1
|
Lu W, Wang X, Jia W. Characterization of Root Hair Curling and Nodule Development in Soybean-Rhizobia Symbiosis. SENSORS (BASEL, SWITZERLAND) 2024; 24:5726. [PMID: 39275638 PMCID: PMC11398186 DOI: 10.3390/s24175726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 09/16/2024]
Abstract
Soybean plants form symbiotic nitrogen-fixing nodules with specific rhizobia bacteria. The root hair is the initial infection site for the symbiotic process before the nodules. Since roots and nodules grow in soil and are hard to perceive, little knowledge is available on the process of soybean root hair deformation and nodule development over time. In this study, adaptive microrhizotrons were used to observe root hairs and to investigate detailed root hair deformation and nodule formation subjected to different rhizobia densities. The result showed that the root hair curling angle increased with the increase of rhizobia density. The largest curling angle reached 268° on the 8th day after inoculation. Root hairs were not always straight, even in the uninfected group with a relatively small angle (<45°). The nodule is an organ developed after root hair curling. It was inoculated from curling root hairs and swelled in the root axis on the 15th day after inoculation, with the color changing from light (15th day) to a little dark brown (35th day). There was an error between observing the diameter and the real diameter; thus, a diameter over 1 mm was converted to the real diameter according to the relationship between the perceived diameter and the real diameter. The diameter of the nodule reached 5 mm on the 45th day. Nodule number and curling number were strongly related to rhizobia density with a correlation coefficient of determination of 0.92 and 0.93, respectively. Thus, root hair curling development could be quantified, and nodule number could be estimated through derived formulation.
Collapse
Affiliation(s)
- Wei Lu
- Department of Agricultural Engineering College, Jiangsu University, Zhenjiang 212013, China
| | - Xiaochan Wang
- Department of Engineering College, Nanjing Agricultural University, Nanjing 210031, China
| | - Weidong Jia
- Department of Agricultural Engineering College, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
2
|
Zhou N, Li X, Zheng Z, Liu J, Downie JA, Xie F. RinRK1 enhances NF receptors accumulation in nanodomain-like structures at root-hair tip. Nat Commun 2024; 15:3568. [PMID: 38670968 PMCID: PMC11053012 DOI: 10.1038/s41467-024-47794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Legume-rhizobia root-nodule symbioses involve the recognition of rhizobial Nod factor (NF) signals by NF receptors, triggering both nodule organogenesis and rhizobial infection. RinRK1 is induced by NF signaling and is essential for infection thread (IT) formation in Lotus japonicus. However, the precise mechanism underlying this process remains unknown. Here, we show that RinRK1 interacts with the extracellular domains of NF receptors (NFR1 and NFR5) to promote their accumulation at root hair tips in response to rhizobia or NFs. Furthermore, Flotillin 1 (Flot1), a nanodomain-organizing protein, associates with the kinase domains of NFR1, NFR5 and RinRK1. RinRK1 promotes the interactions between Flot1 and NF receptors and both RinRK1 and Flot1 are necessary for the accumulation of NF receptors at root hair tips upon NF stimulation. Our study shows that RinRK1 and Flot1 play a crucial role in NF receptor complex assembly within localized plasma membrane signaling centers to promote symbiotic infection.
Collapse
Affiliation(s)
- Ning Zhou
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xiaolin Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Zhiqiong Zheng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jing Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - J Allan Downie
- John Innes Centre, Norwich Research Park, NR4 7UH, Norwich, UK
| | - Fang Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
3
|
Hlaváčková K, Šamaj J, Ovečka M. Cytoskeleton as a roadmap navigating rhizobia to establish symbiotic root nodulation in legumes. Biotechnol Adv 2023; 69:108263. [PMID: 37775072 DOI: 10.1016/j.biotechadv.2023.108263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/28/2023] [Accepted: 09/24/2023] [Indexed: 10/01/2023]
Abstract
Legumes enter into symbiotic associations with soil nitrogen-fixing rhizobia, culminating in the creation of new organs, root nodules. This complex process relies on chemical and physical interaction between legumes and rhizobia, including early signalling events informing the host legume plant of a potentially beneficial microbe and triggering the nodulation program. The great significance of this plant-microbe interaction rests upon conversion of atmospheric dinitrogen not accessible to plants into a biologically active form of ammonia available to plants. The plant cytoskeleton consists in a highly dynamic network and undergoes rapid remodelling upon sensing various developmental and environmental cues, including response to attachment, internalization, and accommodation of rhizobia in plant root and nodule cells. This dynamic nature is governed by cytoskeleton-associated proteins that modulate cytoskeletal behaviour depending on signal perception and transduction. Precisely localized cytoskeletal rearrangements are therefore essential for the uptake of rhizobia, their targeted delivery, and establishing beneficial root nodule symbiosis. This review summarizes current knowledge about rhizobia-dependent rearrangements and functions of the cytoskeleton in legume roots and nodules. General patterns and nodule type-, nodule stage-, and species-specific aspects of actin filaments and microtubules remodelling are discussed. Moreover, emerging evidence is provided about fine-tuning the root nodulation process through cytoskeleton-associated proteins. We also consider future perspectives on dynamic localization studies of the cytoskeleton during early symbiosis utilizing state of the art molecular and advanced microscopy approaches. Based on acquired detailed knowledge of the mutualistic interactions with microbes, these approaches could contribute to broader biotechnological crop improvement.
Collapse
Affiliation(s)
- Kateřina Hlaváčková
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic.
| | - Jozef Šamaj
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic.
| | - Miroslav Ovečka
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic.
| |
Collapse
|
4
|
Kumari M, Naidu S, Kumari B, Singh IK, Singh A. Comparative transcriptome analysis of Zea mays upon mechanical wounding. Mol Biol Rep 2023; 50:5319-5343. [PMID: 37155015 DOI: 10.1007/s11033-023-08429-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/04/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Mechanical wounding (MW) is mainly caused due to high wind, sand, heavy rains and insect infestation, leading to damage to crop plants and an increase in the incidences of pathogen infection. Plants respond to MW by altering expression of genes, proteins, and metabolites that help them to cope up with the stress. METHODS AND RESULTS In order to characterize maize transcriptome in response to mechanical wounding, a microarray analysis was executed. The study revealed 407 differentially expressed genes (DEGs) (134 upregulated and 273 downregulated). The upregulated genes were engaged in protein synthesis, transcription regulation, phytohormone signaling-mediated by salicylic acid, auxin, jasmonates, biotic and abiotic stress including bacterial, insect, salt and endoplasmic reticulum stress, cellular transport, on the other hand downregulated genes were involved in primary metabolism, developmental processes, protein modification, catalytic activity, DNA repair pathways, and cell cycle. CONCLUSION The transcriptome data present here can be further utilized for understanding inducible transcriptional response during mechanical injury and their purpose in biotic and abiotic stress tolerance. Furthermore, future study concentrating on the functional characterization of the selected key genes (Bowman Bird trypsin inhibitor, NBS-LRR-like protein, Receptor-like protein kinase-like, probable LRR receptor-like ser/thr-protein kinase, Cytochrome P450 84A1, leucoanthocyanidin dioxygenase, jasmonate O-methyltransferase) and utilizing them for genetic engineering for crop improvement is strongly recommended.
Collapse
Affiliation(s)
- Megha Kumari
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- J C Bose Center for Plant Genomics, Hansraj College, University of Delhi, Delhi, India
| | - Shrishti Naidu
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- J C Bose Center for Plant Genomics, Hansraj College, University of Delhi, Delhi, India
| | - Babita Kumari
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- Department of Botany, North-Eastern Hill University, Shillong, India
| | - Indrakant K Singh
- Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India.
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi, India.
- J C Bose Center for Plant Genomics, Hansraj College, University of Delhi, Delhi, India.
- Delhi School of Climate Change and Sustainability, Institution of Eminence, Maharishi Karnad Bhawan, University of Delhi, New Delhi, India.
| |
Collapse
|
5
|
Bellés-Sancho P, Liu Y, Heiniger B, von Salis E, Eberl L, Ahrens CH, Zamboni N, Bailly A, Pessi G. A novel function of the key nitrogen-fixation activator NifA in beta-rhizobia: Repression of bacterial auxin synthesis during symbiosis. FRONTIERS IN PLANT SCIENCE 2022; 13:991548. [PMID: 36247538 PMCID: PMC9554594 DOI: 10.3389/fpls.2022.991548] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Rhizobia fix nitrogen within root nodules of host plants where nitrogenase expression is strictly controlled by its key regulator NifA. We recently discovered that in nodules infected by the beta-rhizobial strain Paraburkholderia phymatum STM815, NifA controls expression of two bacterial auxin synthesis genes. Both the iaaM and iaaH transcripts, as well as the metabolites indole-acetamide (IAM) and indole-3-acetic acid (IAA) showed increased abundance in nodules occupied by a nifA mutant compared to wild-type nodules. Here, we document the structural changes that a P. phymatum nifA mutant induces in common bean (Phaseolus vulgaris) nodules, eventually leading to hypernodulation. To investigate the role of the P. phymatum iaaMH genes during symbiosis, we monitored their expression in presence and absence of NifA over different stages of the symbiosis. The iaaMH genes were found to be under negative control of NifA in all symbiotic stages. While a P. phymatum iaaMH mutant produced the same number of nodules and nitrogenase activity as the wild-type strain, the nifA mutant produced more nodules than the wild-type that clustered into regularly-patterned root zones. Mutation of the iaaMH genes in a nifA mutant background reduced the presence of these nodule clusters on the root. We further show that the P. phymatum iaaMH genes are located in a region of the symbiotic plasmid with a significantly lower GC content and exhibit high similarity to two genes of the IAM pathway often used by bacterial phytopathogens to deploy IAA as a virulence factor. Overall, our data suggest that the increased abundance of rhizobial auxin in the non-fixing nifA mutant strain enables greater root infection rates and a role for bacterial auxin production in the control of early stage symbiotic interactions.
Collapse
Affiliation(s)
- Paula Bellés-Sancho
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Yilei Liu
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Benjamin Heiniger
- Agroscope, Molecular Ecology and Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Elia von Salis
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Christian H. Ahrens
- Agroscope, Molecular Ecology and Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Nicola Zamboni
- ETH Zürich, Institute of Molecular Systems Biology, Zurich, Switzerland
| | - Aurélien Bailly
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Paulucci NS, Cesari AB, Biasutti MA, Dardanelli MS, Perillo MA. Membrane Homeoviscous Adaptation in Sinorhizobium Submitted to a Stressful Thermal Cycle Contributes to the Maintenance of the Symbiotic Plant–Bacteria Interaction. Front Microbiol 2021; 12:652477. [PMID: 34975776 PMCID: PMC8718912 DOI: 10.3389/fmicb.2021.652477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 11/15/2021] [Indexed: 12/02/2022] Open
Abstract
Here, we estimate fast changes in the fluidity of Sinorhizobium meliloti membranes submitted to cyclic temperature changes (10°C–40°C–10°C) by monitoring the fluorescence polarization (P) of DPH and TMA-DPH of the whole cell (WC) as well as in its outer (OM) and inner (IM) membranes. Additionally, the long-term response to thermal changes is demonstrated through the dynamics of the phospholipid and fatty acid composition in each membrane. This allowed membrane homeoviscous adaptation by the return to optimal fluidity levels as measured by the PDPH/TMA-DPH in WC, OM, IM, and multilamellar vesicles of lipids extracted from OM and IM. Due to probe-partitioning preferences and membranes’ compositional characteristics, DPH and TMA-DPH exhibit different behaviors in IM and OM. The rapid effect of cyclic temperature changes on the P was the opposite in both membranes with the IM being the one that exhibited the thermal behavior expected for lipid bilayers. Interestingly, only after the incubation at 40°C, cells were unable to recover the membrane preheating P levels when cooled up to 10°C. Solely in this condition, the formation of threads and nodular structures in Medicago sativa infected with S. meliloti were delayed, indicating that the symbiotic interaction was partially altered but not halted.
