1
|
Chaudhary S, Sindhu SS. Iron sensing, signalling and acquisition by microbes and plants under environmental stress: Use of iron-solubilizing bacteria in crop biofortification for sustainable agriculture. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112496. [PMID: 40222392 DOI: 10.1016/j.plantsci.2025.112496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/12/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
Iron is very crucial micronutrient prerequisite for growth of all cellular organisms including plants, microbes, animals and humans. Though iron (Fe) is present in abundance in earth's crust, but most of its forms present in soil are biologically unavailable, thus putting a constraint to utilize it. Plants and microorganisms maintain iron homeostasis to balance the supply of enough Fe for metabolism from their surrounding environments and to avoid excessive toxic levels. Microorganisms and plants employ different strategies for sensing, signaling, transportation and uptake of Fe under different types of stressed environments. Microbial communities present in soil and vicinity of roots contribute in biogeochemical cycling and uptake of different nutrients including Fe resulting into improved soil fertility and plant health. In this review, the regulation of iron uptake and transport under different kinds of biotic and abiotic stresses is described. In addition, the insights have been provided for enhancing bioavailability of Fe in sustainable agriculture practices. The inoculation of different crop plants with iron solubilizing microbes improved bioavailablilty of Fe in soil and increased plant growth and crop yield. Insights were provided about possible role of recent bioengineering techniques to improve Fe availability and uptake by plants. However, well-planned and large-scale field trials are required before recommending particular iron solubilizing microbes as biofertilizers for increasing Fe availability, improving plant development and crop yields in sustainable agriculture.
Collapse
Affiliation(s)
- Suman Chaudhary
- CSIR-Institute of Microbial Technology, Sector - 39A, Chandigarh, India
| | - Satyavir S Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, Haryana 125004, India.
| |
Collapse
|
2
|
Aguado-Norese C, Maldonado JE, Hodar C, Galvez G, Palma DE, Cambiazo V, Gonzalez M. Ironing out the conflicts: iron supplementation reduces negatives bacterial interactions in the rhizosphere of an Atacama-endemic perennial grass. ENVIRONMENTAL MICROBIOME 2025; 20:29. [PMID: 40069904 PMCID: PMC11899425 DOI: 10.1186/s40793-024-00661-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/22/2024] [Indexed: 03/14/2025]
Abstract
BACKGROUND In plants, root exudates selectively influence the growth of bacteria that colonize the rhizosphere. Bacterial communities associated with root systems are involved in macro and micronutrients cycling and organic matter transformation. In particular, iron is an essential micronutrient required for the proper functioning of iron-containing enzymes in processes such as photosynthesis, respiration, biomolecule synthesis, redox homeostasis, and cell growth in plants. However, the impact of changes of iron availability on the structure and set of ecological interactions taking place in the rhizosphere remains poorly understood. In this study, field experiments were conducted to compare the effects of iron supplementation (0.1 and 0.5 mM of FeSO4) on the assembly of the bacterial community of rhizosphere soil and bulk soil in a perennial grass present in the Andes steppe of Atacama Desert. RESULTS The results indicated that the difference in beta diversity between bulk soil and rhizosphere soil detected before supplementation did not persist after iron supplementation, in addition, co-occurrence networks showed a significant reduction in negative interactions among soil bacteria, mainly in rare taxa (< 0.1% relative abundance). CONCLUSIONS These observations suggest that iron availability contributes to the differentiation between bulk soil and rhizosphere bacterial communities, a process that is linked to significant changes in the relative abundance of more abundant species (> 0.1% relative abundance) and with a decrease in the negative interactions in both compartments after metal exposure. The differential effect of iron on the competition/cooperation ratio between bulk soils and the rhizosphere microbiome supports the hypothesis that the host limits the degree of cooperation that can be achieved by the bacterial community associated with an organ dedicated to nutrient absorption.
Collapse
Affiliation(s)
- Constanza Aguado-Norese
- Bioinformatic and Gene Expression Laboratory, INTA-Universidad de Chile, Santiago, Chile
- Millennium Institute Center for Genome Regulation, Santiago, Chile
| | - Jonathan E Maldonado
- Plant Multiomics and Bioinformatic Laboratory, Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Christian Hodar
- Bioinformatic and Gene Expression Laboratory, INTA-Universidad de Chile, Santiago, Chile
- Millennium Institute Center for Genome Regulation, Santiago, Chile
| | - Gabriel Galvez
- Bioinformatic and Gene Expression Laboratory, INTA-Universidad de Chile, Santiago, Chile
- Millennium Institute Center for Genome Regulation, Santiago, Chile
| | - Daniel E Palma
- Bioinformatic and Gene Expression Laboratory, INTA-Universidad de Chile, Santiago, Chile
- Millennium Institute Center for Genome Regulation, Santiago, Chile
| | - Verónica Cambiazo
- Bioinformatic and Gene Expression Laboratory, INTA-Universidad de Chile, Santiago, Chile
- Millennium Institute Center for Genome Regulation, Santiago, Chile
| | - Mauricio Gonzalez
- Bioinformatic and Gene Expression Laboratory, INTA-Universidad de Chile, Santiago, Chile.
- Millennium Institute Center for Genome Regulation, Santiago, Chile.
| |
Collapse
|
3
|
Li Y, Chen P, Zeng F, Wang H, Ma W, Wu A, Ma Z, Mao J, Chen B. Transcriptome and metabolome analysis reveal the mechanisms of iron absorption differences in apple rootstocks under alkaline condition. PHYSIOLOGIA PLANTARUM 2025; 177:e70134. [PMID: 39994109 DOI: 10.1111/ppl.70134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 02/02/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025]
Abstract
Iron (Fe) is an essential micronutrient for plant growth and development. Fe deficiency leads to growth restriction, developmental disorders, chlorosis, and yield loss of fruit trees. This study investigated the molecular and biochemical mechanisms underlying the differences in Fe absorption among various apple rootstocks under alkaline conditions. Results showed that 'Oregon Spur II' grafted onto Qingzhen No.2 (OS/Q2) exhibited foliage etiolation, while 'Oregon Spur II' grafted onto Qingzhen No.1 (OS/Q1) did not display such etiolation under alkaline conditions. Physiological experiments revealed that total Fe, ferrous Fe, and chlorophyll content in OS/Q2 were significantly lower than those in OS/Q1, whereas the Fe reductase activity in OS/Q2 was higher than that in OS/Q1. Additionally, a total of 7,025 and 9,102 differentially expressed genes (DEGs), including 488 transcription factors (TFs), were identified in OS/Q1L vs. OS/Q2L and OS/Q1R vs. OS/Q2R, respectively. Subsequently, the pathways associated with "phenylpropanoid biosynthesis", "plant hormone signal transduction", "hydrogen ion export across plasma membrane", "heme binding", and "iron binding" were identified as critical for responding to Fe deficiency under alkaline conditions. Furthermore, a total of 244 differentially accumulated metabolites (DAMs) were identified in OS/Q1R vs. OS/Q2R. A combined analysis of the transcriptome and metabolome revealed that "ABC transporters", "biosynthesis of amino acids", and "carbon fixation in photosynthetic organisms" were significantly overrepresented in the KEGG pathways of both DEGs and DAMs. These newly acquired genes and metabolites involved in Fe metabolism will enhance our capacity to employ genetic engineering technologies to maintain Fe homeostasis in plants in the future.
Collapse
Affiliation(s)
- Yanmei Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China
| | - Peng Chen
- Fruit Industry Service Center, Jingning, PR China
| | - Fanwei Zeng
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China
| | - Han Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China
| | - Weifeng Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China
| | - Aiyuan Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China
| | - Zonghuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China
| |
Collapse
|
4
|
Duflos R, Vailleau F, Roux F. Toward Ecologically Relevant Genetics of Interactions Between Host Plants and Plant Growth-Promoting Bacteria. ADVANCED GENETICS (HOBOKEN, N.J.) 2024; 5:2300210. [PMID: 39552649 PMCID: PMC11561803 DOI: 10.1002/ggn2.202300210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/24/2024] [Indexed: 11/19/2024]
Abstract
The social movement to reduce reliance on pesticides and synthesized fertilizers and the growing global demand for sustainable food supplies require the development of eco-friendly and sustainable agricultural practices. In line, plant growth-promoting bacteria (PGPB) can participate in creating innovative agroecological systems. While the effectiveness of PGPB is highly influenced by abiotic conditions and microbe-microbe interactions, beneficial plant-PGPB interactions can also highly depend on both host and PGPB genotype. Here, the state of the art on the extent of natural genetic variation of plant-PGPB interactions and the underlying genetic architecture, in particular in Arabidopsis thaliana is reviewed. Extensive natural plant genetic variation in response to PGPB is associated with a polygenic architecture and genetic pathways rarely mentioned as being involved in the response to PGPB. To date, natural genetic variation within PGPB is little explored, which may in turn allow the identification of new genetic pathways underlying benefits to plants. Accordingly, several avenues to better understand the genomic and molecular landscape of plant-PGPB interactions are introduced. Finally, the need for establishing thorough functional studies of candidate genes underlying Quantitative Trait Loci and estimating the extent of genotype-by-genotype-by-environment interactions within the context of realistic (agro-)ecological conditions is advocated.
Collapse
Affiliation(s)
- Rémi Duflos
- LIPMEINRAECNRSUniversité de ToulouseCastanet‐Tolosan31326France
| | | | - Fabrice Roux
- LIPMEINRAECNRSUniversité de ToulouseCastanet‐Tolosan31326France
| |
Collapse
|
5
|
Xin J. Enhancing soil health to minimize cadmium accumulation in agro-products: the role of microorganisms, organic matter, and nutrients. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123890. [PMID: 38554840 DOI: 10.1016/j.envpol.2024.123890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/03/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Agro-products accumulate Cd from the soil and are the main source of Cd in humans. Their use must therefore be minimized using effective strategies. Large soil beds containing low-to-moderate Cd-contamination are used to produce agro-products in many developing countries to keep up with the demand of their large populations. Improving the health of Cd-contaminated soils could be a cost-effective method for minimizing Cd accumulation in crops. In this review, the latest knowledge on the physiological and molecular mechanisms of Cd uptake and translocation in crops is presented, providing a basis for developing advanced technologies for producing Cd-safe agro-products. Inoculation of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi, application of organic matter, essential nutrients, beneficial elements, regulation of soil pH, and water management are efficient techniques used to decrease soil Cd bioavailability and inhibiting the uptake and accumulation of Cd in crops. In combination, these strategies for improving soil health are environmentally friendly and practical for reducing Cd accumulation in crops grown in lightly to moderately Cd-contaminated soil.
