1
|
Hassall RM, Holding M, Medlock JM, Asaaga FA, Vanwambeke SO, Hewson R, Purse BV. Identifying hotspots and risk factors for tick-borne encephalitis virus emergence at its range margins to guide interventions, Great Britain. Euro Surveill 2025; 30:2400441. [PMID: 40183125 PMCID: PMC11969960 DOI: 10.2807/1560-7917.es.2025.30.13.2400441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/12/2024] [Indexed: 04/05/2025] Open
Abstract
BackgroundTick-borne encephalitis virus (TBEV) is expanding its range in Europe, with increasing human cases reported. Since the first detection of TBEV in ticks in the United Kingdom in 2019, one possible, two probable and two confirmed autochthonous cases in humans have been reported.AimWe aimed to understand the environmental and ecological factors limiting TBEV foci at their range edge and predict suitable areas for TBEV establishment across Great Britain (GB) by modelling patterns of exposure to TBEV in deer.MethodsWe developed spatial risk models for TBEV by integrating data between 2018 and 2021 on antibodies against tick-borne flavivirus in fallow, muntjac, red and roe deer with data on potential risk factors, including climate, land use, forest connectivity and distributions of bank voles and yellow-necked mice. We overlayed modelled suitability for TBEV exposure across GB with estimations on number of visitors to predict areas of high human exposure risk.ResultsModels for fallow, muntjac and roe deer performed well in independent validation (Boyce index > 0.92). Probable exposure to TBEV was more likely to occur in sites with a greater percentage cover of coniferous woodland, with multiple deer species, higher winter temperatures and rates of spring warming.ConclusionThe resulting TBEV suitability maps can be used by public health bodies in GB to tailor surveillance and identify probable high-risk areas for human exposure to guide awareness raising and vaccination policy. Combining animal surveillance and iterative spatial risk modelling can enhance preparedness in areas of tick-borne disease emergence.
Collapse
Affiliation(s)
- Richard Mj Hassall
- UK Centre for Ecology and Hydrology, Benson Lane, Crowmarsh Gifford, Wallingford, United Kingdom
| | - Maya Holding
- Virology and Pathogenesis Group, Specialist Microbiology and Laboratories, UK Health Security Agency, Porton Down, Salisbury, United Kingdom
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Emerging and Zoonotic Infections at the University of Liverpool, Liverpool, United Kingdom
| | - Jolyon M Medlock
- Medical Entomology and Zoonoses Ecology, Climate Change and Health Security, UK Health Security Agency, Porton Down, Salisbury, United Kingdom
| | - Festus A Asaaga
- UK Centre for Ecology and Hydrology, Benson Lane, Crowmarsh Gifford, Wallingford, United Kingdom
| | - Sophie O Vanwambeke
- Université catholique de Louvain (UCLouvain), Earth & Life Institute, Earth and Climate Research Center, Louvain-la-Neuve, Belgium
| | - Roger Hewson
- Virology and Pathogenesis Group, Specialist Microbiology and Laboratories, UK Health Security Agency, Porton Down, Salisbury, United Kingdom
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Bethan V Purse
- UK Centre for Ecology and Hydrology, Benson Lane, Crowmarsh Gifford, Wallingford, United Kingdom
| |
Collapse
|
2
|
Peralbo-Moreno A, Espí A, Barandika JF, García-Pérez AL, Acevedo P, Ruiz-Fons F. Spatiotemporal dynamics of Ixodes ricinus abundance in northern Spain. Ticks Tick Borne Dis 2024; 15:102373. [PMID: 38964219 DOI: 10.1016/j.ttbdis.2024.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/06/2024]
Abstract
Ixodes ricinus is the most medically relevant tick species in Europe because it transmits the pathogens that cause Lyme borreliosis and tick-borne encephalitis. Northern Spain represents the southernmost margin of its main European range and has the highest rate of Lyme borreliosis hospitalisations in the country. Currently, the environmental determinants of the spatiotemporal patterns of I. ricinus abundance remain unknown in this region and these may differ from drivers in highly favourable areas for the species in Europe. Therefore, our study aimed to understand the main factors modulating questing I. ricinus population dynamics to map abundance patterns in northern Spain. From 2012 to 2014, monthly/fortnightly samplings were conducted at 13 sites in two regions of northern Spain to estimate spatiotemporal variation in I. ricinus questing abundance. Local abundance of I. ricinus was modelled in relation to variation in local biotic and abiotic environmental conditions by constructing generalised linear mixed models with a zero-inflated negative binomial distribution for overdispersed data. The different developmental stages of I. ricinus were most active at different times of the year. Adults and nymphs showed a peak of abundance in spring, while questing larvae were more frequent in summer. The main determinants affecting the spatiotemporal abundance of the different stages were related to humidity and temperature. For adults and larvae, summer seemed to be the most influential period for their abundance, while for nymphs, winter conditions and those of the preceding months seemed to be determining factors. The highest abundances of nymphs and adults were predicted for the regions of northern Spain with the highest rate of Lyme borreliosis hospitalisations. Our models could be the basis on which to build more accurate predictive models to identify the spatiotemporal windows of greatest potential interaction between animals/humans and I. ricinus that may lead to the transmission of I. ricinus-borne pathogens.
Collapse
Affiliation(s)
- Alfonso Peralbo-Moreno
- Health & Biotechnology (SaBio) group, Spanish Game & Wildlife Research Institute (IREC), CSIC-UCLM-JCCM, Ciudad Real, Spain
| | | | - Jesús F Barandika
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Ana L García-Pérez
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Pelayo Acevedo
- Health & Biotechnology (SaBio) group, Spanish Game & Wildlife Research Institute (IREC), CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Francisco Ruiz-Fons
- Health & Biotechnology (SaBio) group, Spanish Game & Wildlife Research Institute (IREC), CSIC-UCLM-JCCM, Ciudad Real, Spain; CIBERINFEC, ISC III, Madrid, Spain.
| |
Collapse
|
3
|
Ferroglio E, Vada R, Occhibove F, Fracchia M, Cicco FD, Palencia P, Varzandi AR, Zanet S. An Integrated Approach to an Emerging Problem: Implementing a Whole Year of Camera Trap Survey in Evaluating the Impact of Wildlife on Tick Abundance. Transbound Emerg Dis 2024; 2024:4064855. [PMID: 40303174 PMCID: PMC12016756 DOI: 10.1155/2024/4064855] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/13/2024] [Indexed: 05/02/2025]
Abstract
Tick-borne zoonoses are an emerging health issue. The expansion of ticks is mainly driven by climatic changes but also by new approaches to the management of the natural environment, increasing the abundance of vertebrate host species and thus the potential exposure to tick bites for both humans and companion animals. In this context, a holistic approach to studying ticks' ecology is required. In the present work, we shed light on the link between environmental tick abundance (global and specific of Ixodes ricinus nymphs, as the highest zoonotic threat) and the temporal occupancy of wildlife host species retrieved from camera traps (namely, wild ruminants, mesocarnivores and wild boar). We modelled this relationship by integrating abiotic factors relevant to tick survival, such as the vegetation cover and saturation deficit, and estimated the accuracy of prediction. To collect these data, we deployed camera traps in a peri-urban Natural Park in Northwest Italy to monitor wildlife for 1 whole year while collecting ticks in front of camera traps by dragging transects every 2 weeks. Overall, wildlife temporal occupancy showed an additive impact on tick abundance for species that are preferential hosts (deer and mesocarnivores) and a detractive impact for wild boar, which also presented a lower tick burden, particularly with regard to the tick species collected in the environment (mainly I. ricinus and Haemaphysalis punctata). Accuracy of prediction was higher for I. ricinus nymphs rather than the global model. Temporal fluctuations in the tick population were also highlighted. Wildlife temporal occupancy was not constant and varied between seasons according to feeding habits. In conclusion, we highlighted the utility of camera trap data to investigate tick ecology and acarological risk. This information is crucial in informing monitoring and prevention strategies to decrease the risk of tick bites in humans and thus zoonotic risk of tick-borne diseases.
Collapse
Affiliation(s)
- Ezio Ferroglio
- Department of Veterinary SciencesUniversity of Turin, Largo Paolo Braccini 2, Grugliasco 10095, Italy
| | - Rachele Vada
- Department of Veterinary SciencesUniversity of Turin, Largo Paolo Braccini 2, Grugliasco 10095, Italy
| | - Flavia Occhibove
- Department of Veterinary SciencesUniversity of Turin, Largo Paolo Braccini 2, Grugliasco 10095, Italy
| | - Mattia Fracchia
- Department of Veterinary SciencesUniversity of Turin, Largo Paolo Braccini 2, Grugliasco 10095, Italy
| | - Federica De Cicco
- Department of Veterinary SciencesUniversity of Turin, Largo Paolo Braccini 2, Grugliasco 10095, Italy
| | - Pablo Palencia
- Department of Veterinary SciencesUniversity of Turin, Largo Paolo Braccini 2, Grugliasco 10095, Italy
| | - Amir Reza Varzandi
- Department of Veterinary SciencesUniversity of Turin, Largo Paolo Braccini 2, Grugliasco 10095, Italy
| | - Stefania Zanet
- Department of Veterinary SciencesUniversity of Turin, Largo Paolo Braccini 2, Grugliasco 10095, Italy
| |
Collapse
|
4
|
VanAcker MC, DeNicola VL, DeNicola AJ, Aucoin SG, Simon R, Toal KL, Diuk-Wasser MA, Cagnacci F. Resource selection by New York City deer reveals the effective interface between wildlife, zoonotic hazards and humans. Ecol Lett 2023; 26:2029-2042. [PMID: 37882483 DOI: 10.1111/ele.14326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 10/27/2023]
Abstract
Although the role of host movement in shaping infectious disease dynamics is widely acknowledged, methodological separation between animal movement and disease ecology has prevented researchers from leveraging empirical insights from movement data to advance landscape scale understanding of infectious disease risk. To address this knowledge gap, we examine how movement behaviour and resource utilization by white-tailed deer (Odocoileus virginianus) determines blacklegged tick (Ixodes scapularis) distribution, which depend on deer for dispersal in a highly fragmented New York City borough. Multi-scale hierarchical resource selection analysis and movement modelling provide insight into how deer's movements contribute to the risk landscape for human exposure to the Lyme disease vector-I. scapularis. We find deer select highly vegetated and accessible residential properties which support blacklegged tick survival. We conclude the distribution of tick-borne disease risk results from the individual resource selection by deer across spatial scales in response to habitat fragmentation and anthropogenic disturbances.
Collapse
Affiliation(s)
- Meredith C VanAcker
- Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
- Global Health Program, Smithsonian's National Zoo and Conservation Biology Institute, District of Columbia, Washington, USA
| | | | | | | | - Richard Simon
- City of New York Parks & Recreation, New York, New York, USA
| | - Katrina L Toal
- City of New York Parks & Recreation, New York, New York, USA
| | - Maria A Diuk-Wasser
- Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Francesca Cagnacci
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- National Biodiversity Future Centre, Palermo, Italy
| |
Collapse
|
5
|
Dagostin F, Tagliapietra V, Marini G, Cataldo C, Bellenghi M, Pizzarelli S, Cammarano RR, Wint W, Alexander NS, Neteler M, Haas J, Dub T, Busani L, Rizzoli A. Ecological and environmental factors affecting the risk of tick-borne encephalitis in Europe, 2017 to 2021. Euro Surveill 2023; 28:2300121. [PMID: 37855903 PMCID: PMC10588310 DOI: 10.2807/1560-7917.es.2023.28.42.2300121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/11/2023] [Indexed: 10/20/2023] Open
Abstract
BackgroundTick-borne encephalitis (TBE) is a disease which can lead to severe neurological symptoms, caused by the TBE virus (TBEV). The natural transmission cycle occurs in foci and involves ticks as vectors and several key hosts that act as reservoirs and amplifiers of the infection spread. Recently, the incidence of TBE in Europe has been rising in both endemic and new regions.AimIn this study we want to provide comprehensive understanding of the main ecological and environmental factors that affect TBE spread across Europe.MethodsWe searched available literature on covariates linked with the circulation of TBEV in Europe. We then assessed the best predictors for TBE incidence in 11 European countries by means of statistical regression, using data on human infections provided by the European Surveillance System (TESSy), averaged between 2017 and 2021.ResultsWe retrieved data from 62 full-text articles and identified 31 different covariates associated with TBE occurrence. Finally, we selected eight variables from the best model, including factors linked to vegetation cover, climate, and the presence of tick hosts.DiscussionThe existing literature is heterogeneous, both in study design and covariate types. Here, we summarised and statistically validated the covariates affecting the variability of TBEV across Europe. The analysis of the factors enhancing disease emergence is a fundamental step towards the identification of potential hotspots of viral circulation. Hence, our results can support modelling efforts to estimate the risk of TBEV infections and help decision-makers implement surveillance and prevention campaigns.
Collapse
Affiliation(s)
- Francesca Dagostin
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Valentina Tagliapietra
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Giovanni Marini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Claudia Cataldo
- Centre for Gender-specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Bellenghi
- Centre for Gender-specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Scilla Pizzarelli
- Knowledge Unit (Documentation, Library), Istituto Superiore di Sanità, Rome, Italy
| | | | - William Wint
- Environmental Research Group Oxford Ltd, Oxford, United Kingdom
| | | | | | | | - Timothée Dub
- Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Luca Busani
- Centre for Gender-specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| |
Collapse
|
6
|
Tick-Borne Encephalitis Virus Prevalence in Sheep, Wild Boar and Ticks in Belgium. Viruses 2022; 14:v14112362. [PMID: 36366458 PMCID: PMC9699201 DOI: 10.3390/v14112362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 01/31/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV) is the most important tick-borne zoonotic virus in Europe. In Belgium, antibodies to TBEV have already been detected in wildlife and domestic animals, but up-to-date prevalence data for TBEV are lacking, and no studies have assessed its seroprevalence in sheep. Serum samples of 480 sheep from all over Belgium and 831 wild boar hunted in Flanders (northern Belgium) were therefore screened for TBEV antibodies by ELISA and plaque reduction neutralization test (PRNT), respectively. The specificity of positive samples was assessed by PRNTs for TBEV and the Louping Ill, West Nile, and Usutu viruses. TBEV seroprevalence was 0.42% (2/480, CI 95%: 0.11-1.51) in sheep and 9.27% (77/831, CI 95%: 7.48-11.43) in wild boar. TBEV seroprevalence in wild boar from the province of Flemish Brabant was significantly higher (22.38%, 15/67) compared to Limburg (7.74%, 34/439) and Antwerp (8.61%, 28/325). Oud-Heverlee was the hunting area harboring the highest TBEV seroprevalence (33.33%, 11/33). In an attempt to obtain a Belgian TBEV isolate, 1983 ticks collected in areas showing the highest TBEV seroprevalence in wild boars were tested by real-time qPCR. No TBEV-RNA-positive tick was detected. The results of this study suggest an increase in TBEV prevalence over the last decade and highlight the need for One-Health surveillance in Belgium.
