1
|
Hennessey M, Alarcon P, Samanta I, Fournié G, Paleja H, Papaiyan K, Gautham M. Formulating antibiotic policy: Analysis of India's ban on colistin use in food producing animals. Prev Vet Med 2025; 240:106534. [PMID: 40273740 DOI: 10.1016/j.prevetmed.2025.106534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/07/2025] [Accepted: 04/12/2025] [Indexed: 04/26/2025]
Abstract
Antibiotics remain key tools for maintaining human health, and in many settings, food production. However, emergence of antibiotic resistance has become a global challenge, one that has resulted in multi-national calls for policy to improve antibiotic use. One such call has been to restrict the use of antibiotics deemed critically important for human health, such as colistin, during the production of food producing animals. Between 2016 and 2019 numerous countries, including India, implemented policies to heavily restricted the use of colistin in livestock. While this represents a key shift in the antibiotic policy landscape, other classes of critically important antibiotics continue to be used during food production. This paper provides a policy analysis of India's 2019 colistin ban to provide insight into how this came to be and to identify factors which could shape the development of future legislation. The analysis revealed that while antibiotic reform in food production had been in the background of India's policy agenda for some time, it took key-focusing events to shift the policy climate into a period of action. These focusing events included reporting of mobile colistin resistance genes in bacteria isolated from pigs in China and colistin resistant bacteria isolated from food samples in India. Consistent narratives had been built around colistin's role as a last resort antibiotic which, together with relatively low proportion of colistin resistance in bacteria isolated from human patients, framed legislation as a worthwhile endeavour for policy makers. In addition, India acted as a global player in antibiotic stewardship and followed the precedent set by several other countries in restricting colistin use during food production. As most colistin for animal use was imported into India from China, and viable alternative animal treatments existed, there was limited industry opposition that could block legislation. We suggest evaluation of these five critical factors (focusing events, consistent narratives, worthwhile endeavour, precedent for change, and industry opposition) should be part of the policy formulation process for legislation regarding the use of other critically important antibiotics in food production.
Collapse
Affiliation(s)
- Mathew Hennessey
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, WOAH Collaborating Centre in Risk Analysis and Modelling, Royal Veterinary College, London, UK.
| | - Pablo Alarcon
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, WOAH Collaborating Centre in Risk Analysis and Modelling, Royal Veterinary College, London, UK
| | - Indranil Samanta
- Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Guillaume Fournié
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, WOAH Collaborating Centre in Risk Analysis and Modelling, Royal Veterinary College, London, UK; Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, Marcy l'Etoile, France; Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, Saint Genes Champanelle, France
| | - Haidaruliman Paleja
- Department of Veterinary Biotechnology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Anand, India
| | - Kumaravel Papaiyan
- Dean, Veterinary College and Research Institute, Udumalpet, TANUVAS, India
| | - Meenakshi Gautham
- Department of Global Health and Development, Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
2
|
Yang Y, Sun Y, Zhou Z, Song Y, Zhu Y, Zhou W, Yue M, Zhao G, Jiang H, Tang B. Surveillance of Escherichia coli antimicrobial resistance in pig farms in Zhejiang province, China: High prevalence of multidrug resistance and risk-associated genes. Microb Pathog 2025; 204:107598. [PMID: 40250499 DOI: 10.1016/j.micpath.2025.107598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
OBJECTIVES The global rise in antimicrobial resistance (AMR) poses a critical threat to public health, with the overuse of antibiotics in livestock being a key driver of this escalating problem. However, research on livestock-associated AMR remains limited, with few systematic monitoring efforts. This study addresses this gap by presenting findings from our surveillance of Escherichia coli resistance in pig farms in Zhejiang Province, China. METHODS The minimum inhibitory concentrations were determined via broth microdilution-based antimicrobial susceptibility testing. The complete genome sequence was acquired using both Illumina NovaSeq 6000 platforms. In the plasmid conjugation experiment, sodium azide-resistant E. coli strain J53 served as the recipient. The E. coli genomes were analyzed for AMR genes, multi-locus sequence typing (MLST) types, plasmid types, and virulence genes using the ABRicate. RESULTS A total of 51 E. coli strains from 90 fecal samples collected across six farms. Resistance rates for amoxicillin/clavulanic acid and sulfamethoxazole exceeded 90 %, while resistance to ampicillin, florfenicol, tetracycline, and trimethoprim/sulfamethoxazole was above 80 %. The prevalence of multidrug-resistant strains was 89.24 %. Whole-genome sequencing revealed 58 acquired AMR genes and 17 virulence-associated genes, notably including the astA gene. Two strains exhibited meropenem resistance and carried blaNDM-5, located on IncI1-I plasmids. These strains shared an identical genetic context, characterized by an "IS26-IS30-blaNDM-5-bleMBL-dsdD-IS91″ structure, which may promote horizontal gene transfer of blaNDM-5. Additionally, six strains harbored the tet(X4) gene. CONCLUSIONS Despite ongoing antibiotic reduction efforts, the high prevalence of resistant E. coli in pigs underscores the urgent need for sustained surveillance of AMR in animal populations to mitigate the threat of resistance.
Collapse
Affiliation(s)
- Yue Yang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, Hangzhou, China
| | - Yuhan Sun
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, Hangzhou, China
| | - Zhijin Zhou
- Zhejiang Provincial Center for Animal Disease Prevention and Control, Hangzhou, China
| | - Yu Song
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, Hangzhou, China; University of Chinese Academy of Sciences, China
| | - Yujie Zhu
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai, China
| | - Wei Zhou
- Zhejiang Provincial Center for Animal Disease Prevention and Control, Hangzhou, China
| | - Min Yue
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, Hangzhou, China; University of Chinese Academy of Sciences, China
| | - Guoping Zhao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, Hangzhou, China; University of Chinese Academy of Sciences, China
| | - Han Jiang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang, China.
| | - Biao Tang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
3
|
Yu B, Zhao Y, Jiang L, Zhou J, Xu H, Lei L, Xu L, Wang X, Bu S. Network pharmacology and experimental validation of Compound Kushen Powder for the treatment of diarrhea in vivo. Vet Anim Sci 2025; 28:100443. [PMID: 40206406 PMCID: PMC11979447 DOI: 10.1016/j.vas.2025.100443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
To explore the mechanism of sophora flavescens, cortex fraxini, and pomegranate peel complex powder (Compound Kushen Powder) in the treatment of animal diarrhea, a network pharmacology approach leveraging databases like TCMSP and SwissTarget was applied in this study. Molecular docking was executed between the primary constituents and pivotal targets, enabling an additional refinement of main targets and key medications. Subsequently, a rat diarrhea model induced by folium sennae leaves was established for in vivo validation. The rats were divided into four groups: negative control group, positive control group, positive drug treatment group, and Compound Kushen Powder treatment group. Key protein targets, such as Caspase-3, IL-1β, IL-10, MMP9, STAT3, TNF, TP53, and VEGFA, essential for mitigating diarrhea in response to the composite medication were found through network pharmacology. Additionally, the results of molecular docking analysis unveiled fundamental constituents of Compound Kushen Powder, namely beta-sitosterol, ursolic acid, formononetin, and matrine, which demonstrated significant binding affinities with those identified key protein targets. The results of mRNA and protein expression analyses of rat colonic tissue validated the in vivo alterations of core genes identified through network screening. Except for IL-10 and STAT3, the expression of all targets exhibited noteworthy reductions when compared to the positive control group (P < 0.05). These results demonstrated that Compound Kushen Powder can inhibit inflammation and regulate cell apoptosis by modulating signaling pathways such as IL-17, TNF-α, MAPK, and NF-κB. Collectively, this study sheds light on the traditional application of complex powder for the prevention and treatment of diarrhea.
Collapse
Affiliation(s)
- Bo Yu
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yuanfeng Zhao
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China
| | - Lingling Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China
| | - Jingrui Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China
| | - Haoxiang Xu
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China
| | - Lu Lei
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China
| | - Longxin Xu
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China
| | - Xin Wang
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China
| | - Shijin Bu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
4
|
Zhang XW, Huang XY, Zhou ZY, Li BL, Lu JH, Song JJ, Li XY. Genetic framework and evolutionary dynamics of mcr-positive Klebsiella pneumoniae from 2000 to 2023. Int J Antimicrob Agents 2025:107533. [PMID: 40345343 DOI: 10.1016/j.ijantimicag.2025.107533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/04/2025] [Accepted: 05/01/2025] [Indexed: 05/11/2025]
Abstract
The international transmission of the colistin resistance gene mcr in Enterobacteriaceae poses significant public health burdens, while the understanding of the population structure and evolutionary history of mcr-positive Klebsiella pneumoniae worldwide remains unclear. Here, we conducted a genomic analysis on 463 sequences of K. pneumoniae harboring mcr genes from public database between 2000 and 2023. A total of 6 mcr variants (mcr-1, -2, -3, -8 to -10) were detected, with mcr-9 (36.1%), mcr-1 (33.7%) and mcr-8 (29.2%) genes being the most common. 43.4% of total isolates (201/463) carried carbapenemase genes (blaNDM, blaKPC, blaIMP, blaOXA-48/181/232, blaVIM and blaGES) and 15.3% of isolates (71/463) contained hypervirulent genes (iucA or iroB). Correlation analysis indicated mcr-1/8/9 genes were positively correlated with specific genomic elements that were rarely described, including mcr-1 with iucABC and iutA; mcr-8 with oqxB; mcr-9 with dfrA19, ISEsa and repA (R absolute value > 0.3, p<0.01). The population of K. pneumoniae can be classified into 6 clusters, some isolates co-harboring mcr and carbapenemase genes exhibited high level of genetic similarity and dispersed in several countries, indicating the possibility of clonal transmission. mcr-9 gene was introduced into K. pneumoniae in 1978 before the time of mcr-1 gene in 1988 and mcr-8 gene in 1993. We found mcr-1/8/9 genes in K. pneumoniae evolved high-risk lineages in specific geographical location (China, Thailand and the United Kingdom) that most isolates typically contained iucA, blaNDM or blaKPC. This study highlighted that continuous surveillance for the evolution of mcr-positive K. pneumoniae harboring iucA or carbapenemase genes is essential.
Collapse
Affiliation(s)
- Xi-Wei Zhang
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Xi-Yi Huang
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China; Department of Clinical Laboratory, Lecong Hospital of Shunde, Foshan, Guangdong, P.R. China
| | - Zhuo-Yang Zhou
- Department of Clinical Laboratory, Lecong Hospital of Shunde, Foshan, Guangdong, P.R. China
| | - Bo-Lin Li
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Jie-Hong Lu
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Jing-Jie Song
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - Xiao-Yan Li
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China.
| |
Collapse
|
5
|
Thanh Hoang HT, Yamamoto M, Calvopina M, Bastidas-Caldes C, Khong DT, Nguyen TN, Yamamoto Y. Ban of colistin livestock feed supplementation decreased the prevalence of colistin-resistant Escherichia coli in Ecuador. J Infect Chemother 2025; 31:102682. [PMID: 40113139 DOI: 10.1016/j.jiac.2025.102682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/09/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
OBJECTIVES In 2019, Ecuador implemented a ban on colistin feed supplementation owing to the increasing prevalence of colistin-resistant bacteria; however, the impact of this ban remains unclear. METHODS In this study, we aimed to elucidate the effects of the 2019 colistin ban by comparing the prevalence of colistin-resistant Escherichia coli in Ecuador with that in Vietnam, where colistin use is still permitted. We isolated colistin-resistant E. coli from the fecal samples of residents and detected mobile colistin resistance (mcr) genes in both the fecal samples and isolates. RESULTS Prevalence of colistin-resistant E. coli significantly decreased from 80.6 % in 2019 (n = 139) to 4.7 % in 2022 (n = 106) in Ecuador. Meanwhile, colistin-resistant E. coli prevalence only decreased from 84.7 % in 2017 (n = 98) to 62 % in 2024 (n = 50) in Vietnam. Notably, 96.8 % of the colistin-resistant E. coli isolates in Vietnam carried the mcr genes in 2024, whereas only 4.7 % of the isolates in Ecuadorian fecal samples harbored these genes in 2023. CONCLUSIONS Overall, our findings highlight the significant impact of colistin use regulations on the decreased prevalence of colistin-resistant E. coli among Ecuadorian residents.
Collapse
Affiliation(s)
- Hoa Thi Thanh Hoang
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Mayumi Yamamoto
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan; Health Administration Center, Gifu University, Gifu, Japan
| | - Manuel Calvopina
- One Health Research Group, Universidad De Las Americas, Quito, Ecuador
| | | | - Diep Thi Khong
- Center for Medical and Pharmaceutical Research and Service, Thai Binh University of Medicine and Pharmacy, Thai Binh, Viet Nam
| | - Thang Nam Nguyen
- Center for Medical and Pharmaceutical Research and Service, Thai Binh University of Medicine and Pharmacy, Thai Binh, Viet Nam
| | - Yoshimasa Yamamoto
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan.
| |
Collapse
|
6
|
Lin J, Ni S, Li B, Guo Y, Gao X, Liu Y, Yi L, Wang P, Chen R, Yao J, Wood T, Wang X. A noncanonical intrinsic terminator in the HicAB toxin-antitoxin operon promotes the transmission of conjugative antibiotic resistance plasmids. Nucleic Acids Res 2025; 53:gkaf125. [PMID: 40036506 PMCID: PMC11878559 DOI: 10.1093/nar/gkaf125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/24/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
Conjugative plasmids, major vehicles for the spread of antibiotic resistance genes, often contain multiple toxin-antitoxin (TA) systems. However, the physiological functions of TA systems remain obscure. By studying two TA families commonly found on colistin-resistant IncI2 mcr-1-bearing plasmids, we discovered that the HicAB TA, rather than the StbDE TA, acts as a crucial addiction module to increase horizontal plasmid-plasmid competition. In contrast to the canonical type II TA systems in which the TA genes are cotranscribed and/or the antitoxin gene has an additional promoter to allow for an increased antitoxin/toxin ratio, the HicAB TA system with the toxin gene preceding the antitoxin gene employs internal transcription termination to allow for a higher toxin production. This intrinsic terminator, featuring a G/C-rich hairpin with a UUU tract, lies upstream of the antitoxin gene, introducing a unique mechanism for the enhancing toxin/antitoxin ratio. Critically, the hicAB TA significantly contributes to plasmid competition and plasmid persistence in the absence of antibiotic selection, and deleting this intrinsic terminator alone diminishes this function. These findings align with the observed high occurrence of hicAB in IncI2 plasmids and the persistence of these plasmids after banning colistin as a feed additive. This study reveals how reprogramming the regulatory circuits of TA operons impacts plasmid occupancy in the microbial community and provides critical targets for combating antibiotic resistance.
