1
|
Ding Y, Yu X, Zhang Z, Sun W, You J, He N, Zhou G. Self-exfoliation of cellulose nanofibrils via one-pot pseudosolvent swelling/esterification for functional pellicular materials. Carbohydr Polym 2025; 361:123623. [PMID: 40368551 DOI: 10.1016/j.carbpol.2025.123623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 05/16/2025]
Abstract
Nanocellulose, an environmentally friendly and biodegradable high-performance material, holds significant promise for diverse applications. However, its widespread commercialization is severely hindered by its high energy-intensive and low-yield production processes. Here, we present a facile method for preparing cellulose nanofibrils (CNFs) through a self-exfoliation approach using a pseudosolvent. The pseudosolvent selectively disrupted the hydrogen bonds between elementary nanofibers without causing dissolution, enhancing the reactivity of surface hydroxyl groups for subsequent modifications. By incorporating ionizable esterification groups, a rapid and low-energy self-exfoliation of CNFs was achieved. The resulting CNFs exhibited nano-size dimensions, with 440-780 nm lengths and 2.2-4.5 nm thicknesses. The CNF dispersions exhibited pH responsive behavior, enabling a controlled demulsification and facile recovery of Pickering emulsions by varying pH. Furthermore, the CNF nanomembranes displayed vibrant rainbow colors under natural light. Macroscopic membrane demonstrated a high Young's modulus of 3.8 GPa, breaking strength of 95.9 MPa, transmittance over 80 %, and haze over 90 %. Ethanol soaking endowed the films with programmable shape memory and erasable properties, paving the way for advancements in nanocellulose preparation, surface modification, and applications.
Collapse
Affiliation(s)
- Yugao Ding
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China; Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinyi Yu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhen Zhang
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.
| | - Wang Sun
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Jun You
- Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Nisha He
- Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Guofu Zhou
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
2
|
Li Q, Li W. Recent development in surface/interface friction of two-dimensional black phosphorus: A review. Adv Colloid Interface Sci 2025; 340:103464. [PMID: 40043510 DOI: 10.1016/j.cis.2025.103464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 04/15/2025]
Abstract
In 2014, with the development of synthesis and modification methods of black phosphorus (BP), single or multiple layers of BP were stripped into two-dimensional (2D) layered materials, which had great prospects in transistors, batteries, optoelectronics, friction, and lubrication fields. From this point of view, we highlight recent advances in BP research, particularly its tribology and lubrication properties. This paper introduces mainly the research progress of BP in the solid-liquid lubrication fields, and systematically expounds its friction nature from the perspective of macroscopic, microscopic, and computational tribology. Under special conditions (high load, oxidation, etc.), a long-term superlubricity performance of BP could be obtained, which far exceeded other traditional 2D lubrication materials (Gr, MoS2, etc.). There were obvious deficiencies and misunderstandings about the macroscopic and microscopic superlubricity mechanism of BP lubricant, due to the complex and diversified frictional interfaces. The superlubricity mechanism of BP was roughly attributed to the multi-factor coupling or synergistic action in macroscopic, and it was still an open question whether there was secondary transition or contact area difference of the friction interface in microscopic. We believe that these deficiencies and misunderstandings are more ascribed to the lack of research on the interface transition behavior and mechanism during BP friction. We analyze and summarize the challenges and limitations in understanding BP's superlubricity mechanism based on macroscopic and microscopic experiments in the current BP friction research. Finally, we propose a computational tribology-based approach to reconcile discrepancies between macro- and micro-scale experiments.
Collapse
Affiliation(s)
- Qiang Li
- Mechanical and Electrical Engineering Department, Lingnan Normal University, Zhanjiang 524048, China
| | - Wei Li
- Mechanical and Electrical Engineering Department, Lingnan Normal University, Zhanjiang 524048, China.
| |
Collapse
|
3
|
Sims CM, Killgore JP, Mansfield E, Downing JR, de Moraes ACM, Hersam MC, Fagan JA. Analytical Ultracentrifugation Characterization of Differential Sedimentation Size-Separated Graphene Dispersions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410459. [PMID: 40214718 DOI: 10.1002/smll.202410459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/14/2025] [Indexed: 05/20/2025]
Abstract
Analytical ultracentrifugation (AUC) is applied to the characterization of as-dispersed graphene nanoplatelet dispersions and differential sedimentation separated daughter dispersions. The liquid-phase characterization of AUC is demonstrated to resolve both the broad sedimentation coefficient distributions of as-dispersed samples and changes in daughter dispersions determined by a protocol of applied differential sedimentation process steps. Comparison is made to measurements on deposited samples by scanning electron microscopy and atomic force microscopy. The value of AUC to rapidly monitor changes in the sedimentation distribution of each particle population is demonstrated to allow tailoring of the differential sedimentation protocol to produce significantly narrower population distributions. This rapid characterization is particularly important for technologies in which dispersed nanoparticles cannot be removed from a solvent solution for microscopy analysis.
Collapse
Affiliation(s)
- Christopher M Sims
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Jason P Killgore
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO, 80305, USA
| | - Elisabeth Mansfield
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO, 80305, USA
| | - Julia R Downing
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Ana C M de Moraes
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Jeffrey A Fagan
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| |
Collapse
|
4
|
Hadke S, Kang MA, Sangwan VK, Hersam MC. Two-Dimensional Materials for Brain-Inspired Computing Hardware. Chem Rev 2025; 125:835-932. [PMID: 39745782 DOI: 10.1021/acs.chemrev.4c00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Recent breakthroughs in brain-inspired computing promise to address a wide range of problems from security to healthcare. However, the current strategy of implementing artificial intelligence algorithms using conventional silicon hardware is leading to unsustainable energy consumption. Neuromorphic hardware based on electronic devices mimicking biological systems is emerging as a low-energy alternative, although further progress requires materials that can mimic biological function while maintaining scalability and speed. As a result of their diverse unique properties, atomically thin two-dimensional (2D) materials are promising building blocks for next-generation electronics including nonvolatile memory, in-memory and neuromorphic computing, and flexible edge-computing systems. Furthermore, 2D materials achieve biorealistic synaptic and neuronal responses that extend beyond conventional logic and memory systems. Here, we provide a comprehensive review of the growth, fabrication, and integration of 2D materials and van der Waals heterojunctions for neuromorphic electronic and optoelectronic devices, circuits, and systems. For each case, the relationship between physical properties and device responses is emphasized followed by a critical comparison of technologies for different applications. We conclude with a forward-looking perspective on the key remaining challenges and opportunities for neuromorphic applications that leverage the fundamental properties of 2D materials and heterojunctions.
Collapse
Affiliation(s)
- Shreyash Hadke
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Min-A Kang
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Vinod K Sangwan
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
5
|
Szydlowska B, Ding Y, Moore C, Cai Z, Torres-Castanedo CG, Collins CP, Jones E, Hersam MC, Sun C, Ameer GA. Polydiolcitrate-MoS 2 Composite for 3D Printing Radio-Opaque, Bioresorbable Vascular Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45422-45432. [PMID: 39102678 PMCID: PMC11368090 DOI: 10.1021/acsami.4c07364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/07/2024]
Abstract
Implantable polymeric biodegradable devices, such as biodegradable vascular scaffolds, cannot be fully visualized using standard X-ray-based techniques, compromising their performance due to malposition after deployment. To address this challenge, we describe a new radiopaque and photocurable liquid polymer-ceramic composite (mPDC-MoS2) consisting of methacrylated poly(1,12 dodecamethylene citrate) (mPDC) and molybdenum disulfide (MoS2) nanosheets. The composite was used as an ink with microcontinuous liquid interface production (μCLIP) to fabricate bioresorbable vascular scaffolds (BVS). Prints exhibited excellent crimping and expansion mechanics without strut failures and, importantly, with X-ray visibility in air and muscle tissue. Notably, MoS2 nanosheets displayed physical degradation over time in phosphate-buffered saline solution, suggesting the potential for producing radiopaque, fully bioresorbable devices. mPDC-MoS2 is a promising bioresorbable X-ray-visible composite material suitable for 3D printing medical devices, such as vascular scaffolds, that require noninvasive X-ray-based monitoring techniques for implantation and evaluation. This innovative biomaterial composite system holds significant promise for the development of biocompatible, fluoroscopically visible medical implants, potentially enhancing patient outcomes and reducing medical complications.
Collapse
Affiliation(s)
- Beata
M. Szydlowska
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
- Center
for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, Illinois 60208, United States
| | - Yonghui Ding
- Center
for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, Illinois 60208, United States
- Department
of Biomedical Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Connor Moore
- Center
for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, Illinois 60208, United States
| | - Zizhen Cai
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Carlos G. Torres-Castanedo
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Caralyn P. Collins
- Center
for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, Illinois 60208, United States
- Department
of Mechanical Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Evan Jones
- Center
for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, Illinois 60208, United States
- Department
of Mechanical Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Mark C. Hersam
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
- Center
for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, Illinois 60208, United States
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Cheng Sun
- Center
for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, Illinois 60208, United States
- Department
of Mechanical Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Guillermo A. Ameer
- Center
for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, Illinois 60208, United States
- Department
of Biomedical Engineering, Northwestern
University, Evanston, Illinois 60208, United States
- Department
of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Simpson
Querrey Institute, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
for Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- International
Institute for Nanotechnology, Northwestern
University, Evanston, Illinois 60208, United States
| |
Collapse
|
6
|
Li D, Wei H, Hong R, Yue X, Dong L, Fan K, Yu J, Yao D, Xu H, Lu J, Wang G. WS 2 nanosheets-based electrochemical biosensor for highly sensitive detection of tumor marker miRNA-4484. Talanta 2024; 274:125965. [PMID: 38552480 DOI: 10.1016/j.talanta.2024.125965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 05/04/2024]
Abstract
In this paper, a few-layer WS2 nanosheets-based electrochemical biosensor was fabricated for the highly sensitive detection of breast cancer tumor marker miRNA-4484. Firstly, few-layer WS2 nanosheets were prepared by shear stripping and characterized by SEM, TEM, AFM and UV spectrophotometer. After modification of few-layer WS2 nanosheets on the electrode surface, the miRNA probe was fixed on the few-layer WS2 nanosheets by polycytosine (PolyC). Then short-chain miRNA containing PolyC was used as the blocking agent to close the excess active sites on the surface of WS2 nanosheets to complete the fabrication of the sensor biosensing interface. Finally, the current changes caused by the specific binding of miRNA-4484 to the probe were analyzed by differential pulse voltammetry (DPV). The results showed that the sensor had a good linear relationship for the detection of miRNA-4484 in the concentration range of 1 aM-100 fM, and the detection limit was as low as 1.61 aM. In addition, the electrochemical sensor had excellent selectivity, stability and reproducibility. The artificial sample tests indicated that the developed biosensors have the potential for clinical application in the future.
Collapse
Affiliation(s)
- Dujuan Li
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou, 310018, China; School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Huyue Wei
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou, 310018, China; School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Rui Hong
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Xiaojie Yue
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Linxi Dong
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Kai Fan
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Jing Yu
- Zhejiang Key Laboratory of Ecological and Environmental Big Data, Hangzhou, 321001, China
| | - Defei Yao
- Zhejiang Key Laboratory of Ecological and Environmental Big Data, Hangzhou, 321001, China
| | - Hong Xu
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Jun Lu
- Auckland Bioengineering Institute, University of Auckland, Auckland, 1142, New Zealand
| | - Gaofeng Wang
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou, 310018, China; School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China.
| |
Collapse
|
7
|
Dai Y, He Q, Huang Y, Duan X, Lin Z. Solution-Processable and Printable Two-Dimensional Transition Metal Dichalcogenide Inks. Chem Rev 2024; 124:5795-5845. [PMID: 38639932 DOI: 10.1021/acs.chemrev.3c00791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) with layered crystal structures have been attracting enormous research interest for their atomic thickness, mechanical flexibility, and excellent electronic/optoelectronic properties for applications in diverse technological areas. Solution-processable 2D TMD inks are promising for large-scale production of functional thin films at an affordable cost, using high-throughput solution-based processing techniques such as printing and roll-to-roll fabrications. This paper provides a comprehensive review of the chemical synthesis of solution-processable and printable 2D TMD ink materials and the subsequent assembly into thin films for diverse applications. We start with the chemical principles and protocols of various synthesis methods for 2D TMD nanosheet crystals in the solution phase. The solution-based techniques for depositing ink materials into solid-state thin films are discussed. Then, we review the applications of these solution-processable thin films in diverse technological areas including electronics, optoelectronics, and others. To conclude, a summary of the key scientific/technical challenges and future research opportunities of solution-processable TMD inks is provided.
