1
|
Alan L, Opletalova B, Hayat H, Markovic A, Hlavackova M, Vrbacky M, Mracek T, Alanova P. Mitochondrial metabolism and hypoxic signaling in differentiated human cardiomyocyte AC16 cell line. Am J Physiol Cell Physiol 2025; 328:C1571-C1585. [PMID: 40243908 DOI: 10.1152/ajpcell.00083.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/17/2025] [Accepted: 03/14/2025] [Indexed: 04/18/2025]
Abstract
Cardiovascular diseases are associated with an altered cardiomyocyte metabolism. Because of a shortage of human heart tissue, experimental studies mostly rely on alternative approaches including animal and cell culture models. Since the use of isolated primary cardiomyocytes is limited, immortalized cardiomyocyte cell lines may represent a useful tool as they closely mimic human cardiomyocytes. This study is focused on the AC16 cell line generated from adult human ventricular cardiomyocytes. Despite an increasing number of studies employing AC16 cells, a comprehensive proteomic, bioenergetic, and oxygen-sensing characterization of proliferating vs. differentiated cells is still lacking. Here, we provide a comparison of these two stages, particularly emphasizing cell metabolism, mitochondrial function, and hypoxic signaling. Label-free quantitative mass spectrometry revealed a decrease in autophagy and cytoplasmic translation in differentiated AC16, confirming their phenotype. Cell differentiation led to global increase in mitochondrial proteins [e.g. oxidative phosphorylation (OXPHOS) proteins, TFAM, VWA8] reflected by elevated mitochondrial respiration. Fatty acid oxidation proteins were increased in differentiated cells, whereas the expression levels of proteins associated with fatty acid synthesis were unchanged and glycolytic proteins were decreased. There was a profound difference between proliferating and differentiated cells in their response to hypoxia and anoxia-reoxygenation. We conclude that AC16 differentiation leads to proteomic and metabolic shifts and altered cell response to oxygen deprivation. This underscores the requirement for proper selection of the particular differentiation state during experimental planning.NEW & NOTEWORTHY Proliferating and differentiated AC16 cell lines exhibit distinct proteomic and metabolic profiles with critical implications for experimental design. Proliferating cells predominantly utilize glycolysis and are highly sensitive to hypoxia, whereas differentiated cells display enhanced mitochondrial biogenesis, oxidative phosphorylation, and resistance to anoxia-reoxygenation. These findings provide novel insights into the metabolic adaptations during differentiation and highlight the necessity of selecting the appropriate cellular stage to ensure accurate experimental outcomes.
Collapse
Affiliation(s)
- Lukas Alan
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Biology, University of Padova, Padua, Italy
| | - Barbora Opletalova
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Habiba Hayat
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Aleksandra Markovic
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Biology, University of Padova, Padua, Italy
| | - Marketa Hlavackova
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marek Vrbacky
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Mracek
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petra Alanova
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Ren J, Chen X, Wang HY, Yang T, Zhang KR, Lei SY, Qi LY, Feng CL, Zhou R, Zhou H, Tang W. Gentiopicroside ameliorates psoriasis-like skin lesions in mice via regulating the Keap1-Nrf2 pathway and inhibiting keratinocyte activation. Acta Pharmacol Sin 2025; 46:1361-1374. [PMID: 39779965 PMCID: PMC12032066 DOI: 10.1038/s41401-024-01449-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
Psoriasis is a chronic, systemic immune-mediated skin disease. Although many new strategies for psoriasis treatment have been developed, there is great need in clinic for treating psoriasis. Gentiopicroside (GPS), derived from Gentiana manshurica Kitagawa, has multiple pharmacological activities including anti-inflammatory, anti-oxidative and antiviral activities. In this study, we investigated the potential effects of GPS in imiquimod (IMQ)-induced psoriasis mouse model and the underlying mechanisms. The mice were sensitized on their shaved back with IMQ cream for 7 days with or without topical application of 1% or 2% GPS cream. We showed that the application of GPS cream significantly ameliorated psoriasis-like skin lesions; GPS effect was better than that of calcipotriol. GPS rectified the immune cells infiltration and keratinocytes activation in the skin lesions, and significantly inhibited TNF-α/IFN-γ stimulated human keratinocyte (HaCaT) activation in vitro. Proteomic analysis from keratinocytes with and without GPS treatment prompted that GPS regulated the Keap1-Nrf2 pathway, which was the most important pathway in regulating oxidative stress and inflammation. We demonstrated that GPS regulated the protein expression of p62 and Keap1, induced Nrf2 nuclear translocation followed by transcription of Nrf2 downstream antioxidant genes in HaCaT cells. Furthermore, the antioxidant effects of GPS were abolished in Nrf2-/- keratinocytes. Simultaneously, Nrf2-/- mice showed increased psoriasiform symptoms with a diminished protective effect in response to GPS treatment. Collectively, the study discloses that GPS inhibits keratinocyte activation and ameliorates psoriasis-like skin lesions in an Nrf2-dependent manner.
Collapse
Affiliation(s)
- Jing Ren
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xin Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hao-Yu Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Yang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai-Rong Zhang
- School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, China
| | - Shu-Yue Lei
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu-Yao Qi
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chun-Lan Feng
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Rong Zhou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hu Zhou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wei Tang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Ji S, Cao L, Gao J, Du Y, Ye Z, Lou X, Liu F, Zhang Y, Xu J, Shi X, Wang H, Li P, Li Y, Chen H, Yang Z, Gao S, Zhang W, Huang D, Ni S, Wei M, Wang F, Wang Y, Ding T, Jing D, Fan G, Gong Z, Lu R, Qin Y, Chen J, Xu X, Wang P, Zhang B, Ding L, Robles AI, Rodriguez H, Chang DK, Hruban RH, Gao D, Gao D, Jin G, Zhou H, Wu J, Yu X. Proteogenomic characterization of non-functional pancreatic neuroendocrine tumors unravels clinically relevant subgroups. Cancer Cell 2025; 43:776-796.e14. [PMID: 40185092 DOI: 10.1016/j.ccell.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 01/27/2025] [Accepted: 03/12/2025] [Indexed: 04/07/2025]
Abstract
The majority of neuroendocrine neoplasms in pancreas are non-functional pancreatic neuroendocrine tumors (NF-PanNETs), which exhibit a high occurrence of distant metastases with limited therapeutic options. Here, we perform a comprehensive molecular characterization of 108 NF-PanNETs through integrative analysis of genomic, transcriptomic, proteomic, and phosphoproteomic profiles. Proteogenomic analysis provides functional insights into the genomic driver alterations of NF-PanNETs, revealing a potential mediator of MEN1 alterations using Men1-conditional knockout mice. Machine-learning-based modeling uncovers a three-protein signature as an independent prognostic factor, which is validated by an independent external cohort. Proteomic and phosphoproteomic-based stratification identifies four subtypes with distinct molecular characteristics, immune microenvironments, and clinicopathological features. Drug screening using patient-derived tumor organoids identifies cyclin-dependent kinase (CDK) 5 and Calcium Voltage-Gated Channel Subunit Alpha1 D (CACNA1D) as ubiquitous and subtype-specific targets, respectively, with in vivo validation using xenograft models. Together, our proteogenomic analyses illustrate a comprehensive molecular landscape of NF-PanNETs, revealing biological insights and therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Lihua Cao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jing Gao
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yang Du
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Xin Lou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Fen Liu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yehan Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Junfeng Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Xiaohan Shi
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Huan Wang
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Penghao Li
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Yikai Li
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Hongxu Chen
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhicheng Yang
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China
| | - Suizhi Gao
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Wuhu Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Dan Huang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Shujuan Ni
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Miaoyan Wei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Fei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Yan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Tian Ding
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Desheng Jing
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Guixiong Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Zhiyun Gong
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Renquan Lu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Jie Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NewYork, NY 10029, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Li Ding
- Department of Medicine, McDonnell Genome Institute, Washington University, St. Louis, MO 63108, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - David K Chang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | - Ralph H Hruban
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Dong Gao
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Daming Gao
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Gang Jin
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China.
| | - Hu Zhou
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Shanghai Institute of Materia Medica-University of Ottawa Joint Research Center in Systems and Personalized Pharmacology, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Jianmin Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing 100142, China; Peking University International Cancer Institute, Peking University, Beijing 100191, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China.
| |
Collapse
|
4
|
Dong X, Zhang F, Wang Y, Li C, Li X, Zhou C, Wang G, Tian Z, Gao J, Zhou H, Sui L, Nauwynck H, Sorgeloos P, Holmes EC, Huang J, Shi W. A positive-sense single-stranded RNA virus acquired a negative-sense open reading frame through recombination. PLoS Pathog 2025; 21:e1013015. [PMID: 40198687 PMCID: PMC11978036 DOI: 10.1371/journal.ppat.1013015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 03/03/2025] [Indexed: 04/10/2025] Open
Abstract
Although positive- and negative-sense single-stranded RNA viruses are ubiquitous in nature, there is currently no evidence of recombination or reassortment between viruses with these two major forms of genome organization. Here, we describe the discovery of brine shrimp virga-like virus 1 (BSVV1), a novel positive-sense single-stranded RNA virus with a recombinant genome structure derived from two viral phyla with differing genome organizations. The genome of BSVV1 comprises three open reading frames (ORFs). ORF1 resembles the RNA-dependent RNA polymerase of Ips virga-like virus 1 (a positive-sense RNA virus), while ORF2, transcribed in the positive orientation, is related to the glycoprotein of Hubei bunya-like virus 10 and other negative-sense RNA viruses. The predicted ORF3 was unique to BSVV1 without known homologs identified. The presence of the three protein products was verified by mass spectrometry. Notably, our analysis also revealed that BSVV1 is geographically widespread and found in brine shrimp from at least eight countries on four continents. In addition, BSVV1 was successfully cultured and proliferated to high viral loads during brine shrimp development. In sum, we provide compelling evidence of an ancient recombination event between negative- and positive-sense single-stranded RNA viruses, enriching our understanding of the evolution of genome structures in RNA viruses.
