1
|
Herrema H, Guan D, Choi JW, Feng X, Salazar Hernandez MA, Faruk F, Auen T, Boudett E, Tao R, Chun H, Ozcan U. FKBP11 rewires UPR signaling to promote glucose homeostasis in type 2 diabetes and obesity. Cell Metab 2022; 34:1004-1022.e8. [PMID: 35793654 DOI: 10.1016/j.cmet.2022.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 11/21/2021] [Accepted: 06/11/2022] [Indexed: 12/12/2022]
Abstract
Chronic endoplasmic reticulum (ER) stress and sustained activation of unfolded protein response (UPR) signaling contribute to the development of type 2 diabetes in obesity. UPR signaling is a complex signaling pathway, which is still being explored in many different cellular processes. Here, we demonstrate that FK506-binding protein 11 (FKBP11), which is transcriptionally regulated by XBP1s, is severely reduced in the livers of obese mice. Restoring hepatic FKBP11 expression in obese mice initiates an atypical UPR signaling pathway marked by rewiring of PERK signaling toward NRF2, away from the eIF2α-ATF4 axis of the UPR. This alteration in UPR signaling establishes glucose homeostasis without changing hepatic ER stress, food consumption, or body weight. We conclude that ER stress during obesity can be beneficially rewired to promote glucose homeostasis. These findings may uncover possible new avenues in the development of novel approaches to treat diseases marked by ER stress.
Collapse
Affiliation(s)
- Hilde Herrema
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA.
| | - Dongxian Guan
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Jae Won Choi
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Xudong Feng
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | | | - Farhana Faruk
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Thomas Auen
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Eliza Boudett
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Rongya Tao
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Hyonho Chun
- Department of Mathematics and Statistics, Boston University, Boston, MA 02130, USA
| | - Umut Ozcan
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA.
| |
Collapse
|
2
|
Cyclophilin anaCyp40 regulates photosystem assembly and phycobilisome association in a cyanobacterium. Nat Commun 2022; 13:1690. [PMID: 35354803 PMCID: PMC8967839 DOI: 10.1038/s41467-022-29211-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 02/28/2022] [Indexed: 11/08/2022] Open
Abstract
Cyclophilins, or immunophilins, are proteins found in many organisms including bacteria, plants and humans. Most of them display peptidyl-prolyl cis-trans isomerase activity, and play roles as chaperones or in signal transduction. Here, we show that cyclophilin anaCyp40 from the cyanobacterium Anabaena sp. PCC 7120 is enzymatically active, and seems to be involved in general stress responses and in assembly of photosynthetic complexes. The protein is associated with the thylakoid membrane and interacts with phycobilisome and photosystem components. Knockdown of anacyp40 leads to growth defects under high-salt and high-light conditions, and reduced energy transfer from phycobilisomes to photosystems. Elucidation of the anaCyp40 crystal structure at 1.2-Å resolution reveals an N-terminal helical domain with similarity to PsbQ components of plant photosystem II, and a C-terminal cyclophilin domain with a substrate-binding site. The anaCyp40 structure is distinct from that of other multi-domain cyclophilins (such as Arabidopsis thaliana Cyp38), and presents features that are absent in single-domain cyclophilins.
Collapse
|
3
|
Sato Y, Matsugami A, Watanabe S, Hayashi F, Arai M, Kigawa T, Nishimura C. Changes in dynamic and static structures of the HIV-1 p24 capsid protein N-domain caused by amino-acid substitution are associated with its viral viability. Protein Sci 2021; 30:2233-2245. [PMID: 34523753 DOI: 10.1002/pro.4184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/16/2021] [Accepted: 08/31/2021] [Indexed: 11/06/2022]
Abstract
HIV-1 capsid is comprised of over a hundred p24 protein molecules, arranged as either pentamers or hexamers. Three p24 mutants with amino acid substitutions in capsid N-terminal domain protein were examined: G60W (α3-4 loop), M68T (helix 4), and P90T (α4-5 loop), which exhibited no viability for biological activity. One common structural feature of the three p24 N-domain mutants, examined by NMR, was the long-range effect of more β-structures at the β2-strand in the N-terminal region compared with the wild-type. In addition, the presence of fewer helical structures was observed in M68T and P90T, beyond the broad area from helix 1 to the C-terminal part of helix 4. This suggests that both N-terminal beta structures and helices play important roles in the formation of p24 hexamers and pentamers. Next, compared with P90T, we examined cis-conformation or trans-conformation of wild-type adopted by isomerization at G89-P90. Since P90T mutant adopts only a trans-conformation, comparison of chemical shifts and signal intensities between each spectra revealed that the major peaks (about 85%) in the spectrum of wild-type correspond to trans-conformation. Furthermore, it was indicated that the region in cis-conformation (minor; 15%) was more stabilized than that observed in trans-conformation, based on the analyses of heteronuclear Overhauser effect as well as the order-parameter. Therefore, it was concluded that the cis-conformation is more favorable than the trans-conformation for the interaction between the p24 N-terminal domain and cyclophilin-A. This is because HIV-1 with a P90T protein, which adopts only a trans-conformation, is associated with non-viability of biological activity.
Collapse
Affiliation(s)
- Yusuke Sato
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Japan
| | - Akimasa Matsugami
- Advanced NMR Application and Platform Team, NMR Research and Collaboration Group, NMR Science and Development Division, RIKEN SPring-8 Center (RSC), Yokohama, Japan
| | - Satoru Watanabe
- Laboratory for Cellular Structural Biology, RIKEN Center for Biosystems, Dynamics Research, Yokohama, Japan
| | - Fumiaki Hayashi
- Advanced NMR Application and Platform Team, NMR Research and Collaboration Group, NMR Science and Development Division, RIKEN SPring-8 Center (RSC), Yokohama, Japan
| | - Munehito Arai
- Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Japan
| | - Takanori Kigawa
- Laboratory for Cellular Structural Biology, RIKEN Center for Biosystems, Dynamics Research, Yokohama, Japan.,School of Computing, Tokyo Institute of Technology, Yokohama, Japan
| | - Chiaki Nishimura
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Japan
| |
Collapse
|
4
|
Cell Type-Dependent Escape of Capsid Inhibitors by Simian Immunodeficiency Virus SIVcpz. J Virol 2020; 94:JVI.01338-20. [PMID: 32907979 DOI: 10.1128/jvi.01338-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
Pandemic human immunodeficiency virus type 1 (HIV-1) is the result of the zoonotic transmission of simian immunodeficiency virus (SIV) from the chimpanzee subspecies Pan troglodytes troglodytes (SIVcpzPtt). The related subspecies Pan troglodytes schweinfurthii is the host of a similar virus, SIVcpzPts, which did not spread to humans. We tested these viruses with small-molecule capsid inhibitors (PF57, PF74, and GS-CA1) that interact with a binding groove in the capsid that is also used by CPSF6. While HIV-1 was sensitive to capsid inhibitors in cell lines, human macrophages, and peripheral blood mononuclear cells (PBMCs), SIVcpzPtt was resistant in rhesus FRhL-2 cells and human PBMCs but was sensitive to PF74 in human HOS and HeLa cells. SIVcpzPts was insensitive to PF74 in FRhL-2 cells, HeLa cells, PBMCs, and macrophages but was inhibited by PF74 in HOS cells. A truncated version of CPSF6 (CPSF6-358) inhibited SIVcpzPtt and HIV-1, while in contrast, SIVcpzPts was resistant to CPSF6-358. Homology modeling of HIV-1, SIVcpzPtt, and SIVcpzPts capsids and binding energy estimates suggest that these three viruses bind similarly to the host proteins cyclophilin A (CYPA) and CPSF6 as well as the capsid inhibitor PF74. Cyclosporine treatment, mutation of the CYPA-binding loop in the capsid, or CYPA knockout eliminated the resistance of SIVcpzPts to PF74 in HeLa cells. These experiments revealed that the antiviral capacity of PF74 is controlled by CYPA in a virus- and cell type-specific manner. Our data indicate that SIVcpz viruses can use infection pathways that escape the antiviral activity of PF74. We further suggest that the antiviral activity of PF74 capsid inhibitors depends on cellular cofactors.IMPORTANCE HIV-1 originated from SIVcpzPtt but not from the related virus SIVcpzPts, and thus, it is important to describe molecular infection by SIVcpzPts in human cells to understand the zoonosis of SIVs. Pharmacological HIV-1 capsid inhibitors (e.g., PF74) bind a capsid groove that is also a binding site for the cellular protein CPSF6. SIVcpzPts was resistant to PF74 in HeLa cells but sensitive in HOS cells, thus indicating cell line-specific resistance. Both SIVcpz viruses showed resistance to PF74 in human PBMCs. Modulating the presence of cyclophilin A or its binding to capsid in HeLa cells overcame SIVcpzPts resistance to PF74. These results indicate that early cytoplasmic infection events of SIVcpzPts may differ between cell types and affect, in an unknown manner, the antiviral activity of capsid inhibitors. Thus, capsid inhibitors depend on the activity or interaction of currently uncharacterized cellular factors.
