most likely in cooperation with the cytosolic adaptor protein ADAP) is involved in regulating leukocyte adhesion. To further assess the physiological role of SKAP-HOM, we investigated the immune system of SKAP-HOM-deficient mice. Our data show that T-cell responses towards a variety of stimuli are unaffected in the absence of SKAP-HOM. Similarly, B-cell receptor (BCR)-mediated total tyrosine phosphorylation and phosphorylation of Erk, p38, and JNK, as well as immunoreceptor-mediated Ca(2+) responses, are normal in SKAP-HOM(-/-) animals. However, despite apparently normal membrane-proximal signaling events, BCR-mediated proliferation is strongly attenuated in the absence of SKAP-HOM(-/-). In addition, adhesion of activated B cells to fibronectin (a ligand for beta1 integrins) as well as to ICAM-1 (a ligand for beta2 integrins) is strongly reduced. In vivo, the loss of SKAP-HOM results in a less severe clinical course of experimental autoimmune encephalomyelitis following immunization of mice with the encephalitogenic peptide of MOG (myelin oligodendrocyte glycoprotein). This is accompanied by strongly reduced serum levels of MOG-specific antibodies and lower MOG-specific T-cell responses. In summary, our data suggest that SKAP-HOM is required for proper activation of the immune system, likely by regulating the cross-talk between immunoreceptors and integrins.
Collapse
Affiliation(s)
- M Togni
- Institute of Immunology, Otto von Guericke University, Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Alblas J, Honing H, de Lavalette CR, Brown MH, Dijkstra CD, van den Berg TK. Signal regulatory protein alpha ligation induces macrophage nitric oxide production through JAK/STAT- and phosphatidylinositol 3-kinase/Rac1/NAPDH oxidase/H2O2-dependent pathways. Mol Cell Biol 2005; 25:7181-92. [PMID: 16055727 PMCID: PMC1190262 DOI: 10.1128/mcb.25.16.7181-7192.2005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signal regulatory protein alpha (SIRPalpha) is a glycoprotein receptor that recruits and signals via the tyrosine phosphatases SHP-1 and SHP-2. In macrophages SIRPalpha can negatively regulate the phagocytosis of host cells and the production of tumor necrosis factor alpha. Here we provide evidence that SIRPalpha can also stimulate macrophage activities, in particular the production of nitric oxide (NO) and reactive oxygen species. Ligation of SIRPalpha by antibodies or soluble CD47 triggers inducible nitric oxide synthase expression and production of NO. This was not caused by blocking negative-regulatory SIRPalpha-CD47 interactions. SIRPalpha-induced NO production was prevented by inhibition of the tyrosine kinase JAK2. JAK2 was found to associate with SIRPalpha in macrophages, particularly after SIRPalpha ligation, and SIRPalpha stimulation resulted in JAK2 and STAT1 tyrosine phosphorylation. Furthermore, SIRPalpha-induced NO production required the generation of hydrogen peroxide (H(2)O(2)) by a NADPH oxidase (NOX) and the phosphatidylinositol 3-kinase (PI3-K)-dependent activation of Rac1, an intrinsic NOX component. Finally, SIRPalpha ligation promoted SHP-1 and SHP-2 recruitment, which was both JAK2 and PI3-K dependent. These findings demonstrate that SIRPalpha ligation induces macrophage NO production through the cooperative action of JAK/STAT and PI3-K/Rac1/NOX/H(2)O(2) signaling pathways. Therefore, we propose that SIRPalpha is able to function as an activating receptor.