Collapse
Affiliation(s)
- Natalia Soledad Paulucci
- Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto, Argentina
- *Correspondence: Natalia Soledad Paulucci,
| | - Adriana Belén Cesari
- Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto, Argentina
| | - María Alicia Biasutti
- Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto, Argentina
| | - Marta Susana Dardanelli
- Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto, Argentina
- Marta Susana Dardanelli,
| | - María Angélica Perillo
- Facultad de Ciencias Exactas, Físicas y Naturales, Instituto de Ciencia y Tecnología de Alimentos (ICTA), Departamento de Química, Cátedra de Química Biológica, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- María Angélica Perillo,
| |
Collapse
|
7
|
Liang P, Schmitz C, Lace B, Ditengou FA, Su C, Schulze E, Knerr J, Grosse R, Keller J, Libourel C, Delaux PM, Ott T. Formin-mediated bridging of cell wall, plasma membrane, and cytoskeleton in symbiotic infections of Medicago truncatula. Curr Biol 2021; 31:2712-2719.e5. [PMID: 33930305 PMCID: PMC8231094 DOI: 10.1016/j.cub.2021.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 02/01/2021] [Accepted: 04/01/2021] [Indexed: 12/25/2022]
Abstract
Legumes have maintained the ability to associate with rhizobia to sustain the nitrogen-fixing root nodule symbiosis (RNS). In Medicago truncatula, the Nod factor (NF)-dependent intracellular root colonization by Sinorhizobium meliloti initiates from young, growing root hairs. They form rhizobial traps by physically curling around the symbiont.1,2 Although alterations in root hair morphology like branching and swelling have been observed in other plants in response to drug treatments3 or genetic perturbations,4, 5, 6 full root hair curling represents a rather specific invention in legumes. The entrapment of the symbiont completes with its full enclosure in a structure called the “infection chamber” (IC),1,2,7,8 from which a tube-like membrane channel, the “infection thread” (IT), initiates.1,2,9 All steps of rhizobium-induced root hair alterations are aided by a tip-localized cytosolic calcium gradient,10,11 global actin re-arrangements, and dense subapical fine actin bundles that are required for the delivery of Golgi-derived vesicles to the root hair tip.7,12, 13, 14 Altered actin dynamics during early responses to NFs or rhizobia have mostly been shown in mutants that are affected in the actin-related SCAR/WAVE complex.15, 16, 17, 18 Here, we identified a polarly localized SYMBIOTIC FORMIN 1 (SYFO1) to be required for NF-dependent alterations in membrane organization and symbiotic root hair responses. We demonstrate that SYFO1 mediates a continuum between the plasma membrane and the cell wall that is required for the onset of rhizobial infections. The SYMBIOTIC FORMIN 1 (SYFO1) specifically regulates symbiotic root hair curling SYFO1 directly binds actin and polarizes in responding root hairs SYFO1 induces membrane protrusions in cell-wall-devoid protoplasts Cell wall association of SYFO1 is indispensable for its function in root hairs
Collapse
Affiliation(s)
- Pengbo Liang
- University of Freiburg, Faculty of Biology, Cell Biology, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Clara Schmitz
- University of Freiburg, Faculty of Biology, Cell Biology, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Beatrice Lace
- University of Freiburg, Faculty of Biology, Cell Biology, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Franck Anicet Ditengou
- University of Freiburg, Faculty of Biology, Cell Biology, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Chao Su
- University of Freiburg, Faculty of Biology, Cell Biology, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Eija Schulze
- University of Freiburg, Faculty of Biology, Cell Biology, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Julian Knerr
- University of Freiburg, Medical Faculty, Institute of Pharmacology, Albertstr. 25, 79104 Freiburg, Germany
| | - Robert Grosse
- University of Freiburg, Medical Faculty, Institute of Pharmacology, Albertstr. 25, 79104 Freiburg, Germany; CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, Schänzlestr. 8, 79104 Freiburg, Germany
| | - Jean Keller
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, 24, chemin de Borde-Rouge, 31326 Castanet-Tolosan, France
| | - Cyril Libourel
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, 24, chemin de Borde-Rouge, 31326 Castanet-Tolosan, France
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, 24, chemin de Borde-Rouge, 31326 Castanet-Tolosan, France
| | - Thomas Ott
- University of Freiburg, Faculty of Biology, Cell Biology, Schänzlestr. 1, 79104 Freiburg, Germany; CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, Schänzlestr. 8, 79104 Freiburg, Germany.
| |
Collapse
|
8
|
Structure and Development of the Legume-Rhizobial Symbiotic Interface in Infection Threads. Cells 2021; 10:cells10051050. [PMID: 33946779 PMCID: PMC8146911 DOI: 10.3390/cells10051050] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
The intracellular infection thread initiated in a root hair cell is a unique structure associated with Rhizobium-legume symbiosis. It is characterized by inverted tip growth of the plant cell wall, resulting in a tunnel that allows invasion of host cells by bacteria during the formation of the nitrogen-fixing root nodule. Regulation of the plant-microbial interface is essential for infection thread growth. This involves targeted deposition of the cell wall and extracellular matrix and tight control of cell wall remodeling. This review describes the potential role of different actors such as transcription factors, receptors, and enzymes in the rearrangement of the plant-microbial interface and control of polar infection thread growth. It also focuses on the composition of the main polymers of the infection thread wall and matrix and the participation of reactive oxygen species (ROS) in the development of the infection thread. Mutant analysis has helped to gain insight into the development of host defense reactions. The available data raise many new questions about the structure, function, and development of infection threads.
Collapse
|
9
|
Rae AE, Rolland V, White RG, Mathesius U. New methods for confocal imaging of infection threads in crop and model legumes. PLANT METHODS 2021; 17:24. [PMID: 33678177 PMCID: PMC7938587 DOI: 10.1186/s13007-021-00725-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/26/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND The formation of infection threads in the symbiotic infection of rhizobacteria in legumes is a unique, fascinating, and poorly understood process. Infection threads are tubes of cell wall material that transport rhizobacteria from root hair cells to developing nodules in host roots. They form in a type of reverse tip-growth from an inversion of the root hair cell wall, but the mechanism driving this growth is unknown, and the composition of the thread wall remains unclear. High resolution, 3-dimensional imaging of infection threads, and cell wall component specific labelling, would greatly aid in our understanding of the nature and development of these structures. To date, such imaging has not been done, with infection threads typically imaged by GFP-tagged rhizobia within them, or histochemically in thin sections. RESULTS We have developed new methods of imaging infection threads using novel and traditional cell wall fluorescent labels, and laser confocal scanning microscopy. We applied a new Periodic Acid Schiff (PAS) stain using rhodamine-123 to the labelling of whole cleared infected roots of Medicago truncatula; which allowed for imaging of infection threads in greater 3D detail than had previously been achieved. By the combination of the above method and a calcofluor-white counter-stain, we also succeeded in labelling infection threads and plant cell walls separately, and have potentially discovered a way in which the infection thread matrix can be visualized. CONCLUSIONS Our methods have made the imaging and study of infection threads more effective and informative, and present exciting new opportunities for future research in the area.
Collapse
Affiliation(s)
- Angus E Rae
- Department of Plant Sciences, Research School of Biology, Australian National University, Acton, ACT, 2601, Australia.
| | - Vivien Rolland
- CSIRO Agriculture and Food, GPO Box 1700, Acton, ACT, 2601, Australia
| | - Rosemary G White
- Department of Plant Sciences, Research School of Biology, Australian National University, Acton, ACT, 2601, Australia
| | - Ulrike Mathesius
- Department of Plant Sciences, Research School of Biology, Australian National University, Acton, ACT, 2601, Australia.
| |
Collapse
|
10
|
Multiple sensors provide spatiotemporal oxygen regulation of gene expression in a Rhizobium-legume symbiosis. PLoS Genet 2021; 17:e1009099. [PMID: 33539353 PMCID: PMC7888657 DOI: 10.1371/journal.pgen.1009099] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/17/2021] [Accepted: 12/04/2020] [Indexed: 01/04/2023] Open
Abstract
Regulation by oxygen (O2) in rhizobia is essential for their symbioses with plants and involves multiple O2 sensing proteins. Three sensors exist in the pea microsymbiont Rhizobium leguminosarum Rlv3841: hFixL, FnrN and NifA. At low O2 concentrations (1%) hFixL signals via FxkR to induce expression of the FixK transcription factor, which activates transcription of downstream genes. These include fixNOQP, encoding the high-affinity cbb3-type terminal oxidase used in symbiosis. In free-living Rlv3841, the hFixL-FxkR-FixK pathway was active at 1% O2, and confocal microscopy showed hFixL-FxkR-FixK activity in the earliest stages of Rlv3841 differentiation in nodules (zones I and II). Work on Rlv3841 inside and outside nodules showed that the hFixL-FxkR-FixK pathway also induces transcription of fnrN at 1% O2 and in the earliest stages of Rlv3841 differentiation in nodules. We confirmed past findings suggesting a role for FnrN in fixNOQP expression. However, unlike hFixL-FxkR-FixK, Rlv3841 FnrN was only active in the near-anaerobic zones III and IV of pea nodules. Quantification of fixNOQP expression in nodules showed this was driven primarily by FnrN, with minimal direct hFixL-FxkR-FixK induction. Thus, FnrN is key for full symbiotic expression of fixNOQP. Without FnrN, nitrogen fixation was reduced by 85% in Rlv3841, while eliminating hFixL only reduced fixation by 25%. The hFixL-FxkR-FixK pathway effectively primes the O2 response by increasing fnrN expression in early differentiation (zones I-II). In zone III of mature nodules, near-anaerobic conditions activate FnrN, which induces fixNOQP transcription to the level required for wild-type nitrogen fixation activity. Modelling and transcriptional analysis indicates that the different O2 sensitivities of hFixL and FnrN lead to a nuanced spatiotemporal pattern of gene regulation in different nodule zones in response to changing O2 concentration. Multi-sensor O2 regulation is prevalent in rhizobia, suggesting the fine-tuned control this enables is common and maximizes the effectiveness of the symbioses. Rhizobia are soil bacteria that form a symbiosis with legume plants. In exchange for shelter from the plant, rhizobia provide nitrogen fertilizer, produced by nitrogen fixation. Fixation is catalysed by the nitrogenase enzyme, which is inactivated by oxygen. To prevent this, plants house rhizobia in root nodules, which create a low oxygen environment. However, rhizobia need oxygen, and must adapt to survive the low oxygen concentration in the nodule. Key to this is regulating their genes based on oxygen concentration. We studied one Rhizobium species which uses three different protein sensors of oxygen, each turning on at a different oxygen concentration. As the bacteria get deeper inside the plant nodule and the oxygen concentration drops, each sensor switches on in turn. Our results also show that the first sensor to turn on, hFixL, primes the second sensor, FnrN. This prepares the rhizobia for the core region of the nodule where oxygen concentration is lowest and most nitrogen fixation takes place. If both sensors are removed, the bacteria cannot fix nitrogen. Many rhizobia have several oxygen sensing proteins, so using multiple sensors is likely a common strategy enabling rhizobia to adapt to low oxygen precisely and in stages during symbiosis.