Collapse
|
5
|
Singh H, Kaur K, Singh M, Kaur G, Singh P. Plant Cyclophilins: Multifaceted Proteins With Versatile Roles. FRONTIERS IN PLANT SCIENCE 2020; 11:585212. [PMID: 33193535 PMCID: PMC7641896 DOI: 10.3389/fpls.2020.585212] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/22/2020] [Indexed: 05/03/2023]
Abstract
Cyclophilins constitute a family of ubiquitous proteins that bind cyclosporin A (CsA), an immunosuppressant drug. Several of these proteins possess peptidyl-prolyl cis-trans isomerase (PPIase) activity that catalyzes the cis-trans isomerization of the peptide bond preceding a proline residue, essential for correct folding of the proteins. Compared to prokaryotes and other eukaryotes studied until now, the cyclophilin gene families in plants exhibit considerable expansion. With few exceptions, the role of the majority of these proteins in plants is still a matter of conjecture. However, recent studies suggest that cyclophilins are highly versatile proteins with multiple functionalities, and regulate a plethora of growth and development processes in plants, ranging from hormone signaling to the stress response. The present review discusses the implications of cyclophilins in different facets of cellular processes, particularly in the context of plants, and provides a glimpse into the molecular mechanisms by which these proteins fine-tune the diverse physiological pathways.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, India
| | - Kirandeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Mangaljeet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Gundeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
- William Harvey Heart Centre, Queen Mary University of London, London, United Kingdom
| | - Prabhjeet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
6
|
Shukla VK, Singh JS, Vispute N, Ahmad B, Kumar A, Hosur RV. Unfolding of CPR3 Gets Initiated at the Active Site and Proceeds via Two Intermediates. Biophys J 2017; 112:605-619. [PMID: 28256221 DOI: 10.1016/j.bpj.2016.12.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/01/2016] [Accepted: 12/13/2016] [Indexed: 12/29/2022] Open
Abstract
Cyclophilin catalyzes the ubiquitous process "peptidyl-prolyl cis-trans isomerization," which plays a key role in protein folding, regulation, and function. Here, we present a detailed characterization of the unfolding of yeast mitochondrial cyclophilin (CPR3) induced by urea. It is seen that CPR3 unfolding is reversible and proceeds via two intermediates, I1 and I2. The I1 state has native-like secondary structure and shows strong anilino-8-naphthalenesulphonate binding due to increased exposure of the solvent-accessible cluster of non-polar groups. Thus, it has some features of a molten globule. The I2 state is more unfolded, but it retains some residual secondary structure, and shows weak anilino-8-naphthalenesulphonate binding. Chemical shift perturbation analysis by 1H-15N heteronuclear single quantum coherence spectra reveals disruption of the tertiary contacts among the regions close to the active site in the first step of unfolding, i.e., the N-I1 transition. Both of the intermediates, I1 and I2, showed a propensity to self-associate under stirring conditions, but their kinetic profiles are different; the native protein did not show any such tendency under the same conditions. All these observations could have significant implications for the function of the protein.
Collapse
Affiliation(s)
- Vaibhav Kumar Shukla
- UM-DAE-Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Mumbai, India
| | - Jai Shankar Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Neha Vispute
- UM-DAE-Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Mumbai, India
| | - Basir Ahmad
- UM-DAE-Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Mumbai, India
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai, India.
| | - Ramakrishna V Hosur
- UM-DAE-Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Mumbai, India; Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
7
|
Hou J, Zhang Q, Liu Z, Wang S, Li D, Liu C, Liu Y, Shao Y. Cyclophilin A as a potential genetic adjuvant to improve HIV-1 Gag DNA vaccine immunogenicity by eliciting broad and long-term Gag-specific cellular immunity in mice. Hum Vaccin Immunother 2016; 12:545-53. [PMID: 26305669 DOI: 10.1080/21645515.2015.1082692] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Previous research has shown that host Cyclophilin A (CyPA) can promote dendritic cell maturation and the subsequent innate immune response when incorporated into an HIV-1 Gag protein to circumvent the resistance of dendritic cells to HIV-1 infection. This led us to hypothesize that CyPA may improve HIV-1 Gag-specific vaccine immunogenicity via binding with Gag antigen. The adjuvant effect of CyPA was evaluated using a DNA vaccine with single or dual expression cassettes. Mouse studies indicated that CyPA specifically and markedly promoted HIV-1 Gag-specific cellular immunity but not an HIV-1 Env-specific cellular response. The Gag/CyPA dual expression cassettes stimulated a greater Gag-specific cellular immune response, than Gag immunization alone. Furthermore, CyPA induced a broad Gag-specific T cell response and strong cellular immunity that lasted up to 5 months. In addition, CyPA skewed to cellular rather than humoral immunity. To investigate the mechanisms of the adjuvant effect, site-directed mutagenesis in CyPA, including active site residues H54Q and F60A resulted in mutants that were co-expressed with Gag in dual cassettes. The immune response to this vaccine was analyzed in vivo. Interestingly, the wild type CyPA markedly increased Gag cellular immunity, but the H54Q and F60A mutants drastically reduced CyPA adjuvant activation. Therefore, we suggest that the adjuvant effect of CyPA was based on Gag-CyPA-specific interactions. Herein, we report that Cyclophilin A can augment HIV-1 Gag-specific cellular immunity as a genetic adjuvant in multiplex DNA immunization strategies, and that activity of this adjuvant is specific, broad, long-term, and based on Gag-CyPA interaction.
Collapse
Affiliation(s)
- Jue Hou
- a State Key Laboratory for Infectious Disease Prevention and Control; National Center for AIDS/STD Control and Prevention; Chinese Center for Disease Control and Prevention ; Beijing , China
| | - Qicheng Zhang
- a State Key Laboratory for Infectious Disease Prevention and Control; National Center for AIDS/STD Control and Prevention; Chinese Center for Disease Control and Prevention ; Beijing , China
| | - Zheng Liu
- a State Key Laboratory for Infectious Disease Prevention and Control; National Center for AIDS/STD Control and Prevention; Chinese Center for Disease Control and Prevention ; Beijing , China
| | - Shuhui Wang
- a State Key Laboratory for Infectious Disease Prevention and Control; National Center for AIDS/STD Control and Prevention; Chinese Center for Disease Control and Prevention ; Beijing , China
| | - Dan Li
- a State Key Laboratory for Infectious Disease Prevention and Control; National Center for AIDS/STD Control and Prevention; Chinese Center for Disease Control and Prevention ; Beijing , China
| | - Chang Liu
- a State Key Laboratory for Infectious Disease Prevention and Control; National Center for AIDS/STD Control and Prevention; Chinese Center for Disease Control and Prevention ; Beijing , China
| | - Ying Liu
- a State Key Laboratory for Infectious Disease Prevention and Control; National Center for AIDS/STD Control and Prevention; Chinese Center for Disease Control and Prevention ; Beijing , China
| | - Yiming Shao
- a State Key Laboratory for Infectious Disease Prevention and Control; National Center for AIDS/STD Control and Prevention; Chinese Center for Disease Control and Prevention ; Beijing , China
| |
Collapse
|
8
|
Villmow M, Baumann M, Malesevic M, Sachs R, Hause G, Fändrich M, Balbach J, Schiene-Fischer C. Inhibition of Aβ(1-40) fibril formation by cyclophilins. Biochem J 2016; 473:1355-68. [PMID: 26994210 DOI: 10.1042/bcj20160098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 03/16/2016] [Indexed: 12/16/2023]
Abstract
Cyclophilins interact directly with the Alzheimer's disease peptide Aβ (amyloid β-peptide) and are therefore involved in the early stages of Alzheimer's disease. Aβ binding to CypD (cyclophilin D) induces dysfunction of human mitochondria. We found that both CypD and CypA suppress in vitro fibril formation of Aβ(1-40) at substoichiometric concentrations when present early in the aggregation process. The prototypic inhibitor CsA (cyclosporin A) of both cyclophilins as well as the new water-soluble MM258 derivative prevented this suppression. A SPOT peptide array approach and NMR titration experiments confirmed binding of Aβ(1-40) to the catalytic site of CypD mainly via residues Lys(16)-Glu(22) The peptide Aβ(16-20) representing this section showed submicromolar IC50 values for the peptidyl prolyl cis-trans isomerase activity of CypD and CypA and low-micromolar KD values in ITC experiments. Chemical cross-linking and NMR-detected hydrogen-deuterium exchange experiments revealed a shift in the populations of small Aβ(1-40) oligomers towards the monomeric species, which we investigated in the present study as being the main process of prevention of Aβ fibril formation by cyclophilins.
Collapse
Affiliation(s)
- Marten Villmow
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, D-06120 Halle (Saale), Germany
| | - Monika Baumann
- Institute of Physics, Biophysics, Martin Luther University Halle-Wittenberg, Betty-Heimann-Straße 7, D-06120 Halle (Saale), Germany
| | - Miroslav Malesevic
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, D-06120 Halle (Saale), Germany Department of Enzymology, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Weinbergweg 22, D-06120 Halle (Saale), Germany
| | - Rolf Sachs
- Institute of Physics, Biophysics, Martin Luther University Halle-Wittenberg, Betty-Heimann-Straße 7, D-06120 Halle (Saale), Germany
| | - Gerd Hause
- Martin Luther University Halle-Wittenberg, Biocenter, Weinbergweg 22, D-06120 Halle (Saale), Germany
| | - Marcus Fändrich
- Institute for Pharmaceutical Biotechnology, Ulm University, Helmholtzstraße 8/1, D-89081 Ulm, Germany
| | - Jochen Balbach
- Institute of Physics, Biophysics, Martin Luther University Halle-Wittenberg, Betty-Heimann-Straße 7, D-06120 Halle (Saale), Germany
| | - Cordelia Schiene-Fischer
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, D-06120 Halle (Saale), Germany Department of Enzymology, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Weinbergweg 22, D-06120 Halle (Saale), Germany
| |
Collapse
|
9
|
Shukla VK, Singh JS, Trivedi D, Hosur RV, Kumar A. NMR assignments of mitochondrial cyclophilin Cpr3 from Saccharomyces cerevisiae. BIOMOLECULAR NMR ASSIGNMENTS 2016; 10:203-206. [PMID: 26897529 DOI: 10.1007/s12104-016-9667-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 02/05/2016] [Indexed: 06/05/2023]
Abstract
Cyclophilins regulate protein folding, transport and signalling through catalysis of proline isomerization, and are ubiquitously expressed in both prokaryotes and eukaryotes. Cpr3 is the yeast mitochondrial cyclophilin and it is structurally and biophysically uncharacterized so far. Yeast cyclophilin gene cpr3 is essential for the lactate metabolism. Here, we report (1)H, (13)C, and (15)N chemical shift assignments of Cpr3 protein determined by various 2D and 3D heteronuclear NMR experiments at pH 6.5, and temperature 298 K.
Collapse
Affiliation(s)
- Vaibhav Kumar Shukla
- UM-DAE-Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Mumbai, 400098, India
| | - Jai Shankar Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai, 400076, India
| | - Dipesh Trivedi
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai, 400076, India
| | - Ramakrishna V Hosur
- UM-DAE-Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Mumbai, 400098, India.