Collapse
Affiliation(s)
- Junliang Xin
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Heng Hua Road 18, Hengyang 421002, China.
| |
Collapse
|
6
|
Qin H, Wang Z, Sha W, Song S, Qin F, Zhang W. Role of Plant-Growth-Promoting Rhizobacteria in Plant Machinery for Soil Heavy Metal Detoxification. Microorganisms 2024; 12:700. [PMID: 38674644 PMCID: PMC11052264 DOI: 10.3390/microorganisms12040700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Heavy metals migrate easily and are difficult to degrade in the soil environment, which causes serious harm to the ecological environment and human health. Thus, soil heavy metal pollution has become one of the main environmental issues of global concern. Plant-growth-promoting rhizobacteria (PGPR) is a kind of microorganism that grows around the rhizosphere and can promote plant growth and increase crop yield. PGPR can change the bioavailability of heavy metals in the rhizosphere microenvironment, increase heavy metal uptake by phytoremediation plants, and enhance the phytoremediation efficiency of heavy-metal-contaminated soils. In recent years, the number of studies on the phytoremediation efficiency of heavy-metal-contaminated soil enhanced by PGPR has increased rapidly. This paper systematically reviews the mechanisms of PGPR that promote plant growth (including nitrogen fixation, phosphorus solubilization, potassium solubilization, iron solubilization, and plant hormone secretion) and the mechanisms of PGPR that enhance plant-heavy metal interactions (including chelation, the induction of systemic resistance, and the improvement of bioavailability). Future research on PGPR should address the challenges in heavy metal removal by PGPR-assisted phytoremediation.
Collapse
Affiliation(s)
| | | | | | | | - Fenju Qin
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wenchao Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
7
|
Lin Z, Sterckeman T, Nguyen C. How exogenous ligand enhances the efficiency of cadmium phytoextraction from soils? JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133188. [PMID: 38134693 DOI: 10.1016/j.jhazmat.2023.133188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
Many experiments showed that exogenous ligands could enhance cadmium (Cd) phytoextraction efficiency in soils. Previous studies suggested that the dissociation and the apoplastic uptake of Cd complex could not fully explain the increase of root Cd uptake. Two hypotheses are evaluated to explain enhanced Cd uptake in the presence of ligand: i) enhanced apoplastic uptake of complex due to reduced apoplastic resistance and ii) complex internalization by membrane transporters. RESULTS: show that the ligand affinity for Cd is a key characteristic determining the potential mechanism for enhanced Cd uptake. When low molecular weight organic acids are applied, the complex dissociation could generally be fast (> 10-3.3 s-1) and result in the increased Cd uptake. When hydrophilic aminopolycarboxylic acids (APCAs) are applied in experiments without water or temperature stresses to the plant, the root water uptake flux could very likely be high (> 10-7.8 dm s-1), and the strong apoplastic complex uptake could enhance the root Cd uptake. When lipophilic APCAs are applied, the strong internalization of the complex by membrane transporters could result in the increased Cd uptake if the maximum internalization rate is high (> 10-12 mol dm-2 s-1). However, the complex internalization by membrane transporters must be experimentally confirmed.
Collapse
Affiliation(s)
- Zhongbing Lin
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China.
| | - Thibault Sterckeman
- Laboratoire Sols et Environnement, Université de Lorraine, INRAE, F-54000 Nancy, France.
| | - Christophe Nguyen
- UMR 1391 ISPA, INRAE-Bordeaux Sciences Agro, F-33140 Villenave-d'Ornon, France.
| |
Collapse
|
8
|
Spielmann J, Fanara S, Cotelle V, Vert G. Multilayered regulation of iron homeostasis in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1250588. [PMID: 37841618 PMCID: PMC10570522 DOI: 10.3389/fpls.2023.1250588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023]
Abstract
Iron (Fe) is an essential micronutrient for plant growth and development due to its role in crucial processes such as photosynthesis and modulation of the redox state as an electron donor. While Fe is one of the five most abundant metals in the Earth's crust, it is poorly accessible to plants in alkaline soils due to the formation of insoluble complexes. To limit Fe deficiency symptoms, plant have developed a highly sophisticated regulation network including Fe sensing, transcriptional regulation of Fe-deficiency responsive genes, and post-translational modifications of Fe transporters. In this mini-review, we detail how plants perceive intracellular Fe status and how they regulate transporters involved in Fe uptake through a complex cascade of transcription factors. We also describe the current knowledge about intracellular trafficking, including secretion to the plasma membrane, endocytosis, recycling, and degradation of the two main Fe transporters, IRON-REGULATED TRANSPORTER 1 (IRT1) and NATURAL RESISTANCE ASSOCIATED MACROPHAGE PROTEIN 1 (NRAMP1). Regulation of these transporters by their non-Fe substrates is discussed in relation to their functional role to avoid accumulation of these toxic metals during Fe limitation.
Collapse
Affiliation(s)
- Julien Spielmann
- Plant Science Research Laboratory (LRSV), University of Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| | - Steven Fanara
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Valérie Cotelle
- Plant Science Research Laboratory (LRSV), University of Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| | - Grégory Vert
- Plant Science Research Laboratory (LRSV), University of Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| |
Collapse
|
9
|
Khan S, Lang M. A Comprehensive Review on the Roles of Metals Mediating Insect-Microbial Pathogen Interactions. Metabolites 2023; 13:839. [PMID: 37512546 PMCID: PMC10384549 DOI: 10.3390/metabo13070839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Insects and microbial pathogens are ubiquitous and play significant roles in various biological processes, while microbial pathogens are microscopic organisms that can cause diseases in multiple hosts. Insects and microbial pathogens engage in diverse interactions, leveraging each other's presence. Metals are crucial in shaping these interactions between insects and microbial pathogens. However, metals such as Fe, Cu, Zn, Co, Mo, and Ni are integral to various physiological processes in insects, including immune function and resistance against pathogens. Insects have evolved multiple mechanisms to take up, transport, and regulate metal concentrations to fight against pathogenic microbes and act as a vector to transport microbial pathogens to plants and cause various plant diseases. Hence, it is paramount to inhibit insect-microbe interaction to control pathogen transfer from one plant to another or carry pathogens from other sources. This review aims to succinate the role of metals in the interactions between insects and microbial pathogens. It summarizes the significance of metals in the physiology, immune response, and competition for metals between insects, microbial pathogens, and plants. The scope of this review covers these imperative metals and their acquisition, storage, and regulation mechanisms in insect and microbial pathogens. The paper will discuss various scientific studies and sources, including molecular and biochemical studies and genetic and genomic analysis.
Collapse
Affiliation(s)
- Subhanullah Khan
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China
| |
Collapse
|
10
|
Guo G, Yu T, Zhang H, Chen M, Dong W, Zhang S, Tang X, Liu L, Heng W, Zhu L, Jia B. Evidence That PbrSAUR72 Contributes to Iron Deficiency Tolerance in Pears by Facilitating Iron Absorption. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112173. [PMID: 37299155 DOI: 10.3390/plants12112173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
Iron is an essential trace element for plants; however, low bioactive Fe in soil continuously places plants in an Fe-deficient environment, triggering oxidative damage. To cope with this, plants make a series of alterations to increase Fe acquisition; however, this regulatory network needs further investigation. In this study, we found notably decreased indoleacetic acid (IAA) content in chlorotic pear (Pyrus bretschneideri Rehd.) leaves caused by Fe deficiency. Furthermore, IAA treatment slightly induced regreening by increasing chlorophyll synthesis and Fe2+ accumulation. At that point, we identified PbrSAUR72 as a key negative effector output of auxin signaling and established its close relationship to Fe deficiency. Furthermore, the transient PbrSAUR72 overexpression could form regreening spots with increased IAA and Fe2+ content in chlorotic pear leaves, whereas its transient silencing does the opposite in normal pear leaves. In addition, cytoplasm-localized PbrSAUR72 exhibits root expression preferences and displays high homology to AtSAUR40/72. This promotes salt tolerance in plants, indicating a putative role for PbrSAUR72 in abiotic stress responses. Indeed, transgenic plants of Solanum lycopersicum and Arabidopsis thaliana overexpressing PbrSAUR72 displayed less sensitivity to Fe deficiency, accompanied by substantially elevated expression of Fe-induced genes, such as FER/FIT, HA, and bHLH39/100. These result in higher ferric chelate reductase and root pH acidification activities, thereby hastening Fe absorption in transgenic plants under an Fe-deficient condition. Moreover, the ectopic overexpression of PbrSAUR72 inhibited reactive oxygen species production in response to Fe deficiency. These findings contribute to a new understanding of PbrSAURs and its involvement in Fe deficiency, providing new insights for the further study of the regulatory mechanisms underlying the Fe deficiency response.
Collapse
Affiliation(s)
- Guoling Guo
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Tao Yu
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
- Agricultural Experimental Center of Guiyang, Guiyang Agriculture and Rural Bureau, Guiyang 550018, China
| | - Haiyan Zhang
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Meng Chen
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
- Singleron Biotechnology Co., Ltd., Nanjing 210000, China
| | - Weiyu Dong
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Shuqin Zhang
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Xiaomei Tang
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Lun Liu
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Wei Heng
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Liwu Zhu
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Bing Jia
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
11
|
Pagani MA, Gomez-Casati DF. Advances in Iron Retrograde Signaling Mechanisms and Uptake Regulation in Photosynthetic Organisms. Methods Mol Biol 2023; 2665:121-145. [PMID: 37166598 DOI: 10.1007/978-1-0716-3183-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Iron (Fe) is an essential metal for the growth and development of different organisms, including plants and algae. This metal participates in different biological processes, among which are cellular respiration and photosynthesis. Fe is found associated with heme groups and as part of inorganic Fe-S groups as cofactors of numerous cellular proteins. Although Fe is abundant in soils, it is often not bioavailable due to soil pH. For this reason, photosynthetic organisms have developed different strategies for the uptake, the sensing of Fe intracellular levels but also different mechanisms that maintain and regulate adequate concentrations of this metal in response to physiological needs. This work focuses on discussing recent advances in the characterization of the mechanisms of Fe homeostasis and Fe retrograde signaling in photosynthetic organisms.
Collapse
Affiliation(s)
- Maria A Pagani
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Argentina.
| | - Diego F Gomez-Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
12
|
Taheri P. Crosstalk of nitro-oxidative stress and iron in plant immunity. Free Radic Biol Med 2022; 191:137-149. [PMID: 36075546 DOI: 10.1016/j.freeradbiomed.2022.08.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
Accumulation of oxygen and nitrogen radicals and their derivatives, known as reactive oxygen species (ROS) and reactive nitrogen species (RNS), occurs throughout various phases of plant growth in association with biotic and abiotic stresses. One of the consequences of environmental stresses is disruption of homeostasis between production and scavenging of ROS and RNS, which leads to nitro-oxidative burst and affects other defense-related mechanisms, such as polyamines levels, phenolics, lignin and callose as defense components related to plant cell wall reinforcement. Although this subject has attracted huge interest, the cross-talk between these signaling molecules and iron, as a main metal element involved in the activity of various enzymes and numerous vital processes in the living cells, remains largely unexplored. Therefore, it seems necessary to pay more in depth attention to the mechanisms of plant resistance against various environmental stimuli for designing novel and effective plant protection strategies. This review is focused on advances in recent knowledge related to the role of ROS, RNS, and association of these signaling molecules with iron in plant immunity. Furthermore, the role of cell wall fortification as a main physical barrier involved in plant defense have been discussed in association with reactive species and iron ions.
