1
|
Liu Y, Yuan J, Xi W, Wang Z, Liu H, Zhang K, Zhao J, Wang Y. Lactiplantibacillus plantarum Ameliorated Morphological Damage and Barrier Dysfunction and Reduced Apoptosis and Ferroptosis in the Jejunum of Oxidatively Stressed Piglets. Animals (Basel) 2024; 14:3335. [PMID: 39595387 PMCID: PMC11591186 DOI: 10.3390/ani14223335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Oxidative stress induces apoptosis and ferroptosis, leading to intestinal injury of piglets. Lactiplantibacillus plantarum P8 (P8) has antioxidant capacity, but its roles in intestinal apoptosis and ferroptosis remain unclear. Here, 24 weaned piglets were assigned to three treatments: control (Con), diquat injection (DQ), and P8 supplementation + DQ injection (DQ + P8). The results showed that the increased jejunal oxidative stress, jejunal morphology impairment, and barrier dysfunction in the DQ-treated piglets were decreased by P8 supplementation. TUNEL and apoptosis-related gene expressions showed increased jejunal apoptosis of DQ-treated piglets; however, reduced apoptosis was observed in the DQ + P8 group. In addition, the mitochondrial morphology and ferroptosis-related gene expressions indicated elevated jejunal ferroptosis in the DQ-treated piglets, and the DQ + P8 treatment attenuated the ferroptosis. Transcriptome identified various differentially expressed genes (DEGs) between different treatments. KEGG analysis indicated that the DEGs were enriched in the PI3K-AKT, NF-κB, and apoptosis pathways. The expressions of key DEGs and key proteins in the PI3K-AKT and NF-κB pathways were further verified. In summary, our results indicate that P8 supplementation ameliorated jejunal oxidative stress, morphological damage, barrier dysfunction, apoptosis, and ferroptosis in the DQ-treated piglets. Moreover, the beneficial effect of P8 may be related to the regulation of PI3K/AKT and NF-κB pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (Y.L.); (J.Y.); (W.X.); (Z.W.); (H.L.); (K.Z.); (J.Z.)
| |
Collapse
|
2
|
Hagen C, Humphrey D, Wileman C, Haydon K, Greiner L. Impact of increasing dietary standardized ileal digestible arginine to lysine ratio from 0.85 to 1.15 and water-based arginine supplementation on growth performance and gut integrity of weaned pigs. Transl Anim Sci 2024; 8:txae102. [PMID: 39036444 PMCID: PMC11258900 DOI: 10.1093/tas/txae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
The objective of this experiment was to assess the influence of arginine (Arg) supplementation in water and/or feed on the growth performance and gastrointestinal health of newly weaned pigs. Two hundred and forty pigs (5.06 kg; PIC, Hendersonville, TN) were randomly allocated into 80 mixed-sex pens (3 pigs/pen) and subjected to a 2 × 4 factorial design. Two levels of Arg were supplemented in water (0% or 8% stock, dosed through a 1:128 proportioner) for the first phase (days 0 to 7), and four dietary arginine levels (0.85, 0.95, 1.05, and 1.15) standardized ileal digestible (SID) Arg to Lysine (Lys) ratios for the first two phases (days 0 to 7 and 7 to 21). All treatments were provided a common diet (0.96 SID Arg:Lys) for the last phase days 21 to 42. One pig per pen underwent a dual sugar absorption test of lactulose at 500 mg/kg and mannitol at 50 mg/kg of body weight (BW) via gastric tube on days 7 and 21 postweaning, with blood plasma collected 4 h later. The pig tested on day 7 was subsequently euthanized for intestinal tissue collection. Pen growth performance and feed disappearance were evaluated for 3 phases: days 0 to 7, 7 to 21, and 21 to 42 postweaning. The statistical analysis used linear models to examine the effects of SID Arg:Lys in the feed, Arg level in water, and their interactions, with pen as the experimental unit. Orthogonal contrasts were used to test the linear and quadratic effects of increasing SID Arg:Lys in the diet. Growth performance during the first period exhibited variability, reflected by negative gain-to-feed (G:F) ratios, caused by the enteric health challenge. Consequently, data were analyzed separately for each phase. Increasing dietary SID Arg:Lys caused a linear improvement (P = 0.04) in final BW (18.47 and 21.90 kg, for 0.85 and 1.15 SID Arg:Lys, respectively). A trend (P = 0.09) suggested a linear impact of dietary SID Arg:Lys on average daily gain during days 21 to 42. Arg supplementation, whether administered through water or diet, did not affect lactulose and mannitol absorption on both days 7 and 21, nor did it alter histological measurements in the collected ileum tissues on day 7 postweaning. In conclusion, increasing dietary SID Arg:Lys increased final BW but had no clear impacts on intestinal health within the parameters measured, potentially impacted by the rotavirus diagnosis in the first week post-wean.
Collapse
Affiliation(s)
- Chloe Hagen
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Dalton Humphrey
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Caitlyn Wileman
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Keith Haydon
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
- CJ America – Bio, Fort Dodge, IA 50501, USA
| | - Laura Greiner
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
3
|
Chen D, Parks CG, Hofmann JN, Beane Freeman LE, Sandler DP. Pesticide use and inflammatory bowel disease in licensed pesticide applicators and spouses in the Agricultural Health Study. ENVIRONMENTAL RESEARCH 2024; 249:118464. [PMID: 38354883 PMCID: PMC11065595 DOI: 10.1016/j.envres.2024.118464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Pesticide exposure has been linked to some autoimmune diseases and colorectal cancer, possibly via alteration of gut microbiota or other mechanisms. While pesticides have been linked to gut dysbiosis and inflammation in animal models, few epidemiologic studies have examined pesticides in relation to inflammatory bowel disease (IBD). OBJECTIVES We evaluated use of pesticides and incident IBD in 68,480 eligible pesticide applicators and spouses enrolled in the Agricultural Health Study. METHODS Self-reported IBD cases were identified from follow-up questionnaires between enrollment (1993-1997) and 2022. We evaluated IBD incidence in relation to self-reported ever use of 50 pesticides among applicators and spouses. We also explored associations with intensity-weighted lifetime days (IWLD) of pesticide use among male applicators. Covariate-adjusted hazard ratios (HR) and 95% confidence intervals (CI) were calculated using Cox regression. RESULTS We identified 454 IBD cases, including 227 among male applicators. In analyses with applicators and spouses combined, associations were positive (HR > 1.2) for ever vs. never use of five organochlorine insecticides, three organophosphate insecticides, one fungicide, and five herbicides. HRs were highest for dieldrin (HR = 1.59, 95%CI: 1.03, 2.44), toxaphene (HR = 1.61, 95%CI: 1.17, 2.21), parathion (HR = 1.42, 95%CI: 1.03, 1.95), and terbufos (HR = 1.53, 95%CI: 1.19, 1.96). We had limited power in many IWLD of pesticide use analyses and did not find clear evidence of exposure-response trends; however, we observed elevated HRs in all tertiles of IWLD use of terbufos compared to never use (T1 vs. never use HR = 1.52, 95%CI: 1.03, 2.24; T2 vs. never use HR = 1.53, 95%CI: 1.04, 2.26; T3 vs. never use HR = 1.51, 95%CI: 1.03, 2.23). CONCLUSIONS Exposure to specific pesticides was associated with elevated hazards of IBD. These findings may have public health importance given the widespread use of pesticides and the limited number of known modifiable environmental risk factors for IBD.
Collapse
Affiliation(s)
- Dazhe Chen
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Christine G Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jonathan N Hofmann
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| | - Laura E Beane Freeman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
4
|
Yuan J, Meng H, Liu Y, Wang L, Zhu Q, Wang Z, Liu H, Zhang K, Zhao J, Li W, Wang Y. Bacillus amyloliquefaciens attenuates the intestinal permeability, oxidative stress and endoplasmic reticulum stress: transcriptome and microbiome analyses in weaned piglets. Front Microbiol 2024; 15:1362487. [PMID: 38808274 PMCID: PMC11131103 DOI: 10.3389/fmicb.2024.1362487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/22/2024] [Indexed: 05/30/2024] Open
Abstract
Endoplasmic reticulum (ER) stress is related to oxidative stress (OS) and leads to intestinal injury. Bacillus amyloliquefaciens SC06 (SC06) can regulate OS, but its roles in intestinal ER stress remains unclear. Using a 2 × 2 factorial design, 32 weaned piglets were treated by two SC06 levels (0 or 1 × 108 CFU/g), either with or without diquat (DQ) injection. We found that SC06 increased growth performance, decreased ileal permeability, OS and ER stress in DQ-treated piglets. Transcriptome showed that differentially expressed genes (DEGs) induced by DQ were enriched in NF-κB signaling pathway. DEGs between DQ- and SC06 + DQ-treated piglets were enriched in glutathione metabolism pathway. Ileal microbiome revealed that the SC06 + DQ treatment decreased Clostridium and increased Actinobacillus. Correlations were found between microbiota and ER stress genes. In conclusion, dietary SC06 supplementation increased the performance, decreased the permeability, OS and ER stress in weaned piglets by regulating ileal genes and microbiota.
Collapse
Affiliation(s)
- Junmeng Yuan
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Hongling Meng
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yu Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Li Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Qizhen Zhu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Zhengyu Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Kai Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Weifen Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
5
|
Wang X, Zhang T, Li W, Wang H, Yan L, Zhang X, Zhao L, Wang N, Zhang B. Arginine alleviates Clostridium perfringens α toxin-induced intestinal injury in vivo and in vitro via the SLC38A9/mTORC1 pathway. Front Immunol 2024; 15:1357072. [PMID: 38638435 PMCID: PMC11024335 DOI: 10.3389/fimmu.2024.1357072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/26/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Clostridium perfringens α toxin is a main virulence factor responsible for gut damage in animals. Arginine is a functional amino acid exhibiting significant immunoregulatory activities. However, the effects and immunoregulatory mechanisms of arginine supplementation on α toxin-induced intestinal injury remain unclear. Methods In vivo, 256 male Arbor Acres chickens were randomly assigned to a 2×2 factorial arrangement, involving diet treatments (with or without 0.3% arginine supplementation) and immunological stress (with or without α toxin challenge). In vitro, IEC-6 cells were treated with or without arginine in the presence or absence of α toxin. Moreover, IEC-6 cells were transfected with siRNA targeting mTOR and SLC38A9 to explore the underlying mechanisms. Results and discussion The results showed that in vivo, arginine supplementation significantly alleviated the α toxin-induced growth performance impairment, decreases in serum immunoglobulin (Ig)A and IgG levels, and intestinal morphology damage. Arginine supplementation also significantly reduced the α toxin-induced increase in jejunal proinflammatory cytokines interleukin (IL)-1β, IL-6 and IL-17 mRNA expression. Clostridium perfringens α toxin significantly decreased jejunal mechanistic target of rapamycin (mTOR) and solute carrier family 38 member 9 (SLC38A9) mRNA expression, while arginine supplementation significantly increased mTOR and SLC38A9 mRNA expression. In vitro, arginine pretreatment mitigated the α toxin-induced decrease in cell viability and the increase in cytotoxicity and apoptosis. Arginine pretreatment also alleviated the α toxin-induced upregulation of mRNA expression of inflammation-related cytokines IL-6, C-X-C motif chemokine ligand (CXCL)10, CXCL11 and transforming growth factor-β (TGF-β), as well as apoptosis-related genes B-cell lymphoma-2 associated X protein (Bax), B-cell lymphoma-2 (Bcl-2), B-cell lymphoma-extra large (Bcl-XL) and cysteinyl aspartate specific proteinase 3 (Caspase-3) and the ratio of Bax to Bcl-2. Arginine pretreatment significantly increased the α toxin-induced decrease in mTOR, SLC38A9, eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4EBP1) and ribosomal protein S6 kinase (S6K) mRNA expression. Knockdown SLC38A9 and mTOR largely abrogated the positive effects of arginine pretreatment on α toxin-induced intracellular changes. Furthermore, SLC38A9 silencing abolished the increased mTOR mRNA expression caused by arginine pretreatment. In conclusion, arginine administration attenuated α toxin-induced intestinal injury in vivo and in vitro, which could be associated with the downregulation of inflammation via regulating SLC38A9/mTORC1 pathway.
Collapse
Affiliation(s)
- Xiaohui Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Tong Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Wenli Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Heliang Wang
- Qingdao Sino-science Gene Technology Co., Ltd, Qingdao, China
| | - Lei Yan
- Shandong New Hope Liuhe Group, Qingdao, China
| | - Xiaowen Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Lianwen Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Nianxue Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Beibei Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
6
|
Perez-Palencia JY, Ramirez-Camba CD, Haydon K, Urschel KL, Levesque CL. Effects of increasing dietary arginine supply during the three first weeks after weaning on pig growth performance, plasma amino acid concentrations, and health status. Transl Anim Sci 2024; 8:txae047. [PMID: 38651117 PMCID: PMC11034433 DOI: 10.1093/tas/txae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/30/2024] [Indexed: 04/25/2024] Open
Abstract
A total of 425 weaned pigs (Exp. 1: 225 pigs [5.8 ± 0.9 kg]; Exp. 2: 200 pigs [6.1 ± 1.2 kg]) were used to determine the optimal dietary standardized ileal digestible (SID) arginine (Arg) level in early nursery diets based on growth and health responses. The basal diet in Exp.1 was formulated to meet SID Arg recommendation (0.66%; NRC, 2012) and in Exp. 2, SID Arg was set to simulate current industry practices for feeding nursery pigs (1.15 %). Basal diets were supplemented with 0.3%, 0.6%, 0.9%, and 1.2% of l-arginine to provide five levels of dietary SID Arg. Experimental diets were fed during phases I (days 0 to 7) and II (days 8 to 21) with common diets until market. Feed disappearance and body weight (BW) were measured on days 7, 14, 21, and 43. Final BW was recorded at first removal of pigs for market. Pen fecal score was assigned daily from days 0 to 21. Plasma immunoglobulin A (IgA) was determined on days 0, 7, and 14 and amino acids (AAs) concentration and plasma urea nitrogen (PUN) on days 0 and 14. Orthogonal polynomial contrasts were used to determine the linear and quadratic effects of dietary Arg. Optimal SID Arg was determined by fitting the data with piecewise regression, using growth performance as the primary response variable. In Exp. 1, dietary Arg linearly increased (P < 0.1) BW, average daily gain (ADG), and gain to feed ratio (G:F) ratio on day 21, as well as reduced (χ2 = 0.004) the percentage of pigs that lost weight (PLW) in week 1 by 29%. Dietary Arg resulted in linear improvement (P = 0.082) of ADG for the overall nursery period and quadratic improvement (P < 0.1) of final BW at marketing. In Exp. 2, dietary Arg linearly increased (P < 0.05) ADG and average daily feed intake (ADFI) in week 1, BW and ADFI (P < 0.1) on day 14, as well as reduced (χ2 ≤ 0.001) PLW in week 1. From days 0 to 21, G:F was improved quadratically (P < 0.1). Dietary Arg linearly increased (P < 0.1) ADG and BW on day 43. Dietary Arg supplementation decreased the incidence (χ2 < 0.05) of soft and watery feces during the first weeks after weaning and lower concentration of plasma IgA on days 7 and 14. Dietary Arg linearly and/or quadratically influenced plasma AA concentrations (P < 0.05), including an increase in Arg, Leu, Phe, Val, citrulline, ornithine, and PUN concentrations. Overall, weaned pigs exhibit optimal nursery growth performance and health when provided with dietary SID Arg ranging from 1.5% to 1.9%. This dietary range contributes to a reduction in the occurrence of fall-back pigs and improvements in final BW at marketing.