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai, 400076, India.
| |
Collapse
|
10
|
Schmidpeter PAM, Schmid FX. Prolyl isomerization and its catalysis in protein folding and protein function. J Mol Biol 2015; 427:1609-31. [PMID: 25676311 DOI: 10.1016/j.jmb.2015.01.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 01/30/2015] [Indexed: 12/20/2022]
Abstract
Prolyl isomerizations are intrinsically slow processes. They determine the rates of many protein folding reactions and control regulatory events in folded proteins. Prolyl isomerases are able to catalyze these isomerizations, and thus, they have the potential to assist protein folding and to modulate protein function. Here, we provide examples for how prolyl isomerizations limit protein folding and are accelerated by prolyl isomerases and how native-state prolyl isomerizations regulate protein functions. The roles of prolines in protein folding and protein function are closely interrelated because both of them depend on the coupling between cis/trans isomerization and conformational changes that can involve extended regions of a protein.
Collapse
Affiliation(s)
- Philipp A M Schmidpeter
- Laboratorium für Biochemie und Bayreuther Zentrum für Molekulare Biologie, Universität Bayreuth, 95440 Bayreuth, Germany
| | - Franz X Schmid
- Laboratorium für Biochemie und Bayreuther Zentrum für Molekulare Biologie, Universität Bayreuth, 95440 Bayreuth, Germany.
| |
Collapse
|
11
|
Nath PR, Isakov N. Insights into peptidyl-prolyl cis–trans isomerase structure and function in immunocytes. Immunol Lett 2015; 163:120-31. [DOI: 10.1016/j.imlet.2014.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 10/27/2014] [Accepted: 11/03/2014] [Indexed: 12/30/2022]
|
12
|
Ulrich A, Wahl MC. Structure and evolution of the spliceosomal peptidyl-prolyl cis-trans isomerase Cwc27. ACTA ACUST UNITED AC 2014; 70:3110-23. [PMID: 25478830 DOI: 10.1107/s1399004714021695] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/01/2014] [Indexed: 11/10/2022]
Abstract
Cwc27 is a spliceosomal cyclophilin-type peptidyl-prolyl cis-trans isomerase (PPIase). Here, the crystal structure of a relatively protease-resistant N-terminal fragment of human Cwc27 containing the PPIase domain was determined at 2.0 Å resolution. The fragment exhibits a C-terminal appendix and resides in a reduced state compared with the previous oxidized structure of a similar fragment. By combining multiple sequence alignments spanning the eukaryotic tree of life and secondary-structure prediction, Cwc27 proteins across the entire eukaryotic kingdom were identified. This analysis revealed the specific loss of a crucial active-site residue in higher eukaryotic Cwc27 proteins, suggesting that the protein evolved from a prolyl isomerase to a pure proline binder. Noting a fungus-specific insertion in the PPIase domain, the 1.3 Å resolution crystal structure of the PPIase domain of Cwc27 from Chaetomium thermophilum was also determined. Although structurally highly similar in the core domain, the C. thermophilum protein displayed a higher thermal stability than its human counterpart, presumably owing to the combined effect of several amino-acid exchanges that reduce the number of long side chains with strained conformations and create new intramolecular interactions, in particular increased hydrogen-bond networks.
Collapse
Affiliation(s)
- Alexander Ulrich
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Markus C Wahl
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| |
Collapse
|
13
|
Price AJ, Jacques DA, McEwan WA, Fletcher AJ, Essig S, Chin JW, Halambage UD, Aiken C, James LC. Host cofactors and pharmacologic ligands share an essential interface in HIV-1 capsid that is lost upon disassembly. PLoS Pathog 2014; 10:e1004459. [PMID: 25356722 PMCID: PMC4214760 DOI: 10.1371/journal.ppat.1004459] [Citation(s) in RCA: 231] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/10/2014] [Indexed: 02/06/2023] Open
Abstract
The HIV-1 capsid is involved in all infectious steps from reverse transcription to integration site selection, and is the target of multiple host cell and pharmacologic ligands. However, structural studies have been limited to capsid monomers (CA), and the mechanistic basis for how these ligands influence infection is not well understood. Here we show that a multi-subunit interface formed exclusively within CA hexamers mediates binding to linear epitopes within cellular cofactors NUP153 and CPSF6, and is competed for by the antiretroviral compounds PF74 and BI-2. Each ligand is anchored via a shared phenylalanine-glycine (FG) motif to a pocket within the N-terminal domain of one monomer, and all but BI-2 also make essential interactions across the N-terminal domain: C-terminal domain (NTD:CTD) interface to a second monomer. Dissociation of hexamer into CA monomers prevents high affinity interaction with CPSF6 and PF74, and abolishes binding to NUP153. The second interface is conformationally dynamic, but binding of NUP153 or CPSF6 peptides is accommodated by only one conformation. NUP153 and CPSF6 have overlapping binding sites, but each makes unique CA interactions that, when mutated selectively, perturb cofactor dependency. These results reveal that multiple ligands share an overlapping interface in HIV-1 capsid that is lost upon viral disassembly. The early steps of HIV-1 infection are poorly understood, in part because of the difficulty in obtaining high-resolution information on encapsidated virus and its interaction with host cofactors. This, in turn, has made it difficult to design effective anti-capsid (CA) drugs. In our present study, we have used stabilized hexamers of HIV-1 CA to obtain complexed crystal structures with two cellular cofactors that are important for HIV-1 infection. These structures and accompanying virology reveal an essential interface in the capsid of HIV-1 that is lost upon viral uncoating. This interface is used to recruit both the nuclear targeting cofactor CPSF6 and NUP153, a nuclear pore component that facilitates nuclear entry. The high-resolution information provided by these structures reveals that the interface is degenerate and CA mutations can be made that selectively perturb sensitivity to each cofactor. This interface is also competed by two antiviral drugs, PF74 and BI-2, whose different mechanisms of action are not fully understood. We show that PF74, but not BI-2, binds across monomers within multimerized capsid affecting an inter-hexamer interface that is crucial for maintaining intact virions and that the addition of saturating concentrations of PF74 causes an irreversible block to viral reverse transcription.
Collapse
Affiliation(s)
- Amanda J. Price
- Medical Research Council Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Cambridge, United Kingdom
| | - David A. Jacques
- Medical Research Council Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Cambridge, United Kingdom
| | - William A. McEwan
- Medical Research Council Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Cambridge, United Kingdom
| | - Adam J. Fletcher
- Medical Research Council Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Cambridge, United Kingdom
| | - Sebastian Essig
- Medical Research Council Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Cambridge, United Kingdom
| | - Jason W. Chin
- Medical Research Council Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Cambridge, United Kingdom
| | - Upul D. Halambage
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Christopher Aiken
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Leo C. James
- Medical Research Council Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Praditwongwan W, Chuankhayan P, Saoin S, Wisitponchai T, Lee VS, Nangola S, Hong SS, Minard P, Boulanger P, Chen CJ, Tayapiwatana C. Crystal structure of an antiviral ankyrin targeting the HIV-1 capsid and molecular modeling of the ankyrin-capsid complex. J Comput Aided Mol Des 2014; 28:869-84. [PMID: 24997121 DOI: 10.1007/s10822-014-9772-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 06/24/2014] [Indexed: 11/28/2022]
Abstract
Ankyrins are cellular repeat proteins, which can be genetically modified to randomize amino-acid residues located at defined positions in each repeat unit, and thus create a potential binding surface adaptable to macromolecular ligands. From a phage-display library of artificial ankyrins, we have isolated Ank(GAG)1D4, a trimodular ankyrin which binds to the HIV-1 capsid protein N-terminal domain (NTD(CA)) and has an antiviral effect at the late steps of the virus life cycle. In this study, the determinants of the Ank(GAG)1D4-NTD(CA) interaction were analyzed using peptide scanning in competition ELISA, capsid mutagenesis, ankyrin crystallography and molecular modeling. We determined the Ank(GAG)1D4 structure at 2.2 Å resolution, and used the crystal structure in molecular docking with a homology model of HIV-1 capsid. Our results indicated that NTD(CA) alpha-helices H1 and H7 could mediate the formation of the capsid-Ank(GAG)1D4 binary complex, but the interaction involving H7 was predicted to be more stable than with H1. Arginine-18 (R18) in H1, and R132 and R143 in H7 were found to be the key players of the Ank(GAG)1D4-NTD(CA) interaction. This was confirmed by R-to-A mutagenesis of NTD(CA), and by sequence analysis of trimodular ankyrins negative for capsid binding. In Ank(GAG)1D4, major interactors common to H1 and H7 were found to be S45, Y56, R89, K122 and K123. Collectively, our ankyrin-capsid binding analysis implied a significant degree of flexibility within the NTD(CA) domain of the HIV-1 capsid protein, and provided some clues for the design of new antivirals targeting the capsid protein and viral assembly.
Collapse
Affiliation(s)
- Warachai Praditwongwan
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Current human immunodeficiency virus type 1 pandemic is believed to originate from cross-species transmission of simian immunodeficiency virus (SIV) into human population. Such cross-species transmission, however, is not efficient in general, because viral replication is modulated by host cell factors, with the species-specificity of these factors affecting viral tropism. An understanding of those host cell factors that affect viral replication contributes to elucidation of the mechanism for determination of viral tropism. This review will focus an anti-viral effect of ApoB mRNA editing catalytic subunit, tripartite motif protein 5 alpha, and cyclophilins on SIV replication and provide insight into the mechanism of species-specific barriers against viral infection in human cells. It will then present our current understanding of the mechanism that may explain zoonotic transmission of retroviruses.