Collapse
Affiliation(s)
- Jacqueline Alblas
- Department of Molecular Cell Biology and Immunology, VU Medical Center, MB Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
40
|
Ishikawa-Sekigami T, Kaneko Y, Okazawa H, Tomizawa T, Okajo J, Saito Y, Okuzawa C, Sugawara-Yokoo M, Nishiyama U, Ohnishi H, Matozaki T, Nojima Y. SHPS-1 promotes the survival of circulating erythrocytes through inhibition of phagocytosis by splenic macrophages. Blood 2005; 107:341-8. [PMID: 16141346 DOI: 10.1182/blood-2005-05-1896] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The lifespan of circulating red blood cells (RBCs) produced in bone marrow is determined by their elimination through phagocytosis by splenic macrophages. The mechanism by which RBC elimination is regulated has remained unclear, however. The surface glycoprotein SHPS-1, a member of the immunoglobulin superfamily, is abundant in macrophages. We have now examined the regulation of RBC turnover with the use of mice that express a mutant form of SHPS-1 lacking most of its cytoplasmic region. The mutant mice manifested mild anemia as well as splenomegaly characterized by expansion of the red pulp. The numbers of erythroid precursor cells in the spleen and of circulating reticulocytes were also increased in the mutant mice. In contrast, the half-life of circulating RBCs was reduced in these animals, and the rate of clearance of injected opsonized RBCs from the peripheral circulation was increased in association with their incorporation into splenic macrophages. Phagocytosis of opsonized RBCs by splenic macrophages from mutant mice in vitro was also increased compared with that observed with wild-type macrophages. These results suggest that SHPS-1 negatively regulates the phagocytosis of RBCs by splenic macrophages, thereby determining both the lifespan of individual RBCs and the number of circulating erythrocytes.
Collapse
Affiliation(s)
- Tomomi Ishikawa-Sekigami
- Department of Medicine and Clinical Scinece, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Arias-Salgado EG, Haj F, Dubois C, Moran B, Kasirer-Friede A, Furie BC, Furie B, Neel BG, Shattil SJ. PTP-1B is an essential positive regulator of platelet integrin signaling. ACTA ACUST UNITED AC 2005; 170:837-45. [PMID: 16115959 PMCID: PMC2171339 DOI: 10.1083/jcb.200503125] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Outside-in integrin αIIbβ3 signaling is required for normal platelet thrombus formation and is triggered by c-Src activation through an unknown mechanism. In this study, we demonstrate an essential role for protein–tyrosine phosphatase (PTP)–1B in this process. In resting platelets, c-Src forms a complex with αIIbβ3 and Csk, which phosphorylates c-Src tyrosine 529 to maintain c-Src autoinhibition. Fibrinogen binding to αIIbβ3 triggers PTP-1B recruitment to the αIIbβ3–c-Src–Csk complex in a manner that is dependent on c-Src and specific tyrosine (tyrosine 152 and 153) and proline (proline 309 and 310) residues in PTP-1B. Studies of PTP-1B–deficient mouse platelets indicate that PTP-1B is required for fibrinogen-dependent Csk dissociation from αIIbβ3, dephosphorylation of c-Src tyrosine 529, and c-Src activation. Furthermore, PTP-1B–deficient platelets are defective in outside-in αIIbβ3 signaling in vitro as manifested by poor spreading on fibrinogen and decreased clot retraction, and they exhibit ineffective Ca2+ signaling and thrombus formation in vivo. Thus, PTP-1B is an essential positive regulator of the initiation of outside-in αIIbβ3 signaling in platelets.