Collapse
Affiliation(s)
- Jianzhong Lin
- Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songwei Ni
- Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Baiyuan Li
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199 Hunan, China
| | - Yunxue Guo
- Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Xinyu Gao
- Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yabo Liu
- Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Lingxian Yi
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pengxia Wang
- Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Ran Chen
- Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Jianyun Yao
- Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802-4400, United States
| | - Xiaoxue Wang
- Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| |
Collapse
|
7
|
Zhang Q. Structural insights into the advancements of mobile colistin resistance enzymes. Microbiol Res 2025; 291:127983. [PMID: 39612773 DOI: 10.1016/j.micres.2024.127983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/17/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024]
Abstract
The plasmid-encoded mobile colistin resistance enzyme (MCR) is challenging the clinical efficacy of colistin as a last-resort antibiotic against multidrug-resistant bacteria. This transferase catalyzes the addition of positively charged phosphoethanolamine to lipid A, and its catalytic domain in the periplasm has been elucidated. To date, there are many works on the catalytic domain and function of this enzyme class. However, the roles of unreported soluble or inter-membrane domains remain undefined, which might cause an inaccurate or even incorrect understanding of substrate recognition and binding. In this review, MCR-1 is first compared and analyzed from the perspective of the full-length alpha-fold MCR-1. Specifically, some disputed issues, especially in its architecture and catalytic mechanism are discussed independently. Meanwhile, the structure-based insights into MCRs variants, their evolutions, and the balance between colistin-resistance and survival costs, are also critically analyzed. Importantly, by comparing it with the full-length MCR-1, several potential pockets for drug design have been re-identified. Finally, recent advancements in inhibitors targeting MCR-1 are also in-depth summarized. These details offer a new perspective on MCRs and serve as a valuable foundation for drug development.
Collapse
Affiliation(s)
- Qi Zhang
- Centre for Eye and Vision Research, Hong Kong Science Park, Hong Kong.
| |
Collapse
|
8
|
Shao D, Ju X, Wu Y, Zhang Y, Yan Z, Li Y, Wang L, Parkhill J, Walsh TR, Wu C, Shen J, Wang Y, Zhang R, Shen Y. Quaternary Ammonium Compounds: A New Driver and Hidden Threat for mcr-1 Prevalence in Hospital Wastewater and Human Feces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1565-1576. [PMID: 39818750 DOI: 10.1021/acs.est.4c11368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The emergence of mobile colistin resistance gene mcr-1 has attracted global attention. The prevalence of mcr-1-positive Escherichia coli (MCRPEC) in humans largely decreased following the ban of colistin as an animal growth promoter in China. However, the prevalence of MCRPEC in the hospital environment and the relationship between disinfectants and mcr-1 remain unclear. We found that MCRPEC prevalence was low in the feces of healthy humans attending physical examinations in six hospitals (4.6%, 71/1532) but high in hospital wastewater (50.0%, 27/54). mcr-1 was mainly located on IncI2 (63.0% in wastewater and 62.0% in feces) and IncHI2 plasmids (18.5% in wastewater and 21.1% in feces). High similarity of the mcr-1 context and its carrying plasmids was observed in human and wastewater MCRPEC, with several isolates clustering together. The coexistence of the ESBL gene blaCTX-M with mcr-1 occurred in 19.7% of IncI2 plasmids. Notably, 60.0% of IncHI2 plasmids exhibited co-occurrence of mcr-1 with the disinfectant resistance gene (DRG) qacEΔ1, conferring resistance to quaternary ammonium compounds (QACs). We revealed that QACs, rather than the other two types of disinfectants─ortho-phthalaldehyde (OPA) and povidone-iodine (PVP-I)─select for plasmids carrying both qacEΔ1 and mcr-1 and elevate their conjugative transfer frequency. Monitoring of DRGs in MCRPEC and managing disinfectant use are urgently needed in healthcare settings to mitigate the spread of colistin resistance from hospital environments to inpatients.
Collapse
Affiliation(s)
- Dongyan Shao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoyang Ju
- The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou 310009, China
| | - Yuchen Wu
- The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou 310009, China
| | - Yanyan Zhang
- The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou 310009, China
| | - Zelin Yan
- The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou 310009, China
| | - Yifei Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lu Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, U.K
| | - Timothy R Walsh
- Department of Biology, University of Oxford, Oxford OX1 3SZ, U.K
| | - Congming Wu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yang Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Rong Zhang
- The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou 310009, China
| | - Yingbo Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Feng J, Jia M, Zhuang Y, Xu Z, Chen Y, Fei J, Xia J, Hong L, Zhang J, Wu H, Chen X, Chen M. Prevalence, transmission and genomic epidemiology of mcr-1-positive colistin-resistant Escherichia coli strains isolated from international airplane waste, local resident fecal and wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177556. [PMID: 39547379 DOI: 10.1016/j.scitotenv.2024.177556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
The emergence and dissemination of mcr-1-positive Escherichia coli (MCRPEC) represent a critical public health threat. Here, we conducted a prospective analysis of MCRPEC isolates from wastewater treatment plants (WWTPs), local residents' fecal (LRF), and international airplane waste (IAW) to investigate their genetic characteristics and transmission patterns circulating in human-environment domains. The MCRPEC prevalence was 2.43 % in WWTPs, 1.37 % in IAW and 0.69 % in LRF. MCRPEC showed substantial genetic diversity, encompassing 61 sequence types (primarily ST1011, ST101, and ST2705), 7 plasmid types (primarily IncI2), 8 phylogroups (primarily A and B1), 9 mcr-1-flanked lineages (primarily L5), 6 clusters (primarily C2 and C4), diverse serotypes, and 61.95 % transposon-containing strains. The mcr-1 gene co-existed with 46 antibiotic resistance genes (ARGs) and 19 virulence factor genes (VFGs). Notably, 6 IncI2 plasmids carried the blaCTX-M, IS1380, and mcr-1 genes. MCRPEC from WWTPs harbored a greater number of ARGs (56.95 ± 5.99) but fewer VFGs (15.03 ± 6.40) compared to those from human-associated sources (LRF and IAW). ST1011, ST2705, IncHI2, and L7 were prevalent in WWTP-derived MCRPEC, whereas IncX4 and L3 were more common in human-derived MCRPEC. Genetic features such as ST101, ST48, IncI2, L4, L5, C2, and C4 were simultaneously present in strains from LRF, IAW, and WWTPs. Core genetic analyses also showed genetically similar MCRPEC strains across various geographic locations. The findings underscore the extensive dissemination, strong environmental adaptation, and clonal transmission of MCRPEC across diverse reservoirs, reinforcing the urgent need for coordinated multisectoral surveillance of human and environment interfaces to effectively mitigate further transmission.
Collapse
Affiliation(s)
- Jun Feng
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China.
| | - Min Jia
- Hongkou District Center for Disease Control and Prevention, Shanghai, China
| | - Yuan Zhuang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Zhen Xu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Yong Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Jiayi Fei
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Jiahui Xia
- Hongkou District Center for Disease Control and Prevention, Shanghai, China
| | - Liang Hong
- Hongkou District Center for Disease Control and Prevention, Shanghai, China
| | - Jing Zhang
- Hongkou District Center for Disease Control and Prevention, Shanghai, China
| | - Huanyu Wu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Xin Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Min Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China.
| |
Collapse
|
10
|
Xiang G, Zhao Z, Zhang S, Cai Y, He Y, Zeng J, Chen C, Huang B. Porin deficiency or plasmid copy number increase mediated carbapenem-resistant Escherichia coli resistance evolution. Emerg Microbes Infect 2024; 13:2352432. [PMID: 38712634 PMCID: PMC11107853 DOI: 10.1080/22221751.2024.2352432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
This study investigated resistance evolution mechanisms of conjugated plasmids and bacterial hosts under different concentrations of antibiotic pressure. Ancestral strain ECNX52 was constructed by introducing the blaNDM-5-carrying IncX3 plasmid into E. coli C600, and was subjected to laboratory evolution under different concentrations of meropenem pressure. Minimal inhibitory concentrations and conjugation frequency were determined. Fitness of these strains was assessed. Whole genome sequencing and transcriptional changes were performed. Ancestral host or plasmids were recombined with evolved hosts or plasmids to verify plasmid or host factors in resistance evolution. Role of the repA mutation on plasmid copy number was determined. Two out of the four clones (EM2N1 and EM2N3) exhibited four-fold increase in MIC when exposed to a continuous pressure of 2 μg/mL MEM (1/32 MIC), by down regulating expression of outer membrane protein ompF. Besides, all four clones displayed four-fold increase in MIC and higher conjugation frequency when subjected to a continuous pressure of 4 μg/mL MEM (1/16 MIC), attributing to increasing plasmid copy number generated by repA D140Y (GAT→TAT) mutation. Bacterial hosts and conjugative plasmids can undergo resistance evolution under certain concentrations of antimicrobial pressure by reducing the expression of outer membrane proteins or increasing plasmid copy numbers.
Collapse
Affiliation(s)
- Guoxiu Xiang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Zhiwei Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shebin Zhang
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yimei Cai
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yuting He
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jianming Zeng
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, People’s Republic of China
| | - Cha Chen
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, People’s Republic of China
| | - Bin Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
11
|
Zhang Q. Bacteria carrying mobile colistin resistance genes and their control measures, an updated review. Arch Microbiol 2024; 206:462. [PMID: 39516398 DOI: 10.1007/s00203-024-04188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The plasmid encoded mobile colistin resistance (MCRs) enzyme poses a significant challenge to the clinical efficacy of colistin, which is frequently employed as a last resort antibiotic for treating infections caused by multidrug resistant bacteria. This transferase catalyzes the addition of positively charged phosphoethanolamine to lipid A of the outer membrane of gram-negative bacteria, thereby facilitating the acquired colistin resistance. This review aims to summarize and critically discuss recent advancements in the distribution and pathogenesis of mcr-positive bacteria, as well as the various control measures available for treating these infections. In addition, the ecology of mcr genes, colistin-resistance mechanism, co-existence with other antibiotic resistant genes, and their impact on clinical treatment are also analyzed to address the colistin resistance crisis. These insights provide a comprehensive perspective on MCRs and serve as a valuable reference for future therapeutic approaches to effectively combat mcr-positive bacterial infections.
Collapse
Affiliation(s)
- Qi Zhang
- Centre for Eye and Vision Research, Hong Kong Science Park, Hong Kong, China.
| |
Collapse
|
12
|
Li Q, Yang J, Wang M, Jia R, Chen S, Liu M, Zhu D, Zhao X, Wu Y, Yang Q, Huang J, Ou X, Sun D, Tian B, He Y, Wu Z, Cheng A, Zhang S. Global distribution and genomic characteristics analysis of avian-derived mcr-1-positive Escherichia coli. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117109. [PMID: 39353372 DOI: 10.1016/j.ecoenv.2024.117109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
The prevalence of avian-derived Escherichia coli (E. coli) carrying mcr-1 poses a significant threat to the development of the poultry industry and public health safety. Despite ongoing in-depth epidemiological research worldwide, a comprehensive macroscopic study based on genomics is still lacking. In response, this study collected 1104 genomic sequences of avian-derived mcr-1-positive E. coli (MCRPEC) from the NCBI public database, covering 31 countries. The majority of sequences originated from China (48.82 %), followed by the Netherlands (10.41 %). In terms of avian hosts, chicken accounted for the largest proportion (44.11 %), followed by gallus (24.09 %). Avian-derived MCRPEC also serves as a reservoir for other antibiotic resistance genes (ARGs), with 179 ARGs coexisting with mcr-1 identified. A total of 206 virulence-associated genes were also identified, revealing the pathogenic risks of MCRPEC. Pan-genome analysis revealed that avian-derived MCRPEC from different hosts, countries of origin, and serotypes exhibit minor SNP differences, indicating a high risk of cross-regional and cross-host transmission. The ST types of MCRPRC are diverse, with ST10 being the most prevalent (n=70). Spearman analysis showed a significant correlation between the number of ARGs and the insertion sequences (ISs) as well as plasmid replicon in ST10 strains. Furthermore, ST10 strains share a similar genetic basis with human-derived MCRPEC, suggesting the possibility of clonal dissemination. Pan-genome-wide association studies (pan-GWAS) indicated that the differential genes of MCRPEC from different countries and host sources are significantly different, mainly related to genes encoding type IV secretion systems and mobile genetic elements (MGEs). Plasmid mapping of showed that the prevalent plasmid types vary by country and host, with IncI2 and IncX4 being the main mcr-1-positive plasmids. Among the 12 identified mcr-1 genetic contexts with ISs, the Tn6330 transposon was the predominant carrier of mcr-1. In summary, the potential threat of avian-derived MCRPEC cannot be ignored, and long-term and comprehensive monitoring are essential.
Collapse
Affiliation(s)
- Qianlong Li
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jing Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R.China, PR China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R.China, PR China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R.China, PR China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R.China, PR China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R.China, PR China
| | - Xinxin Zhao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R.China, PR China
| | - Ying Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R.China, PR China
| | - Qiao Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R.China, PR China
| | - Juan Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R.China, PR China
| | - Xumin Ou
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R.China, PR China
| | - Di Sun
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R.China, PR China
| | - Bin Tian
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R.China, PR China
| | - Yu He
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R.China, PR China
| | - Zhen Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R.China, PR China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R.China, PR China.
| | - Shaqiu Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R.China, PR China.
| |
Collapse
|
13
|
Wang Q, Wang W, Zhu Q, Shoaib M, Chengye W, Zhu Z, Wei X, Bai Y, Zhang J. The prevalent dynamic and genetic characterization of mcr-1 encoding multidrug resistant Escherichia coli strains recovered from poultry in Hebei, China. J Glob Antimicrob Resist 2024; 38:354-362. [PMID: 38795771 DOI: 10.1016/j.jgar.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/03/2024] [Accepted: 04/02/2024] [Indexed: 05/28/2024] Open
Abstract
OBJECTIVES Colistin is known as the last resort antibiotic to treat the infections caused by multidrug resistant foodborne pathogens. The emergence and widespread dissemination of plasmid-mediated colistin resistance gene mcr-1 in the Escherichia coli (E. coli) incurs potential threat to public health. Here, we investigated the epidemiology, transmission dynamics, and genetic characterization of mcr-1 harbouring E. coli isolates from poultry originated in Hebei Province, China. METHODS A total of 297 faecal samples were collected from the two large poultry farms in Hebei Province, China. The samples were processed for E. coli identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry and 16S rDNA sequencing. Then, the mcr-1 gene harbouring E. coli strains were identified by polymerase chain reaction and subjected to antimicrobial susceptibility testing by broth microdilution assay. The genomic characterization of the isolates was done by whole genome sequencing using the various bioinformatics tools, and multi-locus sequence typing was done by sequence analysis of the seven housekeeping genes. The conjugation experiment was done to check the transferability of mcr-1 along with the plasmid stability testing. RESULTS A total of six mcr-1 E. coli isolates with minimum inhibitory concentration of 4 μg/mL were identified from 297 samples (2.02%). The mcr-1 harbouring E. coli were identified as multidrug resistant and belonged to ST101 (n = 4) and ST410 (n = 2). The genetic environment of mcr-1 presented its position on IncHI2 plasmid in 4 isolates and p0111 in 2 isolates, which is a rarely reported plasmid type for mcr-1. Moreover, both type of plasmids was transferable to recipient J53, and mcr-1 was flanked by 3 mobile elements ISApl1, Tn3, and IS26 forming a novel backbone Tn3-IS26-mcr-1- pap2-ISApl1 on the p0111 plasmid. The phylogenetic analysis shared a common lineage with mcr-1 harbouring isolates from the environment, humans, and animals, which indicate its horizontal spread among the diverse sources, species, and hosts. CONCLUSION This study recommends the one health approach for future surveillance across multiple sources and bacterial species to adopt relevant measures and reduce global resistance crises.
