1
|
Andini TM, Tada S, Kumagai T, Takahashi Y, Higuchi Y, Kawamoto Y, Park S. Fluorescent nucleobase analogue for cellular visualisation and regulation of immunostimulatory CpG oligodeoxynucleotides. Org Biomol Chem 2025; 23:3535-3541. [PMID: 39873293 DOI: 10.1039/d4ob02034k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
In this study, we explored the chemical modification of toll-like receptor 9 (TLR9) agonist DNA using a highly fluorescent thymine analogue, ThexT, focusing on its structural and photophysical characteristics. ThexT-labelled CpG oligonucleotides effectively demonstrated intracellular localisation within macrophage cell lines. Notably, immunostimulatory activity varied depending on the site of ThexT incorporation within the TLR9 agonist sequence. The introduction of fluorescent nucleobases offers a useful approach for visualising immunostimulatory oligonucleotides and for modulating immune responses.
Collapse
Affiliation(s)
- Tatum Melati Andini
- Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan.
- Department of Genome Informatics, Research Institute for Microbial Diseases, Graduate School of Medicine, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoshi Tada
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachicho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Tomotaka Kumagai
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawaoiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yuki Takahashi
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachicho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Yuriko Higuchi
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachicho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Yusuke Kawamoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachicho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Soyoung Park
- Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Agrawal S. Considerations for Creating the Next Generation of RNA Therapeutics: Oligonucleotide Chemistry and Innate Immune Responses to Nucleic Acids. Nucleic Acid Ther 2024; 34:37-51. [PMID: 38578231 DOI: 10.1089/nat.2024.29009.sud] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
|
3
|
Luo X, Zhang J, Gao Y, Pan W, Yang Y, Li X, Chen L, Wang C, Wang Y. Emerging roles of i-motif in gene expression and disease treatment. Front Pharmacol 2023; 14:1136251. [PMID: 37021044 PMCID: PMC10067743 DOI: 10.3389/fphar.2023.1136251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/27/2023] [Indexed: 03/22/2023] Open
Abstract
As non-canonical nucleic acid secondary structures consisting of cytosine-rich nucleic acids, i-motifs can form under certain conditions. Several i-motif sequences have been identified in the human genome and play important roles in biological regulatory functions. Due to their physicochemical properties, these i-motif structures have attracted attention and are new targets for drug development. Herein, we reviewed the characteristics and mechanisms of i-motifs located in gene promoters (including c-myc, Bcl-2, VEGF, and telomeres), summarized various small molecule ligands that interact with them, and the possible binding modes between ligands and i-motifs, and described their effects on gene expression. Furthermore, we discussed diseases closely associated with i-motifs. Among these, cancer is closely associated with i-motifs since i-motifs can form in some regions of most oncogenes. Finally, we introduced recent advances in the applications of i-motifs in multiple areas.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chang Wang
- *Correspondence: Chang Wang, ; Yuqing Wang,
| | | |
Collapse
|
4
|
Hagedorn PH, Brown JM, Easton A, Pierdomenico M, Jones K, Olson RE, Mercer SE, Li D, Loy J, Høg AM, Jensen ML, Gill M, Cacace AM. Acute Neurotoxicity of Antisense Oligonucleotides After Intracerebroventricular Injection Into Mouse Brain Can Be Predicted from Sequence Features. Nucleic Acid Ther 2022; 32:151-162. [PMID: 35166597 PMCID: PMC9221153 DOI: 10.1089/nat.2021.0071] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Antisense oligonucleotides are a relatively new therapeutic modality and safety evaluation is still a developing area of research. We have observed that some oligonucleotides can produce acute, nonhybridization dependent, neurobehavioral side effects after intracerebroventricular (ICV) dosing in mice. In this study, we use a combination of in vitro, in vivo, and bioinformatics approaches to identify a sequence design algorithm, which can reduce the number of acutely toxic molecules synthesized and tested in mice. We find a cellular assay measuring spontaneous calcium oscillations in neuronal cells can predict the behavioral side effects after ICV dosing, and may provide a mechanistic explanation for these observations. We identify sequence features that are overrepresented or underrepresented among oligonucleotides causing these reductions in calcium oscillations. A weighted linear combination of the five most informative sequence features predicts the outcome of ICV dosing with >80% accuracy. From this, we develop a bioinformatics tool that allows oligonucleotide designs with acceptable acute neurotoxic potential to be identified, thereby reducing the number of toxic molecules entering drug discovery pipelines. The informative sequence features we identified also suggest areas in which to focus future medicinal chemistry efforts.
Collapse
Affiliation(s)
- Peter H Hagedorn
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| | - Jeffrey M Brown
- Bristol Myers Squibb Research and Development, Princeton, New Jersey, USA
| | - Amy Easton
- Bristol Myers Squibb Research and Development, Princeton, New Jersey, USA
| | - Maria Pierdomenico
- Bristol Myers Squibb Research and Development, Princeton, New Jersey, USA
| | - Kelli Jones
- Bristol Myers Squibb Research and Development, Princeton, New Jersey, USA
| | - Richard E Olson
- Bristol Myers Squibb Research and Development, Princeton, New Jersey, USA
| | - Stephen E Mercer
- Bristol Myers Squibb Research and Development, Princeton, New Jersey, USA
| | - Dong Li
- Bristol Myers Squibb Research and Development, Princeton, New Jersey, USA
| | - James Loy
- Bristol Myers Squibb Research and Development, Princeton, New Jersey, USA
| | - Anja M Høg
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| | - Marianne L Jensen
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| | - Martin Gill
- Bristol Myers Squibb Research and Development, Princeton, New Jersey, USA
| | - Angela M Cacace
- Bristol Myers Squibb Research and Development, Princeton, New Jersey, USA
| |
Collapse
|
5
|
Kawamoto Y, Liu W, Yum JH, Park S, Sugiyama H, Takahashi Y, Takakura Y. Enhanced Immunostimulatory Activity of Covalent DNA Dendrons. Chembiochem 2021; 23:e202100583. [PMID: 34881505 DOI: 10.1002/cbic.202100583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/01/2021] [Indexed: 11/10/2022]
Abstract
The present study focused on the design and synthesis of covalent DNA dendrons bearing multivalent cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) that can stimulate the immune system through the activation of TLR9. These dendrons were synthesized using branching trebler phosphoramidite containing three identical protecting groups that enabled the simultaneous synthesis of multiple strands on a single molecule. Compared with linear ODNs, covalent DNA dendrons were found to be more resistant to nuclease degradation and were more efficiently taken up by macrophage-like RAW264.7 cells. Cellular uptake was suggested to be mediated by macrophage scavenger receptors. The covalent DNA dendrons composed of multivalent immunostimulatory branches enhanced the secretion of proinflammatory cytokines TNF-α and IL-6 from RAW264.7 cells, and 9-branched DNA dendrons showed the highest enhancement. Given their enhanced efficacy, we expect covalent DNA dendrons to be useful structures of oligonucleotide medicines.
Collapse
Affiliation(s)
- Yusuke Kawamoto
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Wen Liu
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ji Hye Yum
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Soyoung Park
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshidaushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
6
|
From Antisense RNA to RNA Modification: Therapeutic Potential of RNA-Based Technologies. Biomedicines 2021; 9:biomedicines9050550. [PMID: 34068948 PMCID: PMC8156014 DOI: 10.3390/biomedicines9050550] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
Therapeutic oligonucleotides interact with a target RNA via Watson-Crick complementarity, affecting RNA-processing reactions such as mRNA degradation, pre-mRNA splicing, or mRNA translation. Since they were proposed decades ago, several have been approved for clinical use to correct genetic mutations. Three types of mechanisms of action (MoA) have emerged: RNase H-dependent degradation of mRNA directed by short chimeric antisense oligonucleotides (gapmers), correction of splicing defects via splice-modulation oligonucleotides, and interference of gene expression via short interfering RNAs (siRNAs). These antisense-based mechanisms can tackle several genetic disorders in a gene-specific manner, primarily by gene downregulation (gapmers and siRNAs) or splicing defects correction (exon-skipping oligos). Still, the challenge remains for the repair at the single-nucleotide level. The emerging field of epitranscriptomics and RNA modifications shows the enormous possibilities for recoding the transcriptome and repairing genetic mutations with high specificity while harnessing endogenously expressed RNA processing machinery. Some of these techniques have been proposed as alternatives to CRISPR-based technologies, where the exogenous gene-editing machinery needs to be delivered and expressed in the human cells to generate permanent (DNA) changes with unknown consequences. Here, we review the current FDA-approved antisense MoA (emphasizing some enabling technologies that contributed to their success) and three novel modalities based on post-transcriptional RNA modifications with therapeutic potential, including ADAR (Adenosine deaminases acting on RNA)-mediated RNA editing, targeted pseudouridylation, and 2′-O-methylation.
Collapse
|
7
|
Araie Y, Ohtsuki S, Park S, Nagaoka M, Umemura K, Sugiyama H, Kusamori K, Takahashi Y, Takakura Y, Nishikawa M. Combined use of chemically modified nucleobases and nanostructured DNA for enhanced immunostimulatory activity of CpG oligodeoxynucleotide. Bioorg Med Chem 2020; 29:115864. [PMID: 33223462 DOI: 10.1016/j.bmc.2020.115864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022]
Abstract
Oligodeoxynucleotide (ODN) containing a cytosine-phosphate-guanine (CpG) motif, or CpG ODN, is considered suitable for treating immune diseases, including allergies. Although the phosphorothioate modification is used to enhance the stability and immunostimulatory activity of CpG ODNs, it is associated with the risk of adverse effects. Construction of nanostructured DNA assemblies, such as tripod- and hexapod-like structured DNAs, tripodna and hexapodna, respectively, were also found to increase this activity. The chemical modification of nucleobases could be another approach for enhancing CpG ODN activity. Here, we examined whether chemically modified nucleobase substitutions can enhance CpG ODN activity by measuring tumor necrosis factor α (TNF-α) release after addition to murine macrophage-like RAW264.7 cells. First, the guanine at the 18th position of phosphodiester CpG 1668 was substituted with several chemically modified guanines, and then the various guanines were substituted. Among all tested substitutions, 15,18-thdG, in which two guanines outside the CpG motif were substituted with the 2-aminothieno[3,4-d]pyrimidine guanine mimic (thdG), was the most effective. Compared to 32P-CpG 1668, 32P-15,18-thdG was taken up more efficiently by the RAW264.7 cells. Then, 15,18-thdG was incorporated into tripodna and hexapodna. 15,18-thdG/tri- or hexapodna induced higher TNF-α release from the RAW264.7 cells than PO CpG 1668/tri- or hexapodna, respectively. These results indicate that the thdG substitution is a useful effective strategy for enhancing the immunostimulatory activity of CpG DNAs in both single stranded and DNA nanostructure forms.