Collapse
Affiliation(s)
| | - Christian D Ramirez-Camba
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
- Department of Animal Science, University of Minnesota, St. Paul, MN 57008, USA
| | - Keith Haydon
- CJ Bio America Inc, Downers Grove, IL 60515, USA
| | - Kristine L Urschel
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Crystal L Levesque
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
7
|
Yan M, Liu H, Yang Y, Cheng X, Sun W, Ma T, Cai X. Clinical characteristics of survivors versus non-survivors after acute diquat poisoning: a comparative study. Intern Emerg Med 2024; 19:307-312. [PMID: 38066343 PMCID: PMC10954934 DOI: 10.1007/s11739-023-03460-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/10/2023] [Indexed: 03/21/2024]
Abstract
The aim of this study was to compare the clinical characteristics between survivors and non-survivors after acute diquat (DQ) poisoning. Patients treated in the Emergency Department of Fu Yang People's Hospital for DQ poisoning between January 2018 and February 2022 were enrolled in this retrospective comparative study. A total of 65 patients were collected, including 36 males (55.4%) and 29 females (44.6%). There were 34 survivors (52.3%), and 31 non-survivors (47.7%). Patients in the non-survivor group were significantly older (P = 0.003), received a higher dose of DQ before admission (P < 0.001), had more severe organ damage (P < 0.001), lower respiration rate (P < 0.001) and enema (P = 0.009), lower GCS score (P = 0.038), and higher SIRS score (P = 0.018) and APACHE-II score (P < 0.001) than patients in the survivor group. Additionally, biochemical indicators after admission between survivors and non-survivors were significantly different (all P < 0.05). Multivariate logistic regression analysis showed that respiratory failure (P = 0.021), the dose of DQ (P = 0.022), respiratory rate (P = 0.007), and highest alanine transaminase (ALT) level after admission (P = 0.030) were independent risk factors for acute DQ-induced death. These data suggest that non-survivors with acute DQ poisoning are more likely to suffer from respiratory failure, have higher respiratory rate and ALT after admission, and are exposed higher doses of DQ before admission than survivors.
Collapse
Affiliation(s)
- Min Yan
- Emergency Department, Fuyang People's Hospital, Fuyang, 236000, China
| | - Hongbo Liu
- Emergency Department, Fuyang People's Hospital, Fuyang, 236000, China
| | - Yihong Yang
- Emergency Department, Fuyang People's Hospital, Fuyang, 236000, China
| | - Xin Cheng
- Emergency Department, Fuyang People's Hospital, Fuyang, 236000, China
| | - Wanpeng Sun
- Emergency Department, Fuyang People's Hospital, Fuyang, 236000, China
| | - Tengfei Ma
- Emergency Department, Fuyang People's Hospital, Fuyang, 236000, China
| | - Xiaopei Cai
- Emergency Department, Fuyang People's Hospital, Fuyang, 236000, China.
| |
Collapse
|
8
|
Zhou X, Liang J, Xiong X, Yin Y. Amino acids in piglet diarrhea: Effects, mechanisms and insights. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:267-274. [PMID: 38362520 PMCID: PMC10867606 DOI: 10.1016/j.aninu.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/28/2023] [Accepted: 07/12/2023] [Indexed: 02/17/2024]
Abstract
Piglet diarrhea is among one of the most serious health problems faced by the pig industry, resulting in significant economic losses. Diarrheal disease in piglets has a multifactorial etiology that is affected by physiology, environment, and management strategy. Diarrhea is the most apparent symptom of intestinal dysfunction. As a key class of essential nutrients in the piglet diet, amino acids confer a variety of beneficial effects on piglets in addition to being used as a substrate for protein synthesis, including maintaining appropriate intestinal integrity, permeability and epithelial renewal, and alleviating morphological damage and inflammatory and oxidative stress. Thus, provision of appropriate levels of amino acids could alleviate piglet diarrhea. Most amino acid effects are mediated by metabolites, gut microbes, and related signaling pathways. In this review, we summarize the current understanding of dietary amino acid effects on gut health and diarrhea incidence in piglets, and reveal the mechanisms involved. We also provide ideas for using amino acid blends and emphasize the importance of amino acid balance in the diet to prevent diarrhea in piglets.
Collapse
Affiliation(s)
- Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Liang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Xiong
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Fathima S, Al Hakeem WG, Selvaraj RK, Shanmugasundaram R. Beyond protein synthesis: the emerging role of arginine in poultry nutrition and host-microbe interactions. Front Physiol 2024; 14:1326809. [PMID: 38235383 PMCID: PMC10791986 DOI: 10.3389/fphys.2023.1326809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024] Open
Abstract
Arginine is a functional amino acid essential for various physiological processes in poultry. The dietary essentiality of arginine in poultry stems from the absence of the enzyme carbamoyl phosphate synthase-I. The specific requirement for arginine in poultry varies based on several factors, such as age, dietary factors, and physiological status. Additionally, arginine absorption and utilization are also influenced by the presence of antagonists. However, dietary interventions can mitigate the effect of these factors affecting arginine utilization. In poultry, arginine is utilized by four enzymes, namely, inducible nitric oxide synthase arginase, arginine decarboxylase and arginine: glycine amidinotransferase (AGAT). The intermediates and products of arginine metabolism by these enzymes mediate the different physiological functions of arginine in poultry. The most studied function of arginine in humans, as well as poultry, is its role in immune response. Arginine exerts immunomodulatory functions primarily through the metabolites nitric oxide (NO), ornithine, citrulline, and polyamines, which take part in inflammation or the resolution of inflammation. These properties of arginine and arginine metabolites potentiate its use as a nutraceutical to prevent the incidence of enteric diseases in poultry. Furthermore, arginine is utilized by the poultry gut microbiota, the metabolites of which might have important implications for gut microbial composition, immune regulation, metabolism, and overall host health. This comprehensive review provides insights into the multifaceted roles of arginine and arginine metabolites in poultry nutrition and wellbeing, with particular emphasis on the potential of arginine in immune regulation and microbial homeostasis in poultry.
Collapse
Affiliation(s)
- Shahna Fathima
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | | | - Ramesh K. Selvaraj
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | | |
Collapse
|
10
|
Szabó C, Kachungwa Lugata J, Ortega ADSV. Gut Health and Influencing Factors in Pigs. Animals (Basel) 2023; 13:ani13081350. [PMID: 37106913 PMCID: PMC10135089 DOI: 10.3390/ani13081350] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The gastrointestinal tract (GIT) is a complex, dynamic, and critical part of the body, which plays an important role in the digestion and absorption of ingested nutrients and excreting waste products of digestion. In addition, GIT also plays a vital role in preventing the entry of harmful substances and potential pathogens into the bloodstream. The gastrointestinal tract hosts a significant number of microbes, which throughout their metabolites, directly interact with the hosts. In modern intensive animal farming, many factors can disrupt GIT functions. As dietary nutrients and biologically active substances play important roles in maintaining homeostasis and eubiosis in the GIT, this review aims to summarize the current status of our knowledge on the most important areas.
Collapse
Affiliation(s)
- Csaba Szabó
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
| | - James Kachungwa Lugata
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
- Doctoral School of Animal Science, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
| | - Arth David Sol Valmoria Ortega
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
- Doctoral School of Animal Science, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
| |
Collapse
|
11
|
Zhong Y, Ma T, Fu Z, Chen A, Yu J, Huang Y, Fu J. Effects of Hydrogen Peroxide-Induced Oxidative Stress on Intestinal Morphology, Redox Status, and Related Molecules in Squabs. Animals (Basel) 2023; 13:ani13040749. [PMID: 36830536 PMCID: PMC9952636 DOI: 10.3390/ani13040749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
The purpose of this study was to evaluate the potential effect of oxidative stress on the intestine of squabs, and to explore the molecular mechanisms. A total of 360 1-day-old squabs were divided evenly into five different groups (n = 72/group): control, negative control, low, medium, and high dose groups. On the 3rd, 5th, and 7th days, squabs in the control group were not effectively treated and the negative control group were intraperitoneally injected with normal saline, whereas the H2O2 group was injected with H2O2 of 2.0, 2.5, and 3.0 mmol/kg BW respectively. On the 21st day, the serum and duodenum were collected for further analysis. The results indicated that, compared with the control group, H2O2 caused squabs weight loss and intestinal morphology damage, and these effects were enhanced with an increase in dose. Further examination revealed that the contents of oxidative stress markers in both the serum and duodenum of the H2O2 group were significantly enhanced as the dose was increased. In addition, H2O2 exposure also resulted in the lower mRNA expression of Occludin, ZO-1, Beclin1, Atg5, and Caspase-3, but the expression of Claudin2 and Bcl-2 was decreased in comparison to the control group. These findings suggested that duodenal oxidative damage was accompanied by weight loss, changes in intestinal morphology, redox status imbalance, apoptosis as well as autophagy of intestinal cells, with, effects of 3.0 mmol/kg BW of H2O2 being the most severe.
Collapse
Affiliation(s)
- Yajing Zhong
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Tingting Ma
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhiqi Fu
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ailing Chen
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jiahao Yu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yanhua Huang
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence: (Y.H.); (J.F.)
| | - Jing Fu
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Correspondence: (Y.H.); (J.F.)
| |
Collapse
|
12
|
Zha P, Wei L, Liu W, Chen Y, Zhou Y. Effects of dietary supplementation with chlorogenic acid on growth performance, antioxidant capacity, and hepatic inflammation in broiler chickens subjected to diquat-induced oxidative stress. Poult Sci 2023; 102:102479. [PMID: 36669355 PMCID: PMC9871335 DOI: 10.1016/j.psj.2023.102479] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/19/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023] Open
Abstract
This study was conducted to investigate the protective effects of chlorogenic acid (CGA) on broilers subjected to (DQ)-induced oxidative stress. In experiment 1, one hundred and ninety-two male one-day-old Ross 308 broiler chicks were distributed into 4 groups and fed a basal diet supplemented with 0, 250, 500, or 1,000 mg/kg CGA for 21 d. In experiment 2, an equivalent number of male one-day-old chicks were allocated to 4 treatments for a 21-d trial: 1) Control group, normal birds fed a basal diet; 2) DQ group, DQ-challenged birds fed a basal diet; and 3) and 4) CGA-treated groups: DQ-challenged birds fed a basal diet supplemented with 500 or 1,000 mg/kg CGA. The intraperitoneal DQ challenge was performed at 20 d. In experiment 1, CGA administration linearly increased 21-d body weight, and weight gain and feed intake during 1 to 21 d (P < 0.05). CGA linearly and/or quadratically increased total antioxidant capacity, catalase, superoxide dismutase, and glutathione peroxidase activities, elevated glutathione level, and reduced malondialdehyde accumulation in serum, liver, and/or jejunum (P < 0.05). In experiment 2, compared with the control group, DQ challenge reduced body weight ratio (P < 0.05), which was reversed by CGA administration (P < 0.05). DQ challenge increased serum total protein level, aspartate aminotransferase activity, and total bilirubin concentration (P < 0.05), which were normalized when supplementing 500 mg/kg and/or 1,000 mg/kg CGA (P < 0.05). DQ administration elevated hepatic interleukin-1β, tumor necrosis factor-α, and interleukin-6 levels (P < 0.05), and the values of interleukin-1β were normalized to control values when supplementing CGA (P < 0.05). DQ injection decreased serum superoxide dismutase activity, hepatic catalase activity, and serum and hepatic glutathione level, but increased malondialdehyde concentration in serum and liver (P < 0.05), and the values of these parameters (except hepatic catalase activity) were reversed by 500 and/or 1,000 mg/kg CGA. The results suggested that CGA could improve growth performance, alleviate oxidative stress, and ameliorate hepatic inflammation in DQ-challenged broilers.
Collapse
Affiliation(s)
| | | | | | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| | | |
Collapse
|
13
|
Wei Z, Yu B, Huang Z, Luo Y, Zheng P, Mao X, Yu J, Luo J, Yan H, He J. Effect of 3-caffeoylquinic acid on growth performance, nutrient digestibility, and intestinal functions in weaned pigs. J Anim Sci 2023; 101:skad234. [PMID: 37422911 PMCID: PMC10393208 DOI: 10.1093/jas/skad234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/08/2023] [Indexed: 07/11/2023] Open
Abstract
Phenolic acid like with the 3-caffeoylquini acid (3-CQA) is formed by caffeic acid and qunic acid. This study was conducted to explore the effect of 3-CQA on growth performance and intestinal functions in weaned pigs. A total of 180 weaned pigs were randomly allocated into five treatments with 6 replicate pens per treatment (6 pigs per pen). Pigs in the control group (CON) were fed with basal diet (BD), and the others in the experimental groups were fed with BD and supplemented with 12.5, 25, 50, and 100 mg/kg 3-CQA. On day 43, the blood sample-collected pigs in the CON and optimal-dose group (only based on growth performance) were picked, and housed in metabolism cages (a total of 12 pigs, N = 6). 3-CQA increased the feed efficiency from days 21 to 42 of the trial and throughout the trial (P < 0.05). 3-CQA increased the serum concentrations of total protein, albumin, and total cholesterol (P < 0.05). Moreover, 3-CQA supplementation at 25 mg/kg increased the apparent digestibility of DM, energy, and ash (P < 0.05). Interestingly, 3-CQA decreased the crypt depth but increased the ratio of villus height to crypt depth in the jejunum and ileum (P < 0.05). Moreover, 3-CQA also increased the activities of sucrase, lactase, and catalase in the jejunal mucosa, and increased the activities of alkaline phosphatase and superoxide dismutase in the ileal mucosa (P < 0.05). 3-CQA also increased the abundance of secretory immunoglobulin A in the ileal mucosa (P < 0.05). Importantly, 3-CQA not only elevated the expression levels of critical functional genes such as the zonula occludens-1 , occludin, solute carrier family 7 , and nuclear factor erythroid 2-related factor 2 (Nrf2) in the duodenum but also elevated the expression levels of divalent metal transporter-1 and Nrf2 in the jejunum (P < 0.05). These results suggested a positive effect of 3-CQA supplementation on the growth and intestinal functions of weaned pigs. The mechanisms of action may be associated with elevated anti-oxidant capacity and improved intestinal barrier functions.