Collapse
Affiliation(s)
- Qing Wang
- College of Veterinary Medicine, Gansu Agricultural University, Anning District, Lanzhou, Gansu Province, PR China; Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, PR China; Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, PR China; Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, PR China
| | - Weiwei Wang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, PR China; Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, PR China; Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, PR China
| | - Qiqi Zhu
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, PR China; Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, PR China; Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, PR China; College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei Province, PR China
| | - Muhammad Shoaib
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, PR China; Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, PR China; Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, PR China
| | - Wang Chengye
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, PR China; Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, PR China; Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, PR China; College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei Province, PR China
| | - Zhen Zhu
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, PR China; Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, PR China; Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, PR China; College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei Province, PR China
| | - Xiaojuan Wei
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, PR China; Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, PR China; Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, PR China
| | - Yubin Bai
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, PR China; Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, PR China; Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, PR China
| | - Jiyu Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Anning District, Lanzhou, Gansu Province, PR China; Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, PR China; Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, PR China; Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, PR China.
| |
Collapse
|
14
|
Garcias B, Flores MA, Fernández M, Monteith W, Pascoe B, Sheppard SK, Martín M, Cortey M, Darwich L. Global Variation in Escherichia coli mcr-1 Genes and Plasmids from Animal and Human Genomes Following Colistin Usage Restrictions in Livestock. Antibiotics (Basel) 2024; 13:759. [PMID: 39200059 PMCID: PMC11350921 DOI: 10.3390/antibiotics13080759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 09/01/2024] Open
Abstract
Antimicrobial resistance (AMR) is a significant global health threat, with multidrug-resistant (MDR) bacterial clones becoming a major concern. Polymyxins, especially colistin, have reemerged as last-resort treatments for MDR Gram-negative infections. However, colistin use in livestock has spread mobile colistin resistance (mcr) genes, notably mcr-1, impacting human health. In consequence, its livestock use was banned in 2017, originating a natural experiment to study bacterial adaptation. The aim of this work was to analyse the changes in the mcr-1 genetic background after colistin restriction across the world. This study analyses 3163 Escherichia coli genomes with the mcr-1 gene from human and livestock hosts, mainly from Asia (n = 2621) and Europe (n = 359). Genetic characterisation identifies IncI2 (40.4%), IncX4 (26.7%), and multidrug-resistant IncHI2 (18.8%) as the most common plasmids carrying mcr-1. There were differences in plasmids between continents, with IncX4 (56.6%) being the most common in Europe, while IncI2 (44.8%) was predominant in Asia. Promoter variants related to reduced fitness costs and ISApl1 showed a distinct pattern of association that appears to be associated with adaptation to colistin restriction, which differed between continents. Thus, after the colistin ban, Europe saw a shift to specialised mcr-1 plasmids as IncX4, while ISApl1 decreased in Asia due to changes in the prevalence of the distinct promoter variants. These analyses illustrate the evolution of mcr-1 adaptation following colistin use restrictions and the need for region-specific strategies against AMR following colistin restrictions.
Collapse
Affiliation(s)
- Biel Garcias
- Department Sanitat i Anatomia Animals, Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain
| | - Mayra Alejandra Flores
- Department Sanitat i Anatomia Animals, Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain
| | - Mercedes Fernández
- Department Sanitat i Anatomia Animals, Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain
| | - William Monteith
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Ben Pascoe
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Samuel K. Sheppard
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Marga Martín
- Department Sanitat i Anatomia Animals, Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain
| | - Martí Cortey
- Department Sanitat i Anatomia Animals, Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain
| | - Laila Darwich
- Department Sanitat i Anatomia Animals, Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
15
|
Liu JH, Liu YY, Shen YB, Yang J, Walsh TR, Wang Y, Shen J. Plasmid-mediated colistin-resistance genes: mcr. Trends Microbiol 2024; 32:365-378. [PMID: 38008597 DOI: 10.1016/j.tim.2023.10.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 11/28/2023]
Abstract
Colistin is regarded as a last-line drug against serious infections caused by multidrug-resistant Gram-negative bacterial pathogens. Therefore, the emergence of mobile colistin resistance (mcr) genes has attracted global concern and led to policy changes for the use of colistin in food animals across many countries. Currently, the distribution, function, mechanism of action, transmission vehicles, origin of mcr, and new treatment strategies against MCR-producing pathogens have been extensively studied. Here we review the prevalence, structure and function of mcr, the fitness cost and persistence of mcr-carrying plasmids, the impact of MCR on host immune response, as well as the control strategies to combat mcr-mediated colistin resistance.
Collapse
Affiliation(s)
- Jian-Hua Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China.
| | - Yi-Yun Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
| | - Ying-Bo Shen
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jun Yang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
| | | | - Yang Wang
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
16
|
Ghazawi A, Strepis N, Anes F, Yaaqeib D, Ahmed A, AlHosani A, AlShehhi M, Manzoor A, Habib I, Wani NA, Hays JP, Khan M. First Report of Colistin-Resistant Escherichia coli Carrying mcr-1 IncI2(delta) and IncX4 Plasmids from Camels ( Camelus dromedarius) in the Gulf Region. Antibiotics (Basel) 2024; 13:227. [PMID: 38534662 DOI: 10.3390/antibiotics13030227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
Addressing the emergence of antimicrobial resistance (AMR) poses a significant challenge in veterinary and public health. In this study, we focused on determining the presence, phenotypic background, and genetic epidemiology of plasmid-mediated colistin resistance (mcr) in Escherichia coli bacteria isolated from camels farmed in the United Arab Emirates (UAE). Fecal samples were collected from 50 camels at a Dubai-based farm in the UAE and colistin-resistant Gram-negative bacilli were isolated using selective culture. Subsequently, a multiplex PCR targeting a range of mcr-genes, plasmid profiling, and whole-genome sequencing (WGS) were conducted. Eleven of fifty camel fecal samples (22%) yielded colonies positive for E. coli isolates carrying the mcr-1 gene on mobile genetic elements. No other mcr-gene variants and no chromosomally located colistin resistance genes were detected. Following plasmid profiling and WGS, nine E. coli isolates from eight camels were selected for in-depth analysis. E. coli sequence types (STs) identified included ST7, ST21, ST24, ST399, ST649, ST999, and STdaa2. Seven IncI2(delta) and two IncX4 plasmids were found to be associated with mcr-1 carriage in these isolates. These findings represent the first identification of mcr-1-carrying plasmids associated with camels in the Gulf region. The presence of mcr-1 in camels from this region was previously unreported and serves as a novel finding in the field of AMR surveillance.
Collapse
Affiliation(s)
- Akela Ghazawi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Nikolaos Strepis
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), P.O. Box 2040 Rotterdam, The Netherlands
| | - Febin Anes
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Dana Yaaqeib
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Amal Ahmed
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Aysha AlHosani
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Mirah AlShehhi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ashrat Manzoor
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ihab Habib
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Nisar A Wani
- Reproductive Biotechnology Center, Dubai P.O. Box 299003, United Arab Emirates
| | - John P Hays
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), P.O. Box 2040 Rotterdam, The Netherlands
| | - Mushtaq Khan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
17
|
Pitt SJ, Gunn A. The One Health Concept. Br J Biomed Sci 2024; 81:12366. [PMID: 38434675 PMCID: PMC10902059 DOI: 10.3389/bjbs.2024.12366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
The concept of One Health has been developed as the appreciation that human health is intricately connected to those of other animals and the environment that they inhabit. In recent years, the COVID-19 pandemic and noticeable effects of climate change have encouraged national and international cooperation to apply One Health strategies to address key issues of health and welfare. The United Nations (UN) Sustainable Development Goals have established targets for health and wellbeing, clean water and sanitation, climate action, as well as sustainability in marine and terrestrial ecosystems. The One Health Quadripartite comprises the World Health Organization (WHO), the World Organization for Animal Health (WOAH-formerly OIE), the United Nations Food and Agriculture Organization (FAO) and the United Nations Environment Programme (UNEP). There are six areas of focus which are Laboratory services, Control of zoonotic diseases, Neglected tropical diseases, Antimicrobial resistance, Food safety and Environmental health. This article discusses the concept of One Health by considering examples of infectious diseases and environmental issues under each of those six headings. Biomedical Scientists, Clinical Scientists and their colleagues working in diagnostic and research laboratories have a key role to play in applying the One Health approach to key areas of healthcare in the 21st Century.
Collapse
Affiliation(s)
- Sarah J. Pitt
- School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| | - Alan Gunn
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
18
|
Chopjitt P, Boueroy P, Morita M, Iida T, Akeda Y, Hamada S, Kerdsin A. Genetic characterization of multidrug-resistant Escherichia coli harboring colistin-resistant gene isolated from food animals in food supply chain. Front Cell Infect Microbiol 2024; 14:1289134. [PMID: 38384304 PMCID: PMC10880773 DOI: 10.3389/fcimb.2024.1289134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/12/2024] [Indexed: 02/23/2024] Open
Abstract
Colistin is widely used for the prophylaxis and treatment of infectious disease in humans and livestock. However, the global food chain may actively promote the dissemination of colistin-resistant bacteria in the world. Mobile colistin-resistant (mcr) genes have spread globally, in both communities and hospitals. This study sought to genomically characterize mcr-mediated colistin resistance in 16 Escherichia coli strains isolated from retail meat samples using whole genome sequencing with short-read and long-read platforms. To assess colistin resistance and the transferability of mcr genes, antimicrobial susceptibility testing and conjugation experiments were conducted. Among the 16 isolates, 11 contained mcr-1, whereas three carried mcr-3 and two contained mcr-1 and mcr-3. All isolates had minimum inhibitory concentration (MIC) for colistin in the range 1-64 μg/mL. Notably, 15 out of the 16 isolates demonstrated successful transfer of mcr genes via conjugation, indicative of their presence on plasmids. In contrast, the KK3 strain did not exhibit such transferability. Replicon types of mcr-1-containing plasmids included IncI2 and IncX4, while IncFIB, IncFII, and IncP1 contained mcr-3. Another single strain carried mcr-1.1 on IncX4 and mcr-3.5 on IncP1. Notably, one isolate contained mcr-1.1 located on a chromosome and carrying mcr-3.1 on the IncFIB plasmid. The chromosomal location of the mcr gene may ensure a steady spread of resistance in the absence of selective pressure. Retail meat products may act as critical reservoirs of plasmid-mediated colistin resistance that has been transmitted to humans.
Collapse
Affiliation(s)
| | - Parichart Boueroy
- Faculty of Public Health, Kasetsart University, Sakon Nakhon, Thailand
| | - Masatomo Morita
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuya Iida
- Japan-Thailand Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sihigeyuki Hamada
- Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University, Sakon Nakhon, Thailand
| |
Collapse
|
19
|
Li J, Song Y, Deng J, Wang Z, Wong NK, Wang C, Zhang G, Wang Y, Lu S, Che J, Zhao X, Zhang Z, Wang H, Zhang L, Zhang Y, Bai X, Yuan M, Chen X, Zhang W, Xiong Y, Kan B, Feng J. Deciphering the pivotal role of people with high-frequency occupational animal exposure in antibiotic resistance transmission between humans and animals. J Antimicrob Chemother 2024; 79:27-35. [PMID: 37944030 DOI: 10.1093/jac/dkad307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 09/19/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND The spread of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) among humans and food-producing animals has been widely reported. However, the transmission routes and associated risk factors remain incompletely understood. METHODS Here, we used commensal Escherichia coli bacteria strains from faeces of pigs and local citizens [HEG: high exposure group (pig breeders, butchers or restaurant chefs) and LEG: low exposure group (other occupations)] to explore the dynamics of ARB and ARG transmission between animals and humans. RESULTS Most ARGs (96%) present in pigs were shared with humans. Carriage rates of the shared ARGs suggest two transmission patterns among pigs, the HEG and LEG: one pattern was highest in pigs, gradually decreasing in the HEG and LEG (e.g. floR and cmlA1); the other pattern was increasing from pigs to the HEG but then decreasing in the LEG (e.g. mcr-1.1). Carriage rates of the HEG were higher than in the LEG in both patterns, implicating the HEG as a crucial medium in transmitting ARB and ARGs between food-producing animals and humans. Moreover, frequent inter/intragroup transmission via strains, plasmids and/or mobile elements was evident. Carriage of mcr-1.1 on human-gut-prevalent plasmids possibly promoted its enrichment in the HEG. CONCLUSIONS The HEG is a crucial factor in transmitting ARB and ARGs between food-producing animals and humans. Rational measures to contain the risks of occupational exposure are urgently needed to keep dissemination of antibiotic resistance in check and safeguard public health.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory for Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yuqin Song
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jianping Deng
- Zi Gong Center for Disease Control and Prevention, Zi Gong, Si Chuan Province 643000, China
| | - Zhaoran Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Nai-Kei Wong
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Chao Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Gang Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Shan Lu
- State Key Laboratory for Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jie Che
- State Key Laboratory for Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiaofei Zhao
- State Key Laboratory for Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - ZhengDong Zhang
- Zi Gong Center for Disease Control and Prevention, Zi Gong, Si Chuan Province 643000, China
| | - Hong Wang
- Zi Gong Center for Disease Control and Prevention, Zi Gong, Si Chuan Province 643000, China
| | - Ling Zhang
- Zi Gong Center for Disease Control and Prevention, Zi Gong, Si Chuan Province 643000, China
| | - YunFei Zhang
- State Key Laboratory for Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xuemei Bai
- State Key Laboratory for Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Min Yuan
- State Key Laboratory for Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xia Chen
- State Key Laboratory for Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Wen Zhang
- State Key Laboratory for Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yanwen Xiong
- State Key Laboratory for Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Biao Kan
- State Key Laboratory for Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Liang L, Zhong LL, Wang L, Zhou D, Li Y, Li J, Chen Y, Liang W, Wei W, Zhang C, Zhao H, Lyu L, Stoesser N, Doi Y, Bai F, Feng S, Tian GB. A new variant of the colistin resistance gene MCR-1 with co-resistance to β-lactam antibiotics reveals a potential novel antimicrobial peptide. PLoS Biol 2023; 21:e3002433. [PMID: 38091366 PMCID: PMC10786390 DOI: 10.1371/journal.pbio.3002433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 01/12/2024] [Accepted: 11/14/2023] [Indexed: 01/13/2024] Open
Abstract
The emerging and global spread of a novel plasmid-mediated colistin resistance gene, mcr-1, threatens human health. Expression of the MCR-1 protein affects bacterial fitness and this cost correlates with lipid A perturbation. However, the exact molecular mechanism remains unclear. Here, we identified the MCR-1 M6 variant carrying two-point mutations that conferred co-resistance to β-lactam antibiotics. Compared to wild-type (WT) MCR-1, this variant caused severe disturbance in lipid A, resulting in up-regulation of L, D-transpeptidases (LDTs) pathway, which explains co-resistance to β-lactams. Moreover, we show that a lipid A loading pocket is localized at the linker domain of MCR-1 where these 2 mutations are located. This pocket governs colistin resistance and bacterial membrane permeability, and the mutated pocket in M6 enhances the binding affinity towards lipid A. Based on this new information, we also designed synthetic peptides derived from M6 that exhibit broad-spectrum antimicrobial activity, exposing a potential vulnerability that could be exploited for future antimicrobial drug design.