Collapse
|
7
|
Bariod L, Saïd S, Calenge C, Chabot S, Badeau V, Bourgoin G. Parasitized or non-parasitized, why? A study of factors influencing tick burden in roe deer neonates. PLoS One 2022; 17:e0262973. [PMID: 35849592 PMCID: PMC9292122 DOI: 10.1371/journal.pone.0262973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/04/2022] [Indexed: 12/30/2022] Open
Abstract
Ixodes ricinus, the most common species of tick in Europe, is known to transmit major pathogens to animals and humans such as Babesia spp. or Borrelia spp. Its abundance and distribution have been steadily increasing in Europe during recent decades, due to global environmental changes. Indeed, as ticks spend most of their life in the environment, their activity and life cycle are highly dependent on environmental conditions and therefore, on climate or habitat changes. Simultaneously, wild ungulates have expanded their range and increased dramatically in abundance worldwide, in particular roe deer (Capreolus capreolus), allowing tick populations to grow and spread. Currently, tick infestation on newborn wild ungulates is poorly documented. However, newborn ungulates are considered more sensitive to tick bites and pathogen transmission because of their immature immune systems. Thus, improving knowledge about the factors influencing tick infestation on newborns is essential to better understand their health risks. This study was conducted at Trois-Fontaines Forest, Champagne-Ardenne, France (1992-2018). Based on a long-term monitoring of roe deer fawns, we used a novel Bayesian model of the infestation of fawns to identify which biotic or abiotic factors were likely to modify the level of infestation by ticks of 965 fawns over time. We show that tick burden increased faster during the first days of life of the fawns and became constant when fawns were five days old and more, which could be explained by the depletion of questing ticks or the turnover of ticks feeding on fawns. Moreover, despite the known positive influence of humidity on tick activity, the tick burdens were weakly related to this parameter. Our results demonstrate that tick infestation was highly variable among years, particularly between 2000-2009. We hypothesize that this results from a modification of habitat caused by Hurricane Lothar.
Collapse
Affiliation(s)
- Léa Bariod
- Laboratoire de Parasitologie Vétérinaire, Université de Lyon, VetAgro Sup—Campus Vétérinaire de Lyon, Marcy-L’Etoile, France
- CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, Université de Lyon, Université Lyon 1, Villeurbanne, France
- Office Français de la Biodiversité, Direction de la Recherche et de l’Appui Scientifique, Birieux, France
| | - Sonia Saïd
- Office Français de la Biodiversité, Direction de la Recherche et de l’Appui Scientifique, Birieux, France
| | - Clément Calenge
- Office Français de la Biodiversité, Direction de la Recherche et de l’Appui Scientifique, Le Perray en Yvelines, France
| | - Stéphane Chabot
- Office Français de la Biodiversité, Direction de la Recherche et de l’Appui Scientifique, Birieux, France
| | - Vincent Badeau
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Champenoux, France
| | - Gilles Bourgoin
- Laboratoire de Parasitologie Vétérinaire, Université de Lyon, VetAgro Sup—Campus Vétérinaire de Lyon, Marcy-L’Etoile, France
- CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, Université de Lyon, Université Lyon 1, Villeurbanne, France
| |
Collapse
|
8
|
Da Rold G, Obber F, Monne I, Milani A, Ravagnan S, Toniolo F, Sgubin S, Zamperin G, Foiani G, Vascellari M, Drzewniokova P, Castellan M, De Benedictis P, Citterio CV. Clinical Tick-Borne Encephalitis in a Roe Deer (Capreolus capreolus L.). Viruses 2022; 14:v14020300. [PMID: 35215891 PMCID: PMC8875940 DOI: 10.3390/v14020300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is the causative agent of tick-borne encephalitis (TBE), a severe zoonosis occurring in the Palearctic region mainly transmitted through Ixodes ticks. In Italy, TBEV is restricted to the north-eastern part of the country. This report describes for the first time a case of clinical TBE in a roe deer (Capreolus capreolus L.). The case occurred in the Belluno province, Veneto region, an area endemic for TBEV. The affected roe deer showed ataxia, staggering movements, muscle tremors, wide-base stance of the front limbs, repetitive movements of the head, persistent teeth grinding, hypersalivation and prolonged recumbency. An autopsy revealed no significant lesions to explain the neurological signs. TBEV RNA was detected in the brain by real-time RT-PCR, and the nearly complete viral genome (10,897 nucleotides) was sequenced. Phylogenetic analysis of the gene encoding the envelope protein revealed a close relationship to TBEV of the European subtype, and 100% similarity with a partial sequence (520 nucleotides) of a TBEV found in ticks in the bordering Trento province. The histological examination of the midbrain revealed lymphohistiocytic encephalitis, satellitosis and microgliosis, consistent with a viral etiology. Other viral etiologies were ruled out by metagenomic analysis of the brain. This report underlines, for the first time, the occurrence of clinical encephalitic manifestations due to TBEV in a roe deer, suggesting that this pathogen should be included in the frame of differential diagnoses in roe deer with neurologic disease.
Collapse
Affiliation(s)
- Graziana Da Rold
- U.O. Ecopathology SCT2-Belluno, Istituto Zoprofilattico Sperimentale delle Venezie (IZSVe), Via Cappellari 44/A, 32100 Belluno, Italy; (F.O.); (C.V.C.)
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
- Correspondence:
| | - Federica Obber
- U.O. Ecopathology SCT2-Belluno, Istituto Zoprofilattico Sperimentale delle Venezie (IZSVe), Via Cappellari 44/A, 32100 Belluno, Italy; (F.O.); (C.V.C.)
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
| | - Isabella Monne
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
- Laboratory for Viral Genomics and Trascriptomics, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy
| | - Adelaide Milani
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
- Laboratory for Viral Genomics and Trascriptomics, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy
| | - Silvia Ravagnan
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
- Laboratory of Parasitology Micology and Sanitary Enthomology, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy
| | - Federica Toniolo
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
- Laboratory of Parasitology Micology and Sanitary Enthomology, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy
| | - Sofia Sgubin
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
- Laboratory of Parasitology Micology and Sanitary Enthomology, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy
| | - Gianpiero Zamperin
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
- Laboratory for Viral Genomics and Trascriptomics, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy
| | - Greta Foiani
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
- Histopathology Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Universita 10, 35020 Legnaro, Italy
| | - Marta Vascellari
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
- Histopathology Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Universita 10, 35020 Legnaro, Italy
| | - Petra Drzewniokova
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
- Laboratory for Viral Emerging Zoonoses, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy
| | - Martina Castellan
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
- Laboratory for Viral Emerging Zoonoses, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy
| | - Paola De Benedictis
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
- Laboratory for Viral Emerging Zoonoses, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy
| | - Carlo Vittorio Citterio
- U.O. Ecopathology SCT2-Belluno, Istituto Zoprofilattico Sperimentale delle Venezie (IZSVe), Via Cappellari 44/A, 32100 Belluno, Italy; (F.O.); (C.V.C.)
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
| |
Collapse
|
9
|
Opalińska P, Wierzbicka A, Asman M, Rączka G, Dyderski MK, Nowak-Chmura M. Fivefold higher abundance of ticks (Acari: Ixodida) on the European roe deer (Capreolus capreolus L.) forest than field ecotypes. Sci Rep 2021; 11:10649. [PMID: 34017054 PMCID: PMC8137867 DOI: 10.1038/s41598-021-90234-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/19/2021] [Indexed: 01/08/2023] Open
Abstract
The European roe deer (Capreolus capreolus) is the most common deer species in Europe. The species can be a reservoir of some tick-borne diseases but it is primarily recognized for its contribution as an amplifier host. In Central Europe, two roe deer ecotypes are living in adjacent areas: field and forest. We investigated differences in tick load and species composition on these two ecotypes. We collected ticks from 160 (80 the forest ecotype and 80 the field ecotype) roe deer culled in Wielkopolska Region (West-Central Poland). The most common was Ixodes ricinus (n = 1610; 99%) followed by Ixodes hexagonus (n = 22; 1%). The dominant life stage of the ticks was female. Prevalence was higher for forest roe deer. Mean number of ticks found on the forest ecotype was almost fivefold higher than on the field ecotype (3.75 ± 0.83 vs. 0.77 ± 0.20 ticks). The mean probability of tick occurrence was threefold higher in the forest (0.915 ± 0.050) than the field ecotype (0.279 ± 0.125). The most infested body parts of roe deer from both ecotypes were the neck and the head.
Collapse
Affiliation(s)
- Patrycja Opalińska
- Department of Game Management and Forest Protection, Poznań University of Life Sciences, Wojska Polskiego 71d, 60-625, Poznań, Poland
| | - Anna Wierzbicka
- Department of Game Management and Forest Protection, Poznań University of Life Sciences, Wojska Polskiego 71d, 60-625, Poznań, Poland.
| | - Marek Asman
- Department of Parasitology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jedności 8, 41-218, Sosnowiec, Poland
| | - Grzegorz Rączka
- Department of Forest Management Planning, Poznań University of Life Sciences, Wojska Polskiego 71c, 60-625, Poznań, Poland
| | - Marcin K Dyderski
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| | - Magdalena Nowak-Chmura
- Department of Invertebrate Zoology and Parasitology, Institute of Biology, Pedagogical University of Cracov, Podbrzezie Str. 3, 31-054, Kraków, Poland
| |
Collapse
|
10
|
Tick Microbiomes in Neotropical Forest Fragments Are Best Explained by Tick-Associated and Environmental Factors Rather than Host Blood Source. Appl Environ Microbiol 2021; 87:AEM.02668-20. [PMID: 33514519 DOI: 10.1128/aem.02668-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/13/2021] [Indexed: 01/09/2023] Open
Abstract
The composition of tick microbiomes varies both within and among tick species. Whether this variation is intrinsic (related to tick characteristics) or extrinsic (related to vertebrate host and habitat) is poorly understood but important, as microbiota can influence the reproductive success and vector competence of ticks. We aimed to uncover what intrinsic and extrinsic factors best explain the microbial composition and taxon richness of 11 species of neotropical ticks collected from eight species of small mammals in 18 forest fragments across central Panama. Microbial richness varied among tick species, life stages, and collection sites but was not related to host blood source. Microbiome composition was best explained by tick life stage, with bacterial assemblages of larvae being a subset of those of nymphs. Collection site explained most of the bacterial taxa with differential abundance across intrinsic and extrinsic factors. Francisella and Rickettsia were highly prevalent, but their proportional abundance differed greatly among tick species, and we found both positive and negative cooccurrence between members of these two genera. Other tick endosymbionts (e.g., Coxiella and Rickettsiella) were associated with specific tick species. In addition, we detected Anaplasma and Bartonella in several tick species. Our results indicate that the microbial composition and richness of neotropical ticks are principally related to intrinsic factors (tick species and life stage) and collection site. Taken together, our analysis informs how tick microbiomes are structured and can help anchor our understanding of tick microbiomes from tropical environments more broadly.IMPORTANCE Blood-feeding arthropod microbiomes often play important roles in disease transmission, yet the factors that structure tick microbial communities in the Neotropics are unknown. Utilizing ticks collected from live animals in neotropical forest fragments, this study teases apart the contributions of intrinsic and extrinsic tick-associated factors on tick microbial composition as well as which specific microbes contribute to differences across tick species, tick life stages, the mammals they fed on, and the locations from where they were sampled. Furthermore, this study provides revelations of how notable tick-associated bacterial genera are interacting with other tick-associated microbes as well as the forest animals they encounter.
Collapse
|
11
|
Cohen JM, Sauer EL, Santiago O, Spencer S, Rohr JR. Divergent impacts of warming weather on wildlife disease risk across climates. Science 2021; 370:370/6519/eabb1702. [PMID: 33214248 DOI: 10.1126/science.abb1702] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022]
Abstract
Disease outbreaks among wildlife have surged in recent decades alongside climate change, although it remains unclear how climate change alters disease dynamics across different geographic regions. We amassed a global, spatiotemporal dataset describing parasite prevalence across 7346 wildlife populations and 2021 host-parasite combinations, compiling local weather and climate records at each location. We found that hosts from cool and warm climates experienced increased disease risk at abnormally warm and cool temperatures, respectively, as predicted by the thermal mismatch hypothesis. This effect was greatest in ectothermic hosts and similar in terrestrial and freshwater systems. Projections based on climate change models indicate that ectothermic wildlife hosts from temperate and tropical zones may experience sharp increases and moderate reductions in disease risk, respectively, though the magnitude of these changes depends on parasite identity.
Collapse
Affiliation(s)
- Jeremy M Cohen
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA. .,Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Erin L Sauer
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA.,Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Olivia Santiago
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Samuel Spencer
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Jason R Rohr
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA.,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
12
|
Liebig K, Boelke M, Grund D, Schicht S, Bestehorn-Willmann M, Chitimia-Dobler L, Dobler G, Jung K, Becker SC. The Stable Matching Problem in TBEV Enzootic Circulation: How Important Is the Perfect Tick-Virus Match? Microorganisms 2021; 9:microorganisms9010196. [PMID: 33477924 PMCID: PMC7833397 DOI: 10.3390/microorganisms9010196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV), like other arthropod-transmitted viruses, depends on specific vectors to complete its enzootic cycle. It has been long known that Ixodes ricinus ticks constitute the main vector for TBEV in Europe. In contrast to the wide distribution of the TBEV vector, the occurrence of TBEV transmission is focal and often restricted to a small parcel of land, whereas surrounding areas with seemingly similar habitat parameters are free of TBEV. Thus, the question arises which factors shape this focal distribution of TBEV in the natural habitat. To shed light on factors driving TBEV-focus formation, we used tick populations from two TBEV-foci in Lower Saxony and two TBEV-foci from Bavaria with their respective virus isolates as a showcase to analyze the impact of specific virus isolate-tick population relationships. Using artificial blood feeding and field-collected nymphal ticks as experimental means, our investigation showed that the probability of getting infected with the synonymous TBEV isolate as compared to the nonsynonymous TBEV isolate was elevated but significantly higher only in one of the four TBEV foci. More obviously, median viral RNA copy numbers were significantly higher in the synonymous virus–tick population pairings. These findings may present a hint for a coevolutionary adaptation of virus and tick populations.
Collapse
Affiliation(s)
- Katrin Liebig
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hanover, Germany; (K.L.); (M.B.); (D.G.); (S.S.)