Collapse
Affiliation(s)
- Xuan Dong
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center; Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Fan Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center; Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Yiting Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center; Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Cixiu Li
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
| | - Xuan Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center; Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Chengyan Zhou
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center; Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Guohao Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center; Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Zhongshuai Tian
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Gao
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hu Zhou
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Liying Sui
- Asian Regional Artemia Reference Center, Tianjin University of Science & Technology, Tianjin, China
| | - Hans Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Patrick Sorgeloos
- Laboratory of Aquaculture & Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Edward C. Holmes
- School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Jie Huang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center; Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Weifeng Shi
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Duric I, Krayem I, Brdicka T. WBP1L, a transmembrane adaptor protein involved in the regulation of hematopoiesis, is controlled by CRL1 β-TrCP ubiquitin ligases. Biochem Biophys Res Commun 2025; 749:151337. [PMID: 39837222 DOI: 10.1016/j.bbrc.2025.151337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 01/13/2025] [Indexed: 01/23/2025]
Abstract
WBP1L is a broadly expressed transmembrane adaptor protein involved in regulating hematopoietic stem cell function and T cell development. It interacts with NEDD4-family E3 ubiquitin ligases and regulates important chemokine receptor CXCR4. Using tandem affinity purification coupled with mass spectrometry, we identified novel WBP1L interactions with the IFNγ receptor and the Cullin-RING ubiquitin ligases CRL1β-TrCP1/2. We found that WBP1L interaction with the IFNγ receptor serves to downregulate proximal IFNγ receptor signaling in female macrophages, while the interaction with CRL1β-TrCP1/2 ubiquitin ligases regulates WBP1L protein levels. Disrupting this interaction, as well as inhibiting proteasome activity or neddylation, increased WBP1L protein levels, demonstrating that CRL1β-TrCP1/2 ubiquitin ligases regulate WBP1L protein abundance. These data provide important insights into the mechanisms controlling WBP1L function.
Collapse
Affiliation(s)
- Iris Duric
- Laboratory of Leukocyte Signalling. Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic; Faculty of Science, Charles University, Albertov 6, 12800, Prague, Czech Republic.
| | - Imtissal Krayem
- Laboratory of Leukocyte Signalling. Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic.
| | - Tomas Brdicka
- Laboratory of Leukocyte Signalling. Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic.
| |
Collapse
|
6
|
Takemori A, Sugiyama N, Kline JT, Fornelli L, Takemori N. Gel-Based Sample Fractionation with SP3-Purification for Top-Down Proteomics. J Proteome Res 2025; 24:850-860. [PMID: 39841590 PMCID: PMC11841991 DOI: 10.1021/acs.jproteome.4c00941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Precise prefractionation of proteome samples is a potent method for realizing in-depth analysis in top-down proteomics. PEPPI-MS (Passively Eluting Proteins from Polyacrylamide gels as Intact species for MS), a gel-based sample fractionation method, enables high-resolution proteome fractionation based on molecular weight by highly efficient extraction of proteins from polyacrylamide gels after SDS-PAGE separation. Thereafter it is essential to effectively remove contaminants such as CBB and SDS from the PEPPI fraction prior to mass spectrometry. In this study, we developed a complete, robust, and simple sample preparation workflow named PEPPI-SP3 for top-down proteomics by combining PEPPI-MS with the magnetic bead-based protein purification approach used in SP3 (single-pot, solid-phase-enhanced sample preparation), now one of the standard sample preparation methods in bottom-up proteomics. In PEPPI-SP3, proteins extracted from the gel are collected on the surface of SP3 beads, washed with organic solvents, and recovered intact with 100 mM ammonium bicarbonate containing 0.05% (w/v) SDS. The recovered proteins are subjected to mass spectrometry after additional purification using an anion-exchange StageTip. Performance validation using human cell lysates showed a significant improvement in low-molecular-weight protein recovery with a lower coefficient of variation compared to conventional PEPPI workflows using organic solvent precipitation or ultrafiltration.
Collapse
Affiliation(s)
- Ayako Takemori
- Advanced Research Support Center, Ehime University, Ehime, Japan
| | - Naoyuki Sugiyama
- Omics Research Center, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Jake T Kline
- School of Biological Sciences, University of Oklahoma, Oklahoma, United States
| | - Luca Fornelli
- School of Biological Sciences, University of Oklahoma, Oklahoma, United States
- Department of Chemistry and Biochemistry, University of Oklahoma, Oklahoma, United States
| | - Nobuaki Takemori
- Advanced Research Support Center, Ehime University, Ehime, Japan
| |
Collapse
|
7
|
Biggs GS, Cawood EE, Vuorinen A, McCarthy WJ, Wilders H, Riziotis IG, van der Zouwen AJ, Pettinger J, Nightingale L, Chen P, Powell AJ, House D, Boulton SJ, Skehel JM, Rittinger K, Bush JT. Robust proteome profiling of cysteine-reactive fragments using label-free chemoproteomics. Nat Commun 2025; 16:73. [PMID: 39746958 PMCID: PMC11697256 DOI: 10.1038/s41467-024-55057-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/28/2024] [Indexed: 01/04/2025] Open
Abstract
Identifying pharmacological probes for human proteins represents a key opportunity to accelerate the discovery of new therapeutics. High-content screening approaches to expand the ligandable proteome offer the potential to expedite the discovery of novel chemical probes to study protein function. Screening libraries of reactive fragments by chemoproteomics offers a compelling approach to ligand discovery, however, optimising sample throughput, proteomic depth, and data reproducibility remains a key challenge. We report a versatile, label-free quantification proteomics platform for competitive profiling of cysteine-reactive fragments against the native proteome. This high-throughput platform combines SP4 plate-based sample preparation with rapid chromatographic gradients. Data-independent acquisition performed on a Bruker timsTOF Pro 2 consistently identified ~23,000 cysteine sites per run, with a total of ~32,000 cysteine sites profiled in HEK293T and Jurkat lysate. Crucially, this depth in cysteinome coverage is met with high data completeness, enabling robust identification of liganded proteins. In this study, 80 reactive fragments were screened in two cell lines identifying >400 ligand-protein interactions. Hits were validated through concentration-response experiments and the platform was utilised for hit expansion and live cell experiments. This label-free platform represents a significant step forward in high-throughput proteomics to evaluate ligandability of cysteines across the human proteome.
Collapse
Affiliation(s)
- George S Biggs
- Crick-GSK Biomedical LinkLabs, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, UK
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, UK
- Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Emma E Cawood
- Crick-GSK Biomedical LinkLabs, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, UK
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Aini Vuorinen
- Crick-GSK Biomedical LinkLabs, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, UK
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, UK
- Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - William J McCarthy
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Harry Wilders
- Crick-GSK Biomedical LinkLabs, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, UK
- University of Strathclyde, Pure and Applied Chemistry, Glasgow, UK
| | - Ioannis G Riziotis
- Crick-GSK Biomedical LinkLabs, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, UK
- Software Engineering and AI, The Francis Crick Institute, London, UK
| | | | - Jonathan Pettinger
- Crick-GSK Biomedical LinkLabs, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, UK
| | - Luke Nightingale
- Software Engineering and AI, The Francis Crick Institute, London, UK
| | - Peiling Chen
- GSK Chemical Biology, GSK, Collegeville, PA, USA
| | - Andrew J Powell
- Crick-GSK Biomedical LinkLabs, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, UK
| | - David House
- Crick-GSK Biomedical LinkLabs, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, UK
| | - Simon J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - J Mark Skehel
- Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Katrin Rittinger
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, UK.
| | - Jacob T Bush
- Crick-GSK Biomedical LinkLabs, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, UK.
| |
Collapse
|
8
|
Lozano C, Armengaud J. Sample Preparation and Processing for Quick, Universal, and Insightful Microbial Proteomics. Methods Mol Biol 2025; 2884:57-69. [PMID: 39715997 DOI: 10.1007/978-1-0716-4298-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Next-generation shotgun proteomics is one of the most valuable tools for gaining insight into the function of organisms. By providing a list of peptides and abundance information, proteomics enables the identification of proteins, their quantities, posttranslational modifications, and localization. The most refined shotgun proteomics workflow involves protein extraction, trypsin digestion, ultrahigh-performance liquid chromatography coupled to high-resolution tandem mass spectrometry, and confident assignment of resulting spectra to peptide sequences. In this study, we present a versatile, time- and cost-efficient experimental workflow for protein extraction, digestion, and analysis that can be applied to any type of microorganism. Our experimental procedure exhibits superior sensitivity compared to gel-based protocols and can be used for comparative microbial proteomics to highlight key players that explain phenotypic differences between conditions or for proteotyping new microbial isolates for taxonomic purposes.