Collapse
|
42
|
Ling Y, Maile LA, Lieskovska J, Badley-Clarke J, Clemmons DR. Role of SHPS-1 in the regulation of insulin-like growth factor I-stimulated Shc and mitogen-activated protein kinase activation in vascular smooth muscle cells. Mol Biol Cell 2005; 16:3353-64. [PMID: 15888547 PMCID: PMC1165417 DOI: 10.1091/mbc.e04-10-0918] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Insulin-like growth factor I (IGF-I) stimulates smooth muscle cell (SMC) proliferation, and the mitogen-activated protein kinase (MAPK) pathway plays an important role in mediating IGF-I-induced mitogenic signaling. Our prior studies have shown that recruitment of Src homology 2 domain tyrosine phosphatase (SHP-2) to the membrane scaffolding protein Src homology 2 domain-containing protein tyrosine phosphatase substrate-1 (SHPS-1) is required for IGF-I-dependent MAPK activation. The current studies were undertaken to define the upstream signaling components that are required for IGF-I-stimulated MAPK activation and the role of SHPS-1 in regulating this process. The results show that IGF-I-induced Shc phosphorylation and its subsequent binding to Grb2 is required for sustained phosphorylation of MAPK and increased cell proliferation in SMCs. Furthermore, for Shc to be phosphorylated in response to IGF-I requires that Shc must associate with SHPS-1 and this association is mediated in part by SHP-2. Preincubation of cells with a peptide that contains a phospho-tyrosine binding motif sequence derived from SHPS-1 inhibited IGF-I-stimulated SHP-2 transfer to SHPS-1, the association of Shc with SHPS-1, and IGF-I-dependent Shc phosphorylation. Expression of an SHPS-1 mutant that did not bind to Shc or SHP-2 resulted in decreased Shc and MAPK phosphorylation in response to IGF-I. In addition, SMCs expressing a mutant form of the beta3 subunit of the alphaVbeta3, which results in impairment of SHP-2 transfer to SHPS-1, also showed attenuated IGF-I-dependent Shc and MAPK phosphorylation. Further analysis showed that Shc and SHP-2 can be coimmunoprecipitated after IGF-I stimulation. A cell-permeable peptide that contained a polyproline sequence from Shc selectively inhibited Shc/SHP-2 association and impaired Shc but not SHP-2 binding to SHPS-1. Exposure to this peptide also inhibited IGF-I-stimulated Shc and MAPK phosphorylation. Cells expressing a mutant form of Shc with the four prolines substituted with alanines showed no Shc/SHPS-1 association in response to IGF-I. We conclude that SHPS-1 functions as an anchor protein that recruits both Shc and SHP-2 and that their recruitment is necessary for IGF-I-dependent Shc phosphorylation, which is required for an optimal mitogenic response in SMCs.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Amino Acid Sequence
- Animals
- Cell Line
- Cell Membrane/metabolism
- Cell Proliferation
- Cells, Cultured
- Dose-Response Relationship, Drug
- GRB2 Adaptor Protein/metabolism
- Gene Expression Regulation
- Genetic Vectors
- Humans
- Immunoblotting
- Immunoprecipitation
- Insulin-Like Growth Factor I/metabolism
- Intracellular Signaling Peptides and Proteins/metabolism
- MAP Kinase Signaling System
- Molecular Sequence Data
- Muscle, Smooth, Vascular/cytology
- Mutation
- Peptides/chemistry
- Phosphorylation
- Protein Structure, Tertiary
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatases/metabolism
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/physiology
- Shc Signaling Adaptor Proteins
- Src Homology 2 Domain-Containing, Transforming Protein 1
- Swine
- Time Factors
Collapse
Affiliation(s)
- Yan Ling
- School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
43
|
Okazawa H, Motegi SI, Ohyama N, Ohnishi H, Tomizawa T, Kaneko Y, Oldenborg PA, Ishikawa O, Matozaki T. Negative regulation of phagocytosis in macrophages by the CD47-SHPS-1 system. THE JOURNAL OF IMMUNOLOGY 2005; 174:2004-11. [PMID: 15699129 DOI: 10.4049/jimmunol.174.4.2004] [Citation(s) in RCA: 242] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Src homology 2 domain-containing protein tyrosine phosphatase (SHP) substrate-1 (SHPS-1) is a transmembrane protein that is expressed predominantly in macrophages. Its extracellular region interacts with the transmembrane ligand CD47 expressed on the surface of adjacent cells, and its cytoplasmic region binds the protein tyrosine phosphatases SHP-1 and SHP-2. Phagocytosis of IgG- or complement-opsonized RBCs by peritoneal macrophages derived from mice that express a mutant SHPS-1 protein that lacks most of the cytoplasmic region was markedly enhanced compared with that apparent with wild-type macrophages. This effect was not observed either with CD47-deficient RBCs as the phagocytic target or in the presence of blocking Abs to SHPS-1. Depletion of SHPS-1 from wild-type macrophages by RNA interference also promoted FcgammaR-mediated phagocytosis of wild-type RBCs. Ligation of SHPS-1 on macrophages by CD47 on RBCs promoted tyrosine phosphorylation of SHPS-1 and its association with SHP-1, whereas tyrosine phosphorylation of SHPS-1 was markedly reduced in response to cross-linking of FcgammaRs. Treatment with inhibitors of PI3K or of Syk, but not with those of MEK or Src family kinases, abolished the enhancement of FcgammaR-mediated phagocytosis apparent in macrophages from SHPS-1 mutant mice. In contrast, FcgammaR-mediated tyrosine phosphorylation of Syk, Cbl, or the gamma subunit of FcR was similar in macrophages from wild-type and SHPS-1 mutant mice. These results suggest that ligation of SHPS-1 on macrophages by CD47 promotes the tyrosine phosphorylation of SHPS-1 and thereby prevents the FcgammaR-mediated disruption of the SHPS-1-SHP-1 complex, resulting in inhibition of phagocytosis. The inhibition of phagocytosis by the SHPS-1-SHP-1 complex may be mediated at the level of Syk or PI3K signaling.