Collapse
Affiliation(s)
- Parissa Taheri
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
13
|
Li W, Han X, Lan P. Emerging roles of protein phosphorylation in plant iron homeostasis. TRENDS IN PLANT SCIENCE 2022; 27:908-921. [PMID: 35414480 DOI: 10.1016/j.tplants.2022.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Remarkable progress has been made in dissecting the molecular mechanisms involved in iron (Fe) homeostasis in plants, especially the identification of key transporter and transcriptional regulatory networks. But how the protein activity of these master players is regulated by Fe status remains underexplored. Recent studies show that major players toggle switch their properties by protein phosphorylation under different Fe conditions and consequently control the signaling cascade and metabolic adjustment. Moreover, Fe deficiency causes changes of multiple kinases and phosphatases. Here, we discuss how these findings highlight the emergence of the protein phosphorylation-dependent regulation for rapid and precise responses to Fe status to attain Fe homeostasis. Further studies will be needed to fully understand the regulation of these intricate networks.
Collapse
Affiliation(s)
- Wenfeng Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Xiuwen Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Khan MS, Lu Q, Cui M, Rajab H, Wu H, Chai T, Ling HQ. Crosstalk Between Iron and Sulfur Homeostasis Networks in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:878418. [PMID: 35755678 PMCID: PMC9224419 DOI: 10.3389/fpls.2022.878418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The widespread deficiency of iron (Fe) and sulfur (S) is becoming a global concern. The underlying mechanisms regulating Fe and S sensing and signaling have not been well understood. We investigated the crosstalk between Fe and S using mutants impaired in Fe homeostasis, sulfate assimilation, and glutathione (GSH) biosynthesis. We showed that chlorosis symptoms induced by Fe deficiency were not directly related to the endogenous GSH levels. We found dynamic crosstalk between Fe and S networks and more interestingly observed that the upregulated expression of IRT1 and FRO2 under S deficiency in Col-0 was missing in the cad2-1 mutant background, which suggests that under S deficiency, the expression of IRT1 and FRO2 was directly or indirectly dependent on GSH. Interestingly, the bottleneck in sulfite reduction led to a constitutively higher IRT1 expression in the sir1-1 mutant. While the high-affinity sulfate transporter (Sultr1;2) was upregulated under Fe deficiency in the roots, the low-affinity sulfate transporters (Sultr2;1, and Sultr2;2) were down-regulated in the shoots of Col-0 seedlings. Moreover, the expression analysis of some of the key players in the Fe-S cluster assembly revealed that the expression of the so-called Fe donor in mitochondria (AtFH) and S mobilizer of group II cysteine desulfurase in plastids (AtNFS2) were upregulated under Fe deficiency in Col-0. Our qPCR data and ChIP-qPCR experiments suggested that the expression of AtFH is likely under the transcriptional regulation of the central transcription factor FIT.
Collapse
Affiliation(s)
- Muhammad Sayyar Khan
- The State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Qiao Lu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Man Cui
- The State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hala Rajab
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Huilan Wu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Tuanyao Chai
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hong-Qing Ling
- The State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Banerjee A, Roychoudhury A. Dissecting the phytohormonal, genomic and proteomic regulation of micronutrient deficiency during abiotic stresses in plants. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
16
|
Münzner K, Gollnisch R, Rengefors K, Koreiviene J, Lindström ES. High Iron Requirements for Growth in the Nuisance Alga Gonyostomum semen (Raphidophyceae). JOURNAL OF PHYCOLOGY 2021; 57:1309-1322. [PMID: 33749827 DOI: 10.1111/jpy.13170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The bloom-forming freshwater alga Gonyostomum semen is associated with acidic, mesotrophic brown water lakes in boreal regions. However, researchers have been unable to conclusively link G. semen abundance and bloom formation to typical brown water lake traits, that is, high water color and DOC (dissolved organic carbon) concentrations. Iron is a main driver of water color in boreal lakes, and a recent study of lake monitoring data indicated a connection between lakes with high G. semen abundance and iron concentrations >200 µg · L-1 . Thus, iron may be the missing link in explaining G. semen abundance and growth dynamics. We experimentally assessed the effects of different iron concentrations above or below 200 µg · L-1 on the growth of G. semen batch monocultures. Iron concentrations <200 µg · L-1 limited G. semen growth, while iron concentrations >200 µg · L-1 did not. Moreover, the iron concentration of the medium required for growth was higher than for other common phytoplankton (Microcystis botrys and Chlamydomonas sp.) included in the experiment. These results indicate that G. semen requires high levels of iron in the lake environment. Consequently, this and previous findings using lake monitoring data support the hypothesis that high concentrations of iron favor the formation of high-density G. semen blooms in boreal brown water lakes. As lakes get browner in a changing climate, monitoring iron levels could be a potential tool to identify lakes at risk for G. semen blooms, especially among lakes that provide ecosystem services to society.
Collapse
Affiliation(s)
- Karla Münzner
- Department of Ecology and Genetics/Limnology, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Raphael Gollnisch
- Aquatic Ecology, Department of Biology, Lund University, Sölvegatan 37, 22362, Lund, Sweden
| | - Karin Rengefors
- Aquatic Ecology, Department of Biology, Lund University, Sölvegatan 37, 22362, Lund, Sweden
| | - Judita Koreiviene
- Nature Research Centre, Akademijos Str. 2, Vilnius, LT-08412, Lithuania
| | - Eva S Lindström
- Department of Ecology and Genetics/Limnology, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| |
Collapse
|
17
|
Guo Z, Xu J, Wang Y, Hu C, Shi K, Zhou J, Xia X, Zhou Y, Foyer CH, Yu J. The phyB-dependent induction of HY5 promotes iron uptake by systemically activating FER expression. EMBO Rep 2021; 22:e51944. [PMID: 34018302 DOI: 10.15252/embr.202051944] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/26/2021] [Accepted: 04/21/2021] [Indexed: 11/09/2022] Open
Abstract
Iron (Fe) deficiency affects global crop productivity and human health. However, the role of light signaling in plant Fe uptake remains uncharacterized. Here, we find that light-induced Fe uptake in tomato (Solanum lycopersicum L.) is largely dependent on phytochrome B (phyB). Light induces the phyB-dependent accumulation of ELONGATED HYPOCOTYL 5 (HY5) protein both in the leaves and roots. HY5 movement from shoots to roots activates the expression of FER transcription factor, leading to the accumulation of transcripts involved in Fe uptake. Mutation in FER abolishes the light quality-induced changes in Fe uptake. The low Fe uptake observed in phyB, hy5, and fer mutants is accompanied by lower photosynthetic electron transport rates. Exposure to red light at night increases Fe accumulation in wild-type fruit but has little effects on fruit of phyB mutants. Taken together, these results demonstrate that Fe uptake is systemically regulated by light in a phyB-HY5-FER-dependent manner. These findings provide new insights how the manipulation of light quality could be used to improve Fe uptake and hence the nutritional quality of crops.
Collapse
Affiliation(s)
- Zhixin Guo
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Jin Xu
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Yu Wang
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Chaoyi Hu
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Kai Shi
- Department of Horticulture, Zhejiang University, Hangzhou, China.,Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Hangzhou, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang University, Hangzhou, China.,Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Hangzhou, China
| | - Xiaojian Xia
- Department of Horticulture, Zhejiang University, Hangzhou, China.,Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Hangzhou, China
| | - Yanhong Zhou
- Department of Horticulture, Zhejiang University, Hangzhou, China.,Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Hangzhou, China
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, UK
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Kruglov DS, Kruglova MJ, Olennikov DN. Correlation between the Microelement Profile and Essential Oil Composition of Plants from the Filipendula Genus. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162020070055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Tong J, Sun M, Wang Y, Zhang Y, Rasheed A, Li M, Xia X, He Z, Hao Y. Dissection of Molecular Processes and Genetic Architecture Underlying Iron and Zinc Homeostasis for Biofortification: From Model Plants to Common Wheat. Int J Mol Sci 2020; 21:E9280. [PMID: 33291360 PMCID: PMC7730113 DOI: 10.3390/ijms21239280] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
The micronutrients iron (Fe) and zinc (Zn) are not only essential for plant survival and proliferation but are crucial for human health. Increasing Fe and Zn levels in edible parts of plants, known as biofortification, is seen a sustainable approach to alleviate micronutrient deficiency in humans. Wheat, as one of the leading staple foods worldwide, is recognized as a prioritized choice for Fe and Zn biofortification. However, to date, limited molecular and physiological mechanisms have been elucidated for Fe and Zn homeostasis in wheat. The expanding molecular understanding of Fe and Zn homeostasis in model plants is providing invaluable resources to biofortify wheat. Recent advancements in NGS (next generation sequencing) technologies coupled with improved wheat genome assembly and high-throughput genotyping platforms have initiated a revolution in resources and approaches for wheat genetic investigations and breeding. Here, we summarize molecular processes and genes involved in Fe and Zn homeostasis in the model plants Arabidopsis and rice, identify their orthologs in the wheat genome, and relate them to known wheat Fe/Zn QTL (quantitative trait locus/loci) based on physical positions. The current study provides the first inventory of the genes regulating grain Fe and Zn homeostasis in wheat, which will benefit gene discovery and breeding, and thereby accelerate the release of Fe- and Zn-enriched wheats.
Collapse
Affiliation(s)
- Jingyang Tong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Mengjing Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Yue Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Yong Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Awais Rasheed
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing 100081, China;
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ming Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Xianchun Xia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing 100081, China;
| | - Yuanfeng Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| |
Collapse
|
20
|
Zhu XF, Wu Q, Meng YT, Tao Y, Shen RF. AtHAP5A regulates iron translocation in iron-deficient Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1910-1925. [PMID: 33405355 DOI: 10.1111/jipb.12984] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/16/2020] [Indexed: 06/12/2023]
Abstract
Iron (Fe) deficient plants employ multiple strategies to increase root uptake and root-to-shoot translocation of Fe. The identification of genes that are responsible for these processes, and a comprehensive understanding of the regulatory effects of transcriptional networks on their expression, including transcription factors (TFs), is underway in Arabidopsis thaliana. Here, we show that a Histone- or heme-associated proteins (HAP) transcription factor (TF), HAP5A, is necessary for the response to Fe deficiency in Arabidopsis. Its expression was induced under Fe deficiency, and the lack of HAP5A significantly decreased Fe translocation from the root to the shoot, resulting in substantial chlorosis of the newly expanded leaves, compared with the wild-type (WT, Col-0). Further analysis found that the expression of a gene encoding nicotianamine (NA) synthase (NAS1) was dramatically decreased in the hap5a mutant, regardless of the Fe status. Yeast-one-hybrid and ChIP analyses suggested that HAP5A directly binds to the promoter region of NAS1. Moreover, overexpression of NAS1 could rescue the chlorosis phenotype of hap5a in Fe deficient conditions. In summary, a novel pathway was elucidated, showing that NAS1-dependent translocation of Fe from the root to the shoot is controlled by HAP5A in Fe-deficient Arabidopsis thaliana.
Collapse
Affiliation(s)
- Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qi Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Ting Meng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye Tao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
21
|
Guo Z, Kang Y, Hu Z, Liang S, Xie H, Ngo HH, Zhang J. Removal pathways of benzofluoranthene in a constructed wetland amended with metallic ions embedded carbon. BIORESOURCE TECHNOLOGY 2020; 311:123481. [PMID: 32446233 DOI: 10.1016/j.biortech.2020.123481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
The limited adsorption capacity of the substrate and the concentration of dissolved oxygen in constructed wetlands (CWs) have inhibited their ability to efficiently remove polycyclic aromatic hydrocarbons (PAHs) from wastewater. Presently, biochar and activated carbon modified with Fe3+ and Mn4+ were used as effective sorbents in the removal of benzofluoranthene (BbFA), a typical PAH, in CW microcosms. The addition of metallic ions embedded carbon increased NO3-N accumulation by the reduction of Fe3+ and Mn4+, which led to improved BbFA degradation. Additionally, plant adsorption in root and stem sections were observed separately. The abundance of PAH-degrading microbes in the rhizosphere substrate was higher with the metallic ions embedded carbon than control group. The Fe3+, Mn4+ and NO3-N served as electron acceptors increased BbFA microbial degradation. The removal pathways of BbFA in the modified CWs were proposed which involved settlement in the substrate, plant absorption, and microbial degradation.