Collapse
Affiliation(s)
- Yuki Araie
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shozo Ohtsuki
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Soyoung Park
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Makoto Nagaoka
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Keisuke Umemura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kosuke Kusamori
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Makiya Nishikawa
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
8
|
Wang D, Jiang W, Zhu F, Mao X, Agrawal S. Modulation of the tumor microenvironment by intratumoral administration of IMO-2125, a novel TLR9 agonist, for cancer immunotherapy. Int J Oncol 2018; 53:1193-1203. [PMID: 29956749 DOI: 10.3892/ijo.2018.4456] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/04/2018] [Indexed: 11/06/2022] Open
Abstract
The objective of cancer immunotherapy is to prime the host's immune system to recognize and attack malignant tumor cells. IMO‑2125, a Toll‑like receptor 9 (TLR9) agonist, exhibited potent antitumor effects in the murine syngeneic A20 lymphoma and the CT26 colon carcinoma models. IMO‑2125 exhibited superior A20 antitumor activity when injected intratumorally (i.t.) compared with equivalent subcutaneous doses. In mice bearing dual CT26 grafts, the i.t. injection of right flank tumors elicited infiltration of cluster of differentiation (CD)3+ T lymphocytes into tumors, resulting in the regression of injected and uninjected left flank tumors. Depletion of CD8+, but not CD4+, T‑cells abrogated the IMO‑2125‑mediated antitumor response, suggesting that CD8+ lymphocytes are required for the antitumor activity. In mice harboring right flank CT26 and left flank β‑galactosidase (β‑gal)‑expressing CT26.CL25 grafts, the i.t. administration of IMO‑2125 to the CT26 graft resulted in potent and dose‑dependent antitumor activity against the two grafts. Splenic T‑cells isolated from these mice responded to AH1 antigen (present in the two tumors) and β‑gal antigen (present only in CT26.CL25) in an interferon γ enzyme‑linked immunospot assay, suggesting the clonal expansion of T‑cells directed against antigens from the two tumors. Mice with ablated CT26 tumors by previous IMO‑2125 treatment rejected re‑implanted CT26 tumor cells, but not A20 tumor cells, demonstrating that the initial IMO‑2125 treatment created a long‑lived tumor‑specific immune memory of CT26 antigens. A quantitative increase in CD3+ T lymphocytes in injected A20 tumors and an upregulation of selected checkpoint genes, including indoleamine 2,3‑dioxygenase (IDO)‑1, IDO‑2, programmed cell death protein-1 (PD-1); programmed cell death protein ligand 1 (PD-L1), carcinoembryonic antigen‑related cell adhesion molecule 1, tumor necrosis factor receptor superfamily member 4 (OX40), OX40 ligand, T‑cell immunoglobulin and mucin‑domain‑containing 3 protein, lymphocyte‑activation gene 3, cytotoxic T‑lymphocyte‑associated protein 4, were observed following IMO‑2125 treatment. IMO‑2125 also increased immune checkpoint gene expression in injected and uninjected contralateral CT26 tumors, suggesting that the co‑administration of anti‑CTLA‑4, anti‑PD‑1 or anti‑PD‑L1 therapies with IMO‑2125 may provide additional therapeutic efficacy.
Collapse
Affiliation(s)
- Daqing Wang
- Idera Pharmaceuticals, Inc., Cambridge, MA 02139, USA
| | - Wayne Jiang
- Idera Pharmaceuticals, Inc., Cambridge, MA 02139, USA
| | - Fugang Zhu
- Idera Pharmaceuticals, Inc., Cambridge, MA 02139, USA
| | - Xianzhi Mao
- Idera Pharmaceuticals, Inc., Cambridge, MA 02139, USA
| | | |
Collapse
|
9
|
Targeting Suppressive Oligonucleotide to Lymph Nodes Inhibits Toll-like Receptor-9-Mediated Activation of Adaptive Immunity. Pharm Res 2018; 35:56. [PMID: 29423660 DOI: 10.1007/s11095-018-2344-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 01/05/2018] [Indexed: 12/23/2022]
Abstract
PURPOSE This paper aims to investigate the immunoinhibitory properties of a lymph nodes-targeting suppressive oligonucleotide (ODN) for the potential treatment of autoimmune diseases or chronic inflammation. METHODS Synthetic suppressive ODN engineered with an albumin-binding diacyl lipid at the 5'-terminal (lipo-ODN) was synthesized. In vitro and in vivo experiments were designed to compare the immune suppressive properties of lipo-ODN and unmodified ODN. Cellular uptake and distribution, inhibition of Toll-like receptor (TLR) activation, lymph nodes (LN) draining, and the suppression of antigen-specific immune responses in an ovalbumin protein model was investigated. RESULTS Compared to unmodified ODN, lipid functionalized suppressive ODN demonstrated enhanced cellular uptake and TLR-9 specific immune suppression in TLR reporter cells. Additionally, injection of a low dose of lipid-modified suppressive ODN, but not the unconjugated ODN, accumulated in the draining LNs and exhibited potent inhibition of antigen-specific CD8+ T cell and B cell responses in vivo. CONCLUSIONS Targeting suppressive ODN to antigen presenting cells (APCs) in the local LNs is an effective approach to amplify the immune modulation mediated by ODN containing repetitive TTAGGG motif. This approach might be broadly applicable to target molecular adjuvants to the key immune cells in the LNs draining from disease site, providing a simple strategy to improve the efficacy of many molecular immune modulators.
Collapse
|
10
|
Spontaneous and transgenic rodent models of inflammatory bowel disease. Lab Anim Res 2015; 31:47-68. [PMID: 26155200 PMCID: PMC4490147 DOI: 10.5625/lar.2015.31.2.47] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 04/27/2015] [Accepted: 04/29/2015] [Indexed: 12/12/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) is a multifactorial disorder with many different putative influences mediating disease onset, severity, progression and diminution. Spontaneous natural IBD is classically expressed as Crohn's Disease (CD) and Ulcerative Colitis (UC) commonly found in primates; lymphoplasmocytic enteritis, eosinophilic gastritis and colitis, and ulcerative colitis with neuronal hyperplasia in dogs; and colitis in horses. Spontaneous inflammatory bowel disease has been noted in a number of rodent models which differ in genetic strain background, induced mutation, microbiota influences and immunopathogenic pathways. Histological lesions in Crohn's Disease feature noncaseating granulomatous inflammation while UC lesions typically exhibit ulceration, lamina propria inflammatory infiltrates and lack of granuloma development. Intestinal inflammation caused by CD and UC is also associated with increased incidence of intestinal neoplasia. Transgenic murine models have determined underlying etiological influences and appropriate therapeutic targets in IBD. This literature review will discuss current opinion and findings in spontaneous IBD, highlight selected transgenic rodent models of IBD and discuss their respective pathogenic mechanisms. It is very important to provide accommodation of induced putative deficits in activities of daily living and to assess discomfort and pain levels in the face of significant morbidity and/or mortality in these models. Epigenetic, environmental (microbiome, metabolome) and nutritional factors are important in IBD pathogenesis, and evaluating ways in which they influence disease expression represent potential investigative approaches with the greatest potential for new discoveries.
Collapse
|
11
|
Putta MR, Bhagat L, Wang D, Zhu FG, Kandimalla ER, Agrawal S. Immune-Stimulatory Dinucleotide at the 5'-End of Oligodeoxynucleotides Is Critical for TLR9-Mediated Immune Responses. ACS Med Chem Lett 2013; 4:302-5. [PMID: 24900663 DOI: 10.1021/ml300482z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 01/23/2013] [Indexed: 11/28/2022] Open
Abstract
Oligodeoxynucleotides (ODNs) containing a CpG or certain synthetic dinucleotides, referred to as immune-stimulatory dinucleotides, induce Toll-like receptor 9 (TLR9)-mediated immune responses. Chemical modifications such as 2'-O-methylribonucleotides incorporated adjacent to the immune-stimulatory dinucleotide on the 5'-side abrogate TLR9-mediated immune responses. In this study, we evaluated the effect of the location of immune-stimulatory dinucleotides in ODNs on TLR9-mediated immune responses. We designed and synthesized ODNs with two immune-stimulatory dinucleotides, one placed toward the 5'-end region and the other toward the 3'-end region, incorporated 2'-O-methylribonucleotides selectively preceding the 5'- or 3'-immune-stimulatory dinucleotide or both, and studied TLR9-mediated immune responses of these compounds in cell-based assays and in vivo in mice. These studies showed that an immune-stimulatory dinucleotide located closer to the 5'-end is critical for and dictates TLR9-mediated immune responses. These studies provide insights for the use of ODNs when employed as TLR9 agonists and antagonists or antisense agents.
Collapse
Affiliation(s)
- Mallikarjuna R. Putta
- Idera Pharmaceuticals, Inc., 167 Sidney Street, Cambridge, Massachusetts 02139,
United States
| | - Lakshmi Bhagat
- Idera Pharmaceuticals, Inc., 167 Sidney Street, Cambridge, Massachusetts 02139,
United States
| | - Daqing Wang
- Idera Pharmaceuticals, Inc., 167 Sidney Street, Cambridge, Massachusetts 02139,
United States
| | - Fu-Gang Zhu
- Idera Pharmaceuticals, Inc., 167 Sidney Street, Cambridge, Massachusetts 02139,
United States
| | - Ekambar R. Kandimalla
- Idera Pharmaceuticals, Inc., 167 Sidney Street, Cambridge, Massachusetts 02139,
United States
| | - Sudhir Agrawal
- Idera Pharmaceuticals, Inc., 167 Sidney Street, Cambridge, Massachusetts 02139,
United States
| |
Collapse
|
12
|
Putta MR, Yu D, Kandimalla ER. Synthesis, purification, and characterization of immune-modulatory oligodeoxynucleotides that act as agonists of Toll-like receptor 9. Methods Mol Biol 2011; 764:263-77. [PMID: 21748647 DOI: 10.1007/978-1-61779-188-8_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Methods and protocols for automated synthesis and purification of immune modulatory oligonucleotides (IMOs), a novel class of Toll-like receptor 9 (TLR9) agonists, are described. IMOs containing two short identical sequences of 11-mers with phosphorothioate linkages can be synthesized in parallel synthetic strategy. A C3-linker that mimics the natural inter-nucleotide distance was commonly used for joining the two segments of IMOs. NittoPhase solid support bearing a symmetrical C3-linker (glycerol) and nucleoside-β-cyanoethyl-N,N-diisopropylphosphoramidites were used for IMO synthesis. The parallel synthesis was carried out in a 3'→ 5' direction with removal of the final dimethoxytrityl (DMT) protecting group. After synthesis, the IMO was cleaved and deprotected by treating with aqueous ammonia. The product was purified on anion-exchange HPLC, desalted, lyophilized, and characterized by anion-exchange HPLC, capillary gel electrophoresis, polyacrylamide gel electrophoresis, and MALDI-TOF mass spectral analysis.