- Research Center for Emerging Infections and Zoonosis, University of Veterinary Medicine Hanover, 30559 Hanover, Germany
| | - Mathias Boelke
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hanover, Germany; (K.L.); (M.B.); (D.G.); (S.S.)
- Research Center for Emerging Infections and Zoonosis, University of Veterinary Medicine Hanover, 30559 Hanover, Germany
| | - Domenic Grund
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hanover, Germany; (K.L.); (M.B.); (D.G.); (S.S.)
- Research Center for Emerging Infections and Zoonosis, University of Veterinary Medicine Hanover, 30559 Hanover, Germany
| | - Sabine Schicht
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hanover, Germany; (K.L.); (M.B.); (D.G.); (S.S.)
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hanover, Germany
| | - Malena Bestehorn-Willmann
- Bundeswehr Institute of Microbiology, Neuherbergstraße 11, 80937 Munich, Germany; (M.B.-W.); (L.C.-D.); (G.D.)
| | - Lidia Chitimia-Dobler
- Bundeswehr Institute of Microbiology, Neuherbergstraße 11, 80937 Munich, Germany; (M.B.-W.); (L.C.-D.); (G.D.)
| | - Gerhard Dobler
- Bundeswehr Institute of Microbiology, Neuherbergstraße 11, 80937 Munich, Germany; (M.B.-W.); (L.C.-D.); (G.D.)
| | - Klaus Jung
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, 30559 Hanover, Germany;
| | - Stefanie C. Becker
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hanover, Germany; (K.L.); (M.B.); (D.G.); (S.S.)
- Research Center for Emerging Infections and Zoonosis, University of Veterinary Medicine Hanover, 30559 Hanover, Germany
- Correspondence: ; Tel.: +49-511-9538717
| |
Collapse
|
13
|
Paulsen KM, Lamsal A, Bastakoti S, Pettersson JHO, Pedersen BN, Stiasny K, Haglund M, Smura T, Vapalahti O, Vikse R, Alfsnes K, Andreassen ÅK. High-throughput sequencing of two European strains of tick-borne encephalitis virus (TBEV), Hochosterwitz and 1993/783. Ticks Tick Borne Dis 2020; 12:101557. [PMID: 33080519 DOI: 10.1016/j.ttbdis.2020.101557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/22/2022]
Abstract
Tick-borne encephalitis virus (TBEV) is a medically important arbovirus, widespread in Europe and Asia. The virus is primarily transmitted to humans and animals by bites from ticks and, in rare cases, by consumption of unpasteurized dairy products. The aim of this study was to sequence and characterize two TBEV strains with amplicon sequencing by designing overlapping primers. The amplicon sequencing, via Illumina MiSeq, covering nearly the entire TBEV genome, was successful: We retrieved and characterized the complete polyprotein sequence of two TBEV strains, Hochosterwitz and 1993/783 from Austria and Sweden, respectively. In this study the previous phylogenetic analysis of both strains was confirmed to be of the European subtypes of TBEV (TBEV-Eu) by whole genome sequencing. The Hochosterwitz strain clustered with the two strains KrM 93 and KrM 213 from South Korea, and the 1993/783 strain clustered together with the NL/UH strain from the Netherlands. Our study confirms the suitability and rapidness of the high-throughput sequencing method used to produce complete TBEV genomes from TBEV samples of high viral load giving high-molecular-weight cDNA with large overlapping amplicons.
Collapse
Affiliation(s)
- Katrine M Paulsen
- Norwegian Institute of Public Health, Division for Infection Control and Environmental Health, Department of Virology, PO-Box 222 Skøyen, NO-0213, Oslo, Norway
| | - Alaka Lamsal
- Norwegian Institute of Public Health, Division for Infection Control and Environmental Health, Department of Virology, PO-Box 222 Skøyen, NO-0213, Oslo, Norway; University of South-Eastern Norway, Department of Natural Science and Environmental Health, Gullbringvegen 36, NO-3800, Bø, Norway
| | - Srijana Bastakoti
- Norwegian Institute of Public Health, Division for Infection Control and Environmental Health, Department of Virology, PO-Box 222 Skøyen, NO-0213, Oslo, Norway
| | - John H-O Pettersson
- Uppsala University, Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala, Sweden; The University of Sydney, Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, Sydney, Australia
| | - Benedikte N Pedersen
- University of South-Eastern Norway, Department of Natural Science and Environmental Health, Gullbringvegen 36, NO-3800, Bø, Norway
| | - Karin Stiasny
- Medical University of Vienna, Center for Virology, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Mats Haglund
- Kalmar County Hospital, Department of Infectious Diseases, SE-391 85, Kalmar, Sweden
| | - Teemu Smura
- University of Helsinki, Department of Virology, Medicum, Helsinki, Finland
| | - Olli Vapalahti
- University of Helsinki, Department of Virology, Medicum, Helsinki, Finland; University of Helsinki, Department of Veterinary Biosciences, Helsinki, Finland; University of Helsinki and Helsinki University Hospital, Department of Virology and Immunology, Helsinki, Finland
| | - Rose Vikse
- Norwegian Institute of Public Health, Division for Infection Control and Environmental Health, Department of Virology, PO-Box 222 Skøyen, NO-0213, Oslo, Norway
| | - Kristian Alfsnes
- Norwegian Institute of Public Health, Division for Infection Control and Environmental Health, Department of Bacteriology, PO-Box 222 Skøyen, NO-0213, Oslo, Norway
| | - Åshild K Andreassen
- Norwegian Institute of Public Health, Division for Infection Control and Environmental Health, Department of Virology, PO-Box 222 Skøyen, NO-0213, Oslo, Norway; University of South-Eastern Norway, Department of Natural Science and Environmental Health, Gullbringvegen 36, NO-3800, Bø, Norway.
| |
Collapse
|
14
|
Garcia-Vozmediano A, Krawczyk AI, Sprong H, Rossi L, Ramassa E, Tomassone L. Ticks climb the mountains: Ixodid tick infestation and infection by tick-borne pathogens in the Western Alps. Ticks Tick Borne Dis 2020; 11:101489. [PMID: 32723635 DOI: 10.1016/j.ttbdis.2020.101489] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/16/2022]
Abstract
In mountain areas of northwestern Italy, ticks were rarely collected in the past. In recent years, a marked increase in tick abundance has been observed in several Alpine valleys, together with more frequent reports of Lyme borreliosis. We then carried out a four-year study to assess the distribution and abundance of ticks and transmitted pathogens and determine their altitudinal limit in a natural park area in Piedmont region. Ixodes ricinus and Dermacentor marginatus were collected from both the vegetation and hunted wild ungulates. Tick abundance was significantly associated with altitude, habitat type and signs of animal presence, roe deer's in particular. Ixodes ricinus prevailed in distribution and abundance and, although their numbers decreased with increasing altitude, we recorded the presence of all active life stages of up to around 1700 m a.s.l., with conifers as the second most infested habitat after deciduous woods. Molecular analyses demonstrated the infection of questing I. ricinus nymphs with B. burgdorferi sensu lato (15.5 %), Rickettsia helvetica and R. monacensis (20.7 %), Anaplasma phagocytophilum (1.9 %), Borrelia miyamotoi (0.5 %) and Neoehrlichia mikurensis (0.5 %). One third of the questing D. marginatus were infected with R. slovaca. We observed a spatial aggregation of study sites infested by B. burgdorferi s.l. infected ticks below 1400 m. Borrelia-infected nymphs prevailed in open areas, while SFG rickettsiae prevalence was higher in coniferous and deciduous woods. Interestingly, prevalence of SFG rickettsiae in ticks doubled above 1400 m, and R. helvetica was the only pathogen detected above 1800 m a.s.l. Tick infestation on hunted wild ungulates indicated the persistence of tick activity during winter months and, when compared to past studies, confirmed the recent spread of I. ricinus in the area. Our study provides new insights into the population dynamics of ticks in the Alps and confirms a further expansion of ticks to higher altitudes in Europe. We underline the importance of adopting a multidisciplinary approach in order to develop effective strategies for the surveillance of tick-borne diseases, and inform the public about the hazard posed by ticks, especially in recently invaded areas.
Collapse
Affiliation(s)
- Aitor Garcia-Vozmediano
- Department of Veterinary Sciences, University of Turin, Largo Braccini, 2, 10095 Grugliasco, TO, Italy.
| | - Aleksandra Iwona Krawczyk
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3720 BA Bilthoven, the Netherlands.
| | - Hein Sprong
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3720 BA Bilthoven, the Netherlands.
| | - Luca Rossi
- Department of Veterinary Sciences, University of Turin, Largo Braccini, 2, 10095 Grugliasco, TO, Italy.
| | - Elisa Ramassa
- Ente di gestione delle aree protette delle Alpi Cozie, Via Fransuà Fontan, 1, 10050 Salbertrand TO, Italy.
| | - Laura Tomassone
- Department of Veterinary Sciences, University of Turin, Largo Braccini, 2, 10095 Grugliasco, TO, Italy.
| |
Collapse
|
15
|
Paulsen KM, das Neves CG, Granquist EG, Madslien K, Stuen S, Pedersen BN, Vikse R, Rocchi M, Laming E, Stiasny K, Andreassen ÅK. Cervids as sentinel-species for tick-borne encephalitis virus in Norway - A serological study. Zoonoses Public Health 2019; 67:342-351. [PMID: 31855321 DOI: 10.1111/zph.12675] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 11/19/2019] [Accepted: 11/24/2019] [Indexed: 12/19/2022]
Abstract
Tick-borne encephalitis virus (TBEV) is the causative agent of tick-borne encephalitis (TBE). TBEV is one of the most important neurological pathogens transmitted by tick bites in Europe. The objectives of this study were to investigate the seroprevalence of TBE antibodies in cervids in Norway and the possible emergence of new foci, and furthermore to evaluate if cervids can function as sentinel animals for the distribution of TBEV in the country. Serum samples from 286 moose, 148 roe deer, 140 red deer and 83 reindeer from all over Norway were collected and screened for TBE immunoglobulin G (IgG) antibodies with a modified commercial enzyme-linked immunosorbent assay (ELISA) and confirmed by TBEV serum neutralisation test (SNT). The overall seroprevalence against the TBEV complex in the cervid specimens from Norway was 4.6%. The highest number of seropositive cervids was found in south-eastern Norway, but seropositive cervids were also detected in southern- and central Norway. Antibodies against TBEV detected by SNT were present in 9.4% of the moose samples, 1.4% in red deer, 0.7% in roe deer, and nil in reindeer. The majority of the positive samples in our study originated from areas where human cases of TBE have been reported in Norway. The study is the first comprehensive screening of cervid species in Norway for antibodies to TBEV, and shows that cervids are useful sentinel animals to indicate TBEV occurrence, as supplement to studies in ticks. Furthermore, the results indicate that TBEV might be spreading northwards in Norway. This information may be of relevance for public health considerations and supports previous findings of TBEV in ticks in Norway.
Collapse
Affiliation(s)
- Katrine M Paulsen
- Department of Virology, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway.,Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Erik G Granquist
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Snorre Stuen
- Department of Production Animal Clinical Sciences, Section of Small Ruminant Research and Herd Health, Norwegian University of Life Sciences, Sandnes, Norway
| | - Benedikte N Pedersen
- Department of Virology, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway.,Department of Natural Science and Environmental Health, University of South-Eastern Norway, Bø, Norway
| | - Rose Vikse
- Department of Virology, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Mara Rocchi
- Virus Surveillance Unit, Moredun Research Institute, Penicuik, Scotland, UK
| | - Ellie Laming
- Virus Surveillance Unit, Moredun Research Institute, Penicuik, Scotland, UK
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Åshild K Andreassen
- Department of Virology, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
16
|
Remesar S, Díaz P, Prieto A, García-Dios D, Fernández G, López CM, Panadero R, Díez-Baños P, Morrondo P. Prevalence and molecular characterization of Anaplasma phagocytophilum in roe deer (Capreolus capreolus) from Spain. Ticks Tick Borne Dis 2019; 11:101351. [PMID: 31822398 DOI: 10.1016/j.ttbdis.2019.101351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/06/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022]
Abstract
Anaplasma phagocytophilum can infect a wide range of vertebrates; nevertheless, some genetic variants are associated with particular species of tick vectors and animal hosts. It has been suggested that roe deer (Capreolus capreolus) mainly acts as a reservoir of several A. phagocytophilum non-pathogenic variants for other animal species. The aim of this study was to determine the prevalence and identify the genetic variants of A. phagocytophilum in roe deer from Spain in order to assess host-pathogen associations and their pathogenic potential. The spleens of 212 roe deer hunted in Spain were individually collected and analysed by a commercial qPCR kit in order to detect the presence of A. phagocytophilum DNA. Positive samples were further characterized at groESL, 16S rRNA and msp2 partial genes. The possible influence of several intrinsic (age and sex) and extrinsic factors (ecological area) on A. phagocytophilum prevalence was analysed using a logistic regression. Overall, 41.5 % of the samples resulted positive to A. phagocytophilum. The percentage of infected roe deer was significantly higher in the Mediterranean and Oceanic areas than in the Continental and Mountain regions; nevertheless, prevalence was not related to age or sex. Sequence analysis at groESL and 16S rRNA genes allowed the identification of three ecotypes (I to III) and four variants ("Y", "X", "W", "I"), respectively. A high percentage of roe deer from Spain is infected with different variants of A. phagocytophilum; these results have implications for public and animal health since some of these ecotypes and variants have been previously identified in both human and animal clinical cases.
Collapse
Affiliation(s)
- Susana Remesar
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Pablo Díaz
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Alberto Prieto
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain.
| | - David García-Dios
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Gonzalo Fernández
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Ceferino M López
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Rosario Panadero
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Pablo Díez-Baños
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Patrocinio Morrondo
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
17
|
Esser HJ, Mögling R, Cleton NB, van der Jeugd H, Sprong H, Stroo A, Koopmans MPG, de Boer WF, Reusken CBEM. Risk factors associated with sustained circulation of six zoonotic arboviruses: a systematic review for selection of surveillance sites in non-endemic areas. Parasit Vectors 2019; 12:265. [PMID: 31133059 PMCID: PMC6537422 DOI: 10.1186/s13071-019-3515-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/19/2019] [Indexed: 12/30/2022] Open
Abstract
Arboviruses represent a significant burden to public health and local economies due to their ability to cause unpredictable and widespread epidemics. To maximize early detection of arbovirus emergence in non-endemic areas, surveillance efforts should target areas where circulation is most likely. However, identifying such hotspots of potential emergence is a major challenge. The ecological conditions leading to arbovirus outbreaks are shaped by complex interactions between the virus, its vertebrate hosts, arthropod vector, and abiotic environment that are often poorly understood. Here, we systematically review the ecological risk factors associated with the circulation of six arboviruses that are of considerable concern to northwestern Europe. These include three mosquito-borne viruses (Japanese encephalitis virus, West Nile virus, Rift Valley fever virus) and three tick-borne viruses (Crimean-Congo hemorrhagic fever virus, tick-borne encephalitis virus, and louping-ill virus). We consider both intrinsic (e.g. vector and reservoir host competence) and extrinsic (e.g. temperature, precipitation, host densities, land use) risk factors, identify current knowledge gaps, and discuss future directions. Our systematic review provides baseline information for the identification of regions and habitats that have suitable ecological conditions for endemic circulation, and therefore may be used to target early warning surveillance programs aimed at detecting multi-virus and/or arbovirus emergence.