Collapse
|
11
|
Hug S, Liu Y, Heiniger B, Bailly A, Ahrens CH, Eberl L, Pessi G. Differential Expression of Paraburkholderia phymatum Type VI Secretion Systems (T6SS) Suggests a Role of T6SS-b in Early Symbiotic Interaction. FRONTIERS IN PLANT SCIENCE 2021; 12:699590. [PMID: 34394152 PMCID: PMC8356804 DOI: 10.3389/fpls.2021.699590] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/28/2021] [Indexed: 05/06/2023]
Abstract
Paraburkholderia phymatum STM815, a rhizobial strain of the Burkholderiaceae family, is able to nodulate a broad range of legumes including the agriculturally important Phaseolus vulgaris (common bean). P. phymatum harbors two type VI Secretion Systems (T6SS-b and T6SS-3) in its genome that contribute to its high interbacterial competitiveness in vitro and in infecting the roots of several legumes. In this study, we show that P. phymatum T6SS-b is found in the genomes of several soil-dwelling plant symbionts and that its expression is induced by the presence of citrate and is higher at 20/28°C compared to 37°C. Conversely, T6SS-3 shows homologies to T6SS clusters found in several pathogenic Burkholderia strains, is more prominently expressed with succinate during stationary phase and at 37°C. In addition, T6SS-b expression was activated in the presence of germinated seeds as well as in P. vulgaris and Mimosa pudica root nodules. Phenotypic analysis of selected deletion mutant strains suggested a role of T6SS-b in motility but not at later stages of the interaction with legumes. In contrast, the T6SS-3 mutant was not affected in any of the free-living and symbiotic phenotypes examined. Thus, P. phymatum T6SS-b is potentially important for the early infection step in the symbiosis with legumes.
Collapse
Affiliation(s)
- Sebastian Hug
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Yilei Liu
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Benjamin Heiniger
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics, Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Aurélien Bailly
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Christian H. Ahrens
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics, Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- *Correspondence: Gabriella Pessi,
| |
Collapse
|
12
|
Forrester NJ, Ashman TL. Autopolyploidy alters nodule-level interactions in the legume-rhizobium mutualism. AMERICAN JOURNAL OF BOTANY 2020; 107:179-185. [PMID: 31721161 DOI: 10.1002/ajb2.1375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 06/17/2019] [Indexed: 05/22/2023]
Abstract
PREMISE Polyploidy is a major genetic driver of ecological and evolutionary processes in plants, yet its effects on plant interactions with mutualistic microbes remain unresolved. The legume-rhizobium symbiosis regulates global nutrient cycles and plays a role in the diversification of legume species. In this mutualism, rhizobia bacteria fix nitrogen in exchange for carbon provided by legume hosts. This exchange occurs inside root nodules, which house bacterial cells and represent the interface of legume-rhizobium interactions. Although polyploidy may directly impact the legume-rhizobium mutualism, no studies have explored how it alters the internal structure of nodules. METHODS We created synthetic autotetraploids using Medicago sativa subsp. caerulea. Neotetraploid plants and their diploid progenitors were singly inoculated with two strains of rhizobia, Sinorhizobium meliloti and S. medicae. Confocal microscopy was used to quantify internal traits of nodules produced by diploid and neotetraploid plants. RESULTS Autotetraploid plants produced larger nodules with larger nitrogen fixation zones than diploids for both strains of rhizobia, although the significance of these differences was limited by power. Neotetraploid M. sativa subsp. caerulea plants also produced symbiosomes that were significantly larger, nearly twice the size, than those present in diploids. CONCLUSIONS This study sheds light on how polyploidy directly affects a plant-bacterium mutualism and uncovers novel mechanisms. Changes in plant-microbe interactions that directly result from polyploidy likely contribute to the increased ability of polyploid legumes to establish in diverse environments.
Collapse
Affiliation(s)
- Nicole J Forrester
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
| |
Collapse
|
13
|
Russo G, Carotenuto G, Fiorilli V, Volpe V, Faccio A, Bonfante P, Chabaud M, Chiapello M, Van Damme D, Genre A. TPLATE Recruitment Reveals Endocytic Dynamics at Sites of Symbiotic Interface Assembly in Arbuscular Mycorrhizal Interactions. FRONTIERS IN PLANT SCIENCE 2019; 10:1628. [PMID: 31921269 PMCID: PMC6934022 DOI: 10.3389/fpls.2019.01628] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/19/2019] [Indexed: 06/02/2023]
Abstract
Introduction: Arbuscular mycorrhizal (AM) symbiosis between soil fungi and the majority of plants is based on a mutualistic exchange of organic and inorganic nutrients. This takes place inside root cortical cells that harbor an arbuscule: a highly branched intracellular fungal hypha enveloped by an extension of the host cell membrane-the perifungal membrane-which outlines a specialized symbiotic interface compartment. The perifungal membrane develops around each intracellular hypha as the symbiotic fungus proceeds across the root tissues; its biogenesis is the result of an extensive exocytic process and shows a few similarities with cell plate insertion which occurs at the end of somatic cytokinesis. Materials and Methods: We here analyzed the subcellular localization of a GFP fusion with TPLATE, a subunit of the endocytic TPLATE complex (TPC), a central actor in plant clathrin-mediated endocytosis with a role in cell plate anchoring with the parental plasma membrane. Results: Our observations demonstrate that Daucus carota and Medicago truncatula root organ cultures expressing a 35S::AtTPLATE-GFP construct accumulate strong fluorescent green signal at sites of symbiotic interface construction, along recently formed perifungal membranes and at sites of cell-to-cell hyphal passage between adjacent cortical cells, where the perifungal membrane fuses with the plasmalemma. Discussion: Our results strongly suggest that TPC-mediated endocytic processes are active during perifungal membrane interface biogenesis-alongside exocytic transport. This novel conclusion, which might be correlated to the accumulation of late endosomes in the vicinity of the developing interface, hints at the involvement of TPC-dependent membrane remodeling during the intracellular accommodation of AM fungi.
Collapse
Affiliation(s)
- Giulia Russo
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| | - Gennaro Carotenuto
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Veronica Volpe
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Antonella Faccio
- Institute for Sustainable Plant Protection, National Research Council, Torino, Italy
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Mireille Chabaud
- LIPM, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Marco Chiapello
- Institute for Sustainable Plant Protection, National Research Council, Torino, Italy
| | - Daniel Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Department of Plant Systems Biology, Ghent University, Ghent, Belgium
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| |
Collapse
|
14
|
Abstract
Rhizobia are α- and β-proteobacteria that form a symbiotic partnership with legumes, fixing atmospheric dinitrogen to ammonia and providing it to the plant. Oxygen regulation is key in this symbiosis. Fixation is performed by an oxygen-intolerant nitrogenase enzyme but requires respiration to meet its high energy demands. To satisfy these opposing constraints the symbiotic partners cooperate intimately, employing a variety of mechanisms to regulate and respond to oxygen concentration. During symbiosis rhizobia undergo significant changes in gene expression to differentiate into nitrogen-fixing bacteroids. Legumes host these bacteroids in specialized root organs called nodules. These generate a near-anoxic environment using an oxygen diffusion barrier, oxygen-binding leghemoglobin and control of mitochondria localization. Rhizobia sense oxygen using multiple interconnected systems which enable a finely-tuned response to the wide range of oxygen concentrations they experience when transitioning from soil to nodules. The oxygen-sensing FixL-FixJ and hybrid FixL-FxkR two-component systems activate at relatively high oxygen concentration and regulate fixK transcription. FixK activates the fixNOQP and fixGHIS operons producing a high-affinity terminal oxidase required for bacterial respiration in the microaerobic nodule. Additionally or alternatively, some rhizobia regulate expression of these operons by FnrN, an FNR-like oxygen-sensing protein. The final stage of symbiotic establishment is activated by the NifA protein, regulated by oxygen at both the transcriptional and protein level. A cross-species comparison of these systems highlights differences in their roles and interconnections but reveals common regulatory patterns and themes. Future work is needed to establish the complete regulon of these systems and identify other regulatory signals.
Collapse
Affiliation(s)
- Paul J Rutten
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Philip S Poole
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Greenlon A, Chang PL, Damtew ZM, Muleta A, Carrasquilla-Garcia N, Kim D, Nguyen HP, Suryawanshi V, Krieg CP, Yadav SK, Patel JS, Mukherjee A, Udupa S, Benjelloun I, Thami-Alami I, Yasin M, Patil B, Singh S, Sarma BK, von Wettberg EJB, Kahraman A, Bukun B, Assefa F, Tesfaye K, Fikre A, Cook DR. Global-level population genomics reveals differential effects of geography and phylogeny on horizontal gene transfer in soil bacteria. Proc Natl Acad Sci U S A 2019; 116:15200-15209. [PMID: 31285337 PMCID: PMC6660780 DOI: 10.1073/pnas.1900056116] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although microorganisms are known to dominate Earth's biospheres and drive biogeochemical cycling, little is known about the geographic distributions of microbial populations or the environmental factors that pattern those distributions. We used a global-level hierarchical sampling scheme to comprehensively characterize the evolutionary relationships and distributional limitations of the nitrogen-fixing bacterial symbionts of the crop chickpea, generating 1,027 draft whole-genome sequences at the level of bacterial populations, including 14 high-quality PacBio genomes from a phylogenetically representative subset. We find that diverse Mesorhizobium taxa perform symbiosis with chickpea and have largely overlapping global distributions. However, sampled locations cluster based on the phylogenetic diversity of Mesorhizobium populations, and diversity clusters correspond to edaphic and environmental factors, primarily soil type and latitude. Despite long-standing evolutionary divergence and geographic isolation, the diverse taxa observed to nodulate chickpea share a set of integrative conjugative elements (ICEs) that encode the major functions of the symbiosis. This symbiosis ICE takes 2 forms in the bacterial chromosome-tripartite and monopartite-with tripartite ICEs confined to a broadly distributed superspecies clade. The pairwise evolutionary relatedness of these elements is controlled as much by geographic distance as by the evolutionary relatedness of the background genome. In contrast, diversity in the broader gene content of Mesorhizobium genomes follows a tight linear relationship with core genome phylogenetic distance, with little detectable effect of geography. These results illustrate how geography and demography can operate differentially on the evolution of bacterial genomes and offer useful insights for the development of improved technologies for sustainable agriculture.