Collapse
|
13
|
Gupta GK, Agrawal DK. CpG oligodeoxynucleotides as TLR9 agonists: therapeutic application in allergy and asthma. BioDrugs 2010; 24:225-35. [PMID: 20623989 DOI: 10.2165/11536140-000000000-00000] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Unmethylated cytosine-phosphate-guanine (CpG) dinucleotides in microbial DNA sequences activate Toll-like receptor (TLR) 9, and previous studies have shown that oligodeoxynucleotides (ODNs) containing CpG in specific base sequence motifs (CpG ODNs) can reiterate the majority of the immunomodulatory effects produced by bacterial DNA. Many of the manifestations in allergic diseases are primarily due to T helper (T(h))-2 cell-type responses. CpG ODNs can induce T(h)1 and T-regulatory (T(reg)) cell-type cytokines that can suppress the T(h)2 response. The therapeutic application of TLR9 has been explored extensively in recent years, and many studies are being conducted to assess the safety and efficacy of TLR9 agonists in various diseases, including atopic and infectious diseases, and cancer. Studies in murine models have shown that the development of atopic airway disease can be prevented by treatment with CpG ODNs. Various clinical trials are currently ongoing to determine the efficacy of CpG ODNs as a therapeutic tool for atopic diseases. In this review, we discuss the therapeutic application of CpG ODNs in allergy and asthma. CpG ODNs may be used alone or as an adjuvant to immunotherapy to treat these disorders.
Collapse
Affiliation(s)
- Gaurav K Gupta
- Center for Clinical and Translational Science, Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68178, USA
| | | |
Collapse
|
14
|
Putta MR, Yu D, Bhagat L, Wang D, Zhu FG, Kandimalla ER. Impact of nature and length of linker incorporated in agonists on toll-like receptor 9-mediated immune responses. J Med Chem 2010; 53:3730-8. [PMID: 20361743 DOI: 10.1021/jm100177p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Oligodeoxynucleotides containing unmethylated CpG motifs act as ligands of Toll-like receptor 9 (TLR9). We previously reported a novel class of TLR9 agonists, referred to as immune-modulatory oligonucleotides (IMOs), in which two 11-mers of the same sequence are attached via their 3'-ends through a 1,2,3-propanetriol linker and contain a synthetic immune-stimulatory motif, Cp7-deaza-dG. In the present study, we have examined the impact of length, nature, and stereochemistry of the linker incorporated in agonists for TLR9 activation. The new linkers studied include (S)-(-)-1,2,4-butanetriol, 1,3,5-pentanetriol, cis,cis-1,3,5-cyclohexanetriol, cis,trans-1,3,5-cyclohexanetriol, 1,3,5-tris(2-hydroxyethyl)isocyanurate, tetraethyleneglycol, and hexaethyleneglycol in place of 1,2,3-propanetriol linker. Agonists with various linkers are studied for TLR9-mediated immune responses in HEK293 cells, human cell-based assays, and in vivo in mice. Results of these studies suggest that C3-C5 linkers, 1,2,3-propanetriol, (S)-(-)-1,2,4-butanetriol, or 1,3,5-pentanetriol, are optimal for stimulation of TLR9-mediated immune responses. Rigid C3 linkers with different stereochemistry have little effect on immune stimulation, while linkers longer than C5 reduced TLR9-mediated immune stimulation.
Collapse
|
15
|
Synthesis and immunological activities of novel agonists of toll-like receptor 9. Cell Immunol 2010; 263:105-13. [PMID: 20381019 DOI: 10.1016/j.cellimm.2010.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 03/03/2010] [Indexed: 12/31/2022]
Abstract
Novel agonists of TLR9 with two 5'-ends and synthetic immune stimulatory motifs, referred to as immune modulatory oligonucleotides (IMOs) are potent agonists of TLR9. In the present study, we have designed and synthesized 15 novel IMOs by incorporating specific chemical modifications and studied their immune response profiles both in vitro and in vivo. Analysis of the immunostimulatory profiles of these IMOs in human and NHP cell-based assays suggest that changes in the number of synthetic immunostimulatory motifs gave only a subtle change in immune stimulation of pDCs as indicated by IFN-alpha production and pDC maturation while the addition of self-complementary sequences produced more dramatic changes in both pDC and B cell stimulation. All IMOs induced cytokine production in vivo immediately after administration in mice. Representative compounds were also compared for the ability to stimulate cytokine production in vivo (IFN-alpha and IP-10) in rhesus macaques after intra-muscular administration.
Collapse
|
16
|
Richardt-Pargmann D, Vollmer J. Stimulation of the immune system by therapeutic antisense oligodeoxynucleotides and small interfering RNAs via nucleic acid receptors. Ann N Y Acad Sci 2009; 1175:40-54. [PMID: 19796076 DOI: 10.1111/j.1749-6632.2009.04971.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Most of the therapeutic applications for synthetic oligodeoxynucleotides (ODN) and oligoribonucleotides (ORN) relate to mechanisms of manipulating gene expression based on Watson-Crick base pairing to endogenous nucleic acids. However, in recent years it has become apparent that the immune system has evolved defense mechanisms against infections that are based on the detection of infecting viral and bacterial nucleic acids. In some cases, synthetic ODN and ORN can trigger these defenses and, therefore, can interfere with or distort the mechanism of action of antisense ODN or small interfering RNAs.
Collapse
|
17
|
Affiliation(s)
- Eugen Uhlmann
- Coley Pharmaceutical GmbH Merowingerplatz 1a D-40225 Düsseldorf Germany
| |
Collapse
|
18
|
Im Hof M, Williamson L, Summerfield A, Balmer V, Dutoit V, Kandimalla ER, Yu D, Zurbriggen A, Doherr MG, Peel J, Roosje PJ. Effect of synthetic agonists of toll-like receptor 9 on canine lymphocyte proliferation and cytokine production in vitro. Vet Immunol Immunopathol 2008; 124:120-31. [PMID: 18452997 DOI: 10.1016/j.vetimm.2008.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 02/19/2008] [Accepted: 03/04/2008] [Indexed: 01/10/2023]
Abstract
Synthetic agonists of TLR9 containing novel DNA structures and R'pG (wherein R=1-(2'-deoxy-beta-d-ribofuranosyl)-2-oxo-7-deaza-8-methyl-purine) motifs, referred to as immune modulatory oligonucleotides (IMOs), have been shown to stimulate T(H)-1-type-immune responses and potently reverse allergen-induced T(H)-2 responses to T(H)-1 responses in vitro and in vivo in mice. In order to investigate the immunomodulatory potential of IMOs in dogs, canine peripheral blood mononuclear cells (PBMC) from healthy dogs were stimulated with three different IMOs and a control IMO, alone or in combination with concanavalin A (ConA). Lipopolysaccharide (LPS) was used as a positive control for B lymphocyte activation. Carboxyfluorescein diacetate succinimidyl ester and phenotype staining was used to tag proliferating T and B lymphocytes (CD5(+) and CD21(+)) by flow cytometry. Real-time PCR and ELISA were processed to assay cytokine production of IFN-gamma, IL-10, TGF-beta, IL-6 and IL-10. Like LPS, IMOs alone induced neither proliferation of CD5(+) T cells nor CD21(+) B cells, but both LPS and IMO had the capacity to co-stimulate ConA and induced proliferation of B cells. In combination with ConA, one of the IMOs (IMO1) also induced proliferation of T cells. IMO1 also significantly enhanced the expression of IFN-gamma on the mRNA and protein level in canine PBMC, whereas expression of IL-10, TGF-beta and IL-4 mRNAs was not induced by any of the IMOs. These results indicate that in canine PBMC from healthy dogs, IMO1 was able to induce a T(H)-1 immune response including T- and B-cell proliferation.
Collapse
Affiliation(s)
- Michelle Im Hof
- Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Länggassstrasse 128, CH-3012 Bern, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
TLRs (Toll-like receptors) are a family of innate immune receptors that induce protective immune responses against infections. Single-stranded viral RNA and bacterial DNA containing unmethylated CpG motifs are the ligands for TLR7 and TLR8 and 9 respectively. We have carried out extensive structure–activity relationship studies of DNA- and RNA-based compounds to elucidate the impact of nucleotide motifs and structures on these TLR-mediated immune responses. These studies have led us to design novel DNA- and RNA-based compounds, which act as potent agonists of TLR9 and TLR7 and 8 respectively. These novel synthetic agonists produce different immune response profiles depending on the structures and nucleotide motifs present in them. The ability to modulate TLR-mediated immune responses with these novel DNA- and RNA-based agonists in a desired fashion may allow targeting a broad range of diseases, including cancers, asthma, allergies and infections, alone or in combination with other therapeutic agents, and their use as adjuvants with vaccines. IMO-2055, our first lead candidate, is a TLR9 agonist that is currently in clinical evaluation in oncology patients. A second candidate, IMO-2125, is also a TLR9 agonist that has been shown to induce high and sustained levels of IFN (interferon) in non-human primates and is being evaluated in HepC-infected human subjects.
Collapse
|
20
|
Yu D, Putta MR, Bhagat L, Li Y, Zhu F, Wang D, Tang JX, Kandimalla ER, Agrawal S. Agonists of Toll-like receptor 9 containing synthetic dinucleotide motifs. J Med Chem 2007; 50:6411-8. [PMID: 17988082 DOI: 10.1021/jm070881l] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oligodeoxynucleotides (ODNs) containing unmethylated CpG motifs activate Toll-like receptor 9 (TLR9). Our previous studies have shown that ODNs containing two 5'-ends are more immunostimulatory than those with one 5'-end. In the present study, to understand the role of functional groups in TLR9 recognition and subsequent immune response, we substituted C or G of a CpG dinucleotide with 5-OH-dC, 5-propyne-dC, furano-dT, 1-(2'-deoxy-beta- d-ribofuranosyl)-2-oxo-7-deaza-8-methyl-purine, dF, 4-thio-dU, N(3)-Me-dC, N (4)-Et-dC, Psi-iso-dC, and arabinoC or 7-deaza-dG, 7-deaza-8-aza-dG, 9-deaza-dG, N(1)-Me-dG, N(2)-Me-dG, 6-Thio-dG, dI, 8-OMe-dG, 8-O-allyl-dG, and arabinoG in ODN containing two 5'-ends. Agonists of TLR9 containing cytosine or guanine modification showed activity in HEK293 cells expressing TLR9, mouse spleen, and human cell-based assays and in vivo in mice. The results presented here provide insight into which specific chemical modifications at C or G of the CpG motif are recognized by TLR9 and the ability to modulate immune responses substituting natural C or G in immune modulatory oligonucleotides.