Collapse
Affiliation(s)
- Zixiang Wei
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, P. R. China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, P. R. China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, P. R. China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, P. R. China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, P. R. China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, P. R. China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, P. R. China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, P. R. China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, P. R. China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, P. R. China
| |
Collapse
|
14
|
Peng WS, Gao M, Yao XF, Tong YY, Zhang HH, He X. Magnolol supplementation alleviates diquat-induced oxidative stress via PI3K-Akt in broiler chickens. Anim Sci J 2023; 94:e13891. [PMID: 38088251 DOI: 10.1111/asj.13891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 12/18/2023]
Abstract
This experiment was conducted to investigate the effects of magnolol on the oxidative parameters and jejunum injury induced by diquat in broiler chickens. This test adopts a 2 × 2 factors design, a total of 288 one-day-old male AA broiler chicks randomly allocated to four groups, consisting of six replicates of 12 birds each, which was then denoted as CON group, diquat (DIQ) group (16 mg/kg BW diquat was injected into birds at the age of 21 days), magnolol (MAG) group (basic bird diet supplemented with 300 mg/kg magnolol), and MAG + DIQ group. At 21 days of age, broilers in the DIQ group and the MAG + DIQ group were intraperitoneally injected with 16 mg/kg BW diquat. Results showed that diet supplementing with MAG could alleviate the decrease of ADG to a certain extent after exposure to DIQ. Addition of magnolol to the diet alleviated the decrease of ADG during injection, antioxidant enzymes, and gene expression and increased the markers of oxidative damage induced by diquat induction. Magnolol supplement reversed the increase of apoptotic cells in the diquat-induced chicken jejunum. RNA sequencing showed that PI3K-Akt, calcium, and NF-kappa B signaling pathways were the main enrichment pathways between the DIQ group and the MAG + DIQ group. Our findings revealed that magnolol may improve antioxidant enzyme activity and expression of related genes through the PI3K-Akt pathway to alleviate oxidative stress.
Collapse
Affiliation(s)
- Wei-Shi Peng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, China
| | - Ming Gao
- Bright Farming Co., Ltd., Shanghai, China
| | - Xiao-Feng Yao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, China
| | - Yue-Yue Tong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, China
| | - Hai-Han Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, China
| | - Xi He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, China
| |
Collapse
|
15
|
Li Y, Sun H, Huang Y, Yin A, Zhang L, Han J, Lyu Y, Xu X, Zhai Y, Sun H, Wang P, Zhao J, Sun S, Dong H, Zhu F, Wang Q, Augusto Rohde L, Xie X, Sun X, Xiong L. Gut metagenomic characteristics of ADHD reveal low Bacteroides ovatus-associated host cognitive impairment. Gut Microbes 2022; 14:2125747. [PMID: 36128620 PMCID: PMC9519028 DOI: 10.1080/19490976.2022.2125747] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly heterogeneous psychiatric disorder that can have three phenotypical presentations: inattentive (I-ADHD), hyperactive-impulsive (HI-ADHD), and combined (C-ADHD). Environmental factors correlated with the gut microbiota community have been implicated in the development of ADHD. However, whether different ADHD symptomatic presentations are associated with distinct microbiota compositions and whether patients could benefit from the correction of aberrant bacterial colonization are still largely unclear. We carried out metagenomic shotgun analysis with 207 human fecal samples to characterize the gut microbial profiles of patients with ADHD grouped according to their phenotypical presentation. Then, we transplanted the candidate low-abundance bacteria identified in patient subgroups into ADHD rats and evaluated ADHD-associated behaviors and neuronal activation in these rats. Patients with C-ADHD had a different gut microbial composition from that of healthy controls (HCs) (p = .02), but not from that of I-ADHD patients. Eight species became progressively attenuated or enriched when comparing the compositions of HCs to those of I-ADHD and C-ADHD; in particular, the abundance of Bacteroides ovatus was depleted in patients with C-ADHD. In turn, Bacteroides ovatus supplementation ameliorated spatial working memory deficits and reversed θ electroencephalogram rhythm alterations in ADHD rats. In addition, Bacteroides ovatus induced enhanced neuronal activation in the hippocampal CA1 subregion. These findings indicate that gut microbial characteristics that are unique to patients with C-ADHD may be masked when considering a more heterogeneous group of patients. We link the gut microbiota to brain function in an ADHD animal model, suggesting the relevance of testing a potential bacteria-based intervention for some aspects of ADHD.
Collapse
Affiliation(s)
- Yan Li
- Department of Anesthesiology and Perioperative Medicine & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi’an, China,CONTACT Yan Li Department of Anesthesiology and Perioperative Medicine & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University; Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Haiting Sun
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi’an, China
| | | | - Anqi Yin
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi’an, China
| | - Linjuan Zhang
- Department of Anesthesiology and Perioperative Medicine & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiao Han
- Department of Anesthesiology and Perioperative Medicine & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yixuan Lyu
- Department of Anesthesiology and Perioperative Medicine & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiangzhao Xu
- Department of Anesthesiology and Perioperative Medicine & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yifang Zhai
- Department of Anesthesiology and Perioperative Medicine & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huan Sun
- Department of Anesthesiology and Perioperative Medicine & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ping Wang
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi’an, China
| | | | | | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi’an, China
| | - Feng Zhu
- Department of Anesthesiology and Perioperative Medicine & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qiang Wang
- Department of Anesthesiology and Perioperative Medicine & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Luis Augusto Rohde
- ADHD and Developmental Psychiatry Programs, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Brazil
| | - Xuefeng Xie
- BGI-Sanya, Sanya, China,Xuefeng Xie BGI-Sanya, Sanya, China
| | - Xin Sun
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi’an, China,Xin Sun Department of Pediatrics, Xijing Hospital the Fourth Military Medical University, Xi’an, China
| | - Lize Xiong
- Translational Research Institute of Brain and Brain-Like Intelligence & Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China,Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China,Lize Xiong Translational Research Institute of Brain and Brain-Like Intelligence & Department of Anesthesiology and Perioperative Medicine Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China
| |
Collapse
|
16
|
Wang X, Wang Y, Mao Y, Hu A, Xu T, Yang Y, Wang F, Zhou G, Guo X, Cao H, Yang F. The beneficial effects of traditional Chinese medicine on antioxidative status and inflammatory cytokines expression in the liver of piglets. Front Vet Sci 2022; 9:937745. [PMID: 36213414 PMCID: PMC9539681 DOI: 10.3389/fvets.2022.937745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Oxidative stress and inflammation seriously affected the growth and development of piglets. Traditional Chinese medicine (TCM) prescriptions has been used to prevent various diseases of piglets, including anti-inflammatory and antioxidant. Here, we identified the effects of Xiao-Jian-Zhong-Tang (XJZT) and Jingsananli-sepsis (JJS) on the oxidative stress and inflammatory in the liver of piglets. The piglets were fed with the basal diet (Control group), basal diet affixed with 10 g/kg XJZT (TCM I group), and basal diet affixed with 3 g/kg JJS (TCM II group), respectively. The serum was gathered on days 30 and 60 and the liver samples were also collected on day 60. Results showed that the TCM I and TCM II markedly increased the activities of the glutathione peroxidase (GSH-Px) and total antioxidant capacity (T-AOC), and reduced the levels of malonaldehyde (MDA), TNF-α, IL-6, and IL-8 in serum. In addition, compared to the control group, Nrf2, SOD-1, NQO-1, and HO-1 mRNA expression levels and the protein levels of Nrf2 and HO-1 were significantly increased while NF-κB, TNF-α, IL-6, and IL-8 mRNA expression levels and the phosphorylation levels of NF-κB and IκB-α were decreased in TCM I and TCM II groups. Collectively, these findings suggested that TCM I and TCM II could enhance anti-oxidative and anti-inflammatory capabilities in the liver of piglets via the Nrf2/NF-κB pathway, providing a basis for the functional exploration of TCM prescriptions.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yun Wang
- Department of Animal Science and Technology, Jiangxi Biotech Vocational College, Nanchang, China
| | - Yaqin Mao
- China Institute of Veterinary Drug Control, MOA Center for Veterinary Drug Evaluation, Beijing, China
| | - Aiming Hu
- Jian City Livestock and Veterinary Bureau, Ji'an, China
| | - Tianfang Xu
- Jiangxi Agricultural Technology Extension Center, Nanchang, China
| | - Yan Yang
- Jiangxi Agricultural Technology Extension Center, Nanchang, China
| | - Feibing Wang
- Agricultural Technology Extension Center, Jinxi County Agriculture and Rural Bureau, Fuzhou, China
| | - Guangbin Zhou
- Animal Epidemic Prevention and Quarantine Unit, Fengcheng Agricultural and Rural Bureau, Fengcheng, China
| | - Xiaowang Guo
- Yichun Agriculture and Rural Affairs Bureau, Yichun, China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Fan Yang
| |
Collapse
|
17
|
Grados L, Pérot M, Barbezier N, Delayre-Orthez C, Bach V, Fumery M, Anton PM, Gay-Quéheillard J. How advanced are we on the consequences of oral exposure to food contaminants on the occurrence of chronic non communicable diseases? CHEMOSPHERE 2022; 303:135260. [PMID: 35688194 DOI: 10.1016/j.chemosphere.2022.135260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
The development of an individual during fetal life and childhood is characterized by rapid growth as well as gradual maturation of organs and systems. Beyond the nutritional intake in essential nutrients, food contaminants can permanently influence the way organs mature and function. These processes are called "programming" and play an essential role in the occurrence of non-communicable chronic diseases throughout the lifespan. Populations as pregnant women, fetuses and young children are vulnerable and particularly sensitive to food contaminants which can induce epigenetic modifications transmissible to future generations. Among these contaminants, pesticides are found in most food matrices exposing humans to cocktails of molecules through variable concentrations and duration of exposure. The Maillard reaction products (MRPs) represent other food contaminants resulting from heat treatment of food. Modern diet, rich in fats and sugars, is also rich in neoformed pathogenic compounds, Advanced Glycation End products (AGEs), the levels of which depend on the heat treatment of foods and eating habits and whose effects on health are controversial. In this review, we have chosen to present the current knowledge on the impacts of selected pesticides and MRPs, on the risk of developing during life non-communicable chronic diseases such as IBD, metabolic disorders or allergies. A large review of literature was performed via Pubmed, and the most appropriate studies were summarised.
Collapse
Affiliation(s)
- Lucien Grados
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Université Picardie Jules Verne, CURS, CHU Amiens Picardie, Avenue René Laennec, Amiens, France; CHU Amiens-Picardie, Service D'hépato-gastro-entérologie, Rond-point Du Pr Cabrol, Amiens, France
| | - Maxime Pérot
- Transformations and Agroressources (URL 7519), Institut Polytechnique UniLaSalle, Université D'Artois, 19 Rue Pierre Waguet, BP 30313, 60026, Beauvais, France
| | - Nicolas Barbezier
- Transformations and Agroressources (URL 7519), Institut Polytechnique UniLaSalle, Université D'Artois, 19 Rue Pierre Waguet, BP 30313, 60026, Beauvais, France
| | - Carine Delayre-Orthez
- Transformations and Agroressources (URL 7519), Institut Polytechnique UniLaSalle, Université D'Artois, 19 Rue Pierre Waguet, BP 30313, 60026, Beauvais, France
| | - Véronique Bach
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Université Picardie Jules Verne, CURS, CHU Amiens Picardie, Avenue René Laennec, Amiens, France
| | - Mathurin Fumery
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Université Picardie Jules Verne, CURS, CHU Amiens Picardie, Avenue René Laennec, Amiens, France; CHU Amiens-Picardie, Service D'hépato-gastro-entérologie, Rond-point Du Pr Cabrol, Amiens, France
| | - Pauline M Anton
- Transformations and Agroressources (URL 7519), Institut Polytechnique UniLaSalle, Université D'Artois, 19 Rue Pierre Waguet, BP 30313, 60026, Beauvais, France
| | - Jérôme Gay-Quéheillard
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Université Picardie Jules Verne, CURS, CHU Amiens Picardie, Avenue René Laennec, Amiens, France.
| |
Collapse
|
18
|
Dong L, Peng Z, Liu J, Li H, Wang T, Wang S, Wang H, Huo Y, Yu L. Extra arginine supplementation during the suckling period alleviates weaning stress through the regulation of dendritic cells and Notch2 signaling in piglets. Food Funct 2022; 13:8652-8661. [PMID: 35899814 DOI: 10.1039/d1fo03720j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study aims to study the effects of extra arginine (Arg) supplementation during the suckling period on the weaning stress and intestinal barrier function of breastfed piglets. Forty 7-day-old breastfed piglets divided into the control group (CON) and Arg group (Arg) were fed with extra saline or Arg (250 mg per kg per d body weight), respectively. All piglets were weaned when they were 21 days old. Eight piglets from each group were sacrificed before weaning and on the 3rd-day after weaning, respectively. The results showed that Arg improved the average daily weight gain of piglets before weaning (P < 0.01) and decreased the average daily weight loss after weaning (P < 0.05). Weaning decreased the ratio of the villus length versus crypt depth (V/C) in the SI (P < 0.001), while Arg increased the V/C of the jejunum (P < 0.05). Arg increased the levels of immunoglobulins in the serum and SI (P < 0.05), decreased pro-inflammatory cytokines and increased anti-inflammatory cytokines in the SI (P < 0.05). In addition, Arg supplementation increased the numbers of SWC3a+CD40+ (P < 0.01) and SWC3a+SLAII+ DCs (P < 0.05), down-regulated Notch2 expression and up-regulated Jagged1 expression in the ilea of weaning piglets (P < 0.05). In conclusion, Arg supplementation during the suckling period decreased the LDH leakage in the SI, improved the intestinal morphology, down-regulated the contents of pro-inflammatory cytokines, accelerated the accumulation of DC precursors before weaning and increased the number of mature DCs after weaning, and thus improved the growth performance and reduced the weaning stress of piglets, and this might be associated with the regulation of Notch2 signaling.