Collapse
Affiliation(s)
- Zizhang Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yan Kang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Shuang Liang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Huijun Xie
- Environmental Research Institute, Shandong University, Qingdao 266237, China
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
22
|
Zhang JC, Wang XN, Sun W, Wang XF, Tong XS, Ji XL, An JP, Zhao Q, You CX, Hao YJ. Phosphate regulates malate/citrate-mediated iron uptake and transport in apple. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 297:110526. [PMID: 32563464 DOI: 10.1016/j.plantsci.2020.110526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
The accumulation of iron (Fe) in the apical meristem is considered as a critical factor involved in limiting the elongation of roots under low phosphate (Pi) conditions. Furthermore, the antagonism between Fe and Pi largely affects the effective utilization of Fe. Although the lack of Pi serves to increase the effectiveness of Fe in rice under both Fe-sufficient and Fe-deficient conditions, the underlying physiological mechanism governing this phenomenon is still unclear. In this study, we found that low Pi alleviated the Fe-deficiency phenotype in apples. Additionally, low Pi treatments increased ferric-chelated reductase (FCR) activity in the rhizosphere, promoted proton exocytosis, and enhanced the Fe concentration in both the roots and shoots. In contrast, high Pi treatments inhibited this process. Under conditions of low Pi, malate and citrate exudation from apple roots occurred under both Fe-sufficient and Fe-deficient conditions. In addition, treatment with 0.5 mM malate and citrate effectively alleviated the Fe and Pi deficiencies. Taken together, these data support the conclusion that a low Pi supply promotes organic acids exudation and enhances Fe absorption during Fe deficiency in apples.
Collapse
Affiliation(s)
- Jiu-Cheng Zhang
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Na Wang
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Wei Sun
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xian-Song Tong
- Funing Agricultural Bureau, Wenshan, 663400, Yunnan, China
| | - Xing-Long Ji
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Jian-Ping An
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Qiang Zhao
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
23
|
Guo Z, Du N, Li Y, Zheng S, Shen S, Piao F. Gamma-aminobutyric acid enhances tolerance to iron deficiency by stimulating auxin signaling in cucumber (Cucumis sativusL.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110285. [PMID: 32035398 DOI: 10.1016/j.ecoenv.2020.110285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/11/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
Iron deficiency severely affects crop yield and quality. Gamma-aminobutyric acid (GABA) plays a vital role in plant responses to multifarious stresses. However, the role of GABA in Fe deficiency responses and the potential mechanisms remain largely unknown in cucumber. Here, we found that Fe deficiency raised the GABA levels in leaves and roots of cucumber. To probe the role of GABA in Fe deficiency, the seedlings were subjected to five levels of GABA concentrations (0, 5, 10, 20 and 40 mmol L-1) for 7 days under Fe deficiency. The results demonstrated that 20 mM GABA in alleviating the Fe deficiency-induced stress was the most effective. GABA pretreatment reduced the Fe deficiency-induced chlorosis and inhibition of photosynthesis and growth, and significantly enhanced the contents of iron in shoots and roots. Exogenous GABA significantly decreased the pH of nutrient solution and increased ferric-chelate reductase (FCR) activity induced by Fe deficiency and the transcript levels of Fe uptake-related genes HA1, FRO2 and IRT1 in roots. GABA also increased the content of auxin (IAA) and expression of auxin biosynthesis (YUC4), response (IAA1), and transport (PIN1) genes under Fe deficiency. Furthermore, exogenous the auxin transport inhibitor 1-naphthylphthalamic acid (NPA) application abolished the GABA-induced changes in Fe deficiency. In summary, we found that GABA improves tolerance to iron deficiency via an auxin-dependent mechanism in cucumber.
Collapse
Affiliation(s)
- Zhixin Guo
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Nanshan Du
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Yingnan Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Shuxin Zheng
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Shunshan Shen
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Fengzhi Piao
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, PR China.
| |
Collapse
|
24
|
Scheepers M, Spielmann J, Boulanger M, Carnol M, Bosman B, De Pauw E, Goormaghtigh E, Motte P, Hanikenne M. Intertwined metal homeostasis, oxidative and biotic stress responses in the Arabidopsis frd3 mutant. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:34-52. [PMID: 31721347 DOI: 10.1111/tpj.14610] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/24/2019] [Accepted: 10/31/2019] [Indexed: 05/22/2023]
Abstract
FRD3 (FERRIC REDUCTASE DEFECTIVE 3) plays a major role in iron (Fe) and zinc (Zn) homeostasis in Arabidopsis. It transports citrate, which enables metal distribution in the plant. An frd3 mutant is dwarf and chlorotic and displays a constitutive Fe-deficiency response and strongly altered metal distribution in tissues. Here, we have examined the interaction between Fe and Zn homeostasis in an frd3 mutant exposed to varying Zn supply. Detailed phenotyping using transcriptomic, ionomic, histochemical and spectroscopic approaches revealed the full complexity of the frd3 mutant phenotype, which resulted from altered transition metal homeostasis, manganese toxicity, and oxidative and biotic stress responses. The cell wall played a key role in these processes, as a site for Fe and hydrogen peroxide accumulation, and displayed modified structure in the mutant. Finally, we showed that Zn excess interfered with these mechanisms and partially restored root growth of the mutant, without reverting the Fe-deficiency response. In conclusion, the frd3 mutant molecular phenotype is more complex than previously described and illustrates how the response to metal imbalance depends on multiple signaling pathways.
Collapse
Affiliation(s)
- Maxime Scheepers
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000, Liège, Belgium
| | - Julien Spielmann
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000, Liège, Belgium
| | - Madeleine Boulanger
- Laboratory of Mass Spectrometry, Departement of Chemistry, University of Liège, 4000, Liège, Belgium
- InBioS-Center for Protein Engineering (CIP), Bacterial Physiology and Genetics, University of Liège, 4000, Liège, Belgium
| | - Monique Carnol
- InBioS-PhytoSystems, Laboratory of Plant and Microbial Ecology, University of Liège, 4000, Liège, Belgium
| | - Bernard Bosman
- InBioS-PhytoSystems, Laboratory of Plant and Microbial Ecology, University of Liège, 4000, Liège, Belgium
| | - Edwin De Pauw
- Laboratory of Mass Spectrometry, Departement of Chemistry, University of Liège, 4000, Liège, Belgium
| | - Erik Goormaghtigh
- Structure and Function of Biological membranes, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Patrick Motte
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000, Liège, Belgium
| | - Marc Hanikenne
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000, Liège, Belgium
| |
Collapse
|
25
|
Balparda M, Armas AM, Estavillo GM, Roschzttardtz H, Pagani MA, Gomez-Casati DF. The PAP/SAL1 retrograde signaling pathway is involved in iron homeostasis. PLANT MOLECULAR BIOLOGY 2020; 102:323-337. [PMID: 31900819 DOI: 10.1007/s11103-019-00950-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/16/2019] [Indexed: 05/24/2023]
Abstract
There is a link between PAP/SAL retrograde pathway, ethylene signaling and Fe metabolism in Arabidopsis. Nuclear gene expression is regulated by a diversity of retrograde signals that travel from organelles to the nucleus in a lineal or classical model. One such signal molecule is 3'-phosphoadenisine-5'-phosphate (PAP) and it's in vivo levels are regulated by SAL1/FRY1, a phosphatase enzyme located in chloroplast and mitochondria. This metabolite inhibits the action of a group of exorribonucleases which participate in post-transcriptional gene expression regulation. Transcriptome analysis of Arabidopsis thaliana mutant plants in PAP-SAL1 pathway revealed that the ferritin genes AtFER1, AtFER3, and AtFER4 are up-regulated. In this work we studied Fe metabolism in three different mutants of the PAP/SAL1 retrograde pathway. Mutant plants showed increased Fe accumulation in roots, shoots and seeds when grown in Fe-sufficient condition, and a constitutive activation of the Strategy I Fe uptake genes. As a consequence, they grew more vigorously than wild type plants in Fe-deficient medium. However, when mutant plants grown in Fe-deficient conditions were sprayed with Fe in their leaves, they were unable to deactivate root Fe uptake. Ethylene synthesis inhibition revert the constitutive Fe uptake phenotype. We propose that there is a link between PAP/SAL pathway, ethylene signaling and Fe metabolism.
Collapse
Affiliation(s)
- Manuel Balparda
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Alejandro M Armas
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | | | - Hannetz Roschzttardtz
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María A Pagani
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| | - Diego F Gomez-Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| |
Collapse
|
26
|
Etesami H, Adl SM. Plant Growth-Promoting Rhizobacteria (PGPR) and Their Action Mechanisms in Availability of Nutrients to Plants. ENVIRONMENTAL AND MICROBIAL BIOTECHNOLOGY 2020. [DOI: 10.1007/978-981-15-2576-6_9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
27
|
Venuti S, Zanin L, Marroni F, Franco A, Morgante M, Pinton R, Tomasi N. Physiological and transcriptomic data highlight common features between iron and phosphorus acquisition mechanisms in white lupin roots. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 285:110-121. [PMID: 31203875 DOI: 10.1016/j.plantsci.2019.04.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/15/2019] [Accepted: 04/30/2019] [Indexed: 05/20/2023]
Abstract
In agricultural soil, the bioavailability of iron (Fe) and phosphorus (P) is often below the plant's requirement causing nutritional deficiency in crops. Under P-limiting conditions, white lupin (Lupinus albus L.) activates mechanisms that promote P solubility in the soil through morphological, physiological and molecular adaptations. Similar changes occur also in Fe-deficient white lupin roots; however, no information is available on the molecular bases of the response. In the present work, responses to Fe and P deficiency and their reciprocal interactions were studied. Transcriptomic analyses indicated that white lupin roots upregulated Fe-responsive genes ascribable to Strategy-I response, this behaviour was mainly evident in cluster roots. The upregulation of some components of Fe-acquisition mechanism occurred also in P-deficient cluster roots. Concerning P acquisition, some P-responsive genes (as phosphate transporters and transcription factors) were upregulated by P deficiency as well by Fe deficiency. These data indicate a strong cross-connection between the responses activated under Fe or P deficiency in white lupin. The activation of Fe- and P-acquisition mechanisms might play a crucial role to enhance the plant's capability to mobilize both nutrients in the rhizosphere, especially P from its associated metal cations.
