1
|
Odongo K, Harada N, Yamaji R, Yamashita Y, Ashida H. Theaflavin 3'-gallate activates G protein-coupled receptor 55 (GPR55) and enhances GLP-1 secretion via Ca 2+/CaMKII/ERK signaling in enteroendocrine STC-1 cells, mitigating postprandial hyperglycemia in mice. Food Funct 2025; 16:2487-2502. [PMID: 40025990 DOI: 10.1039/d4fo06162d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
The antihyperglycemic effect of black tea is well-known, and theaflavins (TFs) are considered active compounds. It is, however, unclear whether glucagon-like peptide-1 (GLP-1) is involved in the antihyperglycemic effects of TFs. We demonstrate that TFs suppress postprandial hyperglycemia by stimulating GLP-1 secretion in mice. In STC-1 cells, theaflavin 3'-gallate (TF2B), possessing a galloyl group at the 3'-position, showed the strongest effect on GLP-1 secretion among the four TFs. TF2B activated G protein-coupled receptor 55 (GPR55) and was confirmed to bind to the receptor, notably exhibiting the highest binding affinity. Moreover, GPR55 antagonist canceled TF2B-induced GLP-1 secretion. Downstream, TF2B increased intracellular Ca2+ levels and activated the Ca2+/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated kinases 1/2 (ERK1/2) pathways. Inhibitors of Ca2+ signaling, CaMKII, and ERK pathways abolished TF2B-stimulated GLP-1 secretion. These findings suggest that TF2B from black tea prevents hyperglycemia through GPR55-dependent stimulation of GLP-1 secretion via Ca2+-Ca2+/CaMKII and ERK1/2 pathways.
Collapse
Affiliation(s)
- Kevin Odongo
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, 657-8501, Japan.
| | - Naoki Harada
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan
| | - Ryoichi Yamaji
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan
| | - Yoko Yamashita
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, 657-8501, Japan.
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, 657-8501, Japan.
- Faculty of Food Science and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, 663-8558, Japan.
| |
Collapse
|
2
|
Dobani S, Kirsty Pourshahidi L, Ternan NG, McDougall GJ, Pereira-Caro G, Bresciani L, Mena P, Almutairi TM, Crozier A, Tuohy KM, Del Rio D, Gill CIR. A review on the effects of flavan-3-ols, their metabolites, and their dietary sources on gut barrier integrity. Food Funct 2025; 16:815-830. [PMID: 39807528 DOI: 10.1039/d4fo04721d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Impairment of gut barrier integrity is associated with the pathogenesis of gastrointestinal diseases, including inflammatory bowel disease, colorectal cancer, and coeliac disease. While many aspects of diet have been linked to improved barrier function, (poly)phenols, a broad group of bioactive phytochemicals, are of potential interest. The (poly)phenolic sub-class, flavan-3-ols, have been investigated in some detail owing to their abundance in commonly consumed foods, including grapes, tea, apples, cocoa, berries, and nuts. This review summarises studies on the effects of flavan-3-ols, their microbiome-mediated metabolites, and food sources of these compounds, on gut barrier structure. Extensive evidence demonstrates that flavan-3-ol rich foods, individual flavan-3-ols (e.g., (epi)catechin, epi(gallo)catechin-3-O-gallate, and pro(antho)cyanidins), and their related microbiota-mediated metabolites, could be effective in protecting and restoring the integrity of the gut barrier. In this context, various endpoints are assessed, including transepithelial electrical resistance of the epithelial layer and expression of tight junction proteins and mucins, in ex vivo, in vitro, and animal models. The differences in bioactivity reported for barrier integrity are structure-function dependent, related to the (poly)phenolic source or the tested compound, as well as their dose, exposure time, and presence or absence of a stressor in the experimental system. Overall, these results suggest that flavan-3-ols and related compounds could help to maintain, protect, and restore gut barrier integrity, indicating that they might contribute to the beneficial properties associated with the intake of their dietary sources. However, rigorous and robustly designed human intervention studies are needed to confirm these experimental observations.
Collapse
Affiliation(s)
- Sara Dobani
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK.
| | - L Kirsty Pourshahidi
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK.
| | - Nigel G Ternan
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK.
| | - Gordon J McDougall
- Environmental and Biochemical Sciences Department, The James Hutton Institute, Invergowrie, Dundee, UK
| | - Gema Pereira-Caro
- Department of Agroindustry and Food Quality, IFAPA-Alameda Del Obispo, Córdoba, Spain
| | - Letizia Bresciani
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
- Microbiome Research Hub, Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Alan Crozier
- Department of Chemistry, King Saud University Riyadh, Saudi Arabia
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
| | - Kieran M Tuohy
- School of Food Science & Nutrition, University of Leeds, Leeds, UK
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
- Microbiome Research Hub, Department of Food and Drug, University of Parma, Parma, Italy
| | - Chris I R Gill
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK.
| |
Collapse
|
3
|
Muta O, Oyama S, Odaka M, Shimizu K, Katsuragawa S, Suzuki K, Fushimi T, Fujii Y, Akagi R, Osakabe N. Cinnamtannin A2, (-)-epicatechin tetramer, attenuates skeletal muscle wasting in disuse atrophy model mice induced by hindlimb suspension. J Clin Biochem Nutr 2023; 73:124-130. [PMID: 37700845 PMCID: PMC10493217 DOI: 10.3164/jcbn.23-12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/08/2023] [Indexed: 09/14/2023] Open
Abstract
The impact of repeated administration of cinntamtannin A2 (A2, 25 μg/kg) on skeletal muscle disuse atrophy model mice induced by hindlimb suspension for 14 days was examined. In soleus, weight loss and a reduction in the average myofibre size with shifting to the smaller side of the peak were observed in the suspension-vehicle group, but A2 reduced these changes. Average myofibre size significantly increased in ground-A2 compared to ground-vehicle. A marked increase in the dephosphorylation of forkhead box O (FoxO) 3a by the suspension was reduced by A2. The phosphorylation of protein kinase B (Akt) and eukaryotic translation initiation factor 4E-binding protein (4EBP)-1 were significantly increased by the treatment of A2. In addition, a single dose of A2 increased dramatically in the 24-h excretion of catecholamines in urine. These results suggest that A2 administration results in sympathetic nerve activation and promotes hypertrophy while inhibiting the progress of disuse muscle atrophy.
Collapse
Affiliation(s)
- Orie Muta
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minumaku, Saitama 337-8570, Japan
| | - Shiori Oyama
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minumaku, Saitama 337-8570, Japan
| | - Minayu Odaka
- Department of Bio-science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minumaku, Saitama 337-8570, Japan
| | - Kenta Shimizu
- Department of Bio-science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minumaku, Saitama 337-8570, Japan
| | - Sae Katsuragawa
- Department of Bio-science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minumaku, Saitama 337-8570, Japan
| | - Kenta Suzuki
- Department of Bio-science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minumaku, Saitama 337-8570, Japan
| | - Taiki Fushimi
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minumaku, Saitama 337-8570, Japan
| | - Yasuyuki Fujii
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minumaku, Saitama 337-8570, Japan
| | - Ryota Akagi
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minumaku, Saitama 337-8570, Japan
- Department of Bio-science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minumaku, Saitama 337-8570, Japan
| | - Naomi Osakabe
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minumaku, Saitama 337-8570, Japan
- Department of Bio-science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minumaku, Saitama 337-8570, Japan
| |
Collapse
|
4
|
Odongo K, Hironao KY, Yamashita Y, Ashida H. Development of sandwich ELISAs for detecting glucagon-like peptide-1 secretion from intestinal L-cells and their application in STC-1 cells and mice. J Clin Biochem Nutr 2023; 72:28-38. [PMID: 36777078 PMCID: PMC9899920 DOI: 10.3164/jcbn.22-78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/03/2022] [Indexed: 11/05/2022] Open
Abstract
Certain nutrients stimulate glucagon-like peptide-1 (GLP-1) secretion from the intestinal enteroendocrine L-cells, but due to rapid degradation by the DPP-4 enzyme, >90% is converted to inactive metabolite before reaching the target organs via circulation. Plants are a source of potent bioactive compounds that promote endogenous secretion of GLP-1 from L-cells. To search for the effective bioactive compound from a vast library of natural compounds, a reliable and low-cost assay is required considering the high cost of commercial assays. We developed a low-cost sandwich enzyme-linked immunosorbent assays (s-ELISAs) for detecting 'total', 'sensitive active', and 'wide-range active' GLP-1. The s-ELISAs exhibited high sensitivity with measurement ranges between 0.94~240, 0.98~62.5, and 4.8~4,480 pmol/L, respectively. High precision was observed; i.e., CVs within 5% and 20% for intra- and inter-assay variations, respectively, and excellent recovery of exogenous GLP-1 from assay buffer. The developed s-ELISAs had the same performance as the commercial kits and approximately 80% cheaper cost. For their application, cinnamtannin A2-induced GLP-1 secretion was confirmed in STC-1 cells consistent with our previous findings. The s-ELISAs were further validated by measuring plasma GLP-1 level in mice after oral administration of black soy bean seed coat extract containing cinnamtannin A2.
Collapse
Affiliation(s)
- Kevin Odongo
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Ken-yu Hironao
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yoko Yamashita
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
5
|
Kumari M, Siddiqui MA, Gupta A. Recent Advancement and Novel Application of Natural Polyphenols for the Treatment of Allergy Asthma: From Phytochemistry to Biological Implications. Crit Rev Immunol 2023; 43:29-41. [PMID: 37830192 DOI: 10.1615/critrevimmunol.2023050289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Allergic diseases, primarily IgE-mediated, exert a substantial global health burden. A pivotal role in allergic reactions is played by mast cells, with histamine serving as a central mediator. Within this context, plant-based polyphenols, abundantly present in vegetables and fruits, show promising potential for allergy prevention. These natural compounds, particularly flavonoids, possess anti-inflammatory and anti-allergic properties, influencing dendritic cells, modulating macrophages, and fostering the proliferation of B cells and T cells. The potent anti-allergic effects of flavonoids are attributed to their ability to reduce the production of signaling factors, suppress cytokine production, and regulate signal transduction and gene expression in mast cells, basophils, and T cells. Notably, their benefits extend beyond allergy prevention, as they hold promise in the prevention and treatment of autoimmune illnesses such as diabetes, rheumatoid arthritis, and multiple sclerosis. In the context of allergic reactions and autoimmune diseases, polyphenols exhibit immunomodulatory effects by inhibiting autoimmune T cell proliferation and downregulating pro-inflammatory cytokines. In recent times, flavonoids, being the most prevalent polyphenols in food, have garnered significant attention from researchers due to their potential health advantages. This review compiles the latest scientific research to highlight the impact of flavonoids on allergic illnesses and their potential as a beneficial dietary component.
Collapse
Affiliation(s)
- Meera Kumari
- Goel Institute of Pharmacy & Sciences, Lucknow, India
| | | | - Amresh Gupta
- Goel Institute of Pharmacy & Sciences, Lucknow, India
| |
Collapse
|
6
|
Li T, Zhao Y, Yuan L, Zhang D, Feng Y, Hu H, Hu D, Liu J. Total dietary flavonoid intake and risk of cardiometabolic diseases: A dose-response meta-analysis of prospective cohort studies. Crit Rev Food Sci Nutr 2022; 64:2760-2772. [PMID: 36148848 DOI: 10.1080/10408398.2022.2126427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Several epidemiological studies have suggested that flavonoid intake is associated with a decreased risk of cardiometabolic disease. However, the results remained inconsistent and there is no dose-response meta-analysis for specific outcomes. We conducted a meta-analysis to synthesize the knowledge about their associations and to explore their dose-response relationships. We comprehensively searched the PubMed, Embase, and Web of Science databases for prospective cohort studies published up to December 1, 2021. Summary relative risks (RR) and 95% confidence intervals (CI) were pooled for the association between flavonoid intake and cardiometabolic disease. Evaluations of linear or nonlinear dose-response were presented by restricted cubic splines. We identified 47 articles, including 1,346 676 participants and 127,507 cases in this meta-analysis. The summary of RR per 500 mg/d increase in flavonoid intake was 0.93 (95% CI 0.88-0.98) for cardiovascular disease, 0.89 (95% CI 0.84-0.94) for diabetes, and 0.97 (95% CI 0.94-0.99) for hypertension, respectively. We also found a linearity dose-response association between total flavonoid intake and cardiovascular disease (p nonlinearity = 0.541), and diabetes (p nonlinearity = 0.077). Our finding based on quantitative data suggested that a higher level of flavonoid intake is beneficial for the prevention of cardiometabolic diseases.
Collapse
Affiliation(s)
- Tianze Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yang Zhao
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Lijun Yuan
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Dongdong Zhang
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Yifei Feng
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Huifang Hu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Dongsheng Hu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Jiaye Liu
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Lange KW. Tea in cardiovascular health and disease: a critical appraisal of the evidence. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Zineb OY, Rashwan AK, Karim N, Lu Y, Tangpong J, Chen W. Recent Developments in Procyanidins on Metabolic Diseases, Their Possible Sources, Pharmacokinetic Profile, and Clinical Outcomes. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2062770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ould Yahia Zineb
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Ahmed K. Rashwan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Department of Food and Dairy Sciences, Faculty of Agriculture, South Valley University, Qena 83523, Egypt
| | - Naymul Karim
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yang Lu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jitbanjong Tangpong
- Biomedical Sciences, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Wei Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Biomedical Sciences, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand
| |
Collapse
|
9
|
Ticinesi A, Mancabelli L, Carnevali L, Nouvenne A, Meschi T, Del Rio D, Ventura M, Sgoifo A, Angelino D. Interaction Between Diet and Microbiota in the Pathophysiology of Alzheimer's Disease: Focus on Polyphenols and Dietary Fibers. J Alzheimers Dis 2022; 86:961-982. [PMID: 35147544 DOI: 10.3233/jad-215493] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Animal studies increasingly indicate that the gut microbiota composition and function can be involved in the pathophysiology and progression of Alzheimer's disease (AD) at multiple levels. However, few studies have investigated this putative gut-brain axis in human beings, and none of them considered diet as a determinant of intestinal microbiota composition. Epidemiological studies highlight that a high intake of fruit and vegetables, such as that typical of the Mediterranean diet, can modulate AD progression. Thus, nutritional interventions are being increasingly studied as a possible non-pharmacological strategy to slow down the progression of AD. In particular, polyphenols and fibers represent the nutritional compounds with the higher potential of counterbalancing the pathophysiological mechanisms of dementia due to their antioxidant, anti-inflammatory, and anti-apoptotic properties. These actions are mediated by the gut microbiota, that can transform polyphenols and fibers into biologically active compounds including, among others, phenyl-γ-valerolactones, urolithins, butyrate, and other short-chain fatty acids. In this review, the complex mechanisms linking nutrition, gut microbiota composition, and pathophysiology of cognitive decline in AD are discussed, with a particular focus on the role of polyphenols and fibers. The gaps between pre-clinical and clinical studies are particularly emphasized, as well as the urgent need for studies comprehensively evaluating the link between nutrition, microbiome, and clinical aspects of AD.