Collapse
Affiliation(s)
- Yongping Dai
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 99907, China
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Zhaoyang Lin
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Zhao M, Casiraghi C, Parvez K. Electrochemical exfoliation of 2D materials beyond graphene. Chem Soc Rev 2024; 53:3036-3064. [PMID: 38362717 DOI: 10.1039/d3cs00815k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
After the discovery of graphene in 2004, the field of atomically thin crystals has exploded with the discovery of thousands of 2-dimensional materials (2DMs) with unique electronic and optical properties, by making them very attractive for a broad range of applications, from electronics to energy storage and harvesting, and from sensing to biomedical applications. In order to integrate 2DMs into practical applications, it is crucial to develop mass scalable techniques providing crystals of high quality and in large yield. Electrochemical exfoliation is one of the most promising methods for producing 2DMs, as it enables quick and large-scale production of solution processable nanosheets with a thickness well below 10 layers and lateral size above 1 μm. Originally, this technique was developed for the production of graphene; however, in the last few years, this approach has been successfully extended to other 2DMs, such as transition metal dichalcogenides, black phosphorous, hexagonal boron nitride, MXenes and many other emerging 2D materials. This review first provides an introduction to the fundamentals of electrochemical exfoliation and then it discusses the production of each class of 2DMs, by introducing their properties and giving examples of applications. Finally, a summary and perspective are given to address some of the challenges in this research area.
Collapse
Affiliation(s)
- Minghao Zhao
- Department of Chemistry, University of Manchester, M13 9PL Manchester, UK.
| | - Cinzia Casiraghi
- Department of Chemistry, University of Manchester, M13 9PL Manchester, UK.
| | - Khaled Parvez
- Department of Chemistry, University of Manchester, M13 9PL Manchester, UK.
| |
Collapse
|
9
|
Peng Z, Grillo A, Pelella A, Liu X, Boyes M, Xiao X, Zhao M, Wang J, Hu Z, Di Bartolomeo A, Casiraghi C. Fully printed memristors made with MoS 2 and graphene water-based inks. MATERIALS HORIZONS 2024; 11:1344-1353. [PMID: 38180062 DOI: 10.1039/d3mh01224g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
2-Dimensional materials (2DMs) offer an attractive solution for the realization of high density and reliable memristors, compatible with printed and flexible electronics. In this work we fabricate a fully inkjet printed MoS2-based resistive switching memory, where graphene is used as top electrode and silver is used as bottom electrode. Memristic effects are observed only after annealing of each printed component. The printed memory on silicon shows low SET/RESET voltage, short switching times (less than 0.1 s) and resistance switching ratios of 103-105, comparable or superior to the performance obtained in devices with both printed silver electrodes on rigid substrates. The same device on Kapton shows resistance switching ratios of 102-103 and remains stable at least up to 2% of strain. The memristor resistance switching is attributed to the formation of Ag conductive filaments, which can be suppressed by integrating graphene grown by chemical vapour deposition (CVD) onto the silver electrode. Temperature-dependent electrical measurements starting from 200 K show that memristic behavior appears at a temperature of ∼300 K, confirming that an energy threshold is needed to form the conductive filament. This work shows that inkjet printing is a very powerful technique for the fabrication of 2DMs-based resistive switches onto rigid and flexible substrates.
Collapse
Affiliation(s)
- Zixing Peng
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, UK.
| | - Alessandro Grillo
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, UK.
| | - Aniello Pelella
- Physics Department "E. R. Caianiello", University of Salerno, via Giovanni Paolo II n. 132, Fisciano, 84084, Salerno, Italy
| | - Xuzhao Liu
- Department of Materials, University of Manchester, Oxford Road, Manchester, UK
- Photon Science Institute, University of Manchester, Oxford Road, Manchester, UK
| | - Matthew Boyes
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, UK.
| | - Xiaoyu Xiao
- Department of Electrical and Electronics, University of Manchester, Oxford Road, Manchester, UK
| | - Minghao Zhao
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, UK.
| | - Jingjing Wang
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, UK.
| | - Zhirun Hu
- Department of Electrical and Electronics, University of Manchester, Oxford Road, Manchester, UK
| | - Antonio Di Bartolomeo
- Physics Department "E. R. Caianiello", University of Salerno, via Giovanni Paolo II n. 132, Fisciano, 84084, Salerno, Italy
| | - Cinzia Casiraghi
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, UK.
| |
Collapse
|
10
|
Beura SK, Panigrahi AR, Yadav P, Palacio I, Casero E, Quintana C, Singh J, Singh MK, Martín Gago JA, Singh SK. Harnessing two-dimensional nanomaterials for diagnosis and therapy in neurodegenerative diseases: Advances, challenges and prospects. Ageing Res Rev 2024; 94:102205. [PMID: 38272267 DOI: 10.1016/j.arr.2024.102205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/07/2023] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Neurodegenerative diseases (NDDs) are specific brain disorders characterized by the progressive deterioration of different motor activities as well as several cognitive functions. Current conventional therapeutic options for NDDs are limited in addressing underlying causes, delivering drugs to specific neuronal targets, and promoting tissue repair following brain injury. Due to the paucity of plausible theranostic options for NDDs, nanobiotechnology has emerged as a promising field, offering an interdisciplinary approach to create nanomaterials with high diagnostic and therapeutic efficacy for these diseases. Recently, two-dimensional nanomaterials (2D-NMs) have gained significant attention in biomedical and pharmaceutical applications due to their precise drug-loading capabilities, controlled release mechanisms, enhanced stability, improved biodegradability, and reduced cell toxicity. Although various studies have explored the diagnostic and therapeutic potential of different nanomaterials in NDDs, there is a lack of comprehensive review addressing the theranostic applications of 2D-NMs in these neuronal disorders. Therefore, this concise review aims to provide a state-of-the-art understanding of the need for these ultrathin 2D-NMs and their potential applications in biosensing and bioimaging, targeted drug delivery, tissue engineering, and regenerative medicine for NDDs.
Collapse
Affiliation(s)
- Samir Kumar Beura
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | | | - Pooja Yadav
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Irene Palacio
- Instituto de Ciencia de Materiales de Madrid (CSIC). c/ Sor Juana Inés de la Cruz 3. Campus de Excelencia de la Universidad Autónoma de Madrid, 28049, Spain
| | - Elena Casero
- Departamento de Química Analítica y Análisis Instrumental. Facultad de Ciencias. Universidad Autónoma de Madrid. c/ Francisco Tomás y Valiente, Nº 7. Campus de Excelencia de la Universidad Autónoma de Madrid, 28049, Spain
| | - Carmen Quintana
- Departamento de Química Analítica y Análisis Instrumental. Facultad de Ciencias. Universidad Autónoma de Madrid. c/ Francisco Tomás y Valiente, Nº 7. Campus de Excelencia de la Universidad Autónoma de Madrid, 28049, Spain
| | - Jyoti Singh
- Department of Applied Agriculture, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Manoj Kumar Singh
- Department of Physics, School of Engineering and Technology, Central University of Haryana, Jant-Pali, Mahendragarh, Haryana 123031, India
| | - Jose A Martín Gago
- Instituto de Ciencia de Materiales de Madrid (CSIC). c/ Sor Juana Inés de la Cruz 3. Campus de Excelencia de la Universidad Autónoma de Madrid, 28049, Spain.
| | - Sunil Kumar Singh
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India.
| |
Collapse
|
11
|
Abotaleb A, Al-Masri D, Alkhateb A, Mroue K, Zekri A, Mashhour Y, Sinopoli A. Assessing the effect of acid and alkali treatment on a halloysite-based catalyst for dry reforming of methane. RSC Adv 2024; 14:4788-4803. [PMID: 38318606 PMCID: PMC10840390 DOI: 10.1039/d3ra07990b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Dry reforming of methane (DRM) has recently received wide attention owing to its outstanding performance in the reduction and conversion of CH4 and CO2 to syngas (H2 and CO). From an industrial perspective, nickel (Ni)-supported catalysts have been deemed among the most suitable catalysts for DRM owing to their low cost and high activity compared to noble metals. However, a downside of nickel catalysts is their high susceptibility to deactivation due to coke formation and sintering at high temperatures. Using appropriate supports and preparation methods plays a major role in improving the activity and stability of Ni-supported catalysts. Halloysite nanotubes (HNTs) are largely utilized in catalysis as a support for Ni owing to their abundance, low cost, and ease of preparation. The treatment of HNTs (chemical or physical) prior to doping with Ni is considered a suitable method for increasing the overall performance of the catalyst. In this study, the surface of HNTs was activated with acids (HNO3 and H2SO4) and alkalis (NaOH and Na2CO3 + NaNO3) prior to Ni doping to assess the effects of support treatment on the stability, activity, and longevity of the catalyst. Nickel catalysts on raw HNT, acid-treated HNT, and alkali-treated HNT supports were prepared via wet impregnation. A detailed characterization of the catalysts was conducted using X-ray diffraction (XRD), BET surface area analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), solid-state nuclear magnetic resonance (ssNMR), H2-temperature programmed reduction, (H2-TPR), CO2-temperature programmed desorption (CO2-TPD), and Ni-dispersion via H2-pulse chemisorption. Our results reveal a clear alteration in the structure of HNTs after treatment, while elemental mapping shows a uniform distribution of Ni throughout all the different supports. Moreover, the supports treated with a molten salt method resulted in the overall highest CO2 and CH4 conversion among the studied catalysts and exhibited high stability over 24 hours testing.
Collapse
Affiliation(s)
- Ahmed Abotaleb
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University P.O. Box 34110 Doha Qatar
| | - Dema Al-Masri
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University P.O. Box 34110 Doha Qatar
- Earthna Center for a Sustainable Future, Qatar Foundation Doha Qatar
| | - Alaa Alkhateb
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University P.O. Box 34110 Doha Qatar
| | - Kamal Mroue
- HBKU Core Labs, Hamad Bin Khalifa University P.O. Box 34110 Doha Qatar
| | - Atef Zekri
- HBKU Core Labs, Hamad Bin Khalifa University P.O. Box 34110 Doha Qatar
| | - Yasmin Mashhour
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University Doha P.O. Box 2713 Qatar
| | - Alessandro Sinopoli
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University P.O. Box 34110 Doha Qatar
| |
Collapse
|
12
|
Kim J, Rhee D, Jung M, Cheon GJ, Kim K, Kim JH, Park JY, Yoon J, Lim DU, Cho JH, Kim IS, Son D, Jariwala D, Kang J. Defect-Engineered Semiconducting van der Waals Thin Film at Metal-Semiconductor Interface of Field-Effect Transistors. ACS NANO 2024; 18:1073-1083. [PMID: 38100089 DOI: 10.1021/acsnano.3c10453] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The significance of metal-semiconductor interfaces and their impact on electronic device performance have gained increasing attention, with a particular focus on investigating the contact metal. However, another avenue of exploration involves substituting the contact metal at the metal-semiconductor interface of field-effect transistors with semiconducting layers to introduce additional functionalities to the devices. Here, a scalable approach for fabricating metal-oxide-semiconductor (channel)-semiconductor (interfacial layer) field-effect transistors is proposed by utilizing solution-processed semiconductors, specifically semiconducting single-walled carbon nanotubes and molybdenum disulfide, as the channel and interfacial semiconducting layers, respectively. The work function of the interfacial MoS2 is modulated by controlling the sulfur vacancy concentration through chemical treatment, which results in distinctive energy band alignments within a single device configuration. The resulting band alignments lead to multiple functionalities, including multivalued transistor characteristics and multibit nonvolatile memory (NVM) behavior. Moreover, leveraging the stable NVM properties, we demonstrate artificial synaptic devices with 88.9% accuracy of MNIST image recognition.