Collapse
MESH Headings
- Animals
- Antibodies, Blocking/pharmacology
- Antibodies, Monoclonal/pharmacology
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Antigens, Differentiation/genetics
- Antigens, Differentiation/immunology
- Antigens, Differentiation/metabolism
- CD47 Antigen
- Complement C3b/metabolism
- Cross-Linking Reagents/metabolism
- Down-Regulation/genetics
- Down-Regulation/immunology
- Enzyme Precursors/antagonists & inhibitors
- Erythrocytes/immunology
- Erythrocytes/metabolism
- Immunoglobulin G/metabolism
- Intracellular Signaling Peptides and Proteins
- Macrophages, Peritoneal/enzymology
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Membrane Glycoproteins/antagonists & inhibitors
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neural Cell Adhesion Molecule L1/antagonists & inhibitors
- Neural Cell Adhesion Molecule L1/genetics
- Neural Cell Adhesion Molecule L1/immunology
- Neural Cell Adhesion Molecule L1/metabolism
- Opsonin Proteins/metabolism
- Phagocytosis/genetics
- Phagocytosis/immunology
- Phosphoinositide-3 Kinase Inhibitors
- Phosphorylation
- Protein-Tyrosine Kinases/antagonists & inhibitors
- RNA, Small Interfering/pharmacology
- Receptors, IgG/metabolism
- Receptors, IgG/physiology
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- Syk Kinase
- Tyrosine/metabolism
- src-Family Kinases/antagonists & inhibitors
Collapse
Affiliation(s)
- Hideki Okazawa
- Biosignal Research Center, Institute for Molecular and Cellular Regulation, and Department of Dermatology, Graduate School of Medicine, Gunma University, Showa-Machi, Maebashi, Gunma, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bourette RP, Thérier J, Mouchiroud G. Macrophage colony-stimulating factor receptor induces tyrosine phosphorylation of SKAP55R adaptor and its association with actin. Cell Signal 2005; 17:941-9. [PMID: 15894167 DOI: 10.1016/j.cellsig.2004.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 11/11/2004] [Accepted: 11/12/2004] [Indexed: 11/25/2022]
Abstract
The production, survival, and function of monocytes and macrophages are regulated by the macrophage colony-stimulating factor (M-CSF or CSF-1) through its tyrosine kinase receptor. M-CSF receptor activates multiple cytoplasmic pathways in which adaptor and scaffolding proteins play a central role. In this study, we showed that SKAP55-related (SKAP55R) adaptor protein is expressed in myeloid cells and macrophages and is rapidly and transiently tyrosine-phosphorylated in response to M-CSF. M-CSF induced SKAP55R association with other tyrosine-phosphorylated proteins and with actin. When overexpressed in myeloid cells, SKAP55R decreased M-CSF-dependent proliferation without affecting differentiation. Altogether, these results demonstrate that SKAP55R adaptor is implicated in the M-CSF signaling pathway and suggest its role as a negative regulator of growth. Moreover, specific association between SKAP55R and actin support the idea that SKAP55R is implicated in the regulation of actin dynamics under the control of M-CSF.