Collapse
Affiliation(s)
- Ryuta Sakuma
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan
| | | |
Collapse
|
16
|
Nangola S, Urvoas A, Valerio-Lepiniec M, Khamaikawin W, Sakkhachornphop S, Hong SS, Boulanger P, Minard P, Tayapiwatana C. Antiviral activity of recombinant ankyrin targeted to the capsid domain of HIV-1 Gag polyprotein. Retrovirology 2012; 9:17. [PMID: 22348230 PMCID: PMC3308923 DOI: 10.1186/1742-4690-9-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 02/20/2012] [Indexed: 01/01/2023] Open
Abstract
Background Ankyrins are cellular mediators of a number of essential protein-protein interactions. Unlike intrabodies, ankyrins are composed of highly structured repeat modules characterized by disulfide bridge-independent folding. Artificial ankyrin molecules, designed to target viral components, might act as intracellular antiviral agents and contribute to the cellular immunity against viral pathogens such as HIV-1. Results A phage-displayed library of artificial ankyrins was constructed, and screened on a polyprotein made of the fused matrix and capsid domains (MA-CA) of the HIV-1 Gag precursor. An ankyrin with three modules named AnkGAG1D4 (16.5 kDa) was isolated. AnkGAG1D4 and MA-CA formed a protein complex with a stoichiometry of 1:1 and a dissociation constant of Kd ~ 1 μM, and the AnkGAG1D4 binding site was mapped to the N-terminal domain of the CA, within residues 1-110. HIV-1 production in SupT1 cells stably expressing AnkGAG1D4 in both N-myristoylated and non-N-myristoylated versions was significantly reduced compared to control cells. AnkGAG1D4 expression also reduced the production of MLV, a phylogenetically distant retrovirus. The AnkGAG1D4-mediated antiviral effect on HIV-1 was found to occur at post-integration steps, but did not involve the Gag precursor processing or cellular trafficking. Our data suggested that the lower HIV-1 progeny yields resulted from the negative interference of AnkGAG1D4-CA with the Gag assembly and budding pathway. Conclusions The resistance of AnkGAG1D4-expressing cells to HIV-1 suggested that the CA-targeted ankyrin AnkGAG1D4 could serve as a protein platform for the design of a novel class of intracellular inhibitors of HIV-1 assembly based on ankyrin-repeat modules.
Collapse
Affiliation(s)
- Sawitree Nangola
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
A conserved tandem cyclophilin-binding site in hepatitis C virus nonstructural protein 5A regulates Alisporivir susceptibility. J Virol 2012; 86:4811-22. [PMID: 22345441 DOI: 10.1128/jvi.06641-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cyclophilin A (CyPA) and its peptidyl-prolyl isomerase (PPIase) activity play an essential role in hepatitis C virus (HCV) replication, and mounting evidence indicates that nonstructural protein 5A (NS5A) is the major target of CyPA. However, neither a consensus CyPA-binding motif nor specific proline substrates that regulate CyPA dependence and sensitivity to cyclophilin inhibitors (CPIs) have been defined to date. We systematically characterized all proline residues in NS5A domain II, low-complexity sequence II (LCS-II), and domain III with both biochemical binding and functional replication assays. A tandem cyclophilin-binding site spanning domain II and LCS-II was identified. The first site contains a consensus sequence motif of AØPXW (where Ø is a hydrophobic residue) that is highly conserved in the majority of the genotypes of HCV (six of seven; the remaining genotype has VØPXW). The second tandem site contains a similar motif, and the ØP sequence is again conserved in six of the seven genotypes. Consistent with the similarity of their sequences, peptides representing the two binding motifs competed for CyPA binding in a spot-binding assay and induced similar chemical shifts when bound to the active site of CyPA. The two prolines (P310 and P341 of Japanese fulminant hepatitis 1 [JFH-1]) contained in these motifs, as well as a conserved tryptophan in the spacer region, were required for CyPA binding, HCV replication, and CPI resistance. Together, these data provide a high-resolution mapping of proline residues important for CyPA binding and identify critical amino acids modulating HCV susceptibility to the clinical CPI Alisporivir.
Collapse
|
18
|
Davis TL, Walker JR, Campagna-Slater V, Finerty PJ, Paramanathan R, Bernstein G, MacKenzie F, Tempel W, Ouyang H, Lee WH, Eisenmesser EZ, Dhe-Paganon S. Structural and biochemical characterization of the human cyclophilin family of peptidyl-prolyl isomerases. PLoS Biol 2010; 8:e1000439. [PMID: 20676357 PMCID: PMC2911226 DOI: 10.1371/journal.pbio.1000439] [Citation(s) in RCA: 215] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 06/16/2010] [Indexed: 11/29/2022] Open
Abstract
Peptidyl-prolyl isomerases catalyze the conversion between cis and trans isomers of proline. The cyclophilin family of peptidyl-prolyl isomerases is well known for being the target of the immunosuppressive drug cyclosporin, used to combat organ transplant rejection. There is great interest in both the substrate specificity of these enzymes and the design of isoform-selective ligands for them. However, the dearth of available data for individual family members inhibits attempts to design drug specificity; additionally, in order to define physiological functions for the cyclophilins, definitive isoform characterization is required. In the current study, enzymatic activity was assayed for 15 of the 17 human cyclophilin isomerase domains, and binding to the cyclosporin scaffold was tested. In order to rationalize the observed isoform diversity, the high-resolution crystallographic structures of seven cyclophilin domains were determined. These models, combined with seven previously solved cyclophilin isoforms, provide the basis for a family-wide structure:function analysis. Detailed structural analysis of the human cyclophilin isomerase explains why cyclophilin activity against short peptides is correlated with an ability to ligate cyclosporin and why certain isoforms are not competent for either activity. In addition, we find that regions of the isomerase domain outside the proline-binding surface impart isoform specificity for both in vivo substrates and drug design. We hypothesize that there is a well-defined molecular surface corresponding to the substrate-binding S2 position that is a site of diversity in the cyclophilin family. Computational simulations of substrate binding in this region support our observations. Our data indicate that unique isoform determinants exist that may be exploited for development of selective ligands and suggest that the currently available small-molecule and peptide-based ligands for this class of enzyme are insufficient for isoform specificity.
Collapse
Affiliation(s)
- Tara L. Davis
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - John R. Walker
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | | | - Patrick J. Finerty
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Ragika Paramanathan
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Galina Bernstein
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Farrell MacKenzie
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Wolfram Tempel
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Hui Ouyang
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Wen Hwa Lee
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- University of Oxford, Headington, United Kingdom
| | - Elan Z. Eisenmesser
- Department of Biochemistry & Molecular Genetics, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Sirano Dhe-Paganon
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
The capsid protein of human immunodeficiency virus: interactions of HIV-1 capsid with host protein factors. FEBS J 2009; 276:6118-27. [DOI: 10.1111/j.1742-4658.2009.07315.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Moparthi SB, Hammarström P, Carlsson U. A nonessential role for Arg 55 in cyclophilin18 for catalysis of proline isomerization during protein folding. Protein Sci 2009; 18:475-9. [PMID: 19185003 DOI: 10.1002/pro.28] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The protein folding process is often in vitro rate-limited by slow cis-trans proline isomerization steps. Importantly, the rate of this process in vivo is accelerated by prolyl isomerases (PPIases). The archetypal PPIase is the human cyclophilin 18 (Cyp18 or CypA), and Arg 55 has been demonstrated to play a crucial role when studying short peptide substrates in the catalytic action of Cyp18 by stabilizing the transition state of isomerization. However, in this study we show that a R55A mutant of Cyp18 is as efficient as the wild type to accelerate the refolding reaction of human carbonic anhydrase II (HCA II). Thus, it is evident that the active-site located Arg 55 is not required for catalysis of the rate-limiting prolyl cis-trans isomerization steps during the folding of a protein substrate as HCA II. Nevertheless, catalysis of cis-trans proline isomerization in HCA II occurs in the active-site of Cyp18, since binding of the inhibitor cyclosporin A abolishes rate acceleration of the refolding reaction. Obviously, the catalytic mechanisms of Cyp18 can differ when acting upon a simple model peptide, four residues long, with easily accessible Pro residues compared with a large protein molecule undergoing folding with partly or completely buried Pro residues. In the latter case, the isomerization kinetics are significantly slower and simpler mechanistic factors such as desolvation and/or strain might operate during folding-assisted catalysis, since binding to the hydrophobic active site is still a prerequisite for catalysis.
Collapse
|
21
|
Hamelberg D, McCammon JA. Mechanistic insight into the role of transition-state stabilization in cyclophilin A. J Am Chem Soc 2009; 131:147-52. [PMID: 19128175 PMCID: PMC2651649 DOI: 10.1021/ja806146g] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptidyl prolyl cis-trans isomerases (PPIases) are ubiquitous enzymes in biology that catalyze the cis-trans isomerization of the proline imide peptide bond in many cell signaling pathways. The local change of the isomeric state of the prolyl peptide bond acts as a switching mechanism in altering the conformation of proteins. A complete understanding of the mechanism of PPIases is still lacking, and current experimental techniques have not been able to provide a detailed atomistic picture. Here we have carried out several accelerated molecular dynamics simulations with explicit solvent, and we have provided a detailed description of cis-trans isomerization of the free and cyclophilin A-catalyzed process. We show that the catalytic mechanism of cyclophilin is due mainly to the stabilization and preferential binding of the transition state that is achieved by a favorable hydrogen bond interaction with a backbone NH group. We also show that the substrate in the transition state interacts more favorably with the enzyme than the cis isomer, which in turn interacts more favorably than the trans isomer. The stability of the enzyme-substrate complex is directly correlated with the interaction the substrate makes with a highly conserved arginine residue. Finally, we show that catalysis is achieved through the rotation of the carbonyl oxygen on the N-terminal of the prolyl peptide bond in a predominately unidirectional fashion.
Collapse
Affiliation(s)
- Donald Hamelberg
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-4098, USA
| | | |
Collapse
|
22
|
Abstract
Viral replication requires the help of host cell factors, whose species specificity may affect viral tropism. On the other hand, there exist host factors that restrict viral replication. The anti-viral system mediated by some of these restriction factors, which is termed intrinsic immunity and is distinguished from conventional innate and adaptive immunity, has been described as playing an important role in making species-specific barriers against viral infection. Here, we describe the current progress in understanding of such restriction factors against retroviral replication, focusing on TRIM5alpha and APOBEC, whose anti-retroviral effects have recently been recognized. Additionally, we mention cyclophilin A, which is essential for HIV-1 replication in human cells and may affect viral tropism. Understanding of these host factors would contribute to identification of the determinants for viral tropism.