Collapse
Affiliation(s)
- Jihyun Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Dongjoon Rhee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Myeongjin Jung
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Gang Jin Cheon
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Kangsan Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jae Hyung Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Ji Yun Park
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jiyong Yoon
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Dong Un Lim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - In Soo Kim
- Nanophotonics Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Donghee Son
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Nanophotonics Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joohoon Kang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Nanophotonics Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
13
|
Liao L, Kovalska E, Regner J, Song Q, Sofer Z. Two-Dimensional Van Der Waals Thin Film and Device. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303638. [PMID: 37731156 DOI: 10.1002/smll.202303638] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/07/2023] [Indexed: 09/22/2023]
Abstract
In the rapidly evolving field of thin-film electronics, the emergence of large-area flexible and wearable devices has been a significant milestone. Although organic semiconductor thin films, which can be manufactured through solution processing, have been identified, their utility is often undermined by their poor stability and low carrier mobility under ambient conditions. However, inorganic nanomaterials can be solution-processed and demonstrate outstanding intrinsic properties and structural stability. In particular, a series of two-dimensional (2D) nanosheet/nanoparticle materials have been shown to form stable colloids in their respective solvents. However, the integration of these 2D nanomaterials into continuous large-area thin with precise control of layer thickness and lattice orientation still remains a significant challenge. This review paper undertakes a detailed analysis of van der Waals thin films, derived from 2D materials, in the advancement of thin-film electronics and optoelectronic devices. The superior intrinsic properties and structural stability of inorganic nanomaterials are highlighted, which can be solution-processed and underscor the importance of solution-based processing, establishing it as a cornerstone strategy for scalable electronic and optoelectronic applications. A comprehensive exploration of the challenges and opportunities associated with the utilization of 2D materials for the next generation of thin-film electronics and optoelectronic devices is presented.
Collapse
Affiliation(s)
- Liping Liao
- Department of Inorganic Chemistry, University of Chemistry and Technology, Technicka 5, Prague, 166 28, Czech Republic
| | - Evgeniya Kovalska
- Faculty of Environment, Science and Economy, Department of Engineering, Exeter, EX4 4QF, UK
| | - Jakub Regner
- Department of Inorganic Chemistry, University of Chemistry and Technology, Technicka 5, Prague, 166 28, Czech Republic
| | - Qunliang Song
- School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology, Technicka 5, Prague, 166 28, Czech Republic
| |
Collapse
|
14
|
Szydlowska BM, Ding Y, Moore C, Cai Z, Torres-Castanedo CG, Jones E, Hersam MC, Sun C, Ameer GA. A polydiolcitrate-MoS 2 composite for 3D printing Radio-opaque, Bioresorbable Vascular Scaffolds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564364. [PMID: 37961681 PMCID: PMC10634906 DOI: 10.1101/2023.10.27.564364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Implantable polymeric biodegradable devices, such as biodegradable vascular stents or scaffolds, cannot be fully visualized using standard X-ray-based techniques, compromising their performance due to malposition after deployment. To address this challenge, we describe composites of methacrylated poly(1,12 dodecamethylene citrate) (mPDC) and MoS2 nanosheets to fabricate novel X-ray visible radiopaque and photocurable liquid polymer-ceramic composite (mPDC-MoS2). The composite was used as an ink with micro continuous liquid interface production (μCLIP) to fabricate bioresorbable vascular scaffolds (BVS). Prints exhibited excellent crimping and expansion mechanics without strut failures and, importantly, required X-ray visibility in air and muscle tissue. Notably, MoS2 nanosheets displayed physical degradation over time in a PBS environment, indicating the potential for producing bioresorbable devices. mPDC-MoS2 is a promising bioresorbable X-ray-visible composite material suitable for 3D printing medical devices, particularly vascular scaffolds or stents, that require non-invasive X-ray-based monitoring techniques for implantation and evaluation. This innovative composite system holds significant promise for the development of biocompatible and highly visible medical implants, potentially enhancing patient outcomes and reducing medical complications.
Collapse
Affiliation(s)
- Beata M. Szydlowska
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Yonghui Ding
- Center for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Connor Moore
- Center for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, IL 60208, USA
| | - Zizhen Cai
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | | | - Evan Jones
- Center for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Mark C. Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Cheng Sun
- Center for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Guillermo A. Ameer
- Center for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Simpson Querrey Institute, Northwestern University, Evanston, IL 60208, USA
- Chemistry for Life Processes Institute, Northwestern University, IL, 60208, USA
- International Institute for Nanotechnology, Northwestern University, IL, 60208, USA
| |
Collapse
|
15
|
Han JH, Seok SH, Jin YH, Park J, Lee Y, Yeo HU, Back JH, Sim Y, Chae Y, Wang J, Oh GY, Lee W, Park SH, Bang IC, Kim JH, Kwon SY. Robust 2D layered MXene matrix-boron carbide hybrid films for neutron radiation shielding. Nat Commun 2023; 14:6957. [PMID: 37907547 PMCID: PMC10618517 DOI: 10.1038/s41467-023-42670-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023] Open
Abstract
Large-scale fabrication of neutron-shielding films with flexible or complex shapes is challenging. Uniform and high boron carbide (B4C) filler loads with sufficient workability are needed to achieve good neutron-absorption capacity. Here, we show that a two-dimensional (2D) Ti3C2Tx MXene hybrid film with homogeneously distributed B4C particles exhibits high mechanical flexibility and anomalous neutron-shielding properties. Layered and solution-processable 2D Ti3C2Tx MXene flakes serve as an ideal robust and flexible matrix for high-content B4C fillers (60 wt.%). In addition, the preparation of a scalable neutron shielding MXene/B4C hybrid paint is demonstrated. This composite can be directly integrated with various large-scale surfaces (e.g., stainless steel, glass, and nylon). Because of their low thickness, simple and scalable preparation method, and an absorption capacity of 39.8% for neutrons emitted from a 241Am-9Be source, the 2D Ti3C2Tx MXene hybrid films are promising candidates for use in wearable and lightweight applications.
Collapse
Affiliation(s)
- Ju-Hyoung Han
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Shi-Hyun Seok
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Young Ho Jin
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jaeeun Park
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yunju Lee
- Department of Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Haeng Un Yeo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jong-Ho Back
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
| | - Yeoseon Sim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yujin Chae
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jaewon Wang
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Geum-Yoon Oh
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), Jeju, 63243, Republic of Korea
| | - Wonjoo Lee
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
| | - Sung Hyun Park
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), Jeju, 63243, Republic of Korea
| | - In-Cheol Bang
- Department of Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ji Hyun Kim
- Department of Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Soon-Yong Kwon
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
16
|
Rangnekar SV, Sangwan VK, Jin M, Khalaj M, Szydłowska BM, Dasgupta A, Kuo L, Kurtz HE, Marks TJ, Hersam MC. Electroluminescence from Megasonically Solution-Processed MoS 2 Nanosheet Films. ACS NANO 2023; 17:17516-17526. [PMID: 37606956 DOI: 10.1021/acsnano.3c06034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Due to their superior optoelectronic properties, monolayer two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted significant attention for electroluminescent devices. However, challenges in isolating optoelectronically active TMD monolayers using scalable liquid phase exfoliation have precluded electroluminescence in large-area, solution-processed TMD films. Here, we overcome these limitations and demonstrate electroluminescence from molybdenum disulfide (MoS2) nanosheet films by employing a monolayer-rich MoS2 ink produced by electrochemical intercalation and megasonic exfoliation. Characteristic monolayer MoS2 photoluminescence and electroluminescence spectral peaks at 1.88-1.90 eV are observed in megasonicated MoS2 films, with the emission intensity increasing with film thickness over the range 10-70 nm. Furthermore, employing a vertical light-emitting capacitor architecture enables uniform electroluminescence in large-area devices. These results indicate that megasonically exfoliated MoS2 monolayers retain their direct bandgap character in electrically percolating thin films even following multistep solution processing. Overall, this work establishes megasonicated MoS2 inks as an additive manufacturing platform for flexible, patterned, and miniaturized light sources that can likely be expanded to other TMD semiconductors.
Collapse
Affiliation(s)
- Sonal V Rangnekar
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Vinod K Sangwan
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Mengru Jin
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Maryam Khalaj
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Beata M Szydłowska
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Anushka Dasgupta
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Lidia Kuo
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Heather E Kurtz
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Tobin J Marks
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
17
|
Zheng W, Zhang Y, Gao M, Qiu M. Emerging 2D pnictogens: a novel multifunctional photonic nanoplatform for cutting-edge precision treatment. Chem Commun (Camb) 2023; 59:10205-10225. [PMID: 37555438 DOI: 10.1039/d3cc02624h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The elements of the pnictogen group, known as the 15th (VA) family in the periodic table, including phosphorus (P), arsenic (As), antimony (Sb) and bismuth (Bi), have been widely used by alchemists to treat various diseases since ancient times and hold a pivotal position in the history of medicine, owing to their diverse pharmacological activities. Recently, with the development of modern nanotechnology, pnictogen group elements appear in a more innovative form, namely two-dimensional (2D) pnictogens (i.e. phosphorene, arsenene, and bismuthene) with a unique layered crystal structure and extraordinary optoelectronic characteristics, which endow them with significant superiority as a novel multifunctional photonic nanoplatform for cutting-edge precision treatment of various diseases. The puckered layer structure with ultralarge surface area make them ideal drug and gene delivery vectors that can avoid degradation and reduce target effects. The anisotropic morphology allows their easier internalization by cells and may improve gene transfection efficiency. Tunable optoelectronic characteristics endow them with excellent phototherapy performance as well as the ability to act as an optical switch to initiate subsequent therapeutic events. This review provides a brief overview of the properties, preparation and surface modifications of 2D pnictogens, and then focuses on its applications in cutting-edge precision treatment as a novel multifunctional photonic nanoplatform, such as phototherapy, photonic medicine, photo-adjuvant immunotherapy and photo-assisted gene therapy. Finally, the challenges and future development trends for 2D pnictogens are provided. With a focus on 2D pnictogen-based multifunctional photonic nanoplatforms, this review may also provide profound insights for the next generation innovative precision therapy.
Collapse
Affiliation(s)
- Wenjing Zheng
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China.
| | - Yifan Zhang
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China.
| | - Ming Gao
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China.
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China.
| |
Collapse
|
18
|
Synnatschke K, Moses Badlyan N, Wrzesińska A, Lozano Onrubia G, Hansen AL, Wolff S, Tornatzky H, Bensch W, Vaynzof Y, Maultzsch J, Backes C. Sonication-assisted liquid phase exfoliation of two-dimensional CrTe 3 under inert conditions. ULTRASONICS SONOCHEMISTRY 2023; 98:106528. [PMID: 37506508 PMCID: PMC10407284 DOI: 10.1016/j.ultsonch.2023.106528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Liquid phase exfoliation (LPE) has been used for the successful fabrication of nanosheets from a large number of van der Waals materials. While this allows to study fundamental changes of material properties' associated with reduced dimensions, it also changes the chemistry of many materials due to a significant increase of the effective surface area, often accompanied with enhanced reactivity and accelerated oxidation. To prevent material decomposition, LPE and processing in inert atmosphere have been developed, which enables the preparation of pristine nanomaterials, and to systematically study compositional changes over time for different storage conditions. Here, we demonstrate the inert exfoliation of the oxidation-sensitive van der Waals crystal, CrTe3. The pristine nanomaterial was purified and size-selected by centrifugation, nanosheet dimensions in the fractions quantified by atomic force microscopy and studied by Raman, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX) and photo spectroscopic measurements. We find a dependence of the relative intensities of the CrTe3 Raman modes on the propagation direction of the incident light, which prevents a correlation of the Raman spectral profile to the nanosheet dimensions. XPS and EDX reveal that the contribution of surface oxides to the spectra is reduced after exfoliation compared to the bulk material. Further, the decomposition mechanism of the nanosheets was studied by time-dependent extinction measurements after water titration experiments to initially dry solvents, which suggest that water plays a significant role in the material decomposition.
