1
|
Sun W, Wang M, Shi Z, Wang P, Wang J, Du B, Wang S, Sun Z, Liu Z, Wei L, Yang D, He X, Wang J. VP2 mediates the release of the feline calicivirus RNA genome by puncturing the endosome membrane of infected cells. J Virol 2024; 98:e0035024. [PMID: 38591900 PMCID: PMC11092339 DOI: 10.1128/jvi.00350-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/10/2024] Open
Abstract
Feline calicivirus (FCV) is one of the few members of the Caliciviridae family that grows well in cell lines and, therefore, serves as a surrogate to study the biology of other viruses in the family. Conley et al. (14) demonstrated that upon the receptor engagement to the capsid, FCV VP2 forms a portal-like assembly, which might provide a channel for RNA release. However, the process of calicivirus RNA release is not yet fully understood. Our findings suggest that the separation of the FCV capsid from its genome RNA (gRNA) occurs rapidly in the early endosomes of infected cells. Using a liposome model decorated with the FCV cell receptor fJAM-A, we demonstrate that FCV releases its gRNA into the liposomes by penetrating membranes under low pH conditions. Furthermore, we found that VP2, which is rich in hydrophobic residues at its N-terminus, functions as the pore-forming protein. When we substituted the VP2 N-terminal hydrophobic residues, the gRNA release efficacy of the FCV mutants decreased. In conclusion, our results suggest that in the acidic environment of early endosomes, FCV VP2 functions as the pore-forming protein to mediate gRNA release into the cytoplasm of infected cells. This provides insight into the mechanism of calicivirus genome release.IMPORTANCEResearch on the biology and pathogenicity of certain caliciviruses, such as Norovirus and Sapovirus, is hindered by the lack of easy-to-use cell culture system. Feline calicivirus (FCV), which grows effectively in cell lines, is used as a substitute. At present, there is limited understanding of the genome release mechanism in caliciviruses. Our findings suggest that FCV uses VP2 to pierce the endosome membrane for genome release and provide new insights into the calicivirus gRNA release mechanism.
Collapse
Affiliation(s)
- Weiyao Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ming Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhibin Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Pengfei Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jinhui Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bingchen Du
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shida Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhenzhao Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zaisi Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lili Wei
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Decheng Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xijun He
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jingfei Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
2
|
Sukeník L, Mukhamedova L, Procházková M, Škubník K, Plevka P, Vácha R. Cargo Release from Nonenveloped Viruses and Virus-like Nanoparticles: Capsid Rupture or Pore Formation. ACS NANO 2021; 15:19233-19243. [PMID: 34881874 DOI: 10.1021/acsnano.1c04814] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Virus-like nanoparticles are protein shells similar to wild-type viruses, and both aim to deliver their content into a cell. Unfortunately, the release mechanism of their cargo/genome remains elusive. Pores on the symmetry axes were proposed to enable the slow release of the viral genome. In contrast, cryo-EM images showed that capsids of nonenveloped RNA viruses can crack open and rapidly release the genome. We combined in vitro cryo-EM observations of the genome release of three viruses with coarse-grained simulations of generic virus-like nanoparticles to investigate the cargo/genome release pathways. Simulations provided details on both slow and rapid release pathways, including the success rates of individual releases. Moreover, the simulated structures from the rapid release pathway were in agreement with the experiment. Slow release occurred when interactions between capsid subunits were long-ranged, and the cargo/genome was noncompact. In contrast, rapid release was preferred when the interaction range was short and/or the cargo/genome was compact. These findings indicate a design strategy of virus-like nanoparticles for drug delivery.
Collapse
Affiliation(s)
- Lukáš Sukeník
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic
| | - Liya Mukhamedova
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Michaela Procházková
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Karel Škubník
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Pavel Plevka
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Robert Vácha
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
3
|
Mohammed D, Koehler M, Dumitru AC, Aravamudhan P, Sutherland DM, Dermody TS, Alsteens D. Altered Glycan Expression on Breast Cancer Cells Facilitates Infection by T3 Seroptype Oncolytic Reovirus. NANO LETTERS 2021; 21:9720-9728. [PMID: 34762801 PMCID: PMC8631336 DOI: 10.1021/acs.nanolett.1c03608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Breast cancer is the most common cancer in women. Although current therapies have increased survival rates for some breast cancer types, other aggressive invasive breast cancers remain difficult to treat. As the onset of breast cancer is often associated with the appearance of extracellular markers, these could be used to better target therapeutic agents. Here, we demonstrated by nanobiophysical approaches that overexpression of α-sialylated glycans in breast cancer provides an opportunity to combat cancer cells with oncolytic reoviruses. Notably, a correlation between cellular glycan expression and the mechanical properties of reovirus attachment and infection is observed in a serotype-dependent manner. Furthermore, we enhance the infectivity of reoviruses in malignant cells by the coinjection of α-sialylated glycans. In conclusion, this study supports both the use of reoviruses as an oncolytic agent in nanomedicine and the role of α-sialylated glycans as adjuvants in oncolysis, offering new perspective in oncolytic cancer therapy.
Collapse
Affiliation(s)
- Danahe Mohammed
- Louvain
Institute of Biomolecular Science and Technology (LIBST), Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Melanie Koehler
- Louvain
Institute of Biomolecular Science and Technology (LIBST), Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Andra C. Dumitru
- Louvain
Institute of Biomolecular Science and Technology (LIBST), Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Pavithra Aravamudhan
- Department
of Pediatrics, University of Pittsburgh
School of Medicine, 4401
Penn Avenue, Pittsburgh, 15224 Pennsylvania United States
- Institute
of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, 15224 Pennsylvania United States
| | - Danica M. Sutherland
- Department
of Pediatrics, University of Pittsburgh
School of Medicine, 4401
Penn Avenue, Pittsburgh, 15224 Pennsylvania United States
- Institute
of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, 15224 Pennsylvania United States
| | - Terence S. Dermody
- Department
of Pediatrics and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, 15224 Pennsylvania United States
- Institute
of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, 15224 Pennsylvania United States
| | - David Alsteens
- Louvain
Institute of Biomolecular Science and Technology (LIBST), Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
- Walloon
Excellence in Life sciences and Biotechnology (WELBIO), 1300 Wavre, Belgium
| |
Collapse
|
4
|
Pan M, Alvarez-Cabrera AL, Kang JS, Wang L, Fan C, Zhou ZH. Asymmetric reconstruction of mammalian reovirus reveals interactions among RNA, transcriptional factor µ2 and capsid proteins. Nat Commun 2021; 12:4176. [PMID: 34234134 PMCID: PMC8263624 DOI: 10.1038/s41467-021-24455-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/17/2021] [Indexed: 12/02/2022] Open
Abstract
Mammalian reovirus (MRV) is the prototypical member of genus Orthoreovirus of family Reoviridae. However, lacking high-resolution structures of its RNA polymerase cofactor μ2 and infectious particle, limits understanding of molecular interactions among proteins and RNA, and their contributions to virion assembly and RNA transcription. Here, we report the 3.3 Å-resolution asymmetric reconstruction of transcribing MRV and in situ atomic models of its capsid proteins, the asymmetrically attached RNA-dependent RNA polymerase (RdRp) λ3, and RdRp-bound nucleoside triphosphatase μ2 with a unique RNA-binding domain. We reveal molecular interactions among virion proteins and genomic and messenger RNA. Polymerase complexes in three Spinoreovirinae subfamily members are organized with different pseudo-D3d symmetries to engage their highly diversified genomes. The above interactions and those between symmetry-mismatched receptor-binding σ1 trimers and RNA-capping λ2 pentamers balance competing needs of capsid assembly, external protein removal, and allosteric triggering of endogenous RNA transcription, before, during and after infection, respectively. Mammalian reovirus (MRV) is a double-stranded RNA (dsRNA) virus that affects the gastrointestinal and respiratory tracts. Here, the authors present the 3.3 Å cryo-EM asymmetric reconstruction of transcribing MRV that reveals the organization of the dsRNA genome, RNA interaction with the polymerase complex, and how the polymerase interacts extensively with its co-factor, µ2, to form a transcription enzyme complex, which engages and regulates RNA transcription.
Collapse
Affiliation(s)
- Muchen Pan
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.,California NanoSystems Institute, UCLA, Los Angeles, CA, USA.,University of Chinese Academy of Sciences, Beijing, China.,School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ana L Alvarez-Cabrera
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.,California NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - Joon S Kang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.,California NanoSystems Institute, UCLA, Los Angeles, CA, USA.,Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Lihua Wang
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA. .,California NanoSystems Institute, UCLA, Los Angeles, CA, USA. .,Molecular Biology Institute, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Lowell JA, Mah KM, Bixby JL, Lemmon VP. AAV8 transduction capacity is reduced by prior exposure to endosome-like pH conditions. Neural Regen Res 2021; 16:851-855. [PMID: 33229719 PMCID: PMC8178773 DOI: 10.4103/1673-5374.299272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 11/04/2022] Open
Abstract
Adeno-associated virus (AAV) is an essential instrument in the neuroscientist's toolkit, which allows delivery of DNA to provide labeling with fluorescent proteins or genetic instructions to regulate gene expression. In the field of neural regeneration, the transduction of neurons enables the observation and regulation of axon growth and regeneration, and in the future will likely be a mechanism for delivering molecular therapies to promote sprouting and regeneration after central nervous system injury. Traditional formulations of AAV preparations permit efficient viral transduction under physiologic conditions, but an improved understanding of the mechanistic limitations of AAV transduction may facilitate production of more resilient AAV strains for investigative and therapeutic purposes. We studied AAV transduction in the context of prior exposure of AAV serotype 8 (AAV8) to environmental pH within the range encountered during endosomal endocytosis (pH 7.4 to pH 4.4), during which low pH-triggered structural and autoproteolytic changes to the viral capsid are believed to be necessary for endosome escape and virus uncoating. Due to the fundamental nature of these processes, we hypothesized that premature exposure of AAV8 particles to acidic pH would decrease viral transduction of HT1080 cells in vitro, as measured by fluorescent reporter gene expression using high-content imaging analysis. We found that increasingly acidic incubation conditions were associated with concomitant reductions in transduction efficiency, and that quantitative levels of reporter gene expression in transduced cells were similarly decreased. The biggest decrease in transduction occurred between pH 7.4 and pH 6.4, suggesting the possible co-occurrence of a pH-associated event and viral inactivation within that range. Taken together, these findings indicate that exposure of AAV8 to acidic pH for as little as 1 hour is deleterious to transduction ability. Future studies are necessary to understand the pH-associated causative mechanisms involved. This study was approved by the University of Miami Institutional Animal Care and Use Committee, USA (Protocol #18-108-LF) on July 12, 2018.