Collapse
Affiliation(s)
- Andrea Ticinesi
- University of Parma, Microbiome Research Hub, Parma, Italy.,University of Parma, Department of Medicine and Surgery, Parma, Italy.,Parma University-Hospital, Geriatric-Rehabilitation Department, Parma, Italy
| | - Leonardo Mancabelli
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parma, Italy
| | - Luca Carnevali
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parma, Italy
| | - Antonio Nouvenne
- University of Parma, Microbiome Research Hub, Parma, Italy.,University of Parma, Department of Medicine and Surgery, Parma, Italy.,Parma University-Hospital, Geriatric-Rehabilitation Department, Parma, Italy
| | - Tiziana Meschi
- University of Parma, Microbiome Research Hub, Parma, Italy.,University of Parma, Department of Medicine and Surgery, Parma, Italy.,Parma University-Hospital, Geriatric-Rehabilitation Department, Parma, Italy
| | - Daniele Del Rio
- University of Parma, Microbiome Research Hub, Parma, Italy.,University of Parma, Department of Food and Drugs, Parma, Italy
| | - Marco Ventura
- University of Parma, Microbiome Research Hub, Parma, Italy.,University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parma, Italy
| | - Andrea Sgoifo
- University of Parma, Microbiome Research Hub, Parma, Italy.,University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parma, Italy
| | - Donato Angelino
- University of Teramo, Faculty of Bioscience and Technology for Food, Agriculture and Environment, Teramo, Italy
| |
Collapse
|
10
|
Hejazi J, Hosseinpour-Niazi S, Yuzbashian E, Mirmiran P, Azizi F. The protective effects of dietary intake of flavonoids and its subclasses on metabolic syndrome incidence. Int J Food Sci Nutr 2022; 73:116-126. [PMID: 34096437 DOI: 10.1080/09637486.2021.1928008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
This study aimed to evaluate the association between the intake of total flavonoids and flavonoid subclasses and metabolic syndrome (MetS) risk and to assess the modulating effects of lifestyle factors on these associations. A total of 1915 participants from the Tehran Lipid and Glucose Study were followed-up during 2006-2008 and 2016-2018. Their dietary intake was assessed by a food frequency questionnaire at baseline and within three-year intervals afterward. Moreover, the modifying effect of weight gain on the association between total flavonoids and MetS was assessed by Cox regression analysis. Participants in the highest tertile of flavonoid, flavonol, and flavone had a significantly lower MetS risk as compared to those in the lowest tertile. Also, in participants with weight gain <7%, all flavonoid subclasses had a more pronounced risk-reducing effect. Overall, the total flavonoid, flavonol, and flavone reduced the risk of MetS; this association could be modified by weight gain.
Collapse
Affiliation(s)
- Jalal Hejazi
- Department of Nutrition, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Somayeh Hosseinpour-Niazi
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Emad Yuzbashian
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Luo Y, Jian Y, Liu Y, Jiang S, Muhammad D, Wang W. Flavanols from Nature: A Phytochemistry and Biological Activity Review. Molecules 2022; 27:719. [PMID: 35163984 PMCID: PMC8838462 DOI: 10.3390/molecules27030719] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/19/2022] Open
Abstract
Flavanols, a common class of secondary plant metabolites, exhibit several beneficial health properties by acting as antioxidant, anticarcinogen, cardioprotective, anti-microbial, anti-viral, and neuroprotective agents. Furthermore, some flavanols are considered functional ingredients in dairy products. Based on their structural features and health-promoting functions, flavanols have gained the attention of pharmacologists and botanists worldwide. This review collects and summarizes 121 flavanols comprising four categories: flavan-3-ols, flavan-4-ols, isoflavan-4-ols, and flavan-3,4-ols. The research of the various structural features and pharmacological activities of flavanols and their derivatives aims to lay the groundwork for subsequent research and expect to provide mentality and inspiration for the research. The current study provides a starting point for further research and development.
Collapse
Affiliation(s)
| | - Yuqing Jian
- Correspondence: (Y.J.); (W.W.); Tel.: +86-150-8486-8970 (Y.J.); +86-136-5743-8606 (W.W.)
| | | | | | | | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.L.); (Y.L.); (S.J.); (D.M.)
| |
Collapse
|
12
|
Almanza-Aguilera E, Ceballos-Sánchez D, Achaintre D, Rothwell JA, Laouali N, Severi G, Katzke V, Johnson T, Schulze MB, Palli D, Gargano G, de Magistris MS, Tumino R, Sacerdote C, Scalbert A, Zamora-Ros R. Urinary Concentrations of (+)-Catechin and (-)-Epicatechin as Biomarkers of Dietary Intake of Flavan-3-ols in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study. Nutrients 2021; 13:4157. [PMID: 34836412 PMCID: PMC8624971 DOI: 10.3390/nu13114157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 01/10/2023] Open
Abstract
This study examines the correlation of acute and habitual dietary intake of flavan-3-ol monomers, proanthocyanidins, theaflavins, and their main food sources with the urinary concentrations of (+)-catechin and (-)-epicatechin in the European Prospective Investigation into Cancer and Nutrition study (EPIC). Participants (N = 419, men and women) provided 24-h urine samples and completed a 24-h dietary recall (24-HDR) on the same day. Acute and habitual dietary data were collected using a standardized 24-HDR software and a validated dietary questionnaire, respectively. Intake of flavan-3-ols was estimated using the Phenol-Explorer database. Concentrations of (+)-catechin and (-)-epicatechin in 24-h urine were analyzed using tandem mass spectrometry after enzymatic deconjugation. Simple and partial Spearman's correlations showed that urinary concentrations of (+)-catechin, (-)-epicatechin and their sum were more strongly correlated with acute than with habitual intake of individual and total monomers (acute rpartial = 0.13-0.54, p < 0.05; and habitual rpartial = 0.14-0.28, p < 0.01), proanthocyanidins (acute rpartial = 0.24-0.49, p < 0.001; and habitual rpartial = 0.10-0.15, p < 0.05), theaflavins (acute rpartial = 0.22-0.31, p < 0.001; and habitual rpartial = 0.20-0.26, p < 0.01), and total flavan-3-ols (acute rpartial = 0.40-0.48, p < 0.001; and habitual rpartial = 0.23-0.33, p < 0.001). Similarly, urinary concentrations of flavan-3-ols were weakly correlated with both acute (rpartial = 0.12-0.30, p < 0.05) and habitual intake (rpartial = 0.10-0.27, p < 0.05) of apple and pear, stone fruits, berries, chocolate and chocolate products, cakes and pastries, tea, herbal tea, wine, red wine, and beer and cider. Moreover, all comparable correlations were stronger for urinary (-)-epicatechin than for (+)-catechin. In conclusion, our data support the use of urinary concentrations of (+)-catechin and (-)-epicatechin, especially as short-term nutritional biomarkers of dietary catechin, epicatechin and total flavan-3-ol monomers.
Collapse
Affiliation(s)
- Enrique Almanza-Aguilera
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (E.A.-A.); (D.C.-S.)
| | - Daniela Ceballos-Sánchez
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (E.A.-A.); (D.C.-S.)
| | - David Achaintre
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France; (D.A.); (A.S.)
| | - Joseph A Rothwell
- UVSQ, Inserm, CESP U1018, “Exposome and Heredity” Team, Université Paris-Saclay, Gustave Roussy, 94800 Villejuif, France; (J.A.R.); (N.L.); (G.S.)
| | - Nasser Laouali
- UVSQ, Inserm, CESP U1018, “Exposome and Heredity” Team, Université Paris-Saclay, Gustave Roussy, 94800 Villejuif, France; (J.A.R.); (N.L.); (G.S.)
| | - Gianluca Severi
- UVSQ, Inserm, CESP U1018, “Exposome and Heredity” Team, Université Paris-Saclay, Gustave Roussy, 94800 Villejuif, France; (J.A.R.); (N.L.); (G.S.)
- Department of Statistics, Computer Science, Applications “G. Parenti” (DISIA), University of Florence, 50121 Florence, Italy
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (V.K.); (T.J.)
| | - Theron Johnson
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (V.K.); (T.J.)
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany;
- Institute of Nutritional Science, University of Potsdam, 14469 Potsdam, Germany
| | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), 50139 Florence, Italy;
| | - Giuliana Gargano
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | | | - Rosario Tumino
- Cancer Registry and Histopathology Department, Provincial Health Authority (ASP 7), 97100 Ragusa, Italy;
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital, 10126 Turin, Italy;
| | - Augustin Scalbert
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France; (D.A.); (A.S.)
| | - Raul Zamora-Ros
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (E.A.-A.); (D.C.-S.)
| |
Collapse
|
13
|
Cladis DP, Weaver CM, Ferruzzi MG. (Poly)phenol toxicity in vivo following oral administration: A targeted narrative review of (poly)phenols from green tea, grape, and anthocyanin-rich extracts. Phytother Res 2021; 36:323-335. [PMID: 34725890 DOI: 10.1002/ptr.7323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/20/2022]
Abstract
Fruit- and vegetable-derived (poly)phenols are secondary plant metabolites that may have beneficial effects on human health when consumed regularly. Recent years have seen rapid growth in both consumer demand for and research interest in (poly)phenol-rich dietary supplements, natural colorants, and functional foods. As these products continue to enter the marketplace and (poly)phenol intake patterns change from traditional food products to these sources, attention must be paid to the potential for toxicity from consuming elevated doses of (poly)phenols. To date, much remains unknown regarding the safety of high doses of (poly)phenols, especially in vivo. In this targeted narrative review, we summarize evidence from in vivo investigations of (poly)phenol toxicity after oral administration of green tea extracts, grape-derived phenolics, and anthocyanin-rich extracts. There is limited evidence of overt toxicity from oral ingestion of these (poly)phenol-rich sources, though more research on the safety of high doses-as well as defining what constitutes a "high" dose of both individual and complex mixtures of (poly)phenols-is needed before these observations can be used to create dietary guidance for consumers.
Collapse
Affiliation(s)
- Dennis P Cladis
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - Connie M Weaver
- Department of Food Science, Purdue University, Lafayette, Indiana, USA
| | - Mario G Ferruzzi
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA
| |
Collapse
|
14
|
Liu X, Le Bourvellec C, Guyot S, Renard CMGC. Reactivity of flavanols: Their fate in physical food processing and recent advances in their analysis by depolymerization. Compr Rev Food Sci Food Saf 2021; 20:4841-4880. [PMID: 34288366 DOI: 10.1111/1541-4337.12797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/22/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022]
Abstract
Flavanols, a subgroup of polyphenols, are secondary metabolites with antioxidant properties naturally produced in various plants (e.g., green tea, cocoa, grapes, and apples); they are a major polyphenol class in human foods and beverages, and have recognized effect on maintaining human health. Therefore, it is necessary to evaluate their changes (i.e., oxidation, polymerization, degradation, and epimerization) during various physical processing (i.e., heating, drying, mechanical shearing, high-pressure, ultrasound, and radiation) to improve the nutritional value of food products. However, the roles of flavanols, in particular for their polymerized forms, are often underestimated, for a large part because of analytical challenges: they are difficult to extract quantitatively, and their quantification demands chemical reactions. This review examines the existing data on the effects of different physical processing techniques on the content of flavanols and highlights the changes in epimerization and degree of polymerization, as well as some of the latest acidolysis methods for proanthocyanidin characterization and quantification. More and more evidence show that physical processing can affect content but also modify the structure of flavanols by promoting a series of internal reactions. The most important reactivity of flavanols in processing includes oxidative coupling and rearrangements, chain cleavage, structural rearrangements (e.g., polymerization, degradation, and epimerization), and addition to other macromolecules, that is, proteins and polysaccharides. Some acidolysis methods for the analysis of polymeric proanthocyanidins have been updated, which has contributed to complete analysis of proanthocyanidin structures in particular regarding their proportion of A-type proanthocyanidins and their degree of polymerization in various plants. However, future research is also needed to better extract and characterize high-polymer proanthocyanidins, whether in their native or modified forms.
Collapse
Affiliation(s)
- Xuwei Liu
- INRAE, Avignon University, UMR408 SQPOV, Avignon, France
| | | | - Sylvain Guyot
- INRAE, UR1268 BIA, Team Polyphenol, Reactivity & Processing (PRP), Le Rheu, France
| | - Catherine M G C Renard
- INRAE, Avignon University, UMR408 SQPOV, Avignon, France.,INRAE, TRANSFORM, Nantes, France
| |
Collapse
|
15
|
Koizumi R, Fushimi T, Sato Y, Fujii Y, Sato H, Osakabe N. Relationship between hemodynamic alteration and sympathetic nerve activation following a single oral dose of cinnamtannin A2. Free Radic Res 2021; 55:491-498. [PMID: 32321314 DOI: 10.1080/10715762.2020.1759805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We previously found that a single dose of B-type procyanidin mixture increase in skeletal muscle blood flow (BF). We compared BF changes following administration of (-)-epicatechin (EC, monomer) and the B-type procyanidins procyanidin B2 (B2, dimer), procyanidin C1 (C1, trimer), and cinnamtannin A2 (A2, tetramer). Each chemical was administered orally to rats, followed by BF measurement in cremaster arteriole for 60 min. About 10 and 100 µg/kg of B2 and C1 elicited BF increase, the effect was potent at 100 µg/kg. BF also increased significantly after administration of 10 µg/kg A2, but not with the administration at 100 µg/kg. EC yielded no BF changes. Co-treatment with the nonselective adrenaline blocker carvedilol attenuated the BF increase seen with 10 µg/kg A2 treatment. This outcome suggested the involvement of sympathetic nerve activation in the BF increase by this dose of A2. Co-treatment of 100 µg/kg A2 with the α2 blocker yohimbine exhibited an increase of BF significantly. The α2 adrenaline receptor in the vasomotor centre is an inhibitory receptor and it regulates hemodynamics. This result suggested that high doses of A2 did not alter BF because of activating the α2 adrenergic receptor. Phosphorylation of aortic endothelial nitric oxide synthase (eNOS) increased with 10 µg/kg A2 alone or co-treatment with 100 µg/kg A2 and yohimbine, but not with co-treatment of 10 µg/kg A2 and carvedilol or 100 µg/kg A2 alone. These results imply that A2 does not directly activate eNOS, but that shear stress from the increased BF might be associated with eNOS phosphorylation.