Collapse
Affiliation(s)
- Clément Lozano
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, CEA, INRAE, Bagnols-sur-Cèze, France
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, CEA, INRAE, Bagnols-sur-Cèze, France.
| |
Collapse
|
9
|
Shikwana F, Heydari BS, Ofori S, Truong C, Turmon AC, Darrouj J, Holoidovsky L, Gustafson JL, Backus KM. CySP3-96 enables scalable, streamlined, and low-cost sample preparation for cysteine chemoproteomic applications. Mol Cell Proteomics 2024:100898. [PMID: 39706478 DOI: 10.1016/j.mcpro.2024.100898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/19/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024] Open
Abstract
Cysteine chemoproteomic screening platforms are widely utilized for chemical probe and drug discovery campaigns. Chemoproteomic compound screens, which use a mass spectrometry-based proteomic readout, can interrogate the structure activity relationship (SAR) for thousands of proteins in parallel across the proteome. The versatility of chemoproteomic screens has been demonstrated across electrophilic, nucleophilic, and reversible classes of molecules. However, a key bottleneck that remains for these approaches is the low throughput nature of most established sample preparation workflows, which rely on many time-intensive and often error prone steps. Addressing these challenges, here we establish a novel workflow, termed CySP3-96, that pairs single-pot, solid-phase-enhanced, sample preparation (SP3) with a customized 96-well sample cleanup workflow to achieve streamlined multiplexed sample preparation. Our CySP3-96 method addresses prior volume limitations of SP3, which allows for seamless 96-well chemoproteomic sample preparation, including for large input amounts that are incompatible with prior methods. By deploying CySP3-96 to screen a focused set of 16 cysteine-reactive compounds, we identify 2633 total ligandable cysteines, including 21 not captured in CysDB. Chemoproteomic analysis of a pair of atropisomeric electrophilic kinase inhibitors reveals striking stereoselective cysteine ligandability for 67 targets across the proteome. When paired with our innovative budget friendly magnetic resin, CySP3-96 represents a versatile, low cost, and highly reproducible screening platform with widespread applications spanning all types of chemoproteomic studies.
Collapse
Affiliation(s)
- Flowreen Shikwana
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
| | - Beeta S Heydari
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA. 92182, USA
| | - Samuel Ofori
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Cindy Truong
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
| | - Alexandra C Turmon
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
| | - Joelle Darrouj
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
| | - Lara Holoidovsky
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Jeffrey L Gustafson
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA. 92182, USA; Stony Brook University, Stony Brook NY, 11794, USA
| | - Keriann M Backus
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA; DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA, 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
10
|
Antony F, Brough Z, Orangi M, Al-Seragi M, Aoki H, Babu M, Duong van Hoa F. Sensitive Profiling of Mouse Liver Membrane Proteome Dysregulation Following a High-Fat and Alcohol Diet Treatment. Proteomics 2024; 24:e202300599. [PMID: 39313981 DOI: 10.1002/pmic.202300599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024]
Abstract
Alcohol consumption and high-fat (HF) diets often coincide in Western society, resulting in synergistic negative effects on liver function. Although studies have analyzed the global protein expression in the context of alcoholic liver disease (ALD) and metabolic dysfunction-associated steatotic liver disease (MASLD), none has offered specific insights on liver dysregulation at the membrane proteome level. Membrane-specific profiling of metabolic and compensatory phenomena is usually overshadowed in conventional proteomic workflows. In this study, we use the Peptidisc method to isolate and compare the membrane protein (MP) content of the liver with its unique biological functions. From mice fed with an HF diet and ethanol in drinking water, we annotate over 1500 liver proteins with half predicted to have at least one transmembrane segment. Among them, we identify 106 integral MPs that are dysregulated compared to the untreated sample. Gene Ontology analysis reveals several dysregulated membrane-associated processes like lipid metabolism, cell adhesion, xenobiotic processing, and mitochondrial membrane formation. Pathways related to cholesterol and bile acid transport are also mutually affected, suggesting an adaptive mechanism to counter the upcoming steatosis of the liver model. Taken together, our Peptidisc-based profiling of the diet-dysregulated liver provides specific insights and hypotheses into the role of the transmembrane proteome in disease development, and flags desirable MPs for therapeutic and diagnostic targeting.
Collapse
Affiliation(s)
- Frank Antony
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zora Brough
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mona Orangi
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mohammed Al-Seragi
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hiroyuki Aoki
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Franck Duong van Hoa
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Lord S, Johnston H, Samant R, Lai Y. Ubiquitylomics: An Emerging Approach for Profiling Protein Ubiquitylation in Skeletal Muscle. J Cachexia Sarcopenia Muscle 2024; 15:2281-2294. [PMID: 39279720 PMCID: PMC11634490 DOI: 10.1002/jcsm.13601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/18/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Skeletal muscle is a highly adaptable tissue, finely tuned by various physiological and pathological factors. Whilst the pivotal role of skeletal muscle in overall health is widely acknowledged, unravelling the underlying molecular mechanisms poses ongoing challenges. Protein ubiquitylation, a crucial post-translational modification, is involved in regulating most biological processes. This widespread impact is achieved through a diverse set of enzymes capable of generating structurally and functionally distinct ubiquitin modifications on proteins. The complexity of protein ubiquitylation has presented significant challenges in not only identifying ubiquitylated proteins but also characterising their functional significance. Mass spectrometry enables in-depth analysis of proteins and their post-translational modification status, offering a powerful tool for studying protein ubiquitylation and its biological diversity: an approach termed ubiquitylomics. Ubiquitylomics has been employed to tackle different perspectives of ubiquitylation, including but not limited to global quantification of substrates and ubiquitin linkages, ubiquitin site recognition and crosstalk with other post-translational modifications. As the field of mass spectrometry continues to evolve, the usage of ubiquitylomics has unravelled novel insights into the regulatory mechanisms of protein ubiquitylation governing biology. However, ubiquitylomics research has predominantly been conducted in cellular models, limiting our understanding of ubiquitin signalling events driving skeletal muscle biology. By integrating the intricate landscape of protein ubiquitylation with dynamic shifts in muscle physiology, ubiquitylomics promises to not only deepen our understanding of skeletal muscle biology but also lay the foundation for developing transformative muscle-related therapeutics. This review aims to articulate how ubiquitylomics can be utilised by researchers to address different aspects of ubiquitylation signalling in skeletal muscle. We explore methods used in ubiquitylomics experiments, highlight relevant literature employing ubiquitylomics in the context of skeletal muscle and outline considerations for experimental design.
Collapse
Affiliation(s)
- Samuel O. Lord
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
| | | | | | - Yu‐Chiang Lai
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
- MRC Versus Arthritis Centre for Musculoskeletal Ageing ResearchUniversity of BirminghamBirminghamUK
- NIHR Birmingham Biomedical Research Centre Sarcopenia and MultimorbidityUniversity of BirminghamBirminghamUK
| |
Collapse
|
12
|
Cheung ST, Kim Y, Cho JH, Brandvold KR, Ghosh B, Del Rosario AM, Bell-Temin H. End-to-End Throughput Chemical Proteomics for Photoaffinity Labeling Target Engagement and Deconvolution. J Proteome Res 2024; 23:4951-4961. [PMID: 39374182 DOI: 10.1021/acs.jproteome.4c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Photoaffinity labeling (PAL) methodologies have proven to be instrumental for the unbiased deconvolution of protein-ligand binding events in physiologically relevant systems. However, like other chemical proteomic workflows, they are limited in many ways by time-intensive sample manipulations and data acquisition techniques. Here, we describe an approach to address this challenge through the innovation of a carboxylate bead-based protein cleanup procedure to remove excess small-molecule contaminants and couple it to plate-based, proteomic sample processing as a semiautomated solution. The analysis of samples via label-free, data-independent acquisition (DIA) techniques led to significant improvements on a workflow time per sample basis over current standard practices. Experiments utilizing three established PAL ligands with known targets, (+)-JQ-1, lenalidomide, and dasatinib, demonstrated the utility of having the flexibility to design experiments with a myriad of variables. Data revealed that this workflow can enable the confident identification and rank ordering of known and putative targets with outstanding protein signal-to-background enrichment sensitivity. This unified end-to-end throughput strategy for processing and analyzing these complex samples could greatly facilitate efficient drug discovery efforts and open up new opportunities in the chemical proteomics field.
Collapse
Affiliation(s)
- Sheldon T Cheung
- Janssen Research & Development, LLC, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Yongkang Kim
- Janssen Research & Development, LLC, 301 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Ji-Hoon Cho
- Janssen Research & Development, LLC, 301 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Kristoffer R Brandvold
- Janssen Research & Development, LLC, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Brahma Ghosh
- Janssen Research & Development, LLC, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Amanda M Del Rosario
- Janssen Research & Development, LLC, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Harris Bell-Temin
- Janssen Research & Development, LLC, 301 Binney Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
13
|
Apiwat C, Houghton JW, Ren R, Tate E, Edel JB, Chanlek N, Luksirikul P, Japrung D. Advancing Albumin Isolation from Human Serum with Graphene Oxide and Derivatives: A Novel Approach for Clinical Applications. ACS OMEGA 2024; 9:40592-40607. [PMID: 39371982 PMCID: PMC11447712 DOI: 10.1021/acsomega.4c04276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/17/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024]
Abstract
This study introduces a novel, environmentally friendly albumin isolation method using graphene oxide (GO). GO selectively extracts albumin from serum samples, leveraging the unique interactions between GO's oxygen-containing functional groups and serum proteins. This method achieves high purification efficiency without the need for hazardous chemicals. Comprehensive characterization of GO and reduced graphene oxide (rGO) through techniques such as X-ray diffraction (XRD) analysis, Raman spectroscopy, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) confirmed the structural and functional group transformations crucial for protein binding. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometry analyses demonstrated over 95% purity of isolated albumin, with minimal contamination from other serum proteins. The developed method, optimized for pH and incubation conditions, showcases a green, cost-effective, and simple alternative for albumin purification, promising broad applicability in biomedical research and clinical applications.