Collapse
Affiliation(s)
- Jeffrey A. Lowell
- Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA
| | - Kar Men Mah
- Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA
| | - John L. Bixby
- Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA
- Department of Neurological Surgery, University of Miami, Miami, FL, USA
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL, USA
| | - Vance P. Lemmon
- Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA
- Department of Neurological Surgery, University of Miami, Miami, FL, USA
| |
Collapse
|
6
|
Koehler M, Petitjean SJL, Yang J, Aravamudhan P, Somoulay X, Lo Giudice C, Poncin MA, Dumitru AC, Dermody TS, Alsteens D. Reovirus directly engages integrin to recruit clathrin for entry into host cells. Nat Commun 2021; 12:2149. [PMID: 33846319 PMCID: PMC8041799 DOI: 10.1038/s41467-021-22380-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/09/2021] [Indexed: 02/01/2023] Open
Abstract
Reovirus infection requires the concerted action of viral and host factors to promote cell entry. After interaction of reovirus attachment protein σ1 with cell-surface carbohydrates and proteinaceous receptors, additional host factors mediate virus internalization. In particular, β1 integrin is required for endocytosis of reovirus virions following junctional adhesion molecule A (JAM-A) binding. While integrin-binding motifs in the surface-exposed region of reovirus capsid protein λ2 are thought to mediate integrin interaction, evidence for direct β1 integrin-reovirus interactions and knowledge of how integrins function to mediate reovirus entry is lacking. Here, we use single-virus force spectroscopy and confocal microscopy to discover a direct interaction between reovirus and β1 integrins. Comparison of interactions between reovirus disassembly intermediates as well as mutants and β1 integrin show that λ2 is the integrin ligand. Finally, using fluidic force microscopy, we demonstrate a functional role for β1 integrin interaction in promoting clathrin recruitment to cell-bound reovirus. Our study demonstrates a direct interaction between reovirus and β1 integrins and offers insights into the mechanism of reovirus cell entry. These results provide new perspectives for the development of efficacious antiviral therapeutics and the engineering of improved viral gene delivery and oncolytic vectors.
Collapse
Affiliation(s)
- Melanie Koehler
- grid.7942.80000 0001 2294 713XLouvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Simon J. L. Petitjean
- grid.7942.80000 0001 2294 713XLouvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jinsung Yang
- grid.7942.80000 0001 2294 713XLouvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Pavithra Aravamudhan
- grid.21925.3d0000 0004 1936 9000Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA USA ,grid.239553.b0000 0000 9753 0008Institute of Infection, Inflammation and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA USA
| | - Xayathed Somoulay
- grid.21925.3d0000 0004 1936 9000Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA USA ,grid.239553.b0000 0000 9753 0008Institute of Infection, Inflammation and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA USA
| | - Cristina Lo Giudice
- grid.7942.80000 0001 2294 713XLouvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Mégane A. Poncin
- grid.7942.80000 0001 2294 713XLouvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Andra C. Dumitru
- grid.7942.80000 0001 2294 713XLouvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Terence S. Dermody
- grid.21925.3d0000 0004 1936 9000Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA USA ,grid.239553.b0000 0000 9753 0008Institute of Infection, Inflammation and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - David Alsteens
- grid.7942.80000 0001 2294 713XLouvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium ,grid.509491.0Walloon Excellence in Life sciences and Biotechnology (WELBIO), Wavre, Belgium
| |
Collapse
|
7
|
Yang Y, Gaspard G, McMullen N, Duncan R. Polycistronic Genome Segment Evolution and Gain and Loss of FAST Protein Function during Fusogenic Orthoreovirus Speciation. Viruses 2020; 12:v12070702. [PMID: 32610593 PMCID: PMC7412057 DOI: 10.3390/v12070702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/03/2020] [Accepted: 06/25/2020] [Indexed: 12/29/2022] Open
Abstract
The Reoviridae family is the only non-enveloped virus family with members that use syncytium formation to promote cell–cell virus transmission. Syncytiogenesis is mediated by a fusion-associated small transmembrane (FAST) protein, a novel family of viral membrane fusion proteins. Previous evidence suggested the fusogenic reoviruses arose from an ancestral non-fusogenic virus, with the preponderance of fusogenic species suggesting positive evolutionary pressure to acquire and maintain the fusion phenotype. New phylogenetic analyses that included the atypical waterfowl subgroup of avian reoviruses and recently identified new orthoreovirus species indicate a more complex relationship between reovirus speciation and fusogenic capacity, with numerous predicted internal indels and 5’-terminal extensions driving the evolution of the orthoreovirus’ polycistronic genome segments and their encoded FAST and fiber proteins. These inferred recombination events generated bi- and tricistronic genome segments with diverse gene constellations, they occurred pre- and post-orthoreovirus speciation, and they directly contributed to the evolution of the four extant orthoreovirus FAST proteins by driving both the gain and loss of fusion capability. We further show that two distinct post-speciation genetic events led to the loss of fusion in the waterfowl isolates of avian reovirus, a recombination event that replaced the p10 FAST protein with a heterologous, non-fusogenic protein and point substitutions in a conserved motif that destroyed the p10 assembly into multimeric fusion platforms.
Collapse
Affiliation(s)
- Yiming Yang
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (Y.Y.); (G.G.); (N.M.)
| | - Gerard Gaspard
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (Y.Y.); (G.G.); (N.M.)
| | - Nichole McMullen
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (Y.Y.); (G.G.); (N.M.)
| | - Roy Duncan
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (Y.Y.); (G.G.); (N.M.)
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Correspondence:
| |
Collapse
|
8
|
Nonstructural Protein σ1s Is Required for Optimal Reovirus Protein Expression. J Virol 2018; 92:JVI.02259-17. [PMID: 29321319 DOI: 10.1128/jvi.02259-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/03/2018] [Indexed: 12/17/2022] Open
Abstract
Reovirus nonstructural protein σ1s is required for the establishment of viremia and hematogenous viral dissemination. However, the function of σ1s during the reovirus replication cycle is not known. In this study, we found that σ1s was required for efficient reovirus replication in simian virus 40 (SV40)-immortalized endothelial cells (SVECs), mouse embryonic fibroblasts, human umbilical vein endothelial cells (HUVECs), and T84 human colonic epithelial cells. In each of these cell lines, wild-type reovirus produced substantially higher viral titers than a σ1s-deficient mutant. The σ1s protein was not required for early events in reovirus infection, as evidenced by the fact that no difference in infectivity between the wild-type and σ1s-null viruses was observed. However, the wild-type virus produced markedly higher viral protein levels than the σ1s-deficient strain. The disparity in viral replication did not result from differences in viral transcription or protein stability. We further found that the σ1s protein was dispensable for cell killing and the induction of type I interferon responses. In the absence of σ1s, viral factory (VF) maturation was impaired but sufficient to support low levels of reovirus replication. Together, our results indicate that σ1s is not absolutely essential for viral protein production but rather potentiates reovirus protein expression to facilitate reovirus replication. Our findings suggest that σ1s enables hematogenous reovirus dissemination by promoting efficient viral protein synthesis, and thereby reovirus replication, in cells that are required for reovirus spread to the blood.IMPORTANCE Hematogenous dissemination is a critical step in the pathogenesis of many viruses. For reovirus, nonstructural protein σ1s is required for viral spread via the blood. However, the mechanism by which σ1s promotes reovirus dissemination is unknown. In this study, we identified σ1s as a viral mediator of reovirus protein expression. We found several cultured cell lines in which σ1s is required for efficient reovirus replication. In these cells, wild-type virus produced substantially higher levels of viral protein than a σ1s-deficient mutant. The σ1s protein was not required for viral mRNA transcription or viral protein stability. Since reduced levels of viral protein were synthesized in the absence of σ1s, the maturation of viral factories was impaired, and significantly fewer viral progeny were produced. Taken together, our findings indicate that σ1s is required for optimal reovirus protein production, and thereby viral replication, in cells required for hematogenous reovirus dissemination.
Collapse
|
9
|
Sutherland DM, Aravamudhan P, Dermody TS. An Orchestra of Reovirus Receptors: Still Searching for the Conductor. Adv Virus Res 2017; 100:223-246. [PMID: 29551138 DOI: 10.1016/bs.aivir.2017.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Viruses are constantly engaged in a molecular arms race with the host, where efficient and tactical use of cellular receptors benefits critical steps in infection. Receptor use dictates initiation, establishment, and spread of viral infection to new tissues and hosts. Mammalian orthoreoviruses (reoviruses) are pervasive pathogens that use multiple receptors to overcome protective host barriers to disseminate from sites of initial infection and cause disease in young mammals. In particular, reovirus invades the central nervous system (CNS) with serotype-dependent tropism and disease. A single viral gene, encoding the attachment protein σ1, segregates with distinct patterns of CNS injury. Despite the identification and characterization of several reovirus receptors, host factors that dictate tropism via interaction with σ1 remain undefined. Here, we summarize the state of the reovirus receptor field and discuss open questions toward understanding how the reovirus attachment protein dictates CNS tropism.
Collapse
Affiliation(s)
| | | | - Terence S Dermody
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
10
|
Reovirus inhibits interferon production by sequestering IRF3 into viral factories. Sci Rep 2017; 7:10873. [PMID: 28883463 PMCID: PMC5589761 DOI: 10.1038/s41598-017-11469-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/24/2017] [Indexed: 01/07/2023] Open
Abstract
Upon viral infection, an arms-race between the cellular intrinsic innate immune system and viral replication is established. To win this race, viruses have established multiple strategies to inhibit the cellular response. Mammalian reovirus (MRV) constitutes a great model to study pathogenesis and life cycle of dsRNA viruses. It replicates in the cytosol of infected cells by forming viral induced-replication compartments, or viral factories. Little is known about the strategy used by MRV to evade the cellular intrinsic immune system. In this study, we unraveled that MRV induces a replication-dependent global reduction in interferon-mediated antiviral immune response. We determined that although MRV leads to the activation and phosphorylation of interferon regulatory factor 3 (IRF3), the nuclear translocation of IRF3 was impaired in infected cells. Additionally, we showed that MRV does not degrade IRF3 but sequesters it in cytoplasmic viral factories. We demonstrate that the viral factory matrix protein μNS is solely responsible for the sequestration of IRF3. This finding highlights novel mechanisms used by MRV to interfere with the intrinsic immune system and places the viral factories as not only a replication compartment but as an active strategy participating in immune evasion.
Collapse
|
11
|
Shah PNM, Stanifer ML, Höhn K, Engel U, Haselmann U, Bartenschlager R, Kräusslich HG, Krijnse-Locker J, Boulant S. Genome packaging of reovirus is mediated by the scaffolding property of the microtubule network. Cell Microbiol 2017; 19. [PMID: 28672089 DOI: 10.1111/cmi.12765] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 06/19/2017] [Accepted: 06/28/2017] [Indexed: 12/12/2022]
Abstract
Reovirus replication occurs in the cytoplasm of the host cell, in virally induced mini-organelles called virus factories. On the basis of the serotype of the virus, the virus factories can manifest as filamentous (type 1 Lang strain) or globular structures (type 3 Dearing strain). The filamentous factories morphology is dependent on the microtubule cytoskeleton; however, the exact function of the microtubule network in virus replication remains unknown. Using a combination of fluorescent microscopy, electron microscopy, and tomography of high-pressure frozen and freeze-substituted cells, we determined the ultrastructural organisation of reovirus factories. Cells infected with the reovirus microtubule-dependent strain display paracrystalline arrays of progeny virions resulting from their tiered organisation around microtubule filaments. On the contrary, in cells infected with the microtubule-independent strain, progeny virions lacked organisation. Conversely to the microtubule-dependent strain, around half of the viral particles present in these viral factories did not contain genomes (genome-less particles). Complementarily, interference with the microtubule filaments in cells infected with the microtubule-dependent strain resulted in a significant increase of genome-less particle number. This decrease of genome packaging efficiency could be rescued by rerouting viral factories on the actin cytoskeleton. These findings demonstrate that the scaffolding properties of the microtubule, and not biochemical nature of tubulin, are critical determinants for reovirus efficient genome packaging. This work establishes, for the first time, a functional correlation between ultrastructural organisation of reovirus factories with genome packaging efficiency and provides novel information on how viruses coordinate assembly of progeny particles.