Collapse
Affiliation(s)
- Li Dong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 215009, People's Republic of China.
| | - Zhong Peng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 215009, People's Republic of China.
| | - Jun Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 215009, People's Republic of China.
| | - Hongmin Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 215009, People's Republic of China.
| | - Tianlong Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 215009, People's Republic of China.
| | - Shunan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 215009, People's Republic of China.
| | - Hongrong Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 215009, People's Republic of China.
| | - Yongjiu Huo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 215009, People's Republic of China.
| | - Lihuai Yu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 215009, People's Republic of China.
| |
Collapse
|
19
|
Xu X, Wei Y, Hua H, Jing X, Zhu H, Xiao K, Zhao J, Liu Y. Polyphenols Sourced from Ilex latifolia Thunb. Relieve Intestinal Injury via Modulating Ferroptosis in Weanling Piglets under Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11050966. [PMID: 35624829 PMCID: PMC9137833 DOI: 10.3390/antiox11050966] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022] Open
Abstract
Polyphenols sourced from Ilex latifolia Thunb. (PIT) contain high levels of phenolic acids, tannic acids, triterpenoids and so on, which play important roles in antioxidant function. This study was conducted to investigate the effects of PIT against intestinal injury in piglets under oxidative stress. Thirty-two weanling piglets were arranged by a 2 × 2 factorial experiment with diets (basal diet vs. PIT diet) and oxidative stress (saline vs. diquat). All piglets were injected with saline or diquat on d 21, respectively. After 7 days, all pigs were slaughtered and intestinal samples were collected. PIT enhanced jejunal villus heights and crypt depth in the piglets under oxidative stress. PIT increased the activities of intestinal mucosal lactase, sucrase and maltase in the challenged piglets. PIT also increased the jejunal ratio of protein to DNA and ileal protein content. PIT increased the jejunal activities of GSH-PX and GSH content and reduced the ileal MDA amounts. Furthermore, PIT regulated the expression of ferroptosis mediators, such as TFR1, HSPB1, SLC7A11 and GPX4. These results indicate that dietary PIT supplementation enhances the histological structure and function of the intestinal mucosa, which is involved in modulating antioxidant capacity and ferroptosis.
Collapse
Affiliation(s)
- Xiao Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.X.); (Y.W.); (H.H.); (X.J.); (H.Z.); (K.X.); (J.Z.)
| | - Yu Wei
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.X.); (Y.W.); (H.H.); (X.J.); (H.Z.); (K.X.); (J.Z.)
| | - Hongwei Hua
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.X.); (Y.W.); (H.H.); (X.J.); (H.Z.); (K.X.); (J.Z.)
| | - Xiaoqing Jing
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.X.); (Y.W.); (H.H.); (X.J.); (H.Z.); (K.X.); (J.Z.)
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.X.); (Y.W.); (H.H.); (X.J.); (H.Z.); (K.X.); (J.Z.)
| | - Kan Xiao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.X.); (Y.W.); (H.H.); (X.J.); (H.Z.); (K.X.); (J.Z.)
| | - Jiangchao Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.X.); (Y.W.); (H.H.); (X.J.); (H.Z.); (K.X.); (J.Z.)
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, NC 72701, USA
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.X.); (Y.W.); (H.H.); (X.J.); (H.Z.); (K.X.); (J.Z.)
- Correspondence: ; Tel.: +86-27-8395-6175
| |
Collapse
|
20
|
Nanni W, Porto GDS, Pereira JNB, Gonçalves ARN, Marinsek GP, Stabille SR, Favetta PM, Germano RDM, Mari RDB. Evaluation of myenteric neurons in the colon of rats exposed to 2,4 dichlorophenoxyacetic acid herbicide. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:421-429. [PMID: 35440284 DOI: 10.1080/03601234.2022.2064674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The assessment of the enteric nervous system provides a better understanding of the effects that contaminants can have on the health and well-being of organisms. It has been reported that 2,4-dichlorophenoxyacetic acid (2,4-D) is a highly persistent herbicide in the environment that is responsible for neurotoxic changes in different myenteric neuronal subpopulations. The current study aimed to evaluate the effects of 2,4-D on myenteric neurons in the colon of Rattus norvegicus for the first time. A dose of 2,4-D (5 mg/kg/day) was administered to the experimental group (2,4-D) for 15 days. Then, the proximal colon was collected and submitted to Giemsa and NADPH-d histochemical techniques for the disclosure of total and nitrergic neurons. The 2,4-D group presented a higher density of total neurons (p = 0.05, t-test), which together with the maintenance of nitrergic neuronal density, may be related to the increase in the expression of the neurotransmitter acetylcholine by colocalization, responsible for stimulating the intestinal smooth muscle and increasing the chances of the expulsion of the harmful content present in the lumen. Over 15 days, the neurotoxic effects of 2,4-D in the myenteric plexus influenced an increase in the general population of myenteric neurons in the colon.
Collapse
Affiliation(s)
- Wagner Nanni
- Post-graduate Programme in Animal Science, Universidade Paranaense, Umuarama, Paraná, Brazil
| | - Gisele da Silva Porto
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | | | | | | | - Sandra Regina Stabille
- Post-graduate Programme in Animal Science, Universidade Paranaense, Umuarama, Paraná, Brazil
| | | | - Ricardo de Melo Germano
- Post-graduate Programme in Animal Science, Universidade Paranaense, Umuarama, Paraná, Brazil
| | - Renata de Britto Mari
- Department of Biological and Environmental Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| |
Collapse
|
21
|
Li M, Zhao X, Xie J, Tong X, Shan J, Shi M, Wang G, Ye W, Liu Y, Unger BH, Cheng Y, Zhang W, Wu N, Xia XQ. Dietary Inclusion of Seabuckthorn ( Hippophae rhamnoides) Mitigates Foodborne Enteritis in Zebrafish Through the Gut-Liver Immune Axis. Front Physiol 2022; 13:831226. [PMID: 35464096 PMCID: PMC9019508 DOI: 10.3389/fphys.2022.831226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
To help prevent foodborne enteritis in aquaculture, several feed additives, such as herbal medicine, have been added to fish diets. Predictions of effective herb medicines for treating fish foodborne enteritis from key regulated DEGs (differentially expressed genes) in transcriptomic data can aid in the development of feed additives using the Traditional Chinese Medicine Integrated Database. Seabuckthorn has been assessed as a promising candidate for treating grass carp soybean-induced enteritis (SBMIE). In the present study, the SBMIE zebrafish model was used to assess seabuckthorn's therapeutic or preventative effects. The results showed that intestinal and hepatic inflammation was reduced when seabuckthorn was added, either pathologically (improved intestinal villi morphology, less oil-drops) or growth-related (body fat deposition). Moreover, seabuckthorn may block the intestinal p53 signaling pathway, while activating the PPAR signaling pathway and fatty acid metabolism in the liver. 16S rRNA gene sequencing results also indicated a significant increase in OTU numbers and skewed overlapping with the fish meal group following the addition of seabuckthorn. Additionally, there were signs of altered gut microbiota taxa composition, particularly for reduced TM7, Sphingomonas, and Shigella, following the addition of seabuckthorn. Hindgut imaging of fluorescent immune cells in SBMIE larvae revealed the immune regulatory mechanisms at the cellular level. Seabuckthorn may significantly inhibit the inflammatory gathering of neutrophils, macrophages, and mature T cells, as well as cellular protrusions' formation. On the other hand, in larvae, seabuckthorn inhibited the inflammatory aggregation of lck+ T cells but not immature lymphocytes, indicating that it affected intestinal adaptive immunity. Although seabuckthorn did not affect the distribution of intestinal CD4+ cells, the number of hepatic CD4+ cells were reduced in fish from the seabuckthorn supplementation group. Thus, the current data indicate that seabuckthorn may alleviate foodborne gut-liver symptoms by enhancing intestinal mucosal immunity and microbiota while simultaneously inhibiting hepatic adipose disposition, making it a potential additive for preventing fish foodborne gut-liver symptoms.
Collapse
Affiliation(s)
- Ming Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Xuyang Zhao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Jiayuan Xie
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xinyu Tong
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Junwei Shan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Mijuan Shi
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Guangxin Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Weidong Ye
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuhang Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | | | - Yingyin Cheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Wanting Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Nan Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Qin Xia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Chen J, Chen D, Yu B, Luo Y, Zheng P, Mao X, Yu J, Luo J, Huang Z, Yan H, He J. Chlorogenic Acid Attenuates Oxidative Stress-Induced Intestinal Mucosa Disruption in Weaned Pigs. Front Vet Sci 2022; 9:806253. [PMID: 35237678 PMCID: PMC8884245 DOI: 10.3389/fvets.2022.806253] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/04/2022] [Indexed: 01/13/2023] Open
Abstract
Chlorogenic acid (CGA) is a natural polyphenol that possesses potent antioxidant activity. However, little is known about its exact role in regulating the intestinal health under oxidative stress. This study was conducted to explore the effect of dietary CGA supplementation on intestinal barrier functions in weaned pigs upon oxidative stress. Twenty-four weaned pigs were allocated to three treatments and were given a basal diet (control) or basal diet containing CGA (1,000 mg/kg) for 21 days. Pigs were challenged by sterile saline (control) or diquat [10 mg/kg body weight (BW)] on the 15th day. Results showed that CGA attenuated the BW reduction, reduced the serum concentrations of diamine oxidase and D-lactate, and elevated serum antioxidant enzymes activities in diquat-challenged weaned pigs (P < 0.05). Moreover, diquat challenge decreased villus height and activities of sucrase and alkaline phosphatase in jejunum and ileum (P < 0.05), but CGA elevated the villus height and enzyme activities in the intestinal mucosa (P < 0.05). In addition, CGA not only decreased the expression levels of Bax, caspase-3, and caspase-9 (P < 0.05) but also elevated the expression levels of sodium glucose transport protein-1, glucose transporter-2, occludin, claudin-1, zonula occludens-1, and antioxidant genes such as nuclear factor erythroid-derived 2-related factor 2 and heme oxygenase-1 in intestinal mucosa of weaned pigs upon oxidative stress (P < 0.05). These findings suggested that CGA can attenuate oxidative stress-induced growth retardation and intestinal mucosa disruption, which was linked to elevated antioxidative capacity and enhanced intestinal barrier integrity.
Collapse
Affiliation(s)
- Jiali Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
- *Correspondence: Jun He
| |
Collapse
|
23
|
Silva DRPDA, Pascoal LAF, Oliveira ADAC, Martins TDD, Silva JHVDA, Fernandes FG, Almeida JMDS. Addition of L-Glutamine + Glutamic Acid and L-Arginine to the diet of weaned piglets. AN ACAD BRAS CIENC 2022; 94:e20201575. [PMID: 35107517 DOI: 10.1590/0001-3765202220201575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 04/05/2021] [Indexed: 11/21/2022] Open
Abstract
This study aimed to evaluate the supplementation of L-glutamine + glutamic acid and/or L-arginine on the productive performance, incidence of diarrhea, intestinal morphological of weaned piglets. Sixty-four 28-day-old weaned piglets were distributed in four treatments: DC - control diet; DG - glutamine diet (1% L-glutamine + glutamic acid); DA - arginine diet (1% L-arginine); and DGA - glutamine + arginine diet (0.5% L-glutamine + glutamic acid and 0.5% L-arginine) with eight replicates and two animals per experimental unit. The addition of 1% L-arginine to the piglet diet improved weight gain and feed conversion over 28 to 35 days of age. In the period of 28 to 49 days of age, supplementation with 1% L-glutamine + glutamic acid increased the animals' weight gain and reduced the incidence of diarrhea. Supplementation with amino acids in combination had a positive effect on the morphometric parameters of the intestinal mucosa compared to the control diet. Supplementation with 1% L-glutamine + glutamic acid increased the number of anti-PCNA+ cells and goblet cells. Taken together, our findings suggest that supplementation with L-glutamine + glutamic acid and L-arginine can improve the productive performance and enhance the integrity of the intestinal mucosa of weaned piglets.
Collapse
Affiliation(s)
- David R P DA Silva
- Programa de Pós-Graduação em Zootecnia, Universidade Federal da Paraíba, PB-079, 58397-000 Areia, PB, Brazil
| | - Leonardo A F Pascoal
- Universidade Federal da Paraíba, Centro de Ciências Humanas, Sociais e Agrárias, Rua João Pessoa, s/n, 58220-000 Bananeiras, PB, Brazil
| | - Aparecida DA C Oliveira
- Programa de Pós-Graduação em Zootecnia, Universidade Federal da Paraíba, PB-079, 58397-000 Areia, PB, Brazil
| | - Terezinha D D Martins
- Universidade Federal da Paraíba, Centro de Ciências Humanas, Sociais e Agrárias, Rua João Pessoa, s/n, 58220-000 Bananeiras, PB, Brazil
| | - José H V DA Silva
- Universidade Federal da Paraíba, Centro de Ciências Humanas, Sociais e Agrárias, Rua João Pessoa, s/n, 58220-000 Bananeiras, PB, Brazil
| | - Flávio G Fernandes
- Universidade Federal da Paraíba, Centro de Ciências Humanas, Sociais e Agrárias, Rua João Pessoa, s/n, 58220-000 Bananeiras, PB, Brazil
| | - Jonathan M Dos S Almeida
- Programa de Pós-Graduação em Zootecnia, Universidade Federal da Paraíba, PB-079, 58397-000 Areia, PB, Brazil
| |
Collapse
|
24
|
L-ARGININE PREVENTS ISCHEMIC INJURY IN EXPLANTED RAT INTESTINAL REGIONS IN AN EX VIVO PERFUSION MODEL. TRANSPLANTATION REPORTS 2022. [DOI: 10.1016/j.tpr.2022.100096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
25
|
Guo Z, Chen X, Huang Z, Chen D, Yu J, Yan H, Chen H, He J, Zheng P, Luo Y, Yu B. Apple polyphenols improve intestinal barrier function by enhancing antioxidant capacity and suppressing inflammation in weaning piglets. Anim Sci J 2022; 93:e13747. [PMID: 35699681 DOI: 10.1111/asj.13747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 12/22/2022]
Abstract
This study aimed to examine the effects of apple polyphenols (APPs) on antioxidant capacity, immune and inflammatory response, and barrier function in weaning piglets. Results showed that APPs improved jejunal barrier function by increasing the villus height, villus height/crypt depth, the mRNA levels of occludin, mucin-1, and mucin-4 and up-regulating the protein expression of occluding (P < 0.05). As for antioxidant capacity, APPs increased the activities of total superoxide dismutase and glutathione peroxidase and total antioxidant capacity level in jejunum (P < 0.05). Besides, APPs up-regulated the protein expressions of NAD(P)H quinone dehydrogenase 1 (NQO1), heme oxygenase-1 (HO-1), and nuclear-related factor 2 (NRF2) and down-regulated the protein expression of kelch-like ECH-associated protein 1 (Keap1). As regard to immune and inflammatory response, APPs increased the immunoglobulin A content in serum and decreased the mRNA levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, toll-like receptor 4 (TLR4), nuclear factor-κB (NF-κB), and IL-8 in jejunum (P < 0.05). Overall, dietary APPs supplementation improves the jejunal barrier function by enhancing antioxidant capacity and suppressing the mRNA expression related to inflammation, which may be related to the NRF2 signal and TLR4/NF-κB signal.