Collapse
Affiliation(s)
- Ryo Koizumi
- Department of Bio-science and Engineering, Shibaura Institute of Technology, Saitama, Japan
| | - Taiki Fushimi
- Department of Bio-science and Engineering, Shibaura Institute of Technology, Saitama, Japan
| | - Yuki Sato
- Department of Bio-science and Engineering, Shibaura Institute of Technology, Saitama, Japan
| | - Yasuyuki Fujii
- Department of Bio-science and Engineering, Shibaura Institute of Technology, Saitama, Japan
| | - Hiroki Sato
- Department of Bio-science and Engineering, Shibaura Institute of Technology, Saitama, Japan
| | - Naomi Osakabe
- Department of Bio-science and Engineering, Shibaura Institute of Technology, Saitama, Japan
| |
Collapse
|
16
|
Balakrishnan R, Azam S, Cho DY, Su-Kim I, Choi DK. Natural Phytochemicals as Novel Therapeutic Strategies to Prevent and Treat Parkinson's Disease: Current Knowledge and Future Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6680935. [PMID: 34122727 PMCID: PMC8169248 DOI: 10.1155/2021/6680935] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/14/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is the second-most common neurodegenerative chronic disease affecting both cognitive performance and motor functions in aged people. Yet despite the prevalence of this disease, the current therapeutic options for the management of PD can only alleviate motor symptoms. Research has explored novel substances for naturally derived antioxidant phytochemicals with potential therapeutic benefits for PD patients through their neuroprotective mechanism, targeting oxidative stress, neuroinflammation, abnormal protein accumulation, mitochondrial dysfunction, endoplasmic reticulum stress, neurotrophic factor deficit, and apoptosis. The aim of the present study is to perform a comprehensive evaluation of naturally derived antioxidant phytochemicals with neuroprotective or therapeutic activities in PD, focusing on their neuropharmacological mechanisms, including modulation of antioxidant and anti-inflammatory activity, growth factor induction, neurotransmitter activity, direct regulation of mitochondrial apoptotic machinery, prevention of protein aggregation via modulation of protein folding, modification of cell signaling pathways, enhanced systemic immunity, autophagy, and proteasome activity. In addition, we provide data showing the relationship between nuclear factor E2-related factor 2 (Nrf2) and PD is supported by studies demonstrating that antiparkinsonian phytochemicals can activate the Nrf2/antioxidant response element (ARE) signaling pathway and Nrf2-dependent protein expression, preventing cellular oxidative damage and PD. Furthermore, we explore several experimental models that evaluated the potential neuroprotective efficacy of antioxidant phytochemical derivatives for their inhibitory effects on oxidative stress and neuroinflammation in the brain. Finally, we highlight recent developments in the nanodelivery of antioxidant phytochemicals and its neuroprotective application against pathological conditions associated with oxidative stress. In conclusion, naturally derived antioxidant phytochemicals can be considered as future pharmaceutical drug candidates to potentially alleviate symptoms or slow the progression of PD. However, further well-designed clinical studies are required to evaluate the protective and therapeutic benefits of phytochemicals as promising drugs in the management of PD.
Collapse
Affiliation(s)
- Rengasamy Balakrishnan
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| | - Shofiul Azam
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - Duk-Yeon Cho
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - In Su-Kim
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
17
|
Gong X, Xu L, Fang X, Zhao X, Du Y, Wu H, Qian Y, Ma Z, Xia T, Gu X. Protective effects of grape seed procyanidin on isoflurane-induced cognitive impairment in mice. PHARMACEUTICAL BIOLOGY 2020; 58:200-207. [PMID: 32114864 PMCID: PMC7067175 DOI: 10.1080/13880209.2020.1730913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 10/23/2019] [Accepted: 02/12/2020] [Indexed: 05/24/2023]
Abstract
Context: Oxidative imbalance-induced cognitive impairment is among the most urgent clinical concerns. Isoflurane has been demonstrated to impair cognitive function via an increase in oxidative stress. GSP has strong antioxidant capacities, suggesting potential cognitive benefits.Objective: This study investigates whether GSP pre-treatment can alleviate isoflurane-induced cognitive dysfunction in mice.Materials and methods: C57BL/6J mice were pre-treated with either GSP 25-100 mg/kg/d for seven days or GSP 100-400 mg/kg as a single dose before the 6 h isoflurane anaesthesia. Cognitive functioning was examined using the fear conditioning tests. The levels of SOD, p-NR2B and p-CREB in the hippocampus were also analysed.Results: Pre-treatment with either a dose of GSP 50 mg/kg/d for seven days or a single dose of GSP 200 mg/kg significantly increased the % freezing time in contextual tests on the 1st (72.18 ± 12.39% vs. 37.60 ± 8.93%; 78.27 ± 8.46% vs. 52.72 ± 2.64%), 3rd (93.80 ± 7.62% vs. 52.94 ± 14.10%; 87.65 ± 10.86% vs. 52.89 ± 1.73%) and 7th (91.36 ± 5.31% vs. 64.09 ± 14.46%; 93.78 ± 3.92% vs. 79.17 ± 1.79%) day after anaesthesia. In the hippocampus of mice exposed to isoflurane, GSP 200 mg/kg increased the total SOD activity on the 1st and 3rd day and reversed the decreased activity of the NR2B/CREB pathway.Discussion and conclusions: These findings suggest that GSP improves isoflurane-induced cognitive dysfunction by protecting against perturbing antioxidant enzyme activities and NR2B/CREB pathway. Therefore, GSP may possess a potential prophylactic role in isoflurane-induced and other oxidative stress-related cognitive decline.
Collapse
Affiliation(s)
- Xiangdan Gong
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Lizhi Xu
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Xin Fang
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Xin Zhao
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Ying Du
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Hao Wu
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Yue Qian
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Zhengliang Ma
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Tianjiao Xia
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Xiaoping Gu
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| |
Collapse
|
18
|
Siddiqui SS, Rahman S, Rupasinghe HV, Vazhappilly CG. Dietary Flavonoids in p53-Mediated Immune Dysfunctions Linking to Cancer Prevention. Biomedicines 2020; 8:biomedicines8080286. [PMID: 32823757 PMCID: PMC7460013 DOI: 10.3390/biomedicines8080286] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
The p53 protein plays a central role in mediating immune functioning and determines the fate of the cells. Its role as a tumor suppressor, and in transcriptional regulation and cytokine activity under stress conditions, is well defined. The wild type (WT) p53 functions as a guardian for the genome, while the mutant p53 has oncogenic roles. One of the ways that p53 combats carcinogenesis is by reducing inflammation. WT p53 functions as an anti-inflammatory molecule via cross-talk activity with multiple immunological pathways, such as the major histocompatibility complex I (MHCI) associated pathway, toll-like receptors (TLRs), and immune checkpoints. Due to the multifarious roles of p53 in cancer, it is a potent target for cancer immunotherapy. Plant flavonoids have been gaining recognition over the last two decades to use as a potential therapeutic regimen in ameliorating diseases. Recent studies have shown the ability of flavonoids to suppress chronic inflammation, specifically by modulating p53 responses. Further, the anti-oxidant Keap1/Nrf2/ARE pathway could play a crucial role in mitigating oxidative stress, leading to a reduction of chronic inflammation linked to the prevention of cancer. This review aims to discuss the pharmacological properties of plant flavonoids in response to various oxidative stresses and immune dysfunctions and analyzes the cross-talk between flavonoid-rich dietary intake for potential disease prevention.
Collapse
Affiliation(s)
- Shoib Sarwar Siddiqui
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah PO Box 10021, UAE;
| | - Sofia Rahman
- School of Natural Sciences and Mathematics, The University of Texas at Dallas, Richardson, TX 75080, USA;
| | - H.P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Cijo George Vazhappilly
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah PO Box 10021, UAE;
- Correspondence:
| |
Collapse
|
19
|
Angelino D, Caffrey A, Moore K, Laird E, Moore AJ, Gill CIR, Mena P, Westley K, Pucci B, Boyd K, Mullen B, McCarroll K, Ward M, Strain JJ, Cunningham C, Molloy AM, McNulty H, Del Rio D. Phenyl‐γ‐valerolactones and healthy ageing: Linking dietary factors, nutrient biomarkers, metabolic status and inflammation with cognition in older adults (the VALID project). NUTR BULL 2020. [DOI: 10.1111/nbu.12444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- D. Angelino
- Human Nutrition Unit Department of Veterinary Science University of Parma Parma Italy
- Faculty of Bioscience and Technology for Food, Agriculture, and Environment University of Teramo Teramo Italy
| | - A. Caffrey
- Nutrition Innovation Centre for Food and Health (NICHE) School of Biomedical Sciences Ulster University Coleraine UK
| | - K. Moore
- Nutrition Innovation Centre for Food and Health (NICHE) School of Biomedical Sciences Ulster University Coleraine UK
| | - E. Laird
- Department of Clinical Medicine School of Medicine Trinity College DublinTrinity Centre for Health Sciences Dublin 8 Ireland
| | - A. J. Moore
- School of Geography and Environmental Sciences Ulster University Coleraine UK
| | - C. I. R. Gill
- Nutrition Innovation Centre for Food and Health (NICHE) School of Biomedical Sciences Ulster University Coleraine UK
| | - P. Mena
- Human Nutrition Unit Department of Food and Drug University of Parma Parma Italy
| | - K. Westley
- School of Geography and Environmental Sciences Ulster University Coleraine UK
| | - B. Pucci
- School of Geography and Environmental Sciences Ulster University Coleraine UK
| | - K. Boyd
- Department of Clinical Medicine School of Medicine Trinity College DublinTrinity Centre for Health Sciences Dublin 8 Ireland
| | - B. Mullen
- Department of Clinical Medicine School of Medicine Trinity College DublinTrinity Centre for Health Sciences Dublin 8 Ireland
| | - K. McCarroll
- Department of Clinical Medicine School of Medicine Trinity College DublinTrinity Centre for Health Sciences Dublin 8 Ireland
| | - M. Ward
- Nutrition Innovation Centre for Food and Health (NICHE) School of Biomedical Sciences Ulster University Coleraine UK
| | - J. J. Strain
- Nutrition Innovation Centre for Food and Health (NICHE) School of Biomedical Sciences Ulster University Coleraine UK
| | - C. Cunningham
- Department of Clinical Medicine School of Medicine Trinity College DublinTrinity Centre for Health Sciences Dublin 8 Ireland
| | - A. M. Molloy
- Department of Clinical Medicine School of Medicine Trinity College DublinTrinity Centre for Health Sciences Dublin 8 Ireland
| | - H. McNulty
- Nutrition Innovation Centre for Food and Health (NICHE) School of Biomedical Sciences Ulster University Coleraine UK
| | - D. Del Rio
- Human Nutrition Unit Department of Veterinary Science University of Parma Parma Italy
- School of Advanced Studies on Food and Nutrition University of Parma Parma Italy
| |
Collapse
|
20
|
Márquez Campos E, Jakobs L, Simon MC. Antidiabetic Effects of Flavan-3-ols and Their Microbial Metabolites. Nutrients 2020; 12:nu12061592. [PMID: 32485837 PMCID: PMC7352288 DOI: 10.3390/nu12061592] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/17/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Diet is one of the pillars in the prevention and management of diabetes mellitus. Particularly, eating patterns characterized by a high consumption of foods such as fruits or vegetables and beverages such as coffee and tea could influence the development and progression of type 2 diabetes. Flavonoids, whose intake has been inversely associated with numerous negative health outcomes in the last few years, are a common constituent of these food items. Therefore, they could contribute to the observed positive effects of certain dietary habits in individuals with type 2 diabetes. Of all the different flavonoid subclasses, flavan-3-ols are consumed the most in the European region. However, a large proportion of the ingested flavan-3-ols is not absorbed. Therefore, the flavan-3-ols enter the large intestine where they become available to the colonic bacteria and are metabolized by the microbiota. For this reason, in addition to the parent compounds, the colonic metabolites of flavan-3-ols could take part in the prevention and management of diabetes. The aim of this review is to present the available literature on the effect of both the parent flavan-3-ol compounds found in different food sources as well as the specific microbial metabolites of diabetes in order to better understand their potential role in the prevention and treatment of the disease.
Collapse
|
21
|
Ballesteros-Vivas D, Alvarez-Rivera G, León C, Morantes SJ, Ibánez E, Parada-Alfonso F, Cifuentes A, Valdés A. Foodomics evaluation of the anti-proliferative potential of Passiflora mollissima seeds. Food Res Int 2020; 130:108938. [DOI: 10.1016/j.foodres.2019.108938] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
|
22
|
González-Quilen C, Rodríguez-Gallego E, Beltrán-Debón R, Pinent M, Ardévol A, Blay MT, Terra X. Health-Promoting Properties of Proanthocyanidins for Intestinal Dysfunction. Nutrients 2020; 12:E130. [PMID: 31906505 PMCID: PMC7019584 DOI: 10.3390/nu12010130] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/20/2019] [Accepted: 12/31/2019] [Indexed: 12/22/2022] Open
Abstract
The intestinal barrier is constantly exposed to potentially harmful environmental factors, including food components and bacterial endotoxins. When intestinal barrier function and immune homeostasis are compromised (intestinal dysfunction), inflammatory conditions may develop and impact overall health. Evidence from experimental animal and cell culture studies suggests that exposure of intestinal mucosa to proanthocyanidin (PAC)-rich plant products, such as grape seeds, may contribute to maintaining the barrier function and to ameliorating the pathological inflammation present in diet-induced obesity and inflammatory bowel disease. In this review, we aim to update the current knowledge on the bioactivity of PACs in experimental models of intestinal dysfunction and in humans, and to provide insights into the underlying biochemical and molecular mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | - M Teresa Blay
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (C.G.-Q.); (E.R.-G.); (R.B.-D.); (M.P.); (A.A.); (X.T.)
| | | |
Collapse
|
23
|
Méndez L, Muñoz S, Miralles-Pérez B, Nogués MR, Ramos-Romero S, Torres JL, Medina I. Modulation of the Liver Protein Carbonylome by the Combined Effect of Marine Omega-3 PUFAs and Grape Polyphenols Supplementation in Rats Fed an Obesogenic High Fat and High Sucrose Diet. Mar Drugs 2019; 18:E34. [PMID: 31906027 PMCID: PMC7024381 DOI: 10.3390/md18010034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/20/2019] [Accepted: 12/28/2019] [Indexed: 01/05/2023] Open
Abstract
Diet-induced obesity has been linked to metabolic disorders such as cardiovascular diseases andtype 2 diabetes. A factor linking diet to metabolic disorders is oxidative stress, which can damagebiomolecules, especially proteins. The present study was designed to investigate the effect of marineomega-3 polyunsaturated fatty acids (PUFAs) (eicosapentaenoic acid (EPA) and docosahexaenoic acid(DHA)) and their combination with grape seed polyphenols (GSE) on carbonyl-modified proteins fromplasma and liver in Wistar Kyoto rats fed an obesogenic diet, namely high-fat and high-sucrose (HFHS)diet. A proteomics approach consisting of fluorescein 5-thiosemicarbazide (FTSC) labelling of proteincarbonyls, visualization of FTSC-labelled protein on 1-DE or 2-DE gels, and protein identification byMS/MS was used for the protein oxidation assessment. Results showed the efficiency of the combinationof both bioactive compounds in decreasing the total protein carbonylation induced by HFHS diet in bothplasma and liver. The analysis of carbonylated protein targets, also referred to as the 'carbonylome',revealed an individual response of liver proteins to supplements and a modulatory effect on specificmetabolic pathways and processes due to, at least in part, the control exerted by the supplements on theliver protein carbonylome. This investigation highlights the additive effect of dietary fish oils and grapeseed polyphenols in modulating in vivo oxidative damage of proteins induced by the consumption ofHFHS diets.