Collapse
Affiliation(s)
- Dong Yu
- Idera Pharmaceuticals, Inc., 167 Sidney Street, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wang H, Rayburn ER, Wang W, Kandimalla ER, Agrawal S, Zhang R. Immunomodulatory oligonucleotides as novel therapy for breast cancer: pharmacokinetics, in vitro and in vivo anticancer activity, and potentiation of antibody therapy. Mol Cancer Ther 2006; 5:2106-14. [PMID: 16928832 DOI: 10.1158/1535-7163.mct-06-0158] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oligonucleotides containing CpG motifs and immunomodulatory oligonucleotides (IMO) containing a synthetic immunostimulatory dinucleotide and a novel DNA structure have been suggested to have potential for the treatment of various human diseases. In the present study, a newly designed IMO was evaluated in several models of human (MCF-7 and BT474 xenograft) and murine (4T1 syngeneic) breast cancer. Pharmacokinetics studies of the IMO administered by s.c., i.v., p.o., or i.p. routes were also accomplished. The IMO was widely distributed to various tissues by all four routes, with s.c. administration yielding the highest concentration in tumor tissue. The IMO inhibited the growth of tumors in all three models of breast cancer, with the lowest dose of the IMO inhibiting MCF-7 xenograft tumor growth by >40%. Combining the IMO with the anticancer antibody, Herceptin, led to potent antitumor effects, resulting in >96% inhibition of tumor growth. The IMO also exerted in vitro antitumor activity, as measured by cell growth, apoptosis, and proliferation assays in the presence of Lipofectin. This is the first report of the pharmacokinetics of this agent in normal and tumor-bearing mice. Based on the present results, we believe that the IMO is a good candidate for clinical development for breast cancer therapy used either alone or in combination with conventional cancer therapeutic agents.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 1670 University Boulevard, 113 Volker Hall, 35294, USA
| | | | | | | | | | | |
Collapse
|
22
|
Rayburn ER, Wang W, Zhang Z, Li M, Zhang R, Wang H. Experimental therapy of prostate cancer with an immunomodulatory oligonucleotide: effects on tumor growth, apoptosis, proliferation, and potentiation of chemotherapy. Prostate 2006; 66:1653-63. [PMID: 16927305 DOI: 10.1002/pros.20485] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND The present study was designed to demonstrate the therapeutic efficacy of a novel immunomodulatory oligonucleotide (IMO) for prostate cancer. METHODS We evaluated the effects of the IMO in xenograft (PC-3) and syngeneic (TRAMP C1) models of prostate cancer, and in prostate cancer cells. The IMO was also evaluated in combination with chemotherapy, and the in vitro expression of TLR9 was examined. RESULTS The IMO had significant anti-tumor activity in both prostate cancer models and almost complete tumor regression was observed when the IMO was combined with taxotere or gemcitabine. TLR9 mRNA and protein were both expressed in prostate cancer cells. The IMO also induced apoptosis and decreased proliferation and survival of PC-3 cells in vitro in the presence of Lipofectin. CONCLUSIONS The IMO inhibits prostate cancer growth in vivo and in vitro, and potentiates the effects of conventional chemotherapeutic agents. This is the first report of TLR9 expression in prostate cancer cells.
Collapse
Affiliation(s)
- Elizabeth R Rayburn
- Department of Pharmacology and Toxicology, Division of Clinical Pharmacology, University of Alabama at Birmingham, 35294-0019, USA
| | | | | | | | | | | |
Collapse
|
23
|
Jurk M, Kritzler A, Debelak H, Vollmer J, Krieg AM, Uhlmann E. Structure-activity relationship studies on the immune stimulatory effects of base-modified CpG toll-like receptor 9 agonists. ChemMedChem 2006; 1:1007-14. [PMID: 16952134 DOI: 10.1002/cmdc.200600064] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Synthetic oligodeoxynucleotides containing unmethylated deoxycytidylyl-deoxyguanosine dinucleotide (CpG) motifs are able to stimulate potent immune responses through a signaling pathway involving Toll-like receptor 9 (TLR9). We have investigated the structure-activity relationship (SAR) of base-modified CpG oligonucleotides with TLR9 by measuring TLR9 activation by 20-mer oligonucleotides having just a single human recognition motif (5'-GTCGTT-3') in functional cell-based TLR9 assays. Substitution of guanine by hypoxanthine and 6-thioguanine resulted in activity similar to the unmodified parent molecule, whereas purine, 2-aminopurine, 2,6-diaminopurine, and 8-oxo-7,8-dihydroguanine substitution resulted in approximately 40-60 % reduction in activity, and 7-deazaguanine substitution led to the strongest (80 %) reduction in TLR9 stimulation. Furthermore, none of the investigated modifications at C5 and N4 of cytosine were well tolerated with respect to human TLR9 stimulation. Our results are compatible with a SAR model in which guanine is recognized by the Hoogsteen site, and C5 is most critical for recognition of cytosine. In addition, we found significant species-specific differences between human and murine TLR9 recognition, which demonstrates the importance of choosing appropriate assay systems for SAR studies.
Collapse
Affiliation(s)
- Marion Jurk
- Coley Pharmaceutical GmbH, Elisabeth-Selbert-Strasse 9, 40764 Langenfeld, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Wang H, Rayburn ER, Wang W, Kandimalla ER, Agrawal S, Zhang R. Chemotherapy and chemosensitization of non-small cell lung cancer with a novel immunomodulatory oligonucleotide targeting Toll-like receptor 9. Mol Cancer Ther 2006; 5:1585-92. [PMID: 16818518 DOI: 10.1158/1535-7163.mct-06-0094] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lung cancer is a leading cause of death world-wide and the long-term survival rate for lung cancer patients is one of the lowest for any cancer. New therapies are urgently needed. The present study was designed to evaluate an immunomodulatory oligonucleotide as a novel type of therapy for lung cancer. The in vivo effects of the immunomodulatory oligonucleotides were determined in four tumor models derived from human non-small cell lung cancer (NSCLC) cell lines (A549, H1299, H358, and H520), administered alone or in combination with conventional chemotherapeutic agents used to treat lung cancer. The in vitro effects of the immunomodulatory oligonucleotide on the growth, apoptosis, and proliferation of NSCLC cells were also determined. We also examined NSCLC cells for expression of Toll-like receptor 9 (TLR9), the receptor for the immunomodulatory oligonucleotide. We showed several important findings: (a) treatment with the immunomodulatory oligonucleotide led to potent antitumor effects, inhibiting tumor growth by at least 60% in all four in vivo models; (b) combination with the immunomodulatory oligonucleotide led to enhanced effects following treatment with gemcitabine or Alimta; (c) the immunomodulatory oligonucleotide increased apoptosis, decreased proliferation, and decreased survival in A549 cells in vitro; and (d) both TLR9 mRNA and protein were expressed in NSCLC cells. The immunomodulatory oligonucleotide has potent antitumor effects as monotherapy and in combination with conventional chemotherapeutic agents, and may act directly on NSCLC cells via TLR9. The present study provides a rationale for developing the immunomodulatory oligonucleotide for lung cancer therapy.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 1670 University Boulevard, Birmingham, AL 35294-0019, USA
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Toll-like receptor 9 (TLR9) is specialized for the recognition of pathogenic nucleic acids. TLR9 is expressed in intracellular compartments where it responds specifically to pathogen DNA. Several factors contribute to the ability of TLR9 to discriminate between self and foreign DNA. Regulatory mechanisms of the innate and adaptive immune system exist that balance the immune responses mediated by TLR9. Short synthetic CpG oligodeoxynucleotides are used to induce controlled and directed TLR9-dependent stimulation and are effective immune modulators in preclinical and clinical studies. This review will summarize the interplay between TLR9-dependent opposing stimulatory and regulatory effects in innate and adaptive immunity.
Collapse
Affiliation(s)
- Jörg Vollmer
- Coley Pharmaceutical, GmbH, Langenfeld, Germany.
| |
Collapse
|
26
|
Putta MR, Zhu F, Li Y, Bhagat L, Cong Y, Kandimalla ER, Agrawal S. Novel oligodeoxynucleotide agonists of TLR9 containing N3-Me-dC or N1-Me-dG modifications. Nucleic Acids Res 2006; 34:3231-8. [PMID: 16798912 PMCID: PMC1904100 DOI: 10.1093/nar/gkl430] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Synthetic oligodeoxynucleotides containing unmethylated CpG motifs activate Toll-Like Receptor 9 (TLR9). Our previous studies have shown the role of hydrogen-bond donor and acceptor groups of cytosine and guanine in the CpG motif and identified synthetic immunostimulatory motifs. In the present study to elucidate the significance of N3-position of cytosine and N1-position of guanine in the CpG motif, we substituted C or G of a CpG dinucleotide with N3-Me-cytosine or N1-Me-guanine, respectively, in immunomodulatory oligodeoxynucleotides (IMOs). IMOs containing N-Me-cytosine or N-Me-guanine in C- or G-position, respectively, of the CpG dinucleotide showed activation of HEK293 cells expressing TLR9, but not TLR3, 7 or 8. IMOs containing N-Me-cytosine or N-Me-guanine modification showed activity in mouse spleen cell cultures, in vivo in mice, and in human cell cultures. In addition, IMOs containing N-Me-substitutions reversed antigen-induced Th2 immune responses towards a Th1-type in OVA-sensitized mouse spleen cell cultures. These studies suggest that TLR9 tolerates a methyl group at N1-position of G and a methyl group at N3-position of C may interfere with TLR9 activation to some extent. These are the first studies elucidating the role of N3-position of cytosine and N1-position of guanine in a CpG motif for TLR9 activation and immune stimulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sudhir Agrawal
- To whom correspondence should be addressed. Tel: +1 617 679 5501; Fax: +1 617 679 5542;
| |
Collapse
|
27
|
Vollmer J. Progress in drug development of immunostimulatory CpG oligodeoxynucleotide ligands for TLR9. Expert Opin Biol Ther 2006; 5:673-82. [PMID: 15934842 DOI: 10.1517/14712598.5.5.673] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Oligodeoxynucleotides (ODNs) with unmethylated deoxycytosine-deoxyguanosine (CpG) motifs are recognised by Toll-like receptor (TLR)9 expressed in specialised cell subsets of the human immune system, B cells and plasmacytoid dendritic cells. TLR9-mediated stimulation of the immune system leads to a plethora of directed effects linking innate to adaptive immune responses. This allows the use of TLR9 agonists as highly effective targeted immunomodulatory drugs with broad potential applications as vaccine adjuvants, stand-alone therapy or in combination with other therapies in cancer, infectious diseases or asthma and allergy. TLR9 agonists represent a new class of small (8-30 bases long), easily synthesised, non-antisense ODN pharmaceuticals.