Collapse
Affiliation(s)
- Chayachon Apiwat
- Department
of Chemistry, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
- National
Nanotechnology Center (NANOTEC), National Science and Technology Development
Agency (NSTDA), Thailand Science Park, Pathumthani 10120, Thailand
| | - Jack W. Houghton
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
| | - Ren Ren
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
- Department
of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, U.K.
| | - Edward Tate
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
| | - Joshua B. Edel
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
| | - Narong Chanlek
- Synchrotron
Light Research Institute (Public Organization), 111 University Avenue, Muang, Nakhon Ratchasrima 30000, Thailand
| | - Patraporn Luksirikul
- Department
of Chemistry, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
- Center
for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural
Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| | - Deanpen Japrung
- National
Nanotechnology Center (NANOTEC), National Science and Technology Development
Agency (NSTDA), Thailand Science Park, Pathumthani 10120, Thailand
| |
Collapse
|
14
|
Shao X, Huang Y, Xu R, He Q, Zhang M, He F, Wang D. ZASP: A Highly Compatible and Sensitive ZnCl 2 Precipitation-Assisted Sample Preparation Method for Proteomic Analysis. Mol Cell Proteomics 2024; 23:100837. [PMID: 39243857 PMCID: PMC11492125 DOI: 10.1016/j.mcpro.2024.100837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024] Open
Abstract
Universal sample preparation for proteomic analysis that enables unbiased protein manipulation, flexible reagent use, and low protein loss is required to ensure the highest sensitivity of downstream liquid chromatography-mass spectrometry (LC-MS) analysis. To address these needs, we developed a ZnCl2 precipitation-assisted sample preparation method (ZASP) that depletes harsh detergents and impurities in protein solutions prior to trypsin digestion via 10 min of ZnCl2 and methanol-induced protein precipitation at room temperature (RT). ZASP can remove trypsin digestion and LC-MS incompatible detergents such as SDS, Triton X-100, and urea at high concentrations in solution and unbiasedly recover proteins independent of the amount of protein input. We demonstrated the sensitivity and reproducibility of ZASP in an analysis of samples with 1 μg to 1000 μg of proteins. Compared to commonly used sample preparation methods such as SDC-based in-solution digestion, acetone precipitation, FASP, and SP3, ZASP has proven to be an efficient approach. Here, we present ZASP, a practical, robust, and cost-effective proteomic sample preparation method that can be applied to profile different types of samples.
Collapse
Affiliation(s)
- Xianfeng Shao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China; Beijing Proteome Research Center, Beijing, China; International Academy of Phronesis Medicine, Guangzhou, Guangdong, China; The π-Hub Infrastructure, Guangzhou, Guangdong, China
| | - Yuanxuan Huang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China; Beijing Proteome Research Center, Beijing, China; International Academy of Phronesis Medicine, Guangzhou, Guangdong, China; The π-Hub Infrastructure, Guangzhou, Guangdong, China
| | - Rong Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China; Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Qiqing He
- International Academy of Phronesis Medicine, Guangzhou, Guangdong, China; The π-Hub Infrastructure, Guangzhou, Guangdong, China
| | - Min Zhang
- Department of Dermatology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China; Beijing Proteome Research Center, Beijing, China; International Academy of Phronesis Medicine, Guangzhou, Guangdong, China; The π-Hub Infrastructure, Guangzhou, Guangdong, China; Guangzhou Laboratory, Guangzhou, Guangdong, China.
| | - Dongxue Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China; Beijing Proteome Research Center, Beijing, China; International Academy of Phronesis Medicine, Guangzhou, Guangdong, China; The π-Hub Infrastructure, Guangzhou, Guangdong, China.
| |
Collapse
|
15
|
Russo DA, Oliinyk D, Pohnert G, Meier F, Zedler JAZ. EXCRETE workflow enables deep proteomics of the microbial extracellular environment. Commun Biol 2024; 7:1189. [PMID: 39322645 PMCID: PMC11424642 DOI: 10.1038/s42003-024-06910-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024] Open
Abstract
Extracellular proteins play a significant role in shaping microbial communities which, in turn, can impact ecosystem function, human health, and biotechnological processes. Yet, for many ubiquitous microbes, there is limited knowledge regarding the identity and function of secreted proteins. Here, we introduce EXCRETE (enhanced exoproteome characterization by mass spectrometry), a workflow that enables comprehensive description of microbial exoproteomes from minimal starting material. Using cyanobacteria as a case study, we benchmark EXCRETE and show a significant increase over current methods in the identification of extracellular proteins. Subsequently, we show that EXCRETE can be miniaturized and adapted to a 96-well high-throughput format. Application of EXCRETE to cyanobacteria from different habitats (Synechocystis sp. PCC 6803, Synechococcus sp. PCC 11901, and Nostoc punctiforme PCC 73102), and in different cultivation conditions, identified up to 85% of all potentially secreted proteins. Finally, functional analysis reveals that cell envelope maintenance and nutrient acquisition are central functions of the predicted cyanobacterial secretome. Collectively, these findings challenge the general belief that cyanobacteria lack secretory proteins and suggest that multiple functions of the secretome are conserved across freshwater, marine, and terrestrial species.
Collapse
Affiliation(s)
- David A Russo
- Bioorganic Analytics, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany.
| | - Denys Oliinyk
- Functional Proteomics, Jena University Hospital, Jena, Germany
| | - Georg Pohnert
- Bioorganic Analytics, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Florian Meier
- Functional Proteomics, Jena University Hospital, Jena, Germany
| | - Julie A Z Zedler
- Synthetic Biology of Photosynthetic Organisms, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
16
|
Pecina P, Čunátová K, Kaplanová V, Puertas-Frias G, Šilhavý J, Tauchmannová K, Vrbacký M, Čajka T, Gahura O, Hlaváčková M, Stránecký V, Kmoch S, Pravenec M, Houštěk J, Mráček T, Pecinová A. Haplotype variability in mitochondrial rRNA predisposes to metabolic syndrome. Commun Biol 2024; 7:1116. [PMID: 39261587 PMCID: PMC11391015 DOI: 10.1038/s42003-024-06819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
Metabolic syndrome is a growing concern in developed societies and due to its polygenic nature, the genetic component is only slowly being elucidated. Common mitochondrial DNA sequence variants have been associated with symptoms of metabolic syndrome and may, therefore, be relevant players in the genetics of metabolic syndrome. We investigate the effect of mitochondrial sequence variation on the metabolic phenotype in conplastic rat strains with identical nuclear but unique mitochondrial genomes, challenged by high-fat diet. We find that the variation in mitochondrial rRNA sequence represents risk factor in the insulin resistance development, which is associated with diacylglycerols accumulation, induced by tissue-specific reduction of the oxidative capacity. These metabolic perturbations stem from the 12S rRNA sequence variation affecting mitochondrial ribosome assembly and translation. Our work demonstrates that physiological variation in mitochondrial rRNA might represent a relevant underlying factor in the progression of metabolic syndrome.
Collapse
Affiliation(s)
- Petr Pecina
- Laboratory of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Kristýna Čunátová
- Laboratory of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Vilma Kaplanová
- Laboratory of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Guillermo Puertas-Frias
- Laboratory of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Šilhavý
- Laboratory of Genetics of Model Diseases, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Kateřina Tauchmannová
- Laboratory of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Marek Vrbacký
- Laboratory of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Čajka
- Laboratory of Translational Metabolism, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Markéta Hlaváčková
- Laboratory of Developmental Cardiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Viktor Stránecký
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michal Pravenec
- Laboratory of Genetics of Model Diseases, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Josef Houštěk
- Laboratory of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Mráček
- Laboratory of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| | - Alena Pecinová
- Laboratory of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
17
|
Bedwell L, Mavrotas M, Demchenko N, Yaa RM, Willis B, Demianova Z, Syed N, Whitwell HJ, Nott A. FANS Unfixed: Isolation and Proteomic Analysis of Mouse Cell Type-Specific Brain Nuclei. J Proteome Res 2024; 23:3847-3857. [PMID: 39056441 PMCID: PMC11385383 DOI: 10.1021/acs.jproteome.4c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Epigenetic-mediated gene regulation orchestrates brain cell-type gene expression programs, and epigenetic dysregulation is a major driver of aging and disease-associated changes. Proteins that mediate gene regulation are mostly localized to the nucleus; however, nuclear-localized proteins are often underrepresented in gene expression studies and have been understudied in the context of the brain. To address this challenge, we have optimized an approach for nuclei isolation that is compatible with proteomic analysis. This was coupled to a mass spectrometry protocol for detecting proteins in low-concentration samples. We have generated nuclear proteomes for neurons, microglia, and oligodendrocytes from the mouse brain cortex and identified cell-type nuclear proteins associated with chromatin structure and organization, chromatin modifiers such as transcription factors, and RNA-binding proteins, among others. Our nuclear proteomics platform paves the way for assessing brain cell type changes in the nuclear proteome across health and disease, such as neurodevelopmental, aging, neurodegenerative, and neuroinflammatory conditions. Data are available via ProteomeXchange with the identifier PXD053515.