Collapse
Affiliation(s)
- Lucía Méndez
- Instituto de Investigaciones Marinas-Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Spain; (S.M.); (I.M.)
| | - Silvia Muñoz
- Instituto de Investigaciones Marinas-Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Spain; (S.M.); (I.M.)
| | - Bernat Miralles-Pérez
- Unidad de Farmacología, Facultad de Medicina, Universidad Rovira i Virgili, Sant Llorenç 21, E-43201 Reus, Spain (M.R.N.)
| | - Maria Rosa Nogués
- Unidad de Farmacología, Facultad de Medicina, Universidad Rovira i Virgili, Sant Llorenç 21, E-43201 Reus, Spain (M.R.N.)
| | - Sara Ramos-Romero
- Instituto de Química Avanzada de Cataluña-Consejo Superior de Investigaciones Científicas (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain; (S.R.-R.); (J.L.T.)
- Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Biología, Universitad de Barcelona, Diagonal 643, E-08028 Barcelona, Spain
| | - Josep Lluis Torres
- Instituto de Química Avanzada de Cataluña-Consejo Superior de Investigaciones Científicas (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain; (S.R.-R.); (J.L.T.)
| | - Isabel Medina
- Instituto de Investigaciones Marinas-Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Spain; (S.M.); (I.M.)
| |
Collapse
|
24
|
Adherence to UK dietary guidelines is associated with higher dietary intake of total and specific polyphenols compared with a traditional UK diet: further analysis of data from the Cardiovascular risk REduction Study: Supported by an Integrated Dietary Approach (CRESSIDA) randomised controlled trial. Br J Nutr 2019; 121:402-415. [PMID: 30760336 DOI: 10.1017/s0007114518003409] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adherence to dietary guidelines (DG) may result in higher intake of polyphenols via increased consumption of fruits, vegetables and whole grains. We compared polyphenol dietary intake and urinary excretion between two intervention groups in the Cardiovascular risk REduction Study: Supported by an Integrated Dietary Approach study: a 12-week parallel-arm, randomised controlled trial (n 161; sixty-four males, ninety-seven females; aged 40-70 years). One group adhered to UK DG, whereas the other group consumed a representative UK diet (control). We estimated polyphenol dietary intake, using a 4-d food diary (4-DFD) and FFQ, and analysed 24-h polyphenol urinary excretion by liquid chromatography-tandem MS on a subset of participants (n 46 control; n 45 DG). A polyphenol food composition database for 4-DFD analysis was generated using Phenol-Explorer and USDA databases. Total polyphenol intake by 4-DFD at endpoint (geometric means with 95 % CI, adjusted for baseline and sex) was significantly higher in the DG group (1279 mg/d per 10 MJ; 1158, 1412) compared with the control group (1084 mg/d per 10 MJ; 980, 1197). The greater total polyphenol intake in the DG group was attributed to higher intake of anthocyanins, proanthocyanidins and hydroxycinnamic acids, with the primary food sources being fruits, cereal products, nuts and seeds. FFQ estimates of flavonoid intake also detected greater intake in DG compared with the control group. 24-h urinary excretion showed consistency with 4-DFD in their ability to discriminate between dietary intervention groups for six out of ten selected, individual polyphenols. In conclusion, following UK DG increased total polyphenol intake by approximately 20 %, but not all polyphenol subclasses corresponded with this finding.
Collapse
|
25
|
Fujii Y, Suzuki K, Adachi T, Taira S, Osakabe N. Corticotropin-releasing hormone is significantly upregulated in the mouse paraventricular nucleus following a single oral dose of cinnamtannin A2 as an (-)-epicatechin tetramer. J Clin Biochem Nutr 2019; 65:29-33. [PMID: 31379411 PMCID: PMC6667379 DOI: 10.3164/jcbn.19-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/13/2019] [Indexed: 12/31/2022] Open
Abstract
Cinnamtannin A2, an (−)-epicatechin tetramer, was reported to have potent physiological activity. Cinnamtannin A2 is rarely absorbed from the gastrointestinal tract into the blood and the mechanisms of its beneficial activities are unknown. Cinnamtannin A2 reported to increase sympathetic nervous activity, which was induced by various stressors. In present study, we examined the stress response in the mouse paraventricular nucleus following a single oral dose of cinnamtannin A2 by monitoring mRNA expression of corticotropin-releasing hormone (CRH) and c-fos using in situ hybridization. Corticotropin-releasing hormone mRNA showed a tendency to increase at 15 min and significantly increased at 60 min following a single oral administration of 100 µg/kg cinnamtannin A2. After a single dose of 10 µg/kg cinnamtannin A2, there was significant upregulation of CRH mRNA at 60 min. These results suggested that cinnamtannin A2 was recognized as a stressor in central nervous system and this may lead to its beneficial effects on circulation and metabolism.
Collapse
Affiliation(s)
- Yasuyuki Fujii
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Kenta Suzuki
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Takahiro Adachi
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Shu Taira
- Fukushima University, Faculty of Food and Agricultural Sciences, 1 Kanayagawa, Fukushima 960-1248, Japan
| | - Naomi Osakabe
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| |
Collapse
|
26
|
Fujii Y, Suzuki K, Adachi T, Taira S, Osakabe N. Corticotropin-releasing hormone is significantly upregulated in the mouse paraventricular nucleus following a single oral dose of cinnamtannin A2 as an (-)-epicatechin tetramer. J Clin Biochem Nutr 2019. [PMID: 31379411 DOI: 10.3164/jcbn.19.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cinnamtannin A2, an (-)-epicatechin tetramer, was reported to have potent physiological activity. Cinnamtannin A2 is rarely absorbed from the gastrointestinal tract into the blood and the mechanisms of its beneficial activities are unknown. Cinnamtannin A2 reported to increase sympathetic nervous activity, which was induced by various stressors. In present study, we examined the stress response in the mouse paraventricular nucleus following a single oral dose of cinnamtannin A2 by monitoring mRNA expression of corticotropin-releasing hormone (CRH) and c-fos using in situ hybridization. Corticotropin-releasing hormone mRNA showed a tendency to increase at 15 min and significantly increased at 60 min following a single oral administration of 100 µg/kg cinnamtannin A2. After a single dose of 10 µg/kg cinnamtannin A2, there was significant upregulation of CRH mRNA at 60 min. These results suggested that cinnamtannin A2 was recognized as a stressor in central nervous system and this may lead to its beneficial effects on circulation and metabolism.
Collapse
Affiliation(s)
- Yasuyuki Fujii
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Kenta Suzuki
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Takahiro Adachi
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Shu Taira
- Fukushima University, Faculty of Food and Agricultural Sciences, 1 Kanayagawa, Fukushima 960-1248, Japan
| | - Naomi Osakabe
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| |
Collapse
|
27
|
Del Bo' C, Bernardi S, Marino M, Porrini M, Tucci M, Guglielmetti S, Cherubini A, Carrieri B, Kirkup B, Kroon P, Zamora-Ros R, Liberona NH, Andres-Lacueva C, Riso P. Systematic Review on Polyphenol Intake and Health Outcomes: Is there Sufficient Evidence to Define a Health-Promoting Polyphenol-Rich Dietary Pattern? Nutrients 2019; 11:E1355. [PMID: 31208133 PMCID: PMC6627994 DOI: 10.3390/nu11061355] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022] Open
Abstract
Growing evidence support association between polyphenol intake and reduced risk for chronic diseases, even if there is a broad debate about the effective amount of polyphenols able to exert such protective effect. The present systematic review provides an overview of the last 10-year literature on the evaluation of polyphenol intake and its association with specific disease markers and/or endpoints. An estimation of the mean total polyphenol intake has been performed despite the large heterogeneity of data reviewed. In addition, the contribution of dietary sources was considered, suggesting tea, coffee, red wine, fruit and vegetables as the main products providing polyphenols. Total flavonoids and specific subclasses, but not total polyphenols, have been apparently associated with a low risk of diabetes, cardiovascular events and all-cause mortality. However, large variability in terms of methods for the evaluation and quantification of polyphenol intake, markers and endpoints considered, makes it still difficult to establish an evidence-based reference intake for the whole class and subclass of compounds. Nevertheless, the critical mass of data available seem to strongly suggest the protective effect of a polyphenol-rich dietary pattern even if further well targeted and methodologically sound research should be encouraged in order to define specific recommendations.
Collapse
Affiliation(s)
- Cristian Del Bo'
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy.
| | - Stefano Bernardi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy.
| | - Mirko Marino
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy.
| | - Marisa Porrini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy.
| | - Massimiliano Tucci
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy.
| | - Simone Guglielmetti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy.
| | - Antonio Cherubini
- Geriatria, Accettazione Geriatrica e Centro di ricerca per l'invecchiamento, IRCCS INRCA, 60127 Ancona, Italy.
| | - Barbara Carrieri
- Geriatria, Accettazione Geriatrica e Centro di ricerca per l'invecchiamento, IRCCS INRCA, 60127 Ancona, Italy.
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Benjamin Kirkup
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UG, UK.
| | - Paul Kroon
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UG, UK.
| | - Raul Zamora-Ros
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain.
| | - Nicole Hidalgo Liberona
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XaRTA, INSA, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
- CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XaRTA, INSA, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
- CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy.
| |
Collapse
|
28
|
Rodríguez-García C, Sánchez-Quesada C, Gaforio JJ. Dietary Flavonoids as Cancer Chemopreventive Agents: An Updated Review of Human Studies. Antioxidants (Basel) 2019; 8:E137. [PMID: 31109072 PMCID: PMC6562590 DOI: 10.3390/antiox8050137] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 12/24/2022] Open
Abstract
Over the past few years, interest in health research has increased, making improved health a global goal for 2030. The purpose of such research is to ensure healthy lives and promote wellbeing across individuals of all ages. It has been shown that nutrition plays a key role in the prevention of some chronic diseases such as obesity, cardiovascular disease, diabetes, and cancer. One of the aspects that characterises a healthy diet is a high intake of vegetables and fruits, as both are flavonoid-rich foods. Flavonoids are one of the main subclasses of dietary polyphenols and possess strong antioxidant activity and anti-carcinogenic properties. Moreover, some population-based studies have described a relationship between cancer risk and dietary flavonoid intake. In this context, the goal of this review was to provide an updated evaluation of the association between the risk of different types of cancers and dietary flavonoid intake. We analysed all relevant epidemiological studies from January 2008 to March 2019 using the PUBMED and Web of Science databases. In summary, this review concludes that dietary flavonoid intake is associated with a reduced risk of different types of cancer, such as gastric, breast, prostate, and colorectal cancers.
Collapse
Affiliation(s)
- Carmen Rodríguez-García
- Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaen, Campus las Lagunillas s/n, 23071 Jaén, Spain; (C.R.-G.); (C.S.-Q.)
- Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain
| | - Cristina Sánchez-Quesada
- Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaen, Campus las Lagunillas s/n, 23071 Jaén, Spain; (C.R.-G.); (C.S.-Q.)
- Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain
- Agri-Food Campus of International Excellence (ceiA3), 14005 Córdoba, Spain
| | - José J. Gaforio
- Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaen, Campus las Lagunillas s/n, 23071 Jaén, Spain; (C.R.-G.); (C.S.-Q.)
- Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain
- Agri-Food Campus of International Excellence (ceiA3), 14005 Córdoba, Spain
- CIBER Epidemiología y Salud Pública (CIBER-ESP), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
29
|
Ziauddeen N, Rosi A, Del Rio D, Amoutzopoulos B, Nicholson S, Page P, Scazzina F, Brighenti F, Ray S, Mena P. Dietary intake of (poly)phenols in children and adults: cross-sectional analysis of UK National Diet and Nutrition Survey Rolling Programme (2008-2014). Eur J Nutr 2018; 58:3183-3198. [PMID: 30448880 DOI: 10.1007/s00394-018-1862-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE Current evidence accounts for the role of (poly)phenolic compounds in the prevention of non-communicable diseases. Detailed information on population-level intakes is required to translate these findings into recommendations. This work aimed to estimate (poly)phenol intake in the UK population using data from a nationally representative survey. METHODS Data from 9374 participants (4636 children aged 1.5-18 years and 4738 adults aged 19 years and over) from the National Diet and Nutrition Survey Rolling Programme (NDNS RP) 2008-2014 was used. (Poly)phenol content of foods consumed in the NDNS RP was identified using Phenol-Explorer and through literature searches. Data on flavonoids, phenolic acids, and stilbenes were collected. Total (poly)phenol content was also assessed. RESULTS Mean total (poly)phenol intake ranged from 266.6 ± 166.1 mg/day in children aged 1.5-3 years to 1035.1 ± 544.3 mg/day in adults aged 65 years and over, with flavan-3-ols and hydroxycinnamic acids being the most consumed (poly)phenols across all age groups. (Poly)phenol intake was higher in males in all age groups except for adults aged 19-34 and 50-64 years, where intakes were marginally higher in females. Energy-adjusted intakes accounted for the pattern of increasing (poly)phenol intakes with age and a higher intake was observed in females across all age groups, with the exception of children aged 1.5-3 years. The main food sources were non-alcoholic beverages and fruits, being the main compounds flavan-3-ols and caffeoylquinic acids. CONCLUSIONS This analysis provides estimates of (poly)phenol intake from a representative sample of the UK general population, which can help inform the health implications of (poly)phenol intake.
