1
|
Soffer A, Mahly A, Padmanabhan K, Cohen J, Adir O, Loushi E, Fuchs Y, Williams SE, Luxenburg C. Apoptosis and tissue thinning contribute to symmetric cell division in the developing mouse epidermis in a nonautonomous way. PLoS Biol 2022; 20:e3001756. [PMID: 35969606 PMCID: PMC9410552 DOI: 10.1371/journal.pbio.3001756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 08/25/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022] Open
Abstract
Mitotic spindle orientation (SO) is a conserved mechanism that governs cell fate and tissue morphogenesis. In the developing epidermis, a balance between self-renewing symmetric divisions and differentiative asymmetric divisions is necessary for normal development. While the cellular machinery that executes SO is well characterized, the extrinsic cues that guide it are poorly understood. Here, we identified the basal cell adhesion molecule (BCAM), a β1 integrin coreceptor, as a novel regulator of epidermal morphogenesis. In utero RNAi-mediated depletion of Bcam in the mouse embryo did not hinder β1 integrin distribution or cell adhesion and polarity. However, Bcam depletion promoted apoptosis, thinning of the epidermis, and symmetric cell division, and the defects were reversed by concomitant overexpression of the apoptosis inhibitor Xiap. Moreover, in mosaic epidermis, depletion of Bcam or Xiap induced symmetric divisions in neighboring wild-type cells. These results identify apoptosis and epidermal architecture as extrinsic cues that guide SO in the developing epidermis.
Collapse
Affiliation(s)
- Arad Soffer
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adnan Mahly
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Krishnanand Padmanabhan
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jonathan Cohen
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orit Adir
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eidan Loushi
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yaron Fuchs
- Department of Biology, Technion—Israel Institute of Technology, Haifa, Israel
| | - Scott E. Williams
- Departments of Pathology & Laboratory Medicine and Biology, Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Chen Luxenburg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
2
|
Integrating mechanical signals into cellular identity. Trends Cell Biol 2022; 32:669-680. [PMID: 35337714 PMCID: PMC9288541 DOI: 10.1016/j.tcb.2022.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 11/24/2022]
Abstract
The large arrays of cell types in a multicellular organism are defined by their stereotypic size and/or morphology, and, for cells in vivo, by their anatomic positions. Historically, this identity-structure-function correlation was conceptualized as arising from distinct gene expression programs that dictate how cells appear and behave. However, a growing number of studies suggest that a cell's mechanical state is also an important determinant of its identity, both in lineage-committed cells and in pluripotent stem cells. Defining the mechanism by which mechanical inputs influence complex cellular programs remains an area of ongoing investigation. Here, we discuss how the cytoskeleton actively participates in instructing the response of the nucleus and genome to integrate mechanical and biochemical inputs, with a primary focus on the role of the actomyosin-LINC (linker of nucleoskeleton and cytoskeleton) complex axis.
Collapse
|
3
|
Gonzales KAU, Polak L, Matos I, Tierney MT, Gola A, Wong E, Infarinato NR, Nikolova M, Luo S, Liu S, Novak JSS, Lay K, Pasolli HA, Fuchs E. Stem cells expand potency and alter tissue fitness by accumulating diverse epigenetic memories. Science 2021; 374:eabh2444. [PMID: 34822296 DOI: 10.1126/science.abh2444] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Kevin Andrew Uy Gonzales
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Lisa Polak
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Irina Matos
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.,Immunology Discovery, Genentech Inc., South San Francisco, CA 94080, USA
| | - Matthew T Tierney
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Anita Gola
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Ellen Wong
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Nicole R Infarinato
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Maria Nikolova
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Shijing Luo
- Jones Day Intellectual Property Law Firm, New York, NY 10281, USA
| | - Siqi Liu
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Jesse S S Novak
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Kenneth Lay
- Laboratory of Human Genetics and Therapeutics, Institute of Medical Biology, A∗STAR, Singapore 138648, Singapore
| | - Hilda Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
4
|
Banerjee A, Biswas R, Lim R, Pasolli HA, Raghavan S. Scanning electron microscopy of murine skin ultrathin sections and cultured keratinocytes. STAR Protoc 2021; 2:100729. [PMID: 34458866 PMCID: PMC8379523 DOI: 10.1016/j.xpro.2021.100729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Generating high-quality electron microscopy images of the skin and keratinocytes can be challenging. Here we describe a simple protocol for scanning electron microscopy (SEM) of murine skin. The protocol enables characterization of the ultrastructure of the epidermis, dermis, hair follicles, basement membrane, and cell-cell junctions. We detail the specific steps for sample preparation and highlight the critical need for proper orientation of the sample for ultrathin sectioning. We also describe the isolation and preparation of primary keratinocyte monolayers for SEM. For complete details on the use and execution of this protocol, please refer to Biswas et al. (2021). Visualizing adherens junctions in ultrathin sections of murine skin using SEM Generating nanometer scale sections of murine skin using an ultramicrotome Protocol adaptable for cultured keratinocytes
Collapse
Affiliation(s)
- Avinanda Banerjee
- A∗STAR Skin Research Lab (ASRL), Agency for Science, Technology and Research (A∗STAR) 8A Biomedical Grove, #6-11 Immunos, Singapore 138648, Singapore.,Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Ritusree Biswas
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bellary Road, Bangalore 560065, India.,Sastra University, Thanjavur, Tamil Nadu 613401, India
| | - Ryan Lim
- A∗STAR Skin Research Lab (ASRL), Agency for Science, Technology and Research (A∗STAR) 8A Biomedical Grove, #6-11 Immunos, Singapore 138648, Singapore
| | - Hilda Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, RRB 120F, 1230 York Avenue, Box 230, New York, NY 10065, USA
| | - Srikala Raghavan
- A∗STAR Skin Research Lab (ASRL), Agency for Science, Technology and Research (A∗STAR) 8A Biomedical Grove, #6-11 Immunos, Singapore 138648, Singapore.,Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bellary Road, Bangalore 560065, India
| |
Collapse
|
5
|
Carley E, Stewart RM, Zieman A, Jalilian I, King DE, Zubek A, Lin S, Horsley V, King MC. The LINC complex transmits integrin-dependent tension to the nuclear lamina and represses epidermal differentiation. eLife 2021; 10:e58541. [PMID: 33779546 PMCID: PMC8051949 DOI: 10.7554/elife.58541] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 03/26/2021] [Indexed: 12/17/2022] Open
Abstract
While the mechanisms by which chemical signals control cell fate have been well studied, the impact of mechanical inputs on cell fate decisions is not well understood. Here, using the well-defined system of keratinocyte differentiation in the skin, we examine whether and how direct force transmission to the nucleus regulates epidermal cell fate. Using a molecular biosensor, we find that tension on the nucleus through linker of nucleoskeleton and cytoskeleton (LINC) complexes requires integrin engagement in undifferentiated epidermal stem cells and is released during differentiation concomitant with decreased tension on A-type lamins. LINC complex ablation in mice reveals that LINC complexes are required to repress epidermal differentiation in vivo and in vitro and influence accessibility of epidermal differentiation genes, suggesting that force transduction from engaged integrins to the nucleus plays a role in maintaining keratinocyte progenitors. This work reveals a direct mechanotransduction pathway capable of relaying adhesion-specific signals to regulate cell fate.
Collapse
Affiliation(s)
- Emma Carley
- Department of Cell Biology, Yale School of MedicineNew HavenUnited States
| | - Rachel M Stewart
- Department of Cell Biology, Yale School of MedicineNew HavenUnited States
| | - Abigail Zieman
- Department of Molecular, Cell and Developmental Biology, Yale UniversityNew HavenUnited States
| | - Iman Jalilian
- Department of Cell Biology, Yale School of MedicineNew HavenUnited States
| | - Diane E King
- Sunnycrest BioinformaticsFlemingtonUnited States
| | - Amanda Zubek
- Department of Dermatology, Yale School of MedicineNew HavenUnited States
| | - Samantha Lin
- Department of Molecular, Cell and Developmental Biology, Yale UniversityNew HavenUnited States
| | - Valerie Horsley
- Department of Molecular, Cell and Developmental Biology, Yale UniversityNew HavenUnited States
- Department of Dermatology, Yale School of MedicineNew HavenUnited States
| | - Megan C King
- Department of Cell Biology, Yale School of MedicineNew HavenUnited States
- Department of Molecular, Cell and Developmental Biology, Yale UniversityNew HavenUnited States
| |
Collapse
|
6
|
Biswas R, Banerjee A, Lembo S, Zhao Z, Lakshmanan V, Lim R, Le S, Nakasaki M, Kutyavin V, Wright G, Palakodeti D, Ross RS, Jamora C, Vasioukhin V, Jie Y, Raghavan S. Mechanical instability of adherens junctions overrides intrinsic quiescence of hair follicle stem cells. Dev Cell 2021; 56:761-780.e7. [PMID: 33725480 DOI: 10.1016/j.devcel.2021.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 11/24/2020] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Vinculin, a mechanotransducer associated with both adherens junctions (AJs) and focal adhesions (FAs), plays a central role in force transmission through cell-cell and cell-substratum contacts. We generated the conditional knockout (cKO) of vinculin in murine skin that results in the loss of bulge stem cell (BuSC) quiescence and promotes continual cycling of the hair follicles. Surprisingly, we find that the AJs in vinculin cKO cells are mechanically weak and impaired in force generation despite increased junctional expression of E-cadherin and α-catenin. Mechanistically, we demonstrate that vinculin functions by keeping α-catenin in a stretched/open conformation, which in turn regulates the retention of YAP1, another potent mechanotransducer and regulator of cell proliferation, at the AJs. Altogether, our data provide mechanistic insights into the hitherto-unexplored regulatory link between the mechanical stability of cell junctions and contact-inhibition-mediated maintenance of BuSC quiescence.