Collapse
Affiliation(s)
- Jörg Vollmer
- Coley Pharmaceutical GmbH, Elisabeth-Selbert-Str. 9, 40764 Langenfeld, Germany.
| |
Collapse
|
28
|
Nesterova MV, Johnson NR, Stewart T, Abrams S, Cho-Chung YS. CpG immunomer DNA enhances antisense protein kinase A RIalpha inhibition of multidrug-resistant colon carcinoma growth in nude mice: molecular basis for combinatorial therapy. Clin Cancer Res 2005; 11:5950-5. [PMID: 16115938 DOI: 10.1158/1078-0432.ccr-05-0624] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE CpG DNAs induce cytokines, activate natural killer cells, and elicit vigorous T-cell response leading to antitumor effects. Antisense oligodeoxynucleotides targeted against the RIalpha subunit of protein kinase A (antisense PKA RIalpha) induce growth arrest, apoptosis, and differentiation in a variety of cancer cell lines in vitro and in vivo. This study investigated the use of a combinatorial therapy consisting of the RNA-DNA second-generation antisense PKA RIalpha and the CpG immunomer (CpG DNA linked through 3'-3' linkage containing two accessible 5' ends). EXPERIMENTAL DESIGN HCT-15 multidrug-resistant colon carcinoma growth in nude mice was used as an experimental model. The inhibitory effect on tumor growth and apoptotic activity of antisense RIalpha and CpG immunomer, singly and in combination, were measured by tumor growth, levels of RIalpha subunit, and antiapoptotic and proapoptotic proteins. Effect on host-immune system was measured by mouse spleen size, interleukin-6 (IL-6) levels in mouse blood, and nuclear factor-kappaB (NF-kappaB) transcription activity in mouse spleen cells. RESULTS In combination, CpG immunomer and antisense PKA RIalpha induced additive/supra-additive effect on the inhibition of tumor growth. Antisense RIalpha but not CpG immunomer increased Bax and Bak proapoptotic protein levels and decreased Bcl-2 and RIalpha protein levels in tumor cells. CpG immunomer but not antisense RIalpha induced an enlargement of mouse spleen, increased IL-6 levels in mouse blood, and increased NF-kappaB transcription activity in mouse spleen cells. CONCLUSIONS These results show that type I PKA down-regulation and induction of apoptosis in tumor cells by antisense PKA RIalpha, and host-immune stimulation by CpG immunomer are responsible at the molecular level for the supra-additive effects of tumor growth inhibition. Thus, antisense PKA RIalpha and CpG immunomer in combination work cooperatively and as tumor-targeted therapeutics to treat human cancer.
Collapse
Affiliation(s)
- Maria V Nesterova
- Basic Research Laboratory, Cellular Biochemistry Section, National Cancer Institute, Bethesda, Maryland 20892-1750, USA
| | | | | | | | | |
Collapse
|
29
|
Li Y, Kandimalla ER, Yu D, Agrawal S. Oligodeoxynucleotides containing synthetic immunostimulatory motifs augment potent Th1 immune responses to HBsAg in mice. Int Immunopharmacol 2005; 5:981-91. [PMID: 15829414 DOI: 10.1016/j.intimp.2005.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 01/05/2005] [Accepted: 01/13/2005] [Indexed: 11/20/2022]
Abstract
Toll-like receptor 9 (TLR9) modulators have potent Th1-adjuvant activity. We recently reported the development of immunomodulatory oligonucleotides (IMOs) containing novel structures (immunomers) and synthetic immunostimulatory CpR (R=2'-deoxy-7-deazguanosine) or R'pG (R'=1-(2'-deoxy-beta-D-ribofuranosyl)-2-oxo-7-deaza-8-methyl-purine) motifs. IMOs activate TLR9 pathways, resulting in cytokine secretion profiles different from those induced by CpG DNA. In the present study we evaluated the adjuvant activity of IMOs containing CpG, CpR, or R'pG motifs in combination with hepatitis B surface antigen (HBsAg) in a mouse model. Mice immunized with HBsAg plus IMO produced higher levels of IgG2a and lower levels of IgG1 than did mice immunized with HBsAg alone or with alum. High IgG2a responses were found at week 4 and remained high until 14 weeks after immunization. Adoptive transfer of splenocytes from HBsAg/IMO-immunized mice to naïve mice resulted in strong IgG2a production in response to antigen boost. Splenocytes of mice immunized with HBsAg/IMO produced high levels of IFN-gamma, but not Th2 cytokines IL-4 and IL-5, in antigen-recall experiments in vitro. The use of IMOs as adjuvants to HBsAg resulted in the production of strong anti-HBsAg antibodies at antigen doses as low as 0.2 microg. These data demonstrate that IMOs enhance the immunogenicity of HBsAg through potent Th1 immune responses, which may allow lower doses of antigen in vaccination.
Collapse
Affiliation(s)
- Yukui Li
- Hybridon, Inc., 345 Vassar Street, Cambridge, MA 02139-4818, United States
| | | | | | | |
Collapse
|
30
|
Wang D, Kandimalla ER, Yu D, Tang JX, Agrawal S. Oral administration of second-generation immunomodulatory oligonucleotides induces mucosal Th1 immune responses and adjuvant activity. Vaccine 2005; 23:2614-22. [PMID: 15780444 DOI: 10.1016/j.vaccine.2004.11.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 11/02/2004] [Accepted: 11/03/2004] [Indexed: 11/29/2022]
Abstract
CpG DNA induces potent Th1 immune responses through Toll-like receptor 9. In the present study, we used oligonucleotides consisting of a novel 3'-3'-linked structure and synthetic stimulatory motifs, referred as second-generation immunomodulatory oligonucleotides (IMOs). The stimulatory motifs included: CpR, YpG, or R'pG (R = 2'-deoxy-7-deazaguanosine, Y = 2'-deoxy-5-hydroxy-cytidine, and R' = 1-[2'-deoxy-beta-d-ribofuranosyl]-2-oxo-7-deaza-8-methyl-purine). We evaluated the stability of orally administered IMOs in the gastrointestinal (GI) environment and their ability to induce mucosal immune responses in mice, and compared these characteristics with those of a conventional CpG DNA. The IMOs were significantly more stable than CpG DNA following oral administration, and IMOs induced stronger local and systemic immune responses as determined by MIP-1beta, MCP-1, IP-10, and IL-12 production. Mice orally immunized with ovalbumin (OVA) and IMO had higher levels of IgG2a antibodies in serum and IgA antibodies in intestinal mucosa than did mice immunized with OVA and CpG DNA. These studies demonstrate that IMOs are more stable than CpG DNA in the GI tract and can induce more potent mucosal Th1 adjuvant responses. IMOs may prove to be effective oral adjuvants, able to promote strong systemic and mucosal immune responses to oral vaccines and antigens for therapeutic and prophylactic applications.
Collapse
Affiliation(s)
- Daqing Wang
- Hybridon, Inc., 345 Vassar Street, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
31
|
Stankova J, Shang J, Rozen R. Antisense inhibition of methylenetetrahydrofolate reductase reduces cancer cell survival in vitro and tumor growth in vivo. Clin Cancer Res 2005; 11:2047-52. [PMID: 15756031 DOI: 10.1158/1078-0432.ccr-04-2047] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Many cancer lines are methionine dependent and decrease proliferation when methionine supply is limited. Methylenetetrahydrofolate reductase (MTHFR) generates the folate derivative for homocysteine remethylation to methionine. We investigated the effect of antisense-mediated inhibition of MTHFR on survival of human cancer cells. EXPERIMENTAL DESIGN We examined the in vitro and in vivo anticancer effects of a combination of MTHFR antisense and standard cytotoxic drugs. RESULTS Specific antisense against MTHFR (EX5) showed significant inhibitory effects on growth of human colon, lung, breast, prostate, and neuroblastoma tumor cells in vitro compared with that of the control oligonucleotide. Cytotoxic drugs (5-fluorouracil, cisplatin, or paclitaxel) potentiated the effect of EX5. In vivo, antisense alone or in combination with cytotoxic drugs inhibited the growth of human colon and lung carcinoma xenografts. In comparison with control oligonucleotide, treatment with EX5 inhibited growth of colon tumors and lung tumors by 60% and 45%, respectively. EX5 with 5-fluorouracil decreased growth of colon tumors by an additional 30% compared with EX5 alone, and EX5 with cisplatin decreased growth of lung tumors by an additional 40% compared with cisplatin alone. Growth inhibition by EX5 was associated with decreased amounts of MTHFR protein and with increased amounts of an apoptosis marker. CONCLUSIONS Our results confirm that MTHFR inhibition decreases tumor growth and suggest that inhibition of MTHFR by antisense or small molecules may be a novel anticancer approach.
Collapse
Affiliation(s)
- Jitka Stankova
- Departments of Human Genetics, Pediatrics and Biology, Research Institute, McGill University-Montreal Children's Hospital, 4060 Saint Catherine Street West, Montreal, Quebec, Canada H3Z 2Z3
| | | | | |
Collapse
|
32
|
Kandimalla ER, Bhagat L, Li Y, Yu D, Wang D, Cong YP, Song SS, Tang JX, Sullivan T, Agrawal S. Immunomodulatory oligonucleotides containing a cytosine-phosphate-2'-deoxy-7-deazaguanosine motif as potent toll-like receptor 9 agonists. Proc Natl Acad Sci U S A 2005; 102:6925-30. [PMID: 15860583 PMCID: PMC1100782 DOI: 10.1073/pnas.0501729102] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial DNA and synthetic oligomers containing CpG dinucleotides activate the immune system through Toll-like receptor (TLR) 9. Here, we compare the immunostimulatory activity of three immunomers with different nucleotide sequences containing a synthetic cytosine-phosphate-2'-deoxy-7-deazaguanosine dinucleotide (CpR), called immunomodulatory oligonucleotides (IMOs), in mouse, human, and monkey systems. IMOs induced IL-12 and IFN-gamma secretion more than a control non-CpG IMO in mice. All three IMOs activated HEK293 cells expressing TLR9 but not TLR3, -7, or -8. IMOs induced human B-cell proliferation and enhanced expression of CD86 and CD69 surface markers on B cells. The three IMOs induced CD86 expression on human plasmacytoid dendritic cells, but only IMOs that contained a 5'-terminal TCR nucleotide sequence induced IFN-alpha secretion. A sequence that forms a duplex structure also was required for IFN-alpha induction in human peripheral blood mononuclear cell cultures. IMOs induced chemokine and cytokine gene expression in human peripheral blood mononuclear cells. In monkeys, all three IMOs induced transient changes in peripheral blood leukocytes and lymphocytes and activated B and T lymphocytes. All three IMOs induced IFN-alpha in vivo in monkeys; the IMO sequence that forms a stable secondary structure induced the highest levels of IFN-alpha. These studies are, to our knowledge, the first comprehensive studies to compare the activity of IMOs containing synthetic stimulatory CpR dinucleotides in mouse, monkey, and human systems. These results suggest that IMOs induce strong and rapid immunostimulation and that the CpR dinucleotide is recognized by TLR9, leading to immune-cell activation and cytokine secretion in vitro and in vivo.