Collapse
Affiliation(s)
- Pranav N M Shah
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.,Schaller Research Group at CellNetworks and DKFZ, Heidelberg, Germany
| | - Megan L Stanifer
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.,Schaller Research Group at CellNetworks and DKFZ, Heidelberg, Germany
| | - Katharina Höhn
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ulrike Engel
- Nikon Imaging Center, Heidelberg University, Heidelberg, Germany
| | - Uta Haselmann
- Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, Germany
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jacomine Krijnse-Locker
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.,Ultrapole, Ultrastructural Bio-imaging, Center for Innovation and Technological Research, Institut Pasteur, Paris, France
| | - Steeve Boulant
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.,Schaller Research Group at CellNetworks and DKFZ, Heidelberg, Germany
| |
Collapse
|
12
|
Grass carp reovirus-GD108 fiber protein is involved in cell attachment. Virus Genes 2017; 53:613-622. [PMID: 28550501 DOI: 10.1007/s11262-017-1467-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/15/2017] [Indexed: 10/19/2022]
Abstract
Viral attachment to specific host receptors is the first step in viral infection and serves an essential function in the selection of target cells. In this study, structure analysis, neutralization assays, and cell attachment assays were carried out to evaluate the cell attachment functions of the outer capsid fiber protein of grass carp reovirus GD108 strain (GCRV-GD108). The GCRV-GD108 fiber protein contained 512 amino acids encoded by S7 segment and shared sequence similarities with mammalian reovirus cell attachment protein σ1 and adenovirus fiber. Structural analyses predicted the presence of a coiled-coil tail domain, three adenoviral shafts in the body domain, and a globular head domain, similar to other fiber proteins. Neutralization assays showed that polyclonal antibodies against the fiber protein could prevent viral infection in both fish and grass carp snout fibroblast cells (PSF), suggesting that the recombinant fiber protein could induce neutralized antibodies against GCRV-GD108. Cell attachment assays showed that recombinant fiber protein could bind to PSF cells, demonstrating that the fiber protein functioned as the cell attachment protein in GCRV-GD108. These results provided the basis for further studies of the pathogenesis of grass carp reovirus.
Collapse
|
13
|
Abd Rahman N, Ibrahim F, Yafouz B. Dielectrophoresis for Biomedical Sciences Applications: A Review. SENSORS 2017; 17:s17030449. [PMID: 28245552 PMCID: PMC5375735 DOI: 10.3390/s17030449] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/10/2016] [Accepted: 12/20/2016] [Indexed: 12/18/2022]
Abstract
Dielectrophoresis (DEP) is a label-free, accurate, fast, low-cost diagnostic technique that uses the principles of polarization and the motion of bioparticles in applied electric fields. This technique has been proven to be beneficial in various fields, including environmental research, polymer research, biosensors, microfluidics, medicine and diagnostics. Biomedical science research is one of the major research areas that could potentially benefit from DEP technology for diverse applications. Nevertheless, many medical science research investigations have yet to benefit from the possibilities offered by DEP. This paper critically reviews the fundamentals, recent progress, current challenges, future directions and potential applications of research investigations in the medical sciences utilizing DEP technique. This review will also act as a guide and reference for medical researchers and scientists to explore and utilize the DEP technique in their research fields.
Collapse
Affiliation(s)
- Nurhaslina Abd Rahman
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Fatimah Ibrahim
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Bashar Yafouz
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- Faculty of Engineering and Information Technology, Taiz University, 6803 Taiz, Yemen.
| |
Collapse
|
14
|
Groppelli E, Levy HC, Sun E, Strauss M, Nicol C, Gold S, Zhuang X, Tuthill TJ, Hogle JM, Rowlands DJ. Picornavirus RNA is protected from cleavage by ribonuclease during virion uncoating and transfer across cellular and model membranes. PLoS Pathog 2017; 13:e1006197. [PMID: 28166307 PMCID: PMC5325612 DOI: 10.1371/journal.ppat.1006197] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/24/2017] [Accepted: 01/22/2017] [Indexed: 12/04/2022] Open
Abstract
Picornaviruses are non-enveloped RNA viruses that enter cells via receptor-mediated endocytosis. Because they lack an envelope, picornaviruses face the challenge of delivering their RNA genomes across the membrane of the endocytic vesicle into the cytoplasm to initiate infection. Currently, the mechanism of genome release and translocation across membranes remains poorly understood. Within the enterovirus genus, poliovirus, rhinovirus 2, and rhinovirus 16 have been proposed to release their genomes across intact endosomal membranes through virally induced pores, whereas one study has proposed that rhinovirus 14 releases its RNA following disruption of endosomal membranes. For the more distantly related aphthovirus genus (e.g. foot-and-mouth disease viruses and equine rhinitis A virus) acidification of endosomes results in the disassembly of the virion into pentamers and in the release of the viral RNA into the lumen of the endosome, but no details have been elucidated as how the RNA crosses the vesicle membrane. However, more recent studies suggest aphthovirus RNA is released from intact particles and the dissociation to pentamers may be a late event. In this study we have investigated the RNase A sensitivity of genome translocation of poliovirus using a receptor-decorated-liposome model and the sensitivity of infection of poliovirus and equine-rhinitis A virus to co-internalized RNase A. We show that poliovirus genome translocation is insensitive to RNase A and results in little or no release into the medium in the liposome model. We also show that infectivity is not reduced by co-internalized RNase A for poliovirus and equine rhinitis A virus. Additionally, we show that all poliovirus genomes that are internalized into cells, not just those resulting in infection, are protected from RNase A. These results support a finely coordinated, directional model of viral RNA delivery that involves viral proteins and cellular membranes. Picornaviruses are a large family of important human and animal pathogens that include poliovirus, human rhinovirus and foot-and-mouth disease virus. Picornaviruses enter the host cell by hijacking one of the vesicle-mediated cellular entry routes. However, once the virus is internalized, the mechanism used to deliver the viral genome across the vesicle membrane and into the cytoplasm remains unclear and even controversial. Here we show that for poliovirus (a member of the enterovirus genus), viral RNA is translocated directly from the particle, across the vesicle membrane into the lumen of liposomes in a receptor-decorated liposome model, or cytoplasm during infection, without being exposed to external medium surrounding the liposomes or the lumen of the entry vesicle, respectively. Our results suggest that the interaction between the viral particle and the membrane results in a specific mechanism of viral genome delivery that not only directs but also protects the RNA so that it reaches the cytoplasm as an intact and functional molecule. Additionally, we show that this is also the case for equine rhinitis A virus, a member of the aphthovirus genus, whose genome delivery mechanism has previously been thought to differ significantly from the mechanism used by enteroviruses suggesting the possibility of a unified mechanism of RNA delivery for the entire picornavirus family.
Collapse
Affiliation(s)
- Elisabetta Groppelli
- School of Molecular and Cellular Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Hazel C. Levy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eileen Sun
- Program in Virology and Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Mike Strauss
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Clare Nicol
- School of Molecular and Cellular Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Sarah Gold
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Xiaowei Zhuang
- Howard Hughes Institute and Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | | | - James M. Hogle
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (JMH); (DJR)
| | - David J. Rowlands
- School of Molecular and Cellular Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, United Kingdom
- * E-mail: (JMH); (DJR)
| |
Collapse
|
15
|
Stanifer ML, Rippert A, Kazakov A, Willemsen J, Bucher D, Bender S, Bartenschlager R, Binder M, Boulant S. Reovirus intermediate subviral particles constitute a strategy to infect intestinal epithelial cells by exploiting TGF-β dependent pro-survival signaling. Cell Microbiol 2016; 18:1831-1845. [PMID: 27279006 DOI: 10.1111/cmi.12626] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/02/2016] [Accepted: 06/02/2016] [Indexed: 12/24/2022]
Abstract
Intestinal epithelial cells (IECs) constitute the primary barrier that separates us from the outside environment. These cells, lining the surface of the intestinal tract, represent a major challenge that enteric pathogens have to face. How IECs respond to viral infection and whether enteric viruses have developed strategies to subvert IECs innate immune response remains poorly characterized. Using mammalian reovirus (MRV) as a model enteric virus, we found that the intermediate subviral particles (ISVPs), which are formed in the gut during the natural course of infection by proteolytic digestion of the reovirus virion, trigger reduced innate antiviral immune response in IECs. On the contrary, infection of IECs by virions induces a strong antiviral immune response that leads to cellular death. Additionally, we determined that virions can be sensed by both TLR and RLR pathways while ISVPs are sensed by RLR pathways only. Interestingly, we found that ISVP infected cells secrete TGF-β acting as a pro-survival factor that protects IECs against virion induced cellular death. We propose that ISVPs represent a reovirus strategy to initiate primary infection of the gut by subverting IECs innate immune system and by counteracting cellular-death pathways.
Collapse
Affiliation(s)
- Megan L Stanifer
- Schaller research group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University, Germany
| | - Anja Rippert
- Schaller research group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University, Germany
| | - Alexander Kazakov
- Schaller research group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University, Germany
| | - Joschka Willemsen
- Research Group 'Dynamics of early viral infection and the innate antiviral response'.,Division Virus-associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Delia Bucher
- Schaller research group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University, Germany
| | - Silke Bender
- Division Virus-associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ralf Bartenschlager
- Division Virus-associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marco Binder
- Research Group 'Dynamics of early viral infection and the innate antiviral response'.,Division Virus-associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steeve Boulant
- Schaller research group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University, Germany.,Research Group 'Cellular polarity and viral infection' (F140), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
16
|
Jian JC, Wang Y, Yan XY, Ding Y, Wu ZH, Lu YS. Molecular cloning and prokaryotic expression of vp5 gene of grass carp reovirus strain GCRV096. Virus Genes 2013; 47:483-9. [PMID: 23943413 DOI: 10.1007/s11262-013-0967-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/29/2013] [Indexed: 11/27/2022]
Abstract
VP5 is an outer capsid protein of grass carp reovirus (GCRV). It is predicted to involve in helping GCRV enter the host cells. In this study, the full-length vp5 gene (accession number in GenBank: JN206664.1) was cloned from GCRV strain GCRV096, which was isolated from diseased grass carp (Ctenopharyngodon idella) in southern China by RT-PCR technique using the primers designed from the known vp5 gene sequences of other strains of GCRV published in GenBank. The ORF sequence of vp5 is composed of 1,947 nucleotides encoding a 648-residues protein with a calculated molecular mass of 68.6 kDa and an estimated isoelectric point of 6.1. Sequence analysis results showed that VP5 might serve as a penetration protein and play an important role in GCRV penetration into the host cells. A full length of vp5 gene was subcloned into the prokaryotic expression vector pET-28a (+) and the recombinant plasmid (pET/GCRV-VP5) was then transduced into Escherichia coli BL21 (DE3) cells to express VP5 in vitro. SDS-PAGE and western blotting analysis indicated that the protein expressed successfully. Results also showed that the fusion protein expressed in the form of inclusion body, and it expressed in the highest level when induced with 0.2-mM IPTG at 28 °C for 4 h. These results are important for the future study on the molecular structure, function, and immunogenicity of GCRV capsid protein.