Collapse
Affiliation(s)
- Ritusree Biswas
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore 560065, India; SASTRA University, Thanjavur, Tamil Nadu 613401, India
| | - Avinanda Banerjee
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore 560065, India; Skin Research Institute of Singapore (A∗STAR), Singapore 138648, Singapore
| | - Sergio Lembo
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore 560065, India
| | - Zhihai Zhao
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Vairavan Lakshmanan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore 560065, India; SASTRA University, Thanjavur, Tamil Nadu 613401, India
| | - Ryan Lim
- Skin Research Institute of Singapore (A∗STAR), Singapore 138648, Singapore
| | - Shimin Le
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | | | | | - Graham Wright
- A∗STAR Microscopy Platform, Skin Research Institute of Singapore (A∗STAR), Singapore 138648, Singapore
| | - Dasaradhi Palakodeti
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore 560065, India
| | - Robert S Ross
- University of California, San Diego, La Jolla, CA 92093, USA
| | - Colin Jamora
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore 560065, India
| | | | - Yan Jie
- Department of Physics, National University of Singapore, Singapore 117542, Singapore; Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Srikala Raghavan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore 560065, India; Skin Research Institute of Singapore (A∗STAR), Singapore 138648, Singapore.
| |
Collapse
|
7
|
Kusuluri DK, Güler BE, Knapp B, Horn N, Boldt K, Ueffing M, Aust G, Wolfrum U. Adhesion G protein-coupled receptor VLGR1/ADGRV1 regulates cell spreading and migration by mechanosensing at focal adhesions. iScience 2021; 24:102283. [PMID: 33851099 PMCID: PMC8024656 DOI: 10.1016/j.isci.2021.102283] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/12/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
VLGR1 (very large G protein-coupled receptor-1) is by far the largest adhesion G protein-coupled receptor in humans. Homozygous pathologic variants of VLGR1 cause hereditary deaf blindness in Usher syndrome 2C and haploinsufficiency of VLGR1 is associated with epilepsy. However, its molecular function remains elusive. Herein, we used affinity proteomics to identify many components of focal adhesions (FAs) in the VLGR1 interactome. VLGR1 is localized in FAs and assembles in FA protein complexes in situ. Depletion or loss of VLGR1 decreases the number and length of FAs in hTERT-RPE1 cells and in astrocytes of Vlgr1 mutant mice. VLGR1 depletion reduces cell spread and migration kinetics as well as the response to mechanical stretch characterizing VLGR1 as a metabotropic mechanosensor in FAs. Our data reveal a critical role of VLGR1 in the FA function and enlighten potential pathomechanisms in diseases related to VLGR1. VLGR1 is an integral part of focal adhesions and crucial for their assembly Absence of VLGR1 from focal adhesions alters cell spreading and cell migration VLGR1 is a metabotropic mechanosensor in focal adhesions
Collapse
Affiliation(s)
- Deva K Kusuluri
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 17, 55099 Mainz, Germany
| | - Baran E Güler
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 17, 55099 Mainz, Germany
| | - Barbara Knapp
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 17, 55099 Mainz, Germany
| | - Nicola Horn
- Medical Proteome Center, Institute for Ophthalmic Research, Eberhard Karls University of Tuebingen, 72074 Tuebingen, Germany
| | - Karsten Boldt
- Medical Proteome Center, Institute for Ophthalmic Research, Eberhard Karls University of Tuebingen, 72074 Tuebingen, Germany
| | - Marius Ueffing
- Medical Proteome Center, Institute for Ophthalmic Research, Eberhard Karls University of Tuebingen, 72074 Tuebingen, Germany
| | - Gabriela Aust
- Clinic of Visceral, Transplantation, Thoracic and Vascular Surgery & Clinic of Orthopedics, Traumatology and Plastic Surgery, Department of Surgery Research Laboratory, Leipzig University, 04301 Leipzig, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 17, 55099 Mainz, Germany
| |
Collapse
|
8
|
Whitelaw JA, Swaminathan K, Kage F, Machesky LM. The WAVE Regulatory Complex Is Required to Balance Protrusion and Adhesion in Migration. Cells 2020; 9:E1635. [PMID: 32646006 PMCID: PMC7407199 DOI: 10.3390/cells9071635] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
Cells migrating over 2D substrates are required to polymerise actin at the leading edge to form lamellipodia protrusions and nascent adhesions to anchor the protrusion to the substrate. The major actin nucleator in lamellipodia formation is the Arp2/3 complex, which is activated by the WAVE regulatory complex (WRC). Using inducible Nckap1 floxed mouse embryonic fibroblasts (MEFs), we confirm that the WRC is required for lamellipodia formation, and importantly, for generating the retrograde flow of actin from the leading cell edge. The loss of NCKAP1 also affects cell spreading and focal adhesion dynamics. In the absence of lamellipodium, cells can become elongated and move with a single thin pseudopod, which appears devoid of N-WASP. This phenotype was more prevalent on collagen than fibronectin, where we observed an increase in migratory speed. Thus, 2D cell migration on collagen is less dependent on branched actin.
Collapse
Affiliation(s)
| | - Karthic Swaminathan
- CRUK Beatson Institute, Glasgow G61 1BD, UK; (K.S.); (L.M.M.)
- School of Chemistry and Bioscience, University of Bradford, Bradford BD7 1PD, UK
| | - Frieda Kage
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755-3844, USA;
- Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Laura M. Machesky
- CRUK Beatson Institute, Glasgow G61 1BD, UK; (K.S.); (L.M.M.)
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
9
|
Laurin M, Gomez NC, Levorse J, Sendoel A, Sribour M, Fuchs E. An RNAi screen unravels the complexities of Rho GTPase networks in skin morphogenesis. eLife 2019; 8:e50226. [PMID: 31556874 PMCID: PMC6768663 DOI: 10.7554/elife.50226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/24/2019] [Indexed: 01/09/2023] Open
Abstract
During mammalian embryogenesis, extensive cellular remodeling is needed for tissue morphogenesis. As effectors of cytoskeletal dynamics, Rho GTPases and their regulators are likely involved, but their daunting complexity has hindered progress in dissecting their functions. We overcome this hurdle by employing high throughput in utero RNAi-mediated screening to identify key Rho regulators of skin morphogenesis. Our screen unveiled hitherto unrecognized roles for Rho-mediated cytoskeletal remodeling events that impact hair follicle specification, differentiation, downgrowth and planar cell polarity. Coupling our top hit with gain/loss-of-function genetics, interactome proteomics and tissue imaging, we show that RHOU, an atypical Rho, governs the cytoskeletal-junction dynamics that establish columnar shape and planar cell polarity in epidermal progenitors. Conversely, RHOU downregulation is required to remodel to a conical cellular shape that enables hair bud invagination and downgrowth. Our findings underscore the power of coupling screens with proteomics to unravel the physiological significance of complex gene families.
Collapse
Affiliation(s)
- Melanie Laurin
- Robin Neustein Laboratory of Mammalian Cell Biology and DevelopmentHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Nicholas C Gomez
- Robin Neustein Laboratory of Mammalian Cell Biology and DevelopmentHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - John Levorse
- Robin Neustein Laboratory of Mammalian Cell Biology and DevelopmentHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Ataman Sendoel
- Robin Neustein Laboratory of Mammalian Cell Biology and DevelopmentHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Megan Sribour
- Robin Neustein Laboratory of Mammalian Cell Biology and DevelopmentHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Elaine Fuchs
- Robin Neustein Laboratory of Mammalian Cell Biology and DevelopmentHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
10
|
Thuveson M, Gaengel K, Collu GM, Chin ML, Singh J, Mlodzik M. Integrins are required for synchronous ommatidial rotation in the Drosophila eye linking planar cell polarity signalling to the extracellular matrix. Open Biol 2019; 9:190148. [PMID: 31409231 PMCID: PMC6731590 DOI: 10.1098/rsob.190148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Integrins mediate the anchorage between cells and their environment, the extracellular matrix (ECM), and form transmembrane links between the ECM and the cytoskeleton, a conserved feature throughout development and morphogenesis of epithelial organs. Here, we demonstrate that integrins and components of the ECM are required during the planar cell polarity (PCP) signalling-regulated cell movement of ommatidial rotation in the Drosophila eye. The loss-of-function mutations of integrins or ECM components cause defects in rotation, with mutant clusters rotating asynchronously compared to wild-type clusters. Initially, mutant clusters tend to rotate faster, and at later stages they fail to be synchronous with their neighbours, leading to aberrant rotation angles and resulting in a disorganized ommatidial arrangement in adult eyes. We further demonstrate that integrin localization changes dynamically during the rotation process. Our data suggest that core Frizzled/PCP factors, acting through RhoA and Rho kinase, regulate the function/activity of integrins and that integrins thus contribute to the complex interaction network of PCP signalling, cell adhesion and cytoskeletal elements required for a precise and synchronous 90° rotation movement.
Collapse
Affiliation(s)
- Maria Thuveson
- Department of Cell, Developmental and Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Annenberg Building 18-92, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Konstantin Gaengel
- Department of Cell, Developmental and Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Annenberg Building 18-92, One Gustave L. Levy Place, New York, NY 10029, USA.,Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory C11, Dag Hammarskjölds Väg 20, 751 85 Uppsala, Sweden
| | - Giovanna M Collu
- Department of Cell, Developmental and Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Annenberg Building 18-92, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Mei-Ling Chin
- Department of Cell, Developmental and Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Annenberg Building 18-92, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jaskirat Singh
- Department of Cell, Developmental and Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Annenberg Building 18-92, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Marek Mlodzik
- Department of Cell, Developmental and Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Annenberg Building 18-92, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
11
|
Sterile Inflammation Enhances ECM Degradation in Integrin β1 KO Embryonic Skin. Cell Rep 2018; 16:3334-3347. [PMID: 27653694 DOI: 10.1016/j.celrep.2016.08.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/14/2016] [Accepted: 08/18/2016] [Indexed: 01/02/2023] Open
Abstract
Epidermal knockout of integrin β1 results in complete disorganization of the basement membrane (BM), resulting in neonatal lethality. Here, we report that this disorganization is exacerbated by an early embryonic inflammatory response involving the recruitment of tissue-resident and monocyte-derived macrophages to the dermal-epidermal junction, associated with increased matrix metalloproteinase activity. Remarkably, the skin barrier in the integrin β1 knockout animals is intact, suggesting that this inflammatory response is initiated in a sterile environment. We demonstrate that the molecular mechanism involves de novo expression of integrin αvβ6 in the basal epidermal cells, which activates a TGF-β1 driven inflammatory cascade resulting in upregulation of dermal NF-κB in a Tenascin C-dependent manner. Importantly, treatment of β1 KO embryos in utero with small molecule inhibitors of TGF-βR1 and NF-κB results in marked rescue of the BM defects and amelioration of immune response, revealing an unconventional immuno-protective role for integrin β1 during BM remodeling.