Collapse
Affiliation(s)
- Kevin Synnatschke
- Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany; School of Physics, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Narine Moses Badlyan
- Institute for Solid-State Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany; Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7, 91058 Erlangen, Germany
| | - Angelika Wrzesińska
- Chair for Emerging Electronic Technologies, TU Dresden, Nöthnitzer Str. 61, Dresden, 01187 Sachsen, Germany; Leibniz-Institute for Solid State and Materials Research Dresden, Helmholtzstraße 20, Dresden 01069, Sachsen, Germany
| | - Guillermo Lozano Onrubia
- Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Anna-Lena Hansen
- Institute for Applied Materials-Energy Storage Systems (IAM-ESS), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein, Germany; Institute of Inorganic Chemistry, University of Kiel, Max-Eyth-Straße 2, 24118 Kiel, Germany
| | - Stefan Wolff
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7, 91058 Erlangen, Germany
| | - Hans Tornatzky
- Institute for Solid-State Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany; Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V, Hausvogteiplatz 5-7, 10117 Berlin, Germany
| | - Wolfgang Bensch
- Institute of Inorganic Chemistry, University of Kiel, Max-Eyth-Straße 2, 24118 Kiel, Germany
| | - Yana Vaynzof
- Chair for Emerging Electronic Technologies, TU Dresden, Nöthnitzer Str. 61, Dresden, 01187 Sachsen, Germany; Leibniz-Institute for Solid State and Materials Research Dresden, Helmholtzstraße 20, Dresden 01069, Sachsen, Germany
| | - Janina Maultzsch
- Institute for Solid-State Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany; Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7, 91058 Erlangen, Germany
| | - Claudia Backes
- Chair of Physical Chemistry of Nanomaterials, University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany.
| |
Collapse
|
19
|
Buzio R, Gerbi A, Bernini C, Repetto L, Silva A, Vanossi A. Dissipation Mechanisms and Superlubricity in Solid Lubrication by Wet-Transferred Solution-Processed Graphene Flakes: Implications for Micro Electromechanical Devices. ACS APPLIED NANO MATERIALS 2023; 6:11443-11454. [PMID: 37469503 PMCID: PMC10352959 DOI: 10.1021/acsanm.3c01477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/30/2023] [Indexed: 07/21/2023]
Abstract
Solution-processed few-layer graphene flakes, dispensed to rotating and sliding contacts via liquid dispersions, are gaining increasing attention as friction modifiers to achieve low friction and wear at technologically relevant interfaces. Vanishing friction states, i.e., superlubricity, have been documented for nearly-ideal nanoscale contacts lubricated by individual graphene flakes. However, there is no clear understanding if superlubricity might persist for larger and morphologically disordered contacts, as those typically obtained by incorporating wet-transferred solution-processed flakes into realistic microscale contact junctions. In this study, we address the friction performance of solution-processed graphene flakes by means of colloidal probe atomic force microscopy. We use a state-of-the-art additive-free aqueous dispersion to coat micrometric silica beads, which are then sled under ambient conditions against prototypical material substrates, namely, graphite and the transition metal dichalcogenides (TMDs) MoS2 and WS2. High resolution microscopy proves that the random assembly of the wet-transferred flakes over the silica probes results into an inhomogeneous coating, formed by graphene patches that control contact mechanics through tens-of-nanometers tall protrusions. Atomic-scale friction force spectroscopy reveals that dissipation proceeds via stick-slip instabilities. Load-controlled transitions from dissipative stick-slip to superlubric continuous sliding may occur for the graphene-graphite homojunctions, whereas single- and multiple-slips dissipative dynamics characterizes the graphene-TMD heterojunctions. Systematic numerical simulations demonstrate that the thermally activated single-asperity Prandtl-Tomlinson model comprehensively describes friction experiments involving different graphene-coated colloidal probes, material substrates, and sliding regimes. Our work establishes experimental procedures and key concepts that enable mesoscale superlubricity by wet-transferred liquid-processed graphene flakes. Together with the rise of scalable material printing techniques, our findings support the use of such nanomaterials to approach superlubricity in micro electromechanical systems.
Collapse
Affiliation(s)
- Renato Buzio
- CNR-SPIN, C.so F.M. Perrone 24, Genova 16152, Italy
| | - Andrea Gerbi
- CNR-SPIN, C.so F.M. Perrone 24, Genova 16152, Italy
| | | | - Luca Repetto
- Dipartimento
di Fisica, Università degli Studi
di Genova, Via Dodecaneso 33, Genova 16146, Italy
| | - Andrea Silva
- CNR-IOM
Consiglio Nazionale delle Ricerche, Istituto Officina dei Materiali, c/o SISSA, Via Bonomea 265, Trieste 34136, Italy
- International
School for Advanced Studies (SISSA), Via Bonomea 265, Trieste 34136, Italy
| | - Andrea Vanossi
- CNR-IOM
Consiglio Nazionale delle Ricerche, Istituto Officina dei Materiali, c/o SISSA, Via Bonomea 265, Trieste 34136, Italy
- International
School for Advanced Studies (SISSA), Via Bonomea 265, Trieste 34136, Italy
| |
Collapse
|
20
|
Giri A, Park G, Jeong U. Layer-Structured Anisotropic Metal Chalcogenides: Recent Advances in Synthesis, Modulation, and Applications. Chem Rev 2023; 123:3329-3442. [PMID: 36719999 PMCID: PMC10103142 DOI: 10.1021/acs.chemrev.2c00455] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 02/01/2023]
Abstract
The unique electronic and catalytic properties emerging from low symmetry anisotropic (1D and 2D) metal chalcogenides (MCs) have generated tremendous interest for use in next generation electronics, optoelectronics, electrochemical energy storage devices, and chemical sensing devices. Despite many proof-of-concept demonstrations so far, the full potential of anisotropic chalcogenides has yet to be investigated. This article provides a comprehensive overview of the recent progress made in the synthesis, mechanistic understanding, property modulation strategies, and applications of the anisotropic chalcogenides. It begins with an introduction to the basic crystal structures, and then the unique physical and chemical properties of 1D and 2D MCs. Controlled synthetic routes for anisotropic MC crystals are summarized with example advances in the solution-phase synthesis, vapor-phase synthesis, and exfoliation. Several important approaches to modulate dimensions, phases, compositions, defects, and heterostructures of anisotropic MCs are discussed. Recent significant advances in applications are highlighted for electronics, optoelectronic devices, catalysts, batteries, supercapacitors, sensing platforms, and thermoelectric devices. The article ends with prospects for future opportunities and challenges to be addressed in the academic research and practical engineering of anisotropic MCs.
Collapse
Affiliation(s)
- Anupam Giri
- Department
of Chemistry, Faculty of Science, University
of Allahabad, Prayagraj, UP-211002, India
| | - Gyeongbae Park
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
- Functional
Materials and Components R&D Group, Korea Institute of Industrial Technology, Gwahakdanji-ro 137-41, Sacheon-myeon, Gangneung, Gangwon-do25440, Republic of Korea
| | - Unyong Jeong
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
| |
Collapse
|
21
|
Liu X, Li J, Zitolo A, Gao M, Jiang J, Geng X, Xie Q, Wu D, Zheng H, Cai X, Lu J, Jaouen F, Li R. Doped Graphene To Mimic the Bacterial NADH Oxidase for One-Step NAD + Supplementation in Mammals. J Am Chem Soc 2023; 145:3108-3120. [PMID: 36700857 DOI: 10.1021/jacs.2c12336] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD) is a critical regulator of metabolic networks, and declining levels of its oxidized form, NAD+, are closely associated with numerous diseases. While supplementing cells with precursors needed for NAD+ synthesis has shown poor efficacy in combatting NAD+ decline, an alternative strategy is the development of synthetic materials that catalyze the oxidation of NADH into NAD+, thereby taking over the natural role of the NADH oxidase (NOX) present in bacteria. Herein, we discovered that metal-nitrogen-doped graphene (MNGR) materials can catalyze the oxidation of NADH into NAD+. Among MNGR materials with different transition metals, Fe-, Co-, and Cu-NGR displayed strong catalytic activity combined with >80% conversion of NADH into NAD+, similar specificity to NOX for abstracting hydrogen from the pyridine ring of nicotinamide, and higher selectivity than 51 other nanomaterials. The NOX-like activity of FeNGR functioned well in diverse cell lines. As a proof of concept of the in vivo application, we showed that FeNGR could specifically target the liver and remedy the metabolic flux anomaly in obesity mice with NAD+-deficient cells. Overall, our study provides a distinct insight for exploration of drug candidates by design of synthetic materials to mimic the functions of unique enzymes (e.g., NOX) in bacteria.
Collapse
Affiliation(s)
- Xi Liu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou215123, China
| | - Jingkun Li
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Andrea Zitolo
- L'orme des Merisiers, Synchrotron SOLEIL, BP 48 Saint Aubin, Gif-sur-Yvette91192, France
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou215123, China
| | - Jun Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou215123, China
| | - Xiangtian Geng
- School of Public Health, Suzhou Medical College, Soochow University, Suzhou215123, China
| | - Qianqian Xie
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou215123, China
| | - Di Wu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou215123, China
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou215123, China
| | - Xiaoming Cai
- School of Public Health, Suzhou Medical College, Soochow University, Suzhou215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, China
| | - Frédéric Jaouen
- ICGM, CNRS, ENSCM, Univ. Montpellier, Montpellier34293, France
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou215123, China
| |
Collapse
|
22
|
Kamibe T, Asakura Y, Sugahara Y. Phase Transfer of Inorganic Nanosheets in a Water/2-Butanone Biphasic System and Lateral Size Fractionation via Stepwise Extractions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:820-828. [PMID: 36577084 DOI: 10.1021/acs.langmuir.2c02872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Lateral size fractionation of niobate nanosheets derived from K4Nb6O17·3H2O was achieved via phase transfer from the aqueous phase to the 2-butanone phase in a water/2-butanone biphasic system, in which tetra-n-dodecylammonium (TDDA+) bromide was used as a phase transfer reagent. Phase transfer of the nanosheets was observed when the TDDA+/[Nb6O17]4- molar ratios were 0.6 and 1.0, and the phase transfer ratios were 41 and 97%, respectively. FT-IR and thermogravimetry results showed that the extracted nanosheets contained TDDA+ ions. These results indicate that adsorption of TDDA+ likely induced an increase in the hydrophobicity of the nanosheet surface, leading to phase transfer. In the AFM image of the original nanosheets in the aqueous phase, their lateral sizes were in the range from several hundreds of nm to several tens of μm, while those of the nanosheets after phase transfer at a molar ratio of 0.6 were in the range from several hundreds of nm up to 2 μm, indicating that nanosheets with smaller lateral sizes were preferentially extracted into the 2-butanone phase. In addition, the phase transfer ratio of the fragmentated nanosheets with a much smaller lateral size distribution compared with the original nanosheets was 79% when the TDDA+/[Nb6O17]4- molar ratio was 0.6, indicating that phase transfer for the nanosheets with smaller lateral sizes proceeded efficiently. Following this extraction cycle, the nanosheets with a TDDA+/[Nb6O17]4- molar ratio of 0.6 remaining in the aqueous phase after extraction were extracted stepwise again through dilution of the aqueous phase with water and the addition of a fresh 2-butanone solution of tetra-n-dodecylammonium bromide to form a new biphasic system. The lateral sizes of the nanosheets increased as the extraction cycles were repeated. Completion of the three extraction cycles allowed formation of the three classes of the nanosheets with different lateral size ranges of 0.68 ± 0.5, 2.8 ± 1.9, and 6.6 ± 3.1 μm.