Collapse
MESH Headings
- Animals
- Antigens, CD/biosynthesis
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- B-Lymphocytes/cytology
- B-Lymphocytes/metabolism
- B7-2 Antigen
- Base Sequence
- Cell Line
- Cell Proliferation
- Chemokines/metabolism
- CpG Islands
- Cytokines/chemistry
- Cytokines/metabolism
- DNA-Binding Proteins/agonists
- Dendritic Cells/cytology
- Deoxyguanosine/analogs & derivatives
- Deoxyguanosine/chemistry
- Dose-Response Relationship, Drug
- Enzyme-Linked Immunosorbent Assay
- Female
- Flow Cytometry
- Gene Expression Regulation
- Haplorhini
- Humans
- Interferon-gamma/metabolism
- Interleukin-12/metabolism
- Lectins, C-Type
- Leukocytes, Mononuclear/metabolism
- Lymphocytes/metabolism
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Nucleotides/chemistry
- Oligonucleotides/chemistry
- Protein Binding
- RNA, Messenger/metabolism
- Receptors, Cell Surface/agonists
- Receptors, Cell Surface/metabolism
- Time Factors
- Toll-Like Receptor 3
- Toll-Like Receptor 9
- Toll-Like Receptors
- Up-Regulation
Collapse
|
33
|
Bjersing JL, Tarkowski A, Kandimalla ER, Karlsson H, Agrawal S, Collins LV. Impact of site-specific nucleobase deletions on the arthritogenicity of DNA. Inflammation 2005; 28:159-68. [PMID: 15527171 DOI: 10.1023/b:ifla.0000039562.30451.0a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Oligodeoxynucleotides (ODN) containing unmethylated CpG motifs (CpG ODN) potently stimulate the innate and acquired immune system. We have compared the in vivo and in vitro inflammatogenic properties of CpG ODNs containing a specific nucleobase deletion either 5'-upstream (ODN-2) or 3'-downstream (ODN-3) of the CpG motif, comparing with a prototype CpG ODN (ODN-1). The frequency of arthritis was similar after intra-articular (i.a.) injections of ODN-1 or ODN-3, but was significantly lower (p < 0.02) after i.a. injections of ODN-2. In vitro production of the pro-inflammatory cytokine TNF-alpha was higher in mouse spleen cell cultures exposed to ODN-2 in comparison to ODN-1. In addition, the level of IL-10 induced by ODN-2 was higher than that induced by ODN-1. On the other hand, TNF-alpha, IL-10, and MCP-1 levels, as well as splenocyte proliferative responses were all significantly lower for ODN-3 than for ODN-1. These results suggest that a 5'-upstream nucleobase deletion reduces arthritogenicity, while maintaining or increasing the production of pro- and anti-inflammatory factors. In contrast, a 3'-downstream nucleobase deletion has no effect on arthritogenicity, despite significantly lower levels of proliferation and pro- and anti-inflammatory cytokines, compared with ODN-1. This study indicates that specific structural elements within the ODN sequence but outside the CpG motif, modulate the immunostimulatory properties of CpG ODNs.
Collapse
Affiliation(s)
- Jan L Bjersing
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
34
|
Zhu FG, Kandimalla ER, Yu D, Tang JX, Agrawal S. Modulation of ovalbumin-induced Th2 responses by second-generation immunomodulatory oligonucleotides in mice. Int Immunopharmacol 2005; 4:851-62. [PMID: 15182725 DOI: 10.1016/j.intimp.2004.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Accepted: 03/11/2004] [Indexed: 11/24/2022]
Abstract
Oligodeoxynucleotides containing unmethylated CpG dinucleotides (CpG DNAs) prevent development of T-helper type 2 (Th2) immune responses and reverse established allergic responses in mouse models. We recently reported that second-generation immunomodulatory oligonucleotides (IMOs) containing novel structures (immunomers) and a synthetic immunostimulatory CpR (R=2'-deoxy-7-deazguanosine) motif induce the production of distinct cytokine secretion profiles in vitro and in vivo. In the present study, we evaluated IMOs containing CpG and CpR motifs to modulate allergen-induced Th2 immune responses in prevention and treatment models. Mice sensitized and challenged with ovalbumin (OVA) were treated with a CpG DNA or an IMO by administration either at the time of OVA sensitization (co-administration; prevention) or after establishment of an allergic response (treatment). Spleens, blood, and lungs were collected and analyzed for immune responses. Spleen-cell cultures harvested from OVA-sensitized mice showed a significant decrease in Th2 cytokine levels with a concomitant increase in Th1 cytokine levels only when CpG DNA or IMOs were co-administered with OVA. The co-administration of CpG DNA or IMOs during OVA sensitization significantly reduced serum OVA-specific and total IgE levels in mice. The mice who received CpG DNA or IMOs co-administered with OVA showed a small reduction in serum OVA-specific and total IgG1 levels and a significant increase in serum OVA-specific and total IgG2a levels. Similar results were found in mice with established allergic responses who received IMO treatment. IMO treatment also resulted in strong inhibition of inflammatory cell infiltration and goblet cell hyperplasia in the lungs compared with untreated mice lungs. These data demonstrate that IMOs prevent antigen-induced Th2 immune responses when co-administered to mice during OVA sensitization and that IMOs reverse established allergic responses induced by OVA.
Collapse
Affiliation(s)
- Fu-Gang Zhu
- Hybridon, Inc., 345 Vassar Street, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
35
|
Agrawal DK, Edwan J, Kandimalla ER, Yu D, Bhagat L, Wang D, Agrawal S. Novel immunomodulatory oligonucleotides prevent development of allergic airway inflammation and airway hyperresponsiveness in asthma. Int Immunopharmacol 2004; 4:127-38. [PMID: 14975367 DOI: 10.1016/j.intimp.2003.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2003] [Revised: 11/20/2003] [Accepted: 11/20/2003] [Indexed: 11/23/2022]
Abstract
Oligodeoxynucleotides containing unmethylated CpG motifs (CpG oligos) have been shown to prevent development of allergic airway inflammation and airway hyperresponsiveness (AHR) in mouse models of asthma. Recently, we reported immunomodulatory oligonucleotides (IMOs) containing novel structures (immunomers) and synthetic immunostimulatory CpR (R=2'-deoxy-7-deazguanosine) motifs show potent stimulatory activity with distinct cytokine secretion profiles. Since type 2 T cells predominate in asthma and increase in type 1 cells can prevent the differentiation of naïve T lymphocytes to a type 2 phenotype, we hypothesized that IMOs can prevent the development of allergic airway inflammation and AHR in the ovalbumin (OVA)-sensitized and challenged mouse model. We found that co-administration of novel IMOs during OVA-sensitization abrogated both early and late allergic responses (LARs). AHR to methacholine was also blocked with IMO treatment. Analysis of bronchoalveolar lavage (BAL) fluid of mice treated with IMOs demonstrated complete reduction in eosinophils, with concomitant decreases in both serum and BAL fluid IL-4, IL-5, and IL-6 levels. In addition, there was a significant reduction in serum IL-10 levels. IMOs, in general, significantly attenuated the rise in serum IgE levels. In comparison, IMOs showed a significantly more potent effect on early and late allergic response than a conventional CpG oligo in this model. These data suggest that the treatment with these novel IMOs prevents OVA-induced allergic airway inflammation and AHR in asthma in the mouse and may provide a useful agent in the treatment of human asthma.
Collapse
Affiliation(s)
- Devendra K Agrawal
- Medical Microbiology and Immunology and Biomedical Sciences, Center for Allergy, Asthma and Immunology, Creighton University School of Medicine, Omaha, NE 68178, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Vollmer J, Jepsen JS, Uhlmann E, Schetter C, Jurk M, Wader T, Wüllner M, Krieg AM. Modulation of CpG oligodeoxynucleotide-mediated immune stimulation by locked nucleic acid (LNA). Oligonucleotides 2004; 14:23-31. [PMID: 15104893 DOI: 10.1089/154545704322988021] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Locked nucleic acid (LNA) is an RNA derivative that when introduced into oligodeoxynucleotides (ODN), mediates high efficacy and stability. CpG ODNs are potent immune stimulators and are recognized by toll-like receptor-9 (TLR9). Some phosphorothioate antisense ODNs bearing CpG dinucleotides have been shown to possess immune modulatory capacities. We investigated the effects of LNA substitutions on immune stimulation mediated by antisense ODN G3139 or CpG ODN 2006. LNA ODNs were tested for their ability to stimulate cytokine secretion from human immune cells or TLR9-dependent signaling. Phosphorothioate chimeric LNA/DNA antisense ODNs with phosphodiester-linked LNA nucleobases at both ends showed a marked decrease of immune modulation with an increasing number of 3' and 5' LNA bases. In addition, guanosine-LNA and cytosine-LNA or simply cytosine-LNA substitutions in the CpG dinucleotides of ODN 2006 led to strong decrease or near complete loss of immune modulation. TLR9-mediated signaling was similarly affected. These data indicate that increasing amounts of LNA residues in the flanks or substitutions of CpG nucleobases with LNA reduce or eliminate the immune stimulatory effects of CpG-containing phosphorothioate ODN.
Collapse
Affiliation(s)
- Jörg Vollmer
- Coley Pharmaceutical Group, D-40764 Langenfeld, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Edwan JH, Perry G, Talmadge JE, Agrawal DK. Flt-3 ligand reverses late allergic response and airway hyper-responsiveness in a mouse model of allergic inflammation. THE JOURNAL OF IMMUNOLOGY 2004; 172:5016-23. [PMID: 15067083 DOI: 10.4049/jimmunol.172.8.5016] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Flt3 ligand (Flt3-L) is a growth factor for dendritic cells and induces type 1 T cell responses. We recently reported that Flt3-L prevented OVA-induced allergic airway inflammation and suppressed late allergic response and airway hyper-responsiveness (AHR). In the present study we examined whether Flt3-L reversed allergic airway inflammation in an established model of asthma. BALB/c mice were sensitized and challenged with OVA, and AHR to methacholine was established. Then mice with AHR were randomized and treated with PBS or 6 microg of Flt3-L i.p. for 10 days. Pulmonary functions and AHR to methacholine were examined after rechallenge with OVA. Treatment with Flt3-L of presensitized mice significantly suppressed (p < 0.001) the late allergic response, AHR, bronchoalveolar lavage fluid total cellularity, absolute eosinophil counts, and inflammation in the lung tissue. There was a significant decrease in proinflammatory cytokines (TNF-alpha, IL-4, and IL-5) in bronchoalveolar lavage fluid, with a significant increase in serum IL-12 and a decrease in serum IL-5 levels. There was no significant effect of Flt3-L treatment on serum IL-4 and serum total IgE levels. Sensitization with OVA significantly increased CD11b(+)CD11c(+) cells in the lung, and this phenomenon was not significantly affected by Flt3-L treatment. These data suggest that Flt3-L can reverse allergic airway inflammation and associated changes in pulmonary functions in murine asthma model.