Collapse
|
12
|
Dubois F, Alpha K, Turner CE. Paxillin regulates cell polarization and anterograde vesicle trafficking during cell migration. Mol Biol Cell 2017; 28:3815-3831. [PMID: 29046398 PMCID: PMC5739297 DOI: 10.1091/mbc.e17-08-0488] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/26/2017] [Accepted: 10/13/2017] [Indexed: 12/25/2022] Open
Abstract
Cell polarization and directed migration play pivotal roles in diverse physiological and pathological processes. Herein, we identify new roles for paxillin-mediated HDAC6 inhibition in regulating key aspects of cell polarization in both two-dimensional and one-dimensional matrix environments. Paxillin, by modulating microtubule acetylation through HDAC6 regulation, was shown to control centrosome and Golgi reorientation toward the leading edge, a hallmark of cell polarization to ensure directed trafficking of promigratory factors. Paxillin was also required for pericentrosomal Golgi localization and centrosome cohesion, independent of its localization to, and role in, focal adhesion signaling. In addition, we provide evidence of an accumulation of paxillin at the centrosome that is dependent on focal adhesion kinase (FAK) and identify an important collaboration between paxillin and FAK signaling in the modulation of microtubule acetylation, as well as centrosome and Golgi organization and polarization. Finally, paxillin was also shown to be required for optimal anterograde vesicular trafficking to the plasma membrane.
Collapse
Affiliation(s)
- Fatemeh Dubois
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Kyle Alpha
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Christopher E Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
13
|
Dor-On E, Raviv S, Cohen Y, Adir O, Padmanabhan K, Luxenburg C. T-plastin is essential for basement membrane assembly and epidermal morphogenesis. Sci Signal 2017; 10:10/481/eaal3154. [PMID: 28559444 DOI: 10.1126/scisignal.aal3154] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The establishment of epithelial architecture is a complex process involving cross-talk between cells and the basement membrane. Basement membrane assembly requires integrin activity but the role of the associated actomyosin cytoskeleton is poorly understood. Here, we identify the actin-bundling protein T-plastin (Pls3) as a regulator of basement membrane assembly and epidermal morphogenesis. In utero depletion of Pls3 transcripts in mouse embryos caused basement membrane and polarity defects in the epidermis but had little effect on cell adhesion and differentiation. Loss-of-function experiments demonstrated that the apicobasal polarity defects were secondary to the disruption of the basement membrane. However, the basement membrane itself was profoundly sensitive to subtle perturbations in the actin cytoskeleton. We further show that Pls3 localized to the cell cortex, where it was essential for the localization and activation of myosin II. Inhibition of myosin II motor activity disrupted basement membrane organization. Our results provide insights into the regulation of cortical actomyosin and its importance for basement membrane assembly and skin morphogenesis.
Collapse
Affiliation(s)
- Eyal Dor-On
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shaul Raviv
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yonatan Cohen
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Orit Adir
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Krishnanand Padmanabhan
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chen Luxenburg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
14
|
Abstract
Death-associated protein kinase (DAPK) undergoes activation in response to various death stimuli, and they have been associated with an increase in DAPK catalytic activity. One of the most prominent features of DAPK-induced cell death is the effect on the cytoskeleton, including loss of matrix attachment, and membrane blebbing. One known cytoskeletal-associated substrate of DAPK is the myosin-II light chain, phosphorylated by DAPK on Ser(19), thus stabilizing actin stress fibres. Moreover, paxillin, a component of focal adhesions, was found to be localized in close proximity to the tips of the DAPK-positive filaments, indicating that stress fibres containing DAPK extend to focal contacts. Forced expression of DAPK in multiple cell types results in morphological changes such as cell rounding, membrane blebbing, shrinking and detachment. During directed migration, DAPK functions as a potent inhibitor of cell polarization, as evidenced by its perturbation of the formation of static protrusion at the leading edge. Furthermore, DAPK inhibits random migration by suppressing directional persistence. One of the studies considered DAPK as an anoikis inducer. Others showed that DAP-kinase inhibits the activities of cell surface integrins by converting them into an inactive conformation. Biochemical experiments have established the DAPK binding to Syntaxin1 and its subsequent phosphorylation at Ser(188) in a Ca(2+) dependent manner. This phosphorylation event has been shown to decrease the binding of Syntaxin to MUNC18-1, a protein critically involved in synaptic vesicle docking. Here, we have investigated the structural interactions that modulate DAPK phosphorylation with Syntaxin and its functional role in binding to the MUNC18-1 to regulate vesicle docking. This review will summarize our current knowledge of the role of DAPK on cytoskeleton reorganization and report the mechanisms that regulate these changes.
Collapse
Affiliation(s)
- Jelena Ivanovska
- Experimental Tumorpathology, Institute of Pathology, Friedrich-Alexander University of Erlangen-Nuremberg, Universitätsstraße 22, 91054, Erlangen, Germany
| | | | | |
Collapse
|
15
|
Heller E, Kumar KV, Grill SW, Fuchs E. Forces generated by cell intercalation tow epidermal sheets in mammalian tissue morphogenesis. Dev Cell 2014; 28:617-32. [PMID: 24697897 DOI: 10.1016/j.devcel.2014.02.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 11/18/2013] [Accepted: 02/13/2014] [Indexed: 12/23/2022]
Abstract
While gastrulation movements offer mechanistic paradigms for how collective cellular movements shape developing embryos, far less is known about coordinated cellular movements that occur later in development. Studying eyelid closure, we explore a case where an epithelium locally reshapes, expands, and moves over another epithelium. Live imaging, gene targeting, and cell-cycle inhibitors reveal that closure does not require overlying periderm, proliferation, or supracellular actin cable assembly. Laser ablation and quantitative analyses of tissue deformations further distinguish the mechanism from wound repair and dorsal closure. Rather, cell intercalations parallel to the tissue front locally compress it perpendicularly, pulling the surrounding epidermis along the closure axis. Functional analyses in vivo show that the mechanism requires localized myosin-IIA- and α5β1 integrin/fibronectin-mediated migration and E-cadherin downregulation likely stimulated by Wnt signaling. These studies uncover a mode of epithelial closure in which forces generated by cell intercalation are leveraged to tow the surrounding tissue.
Collapse
Affiliation(s)
- Evan Heller
- Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - K Vijay Kumar
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany; BIOTEC, Technische Universität Dresden, Tatzberg 47/49, Dresden 01307, Germany
| | - Stephan W Grill
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany; BIOTEC, Technische Universität Dresden, Tatzberg 47/49, Dresden 01307, Germany
| | - Elaine Fuchs
- Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
16
|
The primitive endoderm segregates from the epiblast in β1 integrin-deficient early mouse embryos. Mol Cell Biol 2013; 34:560-72. [PMID: 24277939 DOI: 10.1128/mcb.00937-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We analyzed the mechanism of developmental failure in implanted β1 integrin-null blastocysts and found that primitive endoderm cells are present but segregate away from, instead of forming an epithelial layer covering, the inner cell mass. This cell segregation phenotype was also reproduced in β1 integrin-null embryoid bodies, in which primitive endoderm cells segregated and appeared as miniature aggregates detached from the core spheroids, and a primitive endoderm layer failed to form on the surface. Restricted β1 integrin gene deletion in embryos using Ttr-Cre or Sox2-Cre indicated that the loss of integrin function in the cells of the inner core rather than the outer layer is responsible for the failure to form a primitive endoderm layer. We conclude that β1 integrin is essential for the attachment of the primitive endoderm layer to the epiblast during the formation of a basement membrane, a process concurrent with the transition from cadherin- to integrin-mediated cell adhesion.
Collapse
|
17
|
Patterson K, Yang R, Zeng B, Song B, Wang S, Xi N, Basson M. Measurement of cationic and intracellular modulation of integrin binding affinity by AFM-based nanorobot. Biophys J 2013; 105:40-47. [PMID: 23823222 PMCID: PMC3699737 DOI: 10.1016/j.bpj.2013.05.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/12/2013] [Accepted: 05/30/2013] [Indexed: 11/23/2022] Open
Abstract
Integrins are dynamic transmembrane cation-dependent heterodimers that both anchor cells in position and transduce signals into and out of cells. We used an atomic force microscope (AFM)-based nanorobotic system to measure integrin-binding forces in intact human intestinal epithelial Caco-2 cells. The AFM-based nanorobot enables human-directed, high-accuracy probe positioning and site-specific investigations. Functionalizing the AFM probe with an arginine-glycine-aspartate (RGD)-containing sequence (consensus binding sequence for integrins) allowed us to detect a series of peptide-cell membrane interactions with a median binding force of 115.1 ± 4.9 pN that were not detected in control interactions. Chelating divalent cations from the culture medium abolished these interactions, as did inhibiting intracellular focal adhesion kinase (FAK) using Y15. Adding 1 mM Mg(2+) to the medium caused a rightward shift in the force-binding curve. Adding 1 mM Ca(2+) virtually abolished the RGD-membrane specific interactions and blocked the Mg(2+) effects. Cell adhesion assays demonstrated parallel effects of divalent cations and the FAK inhibitor on cell adhesion. These results demonstrate direct modulation of integrin-binding affinity by both divalent cations and intracellular signal inhibition. Additionally, three binding states (nonspecific, specific inactivated, and specific activated) were delineated from affinity measurements. Although other research has assumed that this process of integrin conformational change causes altered ligand binding, in this work we directly measured these three states in individual integrins in a physiologically based study.