Collapse
Affiliation(s)
- Takuma Kamibe
- Department of Applied Chemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okuebo, Shinjuku-ku, Tokyo169-8555, Japan
| | - Yusuke Asakura
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo169-0051, Japan
| | - Yoshiyuki Sugahara
- Department of Applied Chemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okuebo, Shinjuku-ku, Tokyo169-8555, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo169-0051, Japan
| |
Collapse
|
23
|
Aghayar Z, Malaki M, Zhang Y. MXene-Based Ink Design for Printed Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234346. [PMID: 36500969 PMCID: PMC9736873 DOI: 10.3390/nano12234346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 05/16/2023]
Abstract
MXenes are a class of two-dimensional nanomaterials with a rich chemistry, hydrophilic surface and mechano-ceramic nature, and have been employed in a wide variety of applications ranging from medical and sensing devises to electronics, supercapacitors, electromagnetic shielding, and environmental applications, to name a few. To date, the main focus has mostly been paid to studying the chemical and physical properties of MXenes and MXene-based hybrids, while relatively less attention has been paid to the optimal application forms of these materials. It has been frequently observed that MXenes show great potential as inks when dispersed in solution. The present paper aims to comprehensively review the recent knowledge about the properties, applications and future horizon of inks based on 2D MXene sheets. In terms of the layout of the current paper, 2D MXenes have briefly been presented and followed by introducing the formulation of MXene inks, the process of turning MAX to MXene, and ink compositions and preparations. The chemical, tribological and rheological properties have been deeply discussed with an eye to the recent developments of the MXene inks in energy, health and sensing applications. The review ends with a summary of research pitfalls, challenges, and future directions in this area.
Collapse
Affiliation(s)
- Zahra Aghayar
- Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-11314, Iran
| | - Massoud Malaki
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
- Correspondence: (M.M.); (Y.Z.)
| | - Yizhou Zhang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China
- Correspondence: (M.M.); (Y.Z.)
| |
Collapse
|
24
|
Kuo L, Sangwan VK, Rangnekar SV, Chu TC, Lam D, Zhu Z, Richter LJ, Li R, Szydłowska BM, Downing JR, Luijten BJ, Lauhon LJ, Hersam MC. All-Printed Ultrahigh-Responsivity MoS 2 Nanosheet Photodetectors Enabled by Megasonic Exfoliation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203772. [PMID: 35788996 DOI: 10.1002/adma.202203772] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Printed 2D materials, derived from solution-processed inks, offer scalable and cost-effective routes to mechanically flexible optoelectronics. With micrometer-scale control and broad processing latitude, aerosol-jet printing (AJP) is of particular interest for all-printed circuits and systems. Here, AJP is utilized to achieve ultrahigh-responsivity photodetectors consisting of well-aligned, percolating networks of semiconducting MoS2 nanosheets and graphene electrodes on flexible polyimide substrates. Ultrathin (≈1.2 nm thick) and high-aspect-ratio (≈1 μm lateral size) MoS2 nanosheets are obtained by electrochemical intercalation followed by megasonic atomization during AJP, which not only aerosolizes the inks but also further exfoliates the nanosheets. The incorporation of the high-boiling-point solvent terpineol into the MoS2 ink is critical for achieving a highly aligned and flat thin-film morphology following AJP as confirmed by grazing-incidence wide-angle X-ray scattering and atomic force microscopy. Following AJP, curing is achieved with photonic annealing, which yields quasi-ohmic contacts and photoactive channels with responsivities exceeding 103 A W-1 that outperform previously reported all-printed visible-light photodetectors by over three orders of magnitude. Megasonic exfoliation coupled with properly designed AJP ink formulations enables the superlative optoelectronic properties of ultrathin MoS2 nanosheets to be preserved and exploited for the scalable additive manufacturing of mechanically flexible optoelectronics.
Collapse
Affiliation(s)
- Lidia Kuo
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Vinod K Sangwan
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Sonal V Rangnekar
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Ting-Ching Chu
- Applied Physics Graduate Program, Northwestern University, Evanston, IL, 60208, USA
| | - David Lam
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Zhehao Zhu
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Lee J Richter
- National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Beata M Szydłowska
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Julia R Downing
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Benjamin J Luijten
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Lincoln J Lauhon
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
25
|
Ingle A, Singh M, Tawfik SA, Murdoch BJ, Harrop Mayes EL, Sapountzis Spencer MJ, Ramanathan R, Bansal V. Reactive Oxygen Species Sequestration Induced Synthesis of β-PbO and Its Polymorphic Transformation to α-PbO at Atomically Thin Regimes. ACS NANO 2022; 16:10679-10691. [PMID: 35759757 DOI: 10.1021/acsnano.2c02432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The emergence of attractive properties in materials at atomically thin regimes has seen an ongoing interest in two-dimensional (2D) materials. An aspect that has lacked focused attention is the effect of 2D material thickness on its crystal structure. As several layered materials naturally exist in mixed metastable phases, it raises an important question of whether a specific polymorph of these mixed-phase materials will be favored at atomically thin limits. This work attempts to address this issue by employing lead monoxide as a model 2D polymorphic system. We propose a reactive oxygen species (ROS) sequestration-mediated liquid-phase exfoliation (LPE) strategy for the facile synthesis of ultrathin PbO. This is followed by a suite of microscopic and spectroscopic analyses of the PbO nanosheets that reveals the polymorphic transformation of orthorhombic (β) PbO to its tetragonal (α) analogue with reduction in nanosheet thickness. The transformation process reveals an interesting crystal structure of ultrathin 2D PbO where [001]-oriented domains of α-PbO coexist alongside [100]-oriented regions of β-PbO. Density functional theory (DFT) calculations support our experimental data by revealing a higher thermodynamic stability of the tetragonal phase in PbO monolayers. These findings are likely to instigate interest in carefully evaluating the crystal structures of ultrathin 2D materials while promoting research in understanding the phase transformation across a range of 2D crystals.
Collapse
Affiliation(s)
- Aviraj Ingle
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Mandeep Singh
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Sherif Abdulkader Tawfik
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Billy James Murdoch
- RMIT Microscopy and Microanalysis Facility, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Edwin Lawrence Harrop Mayes
- RMIT Microscopy and Microanalysis Facility, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | | | - Rajesh Ramanathan
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
26
|
Zamora-Ledezma C, Narváez-Muñoz C, Guerrero VH, Medina E, Meseguer-Olmo L. Nanofluid Formulations Based on Two-Dimensional Nanoparticles, Their Performance, and Potential Application as Water-Based Drilling Fluids. ACS OMEGA 2022; 7:20457-20476. [PMID: 35935292 PMCID: PMC9347972 DOI: 10.1021/acsomega.2c02082] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The development of sustainable, cost-efficient, and high-performance nanofluids is one of the current research topics within drilling applications. The inclusion of tailorable nanoparticles offers the possibility of formulating water-based fluids with enhanced properties, providing unprecedented opportunities in the energy, oil, gas, water, or infrastructure industries. In this work, the most recent and relevant findings related with the development of customizable nanofluids are discussed, focusing on those based on the incorporation of 2D (two-dimensional) nanoparticles and environmentally friendly precursors. The advantages and drawbacks of using 2D layered nanomaterials including but not limited to silicon nano-glass flakes, graphene, MoS2, disk-shaped Laponite nanoparticles, layered magnesium aluminum silicate nanoparticles, and nanolayered organo-montmorillonite are presented. The current formulation approaches are listed, as well as their physicochemical characterization: rheology, viscoelastic properties, and filtration properties (fluid losses). The most influential factors affecting the drilling fluid performance, such as the pH, temperature, ionic strength interaction, and pressure, are also debated. Finally, an overview about the simulation at the microscale of fluids flux in porous media is presented, aiming to illustrate the approaches that could be taken to supplement the experimental efforts to research the performance of drilling muds. The information discussed shows that the addition of 2D nanolayered structures to drilling fluids promotes a substantial improvement in the rheological, viscoelastic, and filtration properties, additionally contributing to cuttings removal, and wellbore stability and strengthening. This also offers a unique opportunity to modulate and improve the thermal and lubrication properties of the fluids, which is highly appealing during drilling operations.
Collapse
Affiliation(s)
- Camilo Zamora-Ledezma
- Tissue
Regeneration and Repair Group: Orthobiology, Biomaterials and Tissue
Engineering, UCAM-Universidad Católica
de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Christian Narváez-Muñoz
- Escola
Tècnica Superior d’Enginyers de Camins, Canals i Ports, Universitat Politècnica de Catalunya—Barcelonatech
(UPC), Jordi Girona 1, Campus Nord UPC, 08034 Barcelona, Spain
- Centre
Internacional de Mètodes Numérics en Enginyeria (CIMNE), Gran Capitán s/n, Campus Nord UPC, 08034 Barcelona, Spain
| | - Víctor H. Guerrero
- Departamento
de Materiales, Escuela Politécnica
Nacional, Quito, 170525, Ecuador
| | - Ernesto Medina
- Departamento
de Física, Colegio de Ciencias e Ingeniería, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito 170901, Ecuador
| | - Luis Meseguer-Olmo
- Tissue
Regeneration and Repair Group: Orthobiology, Biomaterials and Tissue
Engineering, UCAM-Universidad Católica
de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| |
Collapse
|
27
|
Kim J, Song O, Cho YS, Jung M, Rhee D, Kang J. Revisiting Solution-Based Processing of van der Waals Layered Materials for Electronics. ACS MATERIALS AU 2022; 2:382-393. [PMID: 36855703 PMCID: PMC9928402 DOI: 10.1021/acsmaterialsau.2c00034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Following the significant discovery of van der Waals (vdW) layered materials with diverse electronic properties over more than a decade ago, the scalable production of high-quality vdW layered materials has become a critical goal to enable the transformation of fundamental studies into practical applications in electronics. To this end, solution-based processing has been proposed as a promising technique to yield vdW layered materials in large quantities. Moreover, the resulting dispersions are compatible with cost-effective device fabrication processes such as inkjet printing and roll-to-roll manufacturing. Despite these advantages, earlier works on solution-based processing methods (i.e., direct liquid-phase exfoliation or alkali-metal intercalation) have several challenges in achieving high-performance electronic devices, such as structural polydispersity in thickness and lateral size or undesired phase transformation. These challenges hinder the utilization of the solution-processed materials in the limited fields of electronics such as electrodes and conductors. In the meantime, the groundbreaking discovery of another solution-based approach, molecular intercalation-based electrochemical exfoliation, has shown significant potential for the use of vdW layered materials in scalable electronics owing to the nearly ideal structure of the exfoliated samples. The resulting materials are highly monodispersed, atomically thin, and reasonably large, enabling the preparation of electronically active thin-film networks via successful vdW interface formation. The formation of vdW interfaces is highly important for efficient plane-to-plane charge transport and mechanical stability under various deformations, which are essential to high-performance, flexible electronics. In this Perspective, we survey the latest developments in solution-based processing of vdW layered materials and their electronic applications while also describing the field's future outlook in the context of its current challenges.
Collapse
Affiliation(s)
- Jihyun Kim
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic
of Korea
| | - Okin Song
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic
of Korea
| | - Yun Seong Cho
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic
of Korea
| | - Myeongjin Jung
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic
of Korea
| | - Dongjoon Rhee
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic
of Korea
| | - Joohoon Kang
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic
of Korea,KIST-SKKU
Carbon-Neutral Research Center, Sungkyunkwan
University (SKKU), Suwon 16419, Republic of Korea,
| |
Collapse
|
28
|
Kim J, Rhee D, Song O, Kim M, Kwon YH, Lim DU, Kim IS, Mazánek V, Valdman L, Sofer Z, Cho JH, Kang J. All-Solution-Processed Van der Waals Heterostructures for Wafer-Scale Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106110. [PMID: 34933395 DOI: 10.1002/adma.202106110] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/16/2021] [Indexed: 06/14/2023]
Abstract
2D van der Waals (vdW) materials have been considered as potential building blocks for use in fundamental elements of electronic and optoelectronic devices, such as electrodes, channels, and dielectrics, because of their diverse and remarkable electrical properties. Furthermore, two or more building blocks of different electronic types can be stacked vertically to generate vdW heterostructures with desired electrical behaviors. However, such fundamental approaches cannot directly be applied practically because of issues such as precise alignment/positioning and large-quantity material production. Here, these limitations are overcome and wafer-scale vdW heterostructures are demonstrated by exploiting the lateral and vertical assembly of solution-processed 2D vdW materials. The high exfoliation yield of the molecular intercalation-assisted approach enables the production of micrometer-sized nanosheets in large quantities and its lateral assembly in a wafer-scale via vdW interactions. Subsequently, the laterally assembled vdW thin-films are vertically assembled to demonstrate various electronic device applications, such as transistors and photodetectors. Furthermore, multidimensional vdW heterostructures are demonstrated by integrating 1D carbon nanotubes as a p-type semiconductor to fabricate p-n diodes and complementary logic gates. Finally, electronic devices are fabricated via inkjet printing as a lithography-free manner based on the stable nanomaterial dispersions.