Collapse
Affiliation(s)
- Zhongyang Guo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Jie Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Hui Yan
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
26
|
Cao S, Xiao H, Li X, Zhu J, Gao J, Wang L, Hu C. AMPK-PINK1/Parkin Mediated Mitophagy Is Necessary for Alleviating Oxidative Stress-Induced Intestinal Epithelial Barrier Damage and Mitochondrial Energy Metabolism Dysfunction in IPEC-J2. Antioxidants (Basel) 2021; 10:antiox10122010. [PMID: 34943113 PMCID: PMC8698696 DOI: 10.3390/antiox10122010] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/25/2022] Open
Abstract
The imbalance of redox biology and oxidative stress leads to intestinal barrier injury and mitophagy. However, much uncertainty still exists about the role of mitophagy in oxidative stress and intestinal function. Here, we showed the effects of hydrogen peroxide (H2O2)-induced oxidative stress on intestinal epithelial cell oxidation balance, intestinal barrier function and mitochondrial energy metabolism and its underlying mechanism. In this study, we found that H2O2-induced oxidative stress activated adenosine monophosphate-activated protein kinase (AMPK) and enhanced mitophagy in intestinal porcine epithelial cells (IPEC-J2). While compound C (AMPK inhibitor) and mdivi-1 (mitophagy inhibitor) significantly reduced the activity of superoxide dismutase (SOD) and increased mitochondrial reactive oxygen species (ROS) levels in H2O2 treated cells. Moreover, compound C and mdivi-1 significantly reduced the trans-epithelium electrical resistant (TER) and increased the fluorescein isothiocyanate-dextran (FD4) flux in H2O2 treated IPEC-J2. Furthermore, compound C and mdivi-1 significantly reduced the activity of mitochondrial complex II. Seahorse XF96 data showed that compound C + mdivi-1+ H2O2 treatment significantly reduced maximum respiratory oxygen consumption and spare respiratory capacity. Additionally, compound C or mdivi-1 treatment reduced the formation of mitochondrial autophagosomes. These results unveiled that AMPK and PINK1/Parkin mediated mitophagy is necessary for alleviating oxidative stress induced intestinal epithelial barrier damage and mitochondrial energy metabolism dysfunction in IPEC-J2.
Collapse
Affiliation(s)
- Shuting Cao
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.C.); (H.X.); (J.G.)
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Animal Science College, Zhejiang University, Hangzhou 310058, China; (X.L.); (J.Z.)
| | - Hao Xiao
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.C.); (H.X.); (J.G.)
| | - Xin Li
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Animal Science College, Zhejiang University, Hangzhou 310058, China; (X.L.); (J.Z.)
| | - Jiang Zhu
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Animal Science College, Zhejiang University, Hangzhou 310058, China; (X.L.); (J.Z.)
| | - Jingchun Gao
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.C.); (H.X.); (J.G.)
| | - Li Wang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.C.); (H.X.); (J.G.)
- Correspondence: (L.W.); (C.H.)
| | - Caihong Hu
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Animal Science College, Zhejiang University, Hangzhou 310058, China; (X.L.); (J.Z.)
- Correspondence: (L.W.); (C.H.)
| |
Collapse
|
27
|
Zhang H, Zheng P, Chen D, Yu B, He J, Mao X, Yu J, Luo Y, Luo J, Huang Z, Yan H. Dietary Arginine Supplementation Improves Intestinal Mitochondrial Functions in Low-Birth-Weight Piglets but Not in Normal-Birth-Weight Piglets. Antioxidants (Basel) 2021; 10:antiox10121995. [PMID: 34943098 PMCID: PMC8698761 DOI: 10.3390/antiox10121995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/16/2022] Open
Abstract
Our previous studies revealed that L-arginine supplementation had beneficial effects on intestinal barrier functions of low-birth-weight (LBW) piglets, which were associated with the enhanced antioxidant capacity. Moreover, mitochondrial functions are closely related to the redox state. This study was to explore potential mechanisms of L-arginine-induced beneficial effects against intestinal dysfunction by regulating mitochondrial function of LBW piglets. Twenty 4-day-old normal birth weight (NBW) piglets (BW: 2.08 ± 0.09 kg) and 20 LBW siblings (BW: 1.16 ± 0.07 kg) were artificially fed either a basal diet or a basal diet supplemented with 1.0% L-arginine for 21 d, respectively. Growth performance, intestinal morphology, redox status, mitochondrial morphology, and mitochondrial functions were examined. Data were subjected to two-way analysis of variance. LBW piglets presented lower (p < 0.05) ADG, shorter (p < 0.05) intestinal villus height, lower (p < 0.05) jejunal adenosine triphosphate (ATP) content and higher (p < 0.05) concentrations of Ca2+ and 8-OH-dG in jejunal mitochondria, compared with NBW piglets. Supplementation with 1.0% L-arginine significantly increased (p < 0.05) ADG, the activities of CAT, SOD, and GPx, intestinal villus height and mRNA abundances of ZO-1 (2-fold) in the jejunum of LBW piglets, but not in NBW piglets. Furthermore, the concentrations of ATP and the transcription of COX IV, COX V genes were up-regulated (p < 0.05) and the concentration of Ca2+ and 8-OH-dG were decreased (p < 0.05) in arginine-treated LBW piglets. The results suggest that mitochondrial morphology is affected, and mitochondrial functions are impaired in the jejunum of LBW piglets. While supplementation with 1.0% L-arginine relieved intestinal dysfunction through enhancing antioxidant capacity and improving mitochondrial functions via repairing mitochondrial morphology, normalizing mitochondrial calcium, and increasing ATP concentration in the jejunum of LBW piglets. However, supplementation with L-arginine has no significant beneficial effects on intestinal health in NBW piglets.
Collapse
Affiliation(s)
- Hao Zhang
- Animal Nutrition Insititute, Sichuan Agricultural University, Chengdu 611130, China; (H.Z.); (D.C.); (B.Y.); (J.H.); (X.M.); (J.Y.); (Y.L.); (J.L.); (Z.H.); (H.Y.)
| | - Ping Zheng
- Animal Nutrition Insititute, Sichuan Agricultural University, Chengdu 611130, China; (H.Z.); (D.C.); (B.Y.); (J.H.); (X.M.); (J.Y.); (Y.L.); (J.L.); (Z.H.); (H.Y.)
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Chengdu 611130, China
- Correspondence: ; Tel.: +86-028-86290922
| | - Daiwen Chen
- Animal Nutrition Insititute, Sichuan Agricultural University, Chengdu 611130, China; (H.Z.); (D.C.); (B.Y.); (J.H.); (X.M.); (J.Y.); (Y.L.); (J.L.); (Z.H.); (H.Y.)
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Chengdu 611130, China
| | - Bing Yu
- Animal Nutrition Insititute, Sichuan Agricultural University, Chengdu 611130, China; (H.Z.); (D.C.); (B.Y.); (J.H.); (X.M.); (J.Y.); (Y.L.); (J.L.); (Z.H.); (H.Y.)
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Chengdu 611130, China
| | - Jun He
- Animal Nutrition Insititute, Sichuan Agricultural University, Chengdu 611130, China; (H.Z.); (D.C.); (B.Y.); (J.H.); (X.M.); (J.Y.); (Y.L.); (J.L.); (Z.H.); (H.Y.)
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Chengdu 611130, China
| | - Xiangbing Mao
- Animal Nutrition Insititute, Sichuan Agricultural University, Chengdu 611130, China; (H.Z.); (D.C.); (B.Y.); (J.H.); (X.M.); (J.Y.); (Y.L.); (J.L.); (Z.H.); (H.Y.)
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Chengdu 611130, China
| | - Jie Yu
- Animal Nutrition Insititute, Sichuan Agricultural University, Chengdu 611130, China; (H.Z.); (D.C.); (B.Y.); (J.H.); (X.M.); (J.Y.); (Y.L.); (J.L.); (Z.H.); (H.Y.)
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Chengdu 611130, China
| | - Yuheng Luo
- Animal Nutrition Insititute, Sichuan Agricultural University, Chengdu 611130, China; (H.Z.); (D.C.); (B.Y.); (J.H.); (X.M.); (J.Y.); (Y.L.); (J.L.); (Z.H.); (H.Y.)
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Chengdu 611130, China
| | - Junqiu Luo
- Animal Nutrition Insititute, Sichuan Agricultural University, Chengdu 611130, China; (H.Z.); (D.C.); (B.Y.); (J.H.); (X.M.); (J.Y.); (Y.L.); (J.L.); (Z.H.); (H.Y.)
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Chengdu 611130, China
| | - Zhiqing Huang
- Animal Nutrition Insititute, Sichuan Agricultural University, Chengdu 611130, China; (H.Z.); (D.C.); (B.Y.); (J.H.); (X.M.); (J.Y.); (Y.L.); (J.L.); (Z.H.); (H.Y.)
| | - Hui Yan
- Animal Nutrition Insititute, Sichuan Agricultural University, Chengdu 611130, China; (H.Z.); (D.C.); (B.Y.); (J.H.); (X.M.); (J.Y.); (Y.L.); (J.L.); (Z.H.); (H.Y.)
| |
Collapse
|
28
|
Chen Y, Zhang H, Ji S, Jia P, Chen Y, Li Y, Wang T. Resveratrol and its derivative pterostilbene attenuate oxidative stress-induced intestinal injury by improving mitochondrial redox homeostasis and function via SIRT1 signaling. Free Radic Biol Med 2021; 177:1-14. [PMID: 34648904 DOI: 10.1016/j.freeradbiomed.2021.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/05/2021] [Accepted: 10/10/2021] [Indexed: 12/12/2022]
Abstract
Oxidative stress inflicts mitochondrial dysfunction, which has been recognized as a key driver of intestinal diseases. Resveratrol (RSV) and its derivative pterostilbene (PTS) are natural antioxidants and exert a protective influence on intestinal health. However, the therapeutic effects and mechanisms of RSV and PTS on oxidative stress-induced mitochondrial dysfunction and intestinal injury remain unclear. The present study used porcine and cellular settings to compare the effects of RSV and PTS on mitochondrial redox homeostasis and function to alleviate oxidative stress-induced intestinal injury. Our results indicated that PTS was more potent than RSV in reducing oxidative stress, maintaining intestinal integrity, and preserving the mitochondrial function of diquat-challenged piglets. In the in vitro study, RSV and PTS protected against hydrogen peroxide (H2O2)-induced mitochondrial dysfunction in intestinal porcine enterocyte cell line (IPEC-J2) by facilitating mitochondrial biogenesis and increasing the activities of mitochondrial complexes. In addition, both RSV and PTS efficiently mitigated mitochondrial oxidative stress by increasing sirtuin 3 protein expression and the deacetylation of superoxide dismutase 2 and peroxiredoxin 3 in H2O2-exposed IPEC-J2 cells. Furthermore, RSV and PTS preserved mitochondrial membrane potential, which restrained the release of cytochrome C from mitochondria to the cytoplasm and caspase-3 activation and further reduced apoptotic rates in H2O2-exposed IPEC-J2 cells. Mechanistically, depletion of sirtuin 1 (SIRT1) abrogated RSV's and PTS's benefits against mitochondrial reactive oxygen species overproduction, mitochondrial dysfunction, and apoptosis in H2O2-exposed IPEC-J2 cells, suggesting that SIRT1 was required for RSV and PTS to protect against oxidative stress-induced intestinal injury. In conclusion, RSV and PTS improve oxidative stress-induced intestinal injury by regulating mitochondrial redox homeostasis and function via SIRT1 signaling pathway. In offering this protection, PTS is superior to RSV.
Collapse
Affiliation(s)
- Yanan Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Hao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Shuli Ji
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Peilu Jia
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yue Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
29
|
Chen J, Luo Y, Li Y, Chen D, Yu B, He J. Chlorogenic Acid Attenuates Oxidative Stress-Induced Intestinal Epithelium Injury by Co-Regulating the PI3K/Akt and IκBα/NF-κB Signaling. Antioxidants (Basel) 2021; 10:antiox10121915. [PMID: 34943017 PMCID: PMC8750628 DOI: 10.3390/antiox10121915] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 12/26/2022] Open
Abstract
Chlorogenic acid (CGA) is a natural polyphenol compound abundant in green plants with antioxidant and anti-inflammatory activities. Here, we explore its protective effects and potential mechanisms of action on intestinal epithelium exposure to oxidative stress (OS). We show that CGA attenuated OS-induced intestinal inflammation and injury in weaned pigs, which is associated with elevated antioxidant capacity and decreases in inflammatory cytokine secretion and cell apoptosis. In vitro study showed that CGA elevated phosphorylation of two critical signaling proteins of the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) pathway, Akt and nuclear factor erythroid-derived-related factor 2, leading to the elevated expression of intracellular antioxidant enzymes and heme oxygenase-1 (HO-1). Specific inhibition of HO-1 partially abolished its anti-inflammatory effect in IPEC-J2 cells exposure to OS. Interestingly, CGA suppressed the tumor necrosis factor-α (TNF-α) induced inflammatory responses in IPEC-J2 cells by decreasing phosphorylation of two critical inflammatory signaling proteins, NF-kappa-B inhibitor alpha (IκBα) and nuclear factor-κB (NF-κB). Specific inhibition of HO-1 cannot fully abolish its anti-inflammatory effect on the TNF-α-challenged cells. These results strongly suggested that CGA is a natural anti-inflammatory agent that can attenuate OS-induced inflammation and injury of intestinal epithelium via co-regulating the PI3K/Akt and IκBα/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jiali Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (Y.L.); (Y.L.); (D.C.); (B.Y.)
- Key Laboratory of Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Chengdu 611130, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (Y.L.); (Y.L.); (D.C.); (B.Y.)
- Key Laboratory of Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Chengdu 611130, China
| | - Yan Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (Y.L.); (Y.L.); (D.C.); (B.Y.)
- Guilin Fengpeng Bio-Tech Co., Ltd., Guilin 541199, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (Y.L.); (Y.L.); (D.C.); (B.Y.)
- Key Laboratory of Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Chengdu 611130, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (Y.L.); (Y.L.); (D.C.); (B.Y.)
- Key Laboratory of Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Chengdu 611130, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (Y.L.); (Y.L.); (D.C.); (B.Y.)