Collapse
Affiliation(s)
- Kevin C. Patterson
- College of Human Medicine, Michigan State University, East Lansing, Michigan
| | - Ruiguo Yang
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan
| | - Bixi Zeng
- College of Human Medicine, Michigan State University, East Lansing, Michigan
| | - Bo Song
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan
| | - Shouye Wang
- Department of Surgery, Michigan State University, East Lansing, Michigan
| | - Ning Xi
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan
| | - Marc D. Basson
- Department of Surgery, Michigan State University, East Lansing, Michigan
| |
Collapse
|
18
|
de Morrée A, Flix B, Bagaric I, Wang J, van den Boogaard M, Grand Moursel L, Frants RR, Illa I, Gallardo E, Toes R, van der Maarel SM. Dysferlin regulates cell adhesion in human monocytes. J Biol Chem 2013; 288:14147-14157. [PMID: 23558685 DOI: 10.1074/jbc.m112.448589] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dysferlin is mutated in a group of muscular dystrophies commonly referred to as dysferlinopathies. It is highly expressed in skeletal muscle, where it is important for sarcolemmal maintenance. Recent studies show that dysferlin is also expressed in monocytes. Moreover, muscle of dysferlinopathy patients is characterized by massive immune cell infiltrates, and dysferlin-negative monocytes were shown to be more aggressive and phagocytose more particles. This suggests that dysferlin deregulation in monocytes might contribute to disease progression, but the molecular mechanism is unclear. Here we show that dysferlin expression is increased with differentiation in human monocytes and the THP1 monocyte cell model. Freshly isolated monocytes of dysferlinopathy patients show deregulated expression of fibronectin and fibronectin-binding integrins, which is recapitulated by transient knockdown of dysferlin in THP1 cells. Dysferlin forms a protein complex with these integrins at the cell membrane, and its depletion impairs cell adhesion. Moreover, patient macrophages show altered adhesion and motility. These findings suggest that dysferlin is involved in regulating cellular interactions and provide new insight into dysferlin function in inflammatory cells.
Collapse
Affiliation(s)
- Antoine de Morrée
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Bàrbara Flix
- Servei de Neurologia, Laboratori de Neurologia Experimental, Hospital de la Santa Creu i Sant Pau i Institut de Recerca de HSCSP, Universitat Autònoma de Barcelona and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 08193 Bellaterra, Spain
| | - Ivana Bagaric
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jun Wang
- Department of Rheumatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | | - Laure Grand Moursel
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Rune R Frants
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Isabel Illa
- Servei de Neurologia, Laboratori de Neurologia Experimental, Hospital de la Santa Creu i Sant Pau i Institut de Recerca de HSCSP, Universitat Autònoma de Barcelona and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 08193 Bellaterra, Spain
| | - Eduard Gallardo
- Servei de Neurologia, Laboratori de Neurologia Experimental, Hospital de la Santa Creu i Sant Pau i Institut de Recerca de HSCSP, Universitat Autònoma de Barcelona and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 08193 Bellaterra, Spain
| | - Rene Toes
- Department of Rheumatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Silvère M van der Maarel
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
19
|
Sayedyahossein S, Nini L, Irvine TS, Dagnino L. Essential role of integrin‐linked kinase in regulation of phagocytosis in keratinocytes. FASEB J 2012; 26:4218-29. [DOI: 10.1096/fj.12-207852] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Samar Sayedyahossein
- Department of Physiology and PharmacologyUniversity of Western OntarioLondonOntarioCanada
- Children's Health Research InstituteLondonOntarioCanada
- Lawson Health Research InstituteLondonOntarioCanada
| | - Lylia Nini
- Department of Physiology and PharmacologyUniversity of Western OntarioLondonOntarioCanada
- Children's Health Research InstituteLondonOntarioCanada
- Lawson Health Research InstituteLondonOntarioCanada
| | - Timothy S. Irvine
- Department of Physiology and PharmacologyUniversity of Western OntarioLondonOntarioCanada
- Children's Health Research InstituteLondonOntarioCanada
- Lawson Health Research InstituteLondonOntarioCanada
| | - Lina Dagnino
- Department of Physiology and PharmacologyUniversity of Western OntarioLondonOntarioCanada
- Department of PaediatricsUniversity of Western OntarioLondonOntarioCanada
- Children's Health Research InstituteLondonOntarioCanada
- Lawson Health Research InstituteLondonOntarioCanada
| |
Collapse
|
20
|
Epifano C, Perez-Moreno M. Crossroads of integrins and cadherins in epithelia and stroma remodeling. Cell Adh Migr 2012; 6:261-73. [PMID: 22568988 DOI: 10.4161/cam.20253] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adhesion events mediated by cadherin and integrin adhesion receptors have fundamental roles in the maintenance of the physiological balance of epithelial tissues, and it is well established that perturbations in their normal functional activity and/or changes in their expression are associated with tumorigenesis. Over the last decades, increasing evidence of a dynamic collaborative interaction between these complexes through their shared interactions with cytoskeletal proteins and common signaling pathways has emerged not only as an important regulator of several aspects of epithelial cell behavior, but also as a coordinated adhesion module that senses and transmits signals from and to the epithelia surrounding microenvironment. The tight regulation of their crosstalk is particularly important during epithelial remodeling events that normally take place during morphogenesis and tissue repair, and when defective it leads to cell transformation and aggravated responses of the tumor microenvironment that contribute to tumorigenesis. In this review we highlight some of the interactions that regulate their crosstalk and how this could be implicated in regulating signals across epithelial tissues to sustain homeostasis.
Collapse
Affiliation(s)
- Carolina Epifano
- Epithelial Cell Biology Group, BBVA Foundation-Cancer Cell Biology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | | |
Collapse
|
21
|
Bandyopadhyay A, Rothschild G, Kim S, Calderwood DA, Raghavan S. Functional differences between kindlin-1 and kindlin-2 in keratinocytes. J Cell Sci 2012; 125:2172-84. [PMID: 22328497 DOI: 10.1242/jcs.096214] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Integrin-β1-null keratinocytes can adhere to fibronectin through integrin αvβ6, but form large peripheral focal adhesions and exhibit defective cell spreading. Here we report that, in addition to the reduced avidity of αvβ6 integrin binding to fibronectin, the inability of integrin β6 to efficiently bind and recruit kindlin-2 to focal adhesions directly contributes to these phenotypes. Kindlins regulate integrins through direct interactions with the integrin-β cytoplasmic tail and keratinocytes express kindlin-1 and kindlin-2. Notably, although both kindlins localize to focal adhesions in wild-type cells, only kindlin-1 localizes to the integrin-β6-rich adhesions of integrin-β1-null cells. Rescue of these cells with wild-type and chimeric integrin constructs revealed a correlation between kindlin-2 recruitment and cell spreading. Furthermore, despite the presence of kindlin-1, knockdown of kindlin-2 in wild-type keratinocytes impaired cell spreading. Our data reveal unexpected functional consequences of differences in the association of two homologous kindlin isoforms with two closely related integrins, and suggest that despite their similarities, different kindlins are likely to have unique functions.
Collapse
Affiliation(s)
- Aditi Bandyopadhyay
- College of Dental Medicine and Department of Dermatology, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
22
|
The RhoA-ROCK-PTEN pathway as a molecular switch for anchorage dependent cell behavior. Biomaterials 2012; 33:2902-15. [PMID: 22244698 DOI: 10.1016/j.biomaterials.2011.12.051] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 12/30/2011] [Indexed: 12/26/2022]
Abstract
The proliferation of anchorage-dependent cells of mesenchymal origin requires the attachment of the cells to substrates. Thus, cells that are poorly attached to substrates exhibit retarded cell cycle progression or apoptotic death. A major disadvantage of most polymers used in tissue engineering is their hydrophobicity; hydrophobic surfaces do not allow cells to attach firmly and, therefore, do not allow normal proliferation rates. In this study, we investigated the molecular mechanism underlying the reduced proliferation rate of cells that are poorly attached to substrates. There was an inverse relationship between the activity of the small GTPase RhoA (RhoA) and the cell proliferation rate. RhoA activity correlated inversely with the strength of cell adhesion to the substrates. The high RhoA activity in the cells poorly attached to substrates caused an increase in the activity of Rho-associated kinase (ROCK), a well-known effector of RhoA that upregulated the activity of phosphatase and tensin homolog (PTEN). The resulting activated PTEN downregulated Akt activity, which is essential for cell proliferation. Thus, the cells that were poorly attached to substrates showed low levels of cell proliferation because the RhoA-ROCK-PTEN pathway was hyperactive. In addition, RhoA activity seemed to be related to focal adhesion kinase (FAK) activity. Weak FAK activity in these poorly attached cells failed to downregulate the high RhoA activity that restrained cell proliferation. Interestingly, reducing the expression of any component of the RhoA-ROCK-PTEN pathway rescued the proliferation rate without physico-chemical surface modifications. Based on these results, we suggest that the RhoA-ROCK-PTEN pathway acts as a molecular switch to control cell proliferation and determine anchorage dependence. In cells that are poorly attached to substrates, its inhibition is sufficient to restore cell proliferation without the need for physico-chemical modification of the material surface.
Collapse
|
23
|
Ho E, Dagnino L. Epidermal growth factor induction of front-rear polarity and migration in keratinocytes is mediated by integrin-linked kinase and ELMO2. Mol Biol Cell 2011; 23:492-502. [PMID: 22160594 PMCID: PMC3268727 DOI: 10.1091/mbc.e11-07-0596] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Epidermal growth factor (EGF) is a potent chemotactic and mitogenic factor for epidermal keratinocytes, and these properties are central for normal epidermal regeneration after injury. The involvement of mitogen-activated protein kinases as mediators of the proliferative effects of EGF is well established. However, the molecular mechanisms that mediate motogenic responses to this growth factor are not clearly understood. An obligatory step for forward cell migration is the development of front-rear polarity and formation of lamellipodia at the leading edge. We show that stimulation of epidermal keratinocytes with EGF, but not with other growth factors, induces development of front-rear polarity and directional migration through a pathway that requires integrin-linked kinase (ILK), Engulfment and Cell Motility-2 (ELMO2), integrin β1, and Rac1. Furthermore, EGF induction of front-rear polarity and chemotaxis require the tyrosine kinase activity of the EGF receptor and are mediated by complexes containing active RhoG, ELMO2, and ILK. Our findings reveal a novel link between EGF receptor stimulation, ILK-containing complexes, and activation of small Rho GTPases necessary for acquisition of front-rear polarity and forward movement.