Collapse
Affiliation(s)
- Jihyun Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Dongjoon Rhee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Okin Song
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Miju Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Yong Hyun Kwon
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Dong Un Lim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - In Soo Kim
- Nanophotonics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Vlastimil Mazánek
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, Prague 6, 166 28, Czech Republic
| | - Lukas Valdman
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, Prague 6, 166 28, Czech Republic
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, Prague 6, 166 28, Czech Republic
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Joohoon Kang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
29
|
Fragile nanosheets stripped from crystals. Nature 2022; 602:582-583. [PMID: 35197612 DOI: 10.1038/d41586-022-00466-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Chen J, Pu H, Hersam MC, Westerhoff P. Molecular Engineering of 2D Nanomaterial Field-Effect Transistor Sensors: Fundamentals and Translation across the Innovation Spectrum. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106975. [PMID: 34921575 DOI: 10.1002/adma.202106975] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/01/2021] [Indexed: 06/14/2023]
Abstract
Over the last decade, 2D layered nanomaterials have attracted significant attention across the scientific community due to their rich and exotic properties. Various nanoelectronic devices based on these 2D nanomaterials have been explored and demonstrated, including those for environmental applications. Here, the fundamental attributes of 2D layered nanomaterials for field-effect transistor (FET) sensors and tunneling FET (TFET) sensors, which provide versatile detection of water contaminants such as heavy-metal ions, bacteria, nutrients, and organic pollutants, are discussed. The major challenges and opportunities are also outlined for designing and fabricating 2D nanomaterial FET/TFET sensors with superior performance. Translation of these FET/TFET sensors from fundamental research to applied technology is illustrated through a case study on graphene-based real-time FET water sensors. A second case study centers on large-scale sensor networks for water-quality monitoring to enable intelligent drinking water and river-water systems. Overall, 2D nanomaterial FET sensors have significant potential for enabling a human-centered intelligent water system that can likely be applied to other precarious water supplies around the globe.
Collapse
Affiliation(s)
- Junhong Chen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Haihui Pu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Mark C Hersam
- Department of Materials Science and Engineering and Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Paul Westerhoff
- School of Sustainable Engineering and The Built Environment, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
31
|
Kim DW, Choi J, Byun J, Kim JT, Lee GS, Kim JG, Kim D, Boonmongkolras P, McMillan PF, Lee HM, Clancy AJ, Shin B, Kim SO. Monodisperse Carbon Nitride Nanosheets as Multifunctional Additives for Efficient and Durable Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61215-61226. [PMID: 34905920 DOI: 10.1021/acsami.1c19587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) materials are promising components for defect passivation of metal halide perovskites. Unfortunately, commonly used polydisperse liquid-exfoliated 2D materials generally suffer from heterogeneous structures and properties while incorporated into perovskite films. We introduce monodisperse multifunctional 2D crystalline carbon nitride, poly(triazine imide) (PTI), as an effective defect passivation agent in perovskite films via typical solution processing. Incorporation of PTI into perovskite film can be readily attained by simple solution mixing of PTI dispersions with perovskite precursor solutions, resulting in the highly selective distribution of PTI localized at the defective crystal grain boundaries and layer interfaces in the functional perovskite layer. Several chemical, optical, and electronic characterizations, in conjunction with density functional theory calculations, reveal multiple beneficial roles from PTI: passivation of undercoordinated organic cations at the surface of perovskite crystal, suppression of ion migration by blocking diffusion channels, and prevention of hole quenching at perovskite/SnO2 interfaces. Consequently, a noticeably improved power conversion efficiency is achieved in perovskite solar cells, accompanied with promoted stability under humid air and thermal stress. Our strategy highlights the potential of judiciously designed 2D materials as a simple-to-implement material for various optoelectronic devices, including solar cells, based on hybrid perovskites.
Collapse
Affiliation(s)
- Dae-Won Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jungwoo Choi
- Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jinwoo Byun
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jun Tae Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Gang San Lee
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jin Goo Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Daehan Kim
- Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Passarut Boonmongkolras
- Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Paul F McMillan
- Department of Chemistry, University College London (UCL), Gower St., London WC1E 6BT, U.K
| | - Hyuck Mo Lee
- Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Adam J Clancy
- Department of Chemistry, University College London (UCL), Gower St., London WC1E 6BT, U.K
| | - Byungha Shin
- Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sang Ouk Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
32
|
Rao VJ, Qi H, Berger FJ, Grieger S, Kaiser U, Backes C, Zaumseil J. Liquid Phase Exfoliation of Rubrene Single Crystals into Nanorods and Nanobelts. ACS NANO 2021; 15:20466-20477. [PMID: 34813291 DOI: 10.1021/acsnano.1c08965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Liquid phase exfoliation (LPE) is a popular method to create dispersions of two-dimensional nanosheets from layered inorganic van der Waals crystals. Here, it is applied to orthorhombic and triclinic single crystals of the organic semiconductor rubrene with only noncovalent interactions (mainly π-π) between the molecules. Distinct nanorods and nanobelts of rubrene are formed, stabilized against aggregation in aqueous sodium cholate solution, and isolated by liquid cascade centrifugation. Selected-area electron diffraction and Raman spectroscopy confirm the crystallinity of the rubrene nanorods and nanobelts while the optical properties (absorbance, photoluminescence) of the dispersions are similar to rubrene solutions due to their randomized orientations. The formation of these stable crystalline rubrene nanostructures with only a few molecular layers by LPE confirms that noncovalent interactions in molecular crystals can be strong enough to enable mechanical exfoliation similar to inorganic layered materials.
Collapse
Affiliation(s)
- Vaishnavi J Rao
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Haoyuan Qi
- Central Facility of Materials Science Electron Microscopy, Universität Ulm, 89081 Ulm, Germany
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Felix J Berger
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Sebastian Grieger
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Ute Kaiser
- Central Facility of Materials Science Electron Microscopy, Universität Ulm, 89081 Ulm, Germany
| | - Claudia Backes
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Jana Zaumseil
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
33
|
Applications of two-dimensional layered nanomaterials in photoelectrochemical sensors: A comprehensive review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214156] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Wang X, Han X, Li C, Chen Z, Huang H, Chen J, Wu C, Fan T, Li T, Huang W, Al-Hartomy OA, Al-Ghamdi A, Wageh S, Zheng F, Al-Sehemi AG, Wang G, Xie Z, Zhang H. 2D materials for bone therapy. Adv Drug Deliv Rev 2021; 178:113970. [PMID: 34509576 DOI: 10.1016/j.addr.2021.113970] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/24/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022]
Abstract
Due to their prominent physicochemical properties, 2D materials are broadly applied in biomedicine. Currently, 2D materials have achieved great success in treating many diseases such as cancer and tissue engineering as well as bone therapy. Based on their different characteristics, 2D materials could function in various ways in different bone diseases. Herein, the application of 2D materials in bone tissue engineering, joint lubrication, infection of orthopedic implants, bone tumors, and osteoarthritis are firstly reviewed comprehensively together. Meanwhile, different mechanisms by which 2D materials function in each disease reviewed below are also reviewed in detail, which in turn reveals the versatile functions and application of 2D materials. At last, the outlook on how to further broaden applications of 2D materials in bone therapies based on their excellent properties is also discussed.
Collapse
Affiliation(s)
- Xiangjiang Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China
| | - Xianjing Han
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China
| | - Chaozhou Li
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhi Chen
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hao Huang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jindong Chen
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China
| | - Chenshuo Wu
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Taojian Fan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Tianzhong Li
- Shenzhen International Institute for Biomedical Research, Shenzhen 518116, Guangdong, China
| | - Weichun Huang
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, PR China
| | - Omar A Al-Hartomy
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed Al-Ghamdi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Swelm Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fei Zheng
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Abdullah G Al-Sehemi
- Department of Chemistry, Faculty of Science, Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia
| | - Guiqing Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China
| | - Zhongjian Xie
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen 518038, Guangdong, PR China; Shenzhen International Institute for Biomedical Research, Shenzhen 518116, Guangdong, China
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
35
|
Bian H, Goh YY, Liu Y, Ling H, Xie L, Liu X. Stimuli-Responsive Memristive Materials for Artificial Synapses and Neuromorphic Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006469. [PMID: 33837601 DOI: 10.1002/adma.202006469] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Neuromorphic computing holds promise for building next-generation intelligent systems in a more energy-efficient way than the conventional von Neumann computing architecture. Memristive hardware, which mimics biological neurons and synapses, offers high-speed operation and low power consumption, enabling energy- and area-efficient, brain-inspired computing. Here, recent advances in memristive materials and strategies that emulate synaptic functions for neuromorphic computing are highlighted. The working principles and characteristics of biological neurons and synapses, which can be mimicked by memristive devices, are presented. Besides device structures and operation with different external stimuli such as electric, magnetic, and optical fields, how memristive materials with a rich variety of underlying physical mechanisms can allow fast, reliable, and low-power neuromorphic applications is also discussed. Finally, device requirements are examined and a perspective on challenges in developing memristive materials for device engineering and computing science is given.
Collapse
Affiliation(s)
- Hongyu Bian
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Yi Yiing Goh
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Yuxia Liu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou, 215123, China
| | - Haifeng Ling
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Linghai Xie
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou, 215123, China
| |
Collapse
|
36
|
Karger L, Synnatschke K, Settele S, Hofstetter YJ, Nowack T, Zaumseil J, Vaynzof Y, Backes C. The Role of Additives in Suppressing the Degradation of Liquid-Exfoliated WS 2 Monolayers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102883. [PMID: 34477255 PMCID: PMC11469120 DOI: 10.1002/adma.202102883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Group VI transition metal dichalcogenides (TMDs) are considered to be chemically widely inert, but recent reports point toward an oxidation of monolayered sheets in ambient conditions, due to defects. To date, the degradation of monolayered TMDs is only studied on individual, substrate-supported nanosheets with varying defect type and concentration, strain, and in an inhomogeneous environment. Here, degradation kinetics of WS2 nanosheet ensembles in the liquid phase are investigated through photoluminescence measurements, which selectively probe the monolayers. Monolayer-enriched WS2 dispersions are produced with varying lateral sizes in the two common surfactant stabilizers sodium cholate (SC) and sodium dodecyl sulfate (SDS). Well-defined degradation kinetics are observed, which enable the determination of activation energies of the degradation and decouple photoinduced and thermal degradation. The thermal degradation is slower than the photoinduced degradation and requires higher activation energy. Using SC as surfactant, it is sufficiently suppressed. The photoinduced degradation can be widely prevented through chemical passivation achieved through the addition of cysteine which, on the one hand, coordinates to defects on the nanosheets and, on the other hand, stabilizes oxides on the surface, which shield the nanosheets from further degradation.