Collapse
Affiliation(s)
- Roland P Bourette
- Centre de Génétique Moléculaire et Cellulaire, UMR CNRS 5534, Villeurbanne, France.
| | | | | |
Collapse
|
45
|
Fällman M, Gustavsson A. Cellular mechanisms of bacterial internalization counteracted by Yersinia. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 246:135-88. [PMID: 16164968 DOI: 10.1016/s0074-7696(05)46004-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Upon host-cell contact, human pathogenic Yersinia species inject Yop virulence effectors into the host through a Type III secretion-and-translocation system. These virulence effectors cause a block in phagocytosis (YopE, YopT, YpkA, and YopH) and suppression of inflammatory mediators (YopJ). The Yops that block phagocytosis either interfere with the host cell actin regulation of Rho GTPases (YopE, YopT, and YpkA) or specifically and rapidly inactivate host proteins involved in signaling from the receptor to actin (YopH). The block in uptake has been shown to be activated following binding to Fc, Complement, and beta1-integrin receptors in virtually any kind of host cell. Thus, the use of Yersinia as a model system to study Yersinia-host cell interactions provides a good tool to explore signaling pathways involved in phagocytosis.
Collapse
Affiliation(s)
- Maria Fällman
- Department of Molecular Biology, Umeå University, SE-90187 Umeå, Sweden
| | | |
Collapse
|
46
|
Yan HX, Wang HY, Zhang R, Chen L, Li BA, Liu SQ, Cao HF, Qiu XH, Shan YF, Yan ZH, Wu HP, Tan YX, Wu MC. Negative regulation of hepatocellular carcinoma cell growth by signal regulatory protein alpha1. Hepatology 2004; 40:618-28. [PMID: 15349900 DOI: 10.1002/hep.20360] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Signal regulatory protein (SIRP) alpha1 is a member of the SIRP family that undergoes tyrosine phosphorylation and binds SHP-2 tyrosine phosphatase in response to various mitogens. The expression levels of SIRPalpha1 were decreased in HCC tissues, compared with the matched normal tissues. Exogenous expression of wild type SIRPalpha1, but not of a mutant SIRPalpha1 lacking the tyrosine phosphorylation sites, in SIRPalpha1-negative Huh7 human HCC cells resulted in suppression of tumor cell growth both in vitro and in vivo. Treatment of Huh7 transfectants with EGF or HGF induced tyrosine phosphorylation of SIRPalpha1 and its association with SHP-2, which were accompanied by reduced ERK1 activation. Expression of SIRPalpha1 significantly suppressed activation of NF-kappaB and also sensitized Huh7 cells to TNFalpha or cisplatin-induced cell death. In addition, SIRPalpha1-transfected Huh7 cells displayed reduced cell migration and cell spreading in a fashion that was dependent on SIRPalpha1/SHP-2 complex formation. In conclusion, a negative regulatory effect of SIRPalpha1 on hepatocarcinogenesis is exerted, at least in part, through inhibition of ERK and NF-kappaB pathways.
Collapse
Affiliation(s)
- He-Xin Yan
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Chen TT, Brown EJ, Huang EJ, Seaman WE. Expression and activation of signal regulatory protein alpha on astrocytomas. Cancer Res 2004; 64:117-27. [PMID: 14729615 DOI: 10.1158/0008-5472.can-3455-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High-grade astrocytomas and glioblastomas are usually unresectable because they extensively invade surrounding brain tissue. Here, we report the expression and function of a receptor on many astrocytomas that may alter both the proliferative and invasive potential of these tumors. Signal regulatory protein (SIRP) alpha1 is an immunoglobulin superfamily transmembrane glycoprotein that is normally expressed in subsets of myeloid and neuronal cells. Transfection of many cell types with SIRPalpha1, including glioblastomas, has been shown to inhibit their proliferation in response to a range of growth factors. Furthermore, the expression of a murine SIRPalpha1 mutant has