- Key Laboratory of Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Chengdu 611130, China
- Correspondence:
| |
Collapse
|
30
|
Zhang H, Zhang Y, Liu X, Elsabagh M, Yu Y, Peng A, Dai S, Wang H. L-Arginine inhibits hydrogen peroxide-induced oxidative damage and inflammatory response by regulating antioxidant capacity in ovine intestinal epithelial cells. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1973916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Ying Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Xiaoyun Liu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Nigde, Turkey
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Yin Yu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Along Peng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Sifa Dai
- Department of Pharmaceutical and Life Sciences, Jiujiang University, Jiujiang, China
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
31
|
Sun X, Piao L, Jin H, Nogoy KMC, Zhang J, Sun B, Jin Y, Lee DH, Choi S, Li X. Dietary glucose oxidase and/or catalase supplementation alleviates intestinal oxidative stress induced by diquat in weaned piglets. Anim Sci J 2021; 92:e13634. [PMID: 34605115 DOI: 10.1111/asj.13634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/17/2021] [Accepted: 08/18/2021] [Indexed: 12/26/2022]
Abstract
This study investigated the effects of dietary exogenous glucose oxidase (GOD) and/or catalase (CAT) on the intestinal antioxidant capacity and barrier function in piglets under oxidative stress. Sixty pigs assigned randomly to five treatment groups-CON: basal diet; DIQ: basal diet; GOD: basal diet + 40-U GOD/kg diet; CAT: basal diet + 50-U CAT/kg diet; and GC: basal diet + 40-U GOD/kg diet + 50-U CAT/kg diet-were analyzed. On Day 14, the CON group was injected with saline, and the others were treated with diquat. The results showed that in diquat-treated piglets, supplementation of dietary GOD and CAT elevated the superoxide dismutase and CAT activities and attenuated the malondialdehyde level in plasma and intestinal mucosa, enhanced the duodenal villus height and villus height/crypt depth ratio, upregulated ZO-1 mRNA level, and attenuated the apoptosis of the epithelial cells and caspase-3 mRNA level in the intestine. Additionally, the supplementation upregulated mRNA expression of the intestinal NF-E2-related factor 2-regulated genes in diquat-treated piglets. However, GOD combined with CAT could not alleviate oxidative damage better than supplementation of CAT or GOD alone under oxidative stress. Overall, the study provides a potential alternative that could relieve the weaning stress in piglets and help formulate antibiotic-free diets.
Collapse
Affiliation(s)
- Xiaojiao Sun
- Department of Animal Science, Yanbian University, Yanji, China.,Department of Swine R&D, CJ Cheiljedang Feed R&D Center, Shenyang, China
| | - Longguo Piao
- Department of Swine R&D, CJ Cheiljedang Feed R&D Center, Shenyang, China
| | - Haifeng Jin
- Department of Swine R&D, CJ Cheiljedang Feed R&D Center, Shenyang, China
| | | | - Junfang Zhang
- Department of Animal Science, Yanbian University, Yanji, China
| | - Bin Sun
- Department of Animal Science, Yanbian University, Yanji, China
| | - Yi Jin
- Department of Animal Science, Yanbian University, Yanji, China
| | - Dong Hoon Lee
- Department of Biosystems Engineering, Chungbuk National University, Cheongju City, South Korea
| | - Seongho Choi
- Department of Animal Science, Chungbuk National University, Cheongju City, South Korea
| | - Xiangzi Li
- Department of Animal Science, Yanbian University, Yanji, China
| |
Collapse
|
32
|
Saleri R, Borghetti P, Ravanetti F, Andrani M, Cavalli V, De Angelis E, Ferrari L, Martelli P. A Co-Culture Model of IPEC-J2 and Swine PBMC to Study the Responsiveness of Intestinal Epithelial Cells: The Regulatory Effect of Arginine Deprivation. Animals (Basel) 2021; 11:ani11092756. [PMID: 34573721 PMCID: PMC8465608 DOI: 10.3390/ani11092756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The interest in amino acids comes from their involvement in research on alternative strategies for the utilization of antibiotics on farms. Among several substances used to replace antibiotics, there is arginine, an essential amino acid in newborns and piglets. This amino acid has a protective role in intestinal immune cells and improves intestinal immunity. The purpose of this research was to define a co-culture model, in which intestinal epithelial cells can communicate with peripheral blood mononuclear cells (PBMC) to deepen the effects of arginine deprivation on intestinal epithelial cells over time. The main finding was that the lack of arginine highly impacts on intestinal and immune cells by way of immuno-regulation mediated by the expression of pro- and anti-inflammatory cytokines. The use of this experimental model could allow us to investigate the impact of and interactions between specific nutrients and the complex intestinal environment and, in addition, to assess feed additives to improve health and animal production. Abstract Arginine is a semi-essential amino acid, supplementation with which induces a reduction of intestinal damage and an improvement of intestinal immunity in weaned piglets, but the mechanism is not yet entirely clear. The aim of this study was to characterise a co-culture model by measuring changes in gene expression over time (24 and 48 h) in intestinal IPEC-J2 cells in the presence of immune cells activated with phytohemagglutinin and, consequently, to assess the effectiveness of arginine deprivation or supplementation in modulating the expression of certain cytokines related to the regulation of intestinal cells’ function. The main results show the crucial role of arginine in the viability/proliferation of intestinal cells evaluated by an MTT assay, and in the positive regulation of the expression of pro-inflammatory (TNF-α, IL-1α, IL-6, IL-8) and anti-inflammatory (TGF-β) cytokines. This experimental model could be important for analysing and clarifying the role of nutritional conditions in intestinal immune cells’ functionality and reactivity in pigs as well as the mechanisms of the intestinal defence system. Among the potential applications of our in vitro model of interaction between IEC and the immune system there is the possibility of studying the effect of feed additives to improve animal health and production.
Collapse
|
33
|
Early Weaning Affects Liver Antioxidant Function in Piglets. Animals (Basel) 2021; 11:ani11092679. [PMID: 34573645 PMCID: PMC8469846 DOI: 10.3390/ani11092679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/28/2022] Open
Abstract
Simple Summary Early weaning is used to improve efficiency in pig production. However, early weaning may trigger liver oxidative stress in piglets. In this study, we evaluated the effects of early weaning on the development and antioxidant function of the liver in piglets. Our findings show that early weaning significantly decreases piglet body weight and suppresses liver development. We find that early weaning also suppresses the activities of superoxide dismutase (SOD) and catalase (CAT) (p < 0.05). It could be concluded that weaning may reduce the growth performance and liver antioxidant function of piglets. Abstract This study examined the impact of early weaning on antioxidant function in piglets. A total of 40 Duroc × Landrace × Large White, 21-day-old piglets (half male and half female) were divided into suckling groups (SG) and weaning groups (WG). Piglets in WG were weaned at the 21st day, while the piglets in SG continued to get breastfed. Eight piglets from each group were randomly selected and slaughtered at 24th-day (SG3, WG3) and 28th-day old (SG7, WG7). The body weight, liver index, hepatocyte morphology, antioxidant enzymes activity, gene expression of antioxidant enzymes, and Nrf2 signaling in the liver of piglets were measured. The results showed that weaning caused decreased body weight (p < 0.01), lower liver weight (p < 0.01), and decreased the liver organ index (p < 0.05) of piglets. The area and size of hepatocytes in the WG group was smaller than that in the SG group (p < 0.05). We also observed that weaning reduced the activity of superoxide dismutase (SOD) and catalase (CAT) (p < 0.05) in the liver of piglets. Relative to the SG3 group, the gene expression of GSH-Px in liver of WG3 was significantly reduced (p < 0.05). The gene expression of Nrf2 in the SG3 group was higher than that in the WG3 group (p < 0.01). The gene expression of NQO1 in the SG7 group was higher than that in the WG7 group (p < 0.05). In conclusion, weaning resulted in lower weight, slowed liver development, and reduced antioxidant enzymes activity, thereby impairing liver antioxidant function and suppressing piglet growth.
Collapse
|
34
|
Chen J, Song Y, Chen D, Yu B, He J, Mao X, Huang Z, Luo J, Yu J, Luo Y, Yan H, Zheng P. Low Birth Weight Disturbs the Intestinal Redox Status and Mitochondrial Morphology and Functions in Newborn Piglets. Animals (Basel) 2021; 11:ani11092561. [PMID: 34573527 PMCID: PMC8469446 DOI: 10.3390/ani11092561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Low birth-weight piglets normally have a higher growth retardation and are more prone to disease such as diarrhea compared to NBW piglets, which are strongly associated with intestinal health, body redox status and mitochondrial morphology and function. The present study showed that low birth-weight piglets exhibited abnormal intestinal development and impaired intestinal barrier function and redox status when compared to normal- birth-weight piglets. Furthermore, we found that the impaired mitochondrial structure and functions may be one of the main causes of intestinal dysfunction in low birth-weight piglets. These results provided insights for the mechanisms of intestinal dysfunction in low birth-weight piglets. Abstract Low birth-weight (LBW) neonates exhibit a lower growth rate and impaired intestinal development. However, the reasons for abnormal development of small intestine in LBW piglets have not been widely studied. The present study focused on the redox status and mitochondrial morphology and functions of the small intestine in LBW newborn piglets. Ten newborn normal birth-weight (NBW) piglets and LBW piglets from 10 primiparous sows with the same parturition day were selected and sampled immediately without sucking colostrum. The small intestine tissues were collected and measured. Compared with NBW newborn piglets, LBW newborn piglets had a significantly decreased length and weight of the small intestine (p < 0.05) as well as the villus height/crypt depth (V/C) index in the jejunum (p < 0.05). Furthermore, LBW piglets had a lower gene expression of tight junction protein zonula occluden-1 (ZO1), claudin 1, antioxidant enzyme catalase (CAT), glutathione peroxidase (GPX) and heme oxygenase-1 (HO-1) in jejunum (p < 0.05). Meanwhile, LBW induced mitochondrial vacuolation and significantly decreased the mRNA expression of PPARγ coactivator-1α (PGC-1α) (p < 0.05) and tended to decrease the expression of cytochrome coxidase IV (Ccox IV) (p = 0.07) and cytochrome C (Cytc) (p = 0.08). In conclusion, LBW newborn piglets showed an abnormal development of the small intestine and disturbed redox status, and this may be caused by impaired morphology and the functions of mitochondria in the jejunum.
Collapse
|
35
|
Chen J, Su Y, Lin R, Lin F, Shang P, Hussain R, Shi D. Effects of Acute Diquat Poisoning on Liver Mitochondrial Apoptosis and Autophagy in Ducks. Front Vet Sci 2021; 8:727766. [PMID: 34458360 PMCID: PMC8385319 DOI: 10.3389/fvets.2021.727766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/12/2021] [Indexed: 12/21/2022] Open
Abstract
Diquat (DQ) is an effective herbicide and is widely used in agriculture. Due to persistent and frequent applications, it can enter into aquatic ecosystem and induce toxic effects to exposed aquatic animals. The residues of DQ via food chain accumulate in different tissues of exposed animals including humans and cause adverse toxic effects. Therefore, it is crucial and important to understand the mechanisms of toxic effects of DQ in exposed animals. We used ducks as test specimens to know the effects of acute DQ poisoning on mechanisms of apoptosis and autophagy in liver tissues. Results on comparison of various indexes of visceral organs including histopathological changes, apoptosis, autophagy-related genes, and protein expression indicated the adverse effects of DQ on the liver. The results of our experimental trial showed that DQ induces non-significant toxic effects on pro-apoptotic factors like BAX, BAK1, TNF-α, caspase series, and p53. The results revealed that anti-apoptotic gene Parkin was significantly upregulated, while an upward trend was also observed for Bcl2, suggesting that involvement of the anti-apoptotic factors in ducklings plays an important role in DQ poisoning. Results showed that DQ significantly increased the protein expression level of the autophagy factor Beclin 1 in the liver. Results on key autophagy factors like LC3A, LC3B, and p62 showed an upward trend at gene level, while the protein expression level of both LC3B and p62 reduced that might be associated with process of translation affected by the pro-apoptotic components such as apoptotic protease that inhibits the occurrence of autophagy while initiating cell apoptosis. The above results indicate that DQ can induce cell autophagy and apoptosis and the exposed organism may resist the toxic effects of DQ by increasing anti-apoptotic factors.
Collapse
Affiliation(s)
- Jiaxin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yalin Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Renzhao Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Fei Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Dayou Shi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
36
|
Bai M, Liu H, Wang S, Shu Q, Xu K, Zhou J, Xiong X, Huang R, Deng J, Yin Y, Liu Z. Dietary Moutan Cortex Radicis Improves Serum Antioxidant Capacity and Intestinal Immunity and Alters Colonic Microbiota in Weaned Piglets. Front Nutr 2021; 8:679129. [PMID: 34222303 PMCID: PMC8247480 DOI: 10.3389/fnut.2021.679129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background:Moutan cortex radicis (MCR), as a common traditional Chinese medicine, has been widely used as an antipyretic, antiseptic, and anti-inflammatory agent in China. Objectives: This study aimed to investigate the effects of dietary MCR supplementation on the antioxidant capacity and intestinal health of the pigs and to explore whether MCR exerts positive effects on intestinal health via regulating nuclear factor kappa-B (NF-κB) signaling pathway and intestinal microbiota. Methods: MCR powder was identified by LC-MS analysis. Selected 32 weaned piglets (21 d of age, 6.37 ± 0.10 kg average BW) were assigned (8 pens/diet, 1 pig/pen) to 4 groups and fed with a corn-soybean basal diet supplemented with 0, 2,000, 4,000, and 8,000 mg/kg MCR for 21 d. After the piglets were sacrificed, antioxidant indices, histomorphology examination, and inflammatory signaling pathway expression were assessed. The 16s RNA sequencing was used to analyze the effects of MCR on the intestinal microbiota structure of piglets. Results: Supplemental 4,000 mg/kg MCR significantly increased (P < 0.05) the average daily weight gain (ADG), average daily feed intake (ADFI), total antioxidative capability, colonic short-chain fatty acids (SCFA) concentrations, and the crypt depth in the jejunum but decreased (P < 0.05) the mRNA expression levels of interferon γ, tumor necrosis factor-α, interleukin-1β, inhibiting kappa-B kinase β (IKKβ), inhibiting nuclear factor kappa-B (IκBα), and NF-κB in the jejunum and ileum. Microbiota sequencing identified that MCR supplementation significantly increased the microbial richness indices (Chao1, ACE, and observed species, P < 0.05) and the relative abundances of Firmicutes and Lactobacillus (P < 0.05), decreased the relative abundances of Bacteroides, Parabacteroides, unidentified_Lachnospiraceae, and Enterococcus (P < 0.05) and had no significant effects on the diversity indices (Shannon and Simpson, P > 0.05). Microbial metabolic phenotypes analysis also showed that the richness of aerobic bacteria and facultative anaerobic bacteria, oxidative stress tolerance, and biofilm forming were significantly increased (P < 0.05), and the richness of anaerobic bacteria and pathogenic potential of gut microbiota were reduced (P < 0.05) by MCR treatment. Regression analysis showed that the optimal MCR supplemental level for growth performance, serum antioxidant capacity, and intestinal health of weaned piglets was 3,420 ~ 4,237 mg/kg. Conclusions: MCR supplementation improved growth performance and serum antioxidant capacity, and alleviated intestinal inflammation by inhibiting the IKKβ/IκBα/NF-κB signaling pathway and affecting intestinal microbiota in weaned piglets.