Collapse
Affiliation(s)
- Leonhard Karger
- Institute for Physical ChemistryHeidelberg UniversityIm Neuenheimer Feld 25369120HeidelbergGermany
| | - Kevin Synnatschke
- Institute for Physical ChemistryHeidelberg UniversityIm Neuenheimer Feld 25369120HeidelbergGermany
| | - Simon Settele
- Institute for Physical ChemistryHeidelberg UniversityIm Neuenheimer Feld 25369120HeidelbergGermany
| | - Yvonne J. Hofstetter
- Integrated Center for Applied Photophysics and Photonic MaterialsTU DresdenNöthnitzer Straße 6101187DresdenGermany
- Center for Advancing Electronics Dresden (cfaed)TU DresdenHelmhotzstraße 1801069DresdenGermany
| | - Tim Nowack
- Institute for Physical ChemistryHeidelberg UniversityIm Neuenheimer Feld 25369120HeidelbergGermany
| | - Jana Zaumseil
- Institute for Physical ChemistryHeidelberg UniversityIm Neuenheimer Feld 25369120HeidelbergGermany
- Centre for Advanced MaterialsRuprecht‐Karls‐Universität HeidelbergIm Neuenheimer Feld 22569120HeidelbergGermany
| | - Yana Vaynzof
- Integrated Center for Applied Photophysics and Photonic MaterialsTU DresdenNöthnitzer Straße 6101187DresdenGermany
- Center for Advancing Electronics Dresden (cfaed)TU DresdenHelmhotzstraße 1801069DresdenGermany
| | - Claudia Backes
- Institute for Physical ChemistryHeidelberg UniversityIm Neuenheimer Feld 25369120HeidelbergGermany
| |
Collapse
|
37
|
Zeng HM, Wang C, Wu WH, Mao WT, Jiang ZG, Zhan CH. Solvent-driven crystal-crystal transformation and morphology change in a 2D layered inorganic POM-based framework. NANOSCALE ADVANCES 2021; 3:4680-4684. [PMID: 36134304 PMCID: PMC9419534 DOI: 10.1039/d1na00416f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/24/2021] [Indexed: 06/16/2023]
Abstract
In this paper, a pure 2D inorganic POM-based framework underwent a single crystal to single crystal conversion when soaked in organic solvents that are miscible with water, forming a more densely packed identical framework accompanying the formation of nanowires. The change in morphology is closely related to the surface tension of water, and the lower surface tension achieved by dehydration promotes the formation of nanowires, which is revealed by SXRD, PXRD, SEM, TGA and electrochemical impedance spectroscopy (EIS).
Collapse
Affiliation(s)
- Hui-Min Zeng
- College of Chemistry and Life Sciences, Institute of Physical Chemistry, Zhejiang Normal University, Key Laboratory of the Ministry of Education for Advanced Catalysis Material No. 688, Yingbin Avenue Jinhua Zhejiang China 321004
| | - Chao Wang
- College of Chemistry and Life Sciences, Institute of Physical Chemistry, Zhejiang Normal University, Key Laboratory of the Ministry of Education for Advanced Catalysis Material No. 688, Yingbin Avenue Jinhua Zhejiang China 321004
| | - Wei-Hong Wu
- College of Chemistry and Life Sciences, Institute of Physical Chemistry, Zhejiang Normal University, Key Laboratory of the Ministry of Education for Advanced Catalysis Material No. 688, Yingbin Avenue Jinhua Zhejiang China 321004
| | - Wei-Tao Mao
- College of Chemistry and Life Sciences, Institute of Physical Chemistry, Zhejiang Normal University, Key Laboratory of the Ministry of Education for Advanced Catalysis Material No. 688, Yingbin Avenue Jinhua Zhejiang China 321004
| | - Zhan-Guo Jiang
- College of Chemistry and Life Sciences, Institute of Physical Chemistry, Zhejiang Normal University, Key Laboratory of the Ministry of Education for Advanced Catalysis Material No. 688, Yingbin Avenue Jinhua Zhejiang China 321004
| | - Cai-Hong Zhan
- College of Chemistry and Life Sciences, Institute of Physical Chemistry, Zhejiang Normal University, Key Laboratory of the Ministry of Education for Advanced Catalysis Material No. 688, Yingbin Avenue Jinhua Zhejiang China 321004
| |
Collapse
|
38
|
High-yield exfoliation of 2D semiconductor monolayers and reassembly of organic/inorganic artificial superlattices. Chem 2021. [DOI: 10.1016/j.chempr.2021.03.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
39
|
Xu Y, Wang K, Yao Z, Kang J, Lam D, Yang D, Ai W, Wolverton C, Hersam MC, Huang Y, Huang W, Dravid VP, Wu J. In Situ, Atomic-Resolution Observation of Lithiation and Sodiation of WS 2 Nanoflakes: Implications for Lithium-Ion and Sodium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100637. [PMID: 33982862 DOI: 10.1002/smll.202100637] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/15/2021] [Indexed: 06/12/2023]
Abstract
WS2 nanoflakes have great potential as electrode materials of lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) because of their unique 2D structure, which facilitates the reversible intercalation and extraction of alkali metal ions. However, a fundamental understanding of the electrochemical lithiation/sodiation dynamics of WS2 nanoflakes especially at the nanoscale level, remains elusive. Here, by combining battery electrochemical measurements, density functional theory calculations, and in situ transmission electron microscopy, the electrochemical-reaction kinetics and mechanism for both lithiation and sodiation of WS2 nanoflakes are investigated at the atomic scale. It is found that compared to LIBs, SIBs exhibit a higher reversible sodium (Na) storage capacity and superior cyclability. For sodiation, the volume change due to ion intercalation is smaller than that in lithiation. Also, sodiated WS2 maintains its layered structure after the intercalation process, and the reduced metal nanoparticles after conversion in sodiation are well-dispersed and aligned forming a pattern similar to the layered structure. Overall, this work shows a direct interconnection between the reaction dynamics of lithiated/sodiated WS2 nanoflakes and their electrochemical performance, which sheds light on the rational optimization and development of advanced WS2 -based electrodes.
Collapse
Affiliation(s)
- Yaobin Xu
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- NUANCE Center, Northwestern University, Evanston, IL, 60208, USA
| | - Ke Wang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- NUANCE Center, Northwestern University, Evanston, IL, 60208, USA
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Zhenpeng Yao
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
- Department of Chemistry and Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Joohoon Kang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - David Lam
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Dan Yang
- NUANCE Center, Northwestern University, Evanston, IL, 60208, USA
| | - Wei Ai
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Chris Wolverton
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Ying Huang
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- NUANCE Center, Northwestern University, Evanston, IL, 60208, USA
| | - Jinsong Wu
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- NUANCE Center, Northwestern University, Evanston, IL, 60208, USA
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Nanostructure Research Centre, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei, 430070, China
| |
Collapse
|
40
|
Alzakia FI, Tan SC. Liquid-Exfoliated 2D Materials for Optoelectronic Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2003864. [PMID: 34105282 PMCID: PMC8188210 DOI: 10.1002/advs.202003864] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/19/2021] [Indexed: 05/14/2023]
Abstract
Two-dimensional (2D) materials have attracted tremendous research attention in recent days due to their extraordinary and unique properties upon exfoliation from the bulk form, which are useful for many applications such as electronics, optoelectronics, catalysis, etc. Liquid exfoliation method of 2D materials offers a facile and low-cost route to produce large quantities of mono- and few-layer 2D nanosheets in a commercially viable way. Optoelectronic devices such as photodetectors fabricated from percolating networks of liquid-exfoliated 2D materials offer advantages compared to conventional devices, including low cost, less complicated process, and higher flexibility, making them more suitable for the next generation wearable devices. This review summarizes the recent progress on metal-semiconductor-metal (MSM) photodetectors fabricated from percolating network of 2D nanosheets obtained from liquid exfoliation methods. In addition, hybrids and mixtures with other photosensitive materials, such as quantum dots, nanowires, nanorods, etc. are also discussed. First, the various methods of liquid exfoliation of 2D materials, size selection methods, and photodetection mechanisms that are responsible for light detection in networks of 2D nanosheets are briefly reviewed. At the end, some potential strategies to further improve the performance the devices are proposed.
Collapse
Affiliation(s)
- Fuad Indra Alzakia
- Department of Materials Science and EngineeringNational University of Singapore9 Engineering drive 1Singapore117574Singapore
| | - Swee Ching Tan
- Department of Materials Science and EngineeringNational University of Singapore9 Engineering drive 1Singapore117574Singapore
| |
Collapse
|
41
|
Ott S, Lakmann M, Backes C. Impact of Pretreatment of the Bulk Starting Material on the Efficiency of Liquid Phase Exfoliation of WS 2. NANOMATERIALS 2021; 11:nano11051072. [PMID: 33921953 PMCID: PMC8143503 DOI: 10.3390/nano11051072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
Liquid phase exfoliation (LPE) is widely used to produce colloidal dispersions of nanomaterials, in particular two-dimensional nanosheets. The degree of exfoliation, i.e., the length to thickness aspect ratio was shown to be intrinsically limited by the ratio of in-plane to out-of-plane binding strength. In this work, we investigate whether simple pretreatment of the starting material can be used to change the in-plane to out-of-plane binding strength through mild intercalation to improve the sample quality in sonication-assisted LPE. Five different pretreatment conditions of WS2 were tested and the dispersions size-selected through centrifugation. From optical spectroscopy (extinction, Raman, photoluminescence), information on nanosheet dimension (average lateral size, layer number, monolayer size) and optical quality (relative photoluminescence quantum yield) was extracted. We find that the pretreatment has a minor impact on the length/thickness aspect ratio, but that photoluminescence quantum yield can be increased in particular using mild sonication conditions. We attribute this to the successful exfoliation of nanosheets with a lower degree of basal plane defectiveness. This work emphasizes the complexity of the exfoliation process and suggests that the role of defects has to be considered for a comprehensive picture.
Collapse
|
42
|
Kim J, Kim S, Cho YS, Choi M, Jung SH, Cho JH, Whang D, Kang J. Solution-Processed MoS 2 Film with Functional Interfaces via Precursor-Assisted Chemical Welding. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12221-12229. [PMID: 33657809 DOI: 10.1021/acsami.1c00159] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Molybdenum disulfide (MoS2) presents fascinating properties for next-generation applications in diverse fields. However, fully exploiting the best properties of MoS2 in largescale practical applications still remains a challenge due to lack of proper processing methods. Solution-based processing can be a promising route for scalable production of MoS2 nanosheets, but the resulting assembled film possesses an enormous number of interfaces that significantly compromise the intrinsic electrical properties. Herein, we demonstrate the solution processing of MoS2 and subsequent precursor-assisted chemical welding to form defective MoS2-x at the nanosheet interfaces. The formation of defective MoS2-x significantly reduces the electrical contact resistances, and thus the chemically welded MoS2 film exhibits more than 2 orders of magnitude improved electrical conductivity. Furthermore, the chemical welding provides MoS2-x interface induced additional defect originated functionalities for diverse applications such as broadband photodetection over the near-infrared range and improved electrocatalytic activity for hydrogen evolution reactions. Overall, this precursor-assisted chemical welding strategy can be a facile route to produce high-quality MoS2 films with low-quality defective MoS2-x at the interfaces having multifunctionalities in electronics, optoelectronics, and electrocatalysis.
Collapse
Affiliation(s)
- Jihyun Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Seongchan Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 16419, Republic of Korea
| | - Yun Seong Cho
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Minseok Choi
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Su-Ho Jung
- SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 16419, Republic of Korea
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Dongmok Whang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 16419, Republic of Korea
| | - Joohoon Kang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
43
|
Rudra Paul A, Dey B, Suklabaidya S, Hussain SA, Majumdar S. 7-Alkoxy-appended coumarin derivatives: synthesis, photo-physical properties, aggregation behaviours and current-voltage ( I- V) characteristic studies on thin films. RSC Adv 2021; 11:10212-10223. [PMID: 35423533 PMCID: PMC8695653 DOI: 10.1039/d1ra00762a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/19/2021] [Indexed: 01/05/2023] Open
Abstract
In this study, we designed and synthesised a series of coumarin derivatives appended with a long alkoxy chain on the seventh position of the coumarin-3-carboxylate/carboxylic acid core to make thin film materials. Synthesised compounds were characterized by their UV and fluorescence spectra in solutions as well as their films prepared by both LB and spin-coated methods. The surface morphology and electrical behaviour of thin films were judged by AFM, SEM and I-V characteristic mapping respectively. Isotherm, UV-Vis absorption and fluorescence spectroscopic investigations revealed the formation of aggregates on thin films. The result of SEM and AFM images provides the information about the length and height of aggregates on the thin films of coumarin derivatives. From I-V characteristics, it was found that at room temperature, the spin-coated films of coumarin derivatives containing an ester functional group exhibited a threshold switching behaviour, whereas derivatives containing the carboxylic acid functional group showed both threshold and bipolar switching behaviours. We also noticed that the I-V characteristic features of synthesized materials depended on the length of the alkyl chain of individual series.