Collapse
Affiliation(s)
- Ernest Ho
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| | | |
Collapse
|
24
|
Deconstructing the skin: cytoarchitectural determinants of epidermal morphogenesis. Nat Rev Mol Cell Biol 2011; 12:565-80. [PMID: 21860392 DOI: 10.1038/nrm3175] [Citation(s) in RCA: 346] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To provide a stable environmental barrier, the epidermis requires an integrated network of cytoskeletal elements and cellular junctions. Nevertheless, the epidermis ranks among the body's most dynamic tissues, continually regenerating itself and responding to cutaneous insults. As keratinocytes journey from the basal compartment towards the cornified layers, they completely reorganize their adhesive junctions and cytoskeleton. These architectural components are more than just rivets and scaffolds - they are active participants in epidermal morphogenesis that regulate epidermal polarization, signalling and barrier formation.
Collapse
|
25
|
Cozin M, Pinker BM, Solemani K, Zuniga JM, Dadaian SC, Cremers S, Landesberg R, Raghavan S. Novel therapy to reverse the cellular effects of bisphosphonates on primary human oral fibroblasts. J Oral Maxillofac Surg 2011; 69:2564-78. [PMID: 21807448 DOI: 10.1016/j.joms.2011.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 02/21/2011] [Accepted: 03/01/2011] [Indexed: 01/03/2023]
Abstract
PURPOSE Osteonecrosis of the jaws (ONJ) is a clinical condition that is characterized by a nonhealing breach in the oral mucosa resulting in exposure of bone and has been increasingly reported in patients receiving bisphosphonate (BP) therapy. Although the pathogenesis and natural history of ONJ remain ill-defined, it appears that the oral soft tissues play a critical role in the development of this condition. We examined the effects of the nitrogen-containing BPs pamidronate and zoledronate on primary human gingival fibroblasts. MATERIALS AND METHODS Primary gingival fibroblasts were exposed to clinically relevant doses of pamidronate and zoledronate. Cellular proliferation was measured with an MTS/PMS reagent-based kit (Promega, Madison, WI), scratch wound assays were performed to measure cellular migration, and apoptosis was measured by use of terminal deoxynucleotidyl transferase-mediated dUTP-FITC end labeling and caspase assays. The BP-exposed cells were treated with 10-ng/mL recombinant human platelet-derived growth factor BB (rhPDGF-BB) and 50-μmol/L geranylgeraniol (GGOH). RESULTS Gingival fibroblasts are significantly more sensitive to inhibition of proliferation by zoledronate compared with pamidronate. Exposure of these cells to pamidronate but not zoledronate resulted in an increase in cellular apoptosis. Furthermore, exposure of gingival fibroblasts to pamidronate or zoledronate resulted in a decrease in cellular migration. We show that these defects are due to a loss of cell-substratum adhesion and a reduction of F-actin bundles. Finally, we show that the addition of rhPDGF-BB and GGOH in vitro is able to partially rescue the cell proliferation, migration, and adhesion defects. CONCLUSION The cytotoxic effects of BPs on oral fibroblasts and their significant reversal by the addition of GGOH and rhPDGF-BB provide both the potential mechanism and treatment options for ONJ.
Collapse
Affiliation(s)
- Matthew Cozin
- College of Dental Medicine, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Han JW, Lee HJ, Bae GU, Kang JS. Promyogenic function of Integrin/FAK signaling is mediated by Cdo, Cdc42 and MyoD. Cell Signal 2011; 23:1162-9. [DOI: 10.1016/j.cellsig.2011.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 03/03/2011] [Indexed: 12/11/2022]
|
27
|
Alt-Holland A, Sowalsky AG, Szwec-Levin Y, Shamis Y, Hatch H, Feig LA, Garlick JA. Suppression of E-cadherin function drives the early stages of Ras-induced squamous cell carcinoma through upregulation of FAK and Src. J Invest Dermatol 2011; 131:2306-15. [PMID: 21716326 PMCID: PMC3188385 DOI: 10.1038/jid.2011.188] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Advanced stages of epithelial carcinogenesis involve the loss of intercellular adhesion, but it remains unclear how proteins that regulate alterations in cell-cell and cell-matrix adhesion are deregulated to promote the early stages of cancer development. To address this, a three-dimensional human tissue model that mimics the incipient stages of Squamous Cell Carcinoma (SCC) was used to study how E-cadherin suppression promotes tumor progression in Ras-expressing human keratinocytes. We found that E-cadherin suppression triggered elevated mRNA and protein expression levels of Focal Adhesion Kinase (FAK), and increased FAK and Src activities above the level seen in Ras-expressing E-cadherin-competent keratinocytes. sh-RNA-mediated depletion of FAK and Src restored E-cadherin expression levels by increasing its stability in the membrane, and blocked tumor cell invasion in tissues. Surface transplantation of these tissues to mice resulted in reversion of the tumor phenotype to low-grade tumor islands in contrast to control tissues that manifested an aggressive, high-grade SCC. These findings suggest that the tumor-promoting effect of E-cadherin suppression, a common event in SCC development, is exacerbated by enhanced E-cadherin degradation induced by elevated FAK and Src activities. Furthermore, they imply that targeting FAK or Src in human epithelial cells with neoplastic potential may inhibit the early stages of SCC.
Collapse
Affiliation(s)
- Addy Alt-Holland
- Division of Cancer Biology and Tissue Engineering, School of Dental Medicine, Tufts University, Boston, Massachusetts 02111, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Kindlin-1 and -2 have overlapping functions in epithelial cells implications for phenotype modification. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:975-82. [PMID: 21356350 DOI: 10.1016/j.ajpath.2010.11.053] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 10/26/2010] [Accepted: 11/17/2010] [Indexed: 11/21/2022]
Abstract
Kindlins are a novel family of intracellular adaptor proteins in integrin-containing focal adhesions. Kindlin-1 and -2 are expressed in the skin, but whether and how they cooperate in adult epithelial cells have remained elusive. We uncovered the overlapping roles of kindlin-1 and -2 in maintaining epithelial integrity and show that the phenotype of kindlin-1-deficient cells can be modulated by regulating kindlin-2 gene expression and vice versa. The experimental evidence is provided by use of human keratinocyte cell lines that express both kindlins, just kindlin-1 or kindlin-2, or none of them. Double deficiency of kindlin-1 and -2 had significant negative effects on focal adhesion formation and actin cytoskeleton organization, cell adhesion, survival, directional migration, and activation of β(1) integrin, whereas deficiency of one kindlin only showed variable perturbation of these functions. Cell motility and formation of cell-cell contacts were particularly affected by lack of kindlin-2. These results predict that kindlin-1 and -2 can functionally compensate for each other, at least in part. The high physiologic and pathologic significance of the compensation was emphasized by the discovery of environmental regulation of kindlin-2 expression. UV-B irradiation induced loss of kindlin-2 in keratinocytes. This first example of environmental regulation of kindlin expression has implications for phenotype modulation in Kindler syndrome, a skin disorder caused by kindlin-1 deficiency.
Collapse
|
29
|
Watt FM, Fujiwara H. Cell-extracellular matrix interactions in normal and diseased skin. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a005124. [PMID: 21441589 DOI: 10.1101/cshperspect.a005124] [Citation(s) in RCA: 258] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mammalian skin comprises a multi-layered epithelium, the epidermis, and an underlying connective tissue, the dermis. The epidermal extracellular matrix is a basement membrane, whereas the dermal ECM comprises fibrillar collagens and associated proteins. There is considerable heterogeneity in ECM composition within both epidermis and dermis. The functional significance of this extends beyond cell adhesion to a range of cell autonomous and nonautonomous processes, including control of epidermal stem cell fate. In skin, cell-ECM interactions influence normal homeostasis, aging, wound healing, and disease. Disturbed integrin and ECM signaling contributes to both tumor formation and fibrosis. Strategies for manipulating cell-ECM interactions to repair skin defects and intervene in a variety of skin diseases hold promise for the future.
Collapse
Affiliation(s)
- Fiona M Watt
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom.
| | | |
Collapse
|
30
|
Ozawa T, Tsuruta D. Comparative study of the dynamics of focal contacts in live epithelial and mesenchymal cells. Med Mol Morphol 2011; 44:27-33. [PMID: 21424934 DOI: 10.1007/s00795-010-0502-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 02/08/2010] [Indexed: 01/26/2023]
Abstract
To further characterize the morphology and dynamics of focal contacts (FCs) in epithelial cells, we compared the size, number, localization, velocity, and turnover of FCs in epithelial and mesenchymal cell lines. Using immunocytochemistry, we found there were no significant differences between mesenchymal and epithelial cells in number and appearance whereas the location and size of FCs in each cell were different between mesenchymal and epithelial cells. FCs in mesenchymal cells localized at the cell periphery and cell center, but FCs were found only at the cell periphery in epithelial cells. The size of FCs in epithelial cells were significantly smaller than in mesenchymal cells. Next, we compared the dynamics of FCs in both mesenchymal and epithelial cells and found no significant difference between the two groups. Finally, we added inhibitors for the hemidesmosome (HD) proteins, α6 integrin and β4 integrin, to HaCat cell (epithelial) cultures and examined the number and size of FCs. Under these conditions, the size and localization of FCs in HaCat cells became comparable to that of mesenchymal cells. Therefore, we concluded the size and localization of FCs is regulated by the existence of HDs in epithelial cells.