Collapse
Affiliation(s)
- Hiroaki Takeuchi
- International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | | |
Collapse
|
23
|
Li Z, Zhao X, Bai S, Wang Z, Chen L, Wei Y, Huang C. Proteomics identification of cyclophilin a as a potential prognostic factor and therapeutic target in endometrial carcinoma. Mol Cell Proteomics 2008; 7:1810-23. [PMID: 18421009 DOI: 10.1074/mcp.m700544-mcp200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Endometrial carcinoma is one of the most common malignancies of the female genital tract, and there is an urgent need for discovery of novel factors for prognostic assessment and therapeutic targets to endometrial carcinoma. Herein a two-dimensional gel electrophoresis and MALDI-Q-TOF MS/MS-based proteomics approach was used to identify differentially expressed proteins in endometrial carcinoma. Of the 99 proteins identified, cyclophilin A was one of the most significantly altered proteins, and its overexpression was confirmed using RT-PCR and Western blot analyses. Immunohistochemistry suggested a link between cyclophilin A expression and poor differentiation and decreased survival (p < 0.01). Knockdown of cyclophilin A expression by RNA interference led to the significant suppression of the cell growth and the induction of apoptosis in endometrial carcinoma HEC-1-B cells in vitro (p < 0.01) and the inhibition of tumor growth in vivo (p < 0.01). These data suggest that cyclophilin A may serve as a novel prognostic factor and possibly an attractive therapeutic target for endometrial carcinoma.
Collapse
Affiliation(s)
- Zhengyu Li
- Department of Gynecology and Obstetrics, West China Second [corrected] Hospital, Sichuan University, Chengdu 610041, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Cyclophilin A is an essential cofactor for hepatitis C virus infection and the principal mediator of cyclosporine resistance in vitro. J Virol 2008; 82:5269-78. [PMID: 18385230 DOI: 10.1128/jvi.02614-07] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cyclosporine (CsA) and its derivatives potently suppress hepatitis C virus (HCV) replication. Recently, CsA-resistant HCV replicons have been identified in vitro. We examined the dependence of the wild-type and CsA-resistant replicons on various cyclophilins for replication. A strong correlation between CsA resistance and reduced dependency on cyclophilin A (CyPA) for replication was identified. Silencing of CyPB or CyPC expression had no significant effect on replication, whereas various forms of small interfering RNA (siRNA) directed at CyPA inhibited HCV replication of wild-type but not CsA-resistant replicons. The efficiency of a particular siRNA in suppressing CyPA expression was correlated with its potency in inhibiting HCV replication, and expression of an siRNA-resistant CyPA cDNA rescued replication. In addition, an anti-CyPA antibody blocked replication of the wild-type but not the resistant replicon in an in vitro replication assay. Depletion of CyPA alone in the CsA-resistant replicon cells eliminated CsA resistance, indicating that CyPA is the chief mediator of the observed CsA resistance. The dependency on CyPA for replication was observed for both genotype (GT) 1a and 1b replicons as well as a GT 2a infectious virus. An interaction between CyPA and HCV RNA as well as the viral polymerase that is sensitive to CsA treatment in wild-type but not in resistant replicons was detected. These findings reveal the molecular mechanism of CsA resistance and identify CyPA as a critical cellular cofactor for HCV replication and infection.
Collapse
|
25
|
TRIMCyp expression in Old World primates Macaca nemestrina and Macaca fascicularis. Proc Natl Acad Sci U S A 2008; 105:3569-74. [PMID: 18287033 DOI: 10.1073/pnas.0709511105] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Primates have evolved a variety of restriction factors that prevent retroviral replication. One such factor, TRIM5alpha, mediates a postentry restriction in many Old World primates. Among New World primates, Aotus trivirgatus exerts a similar early restriction mediated by TRIMCyp, a TRIM5-cyclophilin A (CypA) chimera resulting from a CypA retrotransposition between exons 7 and 8 of the TRIM5 gene. Macaca nemestrina do not express TRIM5alpha; therefore, we asked whether these animals and related Old World primates express TRIMCyp. RT-PCR of total RNA from M. nemestrina and Macaca fascicularis yielded three TRIMCyp amplification products, one of which is predicted to encode a TRIMCyp chimera containing a full-length CypA. Unlike A. trivirgatus, genomic sequencing of M. nemestrina and M. fascicularis identifies a CypA retrotransposition in the 3' untranslated region of the TRIM5 locus. There is approximately 78% homology between the predicted protein sequences of Old World and New World primate TRIMCyp, with most of the differences found in the TRIM5-derived sequence. Notably, exon 7 is absent from both M. nemestrina and M. fascicularis TRIMCyp. Neither M. nemestrina nor M. fascicularis TRIMCyp could restrict HIV-1 or simian immunodeficiency virus SIVmac in an in vitro infectivity assay. The discovery of TRIMCyp in both M. nemestrina and M. fascicularis indicates that TRIMCyp expression may be more common among Old World primates than previously believed. Convergent evolution of TRIMCyp in both Old World and New World primates suggests that TRIMCyp may have provided evolutionary advantages.
Collapse
|
26
|
Song C, Aiken C. Analysis of human cell heterokaryons demonstrates that target cell restriction of cyclosporine-resistant human immunodeficiency virus type 1 mutants is genetically dominant. J Virol 2007; 81:11946-56. [PMID: 17715216 PMCID: PMC2168785 DOI: 10.1128/jvi.00620-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The host cell protein cyclophilin A (CypA) binds to CA of human immunodeficiency virus type 1 (HIV-1) and promotes HIV-1 infection of target cells. Disruption of the CypA-CA interaction, either by mutation of the CA residue at G89 or P90 or with the immunosuppressive drug cyclosporine (CsA), reduces HIV-1 infection. Two CA mutants, A92E and G94D, previously were identified by selection for growth of wild-type HIV-1 in cultures of CD4(+) HeLa cell cultures containing CsA. Interestingly, infection of some cell lines by these mutants is enhanced in the presence of CsA, while in other cell lines these mutants are minimally affected by the drug. Little is known about this cell-dependent phenotype of the A92E and G94D mutants, except that it is not dependent on expression of the host factor TRIM5alpha. Here, we show that infection by the A92E and G94D mutants is restricted at an early post-entry stage of the HIV-1 life cycle. Analysis of heterokaryons between CsA-dependent HeLa-P4 cells and CsA-independent 293T cells indicated that the CsA-dependent infection by A92E and G94D mutants is due to a dominant cellular restriction. We also show that addition of CsA to target cells inhibits infection by wild-type HIV-1 prior to reverse transcription. Collectively, these results support the existence of a cell-specific human cellular factor capable of restricting HIV-1 at an early post-entry step by a CypA-dependent mechanism.
Collapse
Affiliation(s)
- Chisu Song
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, A-5301 Medical Center North, Nashville, TN 37232-2363, USA
| | | |
Collapse
|
27
|
Affiliation(s)
- David D Boehr
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
28
|
Abdurahman S, Höglund S, Höglund A, Vahlne A. Mutation in the loop C-terminal to the cyclophilin A binding site of HIV-1 capsid protein disrupts proper virus assembly and infectivity. Retrovirology 2007; 4:19. [PMID: 17371591 PMCID: PMC1832212 DOI: 10.1186/1742-4690-4-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 03/19/2007] [Indexed: 12/31/2022] Open
Abstract
We have studied the effects associated with two single amino acid substitution mutations in HIV-1 capsid (CA), the E98A and E187G. Both amino acids are well conserved among all major HIV-1 subtypes. HIV-1 infectivity is critically dependent on proper CA cone formation and mutations in CA are lethal when they inhibit CA assembly by destabilizing the intra and/or inter molecular CA contacts, which ultimately abrogate viral replication. Glu98, which is located on a surface of a flexible cyclophilin A binding loop is not involved in any intra-molecular contacts with other CA residues. In contrast, Glu187 has extensive intra-molecular contacts with eight other CA residues. Additionally, Glu187 has been shown to form a salt-bridge with Arg18 of another N-terminal CA monomer in a N-C dimer. However, despite proper virus release, glycoprotein incorporation and Gag processing, electron microscopy analysis revealed that, in contrast to the E187G mutant, only the E98A particles had aberrant core morphology that resulted in loss of infectivity.
Collapse
Affiliation(s)
- Samir Abdurahman
- Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospial, Stockholm, Sweden
| | - Stefan Höglund
- Department of Biochemistry, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Anders Höglund
- Department of Biochemistry, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Anders Vahlne
- Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospial, Stockholm, Sweden
| |
Collapse
|
29
|
Trzesniak D, van Gunsteren WF. Catalytic mechanism of cyclophilin as observed in molecular dynamics simulations: pathway prediction and reconciliation of X-ray crystallographic and NMR solution data. Protein Sci 2007; 15:2544-51. [PMID: 17075133 PMCID: PMC2242407 DOI: 10.1110/ps.062356406] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Cyclophilins are proteins that catalyze X-proline cis-trans interconversion, where X represents any amino acid. Its mechanism of action has been investigated over the past years but still generates discussion, especially because until recently structures of the ligand in the cis and trans conformations for the same system were lacking. X-ray crystallographic structures for the complex cyclophilin A and HIV-1 capsid mutants with ligands in the cis and trans conformations suggest a mechanism where the N-terminal portion of the ligand rotates during the cis-trans isomerization. However, a few years before, a C-terminal rotating ligand was proposed to explain NMR solution data. In the present study we use molecular dynamics (MD) simulations to generate a trans structure starting from the cis structure. From simulations starting from the cis and trans structures obtained through the rotational pathways, the seeming contradiction between the two sets of experimental data could be resolved. The simulated N-terminal rotated trans structure shows good agreement with the equivalent crystal structure and, moreover, is consistent with the NMR data. These results illustrate the use of MD simulation at atomic resolution to model structural transitions and to interpret experimental data.