Collapse
Affiliation(s)
- Lujie Liang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Lan-Lan Zhong
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Lin Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Dianrong Zhou
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Yaxin Li
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Jiachen Li
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Yong Chen
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Wanfei Liang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Wenjing Wei
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, Guangdong, China
| | - Chenchen Zhang
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, Guangdong, China
| | - Hui Zhao
- Laboratory Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Lingxuan Lyu
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Nicole Stoesser
- Modernising Medical Microbiology, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Yohei Doi
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology, Fujita Health University School of Medicine, Aichi, Japan
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Siyuan Feng
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Guo-Bao Tian
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| |
Collapse
|
21
|
O’Neill L, Manzanilla EG, Ekhlas D, Leonard FC. Antimicrobial Resistance in Commensal Escherichia coli of the Porcine Gastrointestinal Tract. Antibiotics (Basel) 2023; 12:1616. [PMID: 37998818 PMCID: PMC10669415 DOI: 10.3390/antibiotics12111616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Antimicrobial resistance (AMR) in Escherichia coli of animal origin presents a threat to human health. Although animals are not the primary source of human infections, humans may be exposed to AMR E. coli of animal origin and their AMR genes through the food chain, direct contact with animals, and via the environment. For this reason, AMR in E. coli from food producing animals is included in most national and international AMR monitoring programmes and is the subject of a large body of research. As pig farming is one of the largest livestock sectors and the one with the highest antimicrobial use, there is considerable interest in the epidemiology of AMR in E. coli of porcine origin. This literature review presents an overview and appraisal of current knowledge of AMR in commensal E. coli of the porcine gastrointestinal tract with a focus on its evolution during the pig lifecycle and the relationship with antimicrobial use. It also presents an overview of the epidemiology of resistance to extended spectrum cephalosporins, fluoroquinolones, and colistin in pig production. The review highlights the widespread nature of AMR in the porcine commensal E. coli population, especially to the most-used classes in pig farming and discusses the complex interplay between age and antimicrobial use during the pig lifecycle.
Collapse
Affiliation(s)
- Lorcan O’Neill
- Pig Development Department, Teagasc, The Irish Food and Agriculture Authority, Moorepark, Fermoy, Co Cork P61 C996, Ireland; (E.G.M.); (D.E.)
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin D04 V1W8, Ireland;
| | - Edgar García Manzanilla
- Pig Development Department, Teagasc, The Irish Food and Agriculture Authority, Moorepark, Fermoy, Co Cork P61 C996, Ireland; (E.G.M.); (D.E.)
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin D04 V1W8, Ireland;
| | - Daniel Ekhlas
- Pig Development Department, Teagasc, The Irish Food and Agriculture Authority, Moorepark, Fermoy, Co Cork P61 C996, Ireland; (E.G.M.); (D.E.)
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin D04 V1W8, Ireland;
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin D15 DY05, Ireland
| | - Finola C. Leonard
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin D04 V1W8, Ireland;
| |
Collapse
|
22
|
Zhuo W, Zhao Y, Zhao X, Yao Z, Qiu X, Huang Y, Li H, Shen J, Zhu Z, Li T, Li S, Huang Q, Zhou R. Enteropathogenic Escherichia coli is a predominant pathotype in healthy pigs in Hubei Province of China. J Appl Microbiol 2023; 134:lxad260. [PMID: 37962953 DOI: 10.1093/jambio/lxad260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/29/2023] [Accepted: 11/13/2023] [Indexed: 11/16/2023]
Abstract
AIM This study aims to investigate the prevalence of intestinal pathogenic Escherichia coli (InPEC) in healthy pig-related samples and evaluate the potential virulence of the InPEC strains. METHODS AND RESULTS A multiplex PCR method was established to identify different pathotypes of InPEC. A total of 800 rectal swab samples and 296 pork samples were collected from pig farms and slaughterhouses in Hubei province, China. From these samples, a total of 21 InPEC strains were isolated, including 19 enteropathogenic E. coli (EPEC) and 2 shiga toxin-producing E. coli (STEC) strains. By whole-genome sequencing and in silico typing, it was shown that the sequence types and serotypes were diverse among the strains. Antimicrobial susceptibility assays showed that 90.48% of the strains were multi-drug resistant. The virulence of the strains was first evaluated using the Galleria mellonella larvae model, which showed that most of the strains possessed medium to high pathogenicity. A moderately virulent EPEC isolate was further selected to characterize its pathogenicity using a mouse model, which suggested that it could cause significant diarrhea. Bioluminescence imaging (BLI) was then used to investigate the colonization dynamics of this EPEC isolate, which showed that the EPEC strain could colonize the mouse cecum for up to 5 days.
Collapse
Affiliation(s)
- Wenxiao Zhuo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Zhao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xianglin Zhao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiming Yao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuxiu Qiu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaxue Huang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Huaixia Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Shen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhihao Zhu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingting Li
- Hubei Animal Disease Prevention and Control Center, Wuhan 430070, China
| | - Shaowen Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Huang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Cooperative Innovation Center of Sustainable Pig Production, College of Veterinary Medicine, Wuhan 430070, China
- International Research Center for Animal Disease (Ministry of Science & Technology of China), College of Veterinary Medicine, Wuhan 430070, China
| | - Rui Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Cooperative Innovation Center of Sustainable Pig Production, College of Veterinary Medicine, Wuhan 430070, China
- International Research Center for Animal Disease (Ministry of Science & Technology of China), College of Veterinary Medicine, Wuhan 430070, China
- The HZAU-HVSEN Research Institute, Wuhan 430042, China
| |
Collapse
|
23
|
Ogunlana L, Kaur D, Shaw LP, Jangir P, Walsh T, Uphoff S, MacLean RC. Regulatory fine-tuning of mcr-1 increases bacterial fitness and stabilises antibiotic resistance in agricultural settings. THE ISME JOURNAL 2023; 17:2058-2069. [PMID: 37723338 PMCID: PMC10579358 DOI: 10.1038/s41396-023-01509-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 08/18/2023] [Accepted: 09/01/2023] [Indexed: 09/20/2023]
Abstract
Antibiotic resistance tends to carry fitness costs, making it difficult to understand how resistance can be maintained in the absence of continual antibiotic exposure. Here we investigate this problem in the context of mcr-1, a globally disseminated gene that confers resistance to colistin, an agricultural antibiotic that is used as a last resort for the treatment of multi-drug resistant infections. Here we show that regulatory evolution has fine-tuned the expression of mcr-1, allowing E. coli to reduce the fitness cost of mcr-1 while simultaneously increasing colistin resistance. Conjugative plasmids have transferred low-cost/high-resistance mcr-1 alleles across an incredible diversity of E. coli strains, further stabilising mcr-1 at the species level. Regulatory mutations were associated with increased mcr-1 stability in pig farms following a ban on the use of colistin as a growth promoter that decreased colistin consumption by 90%. Our study shows how regulatory evolution and plasmid transfer can combine to stabilise resistance and limit the impact of reducing antibiotic consumption.
Collapse
Affiliation(s)
- Lois Ogunlana
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Divjot Kaur
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Liam P Shaw
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Pramod Jangir
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Timothy Walsh
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
- Ineos Oxford Institute for Antimicrobial Research, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - R C MacLean
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
| |
Collapse
|
24
|
Sismova P, Sukkar I, Kolidentsev N, Palkovicova J, Chytilova I, Bardon J, Dolejska M, Nesporova K. Plasmid-mediated colistin resistance from fresh meat and slaughtered animals in the Czech Republic: nation-wide surveillance 2020-2021. Microbiol Spectr 2023; 11:e0060923. [PMID: 37698419 PMCID: PMC10580956 DOI: 10.1128/spectrum.00609-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/11/2023] [Indexed: 09/13/2023] Open
Abstract
The aim of this study was to determine the occurrence of plasmid-mediated colistin resistance in domestic and imported meat and slaughter animals in the Czech Republic during 2020-2021 by using selective cultivation and direct PCR testing. A total of 111 colistin-resistant Escherichia coli isolates with mcr-1 gene were obtained from 65 (9.9%, n = 659) samples and subjected to whole-genome sequencing. Isolates with mcr were frequently found in fresh meat from domestic production (14.2%) as well as from import (28.8%). The mcr-1-positive E. coli isolates predominantly originated from meat samples (16.6%), mainly poultry (27.1%), and only minor part of the isolates came from the cecum (1.7%). In contrast to selective cultivation, 205 (31.1%) samples of whole-community DNA were positive for at least one mcr variant, and other genes besides mcr-1 were detected. Analysis of whole-genome data of sequenced E. coli isolates revealed diverse sequence types (STs) including pathogenic lineages and dominance of ST1011 (15.6%) and ST162 (12.8%). Most isolates showed multidrug-resistant profile, and 9% of isolates produced clinically important beta-lactamases. The mcr-1 gene was predominantly located on one of three conjugative plasmids of IncX4 (83.5%), IncI2 (7.3%), and IncHI2 (7.3%) groups. Seventy-two percent isolates of several STs carried ColV plasmids. The study revealed high prevalence of mcr genes in fresh meat of slaughter animals. Our results confirmed previous assumptions that the livestock, especially poultry production, is an important source of colistin-resistant E. coli with the potential of transfer to humans via the food chain. IMPORTANCE We present the first data on nation-wide surveillance of plasmid-mediated colistin resistance in the Czech Republic. High occurrence of plasmid-mediated colistin resistance was found in meat samples, especially in poultry from both domestic production and import, while the presence of mcr genes was lower in the gut of slaughter animals. In contrast to culture-based approach, testing of whole-community DNA showed higher prevalence of mcr and presence of various mcr variants. Our results support the importance of combining cultivation methods with direct culture-independent techniques and highlight the need for harmonized surveillance of plasmid-mediated colistin resistance. Our study confirmed the importance of livestock as a major reservoir of plasmid-mediated colistin resistance and pointed out the risks of poultry meat for the transmission of mcr genes toward humans. We identified several mcr-associated prevalent STs, especially ST1011, which should be monitored further as they represent zoonotic bacteria circulating between different environments.
Collapse
Affiliation(s)
- Petra Sismova
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Iva Sukkar
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Nikita Kolidentsev
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Jana Palkovicova
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | | | - Jan Bardon
- Department of Microbiology, Faculty of Medicine and Dentistry Palacky University Olomouc, Olomouc, Czech Republic
- State Veterinary Institute Olomouc, Olomouc, Czech Republic
| | - Monika Dolejska
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic
- Department of Clinical Microbiology and Immunology, Institute of Laboratory Medicine, University Hospital Brno, Brno, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Kristina Nesporova
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic
| |
Collapse
|
25
|
Jacobsen ABJE, Ogden J, Ekiri AB. Antimicrobial resistance interventions in the animal sector: scoping review. FRONTIERS IN ANTIBIOTICS 2023; 2:1233698. [PMID: 39816662 PMCID: PMC11732036 DOI: 10.3389/frabi.2023.1233698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/27/2023] [Indexed: 01/18/2025]
Abstract
Animals are considered key contributors to the development and spread of antimicrobial resistance (AMR). However, little is known about the existing AMR interventions in the animal sector. This scoping review examines the existing evidence on AMR interventions aimed at livestock, animal health professionals (AHPs), and farmers, while reviewing their impact, limitations, gaps, and lessons for future use. The scoping review was conducted following guidelines from the PRISMA-ScR checklist. The databases, Web of Science, Scopus, PubMed, and international organisations' websites (WHO, FAO, WOAH) were searched for articles reporting interventions targeting livestock, farmers, and AHPs. Interventions were categorised based on seven pre-defined primary measures including: change in antimicrobial use (AMU) practices; change in the uptake of antimicrobial stewardship (AMS); change in development of AMR; change in knowledge of appropriate AMU practices, AMR, and AMS; change in attitudes and perceptions concerning AMU, AMR, and AMS; and surveillance strategies. In total, ninety three sources were included: 66 studies, 20 reports, and 7 webpages. The reviewed interventions focused mostly on AMU practices (22/90), AMS uptake (8/90), and reduction of bacterial or resistant strains (30/90). Changes in knowledge (14/90) and attitude (1/90) were less frequently assessed and were often implicit. Most interventions were conducted within a select country (83/90) and 7/90 were at a global level. Only 19% (16/83) of interventions were implemented in low- and middle-income countries (LMICs) and most were at herd level with many self-reporting changes. Most of the interventions that focused on surveillance strategies (30/83) were implemented in high-income countries (62/83). Only one study investigated the financial implications of the intervention. The study findings provide an overview of existing AMR interventions and insights into the gaps which can be addressed to guide future interventions and research. A focus on developing, implementing and evaluating interventions in LMICs coupled with the use of objective outcome measures (e.g., measurable outcomes vs. self-reporting) will improve our understanding of the impact of interventions in these settings. Finally, assessing the financial benefits of interventions is necessary to inform feasibility and to encourage uptake of interventions aimed at reducing AMR in the animal health sector.