Collapse
Affiliation(s)
- Alex Greenlon
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - Peter L Chang
- Department of Plant Pathology, University of California, Davis, CA 95616
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| | - Zehara Mohammed Damtew
- College of Natural Sciences, Addis Ababa University, Addis Ababa, 32853 Ethiopia
- Debre Zeit Agricultural Research Center, Ethiopian Institute for Agricultural Research, Bishoftu, Ethiopia
| | - Atsede Muleta
- College of Natural Sciences, Addis Ababa University, Addis Ababa, 32853 Ethiopia
| | | | - Donghyun Kim
- International Crop Research Institute for the Semi-Arid Tropics, Hyderabad 502324, India
| | - Hien P Nguyen
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 183-8509 Tokyo, Japan
| | - Vasantika Suryawanshi
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| | - Christopher P Krieg
- Department of Biological Sciences, Florida International University, Miami, FL 33199
| | - Sudheer Kumar Yadav
- Department of Mycology and Plant Pathology, Banaras Hindu University, Varanasi 221005, India
| | - Jai Singh Patel
- Department of Mycology and Plant Pathology, Banaras Hindu University, Varanasi 221005, India
| | - Arpan Mukherjee
- Department of Mycology and Plant Pathology, Banaras Hindu University, Varanasi 221005, India
| | - Sripada Udupa
- Biodiversity and Integrated Gene Management Program, International Center for Agricultural Research in the Dry Areas, 10112 Rabat, Morocco
| | - Imane Benjelloun
- Institute National de la Recherche Agronomique, 10100 Rabat, Morocco
| | - Imane Thami-Alami
- Institute National de la Recherche Agronomique, 10100 Rabat, Morocco
| | | | - Bhuvaneshwara Patil
- Department of Genetics and Plant Breeding, University of Agricultural Sciences, Dharwad 580001, India
| | - Sarvjeet Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana 141027, India
| | - Birinchi Kumar Sarma
- Department of Mycology and Plant Pathology, Banaras Hindu University, Varanasi 221005, India
| | - Eric J B von Wettberg
- Department of Biological Sciences, Florida International University, Miami, FL 33199
- Department of Plant and Soil Science, University of Vermont, Burlington, VT 05405
| | - Abdullah Kahraman
- Department of Field Crops, Faculty of Agriculture, Harran University, 63100 Sanliurfa, Turkey
| | - Bekir Bukun
- Department of Plant Protection, Dicle University, 21280 Diyarbakir, Turkey
| | - Fassil Assefa
- College of Natural Sciences, Addis Ababa University, Addis Ababa, 32853 Ethiopia
| | - Kassahun Tesfaye
- College of Natural Sciences, Addis Ababa University, Addis Ababa, 32853 Ethiopia
| | - Asnake Fikre
- Debre Zeit Agricultural Research Center, Ethiopian Institute for Agricultural Research, Bishoftu, Ethiopia
| | - Douglas R Cook
- Department of Plant Pathology, University of California, Davis, CA 95616;
| |
Collapse
|
16
|
Marczak M, Mazur A, Koper P, Żebracki K, Skorupska A. Synthesis of Rhizobial Exopolysaccharides and Their Importance for Symbiosis with Legume Plants. Genes (Basel) 2017; 8:E360. [PMID: 29194398 PMCID: PMC5748678 DOI: 10.3390/genes8120360] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/26/2017] [Accepted: 11/29/2017] [Indexed: 12/25/2022] Open
Abstract
Rhizobia dwell and multiply in the soil and represent a unique group of bacteria able to enter into a symbiotic interaction with plants from the Fabaceae family and fix atmospheric nitrogen inside de novo created plant organs, called nodules. One of the key determinants of the successful interaction between these bacteria and plants are exopolysaccharides, which represent species-specific homo- and heteropolymers of different carbohydrate units frequently decorated by non-carbohydrate substituents. Exopolysaccharides are typically built from repeat units assembled by the Wzx/Wzy-dependent pathway, where individual subunits are synthesized in conjunction with the lipid anchor undecaprenylphosphate (und-PP), due to the activity of glycosyltransferases. Complete oligosaccharide repeat units are transferred to the periplasmic space by the activity of the Wzx flippase, and, while still being anchored in the membrane, they are joined by the polymerase Wzy. Here we have focused on the genetic control over the process of exopolysaccharides (EPS) biosynthesis in rhizobia, with emphasis put on the recent advancements in understanding the mode of action of the key proteins operating in the pathway. A role played by exopolysaccharide in Rhizobium-legume symbiosis, including recent data confirming the signaling function of EPS, is also discussed.
Collapse
Affiliation(s)
- Małgorzata Marczak
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Andrzej Mazur
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Piotr Koper
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Kamil Żebracki
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Anna Skorupska
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| |
Collapse
|
17
|
Marek-Kozaczuk M, Wdowiak-Wróbel S, Kalita M, Chernetskyy M, Deryło K, Tchórzewski M, Skorupska A. Host-dependent symbiotic efficiency of Rhizobium leguminosarum bv. trifolii strains isolated from nodules of Trifolium rubens. Antonie van Leeuwenhoek 2017; 110:1729-1744. [PMID: 28791535 PMCID: PMC5676844 DOI: 10.1007/s10482-017-0922-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/29/2017] [Indexed: 11/28/2022]
Abstract
Trifolium rubens L., commonly known as the red feather clover, is capable of symbiotic interactions with rhizobia. Up to now, no specific symbionts of T. rubens and their symbiotic compatibility with Trifolium spp. have been described. We characterized the genomic diversity of T. rubens symbionts by analyses of plasmid profiles and BOX-PCR. The phylogeny of T. rubens isolates was inferred based on the nucleotide sequences of 16S rRNA and two core genes (atpD, recA). The nodC phylogeny allowed classification of rhizobia nodulating T. rubens as Rhizobium leguminosarum symbiovar trifolii (Rlt). The symbiotic efficiency of the Rlt isolates was determined on four clover species: T. rubens, T. pratense, T. repens and T. resupinatum. We determined that Rlt strains formed mostly inefficient symbiosis with their native host plant T. rubens and weakly effective (sub-optimal) symbiosis with T. repens and T. pratense. The same Rlt strains were fully compatible in the symbiosis with T. resupinatum. T. rubens did not exhibit strict selectivity in regard to the symbionts and rhizobia closely related to Rhizobium grahamii, Rhizobium galegae and Agrobacterium radiobacter, which did not nodulate Trifolium spp., were found amongst T. rubens nodule isolates.
Collapse
Affiliation(s)
- Monika Marek-Kozaczuk
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Sylwia Wdowiak-Wróbel
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Michał Kalita
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Mykhaylo Chernetskyy
- The Botanic Garden of Maria Curie-Skłodowska University, Sławinkowska 3, 20-810, Lublin, Poland
| | - Kamil Deryło
- Department of Molecular Biology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Marek Tchórzewski
- Department of Molecular Biology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Anna Skorupska
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| |
Collapse
|
18
|
Hölscher T, Kovács ÁT. Sliding on the surface: bacterial spreading without an active motor. Environ Microbiol 2017; 19:2537-2545. [PMID: 28370801 DOI: 10.1111/1462-2920.13741] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 11/28/2022]
Abstract
Bacteria are able to translocate over surfaces using different types of active and passive motility mechanisms. Sliding is one of the passive types of movement since it is powered by the pushing force of dividing cells and additional factors facilitating the expansion over surfaces. In this review, we describe the sliding proficient bacteria that were previously investigated in details highlighting the sliding facilitating compounds and the regulation of sliding motility. Besides surfactants that reduce the friction between cells and substratum, other compounds including exopolysaccharides, hydrophobic proteins, or glycopeptidolipids where discovered to promote sliding. Therefore, we present the sliding bacteria in three groups depending on the additional compound required for sliding. Despite recent accomplishments in sliding research there are still many open questions about the mechanisms underlying sliding motility and its regulation in diverse bacterial species.
Collapse
Affiliation(s)
- Theresa Hölscher
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Ákos T Kovács
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
19
|
Affiliation(s)
- Noriko Inada
- The Graduate School of Biological Sciences, Nara Institute of Science and Technology
| |
Collapse
|
20
|
FleQ coordinates flagellum-dependent and -independent motilities in Pseudomonas syringae pv. tomato DC3000. Appl Environ Microbiol 2015; 81:7533-45. [PMID: 26296726 DOI: 10.1128/aem.01798-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/14/2015] [Indexed: 12/29/2022] Open
Abstract
Motility plays an essential role in bacterial fitness and colonization in the plant environment, since it favors nutrient acquisition and avoidance of toxic substances, successful competition with other microorganisms, the ability to locate the preferred hosts, access to optimal sites within them, and dispersal in the environment during the course of transmission. In this work, we have observed that the mutation of the flagellar master regulatory gene, fleQ, alters bacterial surface motility and biosurfactant production, uncovering a new type of motility for Pseudomonas syringae pv. tomato DC3000 on semisolid surfaces. We present evidence that P. syringae pv. tomato DC3000 moves over semisolid surfaces by using at least two different types of motility, namely, swarming, which depends on the presence of flagella and syringafactin, a biosurfactant produced by this strain, and a flagellum-independent surface spreading or sliding, which also requires syringafactin. We also show that FleQ activates flagellum synthesis and negatively regulates syringafactin production in P. syringae pv. tomato DC3000. Finally, it was surprising to observe that mutants lacking flagella or syringafactin were as virulent as the wild type, and only the simultaneous loss of both flagella and syringafactin impairs the ability of P. syringae pv. tomato DC3000 to colonize tomato host plants and cause disease.
Collapse
|
21
|
Hayashi S, Gresshoff PM, Ferguson BJ. Mechanistic action of gibberellins in legume nodulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:971-8. [PMID: 24673766 DOI: 10.1111/jipb.12201] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/25/2014] [Indexed: 05/26/2023]
Abstract
Legume plants are capable of entering into a symbiotic relationship with rhizobia bacteria. This results in the formation of novel organs on their roots, called nodules, in which the bacteria capture atmospheric nitrogen and provide it as ammonium to the host plant. Complex molecular and physiological changes are involved in the formation and establishment of such nodules. Several phytohormones are known to play key roles in this process. Gibberellins (gibberellic acids; GAs), a class of phytohormones known to be involved in a wide range of biological processes (i.e., cell elongation, germination) are reported to be involved in the formation and maturation of legume nodules, highlighted by recent transcriptional analyses of early soybean symbiotic steps. Here, we summarize what is currently known about GAs in legume nodulation and propose a model of GA action during nodule development. Results from a wide range of studies, including GA application, mutant phenotyping, and gene expression studies, indicate that GAs are required at different stages, with an optimum, tightly regulated level being key to achieve successful nodulation. Gibberellic acids appear to be required at two distinct stages of nodulation: (i) early stages of rhizobia infection and nodule primordium establishment; and (ii) later stages of nodule maturation.