Collapse
Affiliation(s)
- Silvia Venuti
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, via delle Scienze 206, I-33100 Udine, Italy.
| | - Laura Zanin
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, via delle Scienze 206, I-33100 Udine, Italy.
| | - Fabio Marroni
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, via delle Scienze 206, I-33100 Udine, Italy.
| | - Alessandro Franco
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, via delle Scienze 206, I-33100 Udine, Italy.
| | - Michele Morgante
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, via delle Scienze 206, I-33100 Udine, Italy.
| | - Roberto Pinton
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, via delle Scienze 206, I-33100 Udine, Italy.
| | - Nicola Tomasi
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, via delle Scienze 206, I-33100 Udine, Italy.
| |
Collapse
|
28
|
Wu S, Vymazal J, Brix H. Critical Review: Biogeochemical Networking of Iron in Constructed Wetlands for Wastewater Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7930-7944. [PMID: 31264421 DOI: 10.1021/acs.est.9b00958] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Iron is present in all types of wastewater; however, besides acid mine drainage, where it is a major constituent of concern, it is usually neglected in other types of wastewaters. In all kinds of constructed wetlands, iron plays important role in removal of organics and phosphorus, and it has an impact on transformation of nitrogen, sulfur, and metals. The biogeochemistry of iron is well understood in natural wetlands, but knowledge about iron impact on microbiological and chemical transformations during wastewater treatment in constructed wetlands is very limited. So far, the sparse research in this area provides limited information on observed interactions with several varying parameters across the studies, making it difficult to draw fundamental and mechanistic conclusions. A critical review of the complex biogeochemical networking of iron in CWs is therefore necessary to fill the gap in knowledge on the role of iron and its biogeochemical multi-interactions in wastewater treatment processes of CWs. This review is the first with specific focus on iron, discussing its mitigation and retention in CWs with different configurations and operational strategies, and presenting both seasonal dynamics and the potential remobilization of Fe. It also comprehensively discusses the interactions of redox-controlled iron turnover with the biogeochemical processes of other elements, for example, carbon (C), nitrogen (N), phosphorus (P), sulfur (S), and heavy metals. The health response of wetland plants to both deficiency and toxicity of Fe in CWs designed with specific treatment targets has also been evaluated. Due to the complexity of various wastewater compositions and microredox gradients in the root rhizosphere in CWs, future research needs have also been identified.
Collapse
Affiliation(s)
- Shubiao Wu
- Aarhus Institute of Advanced Studies , Aarhus University , Høegh-Guldbergs Gade 6B , DK-8000 Aarhus C , Denmark
| | - Jan Vymazal
- Faculty of Environmental Sciences , Czech University of Life Sciences Prague , Kymýcká 129 , 165 21 Praha 6 , Czech Republic
| | - Hans Brix
- Department of Bioscience , Aarhus University , Aarhus 8000C , Denmark
- WATEC Aarhus University Centre for Water Technology , Aarhus University , Aarhus 8000C , Denmark
| |
Collapse
|
29
|
Wu H, Ling HQ. FIT-Binding Proteins and Their Functions in the Regulation of Fe Homeostasis. FRONTIERS IN PLANT SCIENCE 2019; 10:844. [PMID: 31297128 PMCID: PMC6607929 DOI: 10.3389/fpls.2019.00844] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/12/2019] [Indexed: 05/22/2023]
Abstract
Iron, as an essential micronutrient, is required by all living organisms. In plants, the deficiency and excess of iron will impair their growth and development. For maintaining a proper intracellular iron concentration, plants evolved different regulation mechanisms to tightly control iron uptake, translocation and storage. FIT, a bHLH transcription factor, is the master regulator of the iron deficiency responses and homeostasis in Arabidopsis. It interacts with different proteins, functioning in controlling the expression of various genes involved in iron uptake and homeostasis. In this review, we summarize the recent progress in the studies of FIT and FIT-binding proteins, and give an overview of FIT-regulated network in iron deficiency response and homeostasis.
Collapse
Affiliation(s)
- Huilan Wu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hong-Qing Ling
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Hong-Qing Ling,
| |
Collapse
|
30
|
Chen L, Wang G, Chen P, Zhu H, Wang S, Ding Y. Shoot-Root Communication Plays a Key Role in Physiological Alterations of Rice ( Oryza sativa) Under Iron Deficiency. FRONTIERS IN PLANT SCIENCE 2018; 9:757. [PMID: 29922324 PMCID: PMC5996241 DOI: 10.3389/fpls.2018.00757] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 05/17/2018] [Indexed: 05/29/2023]
Abstract
Iron (Fe) is an essential mineral element required for plant growth, and when soil availability of Fe is low, plants show symptoms of severe deficiency. Under conditions of Fe deficiency, plants alter several processes to acquire Fe from soil. In this study, we used rice cultivars H 9405 with high Fe accumulation in seeds and Yang 6 with low Fe accumulation in seeds to study their physiological responses to different conditions of Fe availability. In both shoots and roots, the responses of ROS enzymes, leaf and root ultrastructure and photosynthetic system to iron deficiency in Yang 6 were much sensitive than those in H 9405. For the distribution of iron, the iron content was much higher in roots of Yang 6, in contrast to higher shoot content in H 9405. Differential responses were shown with the Fe content in roots and shoots, which were the opposite in the two varieties; thus, we proposed the existence of long-distance signals. Then split root and shoot removal experiments were used to demonstrate that a long-distance signal was involved in the iron-deficient rice plant, and the signal strength was highly correlated with the functional leaves.
Collapse
Affiliation(s)
- Lin Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Gaopeng Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Pengfei Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Honglei Zhu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Shaohua Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Yanfeng Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
31
|
Yang XJ, Xu Z, Shen H. Drying-submergence alternation enhanced crystalline ratio and varied surface properties of iron plaque on rice (Oryza sativa) roots. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:3571-3587. [PMID: 29164457 DOI: 10.1007/s11356-017-0509-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 10/18/2017] [Indexed: 06/07/2023]
Abstract
Iron plaque (IP) is valuable in nutrient management and contaminant tolerance for rice (Oryza sativa) because it can adsorb various nutrients and toxic ions. Crystalline ratio (CR) can be defined as the proportion of crystalline iron (CI) to total IP to describe IP crystallinity. Although the knowledge on IP has abounded, the information on the relationship among its formation condition, surface properties, and CR remains insufficient. In this study, quartz sand-soil cultivation with rice was conducted to explore the effect of drying-submergence alternation (DSA) on CI, amorphous iron (AI), CR, root oxidizing capacity (ROC), and surface properties of IP with different treatment durations and at different stages. Fourteen-day DSA treatment increased CI to 2.20 times of that after continuous submergence (CS) but decreased AI to 72.3% of that after CS. Correspondingly, CR was raised to 6.89% from 4.08%. Remarkably, CR of IP after DSA ending in submergence and ending in drying was 6.89% and 4.23%, respectively. In addition, ROC after 14-day DSA was enhanced to twice of that after CS. Results from scanning electronic microscope suggested that 14-day DSA induced thinner sheets with finer particles in IP compared to that after CS. Results from X-ray diffraction revealed that IP contained higher proportions of goethite, lepidocrocite, magnetite, and hematite after DSA than those after CS. Variable charge and surface area of IP after DSA were only 26.5% and 32.0% of those after CS, respectively. Together, our results indicated that proper strength DSA promoted ROC and transformation from AI to CI, and consequently increased CR of IP, while it changed its surface properties.
Collapse
Affiliation(s)
- Xu-Jian Yang
- College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, People's Republic of China
| | - Zhihong Xu
- Environmental Futures Research Institute, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Hong Shen
- College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
32
|
Liu W, Karemera NJU, Wu T, Yang Y, Zhang X, Xu X, Wang Y, Han Z. The ethylene response factor AtERF4 negatively regulates the iron deficiency response in Arabidopsis thaliana. PLoS One 2017; 12:e0186580. [PMID: 29045490 PMCID: PMC5646859 DOI: 10.1371/journal.pone.0186580] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/03/2017] [Indexed: 12/26/2022] Open
Abstract
Iron (Fe) deficiency is one of many conditions that can seriously damage crops. Low levels of photosynthesis can lead to the degradation of chlorophyll content and impaired respiration in affected plants, which together cause poor growth and reduce quality. Although ethylene plays an important role in responses to Fe deficiency, a limited number of studies have been carried out on ethylene response factor (ERFs) as components of plant regulation mechanisms. Thus, this study aimed to investigate the role of AtERF4 in plant responses to Fe deficiency. Results collected when Arabidopsis thaliana was grown under Fe deficient conditions as well as in the presence of 1-aminocyclopropane-1-carboxylic acid (ACC) revealed that leaf chlorosis did not occur over short timescales and that chloroplast structural integrity was retained. At the same time, expression of the chlorophyll degradation-related genes AtPAO and AtCLH1 was inhibited and net H+ root flux was amplified. Our results show that chlorophyll content was enhanced in the mutant erf4, while expression of the chlorophyll degradation gene AtCLH1 was reduced. Ferric reductase activity in roots was also significantly higher in the mutant than in wild type plants, while erf4 caused high levels of expression of the genes AtIRT1 and AtHA2 under Fe deficient conditions. We also utilized yeast one-hybrid technology in this study to determine that AtERF4 binds directly to the AtCLH1 and AtITR1 promoter. Observations show that transient over-expression of AtERF4 resulted in rapid chlorophyll degradation in the leaves of Nicotiana tabacum and the up-regulation of gene AtCLH1 expression. In summary, AtERF4 plays an important role as a negative regulator of Fe deficiency responses, we hypothesize that AtERF4 may exert a balancing effect on plants subject to nutrition stress.
Collapse
Affiliation(s)
- Wei Liu
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, China
- Key Laboratory of Beijing Municipality of Stress Physiology and Molecular Biology of Fruit Trees, Beijing, China
| | - N. J. Umuhoza Karemera
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, China
- Key Laboratory of Beijing Municipality of Stress Physiology and Molecular Biology of Fruit Trees, Beijing, China
| | - Ting Wu
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, China
- Key Laboratory of Beijing Municipality of Stress Physiology and Molecular Biology of Fruit Trees, Beijing, China
| | - Yafei Yang
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, China
- Key Laboratory of Beijing Municipality of Stress Physiology and Molecular Biology of Fruit Trees, Beijing, China
| | - Xinzhong Zhang
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, China
- Key Laboratory of Beijing Municipality of Stress Physiology and Molecular Biology of Fruit Trees, Beijing, China
| | - Xuefeng Xu
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, China
- Key Laboratory of Beijing Municipality of Stress Physiology and Molecular Biology of Fruit Trees, Beijing, China
| | - Yi Wang
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, China
- Key Laboratory of Beijing Municipality of Stress Physiology and Molecular Biology of Fruit Trees, Beijing, China
| | - Zhenhai Han
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, China
- Key Laboratory of Beijing Municipality of Stress Physiology and Molecular Biology of Fruit Trees, Beijing, China
| |
Collapse
|
33
|
Chen Z, Wang J, Chen H, Wen Y, Liu W. Enantioselective Phytotoxicity of Dichlorprop to Arabidopsis thaliana: The Effect of Cytochrome P450 Enzymes and the Role of Fe. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:12007-12015. [PMID: 28906105 DOI: 10.1021/acs.est.7b04252] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The ecotoxicology effects of chiral herbicides have long been recognized and have drawn increasing attention. The toxic mechanisms of herbicides in plants are involved in production of reactive oxygen species (ROS) and cause damage to target enzymes, but the relationship between these two factors in the enantioselectivity of chiral herbicides has rarely been investigated. Furthermore, even though cytochromes P450 enzymes (CYP450s) have been related to the phytotoxicity of herbicides, their roles in the enantioselectivity of chiral herbicides have yet to be explored. To solve this puzzle, the CYP450s suicide inhibitor 1-aminobenzotriazole (ABT) was added to an exposure system made from dichlorprop (DCPP) enantiomers in the model plant Arabidopsis thaliana. The results indicated that different phytotoxicities of DCPP enantiomers by causing oxidative stress and acetyl-CoA carboxylase (ACCase) damage were observed in the presence and the absence of ABT. The addition of ABT decreased the toxicity of (R)-DCPP but was not significantly affected that of (S)-DCPP, resulting in smaller differences between enantiomers. Furthermore, profound differences were also observed in Fe uptake and distribution, exhibiting different distribution patterns in A. thaliana leaves exposed to DCPP and ABT, which helped bridge the relationship between ROS production and target enzyme ACCase damage through the function of CYP450s. These results offer an opportunity for a more-comprehensive understanding of chiral herbicide action mechanism and provide basic evidence for risk assessments of chiral herbicides in the environment.