Collapse
Affiliation(s)
- Ji-chang Jian
- Key Laboratory of Pathogen Biology and Epidemiology of Aquatic Economic Animals of Guangdong Province, Guangdong Ocean University, Zhanjiang, 524025, China
| | | | | | | | | | | |
Collapse
|
17
|
Markussen T, Dahle MK, Tengs T, Løvoll M, Finstad ØW, Wiik-Nielsen CR, Grove S, Lauksund S, Robertsen B, Rimstad E. Sequence analysis of the genome of piscine orthoreovirus (PRV) associated with heart and skeletal muscle inflammation (HSMI) in Atlantic salmon (Salmo salar). PLoS One 2013; 8:e70075. [PMID: 23922911 PMCID: PMC3726481 DOI: 10.1371/journal.pone.0070075] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/16/2013] [Indexed: 12/20/2022] Open
Abstract
Piscine orthoreovirus (PRV) is associated with heart- and skeletal muscle inflammation (HSMI) of farmed Atlantic salmon (Salmo salar). We have performed detailed sequence analysis of the PRV genome with focus on putative encoded proteins, compared with prototype strains from mammalian (MRV T3D)- and avian orthoreoviruses (ARV-138), and aquareovirus (GCRV-873). Amino acid identities were low for most gene segments but detailed sequence analysis showed that many protein motifs or key amino acid residues known to be central to protein function are conserved for most PRV proteins. For M-class proteins this included a proline residue in μ2 which, for MRV, has been shown to play a key role in both the formation and structural organization of virus inclusion bodies, and affect interferon-β signaling and induction of myocarditis. Predicted structural similarities in the inner core-forming proteins λ1 and σ2 suggest a conserved core structure. In contrast, low amino acid identities in the predicted PRV surface proteins μ1, σ1 and σ3 suggested differences regarding cellular interactions between the reovirus genera. However, for σ1, amino acid residues central for MRV binding to sialic acids, and cleavage- and myristoylation sites in μ1 required for endosomal membrane penetration during infection are partially or wholly conserved in the homologous PRV proteins. In PRV σ3 the only conserved element found was a zinc finger motif. We provide evidence that the S1 segment encoding σ3 also encodes a 124 aa (p13) protein, which appears to be localized to intracellular Golgi-like structures. The S2 and L2 gene segments are also potentially polycistronic, predicted to encode a 71 aa- (p8) and a 98 aa (p11) protein, respectively. It is concluded that PRV has more properties in common with orthoreoviruses than with aquareoviruses.
Collapse
Affiliation(s)
- Turhan Markussen
- Department of Laboratory Services, National Veterinary Institute, Oslo, Norway
| | - Maria K. Dahle
- Department of Laboratory Services, National Veterinary Institute, Oslo, Norway
| | - Torstein Tengs
- Department of Laboratory Services, National Veterinary Institute, Oslo, Norway
| | - Marie Løvoll
- Department of Laboratory Services, National Veterinary Institute, Oslo, Norway
| | - Øystein W. Finstad
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Oslo, Norway
| | | | - Søren Grove
- Department of Laboratory Services, National Veterinary Institute, Oslo, Norway
| | - Silje Lauksund
- Norwegian College of Fishery Science, University of Tromsø, Tromsø, Norway
| | - Børre Robertsen
- Norwegian College of Fishery Science, University of Tromsø, Tromsø, Norway
| | - Espen Rimstad
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Oslo, Norway
- * E-mail:
| |
Collapse
|
18
|
Key T, Read J, Nibert ML, Duncan R. Piscine reovirus encodes a cytotoxic, non-fusogenic, integral membrane protein and previously unrecognized virion outer-capsid proteins. J Gen Virol 2013; 94:1039-1050. [DOI: 10.1099/vir.0.048637-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Piscine reovirus (PRV) is a tentative new member of the family Reoviridae and has been linked to heart and skeletal muscle inflammation in farmed Atlantic salmon (Salmo salar L.). Recent sequence-based evidence suggests that PRV is about equally related to members of the genera Orthoreovirus and Aquareovirus. Sequence similarities have also suggested that PRV might encode a fusion-associated small transmembrane (FAST) protein, which in turn suggests that PRV might be the prototype of a new genus with syncytium-inducing potential. In previous support of this designation has been the absence of identifiable PRV-encoded homologues of either the virion outer-clamp protein of ortho- and aquareoviruses or the virion outer-fibre protein of most orthoreoviruses. In the current report, we have provided experimental evidence that the putative p13 FAST protein of PRV lacks the defining feature of the FAST protein family – the ability to induce syncytium formation. Instead, p13 is the first example of a cytosolic, integral membrane protein encoded by ortho- or aquareoviruses, and induces cytotoxicity in the absence of cell–cell fusion. Sequence analysis also identified signature motifs of the outer-clamp and outer-fibre proteins of other reoviruses in two of the predicted PRV gene products. Based on these findings, we conclude that PRV does not encode a FAST protein and is therefore unlikely to be a new fusogenic reovirus. The presence of a novel integral membrane protein and two previously unrecognized, essential outer-capsid proteins has important implications for the biology, evolution and taxonomic classification of this virus.
Collapse
Affiliation(s)
- Tim Key
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H4R2, Canada
| | - Jolene Read
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H4R2, Canada
| | - Max L. Nibert
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Roy Duncan
- Department of Pediatrics, Dalhousie University, Halifax, NS B3H4R2, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H4R2, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H4R2, Canada
| |
Collapse
|
19
|
Boulant S, Stanifer M, Kural C, Cureton DK, Massol R, Nibert ML, Kirchhausen T. Similar uptake but different trafficking and escape routes of reovirus virions and infectious subvirion particles imaged in polarized Madin-Darby canine kidney cells. Mol Biol Cell 2013; 24:1196-207. [PMID: 23427267 PMCID: PMC3623640 DOI: 10.1091/mbc.e12-12-0852] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/07/2013] [Accepted: 02/11/2013] [Indexed: 12/27/2022] Open
Abstract
Polarized epithelial cells that line the digestive, respiratory, and genitourinary tracts form a barrier that many viruses must breach to infect their hosts. Current understanding of cell entry by mammalian reovirus (MRV) virions and infectious subvirion particles (ISVPs), generated from MRV virions by extracellular proteolysis in the digestive tract, are mostly derived from in vitro studies with nonpolarized cells. Recent live-cell imaging advances allow us for the first time to visualize events at the apical surface of polarized cells. In this study, we used spinning-disk confocal fluorescence microscopy with high temporal and spatial resolution to follow the uptake and trafficking dynamics of single MRV virions and ISVPs at the apical surface of live polarized Madin-Darby canine kidney cells. Both types of particles were internalized by clathrin-mediated endocytosis, but virions and ISVPs exhibited strikingly different trafficking after uptake. While virions reached early and late endosomes, ISVPs did not and instead escaped the endocytic pathway from an earlier location. This study highlights the broad advantages of using live-cell imaging combined with single-particle tracking for identifying key steps in cell entry by viruses.
Collapse
Affiliation(s)
- Steeve Boulant
- Department of Cell Biology, Harvard Medical School and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Marzi A, Reinheckel T, Feldmann H. Cathepsin B & L are not required for ebola virus replication. PLoS Negl Trop Dis 2012; 6:e1923. [PMID: 23236527 PMCID: PMC3516577 DOI: 10.1371/journal.pntd.0001923] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/12/2012] [Indexed: 11/19/2022] Open
Abstract
Ebola virus (EBOV), family Filoviridae, emerged in 1976 on the African continent. Since then it caused several outbreaks of viral hemorrhagic fever in humans with case fatality rates up to 90% and remains a serious Public Health concern and biothreat pathogen. The most pathogenic and best-studied species is Zaire ebolavirus (ZEBOV). EBOV encodes one viral surface glycoprotein (GP), which is essential for replication, a determinant of pathogenicity and an important immunogen. GP mediates viral entry through interaction with cellular surface molecules, which results in the uptake of virus particles via macropinocytosis. Later in this pathway endosomal acidification activates the cysteine proteases Cathepsin B and L (CatB, CatL), which have been shown to cleave ZEBOV-GP leading to subsequent exposure of the putative receptor-binding and fusion domain and productive infection. We studied the effect of CatB and CatL on in vitro and in vivo replication of EBOV. Similar to previous findings, our results show an effect of CatB, but not CatL, on ZEBOV entry into cultured cells. Interestingly, cell entry by other EBOV species (Bundibugyo, Côte d'Ivoire, Reston and Sudan ebolavirus) was independent of CatB or CatL as was EBOV replication in general. To investigate whether CatB and CatL have a role in vivo during infection, we utilized the mouse model for ZEBOV. Wild-type (control), catB(-/-) and catL(-/-) mice were equally susceptible to lethal challenge with mouse-adapted ZEBOV with no difference in virus replication and time to death. In conclusion, our results show that CatB and CatL activity is not required for EBOV replication. Furthermore, EBOV glycoprotein cleavage seems to be mediated by an array of proteases making targeted therapeutic approaches difficult.
Collapse
Affiliation(s)
- Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University, Freiburg, Germany
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
21
|
Isolation of reovirus T3D mutants capable of infecting human tumor cells independent of junction adhesion molecule-A. PLoS One 2012; 7:e48064. [PMID: 23110175 PMCID: PMC3480499 DOI: 10.1371/journal.pone.0048064] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Accepted: 09/19/2012] [Indexed: 01/05/2023] Open
Abstract
Mammalian Reovirus is a double-stranded RNA virus with a distinctive preference to replicate in and lyse transformed cells. On that account, Reovirus type 3 Dearing (T3D) is clinically evaluated as oncolytic agent. The therapeutic efficacy of this approach depends in part on the accessibility of the reovirus receptor Junction Adhesion Molecule-A (JAM-A) on the target cells. Here, we describe the isolation and characterization of reovirus T3D mutants that can infect human tumor cells independent of JAM-A. The JAM-A-independent (jin) mutants were isolated on human U118MG glioblastoma cells, which do not express JAM-A. All jin mutants harbour mutations in the S1 segments close to the region that encodes the sialic acid-binding pocket in the shaft of the spike protein. In addition, two of the jin mutants encode spike proteins with a Q336R substitution in their head domain. The jin mutants can productively infect a wide range of cell lines that resist wt reovirus T3D infection, including chicken LMH cells, hamster CHO cells, murine endothelioma cells, human U2OS and STA-ET2.1 cells, but not primary human fibroblasts. The jin-mutants rely on the presence of sialic-acid residues on the cell surface for productive infection, as is evident from wheat germ agglutinin (WGA) inhibition experiments, and from the jin-reovirus resistance of CHO-Lec2 cells, which have a deficiency of sialic-acids on their glycoproteins. The jin mutants may be useful as oncolytic agents for use in tumors in which JAM-A is absent or inaccessible.