Collapse
Affiliation(s)
- Toshiyuki Ozawa
- Department of Dermatology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | | |
Collapse
|
31
|
King SJ, Worth DC, Scales TME, Monypenny J, Jones GE, Parsons M. β1 integrins regulate fibroblast chemotaxis through control of N-WASP stability. EMBO J 2011; 30:1705-18. [PMID: 21427700 PMCID: PMC3101992 DOI: 10.1038/emboj.2011.82] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 02/24/2011] [Indexed: 12/15/2022] Open
Abstract
Chemotactic migration of fibroblasts towards growth factors, such as during development and wound healing, requires precise spatial coordination of receptor signalling. However, the mechanisms regulating this remain poorly understood. Here, we demonstrate that β1 integrins are required both for fibroblast chemotaxis towards platelet-derived growth factor (PDGF) and growth factor-induced dorsal ruffling. Mechanistically, we show that β1 integrin stabilises and spatially regulates the actin nucleating endocytic protein neuronal Wiskott–Aldrich syndrome protein (N-WASP) to facilitate PDGF receptor traffic and directed motility. Furthermore, we show that in intact cells, PDGF binding leads to rapid activation of β1 integrin within newly assembled actin-rich membrane ruffles. Active β1 in turn controls assembly of N-WASP complexes with both Cdc42 and WASP-interacting protein (WIP), the latter of which acts to stabilise the N-WASP. Both of these protein complexes are required for PDGF internalisation and fibroblast chemotaxis downstream of β1 integrins. This represents a novel mechanism by which integrins cooperate with growth factor receptors to promote localised signalling and directed cell motility.
Collapse
Affiliation(s)
- Samantha J King
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London, UK
| | | | | | | | | | | |
Collapse
|
32
|
Down-regulation of glutamine synthetase enhances migration of rat astrocytes after in vitro injury. Neurochem Int 2010; 58:404-13. [PMID: 21193003 DOI: 10.1016/j.neuint.2010.12.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 12/20/2010] [Accepted: 12/20/2010] [Indexed: 11/23/2022]
Abstract
Astrocytes undergo reactive transformation in response to physical injury (reactive gliosis) that may impede neural repair. Glutamine synthetase (GS) is highly expressed by astrocytes, and serves a neuroprotective function by converting cytotoxic glutamate and ammonia into glutamine. Glutamine synthetase was down-regulated in reactive astrocytes at the site of mechanical spinal cord injury (SCI) and in cultured astrocytes at the margins of a scratch wound, suggesting that GS may modulate reactive transformation and glial scar development. We evaluated this potential function of GS using siRNA-mediated GS knock-down. Suppression of astrocytic GS by GS siRNA increased cell migration into the scratch wound zone and decreased substrate adhesion as indicated by the number of focal adhesions expressing the adaptor protein paxillin. Migration was enhanced by glutamine and suppressed by glutamate, in contrast to the result expected if enhanced migration was due solely to changes in glutamine and glutamate concomitant with reduced GS activity. The membrane type 1-matrix metalloproteinase (MT1-MMP) was up-regulated in GS siRNA-treated astrocytes, while a broad-spectrum MMP antagonist inhibited migration in both wild type and GS knock-down astrocytes. In addition, GS siRNA inhibited expression of integrin β1, while antibody-mediated inhibition of integrin β1 impaired direction-specific protrusion and motility. Thus, GS may modulate motility and substrate adhesion through transmembrane integrin β1 signaling to the cytoskeleton and by MMT-mediated proteolysis of the extracellular matrix.
Collapse
|
33
|
Wu M, Wu ZF, Rosenthal DT, Rhee EM, Merajver SD. Characterization of the roles of RHOC and RHOA GTPases in invasion, motility, and matrix adhesion in inflammatory and aggressive breast cancers. Cancer 2010; 116:2768-82. [PMID: 20503409 DOI: 10.1002/cncr.25181] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND The 2 closely related small GTPases, RHOC and RHOA, are involved in mammary gland carcinogenesis; however, their specific roles in determining cancer cell adhesion and invasion have not been elucidated. METHODS RHOA and RHOC are highly homologous, thereby posing a major challenge to study their individual functions in cancer cells. By selectively knocking down these proteins, we have been able to alternatively inhibit RHOC and RHOA, while preserving expression of the other rho protein. Quantitative analyses of the growth patterns and invasion in the aggressive estrogen receptor negative cell lines MDA-231 and SUM149 were carried out on collagen I and Matrigel substrates. RESULTS RHOC, and not RHOA, modulates surface expression and colocalization of alpha2 and beta1 integrins in MDA-MB-231 on collagen I. Neither RHOC or RHOA affected integrin expression in the inflammatory breast cancer cell line SUM149, further highlighting the different regulation of adhesion and motility in inflammatory breast cancer. CONCLUSIONS This work shows that RHOC and RHOA play different roles in cell-matrix adhesion, motility, and invasion of MDA-MB-231 and reaffirms the crucial role of RHOC-GTPase in inflammatory breast cancer cell invasion.
Collapse
Affiliation(s)
- Mei Wu
- Department of Internal Medicine, Division of Hematology and Oncology and Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
| | | | | | | | | |
Collapse
|
34
|
Has C, Herz C, Zimina E, Qu HY, He Y, Zhang ZG, Wen TT, Gache Y, Aumailley M, Bruckner-Tuderman L. Kindlin-1 Is required for RhoGTPase-mediated lamellipodia formation in keratinocytes. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1442-52. [PMID: 19762715 DOI: 10.2353/ajpath.2009.090203] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Kindlin-1 is an epithelial-specific member of the novel kindlin protein family, which are regulators of integrin functions. Mutations in the gene that encodes Kindlin-1, FERMT1 (KIND1), cause the Kindler syndrome (KS), a human disorder characterized by mucocutaneous fragility, progressive skin atrophy, ulcerative colitis, photosensitivity, and propensity to skin cancer. Our previous studies indicated that loss of kindlin-1 resulted in abnormalities associated with integrin functions, such as adhesion, proliferation, polarization, and motility of epidermal cells. Here, we disclosed novel FERMT1 mutations in KS and used them, in combination with small-interfering RNA, protein, and imaging studies, to uncover new functions for kindlin-1 in keratinocytes and to discern the molecular pathology of KS. We show that kindlin-1 forms molecular complexes with beta1 integrin, alpha-actinin, migfilin, and focal adhesion kinase and regulates cell shape and migration by controlling lamellipodia formation. Kindlin-1 governs these processes by signaling via Rho family GTPases, and it is required to maintain the pool of GTP-bound, active Rac1, RhoA and Cdc42, and the phosphorylation of their downstream effectors p21-activated kinase 1, LIM kinase, and cofilin. Loss of these kindlin-1 functions forms the biological basis for the epithelial cell fragility and atrophy in the pathology of KS.
Collapse
Affiliation(s)
- Cristina Has
- Department of Dermatology, University Medical Center Freiburg, Freiburg 79104, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Silva JM, Ezhkova E, Silva J, Heart S, Castillo M, Campos Y, Castro V, Bonilla F, Cordon-Cardo C, Muthuswamy SK, Powers S, Fuchs E, Hannon GJ. Cyfip1 is a putative invasion suppressor in epithelial cancers. Cell 2009; 137:1047-61. [PMID: 19524508 DOI: 10.1016/j.cell.2009.04.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2008] [Revised: 01/23/2009] [Accepted: 04/02/2009] [Indexed: 12/20/2022]
Abstract
Identification of bona fide tumor suppressors is often challenging because of the large number of genetic alterations present in most human cancers. To evaluate candidate genes present within chromosomal regions recurrently deleted in human cancers, we coupled high-resolution genomic analysis with a two-stage genetic study using RNA interference (RNAi). We found that Cyfip1, a subunit of the WAVE complex, which regulates cytoskeletal dynamics, is commonly deleted in human epithelial cancers. Reduced expression of CYFIP1 is commonly observed during invasion of epithelial tumors and is associated with poor prognosis in this setting. Silencing of Cyfip1 disturbed normal epithelial morphogenesis in vitro and cooperated with oncogenic Ras to produce invasive carcinomas in vivo. Mechanistically, we have linked alterations in WAVE-regulated actin dynamics with impaired cell-cell adhesion and cell-ECM interactions. Thus, we propose Cyfip1 as an invasion suppressor gene.
Collapse
Affiliation(s)
- Jose M Silva
- Watson School Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chen B, Goodman E, Lu Z, Bandyopadhyay A, Magraw C, He T, Raghavan S. Function of beta1 integrin in oral epithelia and tooth bud morphogenesis. J Dent Res 2009; 88:539-44. [PMID: 19587159 PMCID: PMC2882240 DOI: 10.1177/0022034509338008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 02/06/2009] [Accepted: 02/13/2009] [Indexed: 01/06/2023] Open
Abstract
Integrin beta1 is critical for basement membrane organization and hair follicle morphogenesis in the skin epidermis; however, less is known about its function in the developing oral epithelium. Since the skin and oral epithelia share structural similarity, we hypothesized that beta1 integrin function would be critical for the normal development of oral epithelium and tooth buds. The conditional (oral mucosa-specific) beta1 integrin knockout (KO) mice displayed severe disruption of the basement membrane of the tongue epithelium and developing tooth buds. Interestingly, unlike the developing hair follicles, early morphological development of the KO molar tooth buds was normal. However, subsequent morphogenetic events, such as cusp formation, cervical loop down-growth, and ameloblast polarization, did not occur normally. Primary KO oral keratinocytes showed defective cell spreading and robust focal adhesions. Our studies indicate that beta1 integrin plays an essential role in the normal development of the oral epithelium and its appendages.