Collapse
Affiliation(s)
- Alice B. J. E. Jacobsen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
- Department of Psychological Sciences, School of Psychology, University of Surrey, Guildford, United Kingdom
| | - Jane Ogden
- Department of Psychological Sciences, School of Psychology, University of Surrey, Guildford, United Kingdom
| | - Abel B. Ekiri
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
26
|
Hu J, Li J, Huang X, Xia J, Cui M, Huang Y, Wen Y, Xie Y, Zhao Q, Cao S, Zou L, Han X. Genomic traits of multidrug resistant enterotoxigenic Escherichia coli isolates from diarrheic pigs. Front Microbiol 2023; 14:1244026. [PMID: 37601351 PMCID: PMC10434507 DOI: 10.3389/fmicb.2023.1244026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Diarrhea caused by enterotoxigenic Escherichia coli (ETEC) infections poses a significant challenge in global pig farming. To address this issue, the study was conducted to identify and characterize 19 ETEC isolates from fecal samples of diarrheic pigs sourced from large-scale farms in Sichuan Province, China. Whole-genome sequencing and bioinformatic analysis were utilized for identification and characterization. The isolates exhibited substantial resistance to cefotaxime, ceftriaxone, chloramphenicol, ciprofloxacin, gentamicin, ampicillin, tetracycline, florfenicol, and sulfadiazine, but were highly susceptible to amikacin, imipenem, and cefoxitin. Genetic diversity among the isolates was observed, with serotypes O22:H10, O163orOX21:H4, and O105:H8 being dominant. Further analysis revealed 53 resistance genes and 13 categories of 195 virulence factors. Of concern was the presence of tet(X4) in some isolates, indicating potential public health risks. The ETEC isolates demonstrated the ability to produce either heat-stable enterotoxin (ST) alone or both heat-labile enterotoxin (LT) and ST simultaneously, involving various virulence genes. Notably, STa were linked to human disease. Additionally, the presence of 4 hybrid ETEC/STEC isolates harboring Shiga-like toxin-related virulence factors, namely stx2a, stx2b, and stx2e-ONT-2771, was identified. IncF plasmids carrying multiple antimicrobial resistance genes were prevalent, and a hybrid ETEC/STEC plasmid was detected, highlighting the role of plasmids in hybrid pathotype emergence. These findings emphasized the multidrug resistance and pathogenicity of porcine-origin ETEC strains and the potential risk of epidemics through horizontal transmission of drug resistance, which is crucial for effective control strategies and interventions to mitigate the impact on animal and human health.
Collapse
Affiliation(s)
- Jiameng Hu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junlin Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Jing Xia
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Min Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Yong Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Yiping Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Yue Xie
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Qin Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Sanjie Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xinfeng Han
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|
27
|
Tang R, Tan H, Dai Y, Li L, Huang Y, Yao H, Cai Y, Yu G. Application of antimicrobial peptides in plant protection: making use of the overlooked merits. FRONTIERS IN PLANT SCIENCE 2023; 14:1139539. [PMID: 37538059 PMCID: PMC10394246 DOI: 10.3389/fpls.2023.1139539] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/07/2023] [Indexed: 08/05/2023]
Abstract
Pathogen infection is one of the major causes of yield loss in the crop field. The rapid increase of antimicrobial resistance in plant pathogens has urged researchers to develop both new pesticides and management strategies for plant protection. The antimicrobial peptides (AMPs) showed potential on eliminating plant pathogenic fungi and bacteria. Here, we first summarize several overlooked advantages and merits of AMPs, which includes the steep dose-response relations, fast killing ability, broad synergism, slow resistance selection. We then discuss the possible application of AMPs for plant protection with above merits, and highlight how AMPs can be incorporated into a more efficient integrated management system that both increases the crop yield and reduce resistance evolution of pathogens.
Collapse
|
28
|
Anyanwu MU, Jaja IF, Okpala COR, Njoga EO, Okafor NA, Oguttu JW. Mobile Colistin Resistance ( mcr) Gene-Containing Organisms in Poultry Sector in Low- and Middle-Income Countries: Epidemiology, Characteristics, and One Health Control Strategies. Antibiotics (Basel) 2023; 12:1117. [PMID: 37508213 PMCID: PMC10376608 DOI: 10.3390/antibiotics12071117] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
Mobile colistin resistance (mcr) genes (mcr-1 to mcr-10) are plasmid-encoded genes that threaten the clinical utility of colistin (COL), one of the highest-priority critically important antibiotics (HP-CIAs) used to treat infections caused by multidrug-resistant and extensively drug-resistant bacteria in humans and animals. For more than six decades, COL has been used largely unregulated in the poultry sector in low- and middle-income countries (LMICs), and this has led to the development/spread of mcr gene-containing bacteria (MGCB). The prevalence rates of mcr-positive organisms from the poultry sector in LMICs between January 1970 and May 2023 range between 0.51% and 58.8%. Through horizontal gene transfer, conjugative plasmids possessing insertion sequences (ISs) (especially ISApl1), transposons (predominantly Tn6330), and integrons have enhanced the spread of mcr-1, mcr-2, mcr-3, mcr-4, mcr-5, mcr-7, mcr-8, mcr-9, and mcr-10 in the poultry sector in LMICs. These genes are harboured by Escherichia, Klebsiella, Proteus, Salmonella, Cronobacter, Citrobacter, Enterobacter, Shigella, Providencia, Aeromonas, Raoultella, Pseudomonas, and Acinetobacter species, belonging to diverse clones. The mcr-1, mcr-3, and mcr-10 genes have also been integrated into the chromosomes of these bacteria and are mobilizable by ISs and integrative conjugative elements. These bacteria often coexpress mcr with virulence genes and other genes conferring resistance to HP-CIAs, such as extended-spectrum cephalosporins, carbapenems, fosfomycin, fluoroquinolone, and tigecycline. The transmission routes and dynamics of MGCB from the poultry sector in LMICs within the One Health triad include contact with poultry birds, feed/drinking water, manure, poultry farmers and their farm workwear, farming equipment, the consumption and sale of contaminated poultry meat/egg and associated products, etc. The use of pre/probiotics and other non-antimicrobial alternatives in the raising of birds, the judicious use of non-critically important antibiotics for therapy, the banning of nontherapeutic COL use, improved vaccination, biosecurity, hand hygiene and sanitization, the development of rapid diagnostic test kits, and the intensified surveillance of mcr genes, among others, could effectively control the spread of MGCB from the poultry sector in LMICs.
Collapse
Affiliation(s)
| | - Ishmael Festus Jaja
- Department of Livestock and Pasture Science, University of Fort Hare, Alice 5700, South Africa
| | - Charles Odilichukwu R Okpala
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
- UGA Cooperative Extension, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Emmanuel Okechukwu Njoga
- Department of Veterinary Public Health and Preventive Medicine, University of Nigeria, Nsukka 400001, Nigeria
| | | | - James Wabwire Oguttu
- Department of Agriculture and Animal Health, Florida Campus, University of South Africa, Johannesburg 1709, South Africa
| |
Collapse
|
29
|
Wang Z, Jiang Z, Xu H, Jiao X, Li Q. Prevalence and molecular characterization of mcr-1-positive foodborne ST34-Salmonella isolates in China. Microbiol Res 2023; 274:127441. [PMID: 37356255 DOI: 10.1016/j.micres.2023.127441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) and S. 4,[5],12:i:- have become the most common serovars associated with human salmonellosis worldwide. Moreover, the emergence of mcr-carrying S. Typhimurium and S. 4,[5],12:i:- with multidrug resistance (MDR) patterns has posed a threat to public health. In this study, we retrospectively screened 2009-2022 laboratory-preserved strains for the presence of mcr genes. We obtained 16 mcr-1-positive S. Typhimurium and S. 4,[5],12:i:- strains with MDR that belonged to sequence type 34 (ST34). Whole-genome sequencing analysis revealed that the mcr-1 was located on the IncI2 or IncHI2 plasmids. The ISApl1 element downstream of mcr-1 was present in all pig-derived strains. Conjugation experiments confirmed that nine mcr-1-carrying IncHI2 plasmids could not be transferred to Escherichia coli due to loss of the conjugation region. Finally, core genome single nucleotide polymorphism (cgSNP) analyses of the 16 mcr-1-carrying strains and 77 mcr-carrying ST34-Salmonella genome sequences from the NCBI and ENA databases showed that five out of eight clusters contained strains from pig and pig products, revealing pigs and pig products as key reservoirs of mcr-1-positive ST34-Salmonella strains. The transmission of mcr-carrying ST34 Salmonella strains to humans via the pig food chain is a potential cause for public health concern in controlling human salmonellosis.
Collapse
Affiliation(s)
- Zhenyu Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, China
| | - Zhongyi Jiang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, China
| | - Haiyan Xu
- Nantong Center for Disease Control and Prevention, Nantong 226007, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, China.
| | - Qiuchun Li
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, China.
| |
Collapse
|
30
|
Lu X, Zhang P, Du P, Zhang X, Wang J, Yang Y, Sun H, Wang Z, Cui S, Li R, Bai L. Prevalence and Genomic Characteristics of mcr-Positive Escherichia coli Strains Isolated from Humans, Pigs, and Foods in China. Microbiol Spectr 2023; 11:e0456922. [PMID: 37042751 PMCID: PMC10269804 DOI: 10.1128/spectrum.04569-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/16/2023] [Indexed: 04/13/2023] Open
Abstract
Colistin is one of the last-resort antibiotics for treating infections caused by multidrug-resistant (MDR) Gram-negative bacteria. However, mcr genes conferring resistance to colistin have been widely identified, which is considered a global threat to public health. Here, we investigated the prevalence and characteristics of mcr-harboring Escherichia coli strains isolated from humans, animals, and foods in China by PCR, antimicrobial susceptibility testing, conjugation experiments, molecular typing, genome sequencing, and bioinformatics analysis. In total, 135 mcr-1-harboring E. coli isolates were acquired from 847 samples, and 6 isolates carried mcr-3. Among them, 131 isolates were MDR bacteria. Sixty-five resistance genes conferring resistance to multiple antimicrobials were identified in 135 isolates. The diverse pulsed-field gel electrophoresis (PFGE) patterns and sequence types (STs) of mcr-1-carrying isolates demonstrated that clonal dissemination was not the dominant mode of mcr-1 transmission. Seven types of plasmids were able to carry mcr-1 in this study, including IncI2, IncX4, IncHI2, p0111, IncY, and two hybrid plasmids. The genetic structures carrying mcr-1 of 60 isolates were successfully transferred into the recipient, including 25 IncI2 plasmids, 23 IncX4 plasmids, and an IncHI2 plasmid. mcr-1-pap2 was the dominant mcr-1-bearing structure, followed by ISApl1-mcr-1-pap2-ISApl1 (Tn6330) and ISApl1-mcr-1-pap2, among 7 mcr-1-bearing structures of 135 isolates. In conclusion, IncI2, IncX4, and IncHI2 plasmids were the major vectors spreading mcr-1 from different geographical locations and sources. The prevalence of Tn6330 may accelerate the transmission of mcr-1. Continuous surveillance of mcr-1 and variants in bacteria is vital for evaluating the public health risk posed by mcr genes. IMPORTANCE The spread of polymyxin-resistant Enterobacteriaceae poses a significant threat to public health and challenges the therapeutic options for treating infections on a global level. In this study, mcr-1-bearing ST10 E. coli was isolated from pigs, pork, and humans simultaneously, which demonstrated that ST10 E. coli was an important vehicle for the spread of mcr-1 among animals, foods, and humans. The high prevalence of mcr-1-positive E. coli strains in pigs and pork and the horizontal transmission of mcr-1-bearing plasmids in diverse E. coli strains suggest that pigs and pork are important sources of mcr-1-positive strains in humans and pose a potential threat to public health. Additional research on the prevalence and characteristics of mcr-1-positive E. coli is still required to facilitate early warning to improve polymyxin management in hospitals.
Collapse
Affiliation(s)
- Xiaoyu Lu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Pei Zhang
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People’s Republic of China, China National Center for Food Safety Risk Assessment, Beijing, China
- Center for Disease Control and Prevention of Henan Province, Zhengzhou, China
| | - Pengcheng Du
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Xiuli Zhang
- Center for Disease Control and Prevention of Henan Province, Zhengzhou, China
| | - Juan Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yingying Yang
- Department of Neurology, Gaotang County People's Hospital, Gaotang, Shandong, China
| | - Honghu Sun
- Chengdu Institute for Food and Drug Control, Chengdu, China
| | - Zhiqiang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shenghui Cui
- Department of Food Science, National Institutes for Food and Drug Control, Beijing, China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Li Bai
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People’s Republic of China, China National Center for Food Safety Risk Assessment, Beijing, China
| |
Collapse
|
31
|
Jangir PK, Ogunlana L, Szili P, Czikkely M, Shaw LP, Stevens EJ, Yu Y, Yang Q, Wang Y, Pál C, Walsh TR, MacLean CR. The evolution of colistin resistance increases bacterial resistance to host antimicrobial peptides and virulence. eLife 2023; 12:e84395. [PMID: 37094804 PMCID: PMC10129329 DOI: 10.7554/elife.84395] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/05/2023] [Indexed: 04/26/2023] Open
Abstract
Antimicrobial peptides (AMPs) offer a promising solution to the antibiotic resistance crisis. However, an unresolved serious concern is that the evolution of resistance to therapeutic AMPs may generate cross-resistance to host AMPs, compromising a cornerstone of the innate immune response. We systematically tested this hypothesis using globally disseminated mobile colistin resistance (MCR) that has been selected by the use of colistin in agriculture and medicine. Here, we show that MCR provides a selective advantage to Escherichia coli in the presence of key AMPs from humans and agricultural animals by increasing AMP resistance. Moreover, MCR promotes bacterial growth in human serum and increases virulence in a Galleria mellonella infection model. Our study shows how the anthropogenic use of AMPs can drive the accidental evolution of resistance to the innate immune system of humans and animals. These findings have major implications for the design and use of therapeutic AMPs and suggest that MCR may be difficult to eradicate, even if colistin use is withdrawn.