Collapse
|
22
|
Lagache T, Danos O, Holcman D. Modeling the step of endosomal escape during cell infection by a nonenveloped virus. Biophys J 2012; 102:980-9. [PMID: 22404920 DOI: 10.1016/j.bpj.2011.12.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 12/21/2011] [Accepted: 12/21/2011] [Indexed: 11/27/2022] Open
Abstract
Widely disparate viruses enter the host cell through an endocytic pathway and travel the cytoplasm inside an endosome. For the viral genetic material to be delivered into the cytoplasm, these viruses have to escape the endosomal compartment, an event triggered by the conformational changes of viral endosomolytic proteins. We focus here on small nonenveloped viruses such as adeno-associated viruses, which contain few penetration proteins. The first time a penetration protein changes conformation defines the slowest timescale responsible for the escape. To evaluate this time, we construct what to our knowledge is a novel biophysical model based on a stochastic approach that accounts for the small number of proteins, the endosomal maturation, and the protease activation dynamics. We show that the escape time increases with the endosomal size, whereas decreasing with the number of viral particles inside the endosome. We predict that the optimal escape probability is achieved when the number of proteases in the endosome is in the range of 250-350, achieved for three viral particles.
Collapse
Affiliation(s)
- Thibault Lagache
- Group of Computational Biology and Applied Mathematics, Institut de Biologie de l'Ecole Normale Supérieure, Paris, France
| | | | | |
Collapse
|
23
|
Inoue T, Tsai B. A large and intact viral particle penetrates the endoplasmic reticulum membrane to reach the cytosol. PLoS Pathog 2011; 7:e1002037. [PMID: 21589906 PMCID: PMC3093372 DOI: 10.1371/journal.ppat.1002037] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Accepted: 03/07/2011] [Indexed: 11/18/2022] Open
Abstract
Non-enveloped viruses penetrate host membranes to infect cells. A cell-based assay was used to probe the endoplasmic reticulum (ER)-to-cytosol membrane transport of the non-enveloped SV40. We found that, upon ER arrival, SV40 is released into the lumen and undergoes sequential disulfide bond disruptions to reach the cytosol. However, despite these ER-dependent conformational changes, SV40 crosses the ER membrane as a large and intact particle consisting of the VP1 coat, the internal components VP2, VP3, and the genome. This large particle subsequently disassembles in the cytosol. Mutant virus and inhibitor studies demonstrate VP3 and likely the viral genome, as well as cellular proteasome, control ER-to-cytosol transport. Our results identify the sequence of events, as well as virus and host components, that regulate ER membrane penetration. They also suggest that the ER membrane supports passage of a large particle, potentially through either a sizeable protein-conducting channel or the lipid bilayer. Biological membranes represent a major barrier during viral infection. While the mechanism by which an enveloped virus breaches the limiting membrane of a host cell is well-characterized, this membrane penetration process is poorly understood for non-enveloped viruses. Indeed, most available insights on membrane transport of non-enveloped viruses are built upon in vitro studies. Here we established a cell-based assay to elucidate the molecular mechanism by which the non-enveloped SV40 penetrates the endoplasmic reticulum (ER) membrane to access the cytosol, a critical step in infection. Strikingly, we uncovered SV40 breaches the ER membrane as a large and intact viral particle, despite the conformational changes it experiences in the ER lumen. This result suggests that the ER membrane can accommodate translocation of a large protein complex, possibly through either a sizeable protein channel or the ER membrane bilayer. In addition to this finding, we also pinpoint viral and host components that control the ER-to-cytosol membrane transport event. Together, our data illuminate the cellular mechanism by which a non-enveloped virus penetrates the limiting membrane of a target cell during infection.
Collapse
Affiliation(s)
- Takamasa Inoue
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
24
|
Sarkar P, Danthi P. Determinants of strain-specific differences in efficiency of reovirus entry. J Virol 2010; 84:12723-32. [PMID: 20943982 PMCID: PMC3004336 DOI: 10.1128/jvi.01385-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 09/30/2010] [Indexed: 12/28/2022] Open
Abstract
Cell entry of reovirus requires a series of ordered steps, which include conformational changes in outer capsid protein μ1 and its autocleavage. The μ1N fragment released as a consequence of these events interacts with host cell membranes and mediates their disruption, leading to delivery of the viral core into the cytoplasm. The prototype reovirus strains T1L and T3D exhibit differences in the efficiency of autocleavage, in the propensity to undergo conformational changes required for membrane penetration, and in the capacity for penetrating host cell membranes. To better understand how polymorphic differences in μ1 influence reovirus entry events, we generated recombinant viruses that express chimeric T1L-T3D μ1 proteins and characterized them for the capacity to efficiently complete each step required for membrane penetration. Our studies revealed two important functions for the central δ region of μ1. First, we found that μ1 autocleavage is regulated by the N-terminal portion of δ, which forms an α-helical pedestal structure. Second, we observed that the C-terminal portion of δ, which forms a jelly-roll β barrel structure, regulates membrane penetration by influencing the efficiency of ISVP* formation. Thus, our studies highlight the molecular basis for differences in the membrane penetration efficiency displayed by prototype reovirus strains and suggest that distinct portions of the reovirus δ domain influence different steps during entry.
Collapse
Affiliation(s)
- Payel Sarkar
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Pranav Danthi
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
25
|
Katsarou K, Lavdas AΑ, Tsitoura P, Serti E, Markoulatos P, Mavromara P, Georgopoulou U. Endocytosis of hepatitis C virus non-enveloped capsid-like particles induces MAPK-ERK1/2 signaling events. Cell Mol Life Sci 2010; 67:2491-506. [PMID: 20358251 PMCID: PMC11115770 DOI: 10.1007/s00018-010-0351-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 03/08/2010] [Accepted: 03/11/2010] [Indexed: 12/12/2022]
Abstract
Although HCV is an enveloped virus, naked nucleocapsids have been reported in the serum of infected patients. The HCV core particle serves as a protective capsid shell for the viral genome and recombinant in vitro assembled HCV core particles induce strong specific immunity. We investigated the post-binding mechanism of recombinant core particle uptake and its intracellular fate. In hepatic cells, these particles are internalized, most likely in a clathrin-dependent pathway, reaching early to late endosomes and finally lysosomes. The endocytic acidic milieu is implicated in trafficking process. Using specific phosphoantibodies, signaling pathway inhibitors and chemical agents, ERK(1/2) was found to be activated in a sustained way after endocytosis, followed by downstream immediate early genes (c-fos and egr-1) modulation. We propose that the intriguing properties of cellular internalization of HCV non-enveloped particles can induce specific ERK(1/2)-MAPKs events that could be important in HCV life cycle and pathogenesis of HCV infection.
Collapse
Affiliation(s)
| | - Alexandros Α. Lavdas
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Panagiota Tsitoura
- Present Address: Insect Molecular Genetics and Biotechnology, Institute of Biology, NCSR Demokritos, Athens, Greece
| | - Elisavet Serti
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | | | - Penelope Mavromara
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | | |
Collapse
|
26
|
Okagaki LH, Strain AK, Nielsen JN, Charlier C, Baltes NJ, Chrétien F, Heitman J, Dromer F, Nielsen K. Cryptococcal cell morphology affects host cell interactions and pathogenicity. PLoS Pathog 2010; 6:e1000953. [PMID: 20585559 PMCID: PMC2887476 DOI: 10.1371/journal.ppat.1000953] [Citation(s) in RCA: 252] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 05/12/2010] [Indexed: 11/19/2022] Open
Abstract
Cryptococcus neoformans is a common life-threatening human fungal pathogen. The size of cryptococcal cells is typically 5 to 10 microm. Cell enlargement was observed in vivo, producing cells up to 100 microm. These morphological changes in cell size affected pathogenicity via reducing phagocytosis by host mononuclear cells, increasing resistance to oxidative and nitrosative stress, and correlated with reduced penetration of the central nervous system. Cell enlargement was stimulated by coinfection with strains of opposite mating type, and ste3aDelta pheromone receptor mutant strains had reduced cell enlargement. Finally, analysis of DNA content in this novel cell type revealed that these enlarged cells were polyploid, uninucleate, and produced daughter cells in vivo. These results describe a novel mechanism by which C. neoformans evades host phagocytosis to allow survival of a subset of the population at early stages of infection. Thus, morphological changes play unique and specialized roles during infection.
Collapse
Affiliation(s)
- Laura H. Okagaki
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Anna K. Strain
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Judith N. Nielsen
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Caroline Charlier
- Institut Pasteur, Unité de Mycologie Moléculaire and CNRS URA3012, Paris, France
| | - Nicholas J. Baltes
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Fabrice Chrétien
- Institut Pasteur, Unité de Mycologie Moléculaire and CNRS URA3012, Paris, France
- Faculté de médecine; Université Paris XII; APHP Hôpital Henri Mondor and INSERM U955 team10, Paris, France
| | - Joseph Heitman
- Departments of Molecular Genetics and Microbiology, Medicine, and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Françoise Dromer
- Institut Pasteur, Unité de Mycologie Moléculaire and CNRS URA3012, Paris, France
| | - Kirsten Nielsen
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
27
|
Zhang X, Jin L, Fang Q, Hui WH, Zhou ZH. 3.3 A cryo-EM structure of a nonenveloped virus reveals a priming mechanism for cell entry. Cell 2010; 141:472-82. [PMID: 20398923 DOI: 10.1016/j.cell.2010.03.041] [Citation(s) in RCA: 249] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 01/22/2010] [Accepted: 03/29/2010] [Indexed: 12/30/2022]
Abstract
To achieve cell entry, many nonenveloped viruses must transform from a dormant to a primed state. In contrast to the membrane fusion mechanism of enveloped viruses (e.g., influenza virus), this membrane penetration mechanism is poorly understood. Here, using single-particle cryo-electron microscopy, we report a 3.3 A structure of the primed, infectious subvirion particle of aquareovirus. The density map reveals side-chain densities of all types of amino acids (except glycine), enabling construction of a full-atom model of the viral particle. Our structure and biochemical results show that priming involves autocleavage of the membrane penetration protein and suggest that Lys84 and Glu76 may facilitate this autocleavage in a nucleophilic attack. We observe a myristoyl group, covalently linked to the N terminus of the penetration protein and embedded in a hydrophobic pocket. These results suggest a well-orchestrated process of nonenveloped virus entry involving autocleavage of the penetration protein prior to exposure of its membrane-insertion finger.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095-7364, USA
| | | | | | | | | |
Collapse
|
28
|
Structure and function of a genetically engineered mimic of a nonenveloped virus entry intermediate. J Virol 2010; 84:4737-46. [PMID: 20164221 DOI: 10.1128/jvi.02670-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Divalent metal ions are components of numerous icosahedral virus capsids. Flock House virus (FHV), a small RNA virus of the family Nodaviridae, was utilized as an accessible model system with which to address the effects of metal ions on capsid structure and on the biology of virus-host interactions. Mutations at the calcium-binding sites affected FHV capsid stability and drastically reduced virus infectivity, without altering the overall architecture of the capsid. The mutations also altered the conformation of gamma, a membrane-disrupting, virus-encoded peptide usually sequestered inside the capsid, by increasing its exposure under neutral pH conditions. Our data demonstrate that calcium binding is essential for maintaining a pH-based control on gamma exposure and host membrane disruption, and they reveal a novel rationale for the metal ion requirement during virus entry and infectivity. In the light of the phenotypes displayed by a calcium site mutant of FHV, we suggest that this mutant corresponds to an early entry intermediate formed in the endosomal pathway.