Collapse
Affiliation(s)
- B. Chen
- Division of Oral and Maxillofacial Surgery, College of Dental Medicine, Columbia University, New York, NY 10032, USA
| | - E. Goodman
- Division of Oral and Maxillofacial Surgery, College of Dental Medicine, Columbia University, New York, NY 10032, USA
| | - Z. Lu
- Division of Oral and Maxillofacial Surgery, College of Dental Medicine, Columbia University, New York, NY 10032, USA
| | - A. Bandyopadhyay
- Division of Oral and Maxillofacial Surgery, College of Dental Medicine, Columbia University, New York, NY 10032, USA
| | - C. Magraw
- Division of Oral and Maxillofacial Surgery, College of Dental Medicine, Columbia University, New York, NY 10032, USA
| | - T. He
- Division of Oral and Maxillofacial Surgery, College of Dental Medicine, Columbia University, New York, NY 10032, USA
| | - S. Raghavan
- Division of Oral and Maxillofacial Surgery, College of Dental Medicine, Columbia University, New York, NY 10032, USA
- Department of Dermatology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
37
|
Tomar A, Lim ST, Lim Y, Schlaepfer DD. A FAK-p120RasGAP-p190RhoGAP complex regulates polarity in migrating cells. J Cell Sci 2009; 122:1852-62. [PMID: 19435801 DOI: 10.1242/jcs.046870] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Directional motility is a complex process requiring the spatiotemporal integration of signals that regulate cytoskeletal changes, and the establishment of an anteroposterior or polarized cell axis. Focal adhesion kinase (FAK) promotes cell migration, but a molecular role for FAK in promoting cell polarity remains undefined. Here, using wound healing and Golgi-reorientation analyses, we show that fibroblast, endothelial and carcinoma polarity during cell migration requires FAK and is associated with a complex between FAK, p120RasGAP and p190RhoGAP (p190A), leading to p190A tyrosine phosphorylation. Fibronectin-integrin-mediated FAK activation and phosphorylation promote SH2-mediated binding of p120RasGAP to FAK and FAK-mediated p190A tyrosine phosphorylation. The association of p120RasGAP with FAK facilitates the formation of a FAK-p120RasGAP-p190A complex targeted to leading-edge focal adhesions by FAK. Knockdown of p120RasGAP, mutation of FAK Y397 or inhibition of FAK activity prevent the association of FAK with p190A and subsequent tyrosine phosphorylation of p190A, and result in the loss of cell polarity. Because reconstitution of FAK-null fibroblasts with FAK or a Pyk2-FAK chimera restore the normal decrease in RhoA GTP binding upon cell spreading on fibronectin, our studies support a model whereby FAK activity facilitates the recruitment and stabilization of a p120RasGAP-p190A complex at leading-edge focal adhesions connected to the transient inhibition of RhoA activity and the regulation of cell polarity.
Collapse
Affiliation(s)
- Alok Tomar
- University of California San Diego, Moores Cancer Center, Department of Reproductive Medicine, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
38
|
Fuchs E, Nowak JA. Building epithelial tissues from skin stem cells. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2008; 73:333-50. [PMID: 19022769 DOI: 10.1101/sqb.2008.73.032] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The skin epidermis and its appendages provide a protective barrier that guards against loss of fluids, physical trauma, and invasion by harmful microbes. To perform these functions while confronting the harsh environs of the outside world, our body surface undergoes constant rejuvenation through homeostasis. In addition, it must be primed to repair wounds in response to injury. The adult skin maintains epidermal homeostasis, hair regeneration, and wound repair through the use of its stem cells. What are the properties of skin stem cells, when do they become established during embryogenesis, and how are they able to build tissues with such remarkably distinct architectures? How do stem cells maintain tissue homeostasis and repair wounds and how do they regulate the delicate balance between proliferation and differentiation? What is the relationship between skin cancer and mutations that perturbs the regulation of stem cells? In the past 5 years, the field of skin stem cells has bloomed as we and others have been able to purify and dissect the molecular properties of these tiny reservoirs of goliath potential. We report here progress on these fronts, with emphasis on our laboratory's contributions to the fascinating world of skin stem cells.
Collapse
Affiliation(s)
- E Fuchs
- Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, New York 10065, USA
| | | |
Collapse
|
39
|
β1 integrins regulate chondrogenesis and rock signaling in adipose stem cells. Biochem Biophys Res Commun 2008; 372:547-52. [DOI: 10.1016/j.bbrc.2008.05.063] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 05/10/2008] [Indexed: 01/27/2023]
|
40
|
Peng H, Shah W, Holland P, Carbonetto S. Integrins and dystroglycan regulate astrocyte wound healing: the integrin beta1 subunit is necessary for process extension and orienting the microtubular network. Dev Neurobiol 2008; 68:559-74. [PMID: 18188865 DOI: 10.1002/dneu.20593] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Monolayers of astrocytes in culture respond to a scrape wound by orienting towards the wound and extending processes that will repair it. We show here that they also upregulate the expression of extracellular matrix (ECM) proteins, laminin, and chondroitin sulfated proteoglycan, that are deposited in astrocytic scars in vivo. We have previously shown that the major functional ECM receptors on astrocytes are dystroglycan (DG) plus integrins alpha1beta1, alpha5beta1, alpha6beta1, and alphavbeta3. Consistent with this, laminin fragments that activate alpha1beta1 integrin, alpha6beta1 integrin, and DG all contribute to attachment. During astrocyte attachment, or process extension, integrins and DG are found at the leading edge of the lammelipodium, though they change in distribution with the extent of attachment and the alpha and beta subunits of DG can be spatially uncoupled. Functionally, inhibitory antibodies to DG and integrin alpha1beta1 or the RGD peptide all inhibit process extension, showing that ligand engagement of integrins and DG contribute to process extension. Astrocytes differentiated from DG or beta1 null ES cells respond very differently to wounding. The former fail to extend process and cell polarization is disrupted partially. However, beta1 null astrocytes not only fail to extend processes perpendicular to the wound, but cell polarization is completely disrupted and cells migrate randomly into the wound. We conclude that integrins are essential for astrocyte polarity.
Collapse
Affiliation(s)
- Huashan Peng
- Centre for Research in Neuroscience, McGill University Health Centre, Montreal, Quebec, Canada H3G 1A4
| | | | | | | |
Collapse
|
41
|
Outside-in signaling through integrins and cadherins: a central mechanism to control epidermal growth and differentiation? J Invest Dermatol 2008; 128:501-16. [PMID: 18268536 DOI: 10.1038/sj.jid.5701248] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The process of epidermal renewal persists throughout the entire life of an organism. It begins when a keratinocyte progenitor leaves the stem cell compartment, undergoes a limited number of mitotic divisions, exits the cell cycle, and commits to terminal differentiation. At the end of this phase, the postmitotic keratinocytes detach from the basement membrane to build up the overlaying stratified epithelium. Although highly coordinated, this sequence of events is endowed with a remarkable versatility, which enables the quiescent keratinocyte to reintegrate into the cell cycle and become migratory when necessary, for example after wounding. It is this versatility that represents the Achilles heel of epithelial cells allowing for the development of severe pathologies. Over the past decade, compelling evidence has been provided that epithelial cancer cells achieve uncontrolled proliferation following hijacking of a "survival program" with PI3K/Akt and a "proliferation program" with growth factor receptor signaling at its core. Recent insights into adhesion receptor signaling now propose that integrins, but also cadherins, can centrally control these programs. It is suggested that the two types of adhesion receptors act as sensors to transmit extracellular stimuli in an outside-in mode, to inversely modulate epidermal growth factor receptor signaling and ensure cell survival. Hence, cell-matrix and cell-cell adhesion receptors likely play a more powerful and wide-ranging role than initially anticipated. This Perspective article discusses the relevance of this emerging field for epidermal growth and differentiation, which can be of importance for severe pathologies such as tumorigenesis and invasive metastasis, as well as psoriasis and Pemphigus vulgaris.
Collapse
|
42
|
Abstract
The skin epidermis and its appendages provide a protective barrier that is impermeable to harmful microbes and also prevents dehydration. To perform their functions while being confronted with the physicochemical traumas of the environment, these tissues undergo continual rejuvenation through homeostasis, and, in addition, they must be primed to undergo wound repair in response to injury. The skin's elixir for maintaining tissue homeostasis, regenerating hair, and repairing the epidermis after injury is its stem cells, which reside in the adult hair follicle, sebaceous gland, and epidermis. Stem cells have the remarkable capacity to both self-perpetuate and also give rise to the differentiating cells that constitute one or more tissues. In recent years, scientists have begun to uncover the properties of skin stem cells and unravel the mysteries underlying their remarkable capacity to perform these feats. In this paper, I outline the basic lineages of the skin epithelia and review some of the major findings about mammalian skin epithelial stem cells that have emerged in the past five years.
Collapse
Affiliation(s)
- Elaine Fuchs
- Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
43
|
Heckman BM, Chakravarty G, Vargo-Gogola T, Gonzales-Rimbau M, Hadsell DL, Lee AV, Settleman J, Rosen JM. Crosstalk between the p190-B RhoGAP and IGF signaling pathways is required for embryonic mammary bud development. Dev Biol 2007; 309:137-49. [PMID: 17662267 PMCID: PMC4011021 DOI: 10.1016/j.ydbio.2007.07.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 06/25/2007] [Accepted: 07/03/2007] [Indexed: 01/12/2023]
Abstract
P190-B RhoGAP (p190-B, also known as ARHGAP5) has been shown to play an essential role in invasion of the terminal end buds (TEBs) into the surrounding fat pad during mammary gland ductal morphogenesis. Here we report that embryos with a homozygous p190-B gene deletion exhibit major defects in embryonic mammary bud development. Overall, p190-B-deficient buds were smaller in size, contained fewer cells, and displayed characteristics of impaired mesenchymal proliferation and differentiation. Consistent with the reported effects of p190-B deletion on IGF-1R signaling, IGF-1R-deficient embryos also displayed a similar small mammary bud phenotype. However, unlike the p190-B-deficient embryos, the IGF-1R-deficient embryos exhibited decreased epithelial proliferation and did not display mesenchymal defects. Because both IGF and p190-B signaling affect IRS-1/2, we examined IRS-1/2 double knockout embryonic mammary buds. These embryos displayed major defects similar to the p190-B-deficient embryos including smaller bud size. Importantly, like the p190-B-deficient buds, proliferation of the IRS-1/2-deficient mesenchyme was impaired. These results indicate that IGF signaling through p190-B and IRS proteins is critical for mammary bud formation and ensuing epithelial-mesenchymal interactions necessary to sustain mammary bud morphogenesis.