Collapse
Affiliation(s)
- Helen J Esser
- Resource Ecology Group, Wageningen University & Research, Wageningen, The Netherlands. .,Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands.
| | - Ramona Mögling
- Department of Viroscience, WHO CC for arbovirus and viral hemorrhagic fever reference and research, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Natalie B Cleton
- Department of Viroscience, WHO CC for arbovirus and viral hemorrhagic fever reference and research, Erasmus University Medical Centre, Rotterdam, The Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and Environment (RIVM), Bilthoven, The Netherlands
| | - Henk van der Jeugd
- Vogeltrekstation-Dutch Centre for Avian Migration and Demography, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Hein Sprong
- Centre for Infectious Disease Control, National Institute for Public Health and Environment (RIVM), Bilthoven, The Netherlands
| | - Arjan Stroo
- Centre for Monitoring of Vectors (CMV), National Reference Centre (NRC), Netherlands Food and Consumer Product Safety Authority (NVWA), Ministry of Economic Affairs, Wageningen, The Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, WHO CC for arbovirus and viral hemorrhagic fever reference and research, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Willem F de Boer
- Resource Ecology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Chantal B E M Reusken
- Department of Viroscience, WHO CC for arbovirus and viral hemorrhagic fever reference and research, Erasmus University Medical Centre, Rotterdam, The Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
18
|
Jaenson TGT, Petersson EH, Jaenson DGE, Kindberg J, Pettersson JHO, Hjertqvist M, Medlock JM, Bengtsson H. The importance of wildlife in the ecology and epidemiology of the TBE virus in Sweden: incidence of human TBE correlates with abundance of deer and hares. Parasit Vectors 2018; 11:477. [PMID: 30153856 PMCID: PMC6114827 DOI: 10.1186/s13071-018-3057-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 08/10/2018] [Indexed: 02/06/2023] Open
Abstract
Background Tick-borne encephalitis (TBE) is one tick-transmitted disease where the human incidence has increased in some European regions during the last two decades. We aim to find the most important factors causing the increasing incidence of human TBE in Sweden. Based on a review of published data we presume that certain temperature-related variables and the population densities of transmission hosts, i.e. small mammals, and of primary tick maintenance hosts, i.e. cervids and lagomorphs, of the TBE virus vector Ixodes ricinus, are among the potentially most important factors affecting the TBE incidence. Therefore, we compare hunting data of the major tick maintenance hosts and two of their important predators, and four climatic variables with the annual numbers of human cases of neuroinvasive TBE. Data for six Swedish regions where human TBE incidence is high or has recently increased are examined by a time-series analysis. Results from the six regions are combined using a meta-analytical method. Results With a one-year time lag, the roe deer (Capreolus capreolus), red deer (Cervus elaphus), mountain hare (Lepus timidus) and European hare (Lepus europaeus) showed positive covariance; the Eurasian elk (moose, Alces alces) and fallow deer (Dama dama) negative covariance; whereas the wild boar (Sus scrofa), lynx (Lynx lynx), red fox (Vulpes vulpes) and the four climate parameters showed no significant covariance with TBE incidence. All game species combined showed positive covariance. Conclusions The epidemiology of TBE varies with time and geography and depends on numerous factors, i.a. climate, virus genotypes, and densities of vectors, tick maintenance hosts and transmission hosts. This study suggests that the increased availability of deer to I. ricinus over large areas of potential tick habitats in southern Sweden increased the density and range of I. ricinus and created new TBEV foci, which resulted in increased incidence of human TBE. New foci may be established by TBE virus-infected birds, or by birds or migrating mammals infested with TBEV-infected ticks. Generally, persistence of TBE virus foci appears to require presence of transmission-competent small mammals, especially mice (Apodemus spp.) or bank voles (Myodes glareolus). Electronic supplementary material The online version of this article (10.1186/s13071-018-3057-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas G T Jaenson
- Department of Organismal Biology, Uppsala University, Norbyvägen 18d, SE-752 36, Uppsala, Sweden.
| | - Erik H Petersson
- Department of Aquatic Resources, Division of Freshwater Research, Swedish University of Agricultural Sciences, Stångholmsvägen 2, SE-178 93, Drottningholm, Sweden
| | - David G E Jaenson
- Department of Automatic Control, Lund University, SE-221 00, Lund, Sweden
| | - Jonas Kindberg
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - John H-O Pettersson
- Department of Infectious Disease Epidemiology and Modelling, Norwegian Institute of Public Health, Lovisenberggata 8, N-0456, Oslo, Norway.,Department of Medical Biochemistry and Microbiology (IMBIM), Zoonosis Science Center, Uppsala University, Uppsala, Sweden.,Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, the University of Sydney, Sydney, New South Wales, 2006, Australia.,Public Health Agency of Sweden, Nobels väg 18, SE-171 82, Solna, Sweden
| | - Marika Hjertqvist
- Public Health Agency of Sweden, Nobels väg 18, SE-171 82, Solna, Sweden
| | - Jolyon M Medlock
- Medical Entomology Group, Emergency Response Department, Public Health England, Porton Down, Salisbury, UK.,Health Protection Research Unit in Emerging Infections & Zoonoses, Porton Down, Salisbury, UK
| | - Hans Bengtsson
- Swedish Meteorological and Hydrological Institute (SMHI), Gothenburg, Sweden
| |
Collapse
|
19
|
Mlera L, Bloom ME. The Role of Mammalian Reservoir Hosts in Tick-Borne Flavivirus Biology. Front Cell Infect Microbiol 2018; 8:298. [PMID: 30234026 PMCID: PMC6127651 DOI: 10.3389/fcimb.2018.00298] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/07/2018] [Indexed: 12/30/2022] Open
Abstract
Small-to-medium sized mammals and large animals are lucrative sources of blood meals for ixodid ticks that transmit life-threatening tick-borne flaviviruses (TBFVs). TBFVs have been isolated from various organs obtained from wild-caught Myodes and Apodemus species in Europe and Asia. Thus, these rodents are well-established reservoirs of TBFVs. Wild-caught Peromyscus species have demonstrated seropositivity against Powassan virus, the only TBFV known to circulate in North America, suggesting that they may play an important role in the biology of the virus in this geographic region. However, virus isolation from Peromyscus species is yet to be demonstrated. Wild-caught medium-sized mammals, such as woodchucks (Marmota monax) and skunks (Mephitis mephitis) have also demonstrated seropositivity against POWV, and virus was isolated from apparently healthy animals. Despite the well-established knowledge that small-to-medium sized animals are TBFV reservoirs, specific molecular biology addressing host-pathogen interactions remains poorly understood. Elucidating these interactions will be critical for gaining insight into the mechanism(s) of viral pathogenesis and/or resistance.
Collapse
Affiliation(s)
- Luwanika Mlera
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT, United States
| | - Marshall E Bloom
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT, United States
| |
Collapse
|
20
|
Selmi M, Tomassone L, Ceballos LA, Crisci A, Ragagli C, Pintore MD, Mignone W, Pautasso A, Ballardini M, Casalone C, Mannelli A. Analysis of the environmental and host-related factors affecting the distribution of the tick Dermacentor marginatus. EXPERIMENTAL & APPLIED ACAROLOGY 2018; 75:209-225. [PMID: 29713917 DOI: 10.1007/s10493-018-0257-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/19/2018] [Indexed: 06/08/2023]
Abstract
Understanding and responding to the ecological, social and economic conditions that facilitate disease emergence and transmission represents a substantial challenge for epidemiologists and health professionals. In this article we integrate knowledge about the human and the vector population, to provide a context from which to examine the underlying causal factors of D. marginatus-borne diseases emergence in the study area. Within this framework we analyse the biotic and abiotic factors that drive D. marginatus population dynamics and the role of its typical host for dispersal. These investigations suggest that D. marginatus is a tick species prone to spatially overlap its presence with human population presence. Then we consider the public health implications for the residents, when simply carrying out trivial outdoor activities may increase the risk to contact an infected tick.
Collapse
Affiliation(s)
- Marco Selmi
- Department of Prevention, Observatory for Vector Borne Diseases, Piazza Aldo Moro, Capannori, 55012, Lucca, Italy.
| | - Laura Tomassone
- Department of Veterinary Sciences, University of Turin, Via L. da Vinci 44, 10095, Grugliasco, Turin, Italy
| | - Leonardo A Ceballos
- Department of Veterinary Sciences, University of Turin, Via L. da Vinci 44, 10095, Grugliasco, Turin, Italy
| | - Alfonso Crisci
- Institute of Biometeorology, Italian National Research Council, Via G. Caproni 8, Florence, Italy
| | | | - Maria D Pintore
- Experimental Zooprophylactic Institute of Piedmont Liguria and Aosta Valley, Turin, Italy
| | - Walter Mignone
- Experimental Zooprophylactic Institute of Piedmont Liguria and Aosta Valley, Turin, Italy
| | - Alessandra Pautasso
- Experimental Zooprophylactic Institute of Piedmont Liguria and Aosta Valley, Turin, Italy
| | - Marco Ballardini
- Experimental Zooprophylactic Institute of Piedmont Liguria and Aosta Valley, Turin, Italy
| | - Cristina Casalone
- Experimental Zooprophylactic Institute of Piedmont Liguria and Aosta Valley, Turin, Italy
| | - Alessandro Mannelli
- Department of Veterinary Sciences, University of Turin, Via L. da Vinci 44, 10095, Grugliasco, Turin, Italy
| |
Collapse
|
21
|
Honig V, Carolan HE, Vavruskova Z, Massire C, Mosel MR, Crowder CD, Rounds MA, Ecker DJ, Ruzek D, Grubhoffer L, Luft BJ, Eshoo MW. Broad-range survey of vector-borne pathogens and tick host identification of Ixodes ricinus from Southern Czech Republic. FEMS Microbiol Ecol 2017; 93:4331634. [PMID: 29029144 PMCID: PMC5812510 DOI: 10.1093/femsec/fix129] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/02/2017] [Indexed: 11/15/2022] Open
Abstract
Ixodes ricinus ticks are vectors of numerous human and animal pathogens. They are host generalists able to feed on more than 300 vertebrate species. The prevalence of tick-borne pathogens is influenced by host-vector-pathogen interactions that results in spatial distribution of infection risk. Broad-range polymerase chain reaction electrospray ionization mass spectrometry (PCR/ESI-MS) was used to analyze 435 I. ricinus nymphs from four localities in the south of the Czech Republic for the species identification of tick-borne pathogens. Borrelia burgdorferi sensu lato spirochetes were the most common pathogen detected in the ticks; 21% of ticks were positive for a single genospecies and 2% were co-infected with two genospecies. Other tick-borne pathogens detected included Rickettsia helvetica (3.9%), R. monacensis (0.2%), Anaplasma phagocytophilum (2.8%), Babesia venatorum (0.9%), and Ba. microti (0.5%). The vertebrate host of the ticks was determined using PCR followed by reverse line blot hybridization from the tick's blood-meal remnants. The host was identified for 61% of ticks. DNA of two hosts was detected in 16% of samples with successful host identification. The majority of ticks had fed on artiodactyls (50.7%) followed by rodents (28.6%) and birds (7.8%). Other host species were wild boar, deer, squirrels, field mice and voles.
Collapse
Affiliation(s)
- Vaclav Honig
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05, Ceske Budejovice, Czech Republic
- Department of Virology, Veterinary Research Institute, Hudcova 70, Brno, Czech Republic
| | - Heather E. Carolan
- Ibis Biosciences Inc., Abbott Laboratories, 2251 Faraday Ave, Ste 150, Carlsbad, CA 92008, USA
| | - Zuzana Vavruskova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05, Ceske Budejovice, Czech Republic
| | - Christian Massire
- Ibis Biosciences Inc., Abbott Laboratories, 2251 Faraday Ave, Ste 150, Carlsbad, CA 92008, USA
| | - Michael R. Mosel
- Ibis Biosciences Inc., Abbott Laboratories, 2251 Faraday Ave, Ste 150, Carlsbad, CA 92008, USA
| | - Christopher D. Crowder
- Ibis Biosciences Inc., Abbott Laboratories, 2251 Faraday Ave, Ste 150, Carlsbad, CA 92008, USA
| | - Megan A. Rounds
- Ibis Biosciences Inc., Abbott Laboratories, 2251 Faraday Ave, Ste 150, Carlsbad, CA 92008, USA
| | - David J. Ecker
- Ibis Biosciences Inc., Abbott Laboratories, 2251 Faraday Ave, Ste 150, Carlsbad, CA 92008, USA
| | - Daniel Ruzek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic
- Department of Virology, Veterinary Research Institute, Hudcova 70, Brno, Czech Republic
| | - Libor Grubhoffer
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05, Ceske Budejovice, Czech Republic
| | - Benjamin J. Luft
- Department of Medicine, State University of New York, Stony Brook, NY 11794-8166, USA
| | - Mark W. Eshoo
- Ibis Biosciences Inc., Abbott Laboratories, 2251 Faraday Ave, Ste 150, Carlsbad, CA 92008, USA
| |
Collapse
|
22
|
Chastagner A, Pion A, Verheyden H, Lourtet B, Cargnelutti B, Picot D, Poux V, Bard É, Plantard O, McCoy KD, Leblond A, Vourc'h G, Bailly X. Host specificity, pathogen exposure, and superinfections impact the distribution of Anaplasma phagocytophilum genotypes in ticks, roe deer, and livestock in a fragmented agricultural landscape. INFECTION GENETICS AND EVOLUTION 2017; 55:31-44. [PMID: 28807858 DOI: 10.1016/j.meegid.2017.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 10/19/2022]
Abstract
Anaplasma phagocytophilum is a bacterial pathogen mainly transmitted by Ixodes ricinus ticks in Europe. It infects wild mammals, livestock, and, occasionally, humans. Roe deer are considered to be the major reservoir, but the genotypes they carry differ from those that are found in livestock and humans. Here, we investigated whether roe deer were the main source of the A. phagocytophilum genotypes circulating in questing I. ricinus nymphs in a fragmented agricultural landscape in France. First, we assessed pathogen prevalence in 1837 I. ricinus nymphs (sampled along georeferenced transects) and 79 roe deer. Prevalence was dramatically different between ticks and roe deer: 1.9% versus 76%, respectively. Second, using high-throughput amplicon sequencing, we characterized the diversity of the A. phagocytophilum genotypes found in 22 infected ticks and 60 infected roe deer; the aim was to determine the frequency of co-infections. Only 22.7% of infected ticks carried genotypes associated with roe deer. This finding fits with others suggesting that cattle density is the major factor explaining infected tick density. To explore epidemiological scenarios capable of explaining these patterns, we constructed compartmental models that focused on how A. phagocytophilum exposure and infection dynamics affected pathogen prevalence in roe deer. At the exposure levels predicted by the results of this study and the literature, the high prevalence in roe deer was only seen in the model in which superinfections could occur during all infection phases and when the probability of infection post exposure was above 0.43. We then interpreted these results from the perspective of livestock and human health.