Collapse
|
29
|
Flock House Virus: A Model System for Understanding Non-Enveloped Virus Entry and Membrane Penetration. Curr Top Microbiol Immunol 2010; 343:1-22. [DOI: 10.1007/82_2010_35] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
30
|
Odegard AL, Kwan MH, Walukiewicz HE, Banerjee M, Schneemann A, Johnson JE. Low endocytic pH and capsid protein autocleavage are critical components of Flock House virus cell entry. J Virol 2009; 83:8628-37. [PMID: 19553341 PMCID: PMC2738175 DOI: 10.1128/jvi.00873-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 06/12/2009] [Indexed: 11/20/2022] Open
Abstract
The process by which nonenveloped viruses cross cell membranes during host cell entry remains poorly defined; however, common themes are emerging. Here, we use correlated in vivo and in vitro studies to understand the mechanism of Flock House virus (FHV) entry and membrane penetration. We demonstrate that low endocytic pH is required for FHV infection, that exposure to acidic pH promotes FHV-mediated disruption of model membranes (liposomes), and particles exposed to low pH in vitro exhibit increased hydrophobicity. In addition, FHV particles perturbed by heating displayed a marked increase in liposome disruption, indicating that membrane-active regions of the capsid are exposed or released under these conditions. We also provide evidence that autoproteolytic cleavage, to generate the lipophilic gamma peptide (4.4 kDa), is required for membrane penetration. Mutant, cleavage-defective particles failed to mediate liposome lysis, regardless of pH or heat treatment, suggesting that these particles are not able to expose or release the requisite membrane-active regions of the capsid, namely, the gamma peptides. Based on these results, we propose an updated model for FHV entry in which (i) the virus enters the host cell by endocytosis, (ii) low pH within the endocytic pathway triggers the irreversible exposure or release of gamma peptides from the virus particle, and (iii) the exposed/released gamma peptides disrupt the endosomal membrane, facilitating translocation of viral RNA into the cytoplasm.
Collapse
Affiliation(s)
- Amy L Odegard
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd., MB-31, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
31
|
Mammalian orthoreovirus particles induce and are recruited into stress granules at early times postinfection. J Virol 2009; 83:11090-101. [PMID: 19710141 DOI: 10.1128/jvi.01239-09] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with many mammalian orthoreovirus (MRV) strains results in shutoff of host, but not viral, protein synthesis via protein kinase R (PKR) activation and phosphorylation of translation initiation factor eIF2alpha. Following inhibition of protein synthesis, cellular mRNAs localize to discrete structures in the cytoplasm called stress granules (SGs), where they are held in a translationally inactive state. We examined MRV-infected cells to characterize SG formation in response to MRV infection. We found that SGs formed at early times following infection (2 to 6 h postinfection) in a manner dependent on phosphorylation of eIF2alpha. MRV induced SG formation in all four eIF2alpha kinase knockout cell lines, suggesting that at least two kinases are involved in induction of SGs. Inhibitors of MRV disassembly prevented MRV-induced SG formation, indicating that viral uncoating is a required step for SG formation. Neither inactivation of MRV virions by UV light nor treatment of MRV-infected cells with the translational inhibitor puromycin prevented SG formation, suggesting that viral transcription and translation are not required for SG formation. Viral cores were found to colocalize with SGs; however, cores from UV-inactivated virions did not associate with SGs, suggesting that viral core particles are recruited into SGs in a process that requires the synthesis of viral mRNA. These results demonstrate that MRV particles induce SGs in a step following viral disassembly but preceding viral mRNA transcription and that core particles are themselves recruited to SGs, suggesting that the cellular stress response may play a role in the MRV replication cycle.
Collapse
|
32
|
Abstract
The fruit fly Drosophila melanogaster is a powerful model to study host-pathogen interactions. Most studies so far have focused on extracellular pathogens such as bacteria and fungi. More recently, viruses have come to the front, and RNA interference was shown to play a critical role in the control of viral infections in drosophila. We review here our current knowledge on drosophila viruses. A diverse set of RNA viruses belonging to several families (Rhabdoviridae, Dicistroviridae, Birnaviridae, Reoviridae, Errantiviridae) has been reported in D. melanogaster. By contrast, no DNA virus has been recovered up to now. The drosophila viruses represent powerful tools to study virus-cell interactions in vivo. Analysis of the literature however reveals that for many of them, important gaps exist in our understanding of their replication cycle, genome organization, morphology or pathogenesis. The data obtained in the past few years on antiviral defense mechanisms in drosophila, which point to evolutionary conserved pathways, highlight the potential of the D. melanogaster model to study antiviral innate immunity and to better understand the complex interaction between arthropod-borne viruses and their insect vectors.
Collapse
|
33
|
Infectious myonecrosis virus has a totivirus-like, 120-subunit capsid, but with fiber complexes at the fivefold axes. Proc Natl Acad Sci U S A 2008; 105:17526-31. [PMID: 18981418 DOI: 10.1073/pnas.0806724105] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infectious myonecrosis virus (IMNV) is an emerging pathogen of penaeid shrimp in global aquaculture. Tentatively assigned to family Totiviridae, it has a nonsegmented dsRNA genome of 7,560 bp and an isometric capsid of the 901-aa major capsid protein. We used electron cryomicroscopy and 3D image reconstruction to examine the IMNV virion at 8.0-A resolution. Results reveal a totivirus-like, 120-subunit T = 1 capsid, 450 A in diameter, but with fiber complexes protruding a further 80 A at the fivefold axes. These protrusions likely mediate roles in the extracellular transmission and pathogenesis of IMNV, capabilities not shared by most other totiviruses. The IMNV structure is also notable in that the genome is centrally organized in five or six concentric shells. Within each of these shells, the densities alternate between a dodecahedral frame that connects the threefold axes vs. concentration around the fivefold axes, implying certain regularities in the RNA packing scheme.
Collapse
|
34
|
A positive-feedback mechanism promotes reovirus particle conversion to the intermediate associated with membrane penetration. Proc Natl Acad Sci U S A 2008; 105:10571-6. [PMID: 18653761 DOI: 10.1073/pnas.0802039105] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Membrane penetration by reovirus is associated with conversion of a metastable intermediate, the ISVP, to a further-disassembled particle, the ISVP*. Factors that promote this conversion in cells are poorly understood. Here, we report the in vitro characterization of a positive-feedback mechanism for promoting ISVP* conversion. At high particle concentration, conversion approximated second-order kinetics, and products of the reaction operated in trans to promote the conversion of target ISVPs. Pore-forming peptide mu1N, which is released from particles during conversion, was sufficient for promoting activity. A mutant that does not undergo mu1N release failed to exhibit second-order conversion kinetics and also failed to promote conversion of wild-type target ISVPs. Susceptibility of target ISVPs to promotion in trans was temperature dependent and correlated with target stability, suggesting that capsid dynamics are required to expose the interacting epitope. A positive-feedback mechanism of promoting escape from the metastable intermediate has not been reported for other viruses but represents a generalizable device for sensing a confined volume, such as that encountered during cell entry.
Collapse
|
35
|
Mendez II, Weiner SG, She YM, Yeager M, Coombs KM. Conformational changes accompany activation of reovirus RNA-dependent RNA transcription. J Struct Biol 2008; 162:277-89. [PMID: 18321727 PMCID: PMC2819412 DOI: 10.1016/j.jsb.2008.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 12/07/2007] [Accepted: 01/17/2008] [Indexed: 12/28/2022]
Abstract
Many critical biologic processes involve dynamic interactions between proteins and nucleic acids. Such dynamic processes are often difficult to delineate by conventional static methods. For example, while a variety of nucleic acid polymerase structures have been determined at atomic resolution, the details of how some multi-protein transcriptase complexes actively produce mRNA, as well as conformational changes associated with activation of such complexes, remain poorly understood. The mammalian reovirus innermost capsid (core) manifests all enzymatic activities necessary to produce mRNA from each of the 10 encased double-stranded RNA genes. We used rapid freezing and electron cryo-microscopy to trap and visualize transcriptionally active reovirus core particles and compared them to inactive core images. Rod-like density centered within actively transcribing core spike channels was attributed to exiting nascent mRNA. Comparative radial density plots of active and inactive core particles identified several structural changes in both internal and external regions of the icosahedral core capsid. Inactive and transcriptionally active cores were partially digested with trypsin and identities of initial tryptic peptides determined by mass spectrometry. Differentially-digested peptides, which also suggest transcription-associated conformational changes, were placed within the known three-dimensional structures of major core proteins.
Collapse
Affiliation(s)
- Israel I Mendez
- Department of Medical Microbiology, University of Manitoba, 511-730 William Avenue, Winnipeg, Man., Canada R3EOW3
| | | | | | | | | |
Collapse
|
36
|
Ivanovic T, Agosto MA, Zhang L, Chandran K, Harrison SC, Nibert ML. Peptides released from reovirus outer capsid form membrane pores that recruit virus particles. EMBO J 2008; 27:1289-98. [PMID: 18369316 DOI: 10.1038/emboj.2008.60] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 02/27/2008] [Indexed: 01/27/2023] Open
Abstract
Nonenveloped animal viruses must disrupt or perforate a cell membrane during entry. Recent work with reovirus has shown formation of size-selective pores in RBC membranes in concert with structural changes in capsid protein mu1. Here, we demonstrate that mu1 fragments released from reovirus particles are sufficient for pore formation. Both myristoylated N-terminal fragment mu1N and C-terminal fragment phi are released from particles. Both also associate with RBC membranes and contribute to pore formation in the absence of particles, but mu1N has the primary and sufficient role. Particles with a mutant form of mu1, unable to release mu1N or form pores, lack the ability to associate with membranes. They are, however, recruited by pores preformed with peptides released from wild-type particles or with synthetic mu1N. The results provide evidence that docking to membrane pores by virus particles may be a next step in membrane penetration after pore formation by released peptides.