Collapse
Affiliation(s)
- Miaomiao Bai
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hongnan Liu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Shanshan Wang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Qingyan Shu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Kang Xu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jian Zhou
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xia Xiong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Ruilin Huang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jinping Deng
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zheng'an Liu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
37
|
Zeng Z, Zhang Y, He J, Yu J, Mao X, Zheng P, Luo Y, Luo J, Huang Z, Yu B, Chen D. Effects of soybean raffinose on growth performance, digestibility, humoral immunity and intestinal morphology of growing pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:393-399. [PMID: 34258427 PMCID: PMC8245804 DOI: 10.1016/j.aninu.2020.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/23/2020] [Accepted: 06/15/2020] [Indexed: 11/25/2022]
Abstract
There are appreciable does of raffinose in soybean, but the impacts of raffinose on pigs are poorly investigated. We used 2 experiments to investigate the influence of soybean raffinose on growth performance, digestibility, humoral immunity and intestinal morphology of growing pigs. In Exp. 1, a total of 30 crossbred (Duroc × Landrace × Yorkshire) barrows (21.93 ± 0.43 kg) were randomly divided into 3 groups, and were fed with the control diet, the control diets supplemented with 0.2% and 0.5% raffinose, respectively, for 21 d. Results showed that the addition of 0.2% or 0.5% raffinose reduced (P < 0.05) average daily feed intake (ADFI), average daily gain (ADG) and nutrient digestibility, and dietary 0.5% raffinose increased the ratio of feed to gain (P < 0.05). For serum indexes, dietary 0.5% raffinose decreased growth hormone and increased glucagon-like peptide-2, immunoglobulin G, tumor necrosis factor-α (TNF-α) and interleukin-6 concentration (P < 0.05). In Exp. 2, a total of 24 crossbred barrows (38.41 ± 0.45 kg) were randomly divided into 3 groups, and were fed with the control diet (ad libitum), the raffinose diet (0.5% raffinose, ad libitum), and the control diet in the same amount as the raffinose group (feed-pair group) for 14 d, respectively. Compared with the control diet, dietary 0.5% raffinose decreased ADFI (P < 0.05). Intriguingly, the raffinose group had lower ADG than the feed-pair group, lower nutrient digestibility, lower amylase activity in duodenum, lower amylase, lipase and trypsin activities in jejunum and higher TNF-α concentration in serum compared with the other 2 groups, and a higher ratio of villus height to crypt depth compared with the control group (P < 0.05). These results showed that soybean raffinose could reduce feed voluntary intake and body gain while improving intestinal morphology without a significant negative influence on immunity. Taken together, dietary raffinose could decrease growth performance by reducing both feed intake and nutrient digestibility while inducing humoral immune response of growing pigs.
Collapse
Affiliation(s)
- Zhu Zeng
- Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ya'an, 625014, Sichuan, China
| | - Yalin Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ya'an, 625014, Sichuan, China
| | - Jun He
- Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ya'an, 625014, Sichuan, China
| | - Jie Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ya'an, 625014, Sichuan, China
| | - Xiangbing Mao
- Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ya'an, 625014, Sichuan, China
| | - Ping Zheng
- Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ya'an, 625014, Sichuan, China
| | - Yuheng Luo
- Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ya'an, 625014, Sichuan, China
| | - Junqiu Luo
- Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ya'an, 625014, Sichuan, China
| | - Zhiqing Huang
- Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ya'an, 625014, Sichuan, China
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ya'an, 625014, Sichuan, China
| | - Daiwen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ya'an, 625014, Sichuan, China
| |
Collapse
|
38
|
Invited Review: Maintain or Improve Piglet Gut Health around Weanling: The Fundamental Effects of Dietary Amino Acids. Animals (Basel) 2021; 11:ani11041110. [PMID: 33924356 PMCID: PMC8069201 DOI: 10.3390/ani11041110] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 12/18/2022] Open
Abstract
Gut health has significant implications for swine nutrient utilization and overall health. The basic gut morphology and its luminal microbiota play determinant roles for maintaining gut health and functions. Amino acids (AA), a group of essential nutrients for pigs, are not only obligatory for maintaining gut mucosal mass and integrity, but also for supporting the growth of luminal microbiota. This review summarized the up-to-date knowledge concerning the effects of dietary AA supplementation on the gut health of weanling piglets. For instance, threonine, arginine, glutamine, methionine and cysteine are beneficial to gut mucosal immunity and barrier function. Glutamine, arginine, threonine, methionine and cysteine can also assist with relieving the post-weaning stress of young piglets by improving gut immunological functions, antioxidant capacity, and/or anti-inflammatory ability. Glutamine, glutamate, glycine and cysteine can assist to reconstruct the gut structure after its damage and reverse its dysfunction. Furthermore, methionine, lysine, threonine, and glutamate play key roles in affecting bacteria growth in the lumen. Overall, the previous studies with different AA showed both similar and different effects on the gut health, but how to take advantages of all these effects for field application is not clear. It is uncertain whether these AA effects are synergetic or antagonistic. The interactions between the effects of non-nutrient feed additives and the fundamental effects of AA warrant further investigation. Considering the global push to minimize the antibiotics and ZnO usage in swine production, a primary effort at present may be made to explore the specific effects of individual AA, and then the concert effects of multiple AA, on the profile and functions of gut microbiota in young pigs.
Collapse
|
39
|
Han H, Liu Z, Yin J, Gao J, He L, Wang C, Hou R, He X, Wang G, Li T, Yin Y. D-Galactose Induces Chronic Oxidative Stress and Alters Gut Microbiota in Weaned Piglets. Front Physiol 2021; 12:634283. [PMID: 33897450 PMCID: PMC8060641 DOI: 10.3389/fphys.2021.634283] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/12/2021] [Indexed: 01/17/2023] Open
Abstract
Oxidative stress commonly occurs in pig production, which can severely damage the intestinal function of weaned piglets. This study was conducted to investigate the effects of D-galactose with different levels used to induce chronic oxidative stress on growth performance, intestinal morphology and gut microbiota in weaned piglets. The results showed that addition of 10 and 20 g/kg BW D-galactose reduced average daily gain and average daily feed intake from the first to the third week. 10 g/kg BW D-galactose increased the concentration of serum MDA at the second and third week. 10 g/kg BW D-galactose significantly influenced the jejunal and ileal expressions of GPx1, CAT1, and MnSOD. The results of 16S rRNA sequencing showed that compared with the control, 10 and 20 g/kg BW D-galactose significantly decreased the relative abundance of Tenericutes, Erysipelotrichia, Erysipelotrichales, and Erysipelotrichaceae, while increased the relative abundance of Negativicutes, Selenomonnadales, and Veillonellaceae. The results indicated that treatment with 10 g/kg BW/day D-galactose for 3 weeks could induce chronic oxidative stress, reduce the growth performance and alter gut microbiota in weaned piglets.
Collapse
Affiliation(s)
- Hui Han
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zemin Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jing Gao
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha, China.,National Engineering Research Center for Oil Tea Camellia, Changsha, China
| | - Liuqin He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chenyu Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ruoxin Hou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xingguo He
- Changsha Lvye Bio-Technology Co., Ltd., Changsha, China
| | - Guoqiang Wang
- Changsha Lvye Bio-Technology Co., Ltd., Changsha, China
| | - Tiejun Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.,Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
40
|
Piñero MC, Otálora G, Collado J, López-Marín J, Del Amor FM. Foliar application of putrescine before a short-term heat stress improves the quality of melon fruits (Cucumis melo L.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1428-1435. [PMID: 32833253 DOI: 10.1002/jsfa.10756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/25/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Climate change has caused an increase in the frequency and intensity of heatwaves, worldwide, which subject plants to thermal stress for short periods; this can affect the quality of melon fruits, both negatively and positively. Since the application of putrescine has been shown to help increase tolerance of abiotic stresses, the objective of this work is to determine the effects of the foliar application of putrescine (1.5 and 5 mmol L-1 ) before a short heat stress (HS) on the quality of melon fruits. RESULTS The results indicate that HS had a positive effect on the quality of melon fruits, since it increased the total sugars and polyamines contents and the antioxidant capacity, and reduced the presence of substances undesirable in foods such as nitrate. However, the fruit quality was further increased by the combination of HS and putrescine (5 mmol L-1 ). In this case, the melon fruits showed increases in their antioxidant capacity and contents of polyamines, amino acids and minerals beneficial to health. The nitrate concentration was even lower than in the control fruits. CONCLUSION This novel study highlights the possibility of improving the nutritional quality of melon pulp by applying foliar putrescine in combination with a short period of high temperature. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- María Carmen Piñero
- Department of Crop Production and Agri-Technology, Murcia Institute of Agri-Food Research and Development (IMIDA), C/Mayor, s/n, Murcia, 30150, Spain
| | - Ginés Otálora
- Department of Crop Production and Agri-Technology, Murcia Institute of Agri-Food Research and Development (IMIDA), C/Mayor, s/n, Murcia, 30150, Spain
| | - Jacinta Collado
- Department of Crop Production and Agri-Technology, Murcia Institute of Agri-Food Research and Development (IMIDA), C/Mayor, s/n, Murcia, 30150, Spain
| | - Josefa López-Marín
- Department of Crop Production and Agri-Technology, Murcia Institute of Agri-Food Research and Development (IMIDA), C/Mayor, s/n, Murcia, 30150, Spain
| | - Francisco M Del Amor
- Department of Crop Production and Agri-Technology, Murcia Institute of Agri-Food Research and Development (IMIDA), C/Mayor, s/n, Murcia, 30150, Spain
| |
Collapse
|
41
|
Chen YP, Gu YF, Zhao HR, Zhou YM. Dietary squalene supplementation alleviates diquat-induced oxidative stress and liver damage of broiler chickens. Poult Sci 2020; 100:100919. [PMID: 33518324 PMCID: PMC7936218 DOI: 10.1016/j.psj.2020.12.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/26/2020] [Accepted: 12/06/2020] [Indexed: 02/08/2023] Open
Abstract
The aim of this study was to explore the protective effects of squalene supplementation on growth performance, oxidative status, and liver function of diquat-challenged broilers. One hundred forty-four 1-day-old male Ross 308 broiler chicks were allocated to 3 groups, and each group consisted of 6 replicates of 8 birds each. The three groups were as follows: 1) nonchallenged broilers fed with a basal diet (control group), 2) diquat-challenged broilers fed a basal diet, and 3) diquat-challenged broilers fed with a basal diet supplemented with 1.0 g/kg of squalene. Broilers were intraperitoneally injected with 20 mg/mL of diquat solution at a dosage of 1 mL/kg of BW or an equivalent amount of saline at 20 d. Compared with the control group, weight gain and BW change rate during 24 h after injection were decreased by diquat challenge (P < 0.05), and the diquat-induced compromised growth performance was improved by squalene supplementation (P < 0.05). Diquat administration reduced plasma superoxide dismutase activity and increased malondialdehyde accumulation and glutathione peroxidase activity in both plasma and the liver (P < 0.05). In contrast, plasma glutathione peroxidase activity in diquat-challenged broilers was reduced by squalene supplementation (P < 0.05). The hepatic glutathione level was reduced by diquat administration (P < 0.05), whereas its level in plasma and the liver of diquat-challenged broilers was increased by squalene supplementation (P < 0.05). The relative liver weight of broilers was increased by diquat challenge (P < 0.05), with its value being intermediate in the squalene-supplemented group (P > 0.05). The plasma aminotransferase activities and total bilirubin concentration were increased by diquat challenge (P < 0.05), which were reduced by squalene supplementation (P < 0.05). The mRNA abundance of hepatic nuclear factor erythroid 2–related factor 2 (P < 0.05) was upregulated by diquat treatment, regardless of squalene supplementation. The mRNA abundance of hepatic glutathione peroxidase 1 and B-cell lymphoma/leukemia 2–associated X protein was upregulated by diquat challenge (P < 0.05), which was reversed by squalene administration (P < 0.05). Squalene increased NAD(P)H quinone dehydrogenase 1 mRNA abundance and decreased caspase 3 mRNA abundance in the liver of diquat-challenged broilers (P < 0.05). The results suggested that squalene can increase weight gain, improve oxidative status, and alleviate liver injury in diquat-challenged broilers.
Collapse
Affiliation(s)
- Y P Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Postdoctoral Research Station of Food Science and Engineering, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Y F Gu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - H R Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Y M Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
42
|
Wang Y, Chen Y, Zhang X, Lu Y, Chen H. New insights in intestinal oxidative stress damage and the health intervention effects of nutrients: A review. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104248] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
43
|
Dietary l-arginine supplementation ameliorates inflammatory response and alters gut microbiota composition in broiler chickens infected with Salmonella enterica serovar Typhimurium. Poult Sci 2020; 99:1862-1874. [PMID: 32241466 PMCID: PMC7587704 DOI: 10.1016/j.psj.2019.10.049] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/13/2019] [Accepted: 10/21/2019] [Indexed: 12/24/2022] Open
Abstract
This study was conducted to investigate the effects of dietary arginine (Arg) supplementation on the inflammatory response and gut microbiota of broiler chickens subjected to Salmonella enterica serovar Typhimurium. One hundred and forty 1-day-old Arbor Acres male birds were randomly assigned to a 2 × 2 factorial arrangement including diet treatment (with or without 0.3% Arg supplementation) and immunological stress (with or without S. typhimurium challenge). Samples were obtained at 7 D after infection (day 23). Results showed that S. typhimurium challenge caused histopathological and morphological damages, but Arg addition greatly reduced these intestinal injuries. S. typhimurium challenge elevated the levels of serum inflammatory parameters, including diamine oxidase, C-reactive protein, procalcitonin, IL-1β, IL-8, and lipopolysaccharide-induced tumor necrosis factor-alpha factor (LITNF) homolog. However, Arg supplementation decreased the serum procalcitonin, IL-1β, IL-8, and LITNF concentration. S. typhimurium challenge significantly increased jejunal IL-1β, IL-8, IL-10, and IL-17 mRNA expression and tended to upregulate IL-22 mRNA expression, but Arg supplementation remarkably reduced IL-8 mRNA expression, tended to downregulate IL-22 mRNA expression, and dramatically elevated IFN-γ and IL-10 mRNA expression. In addition, sequencing data of 16S rDNA indicated that the population of Proteobacteria phylum; Enterobacteriaceae family; Escherichia–Shigella, and Nitrosomonas genera; and Escherichia coli and Ochrobactrum intermedium species were more abundant, but the population of Rhodocyclaceae and Clostridiaceae_1 families and Candidatus Arthromitus genus were less abundant in the ileal digesta of birds with only S. typhimurium infection when compared with the controls. Treatment with Arg in birds subjected to S. typhimurium challenge increased the abundances of Firmicutes phylum, Clostridiaceae_1 family, Methylobacterium and Candidatus Arthromitus genera but decreased the abundance of Nitrosomonas genus and Rhizobium cellulosilyticum and Rubrobacter xylanophilus species as compared with the only S. typhimurium–challenged birds. In conclusion, Arg supplementation can alleviate intestinal mucosal impairment by ameliorating inflammatory response and modulating gut microbiota in broiler chickens challenged with S. typhimurium.