Collapse
Affiliation(s)
- Lucy Bedwell
- Department of Brain Sciences, Imperial College London, London W12 0NN, U.K
- UK Dementia Research Institute, Imperial College London, London W12 0NN, U.K
| | - Myrto Mavrotas
- Department of Brain Sciences, Imperial College London, London W12 0NN, U.K
| | - Nikita Demchenko
- MRC Laboratory of Medical Sciences, Du Cane Road, London W12 0NN, U.K
| | - Reuben M Yaa
- Department of Brain Sciences, Imperial College London, London W12 0NN, U.K
- UK Dementia Research Institute, Imperial College London, London W12 0NN, U.K
| | - Brittannie Willis
- Department of Brain Sciences, Imperial College London, London W12 0NN, U.K
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London W12 0NN, U.K
| | | | - Nelofer Syed
- Department of Brain Sciences, Imperial College London, London W12 0NN, U.K
| | - Harry J Whitwell
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London W12 0NN, U.K
| | - Alexi Nott
- Department of Brain Sciences, Imperial College London, London W12 0NN, U.K
- UK Dementia Research Institute, Imperial College London, London W12 0NN, U.K
| |
Collapse
|
18
|
Conforti JM, Ziegler AM, Worth CS, Nambiar AM, Bailey JT, Taube JH, Gallagher ES. Differences in Protein Capture by SP3 and SP4 Demonstrate Mechanistic Insights of Proteomics Cleanup Techniques. J Proteome Res 2024; 23:3877-3889. [PMID: 39161190 DOI: 10.1021/acs.jproteome.4c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The goal of proteomics experiments is to identify proteins to observe changes in cellular processes and diseases. One challenge in proteomics is the removal of contaminants following protein extraction, which can limit protein identifications. Single-pot, solid-phase-enhanced sample preparation (SP3) is a cleanup technique in which proteins are captured on carboxylate-modified particles through a proposed hydrophilic-interaction-liquid-chromatography (HILIC)-like mechanism. Recent results have suggested that proteins are captured in SP3 due to a protein-aggregation mechanism. Solvent precipitation, single-pot, solid-phase-enhanced sample preparation (SP4) is a newer cleanup technique that employs protein aggregation to capture proteins without modified particles. We hypothesize that differences in capture mechanisms of SP3 and SP4 affect which proteins are identified by each cleanup technique. Herein, we assess the proteins identified and enriched using SP3 versus SP4 for MCF7 subcellular fractions and correlate protein capture in each method to protein hydrophobicity. Our results indicate that SP3 captures more hydrophilic proteins through a combination of HILIC-like and protein-aggregation mechanisms, while SP4 captures more hydrophobic proteins through a protein-aggregation mechanism. Ultimately, we demonstrate that protein-capture mechanisms are distinct, and the selection of a cleanup technique that yields high proteome coverage is dependent on protein-sample hydrophobicity. Data has been deposited into MassIVE (MSV000094130) and ProteomeXchange (PXD049965).
Collapse
Affiliation(s)
- Jessica M Conforti
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Amanda M Ziegler
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Charli S Worth
- Department of Biology, Baylor University, One Bear Place #97388, Waco, Texas 76798, United States
| | - Adhwaitha M Nambiar
- Department of Biology, Baylor University, One Bear Place #97388, Waco, Texas 76798, United States
| | - Jacob T Bailey
- Department of Biology, Baylor University, One Bear Place #97388, Waco, Texas 76798, United States
| | - Joseph H Taube
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
- Department of Biology, Baylor University, One Bear Place #97388, Waco, Texas 76798, United States
| | - Elyssia S Gallagher
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| |
Collapse
|
19
|
Sundara Moorthy R, Swetha G, Rondla R, Hu A, Vallakeerthi N, Reddy PM. Greener and whiter analytical method development and validation for determining the presence of zolpidem tartrate infused in apple juice using RP-HPLC via magnetic solid-phase extraction followed by LC-MS confirmatory analysis. RSC Adv 2024; 14:28168-28181. [PMID: 39234522 PMCID: PMC11372563 DOI: 10.1039/d4ra04303k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
The research work entails a newly developed RP-HPLC method, aimed at analyzing the modern date rape drug, zolpidem tartrate (ZT), infused in apple juice matrix. The work relies on dispersive solid-phase extraction (DSPE) with polyethylene imine (PEI)-coated magnetic nanoparticles to preconcentrate zolpidem from the matrix, in the presence of trifluoroacetic acid (TFA) for matrix isolation, for the first time. The optimized conditions emphasize the use of an environmentally preferable mobile phase [methanol: 0.5% acetic acid (60 : 40% v/v; pH 2.50)] at a 1 ml min-1 flow rate, employed with a Platisil Octa-Decyl Silane (ODS) column (250 × 4.6 mm; 5 μm). Further, the validated results were confirmed to be within the ICH guidelines, marking the method demonstrated to be linear (R 2 = 0.9988; 0.9957), robust (% RSD below 1), sensitive (LOD = 1.8 μg ml; LOQ = 6 μg ml-1), precise and accurate (% recovery = 92-120%). Following the same conditions, a confirmatory analysis of zolpidem was accomplished using LC-MS, verifying the method's suitability notably, with good peak resolution, less matrix interference and a confirmation of the presence of zolpidem using mass spectrometry. The recycling ability of the PEI@SiO2@Fe3O4 nanoparticles was also assessed. To determine the sustainability of the proposed work, a greener and whiter assessment has been carried out in a comparative mode with previous similar works. For green tools, the recently developed AGREE software was utilized for assessing the method's greeness and it demonstrated a good green score of 0.68, supported by method assessment using ComplexGAPI software. For the assessment of the method's blue principles, the latest software utilizing the blue applicability grade index (BAGI) was applied, resulting in a decent score of 62.5. To consider sustainability, the RGB methodical software in its latest version the RGBfast model, was incorporated in the study for furnishing a balance of the three different major principles (Red-Green-Blue) and for assessing a check on sustainability of the current method compared to similar previously established proposed works.
Collapse
Affiliation(s)
- Revathy Sundara Moorthy
- Department of Chemistry, University College of Science, Osmania University Tarnaka Hyderabad Telangana 500007 India
| | - G Swetha
- Department of Chemistry, University College of Science, Osmania University Tarnaka Hyderabad Telangana 500007 India
| | - Rohini Rondla
- Department of Chemistry (H & S), Vidya Jyothi Institute of Technology Aziz Nagar Gate Hyderabad Telangana 500075 India
| | - Anren Hu
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University Haulien 97004 Taiwan
| | - Narmada Vallakeerthi
- Department of Pharmacy, University College of Technology, Osmania University Hyderabad 500007 Telangana India
| | - P Muralidhar Reddy
- Department of Chemistry, University College of Science, Osmania University Tarnaka Hyderabad Telangana 500007 India
| |
Collapse
|
20
|
Han Q, Fernandez J, Rajczewski AT, Kono TJY, Weirath NA, Rahim A, Lee AS, Seabloom D, Tretyakova NY. A Multi-Omics Study of Epigenetic Changes in Type II Alveolar Cells of A/J Mice Exposed to Environmental Tobacco Smoke. Int J Mol Sci 2024; 25:9365. [PMID: 39273313 PMCID: PMC11394788 DOI: 10.3390/ijms25179365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Lung cancer remains a major contributor to cancer fatalities, with cigarette smoking known to be responsible for up to 80% of cases. Based on the ability of cigarette smoke to induce inflammation in the lungs and increased lung cancer incidence in smokers with inflammatory conditions such as COPD, we hypothesized that inflammation plays an important role in the carcinogenicity of cigarette smoke. To test this hypothesis, we performed multi-omic analyses of Type II pneumocytes of A/J mice exposed to cigarette smoke for various time periods. We found that cigarette smoke exposure resulted in significant changes in DNA methylation and hydroxymethylation, gene expression patterns, and protein abundance that were partially reversible and contributed to an inflammatory and potentially oncogenic phenotype.
Collapse
Affiliation(s)
- Qiyuan Han
- Department of Biochemistry, Biophysics and Molecular Biology, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA; (Q.H.); (A.T.R.)
| | - Jenna Fernandez
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA; (J.F.); (N.A.W.); (A.R.)
| | - Andrew T. Rajczewski
- Department of Biochemistry, Biophysics and Molecular Biology, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA; (Q.H.); (A.T.R.)
| | - Thomas J. Y. Kono
- Minnesota Supercomputing Institute, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA;
| | - Nicholas A. Weirath
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA; (J.F.); (N.A.W.); (A.R.)
| | - Abdur Rahim
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA; (J.F.); (N.A.W.); (A.R.)
| | - Alexander S. Lee
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Evanston, IL 60611, USA;
| | - Donna Seabloom
- AeroCore Testing Services, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA;
| | - Natalia Y. Tretyakova
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA; (J.F.); (N.A.W.); (A.R.)
| |
Collapse
|
21
|
Tanca A, Deledda MA, De Diego L, Abbondio M, Uzzau S. Benchmarking low- and high-throughput protein cleanup and digestion methods for human fecal metaproteomics. mSystems 2024; 9:e0066124. [PMID: 38934547 PMCID: PMC11265449 DOI: 10.1128/msystems.00661-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The application of fecal metaproteomics to large-scale studies of the gut microbiota requires high-throughput analysis and standardized experimental protocols. Although high-throughput protein cleanup and digestion methods are increasingly used in shotgun proteomics, no studies have yet critically compared such protocols using human fecal samples. In this study, human fecal protein extracts were processed using several different protocols based on three main approaches: filter-aided sample preparation (FASP), solid-phase-enhanced sample preparation (SP3), and suspension trapping (S-Trap). These protocols were applied in both low-throughput (i.e., microtube-based) and high-throughput (i.e., microplate-based) formats, and the final peptide mixtures were analyzed by liquid chromatography coupled to high-resolution tandem mass spectrometry. The FASP-based methods and the combination of SP3 with in-StageTips (iST) yielded the best results in terms of the number of peptides identified through a database search against gut microbiome and human sequences. The efficiency of protein digestion, the ability to preserve hydrophobic peptides and high molecular weight proteins, and the reproducibility of the methods were also evaluated for the different protocols. Other relevant variables, including interindividual variability of stool, duration of protocols, and total costs, were considered and discussed. In conclusion, the data presented here can significantly contribute to the optimization and standardization of sample preparation protocols in human fecal metaproteomics. Furthermore, the promising results obtained with the high-throughput methods are expected to encourage the development of automated workflows and their application to large-scale gut microbiome studies.IMPORTANCEFecal metaproteomics is an experimental approach that allows the investigation of gut microbial functions, which are involved in many different physiological and pathological processes. Standardization and automation of sample preparation protocols in fecal metaproteomics are essential for its application in large-scale studies. Here, we comparatively evaluated different methods, available also in a high-throughput format, enabling two key steps of the metaproteomics analytical workflow (namely, protein cleanup and digestion). The results of our study provide critical information that may be useful for the optimization of metaproteomics experimental pipelines and their implementation in laboratory automation systems.