Collapse
Affiliation(s)
- Tijana Ivanovic
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
37
|
Rescue of maturation-defective flock house virus infectivity with noninfectious, mature, viruslike particles. J Virol 2007; 82:2025-7. [PMID: 18077727 DOI: 10.1128/jvi.02278-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The infectivity of flock house virus (FHV) requires autocatalytic maturation cleavage of the capsid protein at residue 363, liberating the C-terminal 44-residue gamma peptides, which remain associated with the particle. In vitro studies previously demonstrated that the amphipathic, helical portion (amino acids 364 to 385) of gamma is membrane active, suggesting a role for gamma in RNA membrane translocation during infection. Here we show that the infectivity of a maturation-defective mutant of FHV can be restored by viruslike particles that lack the genome but undergo maturation cleavage. We propose that the colocalization of the two defective particle types in an entry compartment allows the restoration of infectivity by gamma.
Collapse
|
38
|
The P2 capsid protein of the nonenveloped rice dwarf phytoreovirus induces membrane fusion in insect host cells. Proc Natl Acad Sci U S A 2007; 104:19547-52. [PMID: 18042708 DOI: 10.1073/pnas.0708946104] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insect transmission is an essential process of infection for numerous plant and animal viruses. How an insect-transmissible plant virus enters an insect cell to initiate the infection cycle is poorly understood, especially for nonenveloped plant and animal viruses. The capsid protein P2 of rice dwarf virus (RDV), which is nonenveloped, is necessary for insect transmission. Here, we present evidence that P2 shares structural features with membrane-fusogenic proteins encoded by enveloped animal viruses. When RDV P2 was ectopically expressed and displayed on the surface of insect Spodoptera frugiperda cells, it induced membrane fusion characterized by syncytium formation at low pH. Mutational analyses identified the N-terminal and a heptad repeat as being critical for the membrane fusion-inducing activity. These results are corroborated with results from RDV-infected cells of the insect vector leafhopper. We propose that the RDV P2-induced membrane fusion plays a critical role in viral entry into insect cells. Our report that a plant viral protein can induce membrane fusion has broad significance in studying the mechanisms of virus entry into insect cells and insect transmission of nonenveloped plant and animal viruses.
Collapse
|
39
|
Lemay G, Tumilasci V, Hiscott J. Uncoating reo: uncovering the steps critical for oncolysis. Mol Ther 2007; 15:1406-7. [PMID: 17646836 DOI: 10.1038/sj.mt.6300242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Guy Lemay
- Département de microbiologie et immunologie, Université de Montréal, Montréal, Québec, Canada.
| | | | | |
Collapse
|
40
|
Galloux M, Libersou S, Morellet N, Bouaziz S, Da Costa B, Ouldali M, Lepault J, Delmas B. Infectious bursal disease virus, a non-enveloped virus, possesses a capsid-associated peptide that deforms and perforates biological membranes. J Biol Chem 2007; 282:20774-84. [PMID: 17488723 DOI: 10.1074/jbc.m701048200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Double-stranded RNA (dsRNA) virions constitute transcriptionally competent machines that must translocate across cell membranes to function within the cytoplasm. The entry mechanism of such non-enveloped viruses is not well described. Birnaviruses are unique among dsRNA viruses because they possess a single shell competent for entry. We hereby report how infectious bursal disease virus, an avian birnavirus, can disrupt cell membranes and enter into its target cells. One of its four structural peptides, pep46 (a 46-amino acid amphiphilic peptide) deforms synthetic membranes and induces pores visualized by electron cryomicroscopy, having a diameter of less than 10 nm. Using both biological and synthetic membranes, the pore-forming domain of pep46 was identified as its N terminus moiety (pep22). The N and C termini of pep22 are shown to be accessible during membrane destabilization and pore formation. NMR studies show that pep46 inserted into micelles displays a cis-trans proline isomerization at position 16 that we propose to be associated to the pore formation process. Reverse genetic experiments confirm that the amphiphilicity and proline isomerization of pep46 are both essential to the viral cycle. Furthermore, we show that virus infectivity and its membrane activity (probably because of the release of pep46 from virions) are controlled differently by calcium concentration, suggesting that entry is performed in two steps, endocytosis followed by endosome permeabilization. Our findings reveal a possible entry pathway of infectious bursal disease virus: in endosomes containing viruses, the lowering of the calcium concentration promotes the release of pep46 that induces the formation of pores in the endosomal membrane.
Collapse
Affiliation(s)
- Marie Galloux
- Unité de Virologie et Immunologie Moléculaires, UR892, Batiment de Biotechnologies, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Forzan M, Marsh M, Roy P. Bluetongue virus entry into cells. J Virol 2007; 81:4819-27. [PMID: 17267479 PMCID: PMC1900141 DOI: 10.1128/jvi.02284-06] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Accepted: 01/23/2007] [Indexed: 01/10/2023] Open
Abstract
Bluetongue virus (BTV) is a member of the Orbivirus genus within the Reoviridae family. Like those of other members of the family, BTV particles are nonenveloped and contain two distinct capsids, namely, an outer capsid and an inner capsid or core. The two outer capsid proteins, VP2 and VP5, are involved in BTV entry into cells and in the delivery of the transcriptionally active core to the target cell cytoplasm. However, very little is known about the precise mechanism of BTV entry. In this report, using RNA interference, we demonstrate that inhibition of the clathrin-dependent endocytic pathway correlates with reduced BTV internalization and subsequent replication. Furthermore, by using the ATPase inhibitor bafilomycin A1, we show that exposure of the virus to acidic pH is required for productive infection. Moreover, microscopic analysis of cells incubated with BTV indicated that the virus is internalized into early endosomes, where separation of the outer capsid and inner core occurs. Together, our data indicate that BTV undergoes low-pH-induced penetration in early endosomes following clathrin-mediated endocytosis from the plasma membrane, supporting a stepwise model for BTV entry and penetration.
Collapse
Affiliation(s)
- Mario Forzan
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1 7HT, United Kingdom
| | | | | |
Collapse
|
42
|
Ivanovic T, Agosto MA, Chandran K, Nibert ML. A role for molecular chaperone Hsc70 in reovirus outer capsid disassembly. J Biol Chem 2007; 282:12210-9. [PMID: 17284448 PMCID: PMC4822165 DOI: 10.1074/jbc.m610258200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
After crossing the cellular membrane barrier during cell entry, most animal viruses must undergo further disassembly before initiating viral gene expression. In many cases, these disassembly mechanisms remain poorly defined. For this report, we examined a final step in disassembly of the mammalian reovirus outer capsid: cytoplasmic release of the central, delta fragment of membrane penetration protein mu1 to yield the transcriptionally active viral core particle. An in vitro assay with reticulocyte lysate recapitulated the release of intact delta molecules. Requirements for activity in this system were shown to include a protein factor, ATP, and Mg(2+) and K(+) ions, consistent with involvement of a molecular chaperone such as Hsc70. Immunodepletion of Hsc70 and Hsp70 impaired delta release, which was then rescued by addition of purified Hsc70. Hsc70 was associated with released delta molecules not only in the lysate but also during cell entry. We conclude that Hsc70 plays a defined role in reovirus outer capsid disassembly, during or soon after membrane penetration, to prepare the entering particle for gene expression and replication.
Collapse
Affiliation(s)
- Tijana Ivanovic
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Harvard University, Boston, Massachusetts 02115
- Training Program in Virology, Harvard University, Boston, Massachusetts 02115
| | - Melina A. Agosto
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Harvard University, Boston, Massachusetts 02115
- Training Program in Biological and Biomedical Sciences, Harvard University, Boston, Massachusetts 02115
| | - Kartik Chandran
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Harvard University, Boston, Massachusetts 02115
| | - Max L. Nibert
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Harvard University, Boston, Massachusetts 02115
- Training Program in Virology, Harvard University, Boston, Massachusetts 02115
- Training Program in Biological and Biomedical Sciences, Harvard University, Boston, Massachusetts 02115
| |
Collapse
|
43
|
Kobayashi T, Antar AA, Boehme KW, Danthi P, Eby EA, Guglielmi KM, Holm GH, Johnson EM, Maginnis MS, Naik S, Skelton WB, Wetzel JD, Wilson GJ, Chappell JD, Dermody TS. A plasmid-based reverse genetics system for animal double-stranded RNA viruses. Cell Host Microbe 2007; 1:147-57. [PMID: 18005692 PMCID: PMC2034303 DOI: 10.1016/j.chom.2007.03.003] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 02/16/2007] [Accepted: 03/19/2007] [Indexed: 02/06/2023]
Abstract
Mammalian orthoreoviruses (reoviruses) are highly tractable experimental models for studies of double-stranded (ds) RNA virus replication and pathogenesis. Reoviruses infect respiratory and intestinal epithelium and disseminate systemically in newborn animals. Until now, a strategy to rescue infectious virus from cloned cDNA has not been available for any member of the Reoviridae family of dsRNA viruses. We report the generation of viable reovirus following plasmid transfection of murine L929 (L) cells using a strategy free of helper virus and independent of selection. We used the reovirus reverse genetics system to introduce mutations into viral capsid proteins sigma1 and sigma3 and to rescue a virus that expresses a green fluorescent protein (GFP) transgene, thus demonstrating the tractability of this technology. The plasmid-based reverse genetics approach described here can be exploited for studies of reovirus replication and pathogenesis and used to develop reovirus as a vaccine vector.
Collapse
Affiliation(s)
- Takeshi Kobayashi
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Annukka A.R. Antar
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Karl W. Boehme
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Pranav Danthi
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Elizabeth A. Eby
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kristen M. Guglielmi
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Geoffrey H. Holm
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Elizabeth M. Johnson
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Melissa S. Maginnis
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Sam Naik
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Wesley B. Skelton
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - J. Denise Wetzel
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Gregory J. Wilson
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - James D. Chappell
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Terence S. Dermody
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
44
|
Coffey CM, Sheh A, Kim IS, Chandran K, Nibert ML, Parker JSL. Reovirus outer capsid protein micro1 induces apoptosis and associates with lipid droplets, endoplasmic reticulum, and mitochondria. J Virol 2006; 80:8422-38. [PMID: 16912293 PMCID: PMC1563861 DOI: 10.1128/jvi.02601-05] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The mechanisms by which reoviruses induce apoptosis have not been fully elucidated. Earlier studies identified the mammalian reovirus S1 and M2 genes as determinants of apoptosis induction. However, no published results have demonstrated the capacities of the proteins encoded by these genes to induce apoptosis, either independently or in combination, in the absence of reovirus infection. Here we report that the mammalian reovirus micro1 protein, encoded by the M2 gene, was sufficient to induce apoptosis in transfected cells. We also found that micro1 localized to lipid droplets, endoplasmic reticulum, and mitochondria in both transfected cells and infected cells. Two small regions encompassing amphipathic alpha-helices within a carboxyl-terminal portion of micro1 were necessary for efficient induction of apoptosis and association with lipid droplets, endoplasmic reticulum, and mitochondria in transfected cells. Induction of apoptosis by micro1 and its association with lipid droplets and intracellular membranes in transfected cells were abrogated when micro1 was coexpressed with sigma3, with which it is known to coassemble. We propose that micro1 plays a direct role in the induction of apoptosis in infected cells and that this property may relate to the capacity of micro1 to associate with intracellular membranes. Moreover, during reovirus infection, association with sigma3 may regulate apoptosis induction by micro1.