Collapse
|
44
|
Zhang H, Sun H, Peng A, Guo S, Wang M, Loor JJ, Wang H. N-carbamylglutamate and l-arginine promote intestinal function in suckling lambs with intrauterine growth restriction by regulating antioxidant capacity via a nitric oxide-dependent pathway. Food Funct 2020; 10:6374-6384. [PMID: 31508643 DOI: 10.1039/c9fo01752f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Data indicate that intrauterine growth restriction (IUGR) in newborns can be partly alleviated through the supply of l-arginine (Arg) and N-carbamylglutamate (NCG). The current work aimed to explore whether Arg and NCG promote intestinal function by regulating antioxidant capacity in suckling lambs with IUGR via a nitric oxide (NO)-dependent pathway. Forty eight newly born Hu lambs with normal weights at birth (CON) or suffering from IUGR were randomly divided into 4 groups (n = 12 per group), namely, the CON, IUGR, IUGR + 1% Arg, and IUGR + 0.1% NCG groups. The animals were used for experiments from the age of day 7 to 28. Compared with the lambs in the IUGR group, the lambs in the Arg or NCG group had higher (P < 0.05) final body weights. The plasma insulin, NO, and NO synthase (NOS) concentrations in the IUGR group were higher (P < 0.05) compared with those in IUGR + 1% Arg or IUGR + 0.1% NCG. The jejunal level of the tumor necrosis factor α (TNF-α) in the IUGR lambs was greater (P < 0.05) compared with that in IUGR + 1% Arg or IUGR + 0.1% NCG. The plasma and jejunal total antioxidant capacity (T-AOC) values for the IUGR + 1% Arg or IUGR + 0.1% NCG group were greater (P < 0.05) compared with those for the IUGR group. Compared with the IUGR + 1% Arg or IUGR + 0.1% NCG lambs, the IUGR lambs had lower (P < 0.05) abundance of mRNA and protein abundance of glutathione peroxidase 1 (GPx1), catalase (CAT), superoxide dismutase 2 (SOD2), nuclear factor erythroid 2-related factor 2 (Nrf2), quinone oxidoreductase 1 (NQO1), heme oxygenase (HO-1), zonula occludens-1 (ZO-1), occludin, inducible NOS (iNOS), and epithelial NOS (eNOS). Overall, the data suggest that the Arg or NCG supplementation to suckling lambs with IUGR enhances the intestinal function by regulating the oxidant status via the NO-dependent pathway.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
45
|
Qiu S, Fu H, Zhou R, Yang Z, Bai G, Shi B. Toxic effects of glyphosate on intestinal morphology, antioxidant capacity and barrier function in weaned piglets. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 187:109846. [PMID: 31677563 DOI: 10.1016/j.ecoenv.2019.109846] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
At present, the public is paying more attention to the adverse effects of pesticides on human and animal health and the environment. Glyphosate is a broad-spectrum pesticide that is widely used in agricultural production. In this manuscript, the effects of diets containing glyphosate on intestinal morphology, intestinal immune factors, intestinal antioxidant capacity and the mRNA expression associated with the Nrf2 signaling pathway were investigated in weaned piglets. Twenty-eight healthy female hybrid weaned piglets (Duroc × Landrace × Yorkshire) were randomly selected with an average weight of 12.24 ± 0.61 kg. Weaned piglets were randomly assigned into 4 treatment groups and fed a basal diet supplemented with 0, 10, 20, and 40 mg/kg glyphosate for a 35-day feeding trial. We found that glyphosate had no effect on intestinal morphology. In the duodenum, glyphosate increased the activities of CAT and SOD (linear, P < 0.05) and increased the levels of MDA (linear and quadratic, P < 0.05). In the duodenum, glyphosate remarkably increased the relative mRNA expression levels of Nrf2 (linear and quadratic, P < 0.05) and NQO1 (linear and quadratic, P < 0.05) and reduced the relative mRNA expression levels of GPx1, HO-1 and GCLM (linear and quadratic, P < 0.05). In the jejunum, glyphosate remarkably increased the relative mRNA expression levels of Nrf2 (linear and quadratic, P < 0.05) and decreased the relative mRNA expression levels of GCLM (linear and quadratic, P < 0.05). Glyphosate increased the mRNA expression levels of IL-6 in the duodenum (linear and quadratic, P < 0.05) and the mRNA expression levels of IL-6 in the jejunum (linear, P < 0.05). Glyphosate increased the mRNA expression of NF-κB in the jejunum (linear, P = 0.05). Additionally, the results demonstrated that glyphosate linearly decreased the ZO-1 mRNA expression levels in the jejunum and the mRNA expression of claudin-1 in the duodenum (P < 0.05). In the duodenum, glyphosate increased the protein expression levels of Nrf2 (linear, P = 0.025). Overall, glyphosate exposure may result in oxidative stress in the intestines of piglets, which can be alleviated by enhancing the activities of antioxidant enzymes and self-detoxification.
Collapse
Affiliation(s)
- Shengnan Qiu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China
| | - Huiyang Fu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ruiying Zhou
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zheng Yang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China
| | - Guangdong Bai
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
46
|
Yi H, Xiong Y, Wu Q, Wang M, Liu S, Jiang Z, Wang L. Effects of dietary supplementation with l-arginine on the intestinal barrier function in finishing pigs with heat stress. J Anim Physiol Anim Nutr (Berl) 2019; 104:1134-1143. [PMID: 31879983 DOI: 10.1111/jpn.13277] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/05/2019] [Accepted: 11/10/2019] [Indexed: 12/11/2022]
Abstract
Previous studies showed heat stress reduces body weight gain and feed intake associated with damaged intestinal barrier function, and l-arginine (L-Arg) enhanced intestinal barrier function in young animals under stress. The aim of this study was to evaluate effects of L-Arg on serum hormones, intestinal morphology, nutrients absorption and epithelial barrier functions in finishing pigs with heat stress. Forty-eight finishing pigs (Landrace) were balanced for sex and then randomly assigned to six groups: TN group, thermal neutral (22°C, ~80% humidity) with a basal diet; HS group, heat stress (cyclical 35°C for 12 hr and 22°C for 12 hr, ~80% humidity) with a basal diet; PF group, thermal neutral (22°C, ~80% humidity) and pair-fed with the HS; the TNA, HSA and PFA groups were the basal diet of TN group, HS group and PF group supplemented with 1% L-Arg. Results showed that HS decreased (p < .05) the thyroxine concentrations and increased (p < .05) the insulin concentrations in serum compared with the TN group, but 1% L-Arg had no significant effects on them. Both HS and PF significantly increased (p < .05) the mRNA expression of cationic amino acid transporters (CAT1 and CAT2) and decreased the mRNA expression of solute carrier family 5 member 10 (SGLT1) in the jejunum compared with the TN group. Compared with the TN group, HS reduced the expression of tight junction (TJ) protein zonula occluden-1 (ZO-1) and occludin, but PF only decreased ZO-1 expression in the jejunum. Results exhibited that dietary supplementation with 1% L-Arg improved the intestinal villous height, the ratio of villous height to crypt depth, and the expression of occludin and porcine beta-defensin 2 (pBD2) in the jejunum of intermittent heat-treated finishing pigs. In conclusion, dietary supplementation with 1% L-Arg could partly attenuate the intermittent heat-induced damages of intestinal morphology and epithelial barrier functions in finishing pigs.
Collapse
Affiliation(s)
- Hongbo Yi
- Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yunxia Xiong
- Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qiwen Wu
- Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Mengzhu Wang
- Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shuai Liu
- Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zongyong Jiang
- Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Li Wang
- Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
47
|
Che D, Adams S, Zhao B, Qin G, Jiang H. Effects of Dietary L-arginine Supplementation from Conception to Post- Weaning in Piglets. Curr Protein Pept Sci 2019; 20:736-749. [PMID: 30678624 DOI: 10.2174/1389203720666190125104959] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/30/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022]
Abstract
Weaned piglets experience sudden changes in their dietary patterns such as withdrawal from the easily digestible watery milk to a coarse cereal diet with both systemic and intestinal disruptions coupling with the expression of pro-inflammatory proteins which affects the immune system and the concentrations of haptoglobin including both positive and negative acute-phase proteins in the plasma. L-arginine is an important protein amino acid for piglets, but its inadequate synthesis is a nutritional problem for both sows and piglets. Recent studies indicated that dietary supplementation of L-arginine increased feed intake, uterine growth, placental growth and nutrient transport, maternal growth and health, embryonic survival, piglets birth weight, piglet's growth, and productivity, and decreased stillbirths. L-arginine is essential in several important pathways involved in the growth and development of piglets such as nitric oxide synthesis, energy metabolism, polyamine synthesis, cellular protein production and muscle accretion, and the synthesis of other functional amino acids. However, the underlying molecular mechanism in these key pathways remains largely unresolved. This review was conducted on the general hypothesis that L-arginine increased the growth and survival of post-weaning piglets. We discussed the effects of dietary L-arginine supplementation during gestation, parturition, lactation, weaning, and post-weaning in pigs as each of these stages influences the health and survival of sows and their progenies. Therefore, the aim of this review was to discuss through a logical approach the effects of L-arginine supplementation on piglet's growth and survival from conception to postweaning.
Collapse
Affiliation(s)
- Dongsheng Che
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China.,Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118 China
| | - Seidu Adams
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Bao Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118 China
| | - Guixin Qin
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China.,Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118 China
| | - Hailong Jiang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China.,Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118 China
| |
Collapse
|
48
|
Moreton ML, Lo BP, Simmons DBD, Marlatt VL. Toxicity of the aquatic herbicide, reward®, on the fathead minnow with pulsed-exposure proteomic profile. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 33:100635. [PMID: 31759287 DOI: 10.1016/j.cbd.2019.100635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/05/2019] [Accepted: 10/05/2019] [Indexed: 11/17/2022]
Abstract
The objectives of this study were to assess the lethal and sub-lethal effects of the aquatic herbicide commercial formulation, Reward® (373 g/L DB), using application scenarios prescribed by the manufacturer. Specifically, a 14 d period between applications of Reward® in a water body undergoing treatment is required, yet the effects of these 'pulse' exposure scenarios on aquatic wildlife such as fish are unknown. In the first experiment early life stage FHM were exposed to a continuous DB concentrations from 0.105-12.6 mg/L which yielded a larval 7 d LC50 of 2.04 mg/L as well as a significant decrease in body mass (25.0 ± 11.6%) at the 1.18 mg/L Reward® concentration. In a second experiment, FHM larvae were exposed for 24 h and then reared in clean water for 14 d followed by a second 24 h exposure to Reward®. The 16 d LC50 value was 4.19 mg/L. In a third experiment, adult FHM were exposed in a pulse/discontinuous manner to Reward® with a calculated 21 d LC50 value of 6.71 mg/L. No significant changes in gonadosomatic index or fecundity of the F1 generation's hatch success were found when eggs from exposed adults were then reared in clean water. Proteome analyses of whole FHM larvae from the discontinuous/pulse exposure showed the primary gene ontology molecular functions of the proteins in fish exposed to 3.78 mg/L DB that resulted in ~30% mortality with positive or negative differential abundance (p-value < .2) were: structural molecule activity; identical protein binding; structural constituent of cytoskeleton; ion binding; calcium ion binding; cytoskeletal protein binding; actin binding; and, ATP binding. These findings suggest that concentrations causing adverse effects occur above the maximum concentration predicted by the manufacturer when applied according to the label (i.e. >0.37 mg/L).
Collapse
Affiliation(s)
- Michael L Moreton
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada.
| | | | | | - Vicki L Marlatt
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
49
|
Zhang H, Jin Y, Peng A, Guo S, Loor JJ, Wang H. L-Arginine protects ovine intestinal epithelial cells from lipopolysaccharide-induced intestinal barrier injury. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1664417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yaqian Jin
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Along Peng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Shuang Guo
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Juan J. Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
50
|
Jiang J, Chen D, Yu B, He J, Yu J, Mao X, Huang Z, Luo Y, Luo J, Zheng P. Improvement of growth performance and parameters of intestinal function in liquid fed early weanling pigs1. J Anim Sci 2019; 97:2725-2738. [PMID: 31011749 DOI: 10.1093/jas/skz134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/17/2019] [Indexed: 12/14/2022] Open
Abstract
Liquid feeding, a widely used technique, has been applied as a feeding technique commonly in global swine production. The objective of this study was to evaluate the effects of liquid feeding on growth performance, nutrient digestibility, and intestinal barrier functions during the early weaning period in pigs. Three hundred and sixty 24-d-old weanling pigs (Duroc × Landrace × Yorkshire) with BW of 6.98 ± 0.15 kg were randomly assigned to a control diet (dry fed basal diet, CON) or as meal mixed with water in the ratio 1:4 (liquid fed basal diet, LF) with 6 replicates per treatment and 30 weanling pigs per replicate. The study lasted 7 d. On days 4 to 7, fresh fecal samples were collected to evaluate apparent total tract digestibility (ATTD) of nutrients. After 7 d, 2 weanling pigs per pen were euthanized and physiological samples were obtained. Results showed that LF increased (P < 0.05) ADG (281 g vs. 183 g), ADFI (374 g vs. 245 g), and final BW (8.95 kg vs. 8.26 kg) compared with CON. Compared with CON, LF significantly decreased (P < 0.05) serum cortisol and d-lactate concentrations as well as the activity of diamine oxidase, enhanced (P < 0.05) the ATTD of ether extract and ash, increased (P < 0.05) the activities of amylase, lipase, and lactase in the jejunal mucosa. Furthermore, LF had higher (P < 0.05) villus height and villi height:crypt depth and increased (P < 0.05) mRNA expressions of insulin-like growth factors-1 receptor (IGF-1R), claudin-2 (CLDN-2), zonula occludens-1 (ZO-1), and zonula occludens-2 (ZO-2) in the jejunum. Moreover, LF had lower (P < 0.05) abundances of total bacteria and Escherichia coli and higher (P < 0.05) concentrations of acetic acid and butyric acid in cecal digesta. Altogether, the results indicated that liquid feeding not only promoted growth performance but also improved intestinal health by enhancing gut barrier functions in weanling pigs.
Collapse
Affiliation(s)
- Junjie Jiang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, and Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Ya'an, People's Republic of China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, and Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Ya'an, People's Republic of China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, and Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Ya'an, People's Republic of China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, and Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Ya'an, People's Republic of China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, and Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Ya'an, People's Republic of China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, and Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Ya'an, People's Republic of China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, and Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Ya'an, People's Republic of China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, and Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Ya'an, People's Republic of China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, and Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Ya'an, People's Republic of China
| | | |
Collapse
|