Collapse
Affiliation(s)
- Amélie Chastagner
- EPIA, UMR 0346, Epidémiologie des maladies Animales et zoonotiques, INRA, VetAgroSup, Route de Theix, F-63122 Saint Genes Champanelle, France; Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Angélique Pion
- EPIA, UMR 0346, Epidémiologie des maladies Animales et zoonotiques, INRA, VetAgroSup, Route de Theix, F-63122 Saint Genes Champanelle, France
| | - Hélène Verheyden
- CEFS, UR0035, Comportement et Ecologie de la Faune Sauvage, Université de Toulouse, INRA, 24 chemin de Borde-Rouge, F-31326 Castanet-Tolosan, France
| | - Bruno Lourtet
- CEFS, UR0035, Comportement et Ecologie de la Faune Sauvage, Université de Toulouse, INRA, 24 chemin de Borde-Rouge, F-31326 Castanet-Tolosan, France
| | - Bruno Cargnelutti
- CEFS, UR0035, Comportement et Ecologie de la Faune Sauvage, Université de Toulouse, INRA, 24 chemin de Borde-Rouge, F-31326 Castanet-Tolosan, France
| | - Denis Picot
- CEFS, UR0035, Comportement et Ecologie de la Faune Sauvage, Université de Toulouse, INRA, 24 chemin de Borde-Rouge, F-31326 Castanet-Tolosan, France
| | - Valérie Poux
- EPIA, UMR 0346, Epidémiologie des maladies Animales et zoonotiques, INRA, VetAgroSup, Route de Theix, F-63122 Saint Genes Champanelle, France
| | - Émilie Bard
- EPIA, UMR 0346, Epidémiologie des maladies Animales et zoonotiques, INRA, VetAgroSup, Route de Theix, F-63122 Saint Genes Champanelle, France
| | - Olivier Plantard
- BIOEPAR, UMR 1300, Biologie, Epidemiologie et Analyse de Risque, INRA, UNAM Université, Oniris, Ecole Nationale Vétérinaire, Agroalimentaire et de l'Alimentation Nantes-Atlantique, Atlanpôle, la Chantrerie, F-44307, Nantes, France
| | - Karen D McCoy
- MIVEGEC (UMR 5290), Maladie Infectieuses et Vecteurs: Ecologie, Génétique Evolution et Contrôle, Centre National de la Recherche Scientifique, Université de Montpellier, Institut de Recherche pour le Développement (UR224), 911 Avenue d'Agropolis, BP 64501, F-34394 Cedex 5, Montpellier, France
| | - Agnes Leblond
- EPIA, UMR 0346, Epidémiologie des maladies Animales et zoonotiques, INRA, VetAgroSup, Route de Theix, F-63122 Saint Genes Champanelle, France
| | - Gwenaël Vourc'h
- EPIA, UMR 0346, Epidémiologie des maladies Animales et zoonotiques, INRA, VetAgroSup, Route de Theix, F-63122 Saint Genes Champanelle, France
| | - Xavier Bailly
- EPIA, UMR 0346, Epidémiologie des maladies Animales et zoonotiques, INRA, VetAgroSup, Route de Theix, F-63122 Saint Genes Champanelle, France.
| |
Collapse
|
23
|
Mierzejewska EJ, Estrada-Peña A, Bajer A. Spread of Dermacentor reticulatus is associated with the loss of forest area. EXPERIMENTAL & APPLIED ACAROLOGY 2017; 72:399-413. [PMID: 28831655 PMCID: PMC5583311 DOI: 10.1007/s10493-017-0160-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 07/22/2017] [Indexed: 05/14/2023]
Abstract
Changes in tick distribution and abundance are among the main drivers of the (re)emergence of transmitted pathogens. We aimed to uncover the reasons of the reported spread of Dermacentor reticulatus in Poland using a variety of proxies of environmental features, ground-measured temperature and remotely-sensed data of temperature and vegetation. Ground-measured temperature was recorded in 2013-2014, in sites where D. reticulatus presence (n = 16) or absence (n = 16) was confirmed. We specifically aimed to test whether changes in phenology of vegetation and the length of the growing season were correlated with field-derived data regarding the presence/absence of D. reticulatus. We also used categorical descriptions of the habitat to capture the vegetation patterns that might delineate the distribution of the tick. We demonstrated that temperature, phenology of vegetation and length of growing season have no correlation with the occurrence of D. reticulatus in Poland. There is, however, a clear association between the trends of the loss of forests and the presence of the tick. This parameter was two times higher at sites colonized by D. reticulatus in comparison to the sites where the population of the tick is not yet established. A spatial analysis demonstrated that the preferred territories for D. reticulatus are those of a highly fragmented landscape within a large patch of homogeneous vegetation, in the vicinity of permanent water courses or reservoirs.
Collapse
Affiliation(s)
- Ewa J Mierzejewska
- Department of Parasitology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Agustín Estrada-Peña
- Department of Animal Health, Faculty of Veterinary Medicine, University of Zaragoza, Zaragoza, Spain
| | - Anna Bajer
- Department of Parasitology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
24
|
Mansfield KL, Jizhou L, Phipps LP, Johnson N. Emerging Tick-Borne Viruses in the Twenty-First Century. Front Cell Infect Microbiol 2017; 7:298. [PMID: 28744449 PMCID: PMC5504652 DOI: 10.3389/fcimb.2017.00298] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/19/2017] [Indexed: 12/18/2022] Open
Abstract
Ticks, as a group, are second only to mosquitoes as vectors of pathogens to humans and are the primary vector for pathogens of livestock, companion animals, and wildlife. The role of ticks in the transmission of viruses has been known for over 100 years and yet new pathogenic viruses are still being detected and known viruses are continually spreading to new geographic locations. Partly as a result of their novelty, tick-virus interactions are at an early stage in understanding. For some viruses, even the principal tick-vector is not known. It is likely that tick-borne viruses will continue to emerge and challenge public and veterinary health long into the twenty-first century. However, studies focusing on tick saliva, a critical component of tick feeding, virus transmission, and a target for control of ticks and tick-borne diseases, point toward solutions to emerging viruses. The aim of this review is to describe some currently emerging tick-borne diseases, their causative viruses, and to discuss research on virus-tick interactions. Through focus on this area, future protein targets for intervention and vaccine development may be identified.
Collapse
Affiliation(s)
- Karen L Mansfield
- Animal and Plant Health AgencyAddlestone, United Kingdom.,Institute of Infection and Global Health, University of LiverpoolLiverpool, United Kingdom
| | - Lv Jizhou
- Animal and Plant Health AgencyAddlestone, United Kingdom.,Chinese Academy of Inspection and QuarantineBeijing, China
| | - L Paul Phipps
- Animal and Plant Health AgencyAddlestone, United Kingdom
| | - Nicholas Johnson
- Animal and Plant Health AgencyAddlestone, United Kingdom.,Faculty of Health and Medicine, University of SurreyGuildford, United Kingdom
| |
Collapse
|
25
|
Verdugo C, Jiménez O, Hernández C, Álvarez P, Espinoza A, González-Acuña D. Infection with Borrelia chilensis in Ixodes stilesi ticks collected from Pudu puda deer. Ticks Tick Borne Dis 2017; 8:733-740. [PMID: 28549720 DOI: 10.1016/j.ttbdis.2017.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 11/29/2022]
Abstract
Lyme borreliosis is a vector-borne zoonosis caused by Borrelia burgdorferi sensu lato species complex spirochetes, which are maintained in transmission cycles among vertebrates and Ixodes ticks. Recently, a new genospecies within this complex, Borrelia chilensis, was described in Ixodes stilesi collected from the environment and from rodents in Chile. This tick also infests the native Southern pudu deer (Pudu puda). The objectives of this study were to investigate the prevalence, intensity of infestation, and aggregation of hard ticks on this deer species, and to determine the presence of borrelial pathogens in the ticks. Sixty-six deer were examined over a two-year period. A total of 179 ticks of two species, I. stilesi and Ixodes taglei, were collected. Of those, 100 were adults, 78 were nymphs, and one was a larva. Ixodes stilesi was the most prevalent tick (47%) and was highly aggregated (D=0.77) on the deer. Deer body weight was positively associated with tick burden. Borrelia spirochetes were detected in two (6.45%) of the examined I. stilesi ticks. Phylogenetic analyses of 16S and flaB gene sequences positioned these samples in the same clade with Borrelia chilensis VA1 previously described from Chile. These findings suggest that I. stilesi may play a role in the local persistence of B. chilensis. Further studies are required to fully understand the mechanisms of natural transmission of B. chilensis and the risk of infection in humans.
Collapse
Affiliation(s)
- Claudio Verdugo
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Av. Los Laureles s/n, Valdivia, Chile; Programa de Investigación Aplicada en Fauna Silvestre, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Av. Los Laureles s/n, Valdivia, Chile.
| | - Omar Jiménez
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Av. Los Laureles s/n, Valdivia, Chile
| | - Carlos Hernández
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Av. Los Laureles s/n, Valdivia, Chile
| | - Pedro Álvarez
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Av. Los Laureles s/n, Valdivia, Chile
| | - Angelo Espinoza
- Programa de Investigación Aplicada en Fauna Silvestre, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Av. Los Laureles s/n, Valdivia, Chile; Centro de Rehabilitación de Fauna Silvestre, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Av. Los Laureles s/n, Valdivia, Chile
| | - Daniel González-Acuña
- Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Av. Vicente Méndez 595, Chillán, Chile
| |
Collapse
|
26
|
Kriz B, Daniel M, Benes C, Maly M. The role of game (wild boar and roe deer) in the spread of tick-borne encephalitis in the Czech Republic. Vector Borne Zoonotic Dis 2017; 14:801-7. [PMID: 25409271 DOI: 10.1089/vbz.2013.1569] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the Czech Republic, the incidence of human tick-borne encephalitis (TBE) has been increasing over the last two decades. At the same time, populations of game have also shown an upward trend. In this country, the ungulate game is the main host group of hosts for Ixodes ricinus female ticks. This study examined the potential contribution of two most widespread game species (roe deer [Capreolus capreolus] and wild boar [Sus scrofa]) to the high incidence of TBE in the Czech Republic, using the annual numbers of culls as a proxy for the game population. This was an ecological study, with annual figures for geographical areas-municipalities with extended competence (MEC)-used as units of analysis. Between 2003 and 2011, a total of 6213 TBE cases were reported, and 1062,308 roe deer and 989,222 wild boars were culled; the culls of roe deer did not demonstrate a clear temporal trend, but wild boar culls almost doubled (from 77,269 to 143,378 per year). Statistical analyses revealed a positive association between TBE incidence rate and the relative number of culled wild boars. In multivariate analyses, a change in the numbers of culled wild boars between the 25th and 75th percentile was associated with TBE incidence rate ratio of 1.23 (95% confidence interval 1.07-1.41, p=0.003). By contrast, the association of TBE with culled roe deer was not statistically significant (p=0.481). The results suggest that the size of the wild boar population may have contributed to the current high levels and the rising trend in incidence of TBE, whereas the regulated population of roe deer does not seem to be implicated in recent geographical or temporal variations in TBE in the Czech Republic.
Collapse
Affiliation(s)
- Bohumir Kriz
- National Institute of Public Health, 3rd Medical Faculty, Charles University , Praha, Czech Republic
| | | | | | | |
Collapse
|
27
|
Collini M, Albonico F, Rosà R, Tagliapietra V, Arnoldi D, Conterno L, Rossi C, Mortarino M, Rizzoli A, Hauffe HC. Identification of Ixodes ricinus blood meals using an automated protocol with high resolution melting analysis (HRMA) reveals the importance of domestic dogs as larval tick hosts in Italian alpine forests. Parasit Vectors 2016; 9:638. [PMID: 27955678 PMCID: PMC5154095 DOI: 10.1186/s13071-016-1901-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/21/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND In Europe, Ixodes ricinus L. is the main vector of a variety of zoonotic pathogens, acquired through blood meals taken once per stage from a vertebrate host. Defining the main tick hosts in a given area is important for planning public health interventions; however, until recently, no robust molecular methods existed for blood meal identification from questing ticks. Here we improved the time- and cost-effectiveness of an HRMA protocol for blood meal analysis and used it to identify blood meal sources of sheep tick larvae from Italian alpine forests. METHODS Nine hundred questing nymphs were collected using blanket-dragging in 18 extensive forests and 12 forest patches close to rural villages in the Province of Trento. Total DNA was either extracted manually, with the QIAamp DNA Investigator kit, or automatically using the KingFisher™ Flex Magnetic Particle Processors (KingFisher Cell and Tissue DNA Kit). Host DNA was amplified with six independent host group real-time PCR reactions and identified by means of HRMA. Statistical analyses were performed in R to assess the variables important for achieving successful identification and to compare host use in the two types of forest. RESULTS Automating DNA extraction improved time- and cost-effectiveness of the HRMA protocol, but identification success fell to 22.4% (KingFisher™) from 55.1% (QIAamp), with larval hosts identified in 215 of 848 questing nymphs; 23 mixed blood meals were noted. However, the list of hosts targeted by our primer sets was extended, improving the potential of the method. Host identification to species or genus level was possible for 137 and 102 blood meals, respectively. The most common hosts were Rodentia (28.9%) and, unexpectedly, Carnivora (28.4%), with domestic dogs accounting for 21.3% of all larval blood meals. Overall, Cetartiodactyla species fed 17.2% of larvae. Passeriformes (14.6%) fed a significantly higher proportion of larvae in forest patches (22.3%) than in extensive forest (9.6%), while Soricomorpha (10.9%) were more important hosts in extensive forest (15.2%) than in forest patches (4.3%). CONCLUSIONS The HRMA protocol for blood meal analysis is a valuable tool in the study of feeding ecology of sheep ticks, especially with the cost- and time- reductions introduced here. To our knowledge, we show for the first time that domestic dogs are important larval hosts in the Alps, which may have possible implications for tick-borne disease cycles in urbanized areas.