been shown to enhance cell adhesion and initial cell spreading but to inhibit cell extension and movement. The extracellular portion of SIRPalpha1 binds CD47 (integrin-associated protein), although this interaction is not required for integrin-mediated activation of SIRPalpha1. On phosphorylation, SIRPalpha1 recruits the tyrosine phosphatases SHP-1 and SHP-2, which are important in its functions. Although SHP-1 is uniquely expressed on hematopoietic cells, SHP-2 is ubiquitously expressed, so that SIRPalpha1 has the potential to function in many cell types, including astrocytomas. Because SIRPalpha1 regulates cell functions that may contribute to the malignancy of these tumors, we examined the expression of SIRPs in astrocytoma cell lines by flow cytometry using a monoclonal antibody against all SIRPs. Screening of nine cell lines revealed clear cell surface expression of SIRPs on five cell lines, whereas Northern blotting for SIRPalpha transcripts showed mRNA present in eight of nine cell lines. All nine cell lines expressed the ligand for SIRPalpha1, CD47. To further examine the expression and function of SIRPs, we studied the SF126 and U373MG astrocytoma cell lines, both of which express SIRPs, in greater detail. SIRP transcripts in these cells are identical in sequence to SIRPalpha1. The expressed deglycosylated protein is the same size as SIRPalpha1, but in the astrocytoma cells, it is underglycosylated compared with SIRPalpha1 produced in transfected Chinese hamster ovary cells. It is nonetheless still capable of binding soluble CD47. Moreover, SIRPalpha1 in each of the two cell lines recruited SHP-2 on phosphorylation, and SIRPalpha1 phosphorylation in cultured cells is CD47 dependent. Finally, examination of frozen sections from 10 primary brain tumor biopsies by immunohistochemistry revealed expression of SIRPs on seven of the specimens, some of which expressed high levels of SIRPs. Most of the tumors also expressed CD47. This is the first demonstration that astrocytomas can express SIRPalpha. Given the known role of SIRPalpha in regulating cell adhesion and responses to mitogenic growth factors, the expression of SIRPalpha1 on astrocytomas may be of considerable importance in brain tumor biology, and it offers the potential of a new avenue for therapeutic intervention.
Collapse
Affiliation(s)
- Thomas T Chen
- Departments of Immunology and Pathology, San Francisco VA Medical Center, San Francisco, California 94121, USA
| | | | | | | |
Collapse
|
48
|
Murai-Takebe R, Noguchi T, Ogura T, Mikami T, Yanagi K, Inagaki K, Ohnishi H, Matozaki T, Kasuga M. Ubiquitination-mediated regulation of biosynthesis of the adhesion receptor SHPS-1 in response to endoplasmic reticulum stress. J Biol Chem 2003; 279:11616-25. [PMID: 14701835 DOI: 10.1074/jbc.m311463200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Misfolding of proteins during endoplasmic reticulum (ER) stress results in the formation of cytotoxic aggregates. The ER-associated degradation pathway counteracts such aggregation through the elimination of misfolded proteins by the ubiquitin-proteasome system. We now show that SHP substrate-1 (SHPS-1), a transmembrane glycoprotein that regulates cytoskeletal reorganization and cell-cell communication, is a physiological substrate for the Skp1-Cullin1-NFB42-Rbx1 (SCF(NFB42)) E3 ubiquitin ligase, a proposed mediator of ER-associated degradation. SCF(NFB42) mediated the polyubiquitination of immature SHPS-1 and its degradation by the proteasome. Ectopic expression of NFB42 both suppressed the formation of aggresome-like structures and the phosphorylation of the translational regulator eIF2alpha induced by overproduction of SHPS-1 as well as increased the amount of mature SHPS-1 at the cell surface. An NFB42 mutant lacking the F box domain had no such effects. Our results suggest that SCF(NFB42) regulates SHPS-1 biosynthesis in response to ER stress.