Collapse
Affiliation(s)
- Nida Ziauddeen
- MRC Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge, CB1 9NL, UK.,Academic Unit of Primary Care and Population Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Alice Rosi
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Via Volturno 39, 43125, Parma, Italy. .,Human Nutrition Unit, Department of Veterinary Science, University of Parma, Medical School Building C, Via Volturno, 39, 43125, Parma, Italy. .,NNEdPro Global Centre for Nutrition and Health, St John's Innovation Centre, Cowley Road, Cambridge, CB4 0WS, UK.
| | | | - Sonja Nicholson
- MRC Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge, CB1 9NL, UK
| | - Polly Page
- MRC Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge, CB1 9NL, UK
| | - Francesca Scazzina
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | - Furio Brighenti
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | - Sumantra Ray
- MRC Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge, CB1 9NL, UK. .,NNEdPro Global Centre for Nutrition and Health, St John's Innovation Centre, Cowley Road, Cambridge, CB4 0WS, UK.
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Via Volturno 39, 43125, Parma, Italy
| |
Collapse
|
30
|
Murphy KJ, Walker KM, Dyer KA, Bryan J. Estimation of daily intake of flavonoids and major food sources in middle-aged Australian men and women. Nutr Res 2018; 61:64-81. [PMID: 30683440 DOI: 10.1016/j.nutres.2018.10.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 08/30/2018] [Accepted: 10/23/2018] [Indexed: 11/28/2022]
Abstract
Flavonoid consumption has reported health benefits such as reducing cardiovascular disease risk factors, improving endothelial function, and delaying age-related cognitive decline. However, there are little dietary intake data for Australians, which limit our ability to make dietary recommendations to increase intakes to a level where health benefits are seen. The aim of this cross-sectional study was to determine the intake of flavonoids, flavonoid classes, and flavonoid subclasses of 1183 Australians aged 39 to 65 years using a validated 215-item food frequency questionnaire. Based on limited global flavonoid intake data, flavanols are the major dietary flavonoid and are found predominantly in tea and cocoa. As Australians are large tea drinkers, we anticipated that flavanols would be the major flavonoid in the Australian diet. The flavonoid content of foods was determined using a combination of the United States Department of Agriculture Databases and the Phenol-Explorer Database. One-way analysis of variance was undertaken to examine differences between flavonoid intake between men and women. Total flavonoid intake was 626 ± 579 mg/d. Men and women consumed 566 ± 559 mg and 660 ± 588 mg of total flavonoids per day, respectively. Thearubigin accounted for 58% of the flavonoid intake. Women consumed more total flavonoids, thearubigins (both P < .01), anthocyanidins (P < .0001), flavan-3-ols, flavones, and flavonols (all P < .05) than men, whereas men consumed more flavanones than women (P = .01). There was no difference between sexes for the consumption of isoflavones. The data indicated that flavan-3-ols, predominantly thearubigin from tea, were the main flavonoid consumed by Australians. This information contributes to population flavonoid intakes, which should be considered when exploring flavonoid and health relationships.
Collapse
Affiliation(s)
- Karen J Murphy
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia.
| | - Katie M Walker
- School of Psychology, Social Work and Social Policy, University of South Australian, Adelaide, SA 5000, Australia.
| | - Kathryn A Dyer
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia.
| | - Janet Bryan
- School of Psychology, Social Work and Social Policy, University of South Australian, Adelaide, SA 5000, Australia.
| |
Collapse
|
31
|
Knaze V, Rothwell JA, Zamora-Ros R, Moskal A, Kyrø C, Jakszyn P, Skeie G, Weiderpass E, Santucci de Magistris M, Agnoli C, Westenbrink S, Sonestedt E, Trichopoulou A, Vasilopoulou E, Peppa E, Ardanaz E, Huerta JM, Boeing H, Mancini FR, Scalbert A, Slimani N. A new food-composition database for 437 polyphenols in 19,899 raw and prepared foods used to estimate polyphenol intakes in adults from 10 European countries. Am J Clin Nutr 2018; 108:517-524. [PMID: 29931234 DOI: 10.1093/ajcn/nqy098] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/23/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Accurate assessment of polyphenol intakes is needed in epidemiologic research in order to study their health effects, and this can be particularly challenging in international study settings. OBJECTIVE The purpose of this work is to describe the procedures to prepare a comprehensive polyphenol food-composition database that was used to calculate standardized polyphenol intakes from 24-h diet recalls (24HDRs) and dietary questionnaires (DQs) in the European Prospective Investigation into Cancer and Nutrition (EPIC). Design With the use of the comparable food classification and facet-descriptor system of the computerized 24HDR program EPIC-Soft (renamed GloboDiet), foods reported in the 24HDR (n = 74,626) were first aggregated following a stepwise process. Multi-ingredient and generic foods were broken down into ingredients or more-specific foods with consideration of regional consumption habits before matching to foods in the Phenol-Explorer database. Food-composition data were adjusted by using selected retention factors curated in Phenol-Explorer. DQ foods (n = 13,946) were matched to a generated EPIC 24HDR polyphenol-composition database before calculation of daily intakes from the 24HDR and DQ. RESULTS Food matching yielded 2.0% and 2.7% of foods with missing polyphenol content in the 24HDR and DQ food data sets, respectively. Process-specific retention factors for 42 different polyphenol compounds were applied to adjust the polyphenol content in 35 prioritized Phenol-Explorer foods, thereby adjusting the polyphenol content in 70% of all of the prepared 24 food occurrences. A detailed food-composition database was finally generated for 437 polyphenols in 19,899 aggregated raw and prepared foods reported by 10 EPIC countries in the 24HDR. Conclusions An efficient procedure was developed to build the most-comprehensive food-composition database for polyphenols, thereby standardizing the calculations of dietary polyphenol intakes obtained from different dietary assessment methods and European populations. The whole database is accessible online. This procedure could equally be used for other food constituents and in other cohorts.
Collapse
Affiliation(s)
- Viktoria Knaze
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon, France
| | - Joseph A Rothwell
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon, France
| | - Raul Zamora-Ros
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Aurelie Moskal
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon, France
| | - Cecilie Kyrø
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Paula Jakszyn
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Guri Skeie
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | - Elisabete Weiderpass
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
- Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland
| | | | - Claudia Agnoli
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Susanne Westenbrink
- Rijksinstituut voor Volksgezondheid en Milieu (RIVM)/National Institute for Public Health and the Environment, Center for Nutrition, Prevention, and Health Services, Bilthoven, Netherlands
| | - Emily Sonestedt
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Antonia Trichopoulou
- Hellenic Health Foundation, Athens, Greece
- WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Effie Vasilopoulou
- Hellenic Health Foundation, Athens, Greece
- WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Eva Ardanaz
- Navarra Public Health Institute, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - José María Huerta
- CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Francesca Romana Mancini
- Center for Research in Epidemiology and Population Health (CESP), Faculté de Médecine-Université Paris-Sud, Faculté de Médecine-UVSQ, French National Institute of Health and Medical Research (INSERM), Université Paris-Saclay, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
| | - Augustin Scalbert
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon, France
| | - Nadia Slimani
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon, France
| |
Collapse
|
32
|
Fujii Y, Suzuki K, Hasegawa Y, Nanba F, Toda T, Adachi T, Taira S, Osakabe N. Single oral administration of flavan 3-ols induces stress responses monitored with stress hormone elevations in the plasma and paraventricular nucleus. Neurosci Lett 2018; 682:106-111. [PMID: 29902479 DOI: 10.1016/j.neulet.2018.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/16/2018] [Accepted: 06/08/2018] [Indexed: 02/05/2023]
Abstract
We previously confirmed that postprandial alterations in the circulation and metabolism after a single oral dose of flavan 3-ols (mixture of catechin and catechin oligomers) were involved in an increase in sympathetic nervous activity. However, it is well known that, in response to various stresses, activation of the hypothalamic-pituitary-adrenal (HPA) axis occurs together with sympathetic nerve activity, which is associated with activation of the sympathetic-adrenal-medullary (SAM) axis. In this study, we examined whether the HPA axis was activated after a single dose of flavan 3-ols. We administered an oral dose of 10 or 50 mg/kg flavan 3-ols to male ICR mice, removed the brains, and fixed them in paraformaldehyde-phosphate buffer. Other animals that were treated similarly were decapitated, and blood was collected. In the paraventricular nucleus (PVN), c-fos mRNA expression increased significantly at 15 min after administration of either 10 or 50 mg/kg flavan 3-ols. Corticotropin-releasing hormone (CRH) mRNA expression levels significantly increased at 240 min after administration of 10 mg/kg flavan 3-ols, and at 60 min after administration of 50 mg/kg flavan 3-ols. Plasma corticosterone levels were also significantly increased at 240 min after ingestion of 50 mg/kg flavan 3-ols. In this experiment, we confirmed that the ingestion of flavan 3-ols acted as a stressor in mammals with activation both the SAM and HPA axes.
Collapse
Affiliation(s)
- Yasuyuki Fujii
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama, 337-8570, Japan
| | - Kenta Suzuki
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama, 337-8570, Japan
| | - Yahiro Hasegawa
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama, 337-8570, Japan
| | - Fumio Nanba
- Department of Research and Development, Fujicco Co. Ltd. Hyogo, 650-8558, Japan
| | - Toshiya Toda
- Department of Research and Development, Fujicco Co. Ltd. Hyogo, 650-8558, Japan
| | - Takahiro Adachi
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, 113-8510, Japan
| | - Shu Taira
- Fukushima University, Faculty of Food and Agricultural Sciences, Kanayagawa, Fukushima, 960-1248, Japan
| | - Naomi Osakabe
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama, 337-8570, Japan.
| |
Collapse
|
33
|
Kirch N, Berk L, Liegl Y, Adelsbach M, Zimmermann BF, Stehle P, Stoffel-Wagner B, Ludwig N, Schieber A, Helfrich HP, Ellinger S. A nutritive dose of pure (-)-epicatechin does not beneficially affect increased cardiometabolic risk factors in overweight-to-obese adults-a randomized, placebo-controlled, double-blind crossover study. Am J Clin Nutr 2018; 107:948-956. [PMID: 29868915 DOI: 10.1093/ajcn/nqy066] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/14/2018] [Indexed: 01/10/2023] Open
Abstract
Background Regular cocoa consumption has been shown to reduce blood pressure, improve lipid profiles, and increase insulin sensitivity and flow-mediated dilatation in healthy adults. It is assumed that these effects can be attributed to polyphenolic cocoa ingredients such as flavanols, especially to (-)-epicatechin. Nutritive intervention studies to prove this hypothesis are scarce. Objective We aimed to evaluate whether regular consumption of 25 mg of pure (-)-epicatechin can affect increased cardiometabolic risk factors [blood pressure, glucose and lipid metabolism, low-density lipoprotein (LDL) oxidation] in overweight-to-obese subjects. Design Forty-eight overweight or obese nonsmokers [body mass index (kg/m2) ≥25.0, ages 20-65 y] with clear signs of metabolic syndrome (blood pressure ≥130/85 mm Hg, glucose >5.55 mmol/L, or triglycerides >1.69 mmol/L or cholesterol >5.2 mmol/L in fasting blood) and without chronic diseases were included in a randomized, placebo-controlled, double-blind crossover study. Participants ingested daily 25 mg (-)-epicatechin (encapsulated) or placebo for 2-wk in random order (2-wk washout). After an overnight fast, blood pressure was monitored and blood samples were collected before and after both treatments. Anthropometric data were determined at each visit. Dietary intake was assessed by 3-d food records during both treatments and during run-in and washout phase. Results Supplementation of pure (-)-epicatechin did not significantly affect blood pressure, glucose, insulin, homeostasis model assessment of insulin resistance, triglycerides, or total, LDL, or HDL cholesterol. Oxidized LDL, vitamins C and E, and β-carotene in plasma were not modulated. Body weight, fat mass, fat distribution, and the intake of energy, nutrients, and (-)-epicatechin from food remained stable throughout the study. Conclusions Daily intake of 25 mg of pure (-)-epicatechin for 2 wk does not reduce cardiometabolic risk factors in overweight-to-obese adults. Thus, the hypothesis that the cardioprotective effects of regular cocoa consumption are exclusively ascribed to (-)-epicatechin should be reconsidered. The study was registered at the German Clinical Trial Register as DRKS-ID: DRKS00009846.