Collapse
Affiliation(s)
- Zunwei Chen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou 310058, China
- Department of Veterinary Integrative Bioscience, Texas A&M University , College Station, Texas 77843, United States
| | - Jia Wang
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou 310058, China
| | - Hui Chen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou 310058, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou 310058, China
| | - Weiping Liu
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou 310058, China
| |
Collapse
|
34
|
Liu D, Yang Q, Ge K, Hu X, Qi G, Du B, Liu K, Ding Y. Promotion of iron nutrition and growth on peanut by Paenibacillus illinoisensis and Bacillus sp. strains in calcareous soil. Braz J Microbiol 2017. [PMID: 28645648 PMCID: PMC5628301 DOI: 10.1016/j.bjm.2017.02.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
This study aimed to explore the effects of two siderophore-producing bacterial strains on iron absorption and plant growth of peanut in calcareous soil. Two siderophore-producing bacterial strains, namely, YZ29 and DZ13, isolated from the rhizosphere soil of peanut, were identified as Paenibacillus illinoisensis and Bacillus sp., respectively. In potted experiments, YZ29 and DZ13 enhanced root activity, chlorophyll and active iron content in leaves, total nitrogen, phosphorus and potassium accumulation of plants and increased the quality of peanut kernels and plant biomass over control. In the field trial, the inoculated treatments performed better than the controls, and the pod yields of the three treatments inoculated with YZ29, DZ13, and YZ29 + DZ13 (1:1) increased by 37.05%, 13.80% and 13.57%, respectively, compared with the control. Based on terminal restriction fragment length polymorphism analysis, YZ29 and DZ13 improved the bacterial community richness and species diversity of soil surrounding the peanut roots. Therefore, YZ29 and DZ13 can be used as candidate bacterial strains to relieve chlorosis of peanut and promote peanut growth. The present study is the first to explore the effect of siderophores produced by P. illinoisensis on iron absorption.
Collapse
Affiliation(s)
- Di Liu
- PGPR Laboratory, Department of Microbiology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong, China
| | - Qianqian Yang
- PGPR Laboratory, Department of Microbiology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong, China
| | - Ke Ge
- PGPR Laboratory, Department of Microbiology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong, China
| | - Xiuna Hu
- PGPR Laboratory, Department of Microbiology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong, China
| | - Guozhen Qi
- PGPR Laboratory, Department of Microbiology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong, China
| | - Binghai Du
- PGPR Laboratory, Department of Microbiology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong, China
| | - Kai Liu
- PGPR Laboratory, Department of Microbiology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong, China
| | - Yanqin Ding
- PGPR Laboratory, Department of Microbiology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong, China.
| |
Collapse
|
35
|
Hu J, Guo H, Li J, Gan Q, Wang Y, Xing B. Comparative impacts of iron oxide nanoparticles and ferric ions on the growth of Citrus maxima. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 221:199-208. [PMID: 27916492 DOI: 10.1016/j.envpol.2016.11.064] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 05/29/2023]
Abstract
The impacts of iron oxide nanoparticles (γ-Fe2O3 NPs) and ferric ions (Fe3+) on plant growth and molecular responses associated with the transformation and transport of Fe2+ were poorly understood. This study comprehensively compared and evaluated the physiological and molecular changes of Citrus maxima plants as affected by different levels of γ-Fe2O3 NPs and Fe3+. We found that γ-Fe2O3 NPs could enter plant roots but no translocation from roots to shoots was observed. 20 mg/L γ-Fe2O3 NPs had no impact on plant growth. 50 mg/L γ-Fe2O3 NPs significantly enhanced chlorophyll content by 23.2% and root activity by 23.8% as compared with control. However, 100 mg/L γ-Fe2O3 NPs notably increased MDA formation, decreased chlorophyll content and root activity. Although Fe3+ ions could be used by plants and promoted the synthesis of chlorophyll, they appeared to be more toxic than γ-Fe2O3 NPs, especially for 100 mg/L Fe3+. The impacts caused by γ-Fe2O3 NPs and Fe3+ were concentration-dependent. Physiological results showed that γ-Fe2O3 NPs at proper concentrations had the potential to be an effective iron nanofertilizer for plant growth. RT-PCR analysis showed that γ-Fe2O3 NPs had no impact on AHA gene expression. 50 mg/L γ-Fe2O3 NPs and Fe3+ significantly increased expression levels of FRO2 gene and correspondingly had a higher ferric reductase activity compared to both control and Fe(II)-EDTA exposure, thus promoting the iron transformation and enhancing the tolerance of plants to iron deficiency. Relative levels of Nramp3 gene expression exposed to γ-Fe2O3 NPs and Fe3+ were significantly lower than control, indicating that all γ-Fe2O3 NPs and Fe3+ treatments could supply iron to C. maxima seedlings. Overall, plants can modify the speciation and transport of γ-Fe2O3 NPs or Fe3+ for self-protection and development by activating many physiological and molecular processes.
Collapse
Affiliation(s)
- Jing Hu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Huiyuan Guo
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Junli Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| | - Qiuliang Gan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yunqiang Wang
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan 430064, PR China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
36
|
Li Q, Yang A, Zhang WH. Efficient acquisition of iron confers greater tolerance to saline-alkaline stress in rice (Oryza sativa L.). JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6431-6444. [PMID: 27811002 PMCID: PMC5181582 DOI: 10.1093/jxb/erw407] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To elucidate the mechanisms underlying tolerance to saline-alkaline stress in two rice genotypes, Dongdao-4 and Jigeng-88, we exposed them to medium supplemented with 10 mM Na2CO3 and 40 mM NaCl (pH 8.5). Dongdao-4 plants displayed higher biomass, chlorophyll content, and photosynthetic rates, and a larger root system than Jigeng-88 under saline-alkaline conditions. Dongdao-4 had a higher shoot Na+/K+ ratio than Jigeng-88 under both control and saline-alkaline conditions. Dongdao-4 exhibited stronger rhizospheric acidification than Jigeng-88 under saline-alkaline conditions, resulting from greater up-regulation of H+-ATPases at the transcriptional level. Moreover, Fe concentrations in shoots and roots of Dongdao-4 were higher than those in Jigeng-88, and a higher rate of phytosiderophore exudation was detected in Dongdao-4 versus Jigeng-88 under saline-alkaline conditions. The Fe-deficiency-responsive genes OsIRO2, OsIRT1, OsNAS1, OsNAS2, OsYSL2, and OsYSL15 were more strongly up-regulated in Dongdao-4 than Jigeng-88 plants in saline-alkaline medium, implying greater tolerance of Dongdao-4 plants to Fe deficiency. To test this hypothesis, we compared the effects of Fe deficiency on the two genotypes, and found that Dongdao-4 was more tolerant to Fe deficiency. Exposure to Fe-deficient medium led to greater rhizospheric acidification and phytosiderophore exudation in Dongdao-4 than Jigeng-88 plants. Expression levels of OsIRO2, OsIRT1, OsNAS1, OsNAS2, OsYSL2, and OsYSL15 were higher in Dongdao-4 than Jigeng-88 plants under Fe-deficient conditions. These results demonstrate that a highly efficient Fe acquisition system together with a large root system may underpin the greater tolerance of Dongdao-4 plants to saline-alkaline stress.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - An Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Wen-Hao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Network of Global Change Biology, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
37
|
Castaings L, Caquot A, Loubet S, Curie C. The high-affinity metal Transporters NRAMP1 and IRT1 Team up to Take up Iron under Sufficient Metal Provision. Sci Rep 2016; 6:37222. [PMID: 27849020 PMCID: PMC5110964 DOI: 10.1038/srep37222] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/26/2016] [Indexed: 12/26/2022] Open
Abstract
Iron (Fe) and manganese (Mn) are essential metals which, when scarce in the growth medium, are respectively taken up by the root high affinity transporters IRT1 and NRAMP1 in Arabidopsis thaliana. The molecular bases for low affinity transport however remained unknown. Since IRT1 and NRAMP1 have a broad range of substrates among metals, we tested the hypothesis that they might be functionally redundant by generating nramp1 irt1 double mutants. These plants showed extreme Fe-deficiency symptoms despite optimal provision of the metal. Their phenotype, which includes low Fe and Mn contents and a defect of Fe entry into root cells as revealed by Fe staining, is rescued by high Fe supply. Using a promoter swap-based strategy, we showed that root endodermis retains the ability to carry out high affinity Fe transport and furthermore might be important to high-affinity Mn uptake. We concluded that NRAMP1 plays a pivotal role in Fe transport by cooperating with IRT1 to take up Fe in roots under replete conditions, thus providing the first evidence for a low affinity Fe uptake system in plants.
Collapse
Affiliation(s)
- Loren Castaings
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5004, Institut de Biologie Intégrative des Plantes, Montpellier, France
| | - Antoine Caquot
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5004, Institut de Biologie Intégrative des Plantes, Montpellier, France
| | - Stéphanie Loubet
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5004, Institut de Biologie Intégrative des Plantes, Montpellier, France
| | - Catherine Curie
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5004, Institut de Biologie Intégrative des Plantes, Montpellier, France
| |
Collapse
|
38
|
Leaden L, Pagani MA, Balparda M, Busi MV, Gomez-Casati DF. Altered levels of AtHSCB disrupts iron translocation from roots to shoots. PLANT MOLECULAR BIOLOGY 2016; 92:613-628. [PMID: 27655366 DOI: 10.1007/s11103-016-0537-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 08/29/2016] [Indexed: 05/26/2023]
Abstract
Plants overexpressing AtHSCB and hscb knockdown mutants showed altered iron homeostasis. The overexpression of AtHSCB led to activation of the iron uptake system and iron accumulation in roots without concomitant transport to shoots, resulting in reduced iron content in the aerial parts of plants. By contrast, hscb knockdown mutants presented the opposite phenotype, with iron accumulation in shoots despite the reduced levels of iron uptake in roots. AtHSCB play a key role in iron metabolism, probably taking part in the control of iron translocation from roots to shoots. Many aspects of plant iron metabolism remain obscure. The most known and studied homeostatic mechanism is the control of iron uptake in the roots by shoots. Nevertheless, this mechanism likely involves various unknown sensors and unidentified signals sent from one tissue to another which need to be identified. Here, we characterized Arabidopsis thaliana plants overexpressing AtHSCB, encoding a mitochondrial cochaperone involved in [Fe-S] cluster biosynthesis, and hscb knockdown mutants, which exhibit altered shoot/root Fe partitioning. Overexpression of AtHSCB induced an increase in root iron uptake and content along with iron deficiency in shoots. Conversely, hscb knockdown mutants exhibited increased iron accumulation in shoots and reduced iron uptake in roots. Different experiments, including foliar iron application, citrate supplementation and iron deficiency treatment, indicate that the shoot-directed control of iron uptake in roots functions properly in these lines, implying that [Fe-S] clusters are not involved in this regulatory mechanism. The most likely explanation is that both lines have altered Fe transport from roots to shoots. This could be consistent with a defect in a homeostatic mechanism operating at the root-to-shoot translocation level, which would be independent of the shoot control over root iron deficiency responses. In summary, the phenotypes of these plants indicate that AtHSCB plays a role in iron metabolism.