Collapse
Affiliation(s)
- Daniel Trzesniak
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology Zürich, ETH, CH-8093 Zürich, Switzerland
| | | |
Collapse
|
30
|
Mark P, Nilsson L. A molecular dynamics study of Cyclophilin A free and in complex with the Ala-Pro dipeptide. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 36:213-24. [PMID: 17225137 DOI: 10.1007/s00249-006-0121-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 11/27/2006] [Accepted: 11/28/2006] [Indexed: 11/30/2022]
Abstract
Six different molecular dynamics simulations of Cyclophilin A, three with the protein free in water and three with the Ala-Pro dipeptide bound to the protein, have been performed, and analysed with respect to structure and hydration of the active site. The water structure in the binding pocket of the free Cyclophilin A was found to mimic the experimentally obtained binding cis conformation of the dipeptide. Cyclophilin A is a peptidyl-prolyl cis-trans isomerase (PPIase), but the mechanism of the cis/trans isomerization is not exactly clear. This study was performed to understand better the binding between dipeptide and Cyclophilin A, but also two previously proposed isomerization mechanisms are discussed.
Collapse
Affiliation(s)
- Pekka Mark
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 57 Huddinge, Sweden
| | | |
Collapse
|
31
|
Pemberton TJ, Kay JE. The cyclophilin repertoire of the fission yeast Schizosaccharomyces pombe. Yeast 2005; 22:927-45. [PMID: 16134115 DOI: 10.1002/yea.1288] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The cyclophilin repertoire of the fission yeast Schizosaccharomyces pombe is comprised of nine members that are distributed over all three of its chromosomes and range from small single-domain to large multi-domain proteins. Each cyclophilin possesses only a single prolyl-isomerase domain, and these vary in their degree of consensus, including at positions that are likely to affect their drug-binding ability and catalytic activity. The additional identified motifs are involved in putative protein or RNA interactions, while a novel domain that is specific to SpCyp7 and its orthologues may have functions that include an interaction with hnRNPs. The Sz. pombe cyclophilins are found throughout the cell but appear to be absent from the mitochondria, which is unique among the characterized eukaryotic repertoires. SpCyp5, SpCyp6 and SpCyp8 have exhibited significant upregulation of their expression during the meiotic cycle and SpCyp5 has exhibited significant upregulation of its expression during heat stress. All nine have identified members in the repertoires of H. sapiens, D. melanogaster and A. thaliana. However, only three identified members in the cyclophilin repertoire of S. cerevisiae with SpCyp7 identifying a fourth protein that is not a member of the recognized repertoire due to its possession of a degenerate prolyl-isomerase domain. The cyclophilin repertoire of Sz. pombe therefore represents a better model group for the study of cyclophilin function in the higher eukaryotes.
Collapse
Affiliation(s)
- Trevor J Pemberton
- The Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, East Sussex BN1 9PX, UK.
| | | |
Collapse
|
32
|
Sokolskaja E, Sayah DM, Luban J. Target cell cyclophilin A modulates human immunodeficiency virus type 1 infectivity. J Virol 2004; 78:12800-8. [PMID: 15542632 PMCID: PMC524981 DOI: 10.1128/jvi.78.23.12800-12808.2004] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Accepted: 07/22/2004] [Indexed: 11/20/2022] Open
Abstract
The peptidyl-prolyl isomerase cyclophilin A (CypA) increases the kinetics by which human immunodeficiency virus type 1 (HIV-1) spreads in tissue culture. This was conclusively demonstrated by gene targeting in human CD4(+) T cells, but the role of CypA in HIV-1 replication remains unknown. Though CypA binds to mature HIV-1 capsid protein (CA), it is also incorporated into nascent HIV-1 virions via interaction with the CA domain of the Gag polyprotein. These findings raised the possibility that CypA might act at multiple steps of the retroviral life cycle. Disruption of the CA-CypA interaction, either by the competitive inhibitor cyclosporine (CsA) or by mutation of CA residue G89 or P90, suggested that producer cell CypA was required for full virion infectivity. However, recent studies indicate that CypA within the target cell regulates HIV-1 infectivity by modulating Ref1- or Lv1-mediated restriction. To examine the relative contribution to HIV-1 replication of producer cell CypA and target cell CypA, we exploited multiple tools that disrupt the HIV-1 CA-CypA interaction. These tools included the drugs CsA, MeIle(4)-CsA, and Sanglifehrin; CA mutants exhibiting decreased affinity for CypA or altered CypA dependence; HeLa cells with CypA knockdown by RNA interference; and Jurkat T cells homozygous for a deletion of the gene encoding CypA. Our results clearly demonstrate that target cell CypA, and not producer cell CypA, is important for HIV-1 CA-mediated function. Inhibition of HIV-1 infectivity resulting from virion production in the presence of CsA occurs independently of the CA-CypA interaction or even of CypA.
Collapse
Affiliation(s)
- Elena Sokolskaja
- Department of Microbiology, Columbia University, 701 W. 168th St., New York, NY 10032, USA
| | | | | |
Collapse
|
33
|
Fischer G, Aumüller T. Regulation of peptide bond cis/trans isomerization by enzyme catalysis and its implication in physiological processes. Rev Physiol Biochem Pharmacol 2004; 148:105-50. [PMID: 12698322 DOI: 10.1007/s10254-003-0011-3] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In some cases, the slow rotational movement underlying peptide bond cis/trans isomerizations is found to control the biological activity of proteins. Peptide bond cis/trans isomerases as cyclophilins, Fk506-binding proteins, parvulins, and bacterial hsp70 generally assist in the interconversion of the polypeptide substrate cis/trans isomers, and rate acceleration is the dominating mechanism of action in cells. We present evidence disputing the hypothesis that some of the molecular properties of these proteins play an auxiliary role in enzyme function.
Collapse
Affiliation(s)
- G Fischer
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, 06120 Halle, Germany.
| | | |
Collapse
|
34
|
Bhattacharyya R, Chakrabarti P. Stereospecific interactions of proline residues in protein structures and complexes. J Mol Biol 2003; 331:925-40. [PMID: 12909019 DOI: 10.1016/s0022-2836(03)00759-9] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The constrained backbone torsion angle of a proline (Pro) residue has usually been invoked to explain its three-dimensional context in proteins. Here we show that specific interactions involving the pyrrolidine ring atoms also contribute to its location in a given secondary structure and its binding to another molecule. It is adept at participating in two rather non-conventional interactions, C-H...pi and C-H...O. The geometry of interaction between the pyrrolidine and aromatic rings, vis-à-vis the occurrence of the C-H...pi interactions has been elucidated. Some of the secondary structural elements stabilized by Pro-aromatic interactions are beta-turns, where a Pro can interact with an adjacent aromatic residue, and in antiparallel beta-sheet, where a Pro in an edge strand can interact with an aromatic residue in the adjacent strand at a non-hydrogen-bonded site. The C-H groups at the Calpha and Cdelta positions can form strong C-H...O interactions (as seen from the clustering of points) and such interactions involving a Pro residue at C' position relative to an alpha-helix can cap the hydrogen bond forming potentials of the free carbonyl groups at the helix C terminus. Functionally important Pro residues occurring at the binding site of a protein almost invariably engage aromatic residues (with one of them being held by C-H...pi interaction) from the partner molecule in the complex, and such aromatic residues are highly conserved during evolution.
Collapse
Affiliation(s)
- Rajasri Bhattacharyya
- Department of Biochemistry, Bose Institute, P-1/12 CIT Scheme VIIM, Calcutta 700 054, India
| | | |
Collapse
|
35
|
Dugave C, Demange L. Cis-trans isomerization of organic molecules and biomolecules: implications and applications. Chem Rev 2003; 103:2475-532. [PMID: 12848578 DOI: 10.1021/cr0104375] [Citation(s) in RCA: 787] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Christophe Dugave
- CEA/Saclay, Département d'Ingénierie et d'Etudes des Protéines (DIEP), Bâtiment 152, 91191 Gif-sur-Yvette, France.
| | | |
Collapse
|
36
|
Howard BR, Vajdos FF, Li S, Sundquist WI, Hill CP. Structural insights into the catalytic mechanism of cyclophilin A. Nat Struct Mol Biol 2003; 10:475-81. [PMID: 12730686 DOI: 10.1038/nsb927] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2002] [Accepted: 03/28/2003] [Indexed: 11/09/2022]
Abstract
Cyclophilins constitute a ubiquitous protein family whose functions include protein folding, transport and signaling. They possess both sequence-specific binding and proline cis-trans isomerase activities, as exemplified by the interaction between cyclophilin A (CypA) and the HIV-1 CA protein. Here, we report crystal structures of CypA in complex with HIV-1 CA protein variants that bind preferentially with the substrate proline residue in either the cis or the trans conformation. Cis- and trans-Pro substrates are accommodated within the enzyme active site by rearrangement of their N-terminal residues and with minimal distortions in the path of the main chain. CypA Arg55 guanidinium group probably facilitates catalysis by anchoring the substrate proline oxygen and stabilizing sp3 hybridization of the proline nitrogen in the transition state.
Collapse
Affiliation(s)
- Bruce R Howard
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA
| | | | | | | | | |
Collapse
|
37
|
Cui M, Huang X, Luo X, Briggs JM, Ji R, Chen K, Shen J, Jiang H. Molecular docking and 3D-QSAR studies on gag peptide analogue inhibitors interacting with human cyclophilin A. J Med Chem 2002; 45:5249-59. [PMID: 12431052 DOI: 10.1021/jm020082x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction of a series gag peptide analogues with human cyclophilin A (hCypA) have been studied employing molecular docking and 3D-QSAR approaches. The Lamarckian Genetic Algorithm (LGA) and divide-and-conquer methods were applied to locate the binding orientations and conformations of the inhibitors interacting with hCypA. Good correlations between the calculated interaction free energies and experimental inhibitory activities suggest that the binding conformations of these inhibitors are reasonable. A novel interaction model was identified for inhibitors 11, 15, and 17 whose N-termini were modified by addition of the deaminovaline (Dav) group and the C-termini of 15 and 17 were modified by addition of a benzyl group. Accordingly, two new binding sites (sites A and D in Figure 1) were revealed, which show a strong correlation with inhibitor potency and thus can be used as a starting point for new inhibitor design. In addition, two predictive 3D-QSAR models were obtained by CoMFA and CoMSIA analyses based on the binding conformations derived from the molecular docking calculations. The reasonable r(cross)(2) (cross-validated) values 0.738 and 0.762 were obtained for CoMFA and CoMSIA models, respectively. The predictive ability of these models was validated by four peptide analogues test set. The CoMFA and CoMSIA field distributions are in general agreement with the structural characteristics of the binding groove of hCypA. This indicates the reasonableness of the binding model of the inhibitors with hCypA. Considering all these results together with the valuable clues of binding from references published recently, reasonable pharmacophore elements have been suggested, demonstrating that the 3D-QSAR models about peptide analogue inhibitors are expected to be further employed in predicting activities of the novel compounds for inhibiting hCypA.