Collapse
Affiliation(s)
- Natalie Kirch
- Department of Nutrition, Food and Hospitality Sciences, Hochschule Niederrhein, University of Applied Sciences, Mönchengladbach, Germany.,Nutrition and Food Sciences, Nutritional Physiology
| | - Lea Berk
- Department of Nutrition, Food and Hospitality Sciences, Hochschule Niederrhein, University of Applied Sciences, Mönchengladbach, Germany
| | - Yvonne Liegl
- Department of Nutrition, Food and Hospitality Sciences, Hochschule Niederrhein, University of Applied Sciences, Mönchengladbach, Germany
| | - Marcel Adelsbach
- Department of Nutrition, Food and Hospitality Sciences, Hochschule Niederrhein, University of Applied Sciences, Mönchengladbach, Germany
| | | | - Peter Stehle
- Nutrition and Food Sciences, Nutritional Physiology
| | | | - Norbert Ludwig
- Department of Nutrition, Food and Hospitality Sciences, Hochschule Niederrhein, University of Applied Sciences, Mönchengladbach, Germany
| | - Andreas Schieber
- Departments of Nutrition and Food Sciences, Molecular Food Technology
| | | | - Sabine Ellinger
- Department of Nutrition, Food and Hospitality Sciences, Hochschule Niederrhein, University of Applied Sciences, Mönchengladbach, Germany
| |
Collapse
|
34
|
Yao Y, Chen Y, Adili R, McKeown T, Chen P, Zhu G, Li D, Ling W, Ni H, Yang Y. Plant-based Food Cyanidin-3-Glucoside Modulates Human Platelet Glycoprotein VI Signaling and Inhibits Platelet Activation and Thrombus Formation. J Nutr 2017; 147:1917-1925. [PMID: 28855423 DOI: 10.3945/jn.116.245944] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/19/2017] [Accepted: 07/19/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Platelets play an important role in hemostasis, thrombosis, and atherosclerosis. Glycoprotein VI (GPVI) is a major platelet receptor that interacts with exposed collagen on injured vessel walls. Our previous studies have shown that anthocyanins (a type of natural plant pigment) attenuate platelet function; however, whether anthocyanins affect collagen-induced GPVI signaling remains unknown.Objective: The objective of this study was to explore the effects of cyanidin-3-glucoside (Cy-3-g, one of the major bioactive compounds in anthocyanins) on platelet activation and thrombosis and the GPVI signaling pathway.Methods: Platelets from healthy men and women were isolated and incubated with different concentrations (0, 0.5, 5, and 50 μM) of Cy-3-g. The expression of activated integrin αIIbβ3, P-selectin, CD63, and CD40L, fibrinogen binding to platelets, and platelet aggregation were evaluated in vitro. Platelet adhesion and aggregation in whole blood under flow conditions were assessed in collagen-coated perfusion chambers. Thrombosis and hemostasis were assessed in 3-4-wk-old male C57BL/6J mice through FeCl3-induced intravital microscopy and tail bleeding time. The effect of Cy-3-g on collagen-induced human platelet GPVI signaling was explored with Western blot.Results: Cy-3-g attenuated platelet function in a dose-dependent manner. The 0.5-μM dose of Cy-3-g inhibited (P < 0.05) human platelet adhesion and aggregation to collagen at both venous (-54.02%) and arterial (-22.90%) shear stresses. The 5-μM dose inhibited (P < 0.05) collagen-induced human platelet activation (PAC-1: -48.21%, P-selectin: -50.63%), secretion (CD63: -73.89%, CD40L: -43.70%), fibrinogen binding (-56.79%), and aggregation (-17.81%). The 5-μM dose attenuated (P < 0.01) thrombus growth (-66.67%) without prolonging bleeding time in mice. The 50-μM dose downregulated (P < 0.05) collagen-induced GPVI signaling in human platelets and significantly decreased phosphorylation of Syk-linker for activation of T cells (LAT)-SLP76 (Syk: -39.08%, LAT: -32.25%, SLP76: -40.00%) and the expression of Lyn (-31.89%), Fyn (-36.27%), and phospholipase C-γ2 (-39.08%).Conclusions: Cy-3-g inhibits human platelet activation, aggregation, secretion, and thrombus formation, and downregulates the collagen-GPVI signaling pathway. Supplementation of Cy-3-g may have protective effects against atherothrombosis.
Collapse
Affiliation(s)
- Yanling Yao
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, People's Republic of China
| | - Yanqiu Chen
- Guangzhou Women and Children's Medical Centre, Guangzhou, People's Republic of China
| | - Reheman Adili
- Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada; Departments of
| | - Thomas McKeown
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada; Departments of
| | - Pingguo Chen
- Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada; Departments of
| | - Guangheng Zhu
- Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada; Departments of
| | - Dan Li
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, People's Republic of China
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, People's Republic of China
| | - Heyu Ni
- Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada; .,Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada; Departments of.,Laboratory Medicine and Pathobiology.,Physiology, and.,Medicine, University of Toronto, Toronto, Ontario, Canada; and.,Canadian Blood Services, Toronto, Ontario, Canada
| | - Yan Yang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China; .,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, People's Republic of China
| |
Collapse
|
35
|
Jennings A, MacGregor A, Spector T, Cassidy A. Higher dietary flavonoid intakes are associated with lower objectively measured body composition in women: evidence from discordant monozygotic twins. Am J Clin Nutr 2017; 105:626-634. [PMID: 28100511 PMCID: PMC5320412 DOI: 10.3945/ajcn.116.144394] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/16/2016] [Indexed: 02/01/2023] Open
Abstract
Background: Although dietary flavonoid intake has been associated with less weight gain, there are limited data on its impact on fat mass, and to our knowledge, the contribution of genetic factors to this relation has not previously been assessed.Objective: We examined the associations between flavonoid intakes and fat mass.Design: In a study of 2734 healthy, female twins aged 18-83 y from the TwinsUK registry, intakes of total flavonoids and 7 subclasses (flavanones, anthocyanins, flavan-3-ols, flavonols, flavones, polymers, and proanthocyanidins) were calculated with the use of food-frequency questionnaires. Measures of dual-energy X-ray absorptiometry-derived fat mass included the limb-to-trunk fat mass ratio (FMR), fat mass index, and central fat mass index.Results: In cross-sectional multivariable analyses, higher intake of anthocyanins, flavonols, and proanthocyanidins were associated with a lower FMR with mean ± SE differences between extreme quintiles of -0.03 ± 0.02 (P-trend = 0.02), -0.03 ± 0.02 (P-trend = 0.03), and -0.05 ± 0.02 (P-trend < 0.01), respectively. These associations were not markedly changed after further adjustment for fiber and total fruit and vegetable intakes. In monozygotic, intake-discordant twin pairs, twins with higher intakes of flavan-3-ols (n = 154, P = 0.03), flavonols (n = 173, P = 0.03), and proanthocyanidins (n = 172, P < 0.01) had a significantly lower FMR than that of their co-twins with within-pair differences of 3-4%. Furthermore, in confirmatory food-based analyses, twins with higher intakes of flavonol-rich foods (onions, tea, and pears; P = 0.01) and proanthocyanidin-rich foods (apples and cocoa drinks; P = 0.04) and, in younger participants (aged <50 y) only, of anthocyanin-rich foods (berries, pears, grapes, and wine; P = 0.01) had a 3-9% lower FMR than that of their co-twins.Conclusions: These data suggest that higher habitual intake of a number of flavonoids, including anthocyanins, flavan-3-ols, flavonols, and proanthocyanidins, are associated with lower fat mass independent of shared genetic and common environmental factors. Intervention trials are needed to further examine the effect of flavonoid-rich foods on body composition.
Collapse
Affiliation(s)
- Amy Jennings
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, United Kingdom; and
| | - Alex MacGregor
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, United Kingdom; and
| | - Tim Spector
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, United Kingdom
| | - Aedín Cassidy
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, United Kingdom; and
| |
Collapse
|
36
|
Weseler AR, Bast A. Masquelier's grape seed extract: from basic flavonoid research to a well-characterized food supplement with health benefits. Nutr J 2017; 16:5. [PMID: 28103873 PMCID: PMC5248468 DOI: 10.1186/s12937-016-0218-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/23/2016] [Indexed: 12/11/2022] Open
Abstract
Careful characterization and standardization of the composition of plant-derived food supplements is essential to establish a cause-effect relationship between the intake of that product and its health effect. In this review we follow a specific grape seed extract containing monomeric and oligomeric flavan-3-ols from its creation by Jack Masquelier in 1947 towards a botanical remedy and nutraceutical with proven health benefits. The preparation's research history parallels the advancing insights in the fields of molecular biology, medicine, plant and nutritional sciences during the last 70 years. Analysis of the extract's flavanol composition emerged from unspecific colorimetric assays to precise high performance liquid chromatography - mass spectrometry and proton nuclear magnetic resonance fingerprinting techniques. The early recognition of the preparation's auspicious effects on the permeability of vascular capillaries directed research to unravel the underlying cellular and molecular mechanisms. Recent clinical data revealed a multitude of favorable alterations in the vasculature upon an 8 weeks supplementation which summed up in a health benefit of the extract in healthy humans. Changes in gene expression of inflammatory pathways in the volunteers' leukocytes were suggested to be involved in this benefit. The historically grown scientific evidence for the preparation's health effects paves the way to further elucidate its metabolic fate and molecular action in humans.
Collapse
Affiliation(s)
- Antje R. Weseler
- Department of Pharmacology and Toxicology; Faculty of Health, Medicine and Life Sciences, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Aalt Bast
- Department of Pharmacology and Toxicology; Faculty of Health, Medicine and Life Sciences, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
37
|
Changes in liver proteins of rats fed standard and high-fat and sucrose diets induced by fish omega-3 PUFAs and their combination with grape polyphenols according to quantitative proteomics. J Nutr Biochem 2016; 41:84-97. [PMID: 28064013 DOI: 10.1016/j.jnutbio.2016.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/05/2016] [Accepted: 12/15/2016] [Indexed: 12/16/2022]
Abstract
This study considered the physiological modulation of liver proteins due to the supplementation with fish oils under two dietary backgrounds: standard or high in fat and sucrose (HFHS), and their combination with grape polyphenols. By using a quantitative proteomics approach, we showed that the capacity of the supplements for regulating proteins depended on the diet; namely, 10 different proteins changed into standard diets, while 45 changed into the HFHS diets and only scarcely proteins were found altered in common. However, in both contexts, fish oils were the main regulatory force, although the addition of polyphenols was able to modulate some fish oils' effects. Moreover, we demonstrated the ability of fish oils and their combination with grape polyphenols in improving biochemical parameters and reducing lipogenesis and glycolysis enzymes, enhancing fatty acid beta-oxidation and insulin signaling and ameliorating endoplasmic reticulum stress and protein oxidation when they are included in an unhealthy diet.
Collapse
|
38
|
A high-fat high-sucrose diet affects the long-term metabolic fate of grape proanthocyanidins in rats. Eur J Nutr 2016; 57:339-349. [DOI: 10.1007/s00394-016-1323-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 09/29/2016] [Indexed: 01/25/2023]
|
39
|
Saito A, Inagawa K, Ebe R, Fukase S, Horikoshi Y, Shibata M, Osakabe N. Onset of a hypotensive effect following ingestion of flavan 3-ols involved in the activation of adrenergic receptors. Free Radic Biol Med 2016; 99:584-592. [PMID: 27616615 DOI: 10.1016/j.freeradbiomed.2016.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 12/20/2022]
Abstract
A lot of epidemiological and intervention studies support the hypotensive action resulting from ingestion of foods rich in flavan 3-ols. However, the mechanisms of this action remain unclear. We have reported previously on the alteration of the micro- and systemic circulations after administration of a flavan 3-ol fraction (FL) derived from cocoa in mammals. We also confirmed that blood catecholamine levels increase significantly after administration of FL. In the present study, we examined whether adrenaline receptors are involved in the hemodynamic changes using several adrenaline receptor (AR) blockers. First, we confirmed that mean blood pressure (MBP) decreased significantly and aortic endothelial nitric oxide synthase (eNOS) levels increased significantly following oral treatment of 10mg/kg FL for 2 weeks in normal rats compared with vehicle administration. However, these changes were not observed with treatment of 1mg/kg (-)-epicatechin (EC), which contains nearly equivalent amount of 10mg/kg FL. Secondly, we observed that a single dose of FL produced different hemodynamic changes, such as a transient elevation in heart rate (HR) after ingestion of 1-100mg/kg FL, but not with 1mg/kg EC. Furthermore, although MBP rose transiently after 1 and 10mg/kg FL, this effect was not observed with 100mg/kg or 1mg/kg EC. The increases in HR, MBP, and aortic phosphorylated eNOS (p-eNOS) induced by 10mg/kg FL were prevented completely by pretreatment with the AR blocker, carvedilol. Combination treatment with 100mg/kg FL and an α1AR blocker, prazosin, significantly reduced MBP, whereas the elevation in HR was enhanced. In addition, after pretreatment with the β2AR blocker, butoxamine, we observed no significant hemodynamic changes with or without 100mg/kg FL. Moreover, the combination of 100mg/kg FL and the α2AR blocker, yohimbine, markedly increased MBP, HR and aortic p-eNOS level. These results suggested that the postprandial hemodynamic changes after a single oral dose of FL were induced by an adrenergic effect. This adrenomimetic activity suggested the involvement of a hypotensive effect of FL.
Collapse
Affiliation(s)
- Akiko Saito
- Department of Bio-science and Engineering, Shibaura Institute of Technology, Saitama, Saitama, Japan
| | - Kodai Inagawa
- Department of Bio-science and Engineering, Shibaura Institute of Technology, Saitama, Saitama, Japan
| | - Rikihiko Ebe
- Department of Bio-science and Engineering, Shibaura Institute of Technology, Saitama, Saitama, Japan
| | - Shinobu Fukase
- Department of Bio-science and Engineering, Shibaura Institute of Technology, Saitama, Saitama, Japan
| | - Yukari Horikoshi
- Department of Bio-science and Engineering, Shibaura Institute of Technology, Saitama, Saitama, Japan
| | - Masahiro Shibata
- Department of Bio-science and Engineering, Shibaura Institute of Technology, Saitama, Saitama, Japan
| | - Naomi Osakabe
- Department of Bio-science and Engineering, Shibaura Institute of Technology, Saitama, Saitama, Japan.
| |
Collapse
|
40
|
Proanthocyanidins potentiate hypothalamic leptin/STAT3 signalling and Pomc gene expression in rats with diet-induced obesity. Int J Obes (Lond) 2016; 41:129-136. [PMID: 27677620 PMCID: PMC5220160 DOI: 10.1038/ijo.2016.169] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/29/2016] [Accepted: 09/09/2016] [Indexed: 12/12/2022]
Abstract
Objective: Dietary obesity is usually linked with hypothalamic leptin resistance, in which the primary impact is an interference in the homeostatic control of body weight and appetite. Notably, proanthocyanidins (PACs), which are the most abundant phenolic compounds present in human diet, modulate adiposity and food intake. The aim of this study was to assess whether PACs could re-establish appropriate leptin signalling in both the hypothalamus and peripheral tissues. Design: Male Wistar rats were fed either a standard chow diet (STD group, n=7) or a cafeteria diet (CD) for 13 weeks. The CD-fed rats were treated with either grape-seed PAC extract (GSPE) at 25 mg per kg of body weight per day (CD+GSPE group, n=7) or with the vehicle (CD group, n=7) for the last 21 days of the study period. Specific markers for intracellular leptin signalling, inflammation and endoplasmic reticulum stress in the hypothalamus, liver, mesenteric white adipose tissue and skeletal muscle were analysed using immunoblotting and quantitative PCR. Results: GSPE treatment significantly reduced the food intake but did not reverse the hyperleptinemia and body wt gain assessed. However, the animals treated with GSPE exhibited greater hypothalamic activation of signal transducer and activator of transcription-3, which was associated with a rise in the Pomc mRNA levels compared with the CD group. In addition, this restoration of leptin responsiveness was accompanied by lower local inflammation and increased Sirt1 gene expression. The effects of the GSPE treatment in the peripheral tissues were not as evident as those in the hypothalamus, although the GSPE treatment significantly restored the mRNA levels of Socs3 and Ptp1b in the skeletal muscle. Conclusions: The use of GSPE reduces hyperphagia and improves the central and peripheral leptin resistance associated with diet-induced obesity. Our results suggest that GSPE could exert these effects partially by increasing Sirt1 expression and preventing hypothalamic inflammation.