Collapse
Affiliation(s)
- Abhijit Rudra Paul
- Department of Chemistry, Tripura University Suryamaninagar 799 022 India +91-381-2374802 +91-381-237-9070
| | - Bapi Dey
- Department of Physics, Tripura University Suryamaninagar 799 022 India
| | - Sudip Suklabaidya
- Department of Physics, Tripura University Suryamaninagar 799 022 India
| | | | - Swapan Majumdar
- Department of Chemistry, Tripura University Suryamaninagar 799 022 India +91-381-2374802 +91-381-237-9070
| |
Collapse
|
44
|
Bok S, Seok HJ, Kim YA, Park JH, Kim J, Kang J, Kim HK, Lim B. Transparent Molecular Adhesive Enabling Mechanically Stable ITO Thin Films. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3463-3470. [PMID: 33416317 DOI: 10.1021/acsami.0c20582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With rapid advances in flexible electronics, transparent conductive electrodes (TCEs) have also been significantly developed as alternatives to the conventional indium tin oxide (ITO)-based material systems that exhibit low mechanical flexibility. Nanomaterial-based alternating materials, such as graphene, nanowire, and nanomesh, exhibit remarkable properties for TCE-based applications, such as high electrical conductivity, high optical transparency, and high mechanical stability. However, these nanomaterial-based systems lack scalability, which is a key requirement for practical applications, and exhibit a size-dependent property variation and inhomogeneous surface uniformity that limit reliable properties over a large area. Here, we exploited a conventional ITO-based material platform; however, we incorporated a transparent molecular adhesive, 4-aminopyridine (4-AP), to improve mechanical flexibility. While the presence of 4-AP barely affected optical transmittance and sheet resistance, it improved interfacial adhesion between the substrate and ITO as well as formed a wavy surface, which could improve the mechanical flexibility. Under various mechanical tests, ITO/4-AP/poly(ethylene terephthalate) (PET) exhibited remarkably improved mechanical flexibility as compared with that of ITO/PET. Furthermore, ITO/4-AP/PET was utilized for a flexible Joule heater application having spatial uniformity of heat generation, voltage-dependent temperature control, and mechanical flexibility under repeated bending tests. This molecular adhesive could overcome the current limitations of material systems for flexible electronics.
Collapse
Affiliation(s)
- Shingyu Bok
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Hae-Jun Seok
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Yun Ah Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jin-Hyeok Park
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jihyun Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Joohoon Kang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Han-Ki Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Byungkwon Lim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
45
|
Rhee D, Deng S, Odom TW. Soft skin layers for reconfigurable and programmable nanowrinkles. NANOSCALE 2020; 12:23920-23928. [PMID: 33242039 DOI: 10.1039/d0nr07054h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Wrinkling skin layers on pre-strained polymer sheets has drawn significant interest as a method to create reconfigurable surface patterns. Compared to widely studied metal or silica films, softer polymer skins are more tolerant to crack formation when the surface topography is tuned under applied strain. This Mini-review discusses recent progress in mechano-responsive wrinkles based on polymer skin materials. Control over the skin thickness with nanometer accuracy allows for tuning of the wrinkle wavelength and orientation over length scales from nanometer to micrometer regimes. Furthermore, soft skin layers enable texturing of two-dimensional electronic materials with programmable feature sizes and structural hierarchy because of the conformal adhesion to the substrates. Soft skin systems open prospects to tailor a range of surface properties via external stimuli important for applications such as smart windows, microfluidics, and nanoelectronics.
Collapse
Affiliation(s)
- Dongjoon Rhee
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.
| | | | | |
Collapse
|
46
|
Wen J, Zhu L, Li M. C-C Coupling Reactions for the Synthesis of Two-Dimensional Conjugated Polymers. Chempluschem 2020; 85:2636-2651. [PMID: 33305907 DOI: 10.1002/cplu.202000643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/24/2020] [Indexed: 12/18/2022]
Abstract
Extension of conjugated polymers from 1D to 2D can not only significantly enhance the dissociation of charge and excitons, but also induce other advantages, such as high in-plane mechanical strength, large specific surface area and porosity, and more active centers. 2D conjugated polymers can be divided into C-C bonded 2D polymers based on C-C coupling reactions, and heteroatomic bonded 2D polymers based on reversible heteroatom coupling reactions. C-C bonded 2D polymers are generally more stable than heteroatomic bonded 2D polymers as the latter bonds are easily hydrolyzed. This Review mainly summarizes C-C coupling reactions that are suitable for synthesizing 2D conjugated polymers, and the properties of these 2D conjugated polymers are also introduced.
Collapse
Affiliation(s)
- Ju Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Ling Zhu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Ming Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| |
Collapse
|
47
|
Sarkar AS, Stratakis E. Recent Advances in 2D Metal Monochalcogenides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001655. [PMID: 33173730 PMCID: PMC7610304 DOI: 10.1002/advs.202001655] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/24/2020] [Indexed: 06/11/2023]
Abstract
The family of emerging low-symmetry and structural in-plane anisotropic two-dimensional (2D) materials has been expanding rapidly in recent years. As an important emerging anisotropic 2D material, the black phosphorene analog group IVA-VI metal monochalcogenides (MMCs) have been surged recently due to their distinctive crystalline symmetries, exotic in-plane anisotropic electronic and optical response, earth abundance, and environmentally friendly characteristics. In this article, the recent research advancements in the field of anisotropic 2D MMCs are reviewed. At first, the unique wavy crystal structures together with the optical and electronic properties of such materials are discussed. The Review continues with the various methods adopted for the synthesis of layered MMCs including micromechanical and liquid phase exfoliation as well as physical vapor deposition. The last part of the article focuses on the application of the structural anisotropic response of 2D MMCs in field effect transistors, photovoltaic cells nonlinear optics, and valleytronic devices. Besides presenting the significant research in the field of this emerging class of 2D materials, this Review also delineates the existing limitations and discusses emerging possibilities and future prospects.
Collapse
Affiliation(s)
- Abdus Salam Sarkar
- Institute of Electronic Structure and LaserFoundation for Research and Technology‐HellasHeraklionCrete700 13Greece
| | - Emmanuel Stratakis
- Institute of Electronic Structure and LaserFoundation for Research and Technology‐HellasHeraklionCrete700 13Greece
- Physics DepartmentUniversity of CreteHeraklionCrete710 03Greece
| |
Collapse
|
48
|
Bianca G, Zappia MI, Bellani S, Sofer Z, Serri M, Najafi L, Oropesa-Nuñez R, Martín-García B, Hartman T, Leoncino L, Sedmidubský D, Pellegrini V, Chiarello G, Bonaccorso F. Liquid-Phase Exfoliated GeSe Nanoflakes for Photoelectrochemical-Type Photodetectors and Photoelectrochemical Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48598-48613. [PMID: 32960559 PMCID: PMC8011798 DOI: 10.1021/acsami.0c14201] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/22/2020] [Indexed: 05/29/2023]
Abstract
Photoelectrochemical (PEC) systems represent powerful tools to convert electromagnetic radiation into chemical fuels and electricity. In this context, two-dimensional (2D) materials are attracting enormous interest as potential advanced photo(electro)catalysts and, recently, 2D group-IVA metal monochalcogenides have been theoretically predicted to be water splitting photocatalysts. In this work, we use density functional theory calculations to theoretically investigate the photocatalytic activity of single-/few-layer GeSe nanoflakes for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in pH conditions ranging from 0 to 14. Our simulations show that GeSe nanoflakes with different thickness can be mixed in the form of nanoporous films to act as nanoscale tandem systems, in which the flakes, depending on their thickness, can operate as HER- and/or OER photocatalysts. On the basis of theoretical predictions, we report the first experimental characterization of the photo(electro)catalytic activity of single-/few-layer GeSe flakes in different aqueous media, ranging from acidic to alkaline solutions: 0.5 M H2SO4 (pH 0.3), 1 M KCl (pH 6.5), and 1 M KOH (pH 14). The films of the GeSe nanoflakes are fabricated by spray coating GeSe nanoflakes dispersion in 2-propanol obtained through liquid-phase exfoliation of synthesized orthorhombic (Pnma) GeSe bulk crystals. The PEC properties of the GeSe nanoflakes are used to design PEC-type photodetectors, reaching a responsivity of up to 0.32 AW-1 (external quantum efficiency of 86.3%) under 455 nm excitation wavelength in acidic electrolyte. The obtained performances are superior to those of several self-powered and low-voltage solution-processed photodetectors, approaching that of self-powered commercial UV-Vis photodetectors. The obtained results inspire the use of 2D GeSe in proof-of-concept water photoelectrolysis cells.
Collapse
Affiliation(s)
- Gabriele Bianca
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, via Dodecaneso 31, 16146 Genoa, Italy
| | - Marilena I. Zappia
- BeDimensional
Societa per azioni, via
Albisola 121, 16163 Genova, Italy
- Department
of Physics, University of Calabria, Via P. Bucci cubo 31/C 87036 Rende, Cosenza, Italy
| | | | - Zdeněk Sofer
- Department
of Inorganic Chemistry, University of Chemistry
and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Michele Serri
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| | - Leyla Najafi
- BeDimensional
Societa per azioni, via
Albisola 121, 16163 Genova, Italy
| | - Reinier Oropesa-Nuñez
- BeDimensional
Societa per azioni, via
Albisola 121, 16163 Genova, Italy
- Department
of Materials Science and Engineering, Uppsala
University, Box 534, 75121 Uppsala, Sweden
| | - Beatriz Martín-García
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
- CIC
nanoGUNE, 20018 Donostia-San Sebastian, Spain
| | - Tomáš Hartman
- Department
of Inorganic Chemistry, University of Chemistry
and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Luca Leoncino
- Electron
Microscopy Facility, Istituto Italiano di
Tecnologia, via Morego 30, 16163 Genova, Italy
| | - David Sedmidubský
- Department
of Inorganic Chemistry, University of Chemistry
and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Vittorio Pellegrini
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
- BeDimensional
Societa per azioni, via
Albisola 121, 16163 Genova, Italy
| | - Gennaro Chiarello
- Department
of Physics, University of Calabria, Via P. Bucci cubo 31/C 87036 Rende, Cosenza, Italy
| | - Francesco Bonaccorso
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
- BeDimensional
Societa per azioni, via
Albisola 121, 16163 Genova, Italy
| |
Collapse
|
49
|
Hassan K, Nine MJ, Tung TT, Stanley N, Yap PL, Rastin H, Yu L, Losic D. Functional inks and extrusion-based 3D printing of 2D materials: a review of current research and applications. NANOSCALE 2020; 12:19007-19042. [PMID: 32945332 DOI: 10.1039/d0nr04933f] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Graphene and related 2D materials offer an ideal platform for next generation disruptive technologies and in particular the potential to produce printed electronic devices with low cost and high throughput. Interest in the use of 2D materials to create functional inks has exponentially increased in recent years with the development of new ink formulations linked with effective printing techniques, including screen, gravure, inkjet and extrusion-based printing towards low-cost device manufacturing. Exfoliated, solution-processed 2D materials formulated into inks permits additive patterning onto both rigid and conformable substrates for printed device design with high-speed, large-scale and cost-effective manufacturing. Each printing technique has some sort of clear advantages over others that requires characteristic ink formulations according to their individual operational principles. Among them, the extrusion-based 3D printing technique has attracted heightened interest due to its ability to create three-dimensional (3D) architectures with increased surface area facilitating the design of a new generation of 3D devices suitable for a wide variety of applications. There still remain several challenges in the development of 2D material ink technologies for extrusion printing which must be resolved prior to their translation into large-scale device production. This comprehensive review presents the current progress on ink formulations with 2D materials and their broad practical applications for printed energy storage devices and sensors. Finally, an outline of the challenges and outlook for extrusion-based 3D printing inks and their place in the future printed devices ecosystem is presented.
Collapse
Affiliation(s)
- Kamrul Hassan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. and ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Md Julker Nine
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. and ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Tran Thanh Tung
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. and ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Nathan Stanley
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. and ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Pei Lay Yap
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. and ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Hadi Rastin
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. and ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Le Yu
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. and ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. and ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
50
|
Kim YK, Lee Y, Shin KY. Black phosphorus-based smart electrorheological fluid with tailored phase transition and exfoliation. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.07.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|