Collapse
Affiliation(s)
- Margherita Collini
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Francesca Albonico
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Roberto Rosà
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Valentina Tagliapietra
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Daniele Arnoldi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Lorenza Conterno
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Chiara Rossi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Michele Mortarino
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Annapaola Rizzoli
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Heidi Christine Hauffe
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| |
Collapse
|
28
|
Carpi G, Kitchen A, Kim HL, Ratan A, Drautz-Moses DI, McGraw JJ, Kazimirova M, Rizzoli A, Schuster SC. Mitogenomes reveal diversity of the European Lyme borreliosis vector Ixodes ricinus in Italy. Mol Phylogenet Evol 2016; 101:194-202. [DOI: 10.1016/j.ympev.2016.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/02/2016] [Accepted: 05/04/2016] [Indexed: 01/04/2023]
|
29
|
Kazimírová M, Hamšíková Z, Kocianová E, Marini G, Mojšová M, Mahríková L, Berthová L, Slovák M, Rosá R. Relative density of host-seeking ticks in different habitat types of south-western Slovakia. EXPERIMENTAL & APPLIED ACAROLOGY 2016; 69:205-24. [PMID: 26926874 DOI: 10.1007/s10493-016-0025-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/21/2016] [Indexed: 05/10/2023]
Abstract
Ixodes ricinus is a vector of microbial pathogens of medical and veterinary importance in Europe. Recently, increasing abundance of ticks has been observed in urban and suburban areas. The aim of this study was to investigate the tick species composition and examine correlations between local environmental variables and the relative density of host-seeking I. ricinus in two habitat types. Questing ticks were collected along six 100 m(2) transects in urban/suburban locations of Bratislava town, and in a non-fragmented deciduous forest in the Small Carpathians Mountains (south-western Slovakia) during 2011-2013. In total, 6015 I. ricinus were collected (3435 and 2580 in the urban/suburban and natural habitat, respectively), out of which over 80 % were nymphs. Haemaphysalis concinna comprised 1.3 % of the tick collections. Peak I. ricinus nymph and adult host-seeking activities were registered in April-June. Spatial and temporal variation in tick relative density and differences in the subadult/adult ratio were observed between habitats and between locations within the same habitat type. The relative density of questing I. ricinus nymphs correlated negatively with altitude, geographical aspect and saturation deficit in a 64-day period comprising the 8-day period including the date of tick sampling and previous 56 days. No significant correlation was found between roe deer density and questing nymph density. The study revealed the presence of abundant I. ricinus populations in green areas of Bratislava, suggesting a risk of exposure of town dwellers and domestic and companion animals to potentially infected ticks.
Collapse
Affiliation(s)
- Mária Kazimírová
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Zuzana Hamšíková
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Elena Kocianová
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Giovanni Marini
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, TN, Italy
| | - Michala Mojšová
- Department of Zoology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Lenka Mahríková
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lenka Berthová
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mirko Slovák
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Roberto Rosá
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, TN, Italy
| |
Collapse
|
30
|
Dobson ADM, Auld SKJR. Epidemiological Implications of Host Biodiversity and Vector Biology: Key Insights from Simple Models. Am Nat 2016; 187:405-22. [PMID: 27028070 DOI: 10.1086/685445] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Models used to investigate the relationship between biodiversity change and vector-borne disease risk often do not explicitly include the vector; they instead rely on a frequency-dependent transmission function to represent vector dynamics. However, differences between classes of vector (e.g., ticks and insects) can cause discrepancies in epidemiological responses to environmental change. Using a pair of disease models (mosquito- and tick-borne), we simulated substitutive and additive biodiversity change (where noncompetent hosts replaced or were added to competent hosts, respectively), while considering different relationships between vector and host densities. We found important differences between classes of vector, including an increased likelihood of amplified disease risk under additive biodiversity change in mosquito models, driven by higher vector biting rates. We also draw attention to more general phenomena, such as a negative relationship between initial infection prevalence in vectors and likelihood of dilution, and the potential for a rise in density of infected vectors to occur simultaneously with a decline in proportion of infected hosts. This has important implications; the density of infected vectors is the most valid metric for primarily zoonotic infections, while the proportion of infected hosts is more relevant for infections where humans are a primary host.
Collapse
|
31
|
Tonteri E, Jokelainen P, Matala J, Pusenius J, Vapalahti O. Serological evidence of tick-borne encephalitis virus infection in moose and deer in Finland: sentinels for virus circulation. Parasit Vectors 2016; 9:54. [PMID: 26825371 PMCID: PMC4733276 DOI: 10.1186/s13071-016-1335-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/21/2016] [Indexed: 12/30/2022] Open
Abstract
Background The incidence of tick-borne encephalitis (TBE) in humans has increased in Finland, and the disease has emerged in new foci. These foci have been investigated to determine the circulating virus subtype, the tick host species and the ecological parameters, but countrywide epidemiological information on the distribution of TBEV has been limited. Methods In this study, we screened sera from hunter-harvested wild cervids for the presence of antibodies against tick-borne encephalitis virus (TBEV) with a hemagglutination inhibition test. The positive results were confirmed by a neutralisation assay. Results Nine (0.74 %) of 1213 moose, one (0.74 %) of 135 white-tailed deer, and none of the 17 roe deer were found seropositive for TBEV. A close geographical congruence between seropositive cervids and recently reported human TBE cases was observed: nine of the ten seropositive animals were from known endemic areas. Conclusions Our results confirm the local circulation of TBEV in several known endemic areas. One seropositive moose had been shot in an area where human TBE cases have not been reported, suggesting a possible new focus. Moose appear to be a useful sentinel animal for the presence of TBEV in the taiga region.
Collapse
Affiliation(s)
- Elina Tonteri
- Department of Virology, University of Helsinki, Faculty of Medicine, Helsinki, Finland.
| | - Pikka Jokelainen
- Department of Veterinary Biosciences, University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland. .,Department of Food Hygiene and Environmental Health, University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland. .,Department of Basic Veterinary Sciences and Population Medicine, Estonian University of Life Sciences, Tartu, Estonia.
| | - Juho Matala
- Natural Resources Institute Finland (Luke), Management and Production of Renewable Resources, Joensuu, Finland.
| | - Jyrki Pusenius
- Natural Resources Institute Finland (Luke), Management and Production of Renewable Resources, Joensuu, Finland.
| | - Olli Vapalahti
- Department of Virology, University of Helsinki, Faculty of Medicine, Helsinki, Finland. .,Department of Veterinary Biosciences, University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland. .,Department of Virology and Immunology, Hospital district of Helsinki and Uusimaa (HUSLAB), Helsinki, Finland.
| |
Collapse
|
32
|
Lõhmus M, Balbus J. Making green infrastructure healthier infrastructure. Infect Ecol Epidemiol 2015; 5:30082. [PMID: 26615823 PMCID: PMC4663195 DOI: 10.3402/iee.v5.30082] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 10/20/2015] [Accepted: 10/25/2015] [Indexed: 11/14/2022] Open
Abstract
Increasing urban green and blue structure is often pointed out to be critical for sustainable development and climate change adaptation, which has led to the rapid expansion of greening activities in cities throughout the world. This process is likely to have a direct impact on the citizens' quality of life and public health. However, alongside numerous benefits, green and blue infrastructure also has the potential to create unexpected, undesirable, side-effects for health. This paper considers several potential harmful public health effects that might result from increased urban biodiversity, urban bodies of water, and urban tree cover projects. It does so with the intent of improving awareness and motivating preventive measures when designing and initiating such projects. Although biodiversity has been found to be associated with physiological benefits for humans in several studies, efforts to increase the biodiversity of urban environments may also promote the introduction and survival of vector or host organisms for infectious pathogens with resulting spread of a variety of diseases. In addition, more green connectivity in urban areas may potentiate the role of rats and ticks in the spread of infectious diseases. Bodies of water and wetlands play a crucial role in the urban climate adaptation and mitigation process. However, they also provide habitats for mosquitoes and toxic algal blooms. Finally, increasing urban green space may also adversely affect citizens allergic to pollen. Increased awareness of the potential hazards of urban green and blue infrastructure should not be a reason to stop or scale back projects. Instead, incorporating public health awareness and interventions into urban planning at the earliest stages can help insure that green and blue infrastructure achieves full potential for health promotion.
Collapse
Affiliation(s)
- Mare Lõhmus
- Institute for Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden;
| | - John Balbus
- National Institute of Environmental Health Sciences, Bethesda, MD, USA
| |
Collapse
|
33
|
Fabbro SD, Gollino S, Zuliani M, Nazzi F. Investigating the relationship between environmental factors and tick abundance in a small, highly heterogeneous region. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2015; 40:107-116. [PMID: 26047190 DOI: 10.1111/jvec.12138] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/05/2014] [Indexed: 06/04/2023]
Abstract
The tick Ixodes ricinus (L.) is the most important vector of tick-borne zoonoses in Europe. Apart from factors related to human behavior, tick abundance is a major driver of the incidence of tick-borne diseases in a given area and related data represent critical information for promoting effective public health policies. The present study analyzed the relationship between different environmental factors and tick abundance in order to improve the understanding of I. ricinus autecology and develop spatial predictive models that can be implemented in tick-borne disease prevention strategies. Ticks were sampled in 27 sites over a four-year period and different environmental variables were studied. Five simple models were developed that explain a large part of variation in tick abundance. Precipitation seems to play the most important role, followed by temperature, woodland coverage, and solar radiation. Model equations obtained in this study may enable the spatial interpolation and extension of tick abundance predicted values to sites of the same area, in order to build regional predictive maps. They could also be useful for the validation of large-scale spatial predictive maps.
Collapse
Affiliation(s)
- Simone Del Fabbro
- Department of Agricultural and Environmental Sciences (DISA), University of Udine, via delle Scienze, 206, Udine, 33100, Italy.
| | - Sergio Gollino
- Ufficio Sistemi Informativi Territoriali, Comunità Montana della Carnia, Tolmezzo (Udine), Italy
| | - Michel Zuliani
- Ufficio Sistemi Informativi Territoriali, Comunità Montana della Carnia, Tolmezzo (Udine), Italy
| | - Francesco Nazzi
- Department of Agricultural and Environmental Sciences (DISA), University of Udine, via delle Scienze, 206, Udine, 33100, Italy
| |
Collapse
|
34
|
Duscher GG, Wetscher M, Baumgartner R, Walder G. Roe deer sera used for TBE surveillance in Austria. Ticks Tick Borne Dis 2015; 6:489-93. [DOI: 10.1016/j.ttbdis.2015.03.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 03/19/2015] [Accepted: 03/21/2015] [Indexed: 11/25/2022]
|
35
|
Imhoff M, Hagedorn P, Schulze Y, Hellenbrand W, Pfeffer M, Niedrig M. Review: Sentinels of tick-borne encephalitis risk. Ticks Tick Borne Dis 2015; 6:592-600. [PMID: 26005107 DOI: 10.1016/j.ttbdis.2015.05.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/15/2015] [Accepted: 05/01/2015] [Indexed: 12/28/2022]
Abstract
Tick-borne encephalitis (TBE) is a viral zoonotic disease endemic in many regions of Eurasia. The definition of TBE risk areas is complicated by the focal nature of the TBE virus transmission. Furthermore, vaccination may reduce case numbers and thus mask infection risk to unvaccinated persons. Therefore, additional risk indicators are sought to complement the current risk assessment solely based on human incidence. We reviewed studies published over the past ten years investigating potential new sentinels of TBE risk to understand the advantages and disadvantages of the various sentinel animal surveys and surrogate indicator methods. Virus prevalence in questing ticks is an unsuitable indicator of TBE infection risk as viral RNA is rarely detected even in large sample sizes collected at known TBE endemic areas. Seroprevalence in domestic animals, on the other hand, showed good spatial correlation with TBE incidence in humans and might also uncover presently unknown TBEV foci.
Collapse
Affiliation(s)
- Maren Imhoff
- Centre for Biological Threats and Special Pathogens: Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany.
| | - Peter Hagedorn
- Centre for Biological Threats and Special Pathogens: Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany.
| | - Yesica Schulze
- Centre for Biological Threats and Special Pathogens: Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany.
| | - Wiebke Hellenbrand
- Centre for Biological Threats and Special Pathogens: Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany.
| | - Martin Pfeffer
- Institute of Animal Hygiene & Veterinary Public Health, Centre of Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany.
| | - Matthias Niedrig
- Centre for Biological Threats and Special Pathogens: Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany.
| |
Collapse
|
36
|
Giangaspero A, Marangi M, Papini R, Paoletti B, Wijnveld M, Jongejan F. Theileria sp. OT3 and other tick-borne pathogens in sheep and ticks in Italy: Molecular characterization and phylogeny. Ticks Tick Borne Dis 2015; 6:75-83. [DOI: 10.1016/j.ttbdis.2014.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/23/2014] [Accepted: 09/23/2014] [Indexed: 11/26/2022]
|
37
|
Rizzoli A, Silaghi C, Obiegala A, Rudolf I, Hubálek Z, Földvári G, Plantard O, Vayssier-Taussat M, Bonnet S, Spitalská E, Kazimírová M. Ixodes ricinus and Its Transmitted Pathogens in Urban and Peri-Urban Areas in Europe: New Hazards and Relevance for Public Health. Front Public Health 2014; 2:251. [PMID: 25520947 PMCID: PMC4248671 DOI: 10.3389/fpubh.2014.00251] [Citation(s) in RCA: 319] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/09/2014] [Indexed: 12/30/2022] Open
Abstract
Tick-borne diseases represent major public and animal health issues worldwide. Ixodes ricinus, primarily associated with deciduous and mixed forests, is the principal vector of causative agents of viral, bacterial, and protozoan zoonotic diseases in Europe. Recently, abundant tick populations have been observed in European urban green areas, which are of public health relevance due to the exposure of humans and domesticated animals to potentially infected ticks. In urban habitats, small and medium-sized mammals, birds, companion animals (dogs and cats), and larger mammals (roe deer and wild boar) play a role in maintenance of tick populations and as reservoirs of tick-borne pathogens. Presence of ticks infected with tick-borne encephalitis virus and high prevalence of ticks infected with Borrelia burgdorferi s.l., causing Lyme borreliosis, have been reported from urbanized areas in Europe. Emerging pathogens, including bacteria of the order Rickettsiales (Anaplasma phagocytophilum, "Candidatus Neoehrlichia mikurensis," Rickettsia helvetica, and R. monacensis), Borrelia miyamotoi, and protozoans (Babesia divergens, B. venatorum, and B. microti) have also been detected in urban tick populations. Understanding the ecology of ticks and their associations with hosts in a European urbanized environment is crucial to quantify parameters necessary for risk pre-assessment and identification of public health strategies for control and prevention of tick-borne diseases.