Collapse
Affiliation(s)
- Alessandro Tanca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Unit of Microbiology and Virology, University Hospital of Sassari, Sassari, Italy
| | | | - Laura De Diego
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Marcello Abbondio
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Unit of Microbiology and Virology, University Hospital of Sassari, Sassari, Italy
| | - Sergio Uzzau
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Unit of Microbiology and Virology, University Hospital of Sassari, Sassari, Italy
| |
Collapse
|
22
|
Horáková E, Vrbacký M, Tesařová M, Stříbrná E, Pilný J, Vavrušková Z, Vancová M, Sobotka R, Lukeš J, Perner J. Haptoglobin is dispensable for haemoglobin uptake by Trypanosoma brucei. Front Immunol 2024; 15:1441131. [PMID: 39114668 PMCID: PMC11304504 DOI: 10.3389/fimmu.2024.1441131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/19/2024] [Indexed: 08/10/2024] Open
Abstract
Haptoglobin is a plasma protein of mammals that plays a crucial role in vascular homeostasis by binding free haemoglobin released from ruptured red blood cells. Trypanosoma brucei can exploit this by internalising haptoglobin-haemoglobin complex to acquire host haem. Here, we investigated the impact of haptoglobin deficiency (Hp-/-) on T. brucei brucei infection and the parasite´s capacity to internalise haemoglobin in a Hp-/- mouse model. The infected Hp-/- mice exhibited normal disease progression, with minimal weight loss and no apparent organ pathology, similarly to control mice. While the proteomic profile of mouse sera significantly changed in response to T. b. brucei, no differences in the infection response markers of blood plasma between Hp-/- and control Black mice were observed. Similarly, very few quantitative differences were observed between the proteomes of parasites harvested from Hp-/- and Black mice, including both endogenous proteins and internalised host proteins. While haptoglobin was indeed absent from parasites isolated from Hp-/-mice, haemoglobin peptides were unexpectedly detected in parasites from both Hp-/- and Black mice. Combined, the data support the dispensability of haptoglobin for haemoglobin internalisation by T. b. brucei during infection in mice. Since the trypanosomes knock-outs for their haptoglobin-haemoglobin receptor (HpHbR) internalised significantly less haemoglobin from Hp-/- mice compared to those isolated from Black mice, it suggests that T. b. brucei employs also an HpHbR-independent haptoglobin-mediated mode for haemoglobin internalisation. Our study reveals a so-far hidden flexibility of haemoglobin acquisition by T. b. brucei and offers novel insights into alternative haemoglobin uptake pathways.
Collapse
Affiliation(s)
- Eva Horáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czechia
| | - Marek Vrbacký
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Martina Tesařová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Eva Stříbrná
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Jan Pilný
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czechia
| | - Zuzana Vavrušková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Marie Vancová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Roman Sobotka
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Jan Perner
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| |
Collapse
|
23
|
Karpov OA, Stotland A, Raedschelders K, Chazarin B, Ai L, Murray CI, Van Eyk JE. Proteomics of the heart. Physiol Rev 2024; 104:931-982. [PMID: 38300522 PMCID: PMC11381016 DOI: 10.1152/physrev.00026.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/25/2023] [Accepted: 01/14/2024] [Indexed: 02/02/2024] Open
Abstract
Mass spectrometry-based proteomics is a sophisticated identification tool specializing in portraying protein dynamics at a molecular level. Proteomics provides biologists with a snapshot of context-dependent protein and proteoform expression, structural conformations, dynamic turnover, and protein-protein interactions. Cardiac proteomics can offer a broader and deeper understanding of the molecular mechanisms that underscore cardiovascular disease, and it is foundational to the development of future therapeutic interventions. This review encapsulates the evolution, current technologies, and future perspectives of proteomic-based mass spectrometry as it applies to the study of the heart. Key technological advancements have allowed researchers to study proteomes at a single-cell level and employ robot-assisted automation systems for enhanced sample preparation techniques, and the increase in fidelity of the mass spectrometers has allowed for the unambiguous identification of numerous dynamic posttranslational modifications. Animal models of cardiovascular disease, ranging from early animal experiments to current sophisticated models of heart failure with preserved ejection fraction, have provided the tools to study a challenging organ in the laboratory. Further technological development will pave the way for the implementation of proteomics even closer within the clinical setting, allowing not only scientists but also patients to benefit from an understanding of protein interplay as it relates to cardiac disease physiology.
Collapse
Affiliation(s)
- Oleg A Karpov
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Aleksandr Stotland
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Koen Raedschelders
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Blandine Chazarin
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Lizhuo Ai
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Christopher I Murray
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Jennifer E Van Eyk
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| |
Collapse
|
24
|
Ciordia S, Santos FM, Dias JML, Lamas JR, Paradela A, Alvarez-Sola G, Ávila MA, Corrales F. Refinement of paramagnetic bead-based digestion protocol for automatic sample preparation using an artificial neural network. Talanta 2024; 274:125988. [PMID: 38569368 DOI: 10.1016/j.talanta.2024.125988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Despite technological advances in the proteomics field, sample preparation still represents the main bottleneck in mass spectrometry (MS) analysis. Bead-based protein aggregation techniques have recently emerged as an efficient, reproducible, and high-throughput alternative for protein extraction and digestion. Here, a refined paramagnetic bead-based digestion protocol is described for Opentrons® OT-2 platform (OT-2) as a versatile, reproducible, and affordable alternative for the automatic sample preparation for MS analysis. For this purpose, an artificial neural network (ANN) was applied to maximize the number of peptides without missed cleavages identified in HeLa extract by combining factors such as the quantity (μg) of trypsin/Lys-C and beads (MagReSyn® Amine), % (w/v) SDS, % (v/v) acetonitrile, and time of digestion (h). ANN model predicted the optimal conditions for the digestion of 50 μg of HeLa extract, pointing to the use of 2.5% (w/v) SDS and 300 μg of beads for sample preparation and long-term digestion (16h) with 0.15 μg Lys-C and 2.5 μg trypsin (≈1:17 ratio). Based on the results of the ANN model, the manual protocol was automated in OT-2. The performance of the automatic protocol was evaluated with different sample types, including human plasma, Arabidopsis thaliana leaves, Escherichia coli cells, and mouse tissue cortex, showing great reproducibility and low sample-to-sample variability in all cases. In addition, we tested the performance of this method in the preparation of a challenging biological fluid such as rat bile, a proximal fluid that is rich in bile salts, bilirubin, cholesterol, and fatty acids, among other MS interferents. Compared to other protocols described in the literature for the extraction and digestion of bile proteins, the method described here allowed identify 385 unique proteins, thus contributing to improving the coverage of the bile proteome.
Collapse
Affiliation(s)
- Sergio Ciordia
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología, CSIC, Calle Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Fátima Milhano Santos
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología, CSIC, Calle Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | - João M L Dias
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom; Early Cancer Institute, University of Cambridge, Cambridge, United Kingdom
| | - José Ramón Lamas
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología, CSIC, Calle Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Alberto Paradela
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología, CSIC, Calle Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Gloria Alvarez-Sola
- Hepatology Laboratory, Solid Tumors Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029, Madrid, Spain; IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain
| | - Matías A Ávila
- Hepatology Laboratory, Solid Tumors Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029, Madrid, Spain; IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain
| | - Fernando Corrales
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología, CSIC, Calle Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
25
|
Brough Z, Zhao Z, Duong van Hoa F. From bottom-up to cell surface proteomics: detergents or no detergents, that is the question. Biochem Soc Trans 2024; 52:1253-1263. [PMID: 38666604 PMCID: PMC11346462 DOI: 10.1042/bst20231020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 06/27/2024]
Abstract
Measuring the expression levels of membrane proteins (MPs) is crucial for understanding cell differentiation and tissue specificity, defining disease characteristics, identifying biomarkers, and developing therapeutics. While bottom-up proteomics addresses the need for accurately surveying the membrane proteome, the lower abundance and hydrophobic nature of MPs pose challenges in sample preparation. As MPs normally reside in the lipid bilayer, conventional extraction methods rely on detergents, introducing here a paradox - detergents prevent aggregation and facilitate protein processing, but themselves become contaminants that interfere with downstream analytical applications. Various detergent removal methods exist to mitigate this issue, including filter-aided sample preparation, SP3, suspension trapping, and membrane mimetics. This review delves into the fundamentals of each strategy, applications, merits, and limitations, providing insights into their effectiveness in MP research.
Collapse
Affiliation(s)
- Zora Brough
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Zhiyu Zhao
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Franck Duong van Hoa
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
26
|
Zhen K, Hou W, Bai L, Wang M, Yue Z, Xu Z, Xiong D, Gao L, Ying W. An effective urobilin clearance strategy based on paramagnetic beads facilitates microscale proteomic analysis of urine. Analyst 2024; 149:3625-3635. [PMID: 38775334 DOI: 10.1039/d4an00312h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Urine provides an ideal source for disease biomarker discovery. High-adhesion contaminants such as urobilin, which are difficult to remove from urine, can severely interfere with urinary proteomic analysis. Here, we aimed to establish a strategy based on single-pot, solid-phase-enhanced sample preparation (SP3) technology to prepare samples for urinary proteomics analysis that almost completely eliminates the impact of urobilin. A systematic evaluation of the effects of two urinary protein precipitation methods, two types of protein lysis buffers, and different ratios of magnetic digestion beads on the identification and quantification of the microscale urinary proteome was conducted. Our results indicate that methanol-chloroform precipitation, coupled with efficient lysis facilitated by urea, and subsequent enzymatic digestion using a mix of hydrophilic and hydrophobic magnetic beads offers the best performance. Further applying this strategy to the urine of patients with benign prostatic hyperplasia, prostate cancer and healthy individuals, combined with a narrow window of data-independent acquisition, FGFR4, MYLK, ORM2, GOLM1, SPP1, CD55, CSF1, DLD and TIMP3 were identified as potential biomarkers to discriminate benign prostatic hyperplasia and prostate cancer patients.