Collapse
Affiliation(s)
- Laura Leaden
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, 05508-900, Brazil
| | - María A Pagani
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| | - Manuel Balparda
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - María V Busi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Diego F Gomez-Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| |
Collapse
|
39
|
Zhao Q, Ren YR, Wang QJ, Yao YX, You CX, Hao YJ. Overexpression of MdbHLH104 gene enhances the tolerance to iron deficiency in apple. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1633-45. [PMID: 26801352 PMCID: PMC5066684 DOI: 10.1111/pbi.12526] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/14/2015] [Accepted: 12/07/2015] [Indexed: 05/17/2023]
Abstract
Fe deficiency is a widespread nutritional disorder in plants. The basic helix-loop-helix (bHLH) transcription factors (TFs), especially Ib subgroup bHLH TFs which are involved in iron uptake, have been identified. In this study, an IVc subgroup bHLH TF MdbHLH104 was identified and characterized as a key component in the response to Fe deficiency in apple. The overexpression of the MdbHLH104 gene noticeably increased the H(+) -ATPase activity under iron limitation conditions and the tolerance to Fe deficiency in transgenic apple plants and calli. Further investigation showed that MdbHLH104 proteins bonded directly to the promoter of the MdAHA8 gene, thereby positively regulating its expression, the plasma membrane (PM) H(+) -ATPase activity and Fe uptake. Similarly, MdbHLH104 directly modulated the expression of three Fe-responsive bHLH genes, MdbHLH38, MdbHLH39 and MdPYE. In addition, MdbHLH104 interacted with 5 other IVc subgroup bHLH proteins to coregulate the expression of the MdAHA8 gene, the activity of PM H(+) -ATPase and the content of Fe in apple calli. Therefore, MdbHLH104 acts together with other apple bHLH TFs to regulate Fe uptake by modulating the expression of the MdAHA8 gene and the activity of PM H(+) -ATPase in apple.
Collapse
Affiliation(s)
- Qiang Zhao
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Yi-Ran Ren
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Qing-Jie Wang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Yu-Xin Yao
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Yu-Jin Hao
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| |
Collapse
|
40
|
Liu XX, He XL, Jin CW. Roles of chemical signals in regulation of the adaptive responses to iron deficiency. PLANT SIGNALING & BEHAVIOR 2016; 11:e1179418. [PMID: 27110729 PMCID: PMC4973782 DOI: 10.1080/15592324.2016.1179418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Iron is an essential micronutrient for plants but is not readily accessible in most calcareous soils. Although the adaptive responses of plants to iron deficiency have been well documented, the signals involved in the regulatory cascade leading to their activation are not well understood to date. Recent studies revealed that chemical compounds, including sucrose, auxin, ethylene and nitric oxide, positively regulated the Fe-deficiency-induced Fe uptake processes in a cooperative manner. Nevertheless, cytokinins, jasmonate and abscisic acid were shown to act as negative signals in transmitting the iron deficiency information. The present mini review is to briefly address the roles of chemical signals in regulation of the adaptive responses to iron deficiency based on the literatures published in recent years.
Collapse
Affiliation(s)
- Xing Xing Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Xiao Lin He
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Chong Wei Jin
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
- Chong Wei Jin , College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou China
| |
Collapse
|
41
|
Tian Q, Zhang X, Yang A, Wang T, Zhang WH. CIPK23 is involved in iron acquisition of Arabidopsis by affecting ferric chelate reductase activity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 246:70-79. [PMID: 26993237 DOI: 10.1016/j.plantsci.2016.01.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 01/23/2016] [Accepted: 01/28/2016] [Indexed: 05/21/2023]
Abstract
Iron deficiency is one of the major limiting factors affecting quality and production of crops in calcareous soils. Numerous signaling molecules and transcription factors have been demonstrated to play a regulatory role in adaptation of plants to iron deficiency. However, the mechanisms underlying the iron deficiency-induced physiological processes remain to be fully dissected. Here, we demonstrated that the protein kinase CIPK23 was involved in iron acquisition. Lesion of CIPK23 rendered Arabidopsis mutants hypersensitive to iron deficiency, as evidenced by stronger chlorosis in young leaves and lower iron concentration than wild-type plants under iron-deficient conditions by down-regulating ferric chelate reductase activity. We found that iron deficiency evoked an increase in cytosolic Ca(2+) concentration and the elevated Ca(2+) would bind to CBL1/CBL9, leading to activation of CIPK23. These novel findings highlight the involvement of calcium-dependent CBL-CIPK23 complexes in the regulation of iron acquisition. Moreover, mutation of CIPK23 led to changes in contents of mineral elements, suggesting that CBL-CIPK23 complexes could be as "nutritional sensors" to sense and regulate the mineral homeostasis in Arabisopsis.
Collapse
Affiliation(s)
- Qiuying Tian
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, PR China
| | - Xinxin Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, PR China
| | - An Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, PR China
| | - Tianzuo Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, PR China
| | - Wen-Hao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, PR China.
| |
Collapse
|
42
|
Li G, Kronzucker HJ, Shi W. The Response of the Root Apex in Plant Adaptation to Iron Heterogeneity in Soil. FRONTIERS IN PLANT SCIENCE 2016; 7:344. [PMID: 27047521 PMCID: PMC4800179 DOI: 10.3389/fpls.2016.00344] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/07/2016] [Indexed: 05/30/2023]
Abstract
Iron (Fe) is an essential micronutrient for plant growth and development, and is frequently limiting. By contrast, over-accumulation of Fe in plant tissues leads to toxicity. In soils, the distribution of Fe is highly heterogeneous. To cope with this heterogeneity, plant roots engage an array of adaptive responses to adjust their morphology and physiology. In this article, we review root morphological and physiological changes in response to low- and high-Fe conditions and highlight differences between these responses. We especially focus on the role of the root apex in dealing with the stresses resulting from Fe shortage and excess.
Collapse
Affiliation(s)
- Guangjie Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of SciencesNanjing, China
| | | | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of SciencesNanjing, China
| |
Collapse
|
43
|
Shanmugam V, Wang YW, Tsednee M, Karunakaran K, Yeh KC. Glutathione plays an essential role in nitric oxide-mediated iron-deficiency signaling and iron-deficiency tolerance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:464-77. [PMID: 26333047 DOI: 10.1111/tpj.13011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/17/2015] [Accepted: 08/25/2015] [Indexed: 05/18/2023]
Abstract
Iron (Fe) deficiency is a common agricultural problem that affects both the productivity and nutritional quality of plants. Thus, identifying the key factors involved in the tolerance of Fe deficiency is important. In the present study, the zir1 mutant, which is glutathione deficient, was found to be more sensitive to Fe deficiency than the wild type, and grew poorly in alkaline soil. Other glutathione-deficient mutants also showed various degrees of sensitivity to Fe-limited conditions. Interestingly, we found that the glutathione level was increased under Fe deficiency in the wild type. By contrast, blocking glutathione biosynthesis led to increased physiological sensitivity to Fe deficiency. On the other hand, overexpressing glutathione enhanced the tolerance to Fe deficiency. Under Fe-limited conditions, glutathione-deficient mutants, zir1, pad2 and cad2 accumulated lower levels of Fe than the wild type. The key genes involved in Fe uptake, including IRT1, FRO2 and FIT, are expressed at low levels in zir1; however, a split-root experiment suggested that the systemic signals that govern the expression of Fe uptake-related genes are still active in zir1. Furthermore, we found that zir1 had a lower accumulation of nitric oxide (NO) and NO reservoir S-nitrosoglutathione (GSNO). Although NO is a signaling molecule involved in the induction of Fe uptake-related genes during Fe deficiency, the NO-mediated induction of Fe-uptake genes is dependent on glutathione supply in the zir1 mutant. These results provide direct evidence that glutathione plays an essential role in Fe-deficiency tolerance and NO-mediated Fe-deficiency signaling in Arabidopsis.
Collapse
Affiliation(s)
| | - Yi-Wen Wang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Munkhtsetseg Tsednee
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Krithika Karunakaran
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Kuo-Chen Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
44
|
Adnane B, Mainassara ZA, Mohamed F, Mohamed L, Jean-Jacques D, Rim MT, Georg C. Physiological and Molecular Aspects of Tolerance to Environmental Constraints in Grain and Forage Legumes. Int J Mol Sci 2015; 16:18976-9008. [PMID: 26287163 PMCID: PMC4581282 DOI: 10.3390/ijms160818976] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/09/2015] [Accepted: 08/05/2015] [Indexed: 12/04/2022] Open
Abstract
Despite the agronomical and environmental advantages of the cultivation of legumes, their production is limited by various environmental constraints such as water or nutrient limitation, frost or heat stress and soil salinity, which may be the result of pedoclimatic conditions, intensive use of agricultural lands, decline in soil fertility and environmental degradation. The development of more sustainable agroecosystems that are resilient to environmental constraints will therefore require better understanding of the key mechanisms underlying plant tolerance to abiotic constraints. This review provides highlights of legume tolerance to abiotic constraints with a focus on soil nutrient deficiencies, drought, and salinity. More specifically, recent advances in the physiological and molecular levels of the adaptation of grain and forage legumes to abiotic constraints are discussed. Such adaptation involves complex multigene controlled-traits which also involve multiple sub-traits that are likely regulated under the control of a number of candidate genes. This multi-genetic control of tolerance traits might also be multifunctional, with extended action in response to a number of abiotic constraints. Thus, concrete efforts are required to breed for multifunctional candidate genes in order to boost plant stability under various abiotic constraints.