Collapse
Affiliation(s)
- Annapaola Rizzoli
- Fondazione Edmund Mach, Research and Innovation Centre, San Michele all'Adige , Trento , Italy
| | - Cornelia Silaghi
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität , Munich , Germany ; Vetsuisse-Faculty, Swiss National Centre for Vector Entomology, Institute for Parasitology, University of Zurich , Zürich , Switzerland
| | - Anna Obiegala
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität , Munich , Germany ; Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig , Leipzig , Germany
| | - Ivo Rudolf
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i. , Brno , Czech Republic
| | - Zdeněk Hubálek
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i. , Brno , Czech Republic
| | - Gábor Földvári
- Department of Parasitology and Zoology, Faculty of Veterinary Science, Szent István University , Budapest , Hungary
| | - Olivier Plantard
- INRA, UMR1300 BioEpAR , Nantes , France ; LUNAM Université, Oniris, Ecole nationale vétérinaire, agroalimentaire et de l'alimentation Nantes-Atlantique, UMR BioEpAR , Nantes , France
| | - Muriel Vayssier-Taussat
- USC BIPAR, INRA, ANSES - French Agency for Food, Environmental and Occupational Health and Safety , Maisons-Alfort , France
| | - Sarah Bonnet
- USC BIPAR, INRA, ANSES - French Agency for Food, Environmental and Occupational Health and Safety , Maisons-Alfort , France
| | - Eva Spitalská
- Institute of Virology, Slovak Academy of Sciences , Bratislava , Slovakia
| | - Mária Kazimírová
- Institute of Zoology, Slovak Academy of Sciences , Bratislava , Slovakia
| |
Collapse
|
38
|
Rieille N, Bressanelli S, Freire CCM, Arcioni S, Gern L, Péter O, Voordouw MJ. Prevalence and phylogenetic analysis of tick-borne encephalitis virus (TBEV) in field-collected ticks (Ixodes ricinus) in southern Switzerland. Parasit Vectors 2014; 7:443. [PMID: 25245773 PMCID: PMC4261884 DOI: 10.1186/1756-3305-7-443] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 09/13/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Tick-borne encephalitis is the most common tick-borne viral infection in Europe with 3,000 human cases reported each year. In Western Europe, the castor bean tick, Ixodes ricinus, is the principal vector of the tick-borne encephalitis virus (TBEV). TBEV appears to be spreading geographically and was recently detected for the first time in Canton Valais in the southern part of Switzerland. The purpose of the present study was to survey the I. ricinus tick populations of Canton Valais for TBEV. METHODS We collected a total of 19,331 I. ricinus ticks at 45 different sites in Canton Valais between 2010 and 2013. Ticks were processed in pools and tested for TBEV using reverse transcription quantitative PCR. The NS5 gene and the envelope gene of the TBEV isolates were partially sequenced for phylogenetic analysis. RESULTS TBEV was detected in tick populations at six of the 45 sites. These six sites were all located in a 33 km transect along the Rhône River. TBEV was detected in two sites for three of the four years of the study showing the temporal persistence of the pathogen. Prevalence of TBEV in the six positive sites ranged from 0.16% to 11.11%. Phylogenetic analysis found that all TBEV isolates from Canton Valais belonged to the European subtype. Genetic analysis found two distinct lineages of TBEV suggesting that Canton Valais experienced two independent colonization events. CONCLUSIONS TBEV appears to be well established at certain locations in Canton Valais.
Collapse
Affiliation(s)
- Nadia Rieille
- />Central Institute of Valais Hospitals, Infectious diseases, Av Grand Champsec 86, Sion, Switzerland
- />Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Stéphane Bressanelli
- />Laboratoire de Virologie Moléculaire et Structurale, CNRS UPR3296, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Caio C M Freire
- />Inter-institutional Grad Program on Bioinformatics, University of Sao Paulo, Matao Street 1010, Sao Paulo, Brazil
| | - Séverine Arcioni
- />Central Institute of Valais Hospitals, Genetics, Av Grand Champsec 86, Sion, Switzerland
| | - Lise Gern
- />Laboratory of Eco-Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Olivier Péter
- />Central Institute of Valais Hospitals, Infectious diseases, Av Grand Champsec 86, Sion, Switzerland
| | - Maarten J Voordouw
- />Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| |
Collapse
|
39
|
Pacilly FCA, Benning ME, Jacobs F, Leidekker J, Sprong H, Van Wieren SE, Takken W. Blood feeding on large grazers affects the transmission of Borrelia burgdorferi sensu lato by Ixodes ricinus. Ticks Tick Borne Dis 2014; 5:810-7. [PMID: 25113977 DOI: 10.1016/j.ttbdis.2014.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 05/28/2014] [Accepted: 06/12/2014] [Indexed: 12/11/2022]
Abstract
The presence of Ixodes ricinus and their associated Borrelia infections on large grazers was investigated. Carcases of freshly shot red deer, mouflon and wild boar were examined for the presence of any stage of I. ricinus. Questing ticks were collected from locations where red deer and wild boar are known to occur. Presence of Borrelia burgdorferi s.l. DNA was examined in a fraction of the collected ticks. Larvae, nymphs and adult ticks were found on the three large grazers. Red deer had the highest tick burden, with many of the nymphs and adult females attached for engorgement. Most larvae had not attached. The mean number of ticks on the animals varied from 13 to 67. Ticks were highly aggregated amongst the animals: some animals had no ticks, while others had high numbers. Larvae and nymphs were mostly found on the ears, while adult ticks were attached to the axillae. The Borrelia infection rate of questing nymphs was 8.5%. Unengorged wandering nymphs on deer had a Borrelia infection rate of 12.5%, while only 0.9% of feeding nymphs carried a Borrelia infection. The infection rate of unengorged adult male ticks was 4.5%, and that of feeding female ticks was 0.7%. The data suggest that ticks feeding on red deer and wild boar lose their Borrelia infections. The implications of the results are discussed with respect to Borrelia epidemiology and maintenance of a Borrelia reservoir as well as the role of reproductive hosts for Ixodes ricinus.
Collapse
Affiliation(s)
- F C A Pacilly
- Laboratory of Entomology, Wageningen University, PO Box 8031, 6700 EH Wageningen, The Netherlands
| | - M E Benning
- Resource Ecology Group, Wageningen University, Droevendaalsesteeg 3a, 6708 PB Wageningen, The Netherlands
| | - F Jacobs
- Laboratory of Entomology, Wageningen University, PO Box 8031, 6700 EH Wageningen, The Netherlands
| | - J Leidekker
- National Park de Hoge Veluwe, Apeldoornseweg 250, 7351 TA Hoenderloo, The Netherlands
| | - H Sprong
- Laboratory of Entomology, Wageningen University, PO Box 8031, 6700 EH Wageningen, The Netherlands; Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and Environment (RIVM), Antonie van Leeuwenhoeklaan 9, PO Box 1, 3720 BA Bilthoven, The Netherlands
| | - S E Van Wieren
- Resource Ecology Group, Wageningen University, Droevendaalsesteeg 3a, 6708 PB Wageningen, The Netherlands
| | - W Takken
- Laboratory of Entomology, Wageningen University, PO Box 8031, 6700 EH Wageningen, The Netherlands.
| |
Collapse
|
40
|
States SL, Brinkerhoff RJ, Carpi G, Steeves TK, Folsom-O'Keefe C, DeVeaux M, Diuk-Wasser MA. Lyme disease risk not amplified in a species-poor vertebrate community: similar Borrelia burgdorferi tick infection prevalence and OspC genotype frequencies. INFECTION GENETICS AND EVOLUTION 2014; 27:566-75. [PMID: 24787999 DOI: 10.1016/j.meegid.2014.04.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/29/2014] [Accepted: 04/18/2014] [Indexed: 10/25/2022]
Abstract
The effect of biodiversity declines on human health is currently debated, but empirical assessments are lacking. Lyme disease provides a model system to assess relationships between biodiversity and human disease because the etiologic agent, Borrelia burgdorferi, is transmitted in the United States by the generalist black-legged tick (Ixodes scapularis) among a wide range of mammalian and avian hosts. The 'dilution effect' hypothesis predicts that species-poor host communities dominated by white-footed mice (Peromyscus leucopus) will pose the greatest human risk because P. leucopus infects the largest numbers of ticks, resulting in higher human exposure to infected I. scapularis ticks. P. leucopus-dominated communities are also expected to maintain a higher frequency of those B. burgdorferi outer surface protein C (ospC) genotypes that this host species more efficiently transmits ('multiple niche polymorphism' hypothesis). Because some of these genotypes are human invasive, an additive increase in human disease risk is expected in species-poor settings. We assessed these theoretical predictions by comparing I. scapularis nymphal infection prevalence, density of infected nymphs and B. burgdorferi genotype diversity at sites on Block Island, RI, where P. leucopus dominates the mammalian host community, to species-diverse sites in northeastern Connecticut. We found no support for the dilution effect hypothesis; B. burgdorferi nymphal infection prevalence was similar between island and mainland and the density of B. burgdorferi infected nymphs was higher on the mainland, contrary to what is predicted by the dilution effect hypothesis. Evidence for the multiple niche polymorphism hypothesis was mixed: there was lower ospC genotype diversity at island than mainland sites, but no overrepresentation of genotypes with higher fitness in P. leucopus or that are more invasive in humans. We conclude that other mechanisms explain similar nymphal infection prevalence in both communities and that high ospC genotype diversity can be maintained in both species-poor and species-rich communities.
Collapse
Affiliation(s)
- S L States
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, 60 College Street, New Haven, CT 06520, USA
| | - R J Brinkerhoff
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, 60 College Street, New Haven, CT 06520, USA; University of Richmond, Department of Biology, 28 Westhampton Way, Richmond, VA 23173, USA; University of KwaZulu-Natal, School of Life Sciences, Pietermaritzburg, South Africa
| | - G Carpi
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, 60 College Street, New Haven, CT 06520, USA
| | - T K Steeves
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, 60 College Street, New Haven, CT 06520, USA
| | - C Folsom-O'Keefe
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, 60 College Street, New Haven, CT 06520, USA; Audubon Connecticut, 185 East Flat Hill Rd., Southbury, CT 06488, USA
| | - M DeVeaux
- Yale School of Public Health, Department of Biostatistics, 60 College Street, New Haven, CT 06520, USA
| | - M A Diuk-Wasser
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, 60 College Street, New Haven, CT 06520, USA.
| |
Collapse
|
41
|
Welc-Falęciak R, Kowalec M, Karbowiak G, Bajer A, Behnke JM, Siński E. Rickettsiaceae and Anaplasmataceae infections in Ixodes ricinus ticks from urban and natural forested areas of Poland. Parasit Vectors 2014; 7:121. [PMID: 24661311 PMCID: PMC3994390 DOI: 10.1186/1756-3305-7-121] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 03/05/2014] [Indexed: 01/13/2023] Open
Abstract
Background Ixodes ricinus is a major vector for a range of microbial pathogens and the most prevalent and widely distributed tick species on the European continent, occurring in both natural and urban habitats. Nevertheless, little is known about the relative density of ticks in these two ecologically distinct habitats and the diversity of tick-borne pathogens that they carry. Methods We compared densities of questing I. ricinus nymphs and adults in urban and natural habitats in Central and Northeastern Poland, assessed the prevalence and rate of co-infection with A. phagocytophilum, Rickettsia, Ehrlichia and ‘Ca. Neoehrlichia spp.’ in ticks, and compared the diversity of tick-borne pathogens using molecular assays (PCR). Results Of the 1325 adults and nymphs, 6.2% were infected with at least one pathogen, with 4.4%, 1.7% and less than 0.5% being positive for the DNA of Rickettsia spp., A. phagocytophilum, Ehrlichia spp. and Ca. N. mikurensis, respectively. Although tick abundance was higher in natural habitats, the prevalence of the majority of pathogens was higher in urban forested areas. Conclusion We conclude that: (i) zoonotic genetic variants of A. phagocytophilum are widely distributed in the Polish tick population, (ii) although the diversity of tick borne pathogens was higher in natural habitats, zoonotic species/strains were detected only in urban forests, (iii) and we provide the first description of Ca. N. mikurensis infections in ticks in Poland.
Collapse
Affiliation(s)
- Renata Welc-Falęciak
- Department of Parasitology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
42
|
Rizzoli A, Silaghi C, Obiegala A, Rudolf I, Hubálek Z, Földvári G, Plantard O, Vayssier-Taussat M, Bonnet S, Spitalská E, Kazimírová M. Ixodes ricinus and Its Transmitted Pathogens in Urban and Peri-Urban Areas in Europe: New Hazards and Relevance for Public Health. Front Public Health 2014. [PMID: 25520947 DOI: 10.3389/fpubh.2014.00251.pmid:25520947;pmcid:pmc4248671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Tick-borne diseases represent major public and animal health issues worldwide. Ixodes ricinus, primarily associated with deciduous and mixed forests, is the principal vector of causative agents of viral, bacterial, and protozoan zoonotic diseases in Europe. Recently, abundant tick populations have been observed in European urban green areas, which are of public health relevance due to the exposure of humans and domesticated animals to potentially infected ticks. In urban habitats, small and medium-sized mammals, birds, companion animals (dogs and cats), and larger mammals (roe deer and wild boar) play a role in maintenance of tick populations and as reservoirs of tick-borne pathogens. Presence of ticks infected with tick-borne encephalitis virus and high prevalence of ticks infected with Borrelia burgdorferi s.l., causing Lyme borreliosis, have been reported from urbanized areas in Europe. Emerging pathogens, including bacteria of the order Rickettsiales (Anaplasma phagocytophilum, "Candidatus Neoehrlichia mikurensis," Rickettsia helvetica, and R. monacensis), Borrelia miyamotoi, and protozoans (Babesia divergens, B. venatorum, and B. microti) have also been detected in urban tick populations. Understanding the ecology of ticks and their associations with hosts in a European urbanized environment is crucial to quantify parameters necessary for risk pre-assessment and identification of public health strategies for control and prevention of tick-borne diseases.