Collapse
Affiliation(s)
- Meng Cui
- Center for Drug Discovery and Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Höglund S, Su J, Reneby SS, Végvári A, Hjertén S, Sintorn IM, Foster H, Wu YP, Nyström I, Vahlne A. Tripeptide interference with human immunodeficiency virus type 1 morphogenesis. Antimicrob Agents Chemother 2002; 46:3597-605. [PMID: 12384371 PMCID: PMC128702 DOI: 10.1128/aac.46.11.3597-3605.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Capsid assembly during virus replication is a potential target for antiviral therapy. The Gag polyprotein is the main structural component of retroviral particles, and in human immunodeficiency virus type 1 (HIV-1), it contains the sequences for the matrix, capsid, nucleocapsid, and several small polypeptides. Here, we report that at a concentration of 100 micro M, 7 of 83 tripeptide amides from the carboxyl-terminal sequence of the HIV-1 capsid protein p24 suppressed HIV-1 replication (>80%). The three most potent tripeptides, glycyl-prolyl-glycine-amide (GPG-NH(2)), alanyl-leucyl-glycine-amide (ALG-NH(2)), and arginyl-glutaminyl-glycine-amide (RQG-NH(2)), were found to interact with p24. With electron microscopy, disarranged core structures of HIV-1 progeny were extensively observed when the cells were treated with GPG-NH(2) and ALG-NH(2). Furthermore, nodular structures of approximately the same size as the broad end of HIV-1 conical capsids were observed at the plasma membranes of treated cells only, possibly indicating an arrest of the budding process. Corresponding tripeptides with nonamidated carboxyl termini were not biologically active and did not interact with p24.
Collapse
Affiliation(s)
- Stefan Höglund
- Department of Biochemistry, Biomedical Center, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- F X Schmid
- Biochemisches Laboratorium, Universität Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
40
|
Abstract
Internal protein dynamics are intimately connected to enzymatic catalysis. However, enzyme motions linked to substrate turnover remain largely unknown. We have studied dynamics of an enzyme during catalysis at atomic resolution using nuclear magnetic resonance relaxation methods. During catalytic action of the enzyme cyclophilin A, we detect conformational fluctuations of the active site that occur on a time scale of hundreds of microseconds. The rates of conformational dynamics of the enzyme strongly correlate with the microscopic rates of substrate turnover. The present results, together with available structural data, allow a prediction of the reaction trajectory.
Collapse
|
41
|
Horowitz DS, Lee EJ, Mabon SA, Misteli T. A cyclophilin functions in pre-mRNA splicing. EMBO J 2002; 21:470-80. [PMID: 11823439 PMCID: PMC125845 DOI: 10.1093/emboj/21.3.470] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2001] [Revised: 11/26/2001] [Accepted: 12/07/2001] [Indexed: 11/13/2022] Open
Abstract
We report that the cyclophilin USA-CyP is part of distinct complexes with two spliceosomal proteins and is involved in both steps of pre-mRNA splicing. The splicing factors hPrp18 and hPrp4 have a short region of homology that defines a high affinity binding site for USA-CyP in each protein. USA-CyP forms separate, stable complexes with hPrp18 and hPrp4 in which the active site of the cyclophilin is exposed. The cyclophilin inhibitor cyclosporin A slows pre-mRNA splicing in vitro, and we show that its inhibition of the second step of splicing is caused by blocking the action of USA-CyP within its complex with hPrp18. Cyclosporin A also slows splicing in vivo, and we show that this slowing results specifically from inhibition of USA-CyP. Our results lead to a model in which USA-CyP is carried into the spliceosome in complexes with hPrp4 and hPrp18, and USA-CyP acts during splicing within these complexes. These results provide an example of the function of a cyclophilin in a complex process and provide insight into the mechanisms of action of cyclophilins.
Collapse
Affiliation(s)
- David S. Horowitz
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 and National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA Corresponding author e-mail:
| | - Edward J. Lee
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 and National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA Corresponding author e-mail:
| | - Stephen A. Mabon
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 and National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA Corresponding author e-mail:
| | - Tom Misteli
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 and National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA Corresponding author e-mail:
| |
Collapse
|
42
|
Abstract
Peptidylprolyl isomerases (PPIases) are a group of cytosolic enzymes first characterized by their ability to catalyze the cis-trans isomerization of cis-peptidylprolyl bonds. Subsequently, some PPIases were also identified as the initial targets of the immunosuppressant drugs-cyclosporin A (CsA), FK506, and rapamycin-have been called immunophilins. Immunophilins have been found to be both widely distributed and abundantly expressed leading to suggestions that they may play a general role in cellular biochemistry. However, the nature of this role has been difficult to elucidate and is still controversial in vivo. A number of roles for these enzymes have been identified in vitro including the ability to catalyze the refolding of partly denatured proteins and stabilize multiprotein complexes such as Ca(2+) channels, inactive steroid receptor complexes, and receptor protein tyrosine kinases. Generally, these effects appear to depend on the ability of immunophilins to selectively bind to other proteins. This review will examine in detail experimental and structural investigations of the mechanism of PPIase activity for both FKBPs and cyclophilins and suggest a mechanism for these enzymes, which depends on their ability to recognize a specific peptide conformation rather than sequence. Examination of structures of immunophilin-protein complexes will then be used to further suggest that the ability of these enzymes to recognize specific peptide conformations is central to the formation of these complexes and may constitute a general function of immunophilin enzymes. The binding of ligand to immunophilins will also be shown to stabilize specific conformations in surface loops of these proteins that are observed to play a critical role in a number of immunophilin-protein complexes suggesting that the immunophilins may constitute a class of ligand-triggered selective protein binders.
Collapse
Affiliation(s)
- M T Ivery
- Faculty of Pharmacy, University of Sydney, N.S.W. 2006, Australia.
| |
Collapse
|
43
|
Sekerina E, Rahfeld JU, Müller J, Fanghänel J, Rascher C, Fischer G, Bayer P. NMR solution structure of hPar14 reveals similarity to the peptidyl prolyl cis/trans isomerase domain of the mitotic regulator hPin1 but indicates a different functionality of the protein. J Mol Biol 2000; 301:1003-17. [PMID: 10966801 DOI: 10.1006/jmbi.2000.4013] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 131-amino acid residue parvulin-like human peptidyl-prolyl cis/trans isomerase (PPIase) hPar14 was shown to exhibit sequence similarity to the regulator enzyme for cell cycle transitions human hPin1, but specificity for catalyzing pSer(Thr)-Pro cis/trans isomerizations was lacking. To determine the solution structure of hPar14 the (1)H, (13)C, and (15)N chemical shifts of this protein have been assigned using heteronuclear two and three-dimensional NMR experiments on unlabeled and uniformly (15)N/(13)C-labeled recombinant protein isolated from Escherichia coli cells that overexpress the protein. The chemical shift assignments were used to interpret the NOE data, which resulted in a total of 1042 NOE restraints. The NOE restraints were used along with 71 dihedral angle restraints and 38 hydrogen bonding restraints to produce 50 low-energy structures. The hPar14 folds into a betaalpha(3)betaalphabeta(2) structure, and contains an unstructured 35-amino acid basic tail N-terminal to the catalytic core that replaces the WW domain of hPin1 homologs. The three-dimensional structures of hPar14 and the PPIase domain of human hPin1 reveal a high degree of conservation. The root-mean-square deviations of the mean atomic coordinates of the heavy atoms of the backbone between residues 38 to 45, 50 to 58, 64 to 70, 81 to 86, 115 to 119 and 122 to 128 of hPar14 were 0.81(+/-0.07) A. The hPar14 model structure provides insight into how this class of PPIases may select preferential secondary catalytic sites, and also allows identification of a putative DNA-binding motif in parvulin-like PPIases.
Collapse
Affiliation(s)
- E Sekerina
- Max-Planck-Stelle for Enzymology of Protein Folding, 06120 Halle/Saale, Weinberg 22, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Li Q, Moutiez M, Charbonnier JB, Vaudry K, Ménez A, Quéméneur E, Dugave C. Design of a Gag pentapeptide analogue that binds human cyclophilin A more efficiently than the entire capsid protein: new insights for the development of novel anti-HIV-1 drugs. J Med Chem 2000; 43:1770-9. [PMID: 10794694 DOI: 10.1021/jm9903139] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclophilin A (hCyp-18), a ubiquitous cytoplasmic peptidyl-prolyl cis/trans isomerase (PPIase), orchestrates HIV-1 core packaging. hCyp-18, incorporated into the virion, enables core uncoating and RNA release and consequently plays a critical role in the viral replication process. hCyp-18 specifically interacts with a single exposed loop of the Gag polyprotein capsid domain via a network of nine hydrogen bonds which mainly implicates a 7-mer fragment of the loop. As previously reported, the corresponding linear heptapeptide Ac-Val-His-Ala-Gly-Pro-Ile-Ala-NH(2) (2) binds to hCyp-18 with a low affinity (IC(50) = 850 +/- 220 microM) but a potentially useful selectivity for hCyp-18 relative to hFKBP-12, another abundant PPIase. On the basis of X-ray structures of Gag fragments:hCyp-18 complexes, we generated a series of modified peptides in order to probe the determinants of the interaction and hence to select a peptidic ligand displaying a higher affinity than the capsid domain of Gag. We synthesized a series of heptapeptides to test the energetic contribution of amino acids besides the Gly-Pro moiety. In particular the importance of the histidine residue for the interaction was underscored. We also investigated the influence of N- and C-terminal modifications. Hexapeptides containing either deaminovaline (Dav) in place of the N-terminal valine or substitution of the C-terminal alanine amide with a benzylamide group displayed increased affinities. Combination of both modifications gave the most potent competitor Dav-His-Ala-Gly-Pro-Ile-NHBn (28) which has a higher affinity for hCyp-18 (K(d) = 3 +/- 0.5 microM) than the entire capsid protein (K(d) = 16 +/- 4 microM) and a very low affinity for hFKBP-12. Some of our results strongly suggest that the title compound is not a substrate of hCyp-18 and interacts preferentially in the trans conformation.