Collapse
Affiliation(s)
- Satomi Hayashi
- Centre for Integrative Legume Research, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | | | | |
Collapse
|
22
|
Rich MK, Schorderet M, Reinhardt D. The role of the cell wall compartment in mutualistic symbioses of plants. FRONTIERS IN PLANT SCIENCE 2014; 5:238. [PMID: 24917869 PMCID: PMC4041022 DOI: 10.3389/fpls.2014.00238] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 05/12/2014] [Indexed: 05/18/2023]
Abstract
Plants engage in mutualistic interactions with microbes that improve their mineral nutrient supply. The most wide-spread symbiotic association is arbuscular mycorrhiza (AM), in which fungi of the order Glomeromycota invade roots and colonize the cellular lumen of cortical cells. The establishment of this interaction requires a dedicated molecular-genetic program and a cellular machinery of the plant host. This program is partially shared with the root nodule symbiosis (RNS), which involves prokaryotic partners collectively referred to as rhizobia. Both, AM and RNS are endosymbioses that involve intracellular accommodation of the microbial partner in the cells of the plant host. Since plant cells are surrounded by sturdy cell walls, root penetration and cell invasion requires mechanisms to overcome this barrier while maintaining the cytoplasm of the two partners separate during development of the symbiotic association. Here, we discuss the diverse functions of the cell wall compartment in establishment and functioning of plant symbioses with the emphasis on AM and RNS, and we describe the stages of the AM association between the model organisms Petunia hybrida and Rhizophagus irregularis.
Collapse
Affiliation(s)
| | | | - Didier Reinhardt
- Department of Biology, University of FribourgFribourg, Switzerland
| |
Collapse
|
23
|
Alsohim AS, Taylor TB, Barrett GA, Gallie J, Zhang XX, Altamirano-Junqueira AE, Johnson LJ, Rainey PB, Jackson RW. The biosurfactant viscosin produced byPseudomonas fluorescens SBW25 aids spreading motility and plant growth promotion. Environ Microbiol 2014; 16:2267-81. [DOI: 10.1111/1462-2920.12469] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 03/14/2014] [Accepted: 03/14/2014] [Indexed: 11/28/2022]
Affiliation(s)
| | - Tiffany B. Taylor
- School of Biological Sciences; University of Reading; Reading RG6 6AJ UK
| | - Glyn A. Barrett
- School of Biological Sciences; University of Reading; Reading RG6 6AJ UK
| | - Jenna Gallie
- New Zealand Institute for Advanced Study; Massey University; Auckland New Zealand
- Department of Environmental Microbiology; Eawag; Dübendorf 8600 Switzerland
- Department of Environmental Systems Science; ETH Zürich; Zürich 8092 Switzerland
| | - Xue-Xian Zhang
- New Zealand Institute for Advanced Study; Massey University; Auckland New Zealand
| | | | - Louise J. Johnson
- School of Biological Sciences; University of Reading; Reading RG6 6AJ UK
| | - Paul B. Rainey
- New Zealand Institute for Advanced Study; Massey University; Auckland New Zealand
- Max Planck Institute for Evolutionary Biology; Plön Germany
| | - Robert W. Jackson
- School of Biological Sciences; University of Reading; Reading RG6 6AJ UK
| |
Collapse
|
24
|
Abstract
Symbiosomes are a unique structural entity that performs the role of biological nitrogen fixation, an energy-demanding process that is the primary entryway of fixed nitrogen into the biosphere. Symbiosomes result from the infection of specific rhizobial strains into the roots of an appropriate leguminous host plant forming an organ referred to as a nodule. Within the infected plant cells of the nodule, the rhizobia are encased within membrane-bounded structures that develop into symbiosomes. Mature symbiosomes create an environment that allows the rhizobia to differentiate into a nitrogen-fixing form called bacteroids. The bacteroids are surrounded by the symbiosome space, which is populated by proteins from both eukaryotic and prokaryotic symbionts, suggesting this space is the quintessential component of symbiosis: an inter-kingdom environment with the single purpose of symbiotic nitrogen fixation. Proteins associated with the symbiosome membrane are largely plant-derived proteins and are non-metabolic in nature. The proteins of the symbiosome space are mostly derived from the bacteroid with annotated functions of carbon metabolism, whereas relatively few are involved in nitrogen metabolism. An appreciable portion of both the eukaryotic and prokaryotic proteins in the symbiosome are also ‘moonlighting’ proteins, which are defined as proteins that perform roles unrelated to their annotated activities when found in an unexpected physiological environment. The essential functions of symbiotic nitrogen fixation of the symbiosome are performed by co-operative interactions of proteins from both symbionts some of which may be performing unexpected roles.
Collapse
|
25
|
KUSUMAWATI LUCIA, KURAN KATHRYN, IMIN NIJAT, MATHESIUS ULRIKE, DJORDJEVIC MICHAEL. The Expression of Genes Encoding Secreted Proteins in Medicago truncatula A17 Inoculated Roots. HAYATI JOURNAL OF BIOSCIENCES 2013. [DOI: 10.4308/hjb.20.3.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
26
|
Nguema-Ona E, Vicré-Gibouin M, Cannesan MA, Driouich A. Arabinogalactan proteins in root-microbe interactions. TRENDS IN PLANT SCIENCE 2013; 18:440-9. [PMID: 23623239 DOI: 10.1016/j.tplants.2013.03.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/18/2013] [Accepted: 03/28/2013] [Indexed: 05/20/2023]
Abstract
Arabinogalactan proteins (AGPs) are among the most intriguing sets of macromolecules, specific to plants, structurally complex, and found abundantly in all plant organs including roots, as well as in root exudates. AGPs have been implicated in several fundamental plant processes such as development and reproduction. Recently, they have emerged as interesting actors of root-microbe interactions in the rhizosphere. Indeed, recent findings indicate that AGPs play key roles at various levels of interaction between roots and soil-borne microbes, either beneficial or pathogenic. Therefore, the focus of this review is the role of AGPs in the interactions between root cells and microbes. Understanding this facet of AGP function will undoubtedly improve plant health and crop protection.
Collapse
Affiliation(s)
- Eric Nguema-Ona
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV)-EA 4358, Plate-forme d'Imagerie Cellulaire (PRIMACEN) et Grand Réseau de Recherche VASI de Haute Normandie, PRES Normandie Université, Université de Rouen, 76821 Mont Saint Aignan, Cedex, France
| | | | | | | |
Collapse
|
27
|
Nguema-Ona E, Coimbra S, Vicré-Gibouin M, Mollet JC, Driouich A. Arabinogalactan proteins in root and pollen-tube cells: distribution and functional aspects. ANNALS OF BOTANY 2012; 110:383-404. [PMID: 22786747 PMCID: PMC3394660 DOI: 10.1093/aob/mcs143] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 05/22/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Arabinogalactan proteins (AGPs) are complex proteoglycans of the cell wall found in the entire plant kingdom and in almost all plant organs. AGPs encompass a large group of heavily glycosylated cell-wall proteins which share common features, including the presence of glycan chains especially enriched in arabinose and galactose and a protein backbone particularly rich in hydroxyproline residues. However, AGPs also exhibit strong heterogeneities among their members in various plant species. AGP ubiquity in plants suggests these proteoglycans are fundamental players for plant survival and development. SCOPE In this review, we first present an overview of current knowledge and specific features of AGPs. A section devoted to major tools used to study AGPs is also presented. We then discuss the distribution of AGPs as well as various aspects of their functional properties in root tissues and pollen tubes. This review also suggests novel directions of research on the role of AGPs in the biology of roots and pollen tubes.
Collapse
Affiliation(s)
- Eric Nguema-Ona
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), Grand Réseau de Recherche VASI de Haute Normandie, PRES Normandie Université, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| | - Sílvia Coimbra
- Sexual Plant Reproduction and Development Laboratory, Departamento de Biologia, F.C. Universidade do Porto, Rua do Campo Alegre 4169-007 Porto, Portugal
- Center for Biodiversity, Functional & Integrative Genomics (BioFIG), http://biofig.fc.ul.pt
| | - Maïté Vicré-Gibouin
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), Grand Réseau de Recherche VASI de Haute Normandie, PRES Normandie Université, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| | - Jean-Claude Mollet
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), Grand Réseau de Recherche VASI de Haute Normandie, PRES Normandie Université, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| | - Azeddine Driouich
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), Grand Réseau de Recherche VASI de Haute Normandie, PRES Normandie Université, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| |
Collapse
|
28
|
Kidaj D, Wielbo J, Skorupska A. Nod factors stimulate seed germination and promote growth and nodulation of pea and vetch under competitive conditions. Microbiol Res 2012; 167:144-50. [PMID: 21723717 DOI: 10.1016/j.micres.2011.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 06/02/2011] [Accepted: 06/05/2011] [Indexed: 10/18/2022]
Abstract
Nod factors are lipochitooligosaccharide (LCO) produced by soil bacteria commonly known as rhizobia acting as signals for the legume plants to initiate symbiosis. Nod factors trigger early symbiotic responses in plant roots and initiate the development of specialized plant organs called nodules, where biological nitrogen fixation takes place. Here, the effect of specific LCO originating from flavonoid induced Rhizobium leguminosarum bv. viciae GR09 culture was studied on germination, plant growth and nodulation of pea and vetch. A crude preparation of GR09 LCO significantly enhanced symbiotic performance of pea and vetch grown under laboratory conditions and in the soil. Moreover, the effect of GR09 LCOs seed treatments on the genetic diversity of rhizobia recovered from vetch and pea nodules was presented.
Collapse
Affiliation(s)
- Dominika Kidaj
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19 st., 20-033 Lublin, Poland
| | | | | |
Collapse
|
29
|
Mortier V, Holsters M, Goormachtig S. Never too many? How legumes control nodule numbers. PLANT, CELL & ENVIRONMENT 2012; 35:245-58. [PMID: 21819415 DOI: 10.1111/j.1365-3040.2011.02406.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Restricted availability of nitrogen compounds in soils is often a major limiting factor for plant growth and productivity. Legumes circumvent this problem by establishing a symbiosis with soil-borne bacteria, called rhizobia that fix nitrogen for the plant. Nitrogen fixation and nutrient exchange take place in specialized root organs, the nodules, which are formed by a coordinated and controlled process that combines bacterial infection and organ formation. Because nodule formation and nitrogen fixation are energy-consuming processes, legumes develop the minimal number of nodules required to ensure optimal growth. To this end, several mechanisms have evolved that adapt nodule formation and nitrogen fixation to the plant's needs and environmental conditions, such as nitrate availability in the soil. In this review, we give an updated view on the mechanisms that control nodulation.