Collapse
Affiliation(s)
- Kemiao Zhen
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Wenhao Hou
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Lu Bai
- Department of Urology Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China.
| | - Mingchao Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Zhan Yue
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Zanxin Xu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Deyun Xiong
- Department of Urology Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China.
| | - Li Gao
- Department of Urology Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China.
| | - Wantao Ying
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| |
Collapse
|
27
|
Dans MG, Boulet C, Watson GM, Nguyen W, Dziekan JM, Evelyn C, Reaksudsan K, Mehra S, Razook Z, Geoghegan ND, Mlodzianoski MJ, Goodman CD, Ling DB, Jonsdottir TK, Tong J, Famodimu MT, Kristan M, Pollard H, Stewart LB, Brandner-Garrod L, Sutherland CJ, Delves MJ, McFadden GI, Barry AE, Crabb BS, de Koning-Ward TF, Rogers KL, Cowman AF, Tham WH, Sleebs BE, Gilson PR. Aryl amino acetamides prevent Plasmodium falciparum ring development via targeting the lipid-transfer protein PfSTART1. Nat Commun 2024; 15:5219. [PMID: 38890312 PMCID: PMC11189555 DOI: 10.1038/s41467-024-49491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
With resistance to most antimalarials increasing, it is imperative that new drugs are developed. We previously identified an aryl acetamide compound, MMV006833 (M-833), that inhibited the ring-stage development of newly invaded merozoites. Here, we select parasites resistant to M-833 and identify mutations in the START lipid transfer protein (PF3D7_0104200, PfSTART1). Introducing PfSTART1 mutations into wildtype parasites reproduces resistance to M-833 as well as to more potent analogues. PfSTART1 binding to the analogues is validated using organic solvent-based Proteome Integral Solubility Alteration (Solvent PISA) assays. Imaging of invading merozoites shows the inhibitors prevent the development of ring-stage parasites potentially by inhibiting the expansion of the encasing parasitophorous vacuole membrane. The PfSTART1-targeting compounds also block transmission to mosquitoes and with multiple stages of the parasite's lifecycle being affected, PfSTART1 represents a drug target with a new mechanism of action.
Collapse
Affiliation(s)
- Madeline G Dans
- Burnet Institute, Melbourne, VIC, 3004, Australia.
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia.
- Institute of Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, VIC, 3220, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Coralie Boulet
- Burnet Institute, Melbourne, VIC, 3004, Australia
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, 1206, Switzerland
| | - Gabrielle M Watson
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - William Nguyen
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jerzy M Dziekan
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Cindy Evelyn
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kitsanapong Reaksudsan
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Somya Mehra
- Burnet Institute, Melbourne, VIC, 3004, Australia
- Institute of Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, VIC, 3220, Australia
| | - Zahra Razook
- Burnet Institute, Melbourne, VIC, 3004, Australia
- Institute of Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, VIC, 3220, Australia
| | - Niall D Geoghegan
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Michael J Mlodzianoski
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | | | | | - Thorey K Jonsdottir
- Burnet Institute, Melbourne, VIC, 3004, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
| | - Joshua Tong
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
| | - Mufuliat Toyin Famodimu
- Department of Infection Biology, Faculty of Infectious Diseases, London School of Hygiene and Tropical Medicine, WC1E 7HT, London, UK
| | - Mojca Kristan
- Wellcome Trust Human Malaria Transmission Facility, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Harry Pollard
- Wellcome Trust Human Malaria Transmission Facility, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Lindsay B Stewart
- Wellcome Trust Human Malaria Transmission Facility, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Luke Brandner-Garrod
- Wellcome Trust Human Malaria Transmission Facility, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Colin J Sutherland
- Department of Infection Biology, Faculty of Infectious Diseases, London School of Hygiene and Tropical Medicine, WC1E 7HT, London, UK
- Wellcome Trust Human Malaria Transmission Facility, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Michael J Delves
- Department of Infection Biology, Faculty of Infectious Diseases, London School of Hygiene and Tropical Medicine, WC1E 7HT, London, UK
| | - Geoffrey I McFadden
- School of Biosciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Alyssa E Barry
- Burnet Institute, Melbourne, VIC, 3004, Australia
- Institute of Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, VIC, 3220, Australia
| | - Brendan S Crabb
- Burnet Institute, Melbourne, VIC, 3004, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Monash University, 3800, Melbourne, VIC, Australia
| | - Tania F de Koning-Ward
- Institute of Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, VIC, 3220, Australia
| | - Kelly L Rogers
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Alan F Cowman
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Wai-Hong Tham
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Brad E Sleebs
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paul R Gilson
- Burnet Institute, Melbourne, VIC, 3004, Australia.
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
28
|
Martin KR, Le HT, Abdelgawad A, Yang C, Lu G, Keffer JL, Zhang X, Zhuang Z, Asare-Okai PN, Chan CS, Batish M, Yu Y. Development of an efficient, effective, and economical technology for proteome analysis. CELL REPORTS METHODS 2024; 4:100796. [PMID: 38866007 PMCID: PMC11228373 DOI: 10.1016/j.crmeth.2024.100796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/21/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024]
Abstract
We present an efficient, effective, and economical approach, named E3technology, for proteomics sample preparation. By immobilizing silica microparticles into the polytetrafluoroethylene matrix, we develop a robust membrane medium, which could serve as a reliable platform to generate proteomics-friendly samples in a rapid and low-cost fashion. We benchmark its performance using different formats and demonstrate them with a variety of sample types of varied complexity, quantity, and volume. Our data suggest that E3technology provides proteome-wide identification and quantitation performance equivalent or superior to many existing methods. We further propose an enhanced single-vessel approach, named E4technology, which performs on-filter in-cell digestion with minimal sample loss and high sensitivity, enabling low-input and low-cell proteomics. Lastly, we utilized the above technologies to investigate RNA-binding proteins and profile the intact bacterial cell proteome.
Collapse
Affiliation(s)
- Katherine R Martin
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Ha T Le
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Ahmed Abdelgawad
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| | - Canyuan Yang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Guotao Lu
- CDS Analytical, LLC, Oxford, PA 19363, USA
| | - Jessica L Keffer
- Department of Earth Sciences, University of Delaware, Newark, DE 19716, USA
| | | | - Zhihao Zhuang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Papa Nii Asare-Okai
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Clara S Chan
- Department of Earth Sciences, University of Delaware, Newark, DE 19716, USA; School of Marine Science and Policy, University of Delaware, Newark, DE 19716, USA
| | - Mona Batish
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA.
| | - Yanbao Yu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
29
|
Greguš M, Koller A, Ray S, Ivanov AR. Improved Data Acquisition Settings on Q Exactive HF-X and Fusion Lumos Tribrid Orbitrap-Based Mass Spectrometers for Proteomic Analysis of Limited Samples. J Proteome Res 2024; 23:2230-2240. [PMID: 38690845 PMCID: PMC11165581 DOI: 10.1021/acs.jproteome.4c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
Deep proteomic profiling of complex biological and medical samples available at low nanogram and subnanogram levels is still challenging. Thorough optimization of settings, parameters, and conditions in nanoflow liquid chromatography-tandem mass spectrometry (MS)-based proteomic profiling is crucial for generating informative data using amount-limited samples. This study demonstrates that by adjusting selected instrument parameters, e.g., ion injection time, automated gain control, and minimally altering the conditions for resuspending or storing the sample in solvents of different compositions, up to 15-fold more thorough proteomic profiling can be achieved compared to conventionally used settings. More specifically, the analysis of 1 ng of the HeLa protein digest standard by Q Exactive HF-X Hybrid Quadrupole-Orbitrap and Orbitrap Fusion Lumos Tribrid mass spectrometers yielded an increase from 1758 to 5477 (3-fold) and 281 to 4276 (15-fold) peptides, respectively, demonstrating that higher protein identification results can be obtained using the optimized methods. While the instruments applied in this study do not belong to the latest generation of mass spectrometers, they are broadly used worldwide, which makes the guidelines for improving performance desirable to a wide range of proteomics practitioners.
Collapse
Affiliation(s)
- Michal Greguš
- Barnett Institute of Chemical
and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115, United States
| | - Antonius Koller
- Barnett Institute of Chemical
and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115, United States
| | - Somak Ray
- Barnett Institute of Chemical
and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115, United States
| | - Alexander R. Ivanov
- Barnett Institute of Chemical
and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115, United States
| |
Collapse
|
30
|
Wang Y, Yuan R, Liang B, Zhang J, Wen Q, Chen H, Tian Y, Wen L, Zhou H. A "One-Step" Strategy for the Global Characterization of Core-Fucosylated Glycoproteome. JACS AU 2024; 4:2005-2018. [PMID: 38818065 PMCID: PMC11134376 DOI: 10.1021/jacsau.4c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 06/01/2024]
Abstract
Core fucosylation, a special type of N-linked glycosylation, is important in tumor proliferation, invasion, metastatic potential, and therapy resistance. However, the core-fucosylated glycoproteome has not been extensively profiled due to the low abundance and poor ionization efficiency of glycosylated peptides. Here, a "one-step" strategy has been described for protein core-fucosylation characterization in biological samples. Core-fucosylated peptides can be selectively labeled with a glycosylated probe, which is linked with a temperature-sensitive poly(N-isopropylacrylamide) (PNIPAM) polymer, by mutant endoglycosidase (EndoF3-D165A). The labeled probe can be further removed by wild-type endoglycosidase (EndoF3) in a traceless manner for mass spectrometry (MS) analysis. The feasibility and effectiveness of the "one-step" strategy are evaluated in bovine serum albumin (BSA) spiked with standard core-fucosylated peptides, H1299, and Jurkat cell lines. The "one-step" strategy is then employed to characterize core-fucosylated sites in human lung adenocarcinoma, resulting in the identification of 2494 core-fucosylated sites distributed on 1176 glycoproteins. Further data analysis reveals that 196 core-fucosylated sites are significantly upregulated in tumors, which may serve as potential drug development targets or diagnostic biomarkers. Together, this "one-step" strategy has great potential for use in global and in-depth analysis of the core-fucosylated glycoproteome to promote its mechanism research.