Collapse
|
41
|
Cluster analysis of polyphenol intake in a French middle-aged population (aged 35-64 years). J Nutr Sci 2016; 5:e28. [PMID: 27547391 PMCID: PMC4976116 DOI: 10.1017/jns.2016.16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/08/2016] [Accepted: 03/17/2016] [Indexed: 12/31/2022] Open
Abstract
Polyphenols have been suggested as protective factors for a range of chronic diseases. However, studying the impact of individual polyphenols on health is hindered by the intrinsic inter-correlations among polyphenols. Alternatively, studying foods rich in specific polyphenols fails to grasp the ubiquity of these components. Studying overall dietary patterns would allow for a more comprehensive description of polyphenol intakes in the population. Our objective was to identify clusters of dietary polyphenol intakes in a French middle-aged population (35–64 years old). Participants from the primary prevention trial SUpplementation en VItamines et Minéraux AntioXydants (SU.VI.MAX) study were included in the present cross-sectional study (n 6092; 57·8 % females; mean age 48·7 (sd 6·4) years). The fifty most consumed individual dietary polyphenols were divided into energy-adjusted tertiles and introduced in a multiple correspondence analysis (MCA), leading to comprehensive factors of dietary polyphenol intakes. The identified factors discriminating polyphenol intakes were used in a hierarchical clustering procedure. Four clusters were identified, corresponding broadly to clustered preferences for their respective food sources. Cluster 1 was characterised by high intakes of tea polyphenols. Cluster 2 was characterised by high intakes of wine polyphenols. Cluster 3 was characterised by high intakes of flavanones and flavones, corresponding to high consumption of fruit and vegetables, and more broadly to a healthier diet. Cluster 4 was characterised by high intakes of hydroxycinnamic acids, but was also associated with alcohol consumption and smoking. Profiles of polyphenol intakes allowed for the identification of meaningful combinations of polyphenol intakes in the diet.
Collapse
|
42
|
Pineda-Vadillo C, Nau F, Guerin-Dubiard C, Jardin J, Lechevalier V, Sanz-Buenhombre M, Guadarrama A, Tóth T, Csavajda É, Hingyi H, Karakaya S, Sibakov J, Capozzi F, Bordoni A, Dupont D. The food matrix affects the anthocyanin profile of fortified egg and dairy matrices during processing and in vitro digestion. Food Chem 2016; 214:486-496. [PMID: 27507502 DOI: 10.1016/j.foodchem.2016.07.049] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/13/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022]
Abstract
The aim of the present study was to understand to what extent the inclusion of anthocyanins into dairy and egg matrices could affect their stability after processing and their release and solubility during digestion. For this purpose, individual and total anthocyanin content of four different enriched matrices, namely custard dessert, milkshake, pancake and omelettete, was determined after their manufacturing and during in vitro digestion. Results showed that anthocyanin recovery after processing largely varied among matrices, mainly due to the treatments applied and the interactions developed with other food components. In terms of digestion, the present study showed that the inclusion of anthocyanins into food matrices could be an effective way to protect them against intestinal degradation, and also the incorporation of anthocyanins into matrices with different compositions and structures could represent an interesting and effective method to control the delivery of anthocyanins within the different compartments of the digestive tract.
Collapse
Affiliation(s)
- Carlos Pineda-Vadillo
- INRA, UMR 1253, Science et Technologie du Lait et de l'Oeuf, 65 rue de St Brieuc, 35042 Rennes, France; Agrocampus Ouest, UMR 1253, Science et Technologie du Lait et de l'Oeuf, 65 rue de St Brieuc, 35042 Rennes, France
| | - Françoise Nau
- INRA, UMR 1253, Science et Technologie du Lait et de l'Oeuf, 65 rue de St Brieuc, 35042 Rennes, France; Agrocampus Ouest, UMR 1253, Science et Technologie du Lait et de l'Oeuf, 65 rue de St Brieuc, 35042 Rennes, France
| | - Catherin Guerin-Dubiard
- INRA, UMR 1253, Science et Technologie du Lait et de l'Oeuf, 65 rue de St Brieuc, 35042 Rennes, France; Agrocampus Ouest, UMR 1253, Science et Technologie du Lait et de l'Oeuf, 65 rue de St Brieuc, 35042 Rennes, France
| | - Julien Jardin
- INRA, UMR 1253, Science et Technologie du Lait et de l'Oeuf, 65 rue de St Brieuc, 35042 Rennes, France; Agrocampus Ouest, UMR 1253, Science et Technologie du Lait et de l'Oeuf, 65 rue de St Brieuc, 35042 Rennes, France
| | - Valérie Lechevalier
- INRA, UMR 1253, Science et Technologie du Lait et de l'Oeuf, 65 rue de St Brieuc, 35042 Rennes, France; Agrocampus Ouest, UMR 1253, Science et Technologie du Lait et de l'Oeuf, 65 rue de St Brieuc, 35042 Rennes, France
| | - Marisa Sanz-Buenhombre
- Abrobiotec S.L. (Grupo Matarromera), Ctra. San Bernardo S/N, Valbuena de Duero, 47359 Valladolid, Spain
| | - Alberto Guadarrama
- Abrobiotec S.L. (Grupo Matarromera), Ctra. San Bernardo S/N, Valbuena de Duero, 47359 Valladolid, Spain
| | - Tamás Tóth
- ADEXGO Ltd., 13 Lapostelki St., H-8230 Balatonfüred, Hungary
| | - Éva Csavajda
- ADEXGO Ltd., 13 Lapostelki St., H-8230 Balatonfüred, Hungary
| | - Hajnalka Hingyi
- ADEXGO Ltd., 13 Lapostelki St., H-8230 Balatonfüred, Hungary
| | - Sibel Karakaya
- Department of Food Engineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey
| | - Juhani Sibakov
- VTT Technical Research Centre of Finland, Tietotie 2, 02044 VTT, Finland
| | - Francesco Capozzi
- Interdepartmental Centre for Industrial Agri-Food Research, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Forlı̀ Cesena, Italy
| | - Alessandra Bordoni
- Department of Agri-Food Sciences and Technologies, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Forlı̀ Cesena, Italy
| | - Didier Dupont
- INRA, UMR 1253, Science et Technologie du Lait et de l'Oeuf, 65 rue de St Brieuc, 35042 Rennes, France; Agrocampus Ouest, UMR 1253, Science et Technologie du Lait et de l'Oeuf, 65 rue de St Brieuc, 35042 Rennes, France.
| |
Collapse
|
43
|
Khymenets O, Rabassa M, Rodríguez-Palmero M, Rivero-Urgell M, Urpi-Sarda M, Tulipani S, Brandi P, Campoy C, Santos-Buelga C, Andres-Lacueva C. Dietary Epicatechin Is Available to Breastfed Infants through Human Breast Milk in the Form of Host and Microbial Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5354-5360. [PMID: 27285570 DOI: 10.1021/acs.jafc.6b01947] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Polyphenols play an important role in human health. To address their accessibility to a breastfed infant, we planned to evaluate whether breast milk (BM) (colostrum, transitional, and mature) epicatechin metabolites could be related to the dietary habits of mothers. The polyphenol consumption of breastfeeding mothers was estimated using a food frequency questionnaire and 24 h recalls. Solid-phase extraction-ultra performance liquid chromatography-tandem mass spectrometry (SPE-UPLC-MS/MS) was applied for direct epicatechin metabolite analysis. Their bioavailability in BM as a result of dietary ingestion was confirmed in a preliminary experiment with a single dose of dark chocolate. Several host and microbial phase II metabolites of epicatechin were detected in BM among free-living lactating mothers. Interestingly, a modest correlation between dihydroxyvalerolactone sulfate and the intake of cocoa products was observed. Although a very low percentage of dietary polyphenols is excreted in BM, they are definitely in the diet of breastfed infants. Therefore, evaluation of their role in infant health could be further promoted.
Collapse
Affiliation(s)
- Olha Khymenets
- Biomarkers and Nutrimetabolomics Laboratory, Nutrition and Food Science Department, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences, University of Barcelona , 08028 Barcelona, Spain
| | - Montserrat Rabassa
- Biomarkers and Nutrimetabolomics Laboratory, Nutrition and Food Science Department, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences, University of Barcelona , 08028 Barcelona, Spain
| | | | | | - Mireia Urpi-Sarda
- Biomarkers and Nutrimetabolomics Laboratory, Nutrition and Food Science Department, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences, University of Barcelona , 08028 Barcelona, Spain
| | - Sara Tulipani
- Biomarkers and Nutrimetabolomics Laboratory, Nutrition and Food Science Department, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences, University of Barcelona , 08028 Barcelona, Spain
- Biomedical Research Institute (IBIMA), Service of Endocrinology and Nutrition, Hospital Complex Virgen de la Victoria , 29071 Malaga, Spain
| | - Pilar Brandi
- Excellence Centre for Paediatric Research, Biomedical Research Centre, Health Sciences Technological Park, Hospital Universitario San Cecilio , 18012 Granada, Spain
| | - Cristina Campoy
- Excellence Centre for Paediatric Research, Biomedical Research Centre, Health Sciences Technological Park, Hospital Universitario San Cecilio , 18012 Granada, Spain
- Department of Paediatrics, School of Medicine, University of Granada , 18012 Granada, Spain
| | | | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Nutrition and Food Science Department, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences, University of Barcelona , 08028 Barcelona, Spain
| |
Collapse
|
44
|
Zamora-Ros R, Knaze V, Rothwell JA, Hémon B, Moskal A, Overvad K, Tjønneland A, Kyrø C, Fagherazzi G, Boutron-Ruault MC, Touillaud M, Katzke V, Kühn T, Boeing H, Förster J, Trichopoulou A, Valanou E, Peppa E, Palli D, Agnoli C, Ricceri F, Tumino R, de Magistris MS, Peeters PHM, Bueno-de-Mesquita HB, Engeset D, Skeie G, Hjartåker A, Menéndez V, Agudo A, Molina-Montes E, Huerta JM, Barricarte A, Amiano P, Sonestedt E, Nilsson LM, Landberg R, Key TJ, Khaw KT, Wareham NJ, Lu Y, Slimani N, Romieu I, Riboli E, Scalbert A. Dietary polyphenol intake in Europe: the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Eur J Nutr 2016; 55:1359-1375. [PMID: 26081647 PMCID: PMC6284790 DOI: 10.1007/s00394-015-0950-x] [Citation(s) in RCA: 286] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/02/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND/OBJECTIVES Polyphenols are plant secondary metabolites with a large variability in their chemical structure and dietary occurrence that have been associated with some protective effects against several chronic diseases. To date, limited data exist on intake of polyphenols in populations. The current cross-sectional analysis aimed at estimating dietary intakes of all currently known individual polyphenols and total intake per class and subclass, and to identify their main food sources in the European Prospective Investigation into Cancer and Nutrition cohort. METHODS Dietary data at baseline were collected using a standardized 24-h dietary recall software administered to 36,037 adult subjects. Dietary data were linked with Phenol-Explorer, a database with data on 502 individual polyphenols in 452 foods and data on polyphenol losses due to cooking and food processing. RESULTS Mean total polyphenol intake was the highest in Aarhus-Denmark (1786 mg/day in men and 1626 mg/day in women) and the lowest in Greece (744 mg/day in men and 584 mg/day in women). When dividing the subjects into three regions, the highest intake of total polyphenols was observed in the UK health-conscious group, followed by non-Mediterranean (non-MED) and MED countries. The main polyphenol contributors were phenolic acids (52.5-56.9 %), except in men from MED countries and in the UK health-conscious group where they were flavonoids (49.1-61.7 %). Coffee, tea, and fruits were the most important food sources of total polyphenols. A total of 437 different individual polyphenols were consumed, including 94 consumed at a level >1 mg/day. The most abundant ones were the caffeoylquinic acids and the proanthocyanidin oligomers and polymers. CONCLUSION This study describes the large number of dietary individual polyphenols consumed and the high variability of their intakes between European populations, particularly between MED and non-MED countries.