Collapse
Affiliation(s)
- Caroline M Coffey
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
45
|
Burgener A, Coombs K, Butler M. Intracellular ATP and total adenylate concentrations are critical predictors of reovirus productivity from Vero cells. Biotechnol Bioeng 2006; 94:667-79. [PMID: 16570315 DOI: 10.1002/bit.20873] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The productivity of reovirus type-3 Dearing was studied in cultures of Vero cells in serum-free media. Viral productivity was dependent upon the metabolic state of the cells rather than the phase of growth at which the cells were infected. Cells at different energy states were established by 24-h incubation in nutrient-depleted media. This resulted in variable intracellular nucleotide concentrations but high cellular viability was maintained. Of the nucleotides analyzed at the time of infection only the intracellular [ATP] and total adenylate nucleotides were positively correlated with viral productivity. The correlated data followed a sigmoidal plot with an equation defined by polynomial regression analysis. Apparent threshold values of 3.2 fmol/cell and 3.3 fmol/cell were established for ATP and total adenylate, respectively, at which the viral production was 50% the maximal value. Cultures with lower ATP and total adenylate levels at the time of infection resulted in as much as a 95% reduction in overall viral titer compared to the control. The adenylate energy charge (AEC) showed a negative correlation with viral production with an AEC value >0.97 resulting in low virus productivity. Intracellular ATP or total adenylate concentration at the point of infection may be used as a predictor of viral yield in bioprocesses designed for virus/vaccine production.
Collapse
Affiliation(s)
- A Burgener
- Department of Microbiology, Buller Bldg., University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | | | | |
Collapse
|
46
|
Qiu Z, Hingley ST, Simmons G, Yu C, Das Sarma J, Bates P, Weiss SR. Endosomal proteolysis by cathepsins is necessary for murine coronavirus mouse hepatitis virus type 2 spike-mediated entry. J Virol 2006; 80:5768-76. [PMID: 16731916 PMCID: PMC1472567 DOI: 10.1128/jvi.00442-06] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Accepted: 04/05/2006] [Indexed: 01/10/2023] Open
Abstract
Most strains of murine coronavirus mouse hepatitis virus (MHV) express a cleavable spike glycoprotein that mediates viral entry and pH-independent cell-cell fusion. The MHV type 2 (MHV-2) strain of murine coronavirus differs from other strains in that it expresses an uncleaved spike and cannot induce cell-cell fusion at neutral pH values. We show here that while infection of the prototype MHV-A59 strain is not sensitive to pretreatment with lysosomotropic agents, MHV-2 replication is significantly inhibited by these agents. By use of an A59/MHV-2 chimeric virus, the susceptibility to lysosomotropic agents is mapped to the MHV-2 spike, suggesting a requirement of acidification of endosomes for MHV-2 spike-mediated entry. However, acidification is likely not a direct trigger for MHV-2 spike-mediated membrane fusion, as low-pH treatment is unable to overcome ammonium chloride inhibition, and it also cannot induce cell-cell fusion between MHV-2-infected cells. In contrast, trypsin treatment can both overcome ammonium chloride inhibition and promote cell-cell fusion. Inhibitors of the endosomal cysteine proteases cathepsin B and cathepsin L greatly reduce MHV-2 spike-mediated entry, while they have little effect on A59 entry, suggesting that there is a proteolytic step in MHV-2 entry. Finally, a recombinant virus expressing a cleaved MHV-2 spike has the ability to induce cell-cell fusion at neutral pH values and does not require low pH and endosomal cathepsins during infection. These studies demonstrate that endosomal proteolysis by cathepsins is necessary for MHV-2 spike-mediated entry; this is similar to the entry pathway recently described for severe acute respiratory syndrome coronavirus and indicates that coronaviruses may use multiple pathways for entry.
Collapse
Affiliation(s)
- Zhaozhu Qiu
- Department of Microbiology, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104-6076, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Danthi P, Hansberger MW, Campbell JA, Forrest JC, Dermody TS. JAM-A-independent, antibody-mediated uptake of reovirus into cells leads to apoptosis. J Virol 2006; 80:1261-70. [PMID: 16415003 PMCID: PMC1346953 DOI: 10.1128/jvi.80.3.1261-1270.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Apoptosis plays a major role in the cytopathic effect induced by reovirus following infection of cultured cells and newborn mice. Strain-specific differences in the capacity of reovirus to induce apoptosis segregate with the S1 and M2 gene segments, which encode attachment protein sigma1 and membrane penetration protein mu1, respectively. Virus strains that bind to both junctional adhesion molecule-A (JAM-A) and sialic acid are the most potent inducers of apoptosis. In addition to receptor binding, events in reovirus replication that occur during or after viral disassembly but prior to initiation of viral RNA synthesis also are required for reovirus-induced apoptosis. To determine whether reovirus infection initiated in the absence of JAM-A and sialic acid results in apoptosis, Chinese hamster ovary (CHO) cells engineered to express Fc receptors were infected with reovirus using antibodies directed against viral outer-capsid proteins. Fc-mediated infection of CHO cells induced apoptosis in a sigma1-independent manner. Apoptosis following this uptake mechanism requires acid-dependent proteolytic disassembly, since treatment of cells with the weak base ammonium chloride diminished the apoptotic response. Analysis of T1L x T3D reassortant viruses revealed that the mu1-encoding M2 gene segment is the only viral determinant of the apoptosis-inducing capacity of reovirus when infection is initiated via Fc receptors. Additionally, a temperature-sensitive, membrane penetration-defective M2 mutant, tsA279.64, is an inefficient inducer of apoptosis. These data suggest that signaling pathways activated by binding of sigma1 to JAM-A and sialic acid are dispensable for reovirus-mediated apoptosis and that the mu1 protein plays an essential role in stimulating proapoptotic signaling.
Collapse
Affiliation(s)
- Pranav Danthi
- Department of Pediatrics, and Elizabeth B. Lamb Center for Pediatric Research, D7235 MCN, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
48
|
Villanueva RA, Rouillé Y, Dubuisson J. Interactions between virus proteins and host cell membranes during the viral life cycle. ACTA ACUST UNITED AC 2006; 245:171-244. [PMID: 16125548 PMCID: PMC7112339 DOI: 10.1016/s0074-7696(05)45006-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The structure and function of cells are critically dependent on membranes, which not only separate the interior of the cell from its environment but also define the internal compartments. It is therefore not surprising that the major steps of the life cycle of viruses of animals and plants also depend on cellular membranes. Indeed, interactions of viral proteins with host cell membranes are important for viruses to enter into host cells, replicate their genome, and produce progeny particles. To replicate its genome, a virus first needs to cross the plasma membrane. Some viruses can also modify intracellular membranes of host cells to create a compartment in which genome replication will take place. Finally, some viruses acquire an envelope, which is derived either from the plasma membrane or an internal membrane of the host cell. This paper reviews recent findings on the interactions of viral proteins with host cell membranes during the viral life cycle.
Collapse
Affiliation(s)
- Rodrigo A Villanueva
- CNRS-UPR2511, Institut de Biologie de Lille, Institut Pasteur de Lille, 59021 Lille Cedex, France
| | | | | |
Collapse
|
49
|
Tscherne DM, Jones CT, Evans MJ, Lindenbach BD, McKeating JA, Rice CM. Time- and temperature-dependent activation of hepatitis C virus for low-pH-triggered entry. J Virol 2006; 80:1734-41. [PMID: 16439530 PMCID: PMC1367161 DOI: 10.1128/jvi.80.4.1734-1741.2006] [Citation(s) in RCA: 307] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Accepted: 11/25/2005] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) is an important human pathogen associated with chronic liver disease. Recently, based on a genotype 2a isolate, tissue culture systems supporting complete replication and infectious virus production have been developed. In this study, we used cell culture-produced infectious HCV to analyze the viral entry pathway into Huh-7.5 cells. Bafilomycin A1 and concanamycin A, inhibitors of vacuolar ATPases, prevented HCV entry when they were present prior to infection and had minimal effect on downstream replication events. HCV entry therefore appears to be pH dependent, requiring an acidified intracellular compartment. For many other enveloped viruses, acidic pH triggers an irreversible conformational change, which promotes virion-endosomal membrane fusion. Such viruses are often inactivated by low pH. In the case of HCV, exposure of virions to acidic pH followed by return to neutral pH did not affect their infectivity. This parallels the observation made for the related pestivirus bovine viral diarrhea virus. Low pH could activate the entry of cell surface-bound HCV but only after prolonged incubation at 37 degrees C. This suggests that there are rate-limiting, postbinding events that are needed to render HCV competent for low-pH-triggered entry. Such events may involve interaction with a cellular coreceptor or other factors but do not require cathepsins B and L, late endosomal proteases that activate Ebola virus and reovirus for entry.
Collapse
Affiliation(s)
- Donna M Tscherne
- Laboratory of Virology and Infectious Diseases, Center for the Study of Hepatitis C, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
50
|
Clark KM, Wetzel JD, Gu Y, Ebert DH, McAbee SA, Stoneman EK, Baer GS, Zhu Y, Wilson GJ, Prasad BVV, Dermody TS. Reovirus variants selected for resistance to ammonium chloride have mutations in viral outer-capsid protein sigma3. J Virol 2006; 80:671-81. [PMID: 16378970 PMCID: PMC1346852 DOI: 10.1128/jvi.80.2.671-681.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mammalian reoviruses are internalized into cells by receptor-mediated endocytosis. Within the endocytic compartment, the viral outer capsid undergoes acid-dependent proteolysis resulting in removal of the sigma3 protein and proteolytic cleavage of the mu1/mu1C protein. Ammonium chloride (AC) is a weak base that blocks disassembly of reovirus virions by inhibiting acidification of intracellular vacuoles. To identify domains in reovirus proteins that influence pH-sensitive steps in viral disassembly, we adapted strain type 3 Dearing (T3D) to growth in murine L929 cells treated with AC. In comparison to wild-type (wt) T3D, AC-adapted (ACA-D) variant viruses exhibited increased yields in AC-treated cells. AC resistance of reassortant viruses generated from a cross of wt type 1 Lang and ACA-D variant ACA-D1 segregated with the sigma3-encoding S4 gene. The deduced sigma3 amino acid sequences of six independently derived ACA-D variants contain one or two mutations each, affecting a total of six residues. Four of these mutations, I180T, A246G, I347S, and Y354H, cluster in the virion-distal lobe of sigma3. Linkage of these mutations to AC resistance was confirmed in experiments using reovirus disassembly intermediates recoated with wt or mutant sigma3 proteins. In comparison to wt virions, ACA-D viruses displayed enhanced susceptibility to proteolysis by endocytic protease cathepsin L. Image reconstructions of cryoelectron micrographs of three ACA-D viruses that each contain a single mutation in the virion-distal lobe of sigma3 demonstrated native capsid protein organization and minimal alterations in sigma3 structure. These results suggest that mutations in sigma3 that confer resistance to inhibitors of vacuolar acidification identify a specific domain that regulates proteolytic disassembly.
Collapse
Affiliation(s)
- Kimberly M Clark
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37241, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|