Collapse
Affiliation(s)
- Virginie Mortier
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | | | | |
Collapse
|
30
|
Robledo M, Jiménez-Zurdo JI, Soto MJ, Velázquez E, Dazzo F, Martínez-Molina E, Mateos PF. Development of functional symbiotic white clover root hairs and nodules requires tightly regulated production of rhizobial cellulase CelC2. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:798-807. [PMID: 21405987 DOI: 10.1094/mpmi-10-10-0249] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The establishment of rhizobia as nitrogen-fixing endosymbionts within legume root nodules requires the disruption of the plant cell wall to breach the host barrier at strategic infection sites in the root hair tip and at points of bacterial release from infection threads (IT) within the root cortex. We previously found that Rhizobium leguminosarum bv. trifolii uses its chromosomally encoded CelC2 cellulase to erode the noncrystalline wall at the apex of root hairs, thereby creating the primary portal of its entry into white clover roots. Here, we show that a recombinant derivative of R. leguminosarum bv. trifolii ANU843 that constitutively overproduces the CelC2 enzyme has increased competitiveness in occupying aberrant nodule-like root structures on clover that are inefficient in nitrogen fixation. This aberrant symbiotic phenotype involves an extensive uncontrolled degradation of the host cell walls restricted to the expected infection sites at tips of deformed root hairs and significantly enlarged infection droplets at termini of wider IT within the nodule infection zone. Furthermore, signs of elevated plant host defense as indicated by reactive oxygen species production in root tissues were more evident during infection by the recombinant strain than its wild-type parent. Our data further support the role of the rhizobial CelC2 cell wall-degrading enzyme in primary infection, and show evidence of its importance in secondary symbiotic infection and tight regulation of its production to establish an effective nitrogen-fixing root nodule symbiosis.
Collapse
Affiliation(s)
- Marta Robledo
- Departamento de Microbiologia, Universidad de Salamanca, Salamanca, Spain
| | | | | | | | | | | | | |
Collapse
|
31
|
Murray JD. Invasion by invitation: rhizobial infection in legumes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:631-9. [PMID: 21542766 DOI: 10.1094/mpmi-08-10-0181] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nodulation of legume roots typically begins with rhizobia attaching to the tip of a growing root-hair cell. The attached rhizobia secrete Nod factors (NF), which are perceived by the plant. This initiates a series of preinfection events that include cytoskeletal rearrangements, curling at the root-hair tip, and formation of radially aligned cytoplasmic bridges called preinfection threads (PIT) in outer cortical cells. Within the root-hair curl, an infection pocket filled with bacteria forms, from which originates a tubular invagination of cell wall and membrane called an infection thread (IT). IT formation is coordinated with nodule development in the underlying root cortex tissues. The IT extends from the infection pocket down through the root hair and into the root cortex, where it passes through PIT and eventually reaches the nascent nodule. As the IT grows, it is colonized by rhizobia that are eventually released into cells within the nodule, where they fix nitrogen. NF can also induce cortical root hairs that appear to originate from PIT and can become infected like normal root hairs. Several genes involved in NF signaling and some of the downstream transcription factors required for infection have been characterized. More recently, several genes with direct roles in infection have been identified, some with roles in actin rearrangement and others with possible roles in protein turnover and secretion. This article provides an overview of the infection process, including the roles of NF signaling, actin, and calcium and the influence of the hormones ethylene and cytokinin.
Collapse
|
32
|
Yokota K, Hayashi M. Function and evolution of nodulation genes in legumes. Cell Mol Life Sci 2011; 68:1341-51. [PMID: 21380559 PMCID: PMC11114672 DOI: 10.1007/s00018-011-0651-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 02/15/2011] [Accepted: 02/16/2011] [Indexed: 10/18/2022]
Abstract
Root nodule (RN) symbiosis has a unique feature in which symbiotic bacteria fix atmospheric nitrogen. The symbiosis is established with a limited species of land plants, including legumes. How RN symbiosis evolved is still a mystery, but recent findings on legumes genes that are necessary for RN symbiosis may give us a clue.
Collapse
Affiliation(s)
- Keisuke Yokota
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, Japan.
| | | |
Collapse
|
33
|
Taga ME, Walker GC. Sinorhizobium meliloti requires a cobalamin-dependent ribonucleotide reductase for symbiosis with its plant host. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1643-54. [PMID: 20698752 PMCID: PMC2979309 DOI: 10.1094/mpmi-07-10-0151] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Vitamin B(12) (cobalamin) is a critical cofactor for animals and protists, yet its biosynthesis is limited to prokaryotes. We previously showed that the symbiotic nitrogen-fixing alphaproteobacterium Sinorhizobium meliloti requires cobalamin to establish a symbiotic relationship with its plant host, Medicago sativa (alfalfa). Here, the specific requirement for cobalamin in the S. meliloti-alfalfa symbiosis was investigated. Of the three known cobalamin-dependent enzymes in S. meliloti, the methylmalonyl CoA mutase (BhbA) does not affect symbiosis, whereas disruption of the metH gene encoding the cobalamin-dependent methionine synthase causes a significant defect in symbiosis. Expression of the cobalamin-independent methionine synthase MetE alleviates this symbiotic defect, indicating that the requirement for methionine synthesis does not reflect a need for the cobalamin-dependent enzyme. To investigate the function of the cobalamin-dependent ribonucleotide reductase (RNR) encoded by nrdJ, S. meliloti was engineered to express an Escherichia coli cobalamin-independent (class Ia) RNR instead of nrdJ. This strain is severely defective in symbiosis. Electron micrographs show that these cells can penetrate alfalfa nodules but are unable to differentiate into nitrogen-fixing bacteroids and, instead, are lysed in the plant cytoplasm. Flow cytometry analysis indicates that these bacteria are largely unable to undergo endoreduplication. These phenotypes may be due either to the inactivation of the class Ia RNR by reactive oxygen species, inadequate oxygen availability in the nodule, or both. These results show that the critical role of the cobalamin-dependent RNR for survival of S. meliloti in its plant host can account for the considerable resources that S. meliloti dedicates to cobalamin biosynthesis.
Collapse
Affiliation(s)
- Michiko E. Taga
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 U.S.A
| | - Graham C. Walker
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 U.S.A
- To whom correspondence should be addressed:
| |
Collapse
|
34
|
Kouchi H, Imaizumi-Anraku H, Hayashi M, Hakoyama T, Nakagawa T, Umehara Y, Suganuma N, Kawaguchi M. How many peas in a pod? Legume genes responsible for mutualistic symbioses underground. PLANT & CELL PHYSIOLOGY 2010; 51:1381-97. [PMID: 20660226 PMCID: PMC2938637 DOI: 10.1093/pcp/pcq107] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The nitrogen-fixing symbiosis between legume plants and Rhizobium bacteria is the most prominent plant-microbe endosymbiotic system and, together with mycorrhizal fungi, has critical importance in agriculture. The introduction of two model legume species, Lotus japonicus and Medicago truncatula, has enabled us to identify a number of host legume genes required for symbiosis. A total of 26 genes have so far been cloned from various symbiotic mutants of these model legumes, which are involved in recognition of rhizobial nodulation signals, early symbiotic signaling cascades, infection and nodulation processes, and regulation of nitrogen fixation. These accomplishments during the past decade provide important clues to understanding not only the molecular mechanisms underlying plant-microbe endosymbiotic associations but also the evolutionary aspects of nitrogen-fixing symbiosis between legume plants and Rhizobium bacteria. In this review we survey recent progress in molecular genetic studies using these model legumes.
Collapse
Affiliation(s)
- Hiroshi Kouchi
- Department of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Biswas S, Saroha A, Das HR. A lectin from Sesbania aculeata (Dhaincha) roots and its possible function. BIOCHEMISTRY (MOSCOW) 2009; 74:329-35. [PMID: 19364328 DOI: 10.1134/s0006297909030122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A lectin was isolated from the roots of Sesbania aculeata. This is a glucose specific lectin having 39 kDa subunit molecular weight. The expression of this lectin was found to be developmentally regulated and observed to be the highest in the second week. The lectin was purified by affinity chromatography using Sephadex G-50 and found to have 28% homology with Arabidopsis thaliana lectin-like protein (accession No. CAA62665). The lectin binds with lipopolysaccharide isolated from different rhizobial strains indicating the plants interaction with multiple rhizobial species.
Collapse
Affiliation(s)
- S Biswas
- Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi 110007, India
| | | | | |
Collapse
|
36
|
Kobayashi H, De Nisco NJ, Chien P, Simmons LA, Walker GC. Sinorhizobium meliloti CpdR1 is critical for co-ordinating cell cycle progression and the symbiotic chronic infection. Mol Microbiol 2009; 73:586-600. [PMID: 19602145 DOI: 10.1111/j.1365-2958.2009.06794.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
ATP-driven proteolysis plays a major role in regulating the bacterial cell cycle, development and stress responses. In the nitro -fixing symbiosis with host plants, Sinorhizobium meliloti undergoes a profound cellular differentiation, including endoreduplication of the ome. The regulatory mechanisms governing the alterations of the S. meliloti cell cycle in planta are largely unknown. Here, we report the characterization of two cpdR homologues, cpdR1 and cpdR2, of S. meliloti that encode single-domain response regulators. In Caulobacter crescentus, CpdR controls the polar localization of the ClpXP protease, thereby mediating the regulated proteolysis of key protein(s), such as CtrA, involved in cell cycle progression. The S. meliloti cpdR1-null mutant can invade the host cytoplasm, however, the intracellular bacteria are unable to differentiate into bacteroids. We show that S. meliloti CpdR1 has a polar localization pattern and a role in ClpX positioning similar to C. crescentus CpdR, suggesting a conserved function of CpdR proteins among alpha-proteobacteria. However, in S. meliloti, free-living cells of the cpdR1-null mutant show a striking morphology of irregular coccoids and aberrant DNA replication. Thus, we demonstrate that CpdR1 mediates the co-ordination of cell cycle events, which are critical for both the free-living cell division and the differentiation required for the chronic intracellular infection.
Collapse
Affiliation(s)
- Hajime Kobayashi
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
37
|
Fournier J, Timmers ACJ, Sieberer BJ, Jauneau A, Chabaud M, Barker DG. Mechanism of infection thread elongation in root hairs of Medicago truncatula and dynamic interplay with associated rhizobial colonization. PLANT PHYSIOLOGY 2008; 148:1985-95. [PMID: 18931145 PMCID: PMC2593660 DOI: 10.1104/pp.108.125674] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 10/10/2008] [Indexed: 05/18/2023]
Abstract
In temperate legumes, endosymbiotic nitrogen-fixing rhizobia gain access to inner root tissues via a specialized transcellular apoplastic compartment known as the infection thread (IT). To study IT development in living root hairs, a protocol has been established for Medicago truncatula that allows confocal microscopic observations of the intracellular dynamics associated with IT growth. Fluorescent labeling of both the IT envelope (AtPIP2;1-green fluorescent protein) and the host endoplasmic reticulum (green fluorescent protein-HDEL) has revealed that IT growth is a fundamentally discontinuous process and that the variable rate of root hair invagination is reflected in changes in the host cell cytoarchitecture. The concomitant use of fluorescently labeled Sinorhizobium meliloti has further revealed that a bacteria-free zone is frequently present at the growing tip of the IT, thus indicating that bacterial contact is not essential for thread progression. Finally, these in vivo studies have shown that gaps within the bacterial file are a common feature during the early stages of IT development, and that segments of the file are able to slide collectively down the thread. Taken together, these observations lead us to propose that (1) IT growth involves a host-driven cellular mechanism analogous to that described for intracellular infection by arbuscular mycorrhizal fungi; (2) the non-regular growth of the thread is a consequence of the rate-limiting colonization by the infecting rhizobia; and (3) bacterial colonization involves a combination of bacterial cell division and sliding movement within the extracellular matrix of the apoplastic compartment.