Collapse
Affiliation(s)
- Brandy M Heckman
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Geetika Chakravarty
- Department of Molecular & Cellular Oncology, MD Anderson Cancer Center, Houston, TX 77030
| | - Tracy Vargo-Gogola
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Maria Gonzales-Rimbau
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Darryl L Hadsell
- U.S. Department of Agriculture/Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Adrian V Lee
- The Breast Center, Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Jeffrey Settleman
- Massachusetts General Hospital Cancer Center and Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
44
|
Schober M, Raghavan S, Nikolova M, Polak L, Pasolli HA, Beggs HE, Reichardt LF, Fuchs E. Focal adhesion kinase modulates tension signaling to control actin and focal adhesion dynamics. ACTA ACUST UNITED AC 2007; 176:667-80. [PMID: 17325207 PMCID: PMC2064024 DOI: 10.1083/jcb.200608010] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In response to alphabeta1 integrin signaling, transducers such as focal adhesion kinase (FAK) become activated, relaying to specific machineries and triggering distinct cellular responses. By conditionally ablating Fak in skin epidermis and culturing Fak-null keratinocytes, we show that FAK is dispensable for epidermal adhesion and basement membrane assembly, both of which require alphabeta1 integrins. FAK is also dispensible for proliferation/survival in enriched medium. In contrast, FAK functions downstream of alphabeta1 integrin in regulating cytoskeletal dynamics and orchestrating polarized keratinocyte migration out of epidermal explants. Fak-null keratinocytes display an aberrant actin cytoskeleton, which is tightly associated with robust, peripheral focal adhesions and microtubules. We find that without FAK, Src, p190RhoGAP, and PKL-PIX-PAK, localization and/or activation at focal adhesions are impaired, leading to elevated Rho activity, phosphorylation of myosin light chain kinase, and enhanced tensile stress fibers. We show that, together, these FAK-dependent activities are critical to control the turnover of focal adhesions, which is perturbed in the absence of FAK.
Collapse
Affiliation(s)
- Markus Schober
- Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Chmielowiec J, Borowiak M, Morkel M, Stradal T, Munz B, Werner S, Wehland J, Birchmeier C, Birchmeier W. c-Met is essential for wound healing in the skin. ACTA ACUST UNITED AC 2007; 177:151-62. [PMID: 17403932 PMCID: PMC2064119 DOI: 10.1083/jcb.200701086] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Wound healing of the skin is a crucial regenerative process in adult mammals. We examined wound healing in conditional mutant mice, in which the c-Met gene that encodes the receptor of hepatocyte growth factor/scatter factor was mutated in the epidermis by cre recombinase. c-Met-deficient keratinocytes were unable to contribute to the reepithelialization of skin wounds. In conditional c-Met mutant mice, wound closure was slightly attenuated, but occurred exclusively by a few (5%) keratinocytes that had escaped recombination. This demonstrates that the wound process selected and amplified residual cells that express a functional c-Met receptor. We also cultured primary keratinocytes from the skin of conditional c-Met mutant mice and examined them in scratch wound assays. Again, closure of scratch wounds occurred by the few remaining c-Met-positive cells. Our data show that c-Met signaling not only controls cell growth and migration during embryogenesis but is also essential for the generation of the hyperproliferative epithelium in skin wounds, and thus for a fundamental regenerative process in the adult.
Collapse
Affiliation(s)
- Jolanta Chmielowiec
- Department of Cancer Biology, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The epidermis and its appendages develop from a single layer of multipotent embryonic progenitor keratinocytes. Embryonic stem cells receive cues from their environment that instruct them to commit to a particular differentiation programme and generate a stratified epidermis, hair follicles or sebaceous glands. Exciting recent developments have focused on how adult skin epithelia maintain populations of stem cells for use in the natural cycles of hair follicle regeneration and for re-epithelialization in response to wounding.
Collapse
Affiliation(s)
- Elaine Fuchs
- Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, 1230 York Avenue, Box 300, New York, New York 10021, USA.
| |
Collapse
|
47
|
Choma DP, Milano V, Pumiglia KM, DiPersio CM. Integrin alpha3beta1-dependent activation of FAK/Src regulates Rac1-mediated keratinocyte polarization on laminin-5. J Invest Dermatol 2007; 127:31-40. [PMID: 16917494 DOI: 10.1038/sj.jid.5700505] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Upon epidermal wounding, keratinocytes at the wound edge become activated, deposit newly synthesized laminin-5 into the extracellular matrix, and migrate into the wound bed. The interaction between integrin alpha3beta1 and laminin-5 is essential for establishment of a stable, leading lamellipodium and persistent keratinocyte migration. We previously showed that integrin alpha3beta1 activates the Rho family GTPase Rac1 and regulates Rac1-dependent formation of polarized, leading lamellipodia in migrating keratinocytes. In the present study, we explored the role of focal adhesion kinase (FAK) and src signaling in this process. We show that overexpression of the FAK inhibitor FAK-related non-kinase or of the FAK(Y397F) auto-phosphorylation mutant, induced abnormal, non-polarized spreading of keratinocytes on laminin-5. Integrin alpha3beta1 was required for full FAK auto-phosphorylation at Y397, and subsequent src kinase-dependent phosphorylation of FAK at residues Y861 and Y925, sites responsible for promoting signal transduction downstream of FAK, indicating that alpha3beta1 regulates the coordination of FAK/src signal transduction. Inhibiting either src kinase activity or FAK signaling interfered with alpha3beta1-mediated Rac1 activation and polarized cell spreading. These findings reveal a novel pathway in migratory keratinocytes wherein alpha3beta1-laminin-5 interactions regulate src kinase signaling through FAK, promoting Rac1 activation and polarized lamellipodium extension.
Collapse
Affiliation(s)
- David P Choma
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York 12208-3479, USA
| | | | | | | |
Collapse
|
48
|
Wederell ED, de Iongh RU. Extracellular matrix and integrin signaling in lens development and cataract. Semin Cell Dev Biol 2006; 17:759-76. [PMID: 17134921 DOI: 10.1016/j.semcdb.2006.10.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During development of the vertebrate lens there are dynamic interactions between the extracellular matrix (ECM) of the lens capsule and lens cells. Disruption of the ECM causes perturbation of lens development and cataract. Similarly, changes in cell signaling can result in abnormal ECM and cataract. Integrins are key mediators of ECM signals and recent studies have documented distinct repertoires of integrin expression during lens development, and in anterior subcapsular cataract (ASC) and posterior caspsule opacification (PCO). Increasingly, studies are being directed to investigating the signaling pathways that integrins modulate and have identified Src, focal adhesion kinase (FAK) and integrin-linked kinase (ILK) as downstream kinases that mediate proliferation, differentiation and morphological changes in the lens during development and cataract formation.
Collapse
Affiliation(s)
- Elizabeth D Wederell
- Department of Anatomy & Histology, Save Sight Institute, University of Sydney, NSW 2006, Australia
| | | |
Collapse
|
49
|
Herz C, Aumailley M, Schulte C, Schlötzer-Schrehardt U, Bruckner-Tuderman L, Has C. Kindlin-1 is a phosphoprotein involved in regulation of polarity, proliferation, and motility of epidermal keratinocytes. J Biol Chem 2006; 281:36082-90. [PMID: 17012746 DOI: 10.1074/jbc.m606259200] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A novel family of focal adhesion proteins, the kindlins, is involved in attachment of the actin cytoskeleton to the plasma membrane and in integrin-mediated cellular processes. Deficiency of kindlin-1, as a result of loss-of-function mutations in the KIND1 gene, causes Kindler syndrome, an autosomal recessive genodermatosis characterized by skin blistering, progressive skin atrophy, photosensitivity and, occasionally, carcinogenesis. Here we characterized authentic and recombinantly expressed kindlin-1 and show that it is localized in basal epidermal keratinocytes in a polar fashion, close to the cell surface facing the basement membrane, in the areas between the hemidesmosomes. We identified two forms of kindlin-1 in keratinocytes, with apparent molecular masses of 78 and 74 kDa, corresponding to phosphorylated and desphosphorylated forms of the protein. In kindlin-1-deficient skin, basal keratinocytes show multiple abnormalities: cell polarity is lost, proliferation is strongly reduced, and several cells undergo apoptosis. In vitro, deficiency of kindlin-1 in keratinocytes leads to strongly reduced cell proliferation, decreased adhesion, undirected motility, and intense protrusion activity of the plasma membrane. Taken together, these results show that kindlin-1 plays a role in keratinocyte adhesion, polarization, proliferation, and migration. It is involved in organization and anchorage of the actin cytoskeleton to integrin-associated signaling platforms.
Collapse
Affiliation(s)
- Corinna Herz
- Department of Dermatology, University Medical Center Freiburg, Hauptstrasse 7, 79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Kuo JC, Wang WJ, Yao CC, Wu PR, Chen RH. The tumor suppressor DAPK inhibits cell motility by blocking the integrin-mediated polarity pathway. ACTA ACUST UNITED AC 2006; 172:619-31. [PMID: 16476779 PMCID: PMC2063680 DOI: 10.1083/jcb.200505138] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Death-associated protein kinase (DAPK) is a calmodulin-regulated serine/threonine kinase and possesses apoptotic and tumor-suppressive functions. However, it is unclear whether DAPK elicits apoptosis-independent activity to suppress tumor progression. We show that DAPK inhibits random migration by reducing directional persistence and directed migration by blocking cell polarization. These effects are mainly mediated by an inhibitory role of DAPK in talin head domain association with integrin, thereby suppressing the integrin–Cdc42 polarity pathway. We present evidence indicating that the antimigratory effect of DAPK represents a mechanism through which DAPK suppresses tumors. First, DAPK can block migration and invasion in certain tumor cells that are resistant to DAPK-induced apoptosis. Second, using an adenocarcinoma cell line and its highly invasive derivative, we demonstrate DAPK level as a determining factor in tumor invasiveness. Collectively, our study identifies a novel function of DAPK in regulating cell polarity during migration, which may act together with its apoptotic function to suppress tumor progression.
Collapse
Affiliation(s)
- Jean-Cheng Kuo
- Institute of Molecular Medicine, National Taiwan University Hospital, National Taiwan University, Taipei 106, Taiwan
| | | | | | | | | |
Collapse
|