Collapse
Affiliation(s)
- Reiko Murai-Takebe
- Division of Diabetes, Digestive and Kidney Diseases, Department of Clinical Molecular Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chung DH, Humphrey MB, Nakamura MC, Ginzinger DG, Seaman WE, Daws MR. CMRF-35-like molecule-1, a novel mouse myeloid receptor, can inhibit osteoclast formation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:6541-8. [PMID: 14662855 DOI: 10.4049/jimmunol.171.12.6541] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
By homology to triggering receptor expressed by myeloid cells-2, we screened the mouse expressed sequence tag database and isolated a new single Ig domain receptor, which we have expressed and characterized. The receptor is most similar in sequence to the human CMRF-35 receptor, and thus we have named it CMRF-35-like molecule (CLM)-1. By screening the mouse genome, we determined that CLM-1 was part of a multigene family located on a small segment of mouse chromosome 11. Each contains a single Ig domain, and they are expressed mainly in cells of the myeloid lineage. CLM-1 contains multiple cytoplasmic tyrosine residues, including two that lie in consensus immunoreceptor tyrosine-based inhibitory motifs, and we demonstrate that CLM-1 can associate with Src-homology 2 containing phosphatase-1. Expression of CLM-1 mRNA is down-regulated by treatment with receptor activator of NF-kappaB ligand (RANKL), a cytokine that drives osteoclast formation. Furthermore, expression of CLM-1 in the osteoclastogenic cell line RAW (RAW.CLM-1) prevents osteoclastogenesis induced by RANKL and TGF-beta. RAW.CLM-1 cells fail to multinucleate and do not up-regulate calcitonin receptor, but they express tartrate-resistant acid phosphatase, cathepsin K, and beta(3) integrin, suggesting that osteoclastogenesis is blocked at a late-intermediate stage. Thus, we define a new family of myeloid receptors, and demonstrate that the first member of this family, CLM-1, is an inhibitory receptor, able to block osteoclastogenesis.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Surface/chemistry
- Cell Differentiation/immunology
- Cell Line
- Cell Line, Tumor
- Cloning, Molecular
- Growth Inhibitors/chemistry
- Growth Inhibitors/genetics
- Growth Inhibitors/physiology
- Immunoglobulins/chemistry
- Intracellular Signaling Peptides and Proteins
- Leukemia P388
- Membrane Glycoproteins/chemistry
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Multigene Family/immunology
- Myeloid Cells/metabolism
- Osteoclasts/cytology
- Osteoclasts/immunology
- Protein Phosphatase 1
- Protein Structure, Tertiary
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/metabolism
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Dong-Hui Chung
- Veterans Administration Medical Center and University of California, San Francisco, CA 94121, USA
| | | | | | | | | | | |
Collapse
|
50
|
Thai LM, Ashman LK, Harbour SN, Hogarth PM, Jackson DE. Physical proximity and functional interplay of PECAM-1 with the Fc receptor Fc gamma RIIa on the platelet plasma membrane. Blood 2003; 102:3637-45. [PMID: 12893767 DOI: 10.1182/blood-2003-02-0496] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We and others have recently defined that Platelet Endothelial Cell Adhesion Molecule-1 (PECAM-1/CD31) functions as a negative regulator of platelet-collagen interactions involving the glycoprotein VI/Fc receptor gamma chain (GPVI/FcR-gamma chain) signaling pathway.1,2 In this study, we hypothesized that PECAM-1 may be physically and functionally associated with Fc gamma RIIa on the platelet membrane. The functional relationship between PECAM-1 and Fc gamma RIIa was assessed by determining the effect of anti-PECAM-1 monoclonal antibody Fab fragments on Fc gamma RIIa-mediated platelet aggregation and heparin-induced thrombocytopenia (HITS)-mediated platelet aggregation. Preincubation of washed platelets with monoclonal antibody fragments of 2BD4 directed against PECAM-1 and IV.3 directed against Fc gamma RIIa completely blocked Fc gamma RIIa-mediated platelet aggregation and HITS-mediated platelet aggregation, whereas anti-CD151 antibody had no blocking effect. Coengagement of Fc gamma RIIa and PECAM-1 resulted in negative regulation of Fc gamma RIIa-mediated phospholipase C gamma 2 activation, calcium mobilization, and phosphoinositide 3-kinase-dependent signaling pathways. In addition, the physical proximity of Fc gamma RIIa and PECAM-1 was confirmed by using fluorescence resonance energy transfer and coimmunoprecipitation studies. These results indicate that PECAM-1 and Fc gamma RIIa are colocalized on the platelet membrane and PECAM-1 down-regulates Fc gamma RIIa-mediated platelet responses.
Collapse
Affiliation(s)
- Le M Thai
- Austin Research Institute, Austin Hospital, Studley Road, Heidelberg, Victoria, Australia 3084
| | | | | | | | | |
Collapse
|