Collapse
Affiliation(s)
- Pramod K Jangir
- Department of Biology, University of OxfordOxfordUnited Kingdom
| | - Lois Ogunlana
- Department of Biology, University of OxfordOxfordUnited Kingdom
| | - Petra Szili
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research NetworkSzegedHungary
- Doctoral School of Multidisciplinary Medical Sciences, University of SzegedSzegedHungary
| | - Marton Czikkely
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research NetworkSzegedHungary
| | - Liam P Shaw
- Department of Biology, University of OxfordOxfordUnited Kingdom
| | - Emily J Stevens
- Department of Biology, University of OxfordOxfordUnited Kingdom
| | - Yang Yu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural UniversityGuangzhouChina
| | - Qiue Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and RegulaWon, College of Resources and Environment, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Yang Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural UniversityBeijingChina
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research NetworkSzegedHungary
| | - Timothy R Walsh
- Department of Biology, University of OxfordOxfordUnited Kingdom
| | - Craig R MacLean
- Department of Biology, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
32
|
Talat A, Miranda C, Poeta P, Khan AU. Farm to table: colistin resistance hitchhiking through food. Arch Microbiol 2023; 205:167. [PMID: 37014461 DOI: 10.1007/s00203-023-03476-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 04/05/2023]
Abstract
Colistin is a high priority, last-resort antibiotic recklessly used in livestock and poultry farms. It is used as an antibiotic for treating multi-drug resistant Gram-negative bacterial infections as well as a growth promoter in poultry and animal farms. The sub-therapeutic doses of colistin exert a selection pressure on bacteria leading to the emergence of colistin resistance in the environment. Colistin resistance gene, mcr are mostly plasmid-mediated, amplifying the horizontal gene transfer. Food products such as chicken, meat, pork etc. disseminate colistin resistance to humans through zoonotic transfer. The antimicrobial residues used in livestock and poultry often leaches to soil and water through faeces. This review highlights the recent status of colistin use in food-producing animals, its association with colistin resistance adversely affecting public health. The underlying mechanism of colistin resistance has been explored. The prohibition of over-the-counter colistin sales and as growth promoters for animals and broilers has exhibited effective stewardship of colistin resistance in several countries.
Collapse
Affiliation(s)
- Absar Talat
- Medical and Molecular Microbiology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Carla Miranda
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal
- Toxicology Research Unit (TOXRUN), IUCS, CESPU, CRL, Gandra, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, Caparica, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-Os-Montes and Alto Douro (UTAD)UTAD, Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
| | - Asad U Khan
- Medical and Molecular Microbiology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
33
|
Khine NO, Wongsurawat T, Jenjaroenpun P, Hampson DJ, Prapasarakul N. Comparative genomic analysis of Colistin resistant Escherichia coli isolated from pigs, a human and wastewater on colistin withdrawn pig farm. Sci Rep 2023; 13:5124. [PMID: 36991093 PMCID: PMC10060365 DOI: 10.1038/s41598-023-32406-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
In this study, genomic and plasmid characteristics of Escherichia coli were determined with the aim of deducing how mcr genes may have spread on a colistin withdrawn pig farm. Whole genome hybrid sequencing was applied to six mcr-positive E. coli (MCRPE) strains isolated from pigs, a farmworker and wastewater collected between 2017 and 2019. Among these, mcr-1.1 genes were identified on IncI2 plasmids from a pig and wastewater, and on IncX4 from the human isolate, whereas mcr-3 genes were found on plasmids IncFII and IncHI2 in two porcine strains. The MCRPE isolates exhibited genotypic and phenotypic multidrug resistance (MDR) traits as well as heavy metal and antiseptic resistance genes. The mcr-1.1-IncI2 and IncX4 plasmids carried only colistin resistance genes. Whereas, the mcr-3.5-IncHI2 plasmid presented MDR region, with several mobile genetic elements. Despite the MCRPE strains belonged to different E. coli lineages, mcr-carrying plasmids with high similarities were found in isolates from pigs and wastewater recovered in different years. This study highlighted that several factors, including the resistomic profile of the host bacteria, co-selection via adjunct antibiotic resistance genes, antiseptics, and/or disinfectants, and plasmid-host fitness adaptation may encourage the maintenance of plasmids carrying mcr genes in E. coli.
Collapse
Affiliation(s)
- Nwai Oo Khine
- Center of Excellence in Diagnosis and Monitoring of Animal Pathogens (DMAP), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Thidathip Wongsurawat
- Division of Bioinformatics and Data Management for Research, Research Group and Research Network Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piroon Jenjaroenpun
- Division of Bioinformatics and Data Management for Research, Research Group and Research Network Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - David J Hampson
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - Nuvee Prapasarakul
- Center of Excellence in Diagnosis and Monitoring of Animal Pathogens (DMAP), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
34
|
Lu X, Zhang W, Mohsin M, Wang M, Li J, Wang Z, Li R. The Prevalence of Plasmid-Mediated Colistin Resistance Gene mcr-1 and Different Transferability and Fitness of mcr-1-Bearing IncX4 Plasmids in Escherichia coli from Pigeons. Microbiol Spectr 2023; 11:e0363922. [PMID: 36853064 PMCID: PMC10100758 DOI: 10.1128/spectrum.03639-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/07/2023] [Indexed: 03/01/2023] Open
Abstract
The prevalence of colistin-resistant bacteria limited the usage of colistin in the treatment of clinical multidrug-resistant Gram-negative bacterial infections. Here, we aimed to investigate the prevalence and molecular characterization of mcr-1-carrying isolates from pigeons close to humans following the ban on the use of colistin as an animal feed additive in China. Methods, including PCR, antimicrobial susceptibility testing, conjugation experiments, plasmid replicon typing, genome sequencing, bioinformatics analysis, measurement of growth curves, competition experiments, and plasmid stability assays were used to identify and characterize mcr-1-positive isolates. In total, 45 mcr-1-positive E. coli isolates were acquired from 100 fecal samples, and MICs of colistin ranged from 4 to 8 mg/L. The prevalence of mcr-1-positive E. coli isolates from pigeons was mainly mediated by IncX4 plasmids (39/45), including transferable mcr-1-bearing IncX4 plasmids with fitness advantage in 21 isolates, and nontransferable mcr-1-bearing IncX4 plasmids with fitness disadvantage in 18 isolates. There is a similar structure among the 6 mcr-1-bearing nontransferable IncX4 plasmids and 10 mcr-1-bearing transferable IncX4 plasmids in 16 E. coli isolates that have been sequenced. Plasmid transferability evaluation indicated that the same IncX4 plasmid has different transferability in different E. coli isolates. In conclusion, this study demonstrates that pigeons could act as potential reservoirs for the spread of mcr-1-positive E. coli in China. Transferability of IncX4 plasmids may be influenced by host chromosome in the same bacterial species. Additional research on the factors influencing the transferability of IncX4 plasmids in different bacterial hosts is required to help combat antimicrobial resistance. IMPORTANCE The emergence of plasmid-mediated colistin resistance gene mcr-1 incurs great concerns. Since the close proximity of pigeons with humans, it is significant to understand the prevalence and molecular characterization of mcr-1-positive isolates in pigeons, to provide a rationale for controlling its spread. Here, we found that the prevalence of mcr-1-positive E. coli from pigeons was mainly mediated by IncX4 plasmids. However, different transferability and fitness of mcr-1-bearing IncX4 plasmids in E. coli were observed, which demonstrated that transferability of IncX4 plasmids could be affected not only by genes on plasmids, but also by chromosomal factors in the same bacterial species. Our finding provided a new insight on studying the factors influencing the transferability of plasmids.
Collapse
Affiliation(s)
- Xiaoyu Lu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Wenhui Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Mashkoor Mohsin
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Mianzhi Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Jingui Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Zhiqiang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
35
|
Distribution and Transmission of Colistin Resistance Genes mcr-1 and mcr-3 among Nontyphoidal Salmonella Isolates in China from 2011 to 2020. Microbiol Spectr 2023; 11:e0383322. [PMID: 36519849 PMCID: PMC9927481 DOI: 10.1128/spectrum.03833-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mobile colistin resistance (mcr) genes are present mainly in plasmids and can disseminate clonally or horizontally via either plasmids or insertion sequences in different genomic locations among the Enterobacteriaceae. A nationwide large-scale study on mcr prevalence and transmission in nontyphoidal Salmonella isolates is still lacking. Here, we identified 140 mcr-positive Salmonella isolates out of 7,106 isolates from 29 provinces in China from 2011 to 2020. We aligned short reads to putative plasmids from long-read hybrid assemblies and predicted the plasmid backbones of non-long-read sequencing isolates to elucidate mcr transmission patterns. The mcr-1 and mcr-3 genes are transmitted on similar high-risk clones (sequence type 34 [ST34]) but through plasmids of various replicon types. Furthermore, the ban on colistin use in food animals can lead to a decrease in the mcr-positive Salmonella prevalence among diarrheal patients, related mainly to IncHI2A_IncHI2 plasmids. We provide a framework for plasmid data incorporation into genomic surveillance systems, contributing to a better understanding of mcr spread and transmission. IMPORTANCE Nontyphoidal Salmonella is one of four major causative agents of diarrheal diseases globally, with most cases of salmonellosis being mild. Antimicrobial treatments are required for cases of life-threatening infections, and colistin is one of the last-line antibiotics for the treatment of multidrug-resistant Salmonella infections. However, the efficacy of colistin has been compromised by the emergence of various mcr genes. To elucidate the transmission of mcr genes in Salmonella isolates, our study analyzed 7,106 Salmonella strains from 29 provinces in China from 2011 to 2020. The results showed that mcr genes are transmitted on similar high-risk clones (ST34) but through plasmids of various replicon types. In addition, our data illustrated that the ban on the use of colistin in food animals led to a significant decrease in mcr-positive isolates. Our findings offer an essential step toward a more comprehensive understanding of the spread and transmission of mcr genes.
Collapse
|
36
|
Carriage and Transmission of mcr-1 in Salmonella Typhimurium and Its Monophasic 1,4,[5],12:i:- Variants from Diarrheal Outpatients: a 10-Year Genomic Epidemiology in Guangdong, Southern China. Microbiol Spectr 2023; 11:e0311922. [PMID: 36629419 PMCID: PMC9927551 DOI: 10.1128/spectrum.03119-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The banning of colistin as a feed additive for food-producing animals in mainland China in 2017 caused the decline in the prevalence of Escherichia coli-mobilized colistin resistance (mcr-1) in China. Salmonella Typhimurium and its monophasic 1,4,[5],12:i:- variants are also the main species associated with the spread of mcr-1; however, the evidence of the prevalence and transmission of mcr-1 among Salmonella is lacking. Herein, the 5,354 Salmonella isolates recovered from fecal samples of diarrheal patients in Guangdong, Southern China, from 2009 to 2019 were screened for colistin resistance and mcr-1, and mcr-1-positive isolates were characterized based on whole-genome sequencing (WGS) data. Relatively high prevalence rates of colistin resistance and mcr-1 (4.05%/4.50%) were identified, and more importantly, the prevalence trends of colistin-resistant and mcr-1-positive Salmonella isolates had a similar dynamic profile, i.e., both were first detected in 2012 and rapidly increased during 2013 to 2016, followed by a sharp decrease since 2017. WGS and phylogenetic analysis indicate that, whether before or after the ban, the persistence and cross-hospital transmission of mcr-1 are primarily determined by IncHI2 plasmids with similar backbones and sequence type 34 (ST34) Salmonella in specific clades that are associated with a high prevalence of IncHI2 plasmids and clinically important antimicrobial resistance genes, including blaCTX-M-14-fosA3-oqxAB-floR genotypes. Our work reveals the difference in the prevalence rate of mcr-1 in clinical Salmonella before and after the Chinese colistin ban, whereas mcr-1 transmission was closely linked to multidrug-resistant IncHI2 plasmid and ST34 Salmonella across diverse hospitals over 10 years. Continued surveillance is required to explore the factors related to a sharp decrease in mcr-1 after the recent ban and determine whether the ban has affected the carriage of mcr-1 in Salmonella circulating in the health care system. IMPORTANCE Colistin is one of the last-line antibiotics for the clinical treatment of Enterobacteriaceae. However, the emergence of the mobilized colistin resistance (mcr-1) gene has spread throughout the entire human health system and largely threatens the usage of colistin in the clinical setting. In this study, we investigated the existence of mcr-1 in clinical Salmonella from a 10-year continuous surveillance and genomic study. Overall, the colistin resistance rate and mcr-1 carriage of Salmonella in tertiary hospitals in Guangdong (2009 to 2019) were relatively high and, importantly, rapidly increased from 2013 to 2016 and significantly decreased after the Chinese colistin withdrawal. However, before or after the ban, the MDR IncHI2 plasmid with a similar backbone and ST34 Salmonella were the main vectors involved in the spread of mcr-1. Interestingly, these Chinese mcr-1-carrying Salmonella obtain phylogenetically and phylogeographically distinct patterns compared with those from other continents and are frequently associated with clinically important ARGs including the extended-spectrum β-lactamases. Our data confirmed that the national stewardship intervention seems to be successful in blocking antibiotic resistance determinants and that continued surveillance of colistin resistance in clinical settings, farm animals, and related products is necessary.