Collapse
Affiliation(s)
- Raul Zamora-Ros
- Biomarker Group, Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC), 150, cours Albert Thomas, 69372, Lyon Cedex 08, France
| | - Viktoria Knaze
- Biomarker Group, Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC), 150, cours Albert Thomas, 69372, Lyon Cedex 08, France
| | - Joseph A Rothwell
- Biomarker Group, Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC), 150, cours Albert Thomas, 69372, Lyon Cedex 08, France
| | - Bertrand Hémon
- Biomarker Group, Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC), 150, cours Albert Thomas, 69372, Lyon Cedex 08, France
| | - Aurelie Moskal
- Biomarker Group, Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC), 150, cours Albert Thomas, 69372, Lyon Cedex 08, France
| | - Kim Overvad
- Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus, Denmark
| | | | - Cecilie Kyrø
- Biomarker Group, Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC), 150, cours Albert Thomas, 69372, Lyon Cedex 08, France
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Guy Fagherazzi
- U1018, Nutrition, Hormones and Women's Health Team, Inserm, Centre for Research in Epidemiology and Population Health (CESP), Villejuif, France
- UMRS 1018, Paris South University, Villejuif, France
- Institut Gustave Roussy, 94805, Villejuif, France
| | - Marie-Christine Boutron-Ruault
- U1018, Nutrition, Hormones and Women's Health Team, Inserm, Centre for Research in Epidemiology and Population Health (CESP), Villejuif, France
- UMRS 1018, Paris South University, Villejuif, France
- Institut Gustave Roussy, 94805, Villejuif, France
| | - Marina Touillaud
- U1018, Nutrition, Hormones and Women's Health Team, Inserm, Centre for Research in Epidemiology and Population Health (CESP), Villejuif, France
- UMRS 1018, Paris South University, Villejuif, France
- Institut Gustave Roussy, 94805, Villejuif, France
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Jana Förster
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Antonia Trichopoulou
- Hellenic Health Foundation, Athens, Greece
- Bureau of Epidemiologic Research, Academy of Athens, Athens, Greece
| | | | | | - Domenico Palli
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute-ISPO, Florence, Italy
| | - Claudia Agnoli
- Nutritional Epidemiology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Fulvio Ricceri
- Center for Cancer Prevention (CPO-Piemonte), and Human Genetic Foundation (HuGeF), Turin, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Unit, "Civic M.P. Arezzo" Hospital, ASP Ragusa, Italy
| | | | - Petra H M Peeters
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
- School of Public Health, Imperial College London, London, UK
| | - H Bas Bueno-de-Mesquita
- School of Public Health, Imperial College London, London, UK
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Dagrun Engeset
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Guri Skeie
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Anette Hjartåker
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | - Antonio Agudo
- Unit of Nutrition, Environment and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology, Barcelona, Spain
| | - Esther Molina-Montes
- Escuela Andaluza de Salud Pública, Instituto de Investigación Biosanitaria ibs, Granada, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - José María Huerta
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
| | - Aurelio Barricarte
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Navarre Public Health Institute, Pamplona, Spain
| | - Pilar Amiano
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Public Health Department of Gipuzkoa, BioDonostia Research Institute, Health Department of Basque Region, San Sebastián, Spain
| | - Emily Sonestedt
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Lena Maria Nilsson
- Department of Nutritional Research, Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
- Arcum, Arctic Research Centre at Umeå University, Umeå, Sweden
| | - Rikard Landberg
- Department of Food Science, Uppsala BioCentre, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Nutritional Epidemiology Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Timothy J Key
- Cancer Epidemiology Unit, University of Oxford, Oxford, UK
| | - Kay-Thee Khaw
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge University, Cambridge, UK
| | - Yunxia Lu
- School of Public Health, Imperial College London, London, UK
| | - Nadia Slimani
- Biomarker Group, Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC), 150, cours Albert Thomas, 69372, Lyon Cedex 08, France
| | - Isabelle Romieu
- Biomarker Group, Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC), 150, cours Albert Thomas, 69372, Lyon Cedex 08, France
| | - Elio Riboli
- School of Public Health, Imperial College London, London, UK
| | - Augustin Scalbert
- Biomarker Group, Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC), 150, cours Albert Thomas, 69372, Lyon Cedex 08, France.
| |
Collapse
|
45
|
Saito A, Nakazato R, Suhara Y, Shibata M, Fukui T, Ishii T, Asanuma T, Mochizuki K, Nakayama T, Osakabe N. The impact of theaflavins on systemic-and microcirculation alterations: The murine and randomized feasibility trials. J Nutr Biochem 2016; 32:107-14. [PMID: 27142743 DOI: 10.1016/j.jnutbio.2016.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/02/2016] [Accepted: 01/25/2016] [Indexed: 02/05/2023]
Abstract
Theaflavins are polyphenols found in black tea; their physiological activities were not well investigated. The present study in rats evaluated the influence of theaflavins on circulation. In addition, an intervention pilot study examined the influence of a theaflavin drink on postprandial hemodynamic change. In an animal study, a single oral dose of theaflavin rich fraction (TF, 10mg/kg) caused transient increase in mean blood pressure (MBP) and heart rate (HR). TF also elevated cremastric blood flow significantly, and the magnitude of this effect was in this order: theaflavin 3'-O-gallate (TF2B) >>theaflavin-3-O-gallate (TF2A) >>theaflavin (TF1)=theaflavin-3, 3'-di-O-gallate (TF3). In addition, these hemodynamic alterations in mammals totally disappeared when pretreated with carvedilol as an adrenaline blocker. We also treated 10-mg/kg/day TF to the rats for 2 weeks. At the end of the ingestion period, MBP was reduced significantly, and aortic eNOS level was elevated by the repeated ingestion of TF compared with distilled water. In the intervention trial, blood pressure of the volunteers was increased significantly 2 and 4h after ingestion of the TF drink (45mg/drink) compared with before treatment. A significant difference was observed in FMD between the placebo and theaflavin groups 4h after ingestion. These results suggested that theaflavin has potent activity to alter hemodynamics in both murine and healthy subjects. Further studies is needed to elucidate the details; however, the results of animal study suggested that the possible involvement of sympathetic nervous system in the hemodynamic changes caused by TF.
Collapse
Affiliation(s)
- Akiko Saito
- Department of Bio-science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama, 337-8570, Japan
| | - Risa Nakazato
- Department of Bio-science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama, 337-8570, Japan
| | - Yoshitomo Suhara
- Department of Bio-science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama, 337-8570, Japan
| | - Masahiro Shibata
- Department of Bio-science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama, 337-8570, Japan
| | - Toshiki Fukui
- NTT West Takamatsu Hospital, 649-8 Kanko-cho, Takamatsu, Kagawa, 760-0076, Japan
| | - Takeshi Ishii
- Department of Food and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Toshimichi Asanuma
- Industrial Research Institute of Shizuoka Prefecture, Aoi-ku, Shizuoka, 421-1298, Japan
| | - Kazuo Mochizuki
- Industrial Research Institute of Shizuoka Prefecture, Aoi-ku, Shizuoka, 421-1298, Japan
| | - Tsutomu Nakayama
- School of Food Science and Technology, Nippon Veterinary and Life Science University, Musashinoshi, Tokyo, 180-8602, Japan
| | - Naomi Osakabe
- Department of Bio-science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama, 337-8570, Japan.
| |
Collapse
|
46
|
Ellinger S, Stehle P. Impact of Cocoa Consumption on Inflammation Processes-A Critical Review of Randomized Controlled Trials. Nutrients 2016; 8:nu8060321. [PMID: 27240397 PMCID: PMC4924162 DOI: 10.3390/nu8060321] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/09/2016] [Accepted: 05/20/2016] [Indexed: 01/08/2023] Open
Abstract
Background: Cocoa flavanols have strong anti-inflammatory properties in vitro. If these also occur in vivo, cocoa consumption may contribute to the prevention or treatment of diseases mediated by chronic inflammation. This critical review judged the evidence for such effects occurring after cocoa consumption. Methods: A literature search in Medline was performed for randomized controlled trials (RCTs) that investigated the effects of cocoa consumption on inflammatory biomarkers. Results: Thirty-three RCTs were included, along with 9 bolus and 24 regular consumption studies. Acute cocoa consumption decreased adhesion molecules and 4-series leukotrienes in serum, nuclear factor κB activation in leukocytes, and the expression of CD62P and CD11b on monocytes and neutrophils. In healthy subjects and in patients with cardiovascular diseases, most regular consumption trials did not find any changes except for a decreased number of endothelial microparticles, but several cellular and humoral inflammation markers decreased in patients suffering from type 2 diabetes and impaired fasting glucose. Conclusions: Little evidence exists that consumption of cocoa-rich food may reduce inflammation, probably by lowering the activation of monocytes and neutrophils. The efficacy seems to depend on the extent of the basal inflammatory burden. Further well-designed RCTs with inflammation as the primary outcome are needed, focusing on specific markers of leukocyte activation and considering endothelial microparticles as marker of vascular inflammation.
Collapse
Affiliation(s)
- Sabine Ellinger
- Faculty of Food, Nutrition and Hospitality Sciences Hochschule Niederrhein, University of Applied Sciences, Rheydter Str. 277, Mönchengladbach 41065, Germany.
| | - Peter Stehle
- Department of Nutrition and Food Sciences, Nutritional Physiology, University of Bonn, Endenicher Allee 11-13, Bonn 53115, Germany.
| |
Collapse
|
47
|
Wang Y, Zhao L, Huo Y, Zhou F, Wu W, Lu F, Yang X, Guo X, Chen P, Deng Q, Ji B. Protective Effect of Proanthocyanidins from Sea Buckthorn (Hippophae Rhamnoides L.) Seed against Visible Light-Induced Retinal Degeneration in Vivo. Nutrients 2016; 8:nu8050245. [PMID: 27144578 PMCID: PMC4882658 DOI: 10.3390/nu8050245] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/12/2016] [Accepted: 04/19/2016] [Indexed: 12/25/2022] Open
Abstract
Dietary proanthocyanidins (PACs) as health-protective agents have become an important area of human nutrition research because of their potent bioactivities. We investigated the retinoprotective effects of PACs from sea buckthorn (Hippophae rhamnoides L.) seed against visible light-induced retinal degeneration in vivo. Pigmented rabbits were orally administered sea buckthorn seed PACs (50 and 100 mg/kg/day) for 14 consecutive days of pre-illumination and seven consecutive days of post-illumination. Retinal function was quantified via electroretinography 7 days after light exposure. Retinal damage was evaluated by measuring the thickness of the full-thickness retina and outer nuclear layer 7 days after light exposure. Sea buckthorn seed PACs significantly attenuated the destruction of electroretinograms and maintained the retinal structure. Increased retinal photooxidative damage was expressed by the depletion of glutathione peroxidase and catalase activities, the decrease of total antioxidant capacity level and the increase of malondialdehyde level. Light exposure induced a significant increase of inflammatory cytokines (IL-1β, TNF-α and IL-6) and angiogenesis (VEGF) levels in retina. Light exposure upregulated the expression of pro-apoptotic proteins Bax and caspase-3 and downregulated the expression of anti-apoptotic protein Bcl-2. However, sea buckthorn seed PACs ameliorated these changes induced by light exposure. Sea buckthorn seed PACs mediated the protective effect against light-induced retinal degeneration via antioxidant, anti-inflammatory and antiapoptotic mechanisms.
Collapse
Affiliation(s)
- Yong Wang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Liang Zhao
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yazhen Huo
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Wei Wu
- College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Feng Lu
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Xue Yang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Xiaoxuan Guo
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Peng Chen
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China.
| | - Qianchun Deng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China.
| | - Baoping Ji
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
48
|
Neilson AP, O'Keefe SF, Bolling BW. High-Molecular-Weight Proanthocyanidins in Foods: Overcoming Analytical Challenges in Pursuit of Novel Dietary Bioactive Components. Annu Rev Food Sci Technol 2015; 7:43-64. [PMID: 26735794 DOI: 10.1146/annurev-food-022814-015604] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Proanthocyanidins (PACs) are an abundant but complex class of polyphenols found in foods and botanicals. PACs are polymeric flavanols with a variety of linkages and subunits. Connectivity and degree of polymerization (DP) determine PAC bioavailability and bioactivity. Current quantitative and qualitative methods may ignore a large percentage of dietary PACs. Subsequent correlations between intake and activity are hindered by a lack of understanding of the true PAC complexity in many foods. Additionally, estimates of dietary intakes are likely inaccurate, as nutrient databank values are largely based on standards from cocoa (monomers to decamers) and blueberries (mean DP of 36). Improved analytical methodologies are needed to increase our understanding of the biological roles of these complex compounds.
Collapse
Affiliation(s)
- Andrew P Neilson
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060; ,
| | - Sean F O'Keefe
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060; ,
| | - Bradley W Bolling
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin 53706;
| |
Collapse
|
49
|
Abstract
AbstractEpidemiological studies have suggested that flavonoids exhibit preventive effects on degenerative diseases. However, lack of sufficient data on flavonoid intake has limited evaluating the proposed effects in populations. Therefore, we aimed to estimate the total and individual flavonoid intakes among Korean adults and determine the major dietary sources of these flavonoids. We constructed a flavonoid database of common Korean foods, based on the food list reported in the 24-h recall of the Korea National Health and Nutrition Examination Survey (KNHANES) 2007–2012, using data from the Korea Functional Food Composition Table, US Department of Agriculture flavonoid database, Phenol-Explorer database and other analytical studies. This database, which covers 49 % of food items and 76 % of food intake, was linked with the 24-h recall data of 33 581 subjects aged ≥19 years in the KNHANES 2007–2012. The mean daily intake of total flavonoids in Korean adults was 318·0 mg/d, from proanthocyanidins (22·3 %), flavonols (20·3 %), isoflavones (18·1 %), flavan-3-ols (16·2 %), anthocyanidins (11·6 %), flavanones (11·3 %) and flavones (0·3 %). The major contributing food groups to the flavonoid intake were fruits (54·4 %), vegetables (20·5 %), legumes and legume products (16·2 %) and beverages and alcohols (3·1 %), and the major contributing food items were apples (21·9 %), mandarins (12·5 %), tofu (11·5 %), onions (9·6 %) and grapes (9·0 %). In the regression analysis, the consumption of legumes and legume products, vegetables and fruits predicted total flavonoid intake the most. The findings of this study could facilitate further investigation on the health benefits of flavonoids and provide the basic information for establishing recommended flavonoid intakes for Koreans.
Collapse
|
50
|
Kudo N, Arai Y, Suhara Y, Ishii T, Nakayama T, Osakabe N. A Single Oral Administration of Theaflavins Increases Energy Expenditure and the Expression of Metabolic Genes. PLoS One 2015; 10:e0137809. [PMID: 26375960 PMCID: PMC4574049 DOI: 10.1371/journal.pone.0137809] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/20/2015] [Indexed: 12/21/2022] Open
Abstract
Theaflavins are polyphenols found in black tea, whose physiological activities are not well understood. This study on mice evaluated the influence of a single oral administration of theaflavins on energy metabolism by monitoring the initial metabolic changess in skeletal muscle and brown adipose tissue (BAT). Oxygen consumption (VO2) and energy expenditure (EE) were increased significantly in mice treated with theaflavin rich fraction (TF) compared with the group administered vehicle alone. There was no difference in locomotor activity. Fasting mice were euthanized under anesthesia before and 2 and 5, 20-hr after treatment with TF or vehicle. The mRNA levels of uncoupling protein-1 (UCP-1) and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) in BAT were increased significantly 2-hr after administration ofTF. The levels of UCP-3 and PGC-1α in the gastrocnemius muscle were increased significantly 2 and 5-hr after administration of TF. The concentration of phosphorylated AMP-activated protein kinase (AMPK) 1α was also increased significantly in the gastrocnemius 2 and 5-hr after treatment with TF. These results indicate that TF significantly enhances systemic energy expenditure, as evidenced by an increase in expression of metabolic genes.
Collapse
Affiliation(s)
- Naoto Kudo
- Department of Bio-science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama, 337–8570, Japan
| | - Yasunori Arai
- Department of Bio-science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama, 337–8570, Japan
| | - Yoshitomo Suhara
- Department of Bio-science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama, 337–8570, Japan
| | - Takeshi Ishii
- Department of Food and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422–8526, Japan
| | - Tsutomu Nakayama
- School of Food Science and Technology, Nippon Veterinary and Life Science University, Musashinoshi, Tokyo, 180–8602, Japan
| | - Naomi Osakabe
- Department of Bio-science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama, 337–8570, Japan
- * E-mail:
| |
Collapse
|