Collapse
Affiliation(s)
- Jehad H Edwan
- Department of Medical Microbiology and Immunology, and Center for Allergy, Asthma, and Immunology, Creighton University School of Medicine, Omaha, NE 68178, USA
| | | | | | | |
Collapse
|
38
|
Vollmer J, Weeratna RD, Jurk M, Davis HL, Schetter C, Wüllner M, Wader T, Liu M, Kritzler A, Krieg AM. Impact of modifications of heterocyclic bases in CpG dinucleotides on their immune-modulatory activity. J Leukoc Biol 2004; 76:585-93. [PMID: 15218053 DOI: 10.1189/jlb.0104034] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Synthetic phosphorothioate oligodeoxynucleotides (ODN) bearing unmethylated CpG motifs can mimic the immune-stimulatory effects of bacterial DNA and are recognized by Toll-like receptor 9 (TLR9). Past studies have demonstrated that nucleotide modifications at positions at or near the CpG dinucleotides can severely affect immune modulation. However, the effect of nucleotide modifications to stimulate human leukocytes and the mechanism by which chemically modified CpG ODN induce this stimulation are not well understood. We investigated the effects of CpG deoxyguanosine substitutions on the signaling mediated by human TLR9 transfected into nonresponsive cells. ODN incorporating most of these substitutions stimulated detectable TLR9-dependent signaling, but this was markedly weaker than that induced by an unmodified CpG ODN. One of the most active ODN tested contained deoxyinosine for deoxyguanosine substitutions (CpI ODN), but its relative activity to induce cytokine secretion on mouse cells was much weaker than on human cells. The activity was dependent on TLR9, as splenocytes from mice genetically deficient in TLR9 did not respond to CpI ODN stimulation. It is surprising that CpI ODN were nearly as strong as CpG ODN for induction of human B cell stimulation but were inferior to CpG ODN in their ability to induce T helper cell type 1 effects. These data indicate that certain deoxyguanosine substitutions in CpG dinucleotides are tolerated to stimulate a TLR9-mediated immune response, but this response is insufficient to induce optimal interferon-alpha-mediated effects, which depend on the presence of an unmodified CpG dinucleotide. These studies provide a structure-activity relationship for TLR9 agonist compounds with diverse immune effects.
Collapse
Affiliation(s)
- Jörg Vollmer
- Coley Pharmaceutical, Elisabeth-Selbert-Str. 9, 40764 Langenfeld, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jiang W, Reich CF, You D, Kandimalla E, Agrawal S, Pisetsky DS. Induction of immune activation by a novel immunomodulatory oligonucleotide without thymocyte apoptosis. Biochem Biophys Res Commun 2004; 318:60-6. [PMID: 15110753 DOI: 10.1016/j.bbrc.2004.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Indexed: 12/18/2022]
Abstract
Bacterial DNA and synthetic oligodeoxynucleotides (ODN) containing unmethylated CpG motifs (CpG DNA) can potently stimulate innate immunity. While the actions of CpG DNA resemble those of LPS, these molecules stimulate distinct Toll-like receptors as well as cell types. In a previous study, we showed that a CpG ODN could induce cytokine production but, unlike LPS, did not induce thymocyte apoptosis. In this study, we have further investigated these differences using as a model a second-generation immunostimulatory oligonucleotide called HYB2048. Following administration to normal BALB/c mice, HYB2048-induced IL-12 but not IL-6 production. Under conditions in which LPS induced thymocyte apoptosis, HYB2048 did not cause significant cell death and, furthermore, did not block apoptosis induced by LPS. The levels of corticosterone induced by HYB2048 were also significantly lower than those induced by LPS. This pattern of activation could distinguish CpG DNA from LPS in its effects on the immune system.
Collapse
Affiliation(s)
- Weiwen Jiang
- Division of Rheumatology and Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | | |
Collapse
|
40
|
Wu CCN, Lee J, Raz E, Corr M, Carson DA. Necessity of oligonucleotide aggregation for toll-like receptor 9 activation. J Biol Chem 2004; 279:33071-8. [PMID: 15184382 DOI: 10.1074/jbc.m311662200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Toll-like receptor 9 (TLR9), a member of the interleukin-1 (IL-1) family of pathogen-associated molecular pattern receptors, is activated by unmethylated CpG-containing sequences in bacterial DNA or synthetic oligonucleotides (ODNs) in the endosomal compartment. The stimulation of an IL-1 response is thought to require the aggregation of its receptor. By analogy, we postulated that the potency of a TLR9 ligand should depend first on its ability to enter cells and gain access to TLR9 and second on its capacity to form a multimeric complex capable of cross-linking these receptors. Previously, we selected from a random library a series of phosphodiester ODNs with enhanced ability to permeate cells. Here, we studied the structural requirements for these penetrating ODNs to elicit a functional TLR9 response, as assessed by cytokine production from bone marrow-derived mouse mononuclear cells. The presence of a prototypic murine immunostimulatory DNA hexameric sequence (purine-purine-CG-pyrimidine-pyrimidine) in the ODNs was not sufficient for stimulation. In addition, the TLR9-activating ODNs had to have the ability to form aggregates and often to form secondary structures near the core CpG motifs. Multimerization was promoted by the presence of a guanine-rich 3'-terminus. The phosphodiester ODNs with CpG motifs that did not aggregate antagonized the effects of the multimeric TLR9 activators. These findings suggest that an optimal TLR9 agonist needs to contain a spatially distinct multimerization domain and a receptor binding CpG domain. This concept may prove useful for the design of new TLR9-modulating agents.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antigens, Differentiation/physiology
- Base Sequence
- Bone Marrow Cells/immunology
- Bone Marrow Cells/metabolism
- Cells, Cultured
- Cross-Linking Reagents
- DNA/chemistry
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/drug effects
- DNA-Binding Proteins/physiology
- Interleukin-12/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Myeloid Differentiation Factor 88
- Nucleic Acid Conformation
- Oligodeoxyribonucleotides/chemistry
- Oligodeoxyribonucleotides/metabolism
- Oligodeoxyribonucleotides/pharmacology
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/drug effects
- Receptors, Cell Surface/physiology
- Receptors, Immunologic/deficiency
- Receptors, Immunologic/physiology
- Structure-Activity Relationship
- Toll-Like Receptor 9
Collapse
Affiliation(s)
- Christina C N Wu
- Division of Rheumatology Allergy and Immunology, Department of Medicine and the Sam and Rose Stein Institute for Research on Aging, University of California San Diego, La Jolla, California 92093-0663, USA.
| | | | | | | | | |
Collapse
|
41
|
Jiang W, Reich III CF, Pisetsky DS. Mechanisms of activation of the RAW264.7 macrophage cell line by transfected mammalian DNA. Cell Immunol 2004; 229:31-40. [PMID: 15331326 DOI: 10.1016/j.cellimm.2004.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Accepted: 06/10/2004] [Indexed: 11/25/2022]
Abstract
Bacterial DNA can stimulate the production of cytokines and nitric oxide (NO), while mammalian DNA can block these responses. If mammalian DNA is transfected into macrophages, however, it can stimulate NO production, without inducing IL-12. To define further this activity, signaling pathways induced by transfected calf thymus (CT) DNA were studied. Using RAW264.7 cells as a model, CT DNA in the transfection agent FuGENE 6 activated cells through the NF-kappaB and MAPKs pathways, similar to bacterial DNA and LPS. The role of these pathways was further investigated using specific inhibitors, with studies indicating that NO production is blocked by inhibitors of NF-kappaB and p38 but not other MAPKs. These data indicate that the immune activity of DNA is influenced by context or intracellular location and that, when transfected into cells, mammalian DNA can activate cells through signaling pathways similar to those of bacterial DNA.
Collapse
Affiliation(s)
- Weiwen Jiang
- Department of Medicine, Division of Rheumatology and Immunology, Duke University, Durham, NC, USA
| | | | | |
Collapse
|
42
|
Agrawal S, Kandimalla ER. Modulation of Toll-like Receptor 9 Responses through Synthetic Immunostimulatory Motifs of DNA. Ann N Y Acad Sci 2004; 1002:30-42. [PMID: 14751820 DOI: 10.1196/annals.1281.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacterial, plasmid, and synthetic DNA containing unmethylated CpG dinucleotides in specific sequence contexts activate the vertebrate innate immune system. A pattern recognition receptor (PRR), toll-like receptor 9 (TLR9), recognizes CpG DNA and activates signaling cascade leading to the secretion of a number of cytokines and chemokines. Our extensive structure-immunostimulatory activity relationship studies showed that a number of synthetic pyrimidine (Y) and purine (R) nucleotides are accepted by the receptor as substitutes for natural deoxycytidine and deoxyguanosine in a CpG dinucleotide. These studies permitted development of synthetic immunostimulatory motifs YpG, CpR, and YpR and established the nucleotide motif recognition pattern of the receptor. A number of site-specific chemical modifications in the flanking sequences to the CpG dinucleotide permitted modulation of immunostimulatory affects in a predictable manner. Our studies also showed that TLR9 recognizes and reads the CpG DNA sequence from the 5'-end. Design of oligonucleotides with two 5'-ends, immunomers, resulted in potent immunomodulatory agents with distinct cytokine profiles. Immunomers containing synthetic immunostimulatory motifs produced different cytokine induction profiles compared with natural CpG motifs. Importantly, some of these synthetic motifs showed optimal activity in both mouse and human systems without requiring to change sequences, suggesting overriding the species-dependent specificity of the receptor by the use of synthetic motifs. In this article, we review current understanding of structural recognition and functional modulation of TLR9 receptor by second-generation immunomodulatory oligonucleotides and their potential application as wide spectrum therapeutic agents.
Collapse
|
43
|
Girniene J, Apremont G, Tatibouët A, Sackus A, Rollin P. Small libraries of fused quinazolinone-sugars. Access to quinazolinedione nucleosides. Tetrahedron 2004. [DOI: 10.1016/j.tet.2004.01.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Narayanan S, Dalpke AH, Siegmund K, Heeg K, Richert C. CpG oligonucleotides with modified termini and nicked dumbbell structure show enhanced immunostimulatory activity. J Med Chem 2003; 46:5031-44. [PMID: 14584953 DOI: 10.1021/jm030902l] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of 21 phosphodiester oligodeoxyribonucleotides containing the core sequence 5'-GACGTT-3' or related control sequences were prepared and tested for their immunostimulatory effect on murine macrophages. The range of structural modifications tested included substituents at 3'- or 5'-termini, N3-methylation of thymidine residues, and hexaethylene glycol linkers favoring nicked or cyclic dumbbell duplexes. Lipophilic and cationic substituents at the termini failed to increase the release of TNF-alpha and nitric oxide, but two new types of modification were found that enhance the stimulation of RAW264.7 macrophages. One is the substitution of the 5'-terminal hydroxyl group with an amino group, and the other is the introduction of linkers favoring nicked duplexes. Even for sequences without linkers, UV-melting analysis and two-dimensional NMR showed that the core sequence 5'-GACGTT-3' readily forms a duplex. The cyclic derivative of the most active nicked dumbbell sequence is inactive, however. Together these results suggest a recognition of both the 5'-terminus and the core of the CpG oligonucleotides by the putative receptor(s) and provide an entry into a class of modified oligonucleotides whose activity rivals that of phosphorothioates, but consists of synthetic compounds that are single stereoisomers.