Collapse
|
37
|
Zhang R, Li Y, Chen J, Liu C, Sun Q, Shu L, Chen G, Wang Z, Wang S, Li R. Population genomic analysis reveals the emergence of high-risk carbapenem-resistant Escherichia coli among ICU patients in China. J Infect 2023; 86:316-328. [PMID: 36764393 DOI: 10.1016/j.jinf.2023.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
OBJECTIVES The increasing incidence of carbapenem-resistant Enterobacterales (CRE) mediated nosocomial infections has caused a significant public health burden globally. Currently, the prevalence and genomic characteristics of carbapenem-resistant Escherichia coli (CREC) in patients admitted to the intensive care unit (ICU) are unknown. METHODS Herein, we present a nationwide genomic investigation of CREC isolates among ICU patients in China in 2018 and 2020. In total, 113 CREC isolates were identified from 1105 samples in 25 hospitals, and investigated with phenotyping and genomics approaches. RESULTS Carbapenemases were produced in 94.69% (107/113) of CREC isolates, which comprise KPC-2 (n = 53, 49.53%), NDM (n = 51, 47.66%), IMP-4 (n = 2, 1.87%), and OXA-181 (n = 1, 0.93%). Notably, CREC isolates co-carrying mcr-9 and blaNDM-5 or tet(X4) and blaNDM-5 were first identified in clinical settings. The carbapenemase genes of most isolates were located on the plasmids. The blaKPC gene was mainly mediated by IncFII plasmids (n = 37, 69.81%), and blaNDM was located on the IncX3 plasmid (n = 36, 70.59%). CREC isolates belonged to diverse sequence types (STs) of which ST131 was the most prevalent blaKPC-positive CREC isolates (34/113, 30.09%), while blaNDM was associated with ST617 and ST410 isolates, thereby indicating that multiple CREC clones spread in Chinese ICU patients. CONCLUSIONS This study highlights the emerging threat of high-risk CREC isolates such as ST131 circulating in the ICU in China. Hence, stringent monitoring of such high-risk clones should be performed.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, PR China
| | - Yan Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Jiawei Chen
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, PR China
| | - Congcong Liu
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, PR China
| | - Qiaoling Sun
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, PR China
| | - Lingbin Shu
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, PR China
| | - Gongxiang Chen
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, PR China
| | - Zhiqiang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Shaolin Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, PR China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China.
| |
Collapse
|
38
|
Rhouma M, Madec JY, Laxminarayan R. Colistin: from the shadows to a One Health approach for addressing antimicrobial resistance. Int J Antimicrob Agents 2023; 61:106713. [PMID: 36640846 DOI: 10.1016/j.ijantimicag.2023.106713] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/26/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
Antimicrobial resistance (AMR) poses a serious threat to human, animal and environmental health worldwide. Colistin has regained importance as a last-resort treatment against multi-drug-resistant Gram-negative bacteria. However, colistin resistance has been reported in various Enterobacteriaceae species isolated from several sources. The 2015 discovery of the plasmid-mediated mcr-1 (mobile colistin resistance) gene conferring resistance to colistin was a major concern within the scientific community worldwide. The global spread of this plasmid - as well as the subsequent identification of 10 MCR-family genes and their variants that catalyse the addition of phosphoethanolamine to the phosphate group of lipid A - underscores the urgent need to regulate the use of colistin, particularly in animal production. This review traces the history of colistin resistance and mcr-like gene identification, and examines the impact of policy changes regarding the use of colistin on the prevalence of mcr-1-positive Escherichia coli and colistin-resistant E. coli from a One Health perspective. The withdrawal of colistin as a livestock growth promoter in several countries reduced the prevalence of colistin-resistant bacteria and its resistance determinants (e.g. mcr-1 gene) in farm animals, humans and the environment. This reduction was certainly favoured by the significant fitness cost associated with acquisition and expression of the mcr-1 gene in enterobacterial species. The success of this One Health intervention could be used to accelerate regulation of other important antimicrobials, especially those associated with bacterial resistance mechanisms linked to high fitness cost. The development of global collaborations and the implementation of sustainable solutions like the One Health approach are essential to manage AMR.
Collapse
Affiliation(s)
- Mohamed Rhouma
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada; Groupe de Recherche et d'Enseignement en Salubrité Alimentaire, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada; Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada.
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes - Agence Nationale de Sécurité Sanitaire, Université de Lyon, Lyon, France
| | - Ramanan Laxminarayan
- One Health Trust, Washington, DC 20005, Princeton University, Princeton NJ 08544, USA
| |
Collapse
|
39
|
Occurrence and Genomic Characterization of mcr-1-Harboring Escherichia coli Isolates from Chicken and Pig Farms in Lima, Peru. Antibiotics (Basel) 2022; 11:antibiotics11121781. [PMID: 36551438 PMCID: PMC9774552 DOI: 10.3390/antibiotics11121781] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Resistance to colistin generated by the mcr-1 gene in Enterobacteriaceae is of great concern due to its efficient worldwide spread. Despite the fact that the Lima region has a third of the Peruvian population and more than half of the national pig and poultry production, there are no reports of the occurrence of the mcr-1 gene in Escherichia coli isolated from livestock. In the present work, we studied the occurrence of E. coli carrying the mcr-1 gene in chicken and pig farms in Lima between 2019 and 2020 and described the genomic context of the mcr-1 gene. We collected fecal samples from 15 farms in 4 provinces of Lima including the capital Lima Metropolitana and recovered 341 E. coli isolates. We found that 21.3% (42/197) and 12.5% (18/144) of the chicken and pig strains were mcr-1-positive by PCR, respectively. The whole genome sequencing of 14 mcr-1-positive isolates revealed diverse sequence types (e.g., ST48 and ST602) and the presence of other 38 genes that confer resistance to 10 different classes of antibiotics, including beta-lactamase blaCTX-M-55. The mcr-1 gene was located on diverse plasmids belonging to the IncI2 and IncHI1A:IncHI1B replicon types. A comparative analysis of the plasmids showed that they contained the mcr-1 gene within varied structures (mikB-mcr1-pap2, ISApl1-mcr1-pap2, and Tn6330). To the best of our knowledge, this is the first attempt to study the prevalence of the mcr-1 gene in livestock in Peru, revealing its high occurrence in pig and chicken farms. The genetic diversity of mcr-1-positive strains suggests a complex local epidemiology calling for a coordinated surveillance under the One-Health approach that includes animals, retail meat, farmers, hospitals and the environment to effectively detect and limit the spread of colistin-resistant bacteria.
Collapse
|
40
|
Feng S, Liang W, Li J, Chen Y, Zhou D, Liang L, Lin D, Li Y, Zhao H, Du H, Dai M, Qin LN, Bai F, Doi Y, Zhong LL, Tian GB. MCR-1-dependent lipid remodelling compromises the viability of Gram-negative bacteria. Emerg Microbes Infect 2022; 11:1236-1249. [PMID: 35437117 PMCID: PMC9067951 DOI: 10.1080/22221751.2022.2065934] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The global dissemination of the mobilized colistin resistance gene, mcr-1, threatens human health. Recent studies by our group and others have shown that the withdrawal of colistin as a feed additive dramatically reduced the prevalence of mcr-1. Although it is accepted that the rapid reduction in mcr-1 prevalence may have resulted, to some extent, from the toxic effects of MCR-1, the detailed mechanism remains unclear. Here, we found that MCR-1 damaged the outer membrane (OM) permeability in Escherichia coli and Klebsiella pneumonia and that this event was associated with MCR-1-mediated cell shrinkage and death during the stationary phase. Notably, the capacity of MCR-1-expressing cells for recovery from the stationary phase under improved conditions was reduced in a time-dependent manner. We also showed that mutations in the potential lipid-A-binding pocket of MCR-1, but not in the catalytic domain, restored OM permeability and cell viability. During the stationary phase, PbgA, a sensor of periplasmic lipid-A and LpxC production that performed the first step in lipid-A synthesis, was reduced after MCR-1 expression, suggesting that MCR-1 disrupted lipid homeostasis. Consistent with this, the overexpression of LpxC completely reversed the MCR-1-induced OM permeability defect. We propose that MCR-1 causes lipid remodelling that results in an OM permeability defect, thus compromising the viability of Gram-negative bacteria. These findings extended our understanding of the effect of MCR-1 on bacterial physiology and provided a potential strategy for eliminating drug-resistant bacteria.
Collapse
Affiliation(s)
- Siyuan Feng
- Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, People's Republic of China.,Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, People's Republic of China
| | - Wanfei Liang
- Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, People's Republic of China.,Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, People's Republic of China
| | - Jiachen Li
- Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, People's Republic of China.,Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, People's Republic of China
| | - Yong Chen
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, People's Republic of China
| | - Dianrong Zhou
- Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, People's Republic of China.,Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, People's Republic of China
| | - Lujie Liang
- Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, People's Republic of China.,Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, People's Republic of China
| | - Daixi Lin
- Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, People's Republic of China.,Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, People's Republic of China
| | - Yaxin Li
- Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, People's Republic of China.,Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, People's Republic of China
| | - Hui Zhao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
| | - Huihui Du
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, People's Republic of China
| | - Min Dai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, People's Republic of China
| | - Li-Na Qin
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, People's Republic of China
| | - Yohei Doi
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Microbiology and Infectious Diseases, School of Medicine, Fujita Health University, Aichi, Japan
| | - Lan-Lan Zhong
- Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, People's Republic of China.,Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, People's Republic of China
| | - Guo-Bao Tian
- Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, People's Republic of China.,Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, People's Republic of China.,School of Medicine, Xizang Minzu University, Xianyang, People's Republic of China
| |
Collapse
|
41
|
Shen Y, Zhang R, Shao D, Yang L, Lu J, Liu C, Wang X, Jiang J, Wang B, Wu C, Parkhill J, Wang Y, Walsh TR, Gao GF, Shen Z. Genomic Shift in Population Dynamics of mcr-1-positive Escherichia coli in Human Carriage. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:1168-1179. [PMID: 36481457 DOI: 10.1016/j.gpb.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 11/07/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Emergence of the colistin resistance gene, mcr-1, has attracted worldwide attention. Despite the prevalence of mcr-1-positive Escherichia coli (MCRPEC) strains in human carriage showing a significant decrease between 2016 and 2019, genetic differences in MCRPEC strains remain largely unknown. We therefore conducted a comparative genomic study on MCRPEC strains from fecal samples of healthy human subjects in 2016 and 2019. We identified three major differences in MCRPEC strains between these two time points. First, the insertion sequence ISApl1 was often deleted and the percentage of mcr-1-carrying IncI2 plasmids was increased in MCRPEC strains in 2019. Second, the antibiotic resistance genes (ARGs), aac(3)-IVa and blaCTX-M-1, emerged and coexisted with mcr-1 in 2019. Third, MCRPEC strains in 2019 contained more virulence genes, resulting in an increased proportion of extraintestinal pathogenic E. coli (ExPEC) strains (36.1%) in MCRPEC strains in 2019 compared to that in 2016 (10.5%), which implies that these strains could occupy intestinal ecological niches by competing with other commensal bacteria. Our results suggest that despite the significant reduction in the prevalence of MCRPEC strains in humans, mcr-1 is now associated with more stable genetic structures as well as the widespread IncI2 plasmid exhibits increased coexistence with other clinically important ARGs, and is increasingly associated with ExPEC strains, thus posing a potential public health threat.
Collapse
Affiliation(s)
- Yingbo Shen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510641, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rong Zhang
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Dongyan Shao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lu Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiayue Lu
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Congcong Liu
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Xueyang Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Junyao Jiang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Boxuan Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Congming Wu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510641, China
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Yang Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510641, China
| | - Timothy R Walsh
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK.
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Zhangqi Shen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510641, China.
| |
Collapse
|
42
|
Li G, Li X, Wu Y, Xu J, He F. Genomic Insights into the Colistin Resistant mcr-Carrying Escherichia coli Strains in a Tertiary Hospital in China. Antibiotics (Basel) 2022; 11:1522. [PMID: 36358177 PMCID: PMC9686615 DOI: 10.3390/antibiotics11111522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 08/27/2023] Open
Abstract
Colistin is an important antimicrobial agent in the treatment of infections caused by multidrug resistant (MDR) Gram-negative bacteria. The horizontal transfer of mobile colistin resistance gene (mcr) poses a major threat to the public health worldwide. In this study, a total of thirteen mcr-carrying Escherichia coli (MCREC) strains were recovered from a tertiary hospital in Zhejiang, China, between 2016 and 2019. The minimum inhibitory concentration (MIC) of antimicrobial agents, epidemiological characteristics, and transmission dynamics of mcr-carrying isolates were analyzed using antimicrobial susceptibility testing, whole-genome sequencing, S1 nuclease pulsed-field gel electrophoresis (S1-PFGE), and southern blotting analysis. All strains were discovered to be resistant to colistin, and the majority displayed MDR phenotype. However, none of the 13 MCREC strains were resistant to carbapenems. The 13 MCREC isolates were divided into 10 different STs, including ST744, ST156, ST453, ST410, ST57, ST131, ST7034, ST2599, ST457, and ST13239, in which ST13239 was discovered for the first time. Based on core genome single nucleotide polymorphism (cgSNP) analysis, no clear epidemiological link was discovered in these strains with the exception of EC2118 and EC3807, which differ by just one SNP. A total of 35 antimicrobial resistance genes which can be divided into 14 classes were identified from the 13 MCREC isolates. According to S1-PFGE and southern blotting analyses, all 13 MCREC strains had plasmid-mediated mcr-1, and nine of them carried conjugative plasmids. In conclusion, our study revealed the emergence and dissemination of colistin-resistant E. coli isolates carrying mcr-1 in a Chinese hospital, which poses a potential risk to anti-infective therapy. More efforts should be taken to monitor the prevalence of mcr-1-carrying bacteria in China.
Collapse
Affiliation(s)
- Guoli Li
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xinyang Li
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yuye Wu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Juan Xu
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China
| | - Fang He
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310014, China
| |
Collapse
|
43
|
Nguyen PTL, Ngo THH, Tran TMH, Vu TNB, Le VT, Tran HA, Pham DT, Nguyen HT, Tran DL, Nguyen TPL, Nguyen TTT, Tran ND, Dang DA, Bañuls AL, Choisy M, van Doorn HR, Suzuki M, Tran HH. Genomic epidemiological analysis of mcr-1-harboring Escherichia coli collected from livestock settings in Vietnam. Front Vet Sci 2022; 9:1034610. [PMID: 36387375 PMCID: PMC9643773 DOI: 10.3389/fvets.2022.1034610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/05/2022] [Indexed: 09/19/2023] Open
Abstract
Livestock has been implicated as a reservoir for antimicrobial resistance (AMR) genes that can spread to humans when antimicrobials are used in animals for food production to treat clinical diseases and prevent and control common disease events. In Vietnam, mcr-1-harboring Escherichia coli (MCRPEC) strains have been isolated from humans, animals (chickens, pigs, and dogs) feces, flies, foods, and the environment (rainwater, well water, and irrigation water) in communities and from clinical specimens in hospitals. The relationship between levels of AMR in livestock and its occurrence in humans is complex and is driven by many factors. We conducted whole genome sequencing of MCRPEC to analyze the molecular epidemiological characteristics, history, and relatedness of 50 isolates obtained in 2019 from different reservoirs in farms and markets in Ha Nam province, Vietnam. 34 sequence types (STs) with 3 new STs were identified in multilocus sequence typing analysis: ST12945 and ST12946 from chicken feces, and ST12947 from flies. The AMR phenotypes of 50 MCRPEC isolates were as follows: ampicillin (100%, 50/50), cefotaxime (10%, 5/50), gentamicin (60%, 30/50), amikacin (8%, 4/50), meropenem (6%, 3/50), ceftazidime (18%, 9/50), colistin (24%, 12/50) and ciprofloxacin (80%, 40/50). All 50 MCRPEC isolates were identified as MDR. 100% (50/50) isolates carried AMR genes, ranging from 5 to 22 genes. The most prevalent plasmid replicon types carrying mcr-1 were IncP-1 (17/37, 45.9%), IncX4 (7/37, 18.9%), and IncHI2/IncHI2A (6/37, 16.2%). These data suggest that the epidemiology of the mcr-1 gene is mostly determined by plasmid spreading instead of clonal dissemination of MCRPE strains. The co-occurrence of several STs such as ST10, ST48, ST155, ST206, ST2705 in various sample types, joined to the higher prevalence of a few types of Inc plasmids, confirms the dissemination of the mcr-1 carrying plasmids in E. coli clones established in livestock. 5 over 8 STs identified in flies (ST206, ST2705, ST155, ST10, and ST48) suggested the fly contribution in the transmission of AMR bacteria in environments. These popular STs also occur in human samples and 100% of the human samples were positive for the mcr-1 gene.