Collapse
Affiliation(s)
- Joëlle Fournier
- Laboratoire des Interactions Plantes Micro-Organismes, UMR CNRS-INRA 2594/441, F-31320 Castanet-Tolosan, France.
| | | | | | | | | | | |
Collapse
|
38
|
Den Herder J, Lievens S, Rombauts S, Holsters M, Goormachtig S. A symbiotic plant peroxidase involved in bacterial invasion of the tropical legume Sesbania rostrata. PLANT PHYSIOLOGY 2007; 144:717-27. [PMID: 17384158 PMCID: PMC1914168 DOI: 10.1104/pp.107.098764] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 03/22/2007] [Indexed: 05/14/2023]
Abstract
Aquatic nodulation on the tropical legume Sesbania rostrata occurs at lateral root bases via intercellular crack-entry invasion. A gene was identified (Srprx1) that is transiently up-regulated during the nodulation process and codes for a functional class III plant peroxidase. The expression strictly depended on bacterial nodulation factors (NFs) and could be modulated by hydrogen peroxide, a downstream signal for crack-entry invasion. Expression was not induced after wounding or pathogen attack, indicating that the peroxidase is a symbiosis-specific isoform. In situ hybridization showed Srprx1 transcripts around bacterial infection pockets and infection threads until they reached the central tissue of the nodule. A root nodule extensin (SrRNE1) colocalized with Srprx1 both in time and space and had the same NF requirement, suggesting a function in a similar process. Finally, in mixed inoculation nodules that were invaded by NF-deficient bacteria and differed in infection thread progression, infection-associated peroxidase transcripts were not observed. Lack of Srprx1 gene expression could be one of the causes for the aberrant structure of the infection threads.
Collapse
Affiliation(s)
- Jeroen Den Herder
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, and Department of Molecular Genetics, Ghent University, B-9052 Ghent, Belgium
| | | | | | | | | |
Collapse
|
39
|
Pislariu CI, Dickstein R. An IRE-like AGC kinase gene, MtIRE, has unique expression in the invasion zone of developing root nodules in Medicago truncatula. PLANT PHYSIOLOGY 2007; 144:682-94. [PMID: 17237187 PMCID: PMC1914176 DOI: 10.1104/pp.106.092494] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 01/01/2007] [Indexed: 05/13/2023]
Abstract
The AGC protein kinase family (cAMP-dependent protein kinases A, cGMP-dependent protein kinases G, and phospholipid-dependent protein kinases C) have important roles regulating growth and development in animals and fungi. They are activated via lipid second messengers by 3-phosphoinositide-dependent protein kinase coupling lipid signals to phosphorylation of the AGC kinases. These phosphorylate downstream signal transduction protein targets. AGC kinases are becoming better studied in plants, especially in Arabidopsis (Arabidopsis thaliana), where specific AGC kinases have been shown to have key roles in regulating growth signal pathways. We report here the isolation and characterization of the first AGC kinase gene identified in Medicago truncatula, MtIRE. It was cloned by homology with the Arabidopsis INCOMPLETE ROOT HAIR ELONGATION (IRE) gene. Semiquantitative reverse transcription-polymerase chain reaction analysis shows that, unlike its Arabidopsis counterpart, MtIRE is not expressed in uninoculated roots, but is expressed in root systems that have been inoculated with Sinorhizobium meliloti and are developing root nodules. MtIRE expression is also found in flowers. Expression analysis of a time course of nodule development and of nodulating root systems of many Medicago nodulation mutants shows MtIRE expression correlates with infected cell maturation during nodule development. During the course of these experiments, nine Medicago nodulation mutants, including sli and dnf1 to 7 mutants, were evaluated for the first time for their microscopic nodule phenotype using S. meliloti constitutively expressing lacZ. Spatial localization of a pMtIRE-gusA transgene in transformed roots of composite plants showed that MtIRE expression is confined to the proximal part of the invasion zone, zone II, found in indeterminate nodules. This suggests MtIRE is useful as an expression marker for this region of the invasion zone.
Collapse
Affiliation(s)
- Catalina I Pislariu
- University of North Texas, Department of Biological Sciences, Denton, Texas 76203-5220, USA
| | | |
Collapse
|
40
|
Zhang XS, Cheng HP. Identification of Sinorhizobium meliloti early symbiotic genes by use of a positive functional screen. Appl Environ Microbiol 2006; 72:2738-48. [PMID: 16597978 PMCID: PMC1449070 DOI: 10.1128/aem.72.4.2738-2748.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The soil bacterium Sinorhizobium meliloti establishes nitrogen-fixing symbiosis with its leguminous host plant, alfalfa, following a series of continuous signal exchanges. The complexity of the changes of alfalfa root structures during symbiosis and the amount of S. meliloti genes with unknown functions raised the possibility that more S. meliloti genes may be required for early stages of the symbiosis. A positive functional screen of the entire S. meliloti genome for symbiotic genes was carried out using a modified in vivo expression technology. A group of genes and putative genes were found to be expressed in early stages of the symbiosis, and 23 of them were alfalfa root exudate inducible. These 23 genes were further separated into two groups based on their responses to apigenin, a known nodulation (nod) gene inducer. The group of six genes not inducible by apigenin included the lsrA gene, which is essential for the symbiosis, and the dgkA gene, which is involved in the synthesis of cyclic beta-1,2-glucan required for the S. meliloti-alfalfa symbiosis. In the group of 17 apigenin-inducible genes, most have not been previously characterized in S. meliloti, and none of them belongs to the nod gene family. The identification of this large group of alfalfa root exudate-inducible S. meliloti genes suggests that the interactions in the early stages of the S. meliloti and alfalfa symbiosis could be complex and that further characterization of these genes will lead to a better understanding of the symbiosis.
Collapse
Affiliation(s)
- Xue-Song Zhang
- Biological Sciences Department, Lehman College, The City University of New York, 250 Bedford Park Boulevard, West Bronx, NY 10468
| | | |
Collapse
|
41
|
Serrato RV, Sassaki GL, Cruz LM, Pedrosa FO, Gorin PAJ, Iacomini M. Culture conditions for the production of an acidic exopolysaccharide by the nitrogen-fixing bacterium Burkholderia tropica. Can J Microbiol 2006; 52:489-93. [PMID: 16699575 DOI: 10.1139/w05-155] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The endophytic diazotrophic bacterium Burkholderia tropica, strain Ppe8, produced copious amounts of exopolysaccharide (EPS) on batch growth in liquid synthetic media containing mannitol and glutamate as carbon and nitrogen sources. The effect of various aeration regimes and carbon source concentrations on EPS production was determined, as well as the effects of temperature and time of growth. The degree of aeration had a great influence on the yield of EPS, in contrast with the C:N ratio of the medium. Growth temperature also affected the EPS yield after the first 24 h of culture but seemed to be irrelevant after that. After isolation and purification, the EPS was analyzed by high-performance size exclusion chromatography and multiangle laser light scattering (HPSEC–MALLS), revealing a molecular mass of 300 kDa. The acid hydrolyzate of EPS was examined by HPLC and found to contain Glc, Rha, GlcA, and an aldobiouronic acid. The latter was found to have a GlcA and a Rha unit. Carboxy-reduced EPS contained Glc and Rha (3:2). The monosaccharide composition of the native acidic EPS was calculated as GlcA, Glc, and Rha in a molar ratio of 1:2:2.Key words: Burkholderia, endophyte, diazotrophic, exopolysaccharide, EPS.
Collapse
Affiliation(s)
- Rodrigo V Serrato
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| | | | | | | | | | | |
Collapse
|
42
|
Lestari P, Van K, Kim MY, Lee BW, Lee SH. Newly featured infection events in a supernodulating soybean mutant SS2-2 by Bradyrhizobium japonicum. Can J Microbiol 2006; 52:328-35. [PMID: 16699583 DOI: 10.1139/w05-127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Supernodulating soybean (Glycine max L. Merr.) mutant SS2-2 and its wild-type counterpart, Sinpaldalkong 2, were examined for the microstructural events associated with nodule formation and development. SS2-2 produced a substantially higher percentage of curled root hairs than the wild type, especially at 14 days after inoculation with Bradyrhizobium japonicum. In addition, there was new evidence that in SS2-2, B. japonicum also entered through fissures created by the emerging adventitious root primordia. Early steps of nodule ontogeny were faster in SS2-2, and continued development of initiated nodules was more frequent and occurred at a higher frequency than in the wild type. These data suggest that the early expression of autoregulation is facilitated by decreasing the speed of cortical cell development, leading to the subsequent termination of less-developed nodules. The nodules of SS2-2 developed into spherical nodules like those formed on the wild type. In both the wild type and supernodulating mutant, vascular bundles bifurcate from root stele and branch off in the nodule cortex to surround the central infected zone. These findings indicate that SS2-2 has complete endosymbiosis and forms completely developed nodule vascular bundles like the wild type, but that the speed of nodule ontogeny differs between the wild type and SS2-2. Thus, SS2-2 has a novel symbiotic phenotype with regard to nodule organogenesis.
Collapse
Affiliation(s)
- Puji Lestari
- Department of Plant Science, Seoul National University, Seoul 151-921, Korea
| | | | | | | | | |
Collapse
|
43
|
Campbell GRO, Taga ME, Mistry K, Lloret J, Anderson PJ, Roth JR, Walker GC. Sinorhizobium meliloti bluB is necessary for production of 5,6-dimethylbenzimidazole, the lower ligand of B12. Proc Natl Acad Sci U S A 2006; 103:4634-9. [PMID: 16537439 PMCID: PMC1450223 DOI: 10.1073/pnas.0509384103] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An insight into a previously unknown step in B(12) biosynthesis was unexpectedly obtained through our analysis of a mutant of the symbiotic nitrogen fixing bacterium Sinorhizobium meliloti. This mutant was identified based on its unusually bright fluorescence on plates containing the succinoglycan binding dye calcofluor. The mutant contains a Tn5 insertion in a gene that has not been characterized previously in S. meliloti. The closest known homolog is the bluB gene of Rhodobacter capsulatus, which is implicated in the biosynthesis of B(12) (cobalamin). The S. meliloti bluB mutant is unable to grow in minimal media and fails to establish a symbiosis with alfalfa, and these defects can be rescued by the addition of vitamin B(12) (cyanocobalamin) or the lower ligand of cobalamin, 5,6-dimethylbenzimidazole (DMB). Biochemical analysis demonstrated that the bluB mutant does not produce cobalamin unless DMB is supplied. Sequence comparison suggests that BluB is a member of the NADH/flavin mononucleotide (FMN)-dependent nitroreductase family, and we propose that it is involved in the conversion of FMN to DMB.