Collapse
Affiliation(s)
- Annapaola Rizzoli
- Fondazione Edmund Mach, Research and Innovation Centre, San Michele all'Adige , Trento , Italy
| | - Cornelia Silaghi
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität , Munich , Germany ; Vetsuisse-Faculty, Swiss National Centre for Vector Entomology, Institute for Parasitology, University of Zurich , Zürich , Switzerland
| | - Anna Obiegala
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität , Munich , Germany ; Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig , Leipzig , Germany
| | - Ivo Rudolf
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i. , Brno , Czech Republic
| | - Zdeněk Hubálek
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i. , Brno , Czech Republic
| | - Gábor Földvári
- Department of Parasitology and Zoology, Faculty of Veterinary Science, Szent István University , Budapest , Hungary
| | - Olivier Plantard
- INRA, UMR1300 BioEpAR , Nantes , France ; LUNAM Université, Oniris, Ecole nationale vétérinaire, agroalimentaire et de l'alimentation Nantes-Atlantique, UMR BioEpAR , Nantes , France
| | - Muriel Vayssier-Taussat
- USC BIPAR, INRA, ANSES - French Agency for Food, Environmental and Occupational Health and Safety , Maisons-Alfort , France
| | - Sarah Bonnet
- USC BIPAR, INRA, ANSES - French Agency for Food, Environmental and Occupational Health and Safety , Maisons-Alfort , France
| | - Eva Spitalská
- Institute of Virology, Slovak Academy of Sciences , Bratislava , Slovakia
| | - Mária Kazimírová
- Institute of Zoology, Slovak Academy of Sciences , Bratislava , Slovakia
| |
Collapse
|
43
|
Seroprevalence of Borrelia burgdorferi sensu lato in roe deer (Capreolus capreolus) from northwestern Spain. J Zoo Wildl Med 2013; 44:660-5. [PMID: 24063094 DOI: 10.1638/2012-0240r2.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the present study, the seroprevalence of Borrelia burgdorferi sensu lato in roe deer in relation to different parameters in northwestern Spain was investigated. A total of 154 roe deer hunted between April 2007 and October 2008 from different localities of Galicia (northwest Spain) were examined. From each animal, a blood sample and all attached ticks found were collected. All the specimens for tick stages (larva, nymph, and adult) were speciated based on reference keys. Antibodies against B. burgdorferi were detected by indirect immunofluorescence (titer > or = 1:64). The percentage of roe deer seropositive for B. burgdorferi was 68.8% (106/ 154), of which 88.7% (94/106) were parasitized by ticks. Ixodes ricinus was the only species identified and was detected in 83.1% of roe deer with a mean (standard deviation [SD]) intensity of 46 +/- 47 ticks. Individual host characteristics such as age or sex did not have any effect on the prevalence of B. burgdorferi, but significant seasonal variation was observed, with higher prevalences in April-July than in August-October. Antibodies against B. burgdorferi were related to the presence of ticks. When analyzing all the factors together, the total number of ticks parasitizing roe deer was found as the most influential factor on B. burgdorferi prevalence. The results of this study have shown that roe deer in the northwest of Spain are highly exposed to B. burgdorferi and that exposure is related to the presence of I. ricinus.
Collapse
|
44
|
Detection and genetic characterization of tick-borne encephalitis virus (TBEV) derived from ticks removed from red foxes (Vulpes vulpes) and isolated from spleen samples of red deer (Cervus elaphus) in Croatia. Ticks Tick Borne Dis 2013; 5:7-13. [PMID: 24035586 DOI: 10.1016/j.ttbdis.2012.11.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 06/12/2013] [Accepted: 06/12/2013] [Indexed: 12/30/2022]
Abstract
Tick-borne encephalitis (TBE) is a growing public health concern in central and northern European countries. Even though TBE is a notifiable disease in Croatia, there is a significant lack of information in regard to vector tick identification, distribution as well as TBE virus prevalence in ticks or animals. The aim of our study was to identify and to investigate the viral prevalence of TBE virus in ticks removed from red fox (Vulpes vulpes) carcasses hunted in endemic areas in northern Croatia and to gain a better insight in the role of wild ungulates, especially red deer (Cervus elaphus) in the maintenance of the TBE virus in the natural cycle. We identified 5 tick species (Ixodes ricinus, Ixodes hexagonus, Haemaphysalis punctata, Dermacentor reticulatus, Rhipicephalus sanguineus) removed from 40 red foxes. However, TBE virus was isolated only from adult I. ricinus and I. hexagonus ticks showing a viral prevalence (1.6%) similar to or higher than reported in endemic areas of other European countries. Furthermore, 2 positive spleen samples from 182 red deer (1.1%) were found. Croatian TBE virus isolates were genetically analyzed, and they were shown to be closely related, all belonging to the European TBE virus subgroup. However, on the basis of nucleotide and amino acid sequence analysis, 2 clusters were identified. Our results show that further investigation is needed to understand the clustering of isolates and to identify the most common TBE virus reservoir hosts in Croatia. Sentinel surveys based on wild animal species would give a better insight in defining TBE virus-endemic and possible risk areas in Croatia.
Collapse
|
45
|
Rodríguez-Vivas RI, Ojeda-Chi MM, Rosado-Aguilar JA, Trinidad-Martínez IC, Torres-Acosta JFJ, Ticante-Perez V, Castro-Marín JM, Tapia-Moo CA, Vázquez-Gómez G. Red deer (Cervus elaphus) as a host for the cattle tick Rhipicephalus microplus (Acari: Ixodidae) in Yucatan, Mexico. EXPERIMENTAL & APPLIED ACAROLOGY 2013; 60:543-552. [PMID: 23423423 DOI: 10.1007/s10493-013-9672-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/01/2013] [Indexed: 06/01/2023]
Abstract
Rhipicephalus microplus is the most economically important cattle tick in the Mexican tropics. Wild ungulate species, including red deer (Cervus elaphus), are gaining popularity in diversified livestock ranching operations in Mexico. However, there is no information available on the susceptibility of red deer to infestation with the cattle tick, R. microplus, under hot, subhumid tropical conditions in Mexico. Biological data on R. microplus as an ectoparasite of cattle and red deer in a farm in the Mexican tropics are presented here. Ticks collected from red deer were identified as R. microplus (97 %) and Amblyomma cajennense (3 %), and tick species infesting cattle included R. microplus (95 %) and A. cajennense (5 %). Standard counts of R. microplus engorged females on red deer were 11 times higher than on cattle (428 ± 43 vs. 40 ± 18; p < 0.001). The reproductive efficiency index and larval hatching of R. microplus collected from cattle and red deer were similar (p > 0.05). Hemolymph samples of R. microplus collected from cattle were positive for Babesia spp. (10 %, 2/50) and all the samples from ticks infesting red deer were negative. Seventeen and ten percent of the blood samples from cattle and red deer were positive for Anaplasma marginale, respectively. The role of red deer as a host of R. microplus in Yucatan, Mexico and the importance of this host-parasite relationship relative to the epidemiology of R. microplus-borne diseases are discussed.
Collapse
Affiliation(s)
- R I Rodríguez-Vivas
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Km 15.5 Carretera Mérida-Xmatkuil, Mérida, Yucatán, Mexico.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Stuen S, Granquist EG, Silaghi C. Anaplasma phagocytophilum--a widespread multi-host pathogen with highly adaptive strategies. Front Cell Infect Microbiol 2013; 3:31. [PMID: 23885337 PMCID: PMC3717505 DOI: 10.3389/fcimb.2013.00031] [Citation(s) in RCA: 393] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 06/30/2013] [Indexed: 11/21/2022] Open
Abstract
The bacterium Anaplasma phagocytophilum has for decades been known to cause the disease tick-borne fever (TBF) in domestic ruminants in Ixodes ricinus-infested areas in northern Europe. In recent years, the bacterium has been found associated with Ixodes-tick species more or less worldwide on the northern hemisphere. A. phagocytophilum has a broad host range and may cause severe disease in several mammalian species, including humans. However, the clinical symptoms vary from subclinical to fatal conditions, and considerable underreporting of clinical incidents is suspected in both human and veterinary medicine. Several variants of A. phagocytophilum have been genetically characterized. Identification and stratification into phylogenetic subfamilies has been based on cell culturing, experimental infections, PCR, and sequencing techniques. However, few genome sequences have been completed so far, thus observations on biological, ecological, and pathological differences between genotypes of the bacterium, have yet to be elucidated by molecular and experimental infection studies. The natural transmission cycles of various A. phagocytophilum variants, the involvement of their respective hosts and vectors involved, in particular the zoonotic potential, have to be unraveled. A. phagocytophilum is able to persist between seasons of tick activity in several mammalian species and movement of hosts and infected ticks on migrating animals or birds may spread the bacterium. In the present review, we focus on the ecology and epidemiology of A. phagocytophilum, especially the role of wildlife in contribution to the spread and sustainability of the infection in domestic livestock and humans.
Collapse
Affiliation(s)
- Snorre Stuen
- Department of Production Animal Clinical Sciences, Norwegian School of Veterinary Science Sandnes, Norway.
| | | | | |
Collapse
|
47
|
Weidmann M, Frey S, Freire CCM, Essbauer S, Růžek D, Klempa B, Zubrikova D, Vögerl M, Pfeffer M, Hufert FT, Zanotto PM, Dobler G. Molecular phylogeography of tick-borne encephalitis virus in central Europe. J Gen Virol 2013; 94:2129-2139. [PMID: 23784447 DOI: 10.1099/vir.0.054478-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In order to obtain a better understanding of tick-borne encephalitis virus (TBEV) strain movements in central Europe the E gene sequences of 102 TBEV strains collected from 1953 to 2011 at 38 sites in the Czech Republic, Slovakia, Austria and Germany were determined. Bayesian analysis suggests a 350-year history of evolution and spread in central Europe of two main lineages, A and B. In contrast to the east to west spread at the Eurasian continent level, local central European spreading patterns suggest historic west to east spread followed by more recent east to west spread. The phylogenetic and network analyses indicate TBEV ingressions from the Czech Republic and Slovakia into Germany via landscape features (Danube river system), biogenic factors (birds, red deer) and anthropogenic factors. The identification of endemic foci showing local genetic diversity is of paramount importance to the field as these will be a prerequisite for in-depth analysis of focal TBEV maintenance and long-distance TBEV spread.
Collapse
Affiliation(s)
- Manfred Weidmann
- Department of Virology, University Medical Center, 37075 Göttingen, Germany
| | - Stefan Frey
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany
| | - Caio C M Freire
- Department of Microbiology, Biomedical Sciences Institute - ICB II University of São Paulo, 05508-000 São Paulo, Brazil
| | | | - Daniel Růžek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic.,Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic
| | - Boris Klempa
- Institute of Virology Charité University Hospital, Berlin, Germany.,Institute of Virology, Slovak Academy of Science, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Dana Zubrikova
- Institute of Parasitology, Slovak Academy of Science, Kosice, Slovakia
| | - Maria Vögerl
- Comparative Tropical Medicine and Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
| | - Frank T Hufert
- Department of Virology, University Medical Center, 37075 Göttingen, Germany
| | - Paolo M Zanotto
- Department of Microbiology, Biomedical Sciences Institute - ICB II University of São Paulo, 05508-000 São Paulo, Brazil
| | - Gerhard Dobler
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany
| |
Collapse
|
48
|
Correlation of TBE incidence with red deer and roe deer abundance in Slovenia. PLoS One 2013; 8:e66380. [PMID: 23776668 PMCID: PMC3679065 DOI: 10.1371/journal.pone.0066380] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 05/06/2013] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis (TBE) is a virus infection which sometimes causes human disease. The TBE virus is found in ticks and certain vertebrate tick hosts in restricted endemic localities termed TBE foci. The formation of natural foci is a combination of several factors: the vectors, a suitable and numerous enough number of hosts and in a habitat with suitable vegetation and climate. The present study investigated the influence of deer on the incidence of tick-borne encephalitis. We were able to obtain data from deer culls. Using this data, the abundance of deer was estimated and temporal and spatial analysis was performed. The abundance of deer has increased in the past decades, as well as the incidence of tick-borne encephalitis. Temporal analysis confirmed a correlation between red deer abundance and tick-borne encephalitis occurrence. Additionally, spatial analysis established, that in areas with high incidence of tick-borne encephalitis red deer density is higher, compared to areas with no or few human cases of tick-borne encephalitis. However, such correlation could not be confirmed between roe deer density and the incidence of tick-borne encephalitis. This is presumably due to roe deer density being above a certain threshold so that availability of tick reproduction hosts has no apparent effect on ticks' host finding and consequently may not be possible to correlate with incidence of human TBE.
Collapse
|
49
|
Detection of tick-borne pathogens in roe deer (Capreolus capreolus), in questing ticks (Ixodes ricinus), and in ticks infesting roe deer in southern Germany. Ticks Tick Borne Dis 2013; 4:320-8. [DOI: 10.1016/j.ttbdis.2013.01.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 01/09/2013] [Accepted: 01/13/2013] [Indexed: 01/20/2023]
|
50
|
Welc-Falęciak R, Werszko J, Cydzik K, Bajer A, Michalik J, Behnke JM. Co-infection and genetic diversity of tick-borne pathogens in roe deer from Poland. Vector Borne Zoonotic Dis 2013; 13:277-88. [PMID: 23473225 DOI: 10.1089/vbz.2012.1136] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Wild species are essential hosts for maintaining Ixodes ticks and the tick-borne diseases. The aim of our study was to estimate the prevalence, the rate of co-infection with Babesia, Bartonella, and Anaplasma phagocytophilum, and the molecular diversity of tick-borne pathogens in roe deer in Poland. Almost half of the tested samples provided evidence of infection with at least 1 species. A. phagocytophilum (37.3%) was the most common and Bartonella (13.4%) the rarest infection. A total of 18.3% of all positive samples from roe deer were infected with at least 2 pathogens, and one-third of those were co-infected with A. phagocytophilum, Bartonella, and Babesia species. On the basis of multilocus molecular studies we conclude that: (1) Two different genetic variants of A. phagocytophilum, zoonotic and nonzoonotic, are widely distributed in Polish roe deer population; (2) the roe deer is the host for zoonotic Babesia (Bab. venatorum, Bab. divergens), closely related or identical with strains/species found in humans; (3) our Bab. capreoli and Bab. divergens isolates differed from reported genotypes at 2 conserved base positions, i.e., positions 631 and 663; and (4) this is the first description of Bart. schoenbuchensis infections in roe deer in Poland. We present 1 of the first complex epidemiological studies on the prevalence of Babesia, Bartonella, and A. phagocytophilum in naturally infected populations of roe deer. These game animals clearly have an important role as reservoir hosts of tick-borne pathogens, but the pathogenicity and zoonotic potential of the parasite genotypes hosted by roe deer requires further detailed investigation.
Collapse
Affiliation(s)
- Renata Welc-Falęciak
- Department of Parasitology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|