Collapse
Affiliation(s)
| | | | | | | | - Viet Thanh Le
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | | | - Duy Thai Pham
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Ha Thanh Nguyen
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Dieu Linh Tran
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | | | | | - Nhu Duong Tran
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Duc Anh Dang
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Anne-Laure Bañuls
- MIVEGEC (IRD-CNRS-Université de Montpellier), LMI DRISA, Center IRD, Montpellier, France
| | - Marc Choisy
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - H Rogier van Doorn
- Oxford University Clinical Research Unit, Hanoi, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Masato Suzuki
- National Institute of Infectious Diseases, Tokyo, Japan
| | - Huy Hoang Tran
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
- Hanoi Medical University, Hanoi, Vietnam
| |
Collapse
|
44
|
Occurrence and Biological Cost of mcr-1-Carrying Plasmids Co-harbouring Beta-Lactamase Resistance Genes in Zoonotic Pathogens from Intensive Animal Production. Antibiotics (Basel) 2022; 11:antibiotics11101356. [PMID: 36290014 PMCID: PMC9598650 DOI: 10.3390/antibiotics11101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Colistin is classified as a high-priority critical antimicrobial by the World Health Organization (WHO). A better understanding of the biological cost imposed by mcr-plasmids is paramount to comprehending their spread and may facilitate the decision about the ban of colistin in livestock. This study aimed to assess the prevalence of mcr and ESBL genes from 98 Escherichia coli and 142 Salmonella enterica isolates from food-producing animals and the impact of the mcr-1 acquisition on bacterial fitness. Only mcr-1 was identified by multiplex PCR (mcr-1 to mcr-10) in 15.3% of E. coli. Colistin MICs ranged between 8−32 mg/L. In four isolates, blaTEM-1, blaCTX-M-1, and blaCTX-M-15 co-existed with mcr-1. The IncH12, IncHI1, IncP, IncN, and IncI plasmids were transferred by conjugation to E. coli J53 at frequencies of 10−7 to 10−2 cells/recipient. Growth kinetics assays showed that transconjugants had a significantly lower growth rate than the recipient (p < 0.05), and transconjugants’ average growth rate was higher in the absence than in the presence of colistin (1.66 versus 1.32 (p = 0.0003)). Serial transfer assay during 10 days demonstrated that plasmid retention ranged from complete loss to full retention. Overall, mcr-1-bearing plasmids impose a fitness cost, but the loss of plasmids is highly variable, suggesting that other factors beyond colistin pressure regulate the plasmid maintenance in a bacterial population, and colistin withdrawal will not completely lead to a decrease of mcr-1 levels.
Collapse
|
45
|
Chen J, Liu C, Teng Y, Zhao S, Chen H. The combined effect of an integrated reclaimed water system on the reduction of antibiotic resistome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156426. [PMID: 35660592 DOI: 10.1016/j.scitotenv.2022.156426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
The reuse of urban reclaimed water is conducive to alleviate the current serious shortage of water resources. However, antibiotic resistance genes (ARGs) in reclaimed water have received widespread attention due to their potential risks to public health. Deciphering the fate of ARGs in reclaimed water benefits the development of effective strategies to control resistome risk and guarantees the safety of water supply of reclaimed systems. In this study, the characteristics of ARGs in an integrated reclaimed water system (sewage treatment plant-constructed wetland, STP-CW) in Beijing (China) have been identified using metagenomic assembly-based analysis, as well as the combined effect of the STP-CW system on the reduction of antibiotic resistome. Results showed a total of 29 ARG types and 813 subtypes were found in the reclaimed water system. As expected, the STP-CW system improved the removal of ARGs, and about 58% of ARG subtypes were removed from the effluent of the integrated STP-CW system, which exceeded 43% for the STP system and 37% for the CW system. Although the STP-CW system had a great removal on ARGs, abundant and diverse ARGs were still found in the downstream river. Importantly, network analysis revealed the co-occurrence of ARGs, mobile genetic elements and virulence factors in the downstream water, implying potential resistome dissemination risk in the environment. Source identification with SourceTracker showed the STP-effluent was the largest contributor of ARGs in the downstream river, with a contribution of 45%. Overall, the integrated STP-CW system presented a combined effect on the reduction of antibiotic resistome, however, the resistome dissemination risk was still non-negligible in the downstream reclaimed water. This study provides a comprehensive analysis on the fate of ARGs in the STP-CW-river system, which would benefit the development of effective strategies to control resistome risk for the reuse of reclaimed water.
Collapse
Affiliation(s)
- Jinping Chen
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Chang Liu
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanguo Teng
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Shuang Zhao
- Beijing BHZQ Environmental Engineering Technology Co., LTD, Beijing 100176, China
| | - Haiyang Chen
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
46
|
Rhouma M, Soufi L, Cenatus S, Archambault M, Butaye P. Current Insights Regarding the Role of Farm Animals in the Spread of Antimicrobial Resistance from a One Health Perspective. Vet Sci 2022; 9:480. [PMID: 36136696 PMCID: PMC9503504 DOI: 10.3390/vetsci9090480] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance (AMR) represents a global threat to both human and animal health and has received increasing attention over the years from different stakeholders. Certain AMR bacteria circulate between humans, animals, and the environment, while AMR genes can be found in all ecosystems. The aim of the present review was to provide an overview of antimicrobial use in food-producing animals and to document the current status of the role of farm animals in the spread of AMR to humans. The available body of scientific evidence supported the notion that restricted use of antimicrobials in farm animals was effective in reducing AMR in livestock and, in some cases, in humans. However, most recent studies have reported that livestock have little contribution to the acquisition of AMR bacteria and/or AMR genes by humans. Overall, strategies applied on farms that target the reduction of all antimicrobials are recommended, as these are apparently associated with notable reduction in AMR (avoiding co-resistance between antimicrobials). The interconnection between human and animal health as well as the environment requires the acceleration of the implementation of the 'One Health' approach to effectively fight AMR while preserving the effectiveness of antimicrobials.
Collapse
Affiliation(s)
- Mohamed Rhouma
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire (GRESA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Leila Soufi
- Department of Microbiology, Faculty of Life Sciences and Technology, Berlin University of Applied Sciences, Seestrasse 64, 13347 Berlin, Germany
- Laboratory of Biotechnology and Bio-Geo Resources Valorization (BVBGR)-LR11ES31, Higher Institute for Biotechnology, University of Manouba, Biotechpole Sidi Thabet, Ariana 2020, Tunisia
| | - Schlasiva Cenatus
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire (GRESA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marie Archambault
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Patrick Butaye
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820 Merelbeke, Belgium
| |
Collapse
|
47
|
Li R, Peng K, Huang W, Sun X, Huang Y, Lei G, Lv H, Wang Z, Yang X. The genomic epidemiology of mcr-positive Salmonella enterica in clinical patients from 2014 to 2017 in Sichuan, China and global epidemiological features. J Infect 2022; 85:702-769. [PMID: 36064050 DOI: 10.1016/j.jinf.2022.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Affiliation(s)
- Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Kai Peng
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Weifeng Huang
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, Sichuan Province, PR China
| | - Xinran Sun
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Yulan Huang
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, Sichuan Province, PR China
| | - Gaopeng Lei
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, Sichuan Province, PR China
| | - Hong Lv
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, Sichuan Province, PR China
| | - Zhiqiang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China.
| | - Xiaorong Yang
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, Sichuan Province, PR China.
| |
Collapse
|
48
|
Pennings PS, Ogbunugafor CB, Hershberg R. Reversion is most likely under high mutation supply when compensatory mutations do not fully restore fitness costs. G3 (BETHESDA, MD.) 2022; 12:jkac190. [PMID: 35920784 PMCID: PMC9434179 DOI: 10.1093/g3journal/jkac190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 10/02/2021] [Indexed: 06/15/2023]
Abstract
The dynamics of adaptation, reversion, and compensation have been central topics in microbial evolution, and several studies have attempted to resolve the population genetics underlying how these dynamics occur. However, questions remain regarding how certain features-the evolution of mutators and whether compensatory mutations alleviate costs fully or partially-may influence the evolutionary dynamics of compensation and reversion. In this study, we attempt to explain findings from experimental evolution by utilizing computational and theoretical approaches toward a more refined understanding of how mutation rate and the fitness effects of compensatory mutations influence adaptive dynamics. We find that high mutation rates increase the probability of reversion toward the wild type when compensation is only partial. However, the existence of even a single fully compensatory mutation is associated with a dramatically decreased probability of reversion to the wild type. These findings help to explain specific results from experimental evolution, where compensation was observed in nonmutator strains, but reversion (sometimes with compensation) was observed in mutator strains, indicating that real-world compensatory mutations are often unable to fully alleviate the costs associated with adaptation. Our findings emphasize the potential role of the supply and quality of mutations in crafting the dynamics of adaptation and reversal, with implications for theoretical population genetics and for biomedical contexts like the evolution of antibiotic resistance.
Collapse
Affiliation(s)
- Pleuni S Pennings
- Corresponding author: Department of Biology, San Francisco State University, San Francisco, CA 94132, USA.
| | | | | |
Collapse
|
49
|
Jangir PK, Yang Q, Shaw LP, Caballero JD, Ogunlana L, Wheatley R, Walsh T, MacLean RC. Pre-existing chromosomal polymorphisms in pathogenic E. coli potentiate the evolution of resistance to a last-resort antibiotic. eLife 2022; 11:e78834. [PMID: 35943060 PMCID: PMC9363117 DOI: 10.7554/elife.78834] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/22/2022] [Indexed: 12/17/2022] Open
Abstract
Bacterial pathogens show high levels of chromosomal genetic diversity, but the influence of this diversity on the evolution of antibiotic resistance by plasmid acquisition remains unclear. Here, we address this problem in the context of colistin, a 'last line of defence' antibiotic. Using experimental evolution, we show that a plasmid carrying the MCR-1 colistin resistance gene dramatically increases the ability of Escherichia coli to evolve high-level colistin resistance by acquiring mutations in lpxC, an essential chromosomal gene involved in lipopolysaccharide biosynthesis. Crucially, lpxC mutations increase colistin resistance in the presence of the MCR-1 gene, but decrease the resistance of wild-type cells, revealing positive sign epistasis for antibiotic resistance between the chromosomal mutations and a mobile resistance gene. Analysis of public genomic datasets shows that lpxC polymorphisms are common in pathogenic E. coli, including those carrying MCR-1, highlighting the clinical relevance of this interaction. Importantly, lpxC diversity is high in pathogenic E. coli from regions with no history of MCR-1 acquisition, suggesting that pre-existing lpxC polymorphisms potentiated the evolution of high-level colistin resistance by MCR-1 acquisition. More broadly, these findings highlight the importance of standing genetic variation and plasmid/chromosomal interactions in the evolutionary dynamics of antibiotic resistance.
Collapse
Affiliation(s)
- Pramod K Jangir
- Department of Zoology, University of OxfordOxfordUnited Kingdom
| | - Qiue Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Liam P Shaw
- Department of Zoology, University of OxfordOxfordUnited Kingdom
| | | | - Lois Ogunlana
- Department of Zoology, University of OxfordOxfordUnited Kingdom
| | - Rachel Wheatley
- Department of Zoology, University of OxfordOxfordUnited Kingdom
| | - Timothy Walsh
- Department of Zoology, University of OxfordOxfordUnited Kingdom
| | - R Craig MacLean
- Department of Zoology, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
50
|
Zong S, Xu D, Zheng X, Zaeim D, Wang P, Han J, Qu D. The diversity in antimicrobial resistance of MDR Enterobacteriaceae among Chinese broiler and laying farms and two mcr-1 positive plasmids revealed their resistance-transmission risk. Front Microbiol 2022; 13:912652. [PMID: 35992687 PMCID: PMC9387725 DOI: 10.3389/fmicb.2022.912652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
This research aimed to investigate the microbial composition and diversity of antimicrobial resistance genes (ARGs) found in Chinese broiler and layer family poultry farms. We focused on the differences in resistance phenotypes and genotypes of multidrug-resistant Enterobacteriaceae (MDRE) isolated from the two farming environments and the existence and transmissibility of colistin resistance gene mcr-1. Metagenomic analysis showed that Firmicutes and Bacteroides were the dominant bacteria in broiler and layer farms. Many aminoglycoside and tetracycline resistance genes were accumulated in these environments, and their absolute abundance was higher in broiler than in layer farms. A total of 526 MDRE were isolated with a similar distribution in both farms. The results of the K-B test showed that the resistance rate to seven antimicrobials including polymyxin B and meropenem in broiler poultry farms was significantly higher than that in layer poultry farms (P ≤ 0.05). PCR screening results revealed that the detection rates of mcr-1, aph(3’)Ia, aadA2, blaoxa–1, blaCTX–M, fosB, qnrD, sul1, tetA, and catA1 in broiler source MDRE were significantly higher than those in layers (P ≤0.05). A chimeric plasmid p20432-mcr which carried the novel integron In1866 was isolated from broiler source MDRE. The high frequency of conjugation (10–1 to 10–3) and a wide range of hosts made p20432-mcr likely to play an essential role in the high detection rate of mcr-1, aph(3’)-Ia, and aadA2 in broiler farms. These findings will help optimize disinfection and improve antimicrobial-resistant bacteria surveillance programs in poultry farms, especially broilers.
Collapse
Affiliation(s)
- Shuaizhou Zong
- Key Laboratory of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Dingting Xu
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiner Zheng
- Key Laboratory of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Davood Zaeim
- Key Laboratory of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Peng Wang
- Key Laboratory of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianzhong Han
- Key Laboratory of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Daofeng Qu
- Key Laboratory of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- *Correspondence: Daofeng Qu,
| |
Collapse
|