Collapse
Affiliation(s)
- Bargaz Adnane
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Box 103, SE-23053 Alnarp, Sweden.
| | - Zaman-Allah Mainassara
- International Maize and Wheat Improvement Center (CIMMYT), Southern Africa Regional Office, MP163 Harare, Zimbabwe.
| | - Farissi Mohamed
- Polyvalent Laboratory for Research & Development, Polydisciplinary Faculty, Sultan Moulay Sliman University, 23000 Beni-Mellal, Morocco.
| | - Lazali Mohamed
- Faculté des Sciences de la Nature et de la Vie & des Sciences de la Terre, Université de Khemis Miliana, 44225 Ain Defla, Algeria.
| | - Drevon Jean-Jacques
- Unité mixte de recherche, Écologie Fonctionnelle & Biogéochimie des Sols et Agroécosystèmes, Institut National de la Recherche Agronomique, 34060 Montpellier, France.
| | - Maougal T Rim
- Laboratoire de génétique Biochimie et biotechnologies végétales Faculté des Sciences de la Nature et de la Vie, Université des frères Mentouri, 25017 Constantine, Algeria.
| | - Carlsson Georg
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Box 103, SE-23053 Alnarp, Sweden.
| |
Collapse
|
45
|
Pan IC, Tsai HH, Cheng YT, Wen TN, Buckhout TJ, Schmidt W. Post-Transcriptional Coordination of the Arabidopsis Iron Deficiency Response is Partially Dependent on the E3 Ligases RING DOMAIN LIGASE1 (RGLG1) and RING DOMAIN LIGASE2 (RGLG2). Mol Cell Proteomics 2015; 14:2733-52. [PMID: 26253232 DOI: 10.1074/mcp.m115.048520] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Indexed: 11/06/2022] Open
Abstract
Acclimation to changing environmental conditions is mediated by proteins, the abundance of which is carefully tuned by an elaborate interplay of DNA-templated and post-transcriptional processes. To dissect the mechanisms that control and mediate cellular iron homeostasis, we conducted quantitative high-resolution iTRAQ proteomics and microarray-based transcriptomic profiling of iron-deficient Arabidopsis thaliana plants. A total of 13,706 and 12,124 proteins was identified with a quadrupole-Orbitrap hybrid mass spectrometer in roots and leaves, respectively. This deep proteomic coverage allowed accurate estimates of post-transcriptional regulation in response to iron deficiency. Similarly regulated transcripts were detected in only 13% (roots) and 11% (leaves) of the 886 proteins that differentially accumulated between iron-sufficient and iron-deficient plants, indicating that the majority of the iron-responsive proteins was post-transcriptionally regulated. Mutants harboring defects in the RING DOMAIN LIGASE1 (RGLG1)(1) and RING DOMAIN LIGASE2 (RGLG2) showed a pleiotropic phenotype that resembled iron-deficient plants with reduced trichome density and the formation of branched root hairs. Proteomic and transcriptomic profiling of rglg1 rglg2 double mutants revealed that the functional RGLG protein is required for the regulation of a large set of iron-responsive proteins including the coordinated expression of ribosomal proteins. This integrative analysis provides a detailed catalog of post-transcriptionally regulated proteins and allows the concept of a chiefly transcriptionally regulated iron deficiency response to be revisited. Protein data are available via ProteomeXchange with identifier PXD002126.
Collapse
Affiliation(s)
- I-Chun Pan
- From the ‡Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Huei-Hsuan Tsai
- From the ‡Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Ya-Tan Cheng
- From the ‡Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Tuan-Nan Wen
- From the ‡Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | | | - Wolfgang Schmidt
- From the ‡Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan; ¶Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan; ‖Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
46
|
Du J, Huang Z, Wang B, Sun H, Chen C, Ling HQ, Wu H. SlbHLH068 interacts with FER to regulate the iron-deficiency response in tomato. ANNALS OF BOTANY 2015; 116:23-34. [PMID: 26070639 PMCID: PMC4479748 DOI: 10.1093/aob/mcv058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/24/2015] [Accepted: 03/27/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Iron is an essential micronutrient for all organisms and its uptake, translocation, distribution and utilization are regulated in a complex manner in plants. FER, isolated from tomato (Solanum lycopersicum), was the first transcription factor involved in the iron homeostasis of higher plants to be identified. A FER defect in the T3238fer mutant drastically downregulates the expression of iron uptake genes, such as ferric-chelate reductase 1 (LeFRO1) and iron-regulated transporter 1 (LeIRT1); however, the molecular mechanism by which FER regulates genes downstream remains unknown. The aim of this work was therefore to identify the gene that interacts with FER to regulate the iron-deficiency response in tomato. METHODS The homologue of the Arabidopsis Ib subgroup of the basic helix-loop-helix (bHLH) proteins, SlbHLH068, was identified by using the program BLASTP against the AtbHLH39 amino acid sequence in the tomato genome. The interaction between SlbHLH068 and FER was detected using yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays. In addition, virus-induced gene silencing (VIGS) was used to generate tomato plants in which SlbHLH068 expression was downregulated. The expression of genes was analysed using northern blot hybridization and multiple RT-PCR analysis. Seedlings of wild-type and mutant plants were grown under conditions of different nutrient deficiency. KEY RESULTS SlbHLH068 is highly upregulated in roots, leaves and stems in response to iron deficiency. An interaction between SlbHLH068 and FER was demonstrated using yeast two-hybrid and BiFC assays. The heterodimer formed by FER with SlbHLH068 directly bound to the promoter of LeFRO1 and activated the expression of its reporter gene in the yeast assay. The downregulation of SlbHLH068 expression by VIGS resulted in a reduction of LeFRO1 and LeIRT1 expression and iron accumulation in leaves and roots. CONCLUSIONS The results indicate that SlbHLH068, as a putative transcription factor, is involved in iron homeostasis in tomato via an interaction with FER.
Collapse
Affiliation(s)
- Juan Du
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, West Beichen Road 1, Chaoyang District, Beijing 100101, China
| | - Zongan Huang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, West Beichen Road 1, Chaoyang District, Beijing 100101, China
| | - Biao Wang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, West Beichen Road 1, Chaoyang District, Beijing 100101, China
| | - Hua Sun
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, West Beichen Road 1, Chaoyang District, Beijing 100101, China
| | - Chunlin Chen
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, West Beichen Road 1, Chaoyang District, Beijing 100101, China
| | - Hong-Qing Ling
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, West Beichen Road 1, Chaoyang District, Beijing 100101, China
| | - Huilan Wu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, West Beichen Road 1, Chaoyang District, Beijing 100101, China
| |
Collapse
|
47
|
Arias-Baldrich C, Bosch N, Begines D, Feria AB, Monreal JA, García-Mauriño S. Proline synthesis in barley under iron deficiency and salinity. JOURNAL OF PLANT PHYSIOLOGY 2015; 183:121-9. [PMID: 26125122 DOI: 10.1016/j.jplph.2015.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 05/07/2023]
Abstract
This work investigates proline synthesis in six barley varieties subjected to iron deficiency, salinity or both stresses. The highest growth under Fe sufficiency corresponded to Belgrano and Shakira. A moderate augment of leaf phosphoenolpyruvate carboxylase (PEPC) activity was observed in all six varieties in response to Fe deficiency, consistently in leaves and sporadically in roots. All six varieties accumulated proline under Fe deficiency, to a higher extent in leaves than in roots. The decrease of Fe supply from 100 μM NaFe(III)-EDTA to 0.5 μM NaFe(III)-EDTA reduced growth and photosynthetic pigments similarly in the six barley varieties. On the contrary, differences between varieties could be observed with respect to increased or, conversely, decreased proline content as a function of the amount of NaFe(III)-EDTA supplied. These two opposite types were represented by Belgrano (higher proline under Fe deficiency) and Shakira (higher proline under Fe sufficiency). Time-course experiments suggested that leaf PEPC activity was not directly responsible for supplying C for proline synthesis under Fe deficiency. High proline levels in the leaves of Fe-deficient Belgrano plants in salinity were associated to a better performance of this variety under these combined stresses.
Collapse
Affiliation(s)
- Cirenia Arias-Baldrich
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes n6, 41012, Seville, Spain.
| | - Nadja Bosch
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes n6, 41012, Seville, Spain.
| | - Digna Begines
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes n6, 41012, Seville, Spain.
| | - Ana B Feria
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes n6, 41012, Seville, Spain.
| | - José A Monreal
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes n6, 41012, Seville, Spain.
| | - Sofía García-Mauriño
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes n6, 41012, Seville, Spain.
| |
Collapse
|
48
|
Ye YQ, Jin CW, Fan SK, Mao QQ, Sun CL, Yu Y, Lin XY. Elevation of NO production increases Fe immobilization in the Fe-deficiency roots apoplast by decreasing pectin methylation of cell wall. Sci Rep 2015; 5:10746. [PMID: 26073914 PMCID: PMC4466582 DOI: 10.1038/srep10746] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/29/2015] [Indexed: 12/15/2022] Open
Abstract
Cell wall is the major component of root apoplast which is the main reservoir for iron in roots, while nitric oxide (NO) is involved in regulating the synthesis of cell wall. However, whether such regulation could influence the reutilization of iron stored in root apoplast remains unclear. In this study, we observed that iron deficiency elevated NO level in tomato (Solanum lycopersicum) roots. However, application of S-nitrosoglutathione, a NO donor, significantly enhanced iron retention in root apoplast of iron-deficient plants, accompanied with a decrease of iron level in xylem sap. Consequently, S-nitrosoglutathione treatment increased iron concentration in roots, but decreased it in shoots. The opposite was true for the NO scavenging treatment with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO). Interestingly, S-nitrosoglutathione treatment increased pectin methylesterase activity and decreased degree of pectin methylation in root cell wall of both iron-deficient and iron-sufficient plants, which led to an increased iron retention in pectin fraction, thus increasing the binding capacity of iron to the extracted cell wall. Altogether, these results suggested that iron-deficiency-induced elevation of NO increases iron immobilization in root apoplast by decreasing pectin methylation in cell wall.
Collapse
Affiliation(s)
- Yi Quan Ye
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chong Wei Jin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Shi Kai Fan
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qian Qian Mao
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cheng Liang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan Yu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xian Yong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
49
|
Zhu M, Wang R, Kong P, Zhang X, Wang Y, Wu T, Jia W, Han Z. Development of a dot blot macroarray and its use in gene expression marker-assisted selection for iron deficiency tolerant apple rootstocks. EUPHYTICA 2015; 202:469-477. [DOI: 10.1007/s10681-015-1354-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/09/2015] [Indexed: 08/22/2024]
|
50
|
Chen L, Ding C, Zhao X, Xu J, Mohammad AA, Wang S, Ding Y. Differential regulation of proteins in rice (Oryza sativa L.) under iron deficiency. PLANT CELL REPORTS 2015; 34:83-96. [PMID: 25287133 DOI: 10.1007/s00299-014-1689-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/06/2014] [Accepted: 09/24/2014] [Indexed: 05/04/2023]
Abstract
Sixty-three proteins were identified to be differentially accumulated due to iron deficiency in shoot and root. The importance of these proteins alterations on shoot physiology is discussed. Iron (Fe) is an essential micronutrient for plant growth and its accumulation affects the quality of edible plant organs. To investigate the adaptive mechanism of a Chinese rice variety grown under iron deficiency, proteins differentially accumulated in leaves and roots of Yangdao 6, an indica cultivar, under Fe deficiency growth condition, were profiled using a two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/MS). The accumulations of seventy-three proteins were detected to be increased or decreased upon iron deficiency, and sixty-three of them were successfully identified. Among the sixty-three proteins, a total of forty proteins were identified in rice leaves, and twenty-three proteins were in roots. Most of these proteins are involved in photosynthesis, C metabolism, oxidative stress, Adenosine triphosphate synthesis, cell growth or signal transduction. The results provide a comprehensive way to understand, at the level of proteins, the adaptive mechanism used by rice shoots and roots under iron deficiency.
Collapse
Affiliation(s)
- Lin Chen
- Key Laboratory of Crop Physiology and Ecology in Southern China, College of Agriculture, Ministry of Agricultural University, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|