Collapse
Affiliation(s)
- Sukunath Narayanan
- Institute for Organic Chemistry, University of Karlsruhe (TH), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | | | | | | | | |
Collapse
|
45
|
Kandimalla ER, Bhagat L, Zhu FG, Yu D, Cong YP, Wang D, Tang JX, Tang JY, Knetter CF, Lien E, Agrawal S. A dinucleotide motif in oligonucleotides shows potent immunomodulatory activity and overrides species-specific recognition observed with CpG motif. Proc Natl Acad Sci U S A 2003; 100:14303-8. [PMID: 14610275 PMCID: PMC283587 DOI: 10.1073/pnas.2335947100] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2003] [Indexed: 02/03/2023] Open
Abstract
Bacterial and synthetic DNAs containing CpG dinucleotides in specific sequence contexts activate the vertebrate immune system through Toll-like receptor 9 (TLR9). In the present study, we used a synthetic nucleoside with a bicyclic heterobase [1-(2'-deoxy-beta-d-ribofuranosyl)-2-oxo-7-deaza-8-methyl-purine; R] to replace the C in CpG, resulting in an RpG dinucleotide. The RpG dinucleotide was incorporated in mouse- and human-specific motifs in oligodeoxynucleotides (oligos) and 3'-3-linked oligos, referred to as immunomers. Oligos containing the RpG motif induced cytokine secretion in mouse spleen-cell cultures. Immunomers containing RpG dinucleotides showed activity in transfected-HEK293 cells stably expressing mouse TLR9, suggesting direct involvement of TLR9 in the recognition of RpG motif. In J774 macrophages, RpG motifs activated NF-kappa B and mitogen-activated protein kinase pathways. Immunomers containing the RpG dinucleotide induced high levels of IL-12 and IFN-gamma, but lower IL-6 in time- and concentration-dependent fashion in mouse spleen-cell cultures costimulated with IL-2. Importantly, immunomers containing GTRGTT and GARGTT motifs were recognized to a similar extent by both mouse and human immune systems. Additionally, both mouse- and human-specific RpG immunomers potently stimulated proliferation of peripheral blood mononuclear cells obtained from diverse vertebrate species, including monkey, pig, horse, sheep, goat, rat, and chicken. An immunomer containing GTRGTT motif prevented conalbumin-induced and ragweed allergen-induced allergic inflammation in mice. We show that a synthetic bicyclic nucleotide is recognized in the C position of a CpG dinucleotide by immune cells from diverse vertebrate species without bias for flanking sequences, suggesting a divergent nucleotide motif recognition pattern of TLR9.
Collapse
|
46
|
Cong YP, Song SS, Bhagat L, Pandey RK, Yu D, Kandimalla ER, Agrawal S. Self-stabilized CpG DNAs optimally activate human B cells and plasmacytoid dendritic cells. Biochem Biophys Res Commun 2003; 310:1133-9. [PMID: 14559233 DOI: 10.1016/j.bbrc.2003.09.134] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We recently showed that 5'-terminal secondary structures in CpG DNA affect activity significantly more than those at the 3'-end [Biochem. Biophys. Res. Commun. 306 (2003) 948]. The need for an accessible 5'-end of CpG DNA for activity suggested that the receptor reads the DNA sequence from this end. In continuation of these studies, we have designed immunomodulatory oligonucleotides (IMOs), consisting of a nine-mer stimulatory domain, containing a CpG motif and a hairpin-loop structure at the 3'-end, referred to as self-stabilized CpG DNAs. We studied the ability of self-stabilized CpG DNAs to stimulate human B-cell proliferation and interferon-alpha (IFN-alpha) secretion in plasmacytoid dendritic cell (pDC) culture assays. Self-stabilized CpG DNAs activated human B cells and induced plasmacytoid dendritic cells to secrete high levels of IFN-alpha. While both stimulatory and secondary structures in CpG DNAs were required for pDC activation, CpG motifs were sufficient to activate B cells. Interestingly, CpG motifs were not required for activity in the hairpin duplex region. Further modifications of the hairpin duplex region with a mixture of oligodeoxynucleotides and oligo-2'-O-methylribonucleotides in a heteroduplex formation permitted activation of both human B cells and pDCs.
Collapse
Affiliation(s)
- Yan-Ping Cong
- Hybridon, Inc., 345 Vassar Street,Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Shimosato T, Kitazawa H, Katoh S, Tomioka Y, Karima R, Ueha S, Kawai Y, Hishinuma T, Matsushima K, Saito T. Swine Toll-like receptor 9(1) recognizes CpG motifs of human cell stimulant. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1627:56-61. [PMID: 12759192 DOI: 10.1016/s0167-4781(03)00048-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Complementary DNA (cDNA) encoding swine Toll-like receptor 9 (sTLR9) was isolated from Peyer's patches (Pps) of gut-associated lymphoid tissue (GALT). The complete open reading frame (ORF) of sTLR9 contains 3093 bp coding deduced 1030 amino acid residues. The amino acid sequence of sTLR9 was characterized by a signal peptide followed by multiple leucine-rich repeats, a transmembrane sequence and a cytoplasmic domain homologous to that of the human interleukin-1 receptor (TIR). The sTLR9 showed a higher amino acid identity with humans (81.8%) and felis catus (86.7%) than mice (74.9%). The HEK293T cells transfected with pCXN2.1-FLAG DNA containing the sTLR9 cDNA were expressed sTLR9 as a membrane-bound molecules, which were reactive with anti-sTLR9 rabbit polyclonal antibody. Moreover, the transfectant was responsible for the CpG oligo DNA. sTLR9 was preferentially expressed in Pps and mesenteric lymph nodes (MLNs), and its degree was approximately three times higher than a spleen but weak in the other tissues by the real-time quantitative PCR analyses. The strong expression of sTLR9 in Pps and MLNs and its recognizing CpG DNA for human cell stimulant are shown first in this study, which may help in understanding the intestinal immune system mediated by a bacterial DNA through TLR9.
Collapse
Affiliation(s)
- Takeshi Shimosato
- Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori amamiyamachi, Aobaku, 981-8555, Sendai, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kandimalla ER, Agrawal S. Chemistry of CpG DNA. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2003; Chapter 4:Unit 4.16. [PMID: 18428906 DOI: 10.1002/0471142700.nc0416s12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The vertebrate immune system can recognize specific pathogen-associated molecular patterns in invading microorganisms, including the unmethylated CpG dinucleotide. This unit discusses the receptors that recognize CpG motifs and important aspects of the sequence context of CpG motifs to the end of understanding and designing CpG DNA for therapeutic purposes.
Collapse
|
49
|
Kandimalla ER, Bhagat L, Wang D, Yu D, Zhu FG, Tang J, Wang H, Huang P, Zhang R, Agrawal S. Divergent synthetic nucleotide motif recognition pattern: design and development of potent immunomodulatory oligodeoxyribonucleotide agents with distinct cytokine induction profiles. Nucleic Acids Res 2003; 31:2393-400. [PMID: 12711684 PMCID: PMC154229 DOI: 10.1093/nar/gkg343] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2002] [Revised: 02/25/2003] [Accepted: 03/07/2003] [Indexed: 11/14/2022] Open
Abstract
Unmethylated CpG dinucleotides present within certain specific sequence contexts in bacterial and synthetic DNA stimulate innate immune responses and induce cytokine secretion. Recently, we showed that CpG DNAs containing two 5'-ends, immunomers, are more potent in both regards. In this study, we show that an immunomer containing a synthetic CpR motif (R = 2'-deoxy-7-deazaguanosine) is a potent immunostimulatory agent. However, the profile of cytokine induction is different from that with immunomers containing a natural CpG motif. In general, a CpR immunomer induced higher interleukin (IL)-12 and lower IL-6 secretion. Compared with conventional CpG DNAs, both types of immunomers showed a rapid and enhanced activation of the transcription factor NF-kappaB in J774 cells. NF-kappaB activation by CpG DNA corresponded to degradation of IkappaBalpha in J774 cells. All three immunostimulatory oligonucleotides activated the p38 mitogen-activated protein kinase pathway as expected. Immunomers containing CpG and CpR motifs showed potent reversal of the antigen-induced Th2 immune response towards a Th1 type in antigen-sensitized mouse spleen cell cultures. Immunomers containing a CpR motif showed significant antitumor activity in nude mice bearing MCF-7 human breast cancer and U87MG glioblastoma xenografts. These studies suggest the ability for a divergent synthetic nucleotide motif recognition pattern of the receptor involved in the immunostimulatory pathway and the possibility of using synthetic nucleotides to elicit different cytokine response patterns.
Collapse
|
50
|
Bhagat L, Zhu FG, Yu D, Tang J, Wang H, Kandimalla ER, Zhang R, Agrawal S. CpG penta- and hexadeoxyribonucleotides as potent immunomodulatory agents. Biochem Biophys Res Commun 2003; 300:853-61. [PMID: 12559951 DOI: 10.1016/s0006-291x(02)02943-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We demonstrate a new design for immunomodulatory CpG DNA containing two sequences each with as few as five or six-nucleotides joined together via 3(')-3(') linkers. These do not require the -PuPu(Py)CGPyPy- hexameric motif generally found essential for CpG DNA immune stimulation. These novel, short-immunomers show potent immunostimulatory activity manifested by IL-12 and IL-6 secretion in murine spleen cell and PBMC cultures and splenomegaly in vivo. Short-immunomers show strong activation of NF-kappaB and stress-activated signaling pathways and induce cytokines in J774 cell cultures. The same sequences also induce cytokines in healthy human PBMC cultures whereas conventional CpG DNA requires different optimal sequences for murine and human immune cells. Additionally, short-immunomers inhibit IL-5 secretion and induce IFN-gamma secretion in conalbumin-sensitized mouse spleen cell cultures, suggesting reversal of established Th2 responses to Th1 type responses. Short-immunomer also inhibits growth of MCF-7 human tumor xenograft in nude mice. This is the first report of activity with such short DNA sequences and also of sequences lacking hexameric motifs proposed in earlier studies.
Collapse
Affiliation(s)
- Lakshmi Bhagat
- Hybridon, Inc., 345 Vassar Street, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|