Collapse
Affiliation(s)
- Q Li
- Département D'Ingénierie et D'Etudes des Protéines, CEA/Saclay, Bâtiment 152, 91191 Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Reidt U, Reuter K, Achsel T, Ingelfinger D, Lührmann R, Ficner R. Crystal structure of the human U4/U6 small nuclear ribonucleoprotein particle-specific SnuCyp-20, a nuclear cyclophilin. J Biol Chem 2000; 275:7439-42. [PMID: 10713041 DOI: 10.1074/jbc.275.11.7439] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cyclophilin SnuCyp-20 is a specific component of the human U4/U6 small nuclear ribonucleoprotein particle involved in the nuclear splicing of pre-mRNA. It stably associates with the U4/U6-60kD and -90kD proteins, the human orthologues of the Saccharomyces cerevisiae Prp4 and Prp3 splicing factors. We have determined the crystal structure of SnuCyp-20 at 2.0-A resolution by molecular replacement. The structure of SnuCyp-20 closely resembles that of human cyclophilin A (hCypA). In particular, the catalytic centers of SnuCyp-20 and hCypA superimpose perfectly, which is reflected by the observed peptidyl-prolyl-cis/trans-isomerase activity of SnuCyp-20. The surface properties of both proteins, however, differ significantly. Apart from seven additional amino-terminal residues, the insertion of five amino acids in the loop alpha1-beta3 and of one amino acid in the loop alpha2-beta8 changes the conformations of both loops. The enlarged loop alpha1-beta3 is involved in the formation of a wide cleft with predominantly hydrophobic character. We propose that this enlarged loop is required for the interaction with the U4/U6-60kD protein.
Collapse
Affiliation(s)
- U Reidt
- Institut für Molekularbiologie und Tumorforschung, Universität Marburg, 35037 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Endrich MM, Gehrig P, Gehring H. Maturation-induced conformational changes of HIV-1 capsid protein and identification of two high affinity sites for cyclophilins in the C-terminal domain. J Biol Chem 1999; 274:5326-32. [PMID: 10026140 DOI: 10.1074/jbc.274.9.5326] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Viral incorporation of cyclophilin A (CyPA) during the assembly of human immunodeficiency virus type-1 (HIV-1) is crucial for efficient viral replication. CyPA binds to the previously identified Gly-Pro90 site of the capsid protein p24, but its role remained unclear. Here we report two new interaction sites between cyclophilins and p24. Both are located in the C-terminal domain of p24 around Gly-Pro157 and Gly-Pro224. Peptides corresponding to these regions showed higher affinities (Kd approximately 0.3 microM) for both CyPA and cyclophilin B than the best peptide derived from the Gly-Pro90 site ( approximately 8 microM) and thus revealed new sequence motifs flanking Gly-Pro that are important for tight interaction of peptide ligands with cyclophilins. Between CyPA and an immature (unprocessed) form of p24, a Kd of approximately 8 microM was measured, which corresponded with the Kd of the best of the Gly-Pro90 peptides, indicating an association via this site. Processing of immature p24 by the viral protease, yielding mature p24, elicited a conformational change in its C-terminal domain that was signaled by the covalently attached fluorescence label acrylodan. Consequently, CyPA and cyclophilin B bound with much higher affinities ( approximately 0.6 and 0.25 microM) to the new, i.e. maturation-generated sites. Since this domain is essential for p24 oligomerization and capsid cone formation, CyPA bound to the new sites might impair the regularity of the capsid cone and thus facilitate in vivo core disassembly after host infection.
Collapse
Affiliation(s)
- M M Endrich
- Biochemisches Institut, Universität Zürich, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
47
|
Hani J, Schelbert B, Bernhardt A, Domdey H, Fischer G, Wiebauer K, Rahfeld JU. Mutations in a peptidylprolyl-cis/trans-isomerase gene lead to a defect in 3'-end formation of a pre-mRNA in Saccharomyces cerevisiae. J Biol Chem 1999; 274:108-16. [PMID: 9867817 DOI: 10.1074/jbc.274.1.108] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a genetic screen aimed at the identification of trans-acting factors involved in mRNA 3'-end processing of budding yeast, we have previously isolated two temperature-sensitive mutants with an apparent defect in the 3'-end formation of a plasmid-derived pre-mRNA. Surprisingly, both mutants were rescued by the essential gene ESS1/PTF1 that encoded a putative peptidylprolyl-cis/trans-isomerase (PPIase) (Hani, J., Stumpf, G., and Domdey, H. (1995) FEBS Lett. 365, 198-202). Such enzymes, which catalyze the cis/trans-interconversion of peptide bonds N-terminal of prolines, are suggested to play a role in protein folding or trafficking. Here we report that Ptf1p shows PPIase activity in vitro, displaying an unusual substrate specificity for peptides with phosphorylated serine and threonine residues preceding proline. Both mutations were found to result in amino acid substitutions of highly conserved residues within the PPIase domain, causing a marked decrease in PPIase activity of the mutant enzymes. Our results are suggestive of a so far unknown involvement of a PPIase in mRNA 3'-end formation in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- J Hani
- Genzentrum der Ludwig-Maximilians-Universität München, Feodor-Lynen Strasse 25, 81377 München, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
de Haard HJ, Kazemier B, Koolen MJ, Nijholt LJ, Meloen RH, van Gemen B, Hoogenboom HR, Arends JW. Selection of recombinant, library-derived antibody fragments against p24 for human immunodeficiency virus type 1 diagnostics. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 1998; 5:636-44. [PMID: 9729530 PMCID: PMC95634 DOI: 10.1128/cdli.5.5.636-644.1998] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
By application of combinatorial library technology, we generated the first recombinant antibody fragments directed against the major capsid protein p24 of human immunodeficiency virus type 1 (HIV-1). A library of single-chain Fv fragments (scFvs) was constructed by using the antibody variable-region (V) genes of B cells derived from the spleen of a viral lysate-immunized mouse. Antibodies were selected by panning or by enrichment with biotinylated antigen, yielding four different families of antibody fragments. The different types of scFvs were characterized by affinity measurements, by antigen recognition on Western blots, and by pepscan analysis. The epitope of one of the scFvs is located near the residues involved in CypA binding, thereby making it an attractive candidate for therapeutic applications. Comparison of the V gene sequence of this scFV with that of a previously described monoclonal antibody reactive against this immunodominant epitope revealed the usage of the identical combination of VH and Vkappa regions. Thus, this is one of the rare examples in which the original combination in a library-derived antibody fragment was retrieved. After appropriate affinity and format improvements, the best of our recombinant scFvs may form the basis for a sensitive p24 assay as a measure of viral load. In addition, anti-p24 scFvs could be expressed as intracellular antibodies (intrabodies) to aid in the treatment of HIV infections.
Collapse
Affiliation(s)
- H J de Haard
- Biosciences Research Unit, Organon Teknika, Boxtel, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Schiene C, Reimer U, Schutkowski M, Fischer G. Mapping the stereospecificity of peptidyl prolyl cis/trans isomerases. FEBS Lett 1998; 432:202-6. [PMID: 9720925 DOI: 10.1016/s0014-5793(98)00871-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The stereospecificity of peptidyl prolyl cis/trans isomerases (PPIases) was studied using tetrapeptide substrate analogs in which one amino acid residue was replaced by the cognate D-amino acid in various positions of the peptide chain. Reversed stereocenters around proline markedly increased the rate of the spontaneous trans to cis isomerization of the prolyl bond whereas cis to trans isomerizations were less sensitive. PPIases like human cyclophilin18, human FKBP12, Escherichia coli parvulin10 and the PPIase domain of E. coli trigger factor exhibited stereoselectivity demanding at the P1 to P2' position of the substrate chain. The discriminating factor for stereoselectivity was the lack of formation of the Michaelis complexes of the diastereomeric substrates. However, D-alanine at the P1 position preserved considerable affinity to the active site, and largely prevented activation of the catalytic machinery for all PPIases investigated.
Collapse
Affiliation(s)
- C Schiene
- Max-Planck Society, Research Unit Enzymology of Protein Folding, Halle/Saale, Germany
| | | | | | | |
Collapse
|
50
|
Yin L, Braaten D, Luban J. Human immunodeficiency virus type 1 replication is modulated by host cyclophilin A expression levels. J Virol 1998; 72:6430-6. [PMID: 9658084 PMCID: PMC109799 DOI: 10.1128/jvi.72.8.6430-6436.1998] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Gag and the cellular protein cyclophilin A form an essential complex in the virion core: virions produced by proviruses encoding Gag mutants with decreased cyclophilin A affinity exhibit attenuated infectivity, as do virions produced in the presence of the competitive inhibitor cyclosporine. The A224E Gag mutant has no effect on cyclophilin A affinity but renders HIV-1 replication cyclosporine resistant in Jurkat T cells. In contrast, A224E mutant virus is dead in H9 T cells, although replication is rescued by cyclosporine or by expression in cis of a Gag mutant that decreases cyclophilin A-affinity. The observation that disruption of the Gag-cyclophilin A interaction rescues A224E mutant replication in H9 cells prompted experiments which revealed that, relative to Jurkat cells, H9 cells express greater quantities of cyclophilin A. The resulting larger quantity of cyclophilin A shown to be packaged into virions produced by H9 cells is presumably disruptive to the A224E mutant virion core. Further evidence that increased cyclophilin A expression in H9 cells is of functional relevance was provided by the finding that Gag mutants with decreased cyclophilin A affinity are dead in Jurkat cells but capable of replication in H9 cells. Similarly, cyclosporine concentrations which inhibit wild-type HIV-1 replication in Jurkat cells stimulate HIV-1 replication in H9 cells. These results suggest that HIV-1 virion infectivity imposes narrow constraints upon cyclophilin A stoichiometry in virions and that infectivity is finely tuned by host cyclophilin A expression levels.
Collapse
Affiliation(s)
- L Yin
- Departments of Microbiology, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | |
Collapse
|