Collapse
Affiliation(s)
- Gordon R. O. Campbell
- *Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Michiko E. Taga
- *Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Kavita Mistry
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080; and
| | - Javier Lloret
- *Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Peter J. Anderson
- Section of Microbiology, College of Biological Sciences, University of California, One Shields Avenue, Davis, CA 95616
| | - John R. Roth
- Section of Microbiology, College of Biological Sciences, University of California, One Shields Avenue, Davis, CA 95616
| | - Graham C. Walker
- *Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- **To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Luo L, Yao SY, Becker A, Rüberg S, Yu GQ, Zhu JB, Cheng HP. Two new Sinorhizobium meliloti LysR-type transcriptional regulators required for nodulation. J Bacteriol 2005; 187:4562-72. [PMID: 15968067 PMCID: PMC1151776 DOI: 10.1128/jb.187.13.4562-4572.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The establishment of an effective nitrogen-fixing symbiosis between Sinorhizobium meliloti and its legume host alfalfa (Medicago sativa) depends on the timely expression of nodulation genes that are controlled by LysR-type regulators. Ninety putative genes coding for LysR-type transcriptional regulators were identified in the recently sequenced S. meliloti genome. All 90 putative lysR genes were mutagenized using plasmid insertions as a first step toward determining their roles in symbiosis. Two new LysR-type symbiosis regulator genes, lsrA and lsrB, were identified in the screening. Both the lsrA and lsrB genes are expressed in free-living S. meliloti cells, but they are not required for cell growth. An lsrA1 mutant was defective in symbiosis and elicited only white nodules that exhibited no nitrogenase activity. Cells of the lsrA1 mutant were recovered from the white nodules, suggesting that the lsrA1 mutant was blocked early in nodulation. An lsrB1 mutant was deficient in symbiosis and elicited a mixture of pink and white nodules on alfalfa plants. These plants exhibited lower overall nitrogenase activity than plants inoculated with the wild-type strain, which is consistent with the fact that most of the alfalfa plants inoculated with the lsrB1 mutant were short and yellow. Cells of the lsrB1 mutant were recovered from both pink and white nodules, suggesting that lsrB1 mutants could be blocked at multiple points during nodulation. The identification of two new LysR-type symbiosis transcriptional regulators provides two new avenues for understanding the complex S. meliloti-alfalfa interactions which occur during symbiosis.
Collapse
Affiliation(s)
- Li Luo
- Biological Sciences Department, Lehman College, The City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Jensen JB, Ampomah OY, Darrah R, Peters NK, Bhuvaneswari TV. Role of trehalose transport and utilization in Sinorhizobium meliloti--alfalfa interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:694-702. [PMID: 16042015 DOI: 10.1094/mpmi-18-0694] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Genes thuA and thuB in Sinorhizobium meliloti Rm1021 code for a major pathway for trehalose catabolism and are induced by trehalose but not by related structurally similar disaccharides like sucrose or maltose. S. meliloti strains mutated in either of these two genes were severely impaired in their ability to grow on trehalose as the sole source of carbon. ThuA and ThuB show no homology to any known enzymes in trehalose utilization. ThuA has similarity to proteins of unknown function in Mesorhizobium loti, Agrobacterium tumefaciens, and Brucella melitensis, and ThuB possesses homology to dehydrogenases containing the consensus motif AGKHVXCEKP. thuAB genes are expressed in bacteria growing on the root surface and in the infection threads but not in the symbiotic zone of the nodules. Even though thuA and thuB mutants were impaired in competitive colonization of Medicago sativa roots, these strains were more competitive than the wild-type Rml021 in infecting alfalfa roots and forming nitrogen-fixing nodules. Possible reasons for their increased competitiveness are discussed.
Collapse
Affiliation(s)
- John Beck Jensen
- Department of Biology, Faculty of Science, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | | | |
Collapse
|
46
|
Barbieri E, Bertini L, Rossi I, Ceccaroli P, Saltarelli R, Guidi C, Zambonelli A, Stocchi V. New evidence for bacterial diversity in the ascoma of the ectomycorrhizal fungusTuber borchiiVittad. FEMS Microbiol Lett 2005; 247:23-35. [PMID: 15927744 DOI: 10.1016/j.femsle.2005.04.027] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 04/07/2005] [Accepted: 04/16/2005] [Indexed: 11/15/2022] Open
Abstract
The microbial community associated with ascocarps of the ectomycorrhizal fungus Tuber borchii Vittad. was studied by both cultivation and direct extraction of bacterial 16S rRNA gene (rDNA) sequence approaches. The inner part of six T. borchii ascoma collected in North-Central Italy was used to establish a bacterial culture collection and to extract the total genomic DNA to obtain a library of 16S rDNAs representative of the truffle bacterial community. Most of the isolates were affiliated to the gamma-Proteobacteria, mainly Fluorescent pseudomonads; some isolates were members of the Bacteroidetes group and Gram-positive bacteria, mostly Bacillaceae. The majority of the clones from the library were alpha-Proteobacteria showing significant similarity values, of greater than 97%, with members of the Sinorhizobium/Ensifer Group, Rhizobium and Bradyrhizobium spp. not previously identified as Tuber-associated bacteria. Only a few bacterial strains belonging to this bacterial subclass were found in the culture collection and isolated on a medium specific for Rhizobium-like organisms. A few clones were members of the beta- and gamma-Proteobacteria; as well as low and high G+C Gram-positive bacteria. Our findings clearly indicate that a dual approach increases the information obtained on the structural composition of a truffle bacterial community as compared to that derived via cultivation or direct recovery of 16S rDNA sequences alone.
Collapse
Affiliation(s)
- Elena Barbieri
- Istituto di Chimica Biologica Giorgio Fornaini, University of Urbino Carlo Bo, Urbino (PU), Italy.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Mathis R, Van Gijsegem F, De Rycke R, D'Haeze W, Van Maelsaeke E, Anthonio E, Van Montagu M, Holsters M, Vereecke D. Lipopolysaccharides as a communication signal for progression of legume endosymbiosis. Proc Natl Acad Sci U S A 2005; 102:2655-60. [PMID: 15699329 PMCID: PMC549025 DOI: 10.1073/pnas.0409816102] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Establishment of a successful symbiosis between rhizobia and legumes results from an elaborate molecular dialogue between both partners. Bacterial nodulation (Nod) factors are indispensable for initiating plant responses, whereas bacterial surface polysaccharides are important for infection progression and nodule development. The mutant ORS571-oac2 of Azorhizobium caulinodans, affected in its surface polysaccharides, provokes a defective interaction with its host Sesbania rostrata. ORS571-oac2 induced structures with retarded development and continued generation of infection centers and organ primordia, leading to multilobed ineffective nodules. Bacterial development throughout the interaction occurred without major defects. A functional bidirectional complementation was obtained upon coinfection of ORS571-oac2 and a Nod factor-deficient mutant, indicating that the Fix- phenotype of ORS571-oac2-induced nodules resulted from the absence of a positive signal from ORS571-oac2. Indeed, the Fix- phenotype could be complemented by coinoculation of ORS571-oac2 with lipopolysaccharides (LPSs) purified from A. caulinodans. Our data show that Nod factors and LPSs are consecutive signals in symbiosis. Nod factors act first to trigger the onset of the nodulation and invasion program; LPSs inform the plant to proceed with the symbiotic interaction and to develop a functional fixation zone.
Collapse
Affiliation(s)
- René Mathis
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Batut J, Andersson SGE, O'Callaghan D. The evolution of chronic infection strategies in the alpha-proteobacteria. Nat Rev Microbiol 2004; 2:933-45. [PMID: 15550939 DOI: 10.1038/nrmicro1044] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Many of the alpha-proteobacteria establish long-term, often chronic, interactions with higher eukaryotes. These interactions range from pericellular colonization through facultative intracellular multiplication to obligate intracellular lifestyles. A common feature in this wide range of interactions is modulation of host-cell proliferation, which sometimes leads to the formation of tumour-like structures in which the bacteria can grow. Comparative genome analyses reveal genome reduction by gene loss in the intracellular alpha-proteobacterial lineages, and genome expansion by gene duplication and horizontal gene transfer in the free-living species. In this review, we discuss alpha-proteobacterial genome evolution and highlight strategies and mechanisms used by these bacteria to infect and multiply in eukaryotic cells.
Collapse
Affiliation(s)
- Jacques Batut
- Laboratory of Plant Microbe Interactions, CNRS-INRA, BP27, 31326 Castanet-Tolosan Cedex, France
| | | | | |
Collapse
|
49
|
Ma W, Charles TC, Glick BR. Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Sinorhizobium meliloti increases its ability to nodulate alfalfa. Appl Environ Microbiol 2004; 70:5891-7. [PMID: 15466529 PMCID: PMC522075 DOI: 10.1128/aem.70.10.5891-5897.2004] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
1-Aminocyclopropane-1-carboxylate (ACC) deaminase has been found in various plant growth-promoting rhizobacteria, including rhizobia. This enzyme degrades ACC, the immediate precursor of ethylene, and thus decreases the biosynthesis of ethylene in higher plants. The ACC deaminase of Rhizobium leguminosarum bv. viciae 128C53K was previously reported to be able to enhance nodulation of peas. The ACC deaminase structural gene (acdS) and its upstream regulatory gene, a leucine-responsive regulatory protein (LRP)-like gene (lrpL), from R. leguminosarum bv. viciae 128C53K were introduced into Sinorhizobium meliloti, which does not produce this enzyme, in two different ways: through a plasmid vector and by in situ transposon replacement. The resulting ACC deaminase-producing S. meliloti strains showed 35 to 40% greater efficiency in nodulating Medicago sativa (alfalfa), likely by reducing ethylene production in the host plants. Furthermore, the ACC deaminase-producing S. meliloti strain was more competitive in nodulation than the wild-type strain. We postulate that the increased competitiveness might be related to utilization of ACC as a nutrient within the infection threads.
Collapse
Affiliation(s)
- Wenbo Ma
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | | | |
Collapse
|
50
|
Takemoto D, Hardham AR. The cytoskeleton as a regulator and target of biotic interactions in plants. PLANT PHYSIOLOGY 2004; 136:3864-76. [PMID: 15591444 PMCID: PMC535820 DOI: 10.1104/pp.104.052159] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2004] [Revised: 10/15/2004] [Accepted: 10/18/2004] [Indexed: 05/18/2023]
Affiliation(s)
- Daigo Takemoto
- Plant Cell Biology Group, Research School of Biological Sciences, The Australian National University, Canberra, ACT 2601, Australia
| | | |
Collapse
|