Collapse
Affiliation(s)
- Yuqiu Wang
- Department
of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- Department
of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
| | - Rui Yuan
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
| | - Bo Liang
- Department
of Hematology, Xinxiang Central Hospital, Xinxiang 453000, China
| | - Jing Zhang
- Department
of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Qin Wen
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
| | - Hongxu Chen
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
| | - Yinping Tian
- Carbohydrate-Based
Drug Research Center, State Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
| | - Liuqing Wen
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
- Carbohydrate-Based
Drug Research Center, State Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Hu Zhou
- Department
of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- School
of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced
Study, University of Chinese Academy of
Sciences, Hangzhou 310024, China
| |
Collapse
|
31
|
Nebauer DJ, Pearson LA, Neilan BA. Critical steps in an environmental metaproteomics workflow. Environ Microbiol 2024; 26:e16637. [PMID: 38760994 DOI: 10.1111/1462-2920.16637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/30/2024] [Indexed: 05/20/2024]
Abstract
Environmental metaproteomics is a rapidly advancing field that provides insights into the structure, dynamics, and metabolic activity of microbial communities. As the field is still maturing, it lacks consistent workflows, making it challenging for non-expert researchers to navigate. This review aims to introduce the workflow of environmental metaproteomics. It outlines the standard practices for sample collection, processing, and analysis, and offers strategies to overcome the unique challenges presented by common environmental matrices such as soil, freshwater, marine environments, biofilms, sludge, and symbionts. The review also highlights the bottlenecks in data analysis that are specific to metaproteomics samples and provides suggestions for researchers to obtain high-quality datasets. It includes recent benchmarking studies and descriptions of software packages specifically built for metaproteomics analysis. The article is written without assuming the reader's familiarity with single-organism proteomic workflows, making it accessible to those new to proteomics or mass spectrometry in general. This primer for environmental metaproteomics aims to improve accessibility to this exciting technology and empower researchers to tackle challenging and ambitious research questions. While it is primarily a resource for those new to the field, it should also be useful for established researchers looking to streamline or troubleshoot their metaproteomics experiments.
Collapse
Affiliation(s)
- Daniel J Nebauer
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, Australia
- Centre of Excellence in Synthetic Biology, Australian Research Council, Sydney, New South Wales, Australia
| | - Leanne A Pearson
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, Australia
- Centre of Excellence in Synthetic Biology, Australian Research Council, Sydney, New South Wales, Australia
| | - Brett A Neilan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, Australia
- Centre of Excellence in Synthetic Biology, Australian Research Council, Sydney, New South Wales, Australia
| |
Collapse
|
32
|
Conforti JM, Ziegler AM, Worth CS, Nambiar AM, Bailey JT, Taube JH, Gallagher ES. Differences in Protein Capture by SP3 and SP4 Demonstrate Mechanistic Insights of Proteomics Clean-up Techniques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584881. [PMID: 38559195 PMCID: PMC10980087 DOI: 10.1101/2024.03.13.584881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The goal of proteomics experiments is to identify proteins to observe changes in cellular processes and diseases. One challenge in proteomics is the removal of contaminants following protein extraction, which can limit protein identification. Single-pot, solid-phase-enhanced sample preparation (SP3) is a clean-up technique in which proteins are captured on carboxylate-modified particles through a proposed hydrophilic-interaction-liquid-chromatography (HILIC)-like mechanism. However, recent results have suggested that proteins are captured in SP3 due to a protein-aggregation mechanism. Thus, solvent precipitation, single-pot, solid-phase-enhanced sample preparation (SP4) is a newer clean-up technique that employs protein-aggregation to capture proteins without modified particles. SP4 has previously enriched low-solubility proteins, though differences in protein capture could affect which proteins are detected and identified. We hypothesize that the mechanisms of capture for SP3 and SP4 are distinct. Herein, we assess the proteins identified and enriched using SP3 versus SP4 for MCF7 subcellular fractions and correlate protein capture in each method to protein hydrophobicity. Our results indicate that SP3 captures more hydrophilic proteins through a combination of HILIC-like and protein-aggregation mechanisms, while SP4 captures more hydrophobic proteins through a protein-aggregation mechanism. From these results, we recommend clean-up techniques based on protein-sample hydrophobicity to yield high proteome coverage in biological samples.
Collapse
Affiliation(s)
- Jessica M. Conforti
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Amanda M. Ziegler
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Charli S. Worth
- Department of Biology, Baylor University, One Bear Place #97388, Waco, Texas 76798, United States
| | - Adhwaitha M. Nambiar
- Department of Biology, Baylor University, One Bear Place #97388, Waco, Texas 76798, United States
| | - Jacob T. Bailey
- Department of Biology, Baylor University, One Bear Place #97388, Waco, Texas 76798, United States
| | - Joseph H. Taube
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
- Department of Biology, Baylor University, One Bear Place #97388, Waco, Texas 76798, United States
| | - Elyssia S. Gallagher
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| |
Collapse
|
33
|
Xavier D, Lucas N, Williams SG, Koh JMS, Ashman K, Loudon C, Reddel R, Hains PG, Robinson PJ. Heat 'n Beat: A Universal High-Throughput End-to-End Proteomics Sample Processing Platform in under an Hour. Anal Chem 2024; 96:4093-4102. [PMID: 38427620 DOI: 10.1021/acs.analchem.3c04708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Proteomic analysis by mass spectrometry of small (≤2 mg) solid tissue samples from diverse formats requires high throughput and comprehensive proteome coverage. We developed a nearly universal, rapid, and robust protocol for sample preparation, suitable for high-throughput projects that encompass most cell or tissue types. This end-to-end workflow extends from original sample to loading the mass spectrometer and is centered on a one-tube homogenization and digestion method called Heat 'n Beat (HnB). It is applicable to most tissues, regardless of how they were fixed or embedded. Sample preparation was divided into separate challenges. The initial sample washing and final peptide cleanup steps were adapted to three tissue sources: fresh frozen (FF), optimal cutting temperature (OCT) compound embedded (FF-OCT), and formalin-fixed paraffin embedded (FFPE). Third, for core processing, tissue disruption and lysis were decreased to a 7 min heat and homogenization treatment, and reduction, alkylation, and proteolysis were optimized into a single step. The refinements produced near doubled peptide yield when compared to our earlier method ABLE delivered a consistently high digestion efficiency of 85-90%, reported by ProteinPilot, and required only 38 min for core processing in a single tube, with the total processing time being 53-63 min. The robustness of HnB was demonstrated on six organ types, a cell line, and a cancer biopsy. Its suitability for high-throughput applications was demonstrated on a set of 1171 FF-OCT human cancer biopsies, which were processed for end-to-end completion in 92 h, producing highly consistent peptide yield and quality for over 3513 MS runs.
Collapse
Affiliation(s)
- Dylan Xavier
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Natasha Lucas
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Steven G Williams
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Jennifer M S Koh
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Keith Ashman
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Clare Loudon
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Roger Reddel
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Peter G Hains
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Phillip J Robinson
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| |
Collapse
|
34
|
Lee NE, Kim KH, Cho Y, Kim J, Kwak S, Lee D, Yoon DS, Lee JH. Enhancing Loop-Mediated Isothermal Amplification through Nonpowered Nanoelectric Preconcentration. Anal Chem 2024; 96:3844-3852. [PMID: 38393745 DOI: 10.1021/acs.analchem.3c05236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
The global threat posed by the COVID-19 pandemic has catalyzed the development of point-of-care (POC) molecular diagnostics. While loop-mediated isothermal amplification (LAMP) stands out as a promising technique among FDA-approved methods, it is occasionally susceptible to a high risk of false positives due to nonspecific amplification of a primer dimer. In this work, we report an enhancing LAMP technique in terms of assay sensitivity and reliability through streamlined integration with a nonpowered nanoelectric preconcentration (NPP). The NPP, serving as a sample preparation tool, enriched the virus concentration in samples prior to the subsequent LAMP assay. This enrichment enabled not only to achieve more sensitive assay but also to shorten the assay time for all tested clinical samples by ∼10 min compared to the conventional LAMP. The shortened assay time suppresses the occurrence of nonspecific amplification by not providing the necessary incubation time, effectively suppressing misidentification by false positives. Utilizing this technique, we also developed a prototype of the POC NPP-LAMP kit. This kit offers a streamlined diagnostic process for nontrained individuals, from the sample enrichment, transfer of the enriched sample to LAMP assays, which facilitates on-site/on-demand diagnosis of SARS-CoV-2. This development holds the potential to contribute toward preventing not only the current outbreak but also future occurrences of pandemic viruses.
Collapse
Affiliation(s)
- Na Eun Lee
- Department of Electrical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Kang Hyeon Kim
- Department of Electrical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Youngkyu Cho
- Samsung Research, Samsung Electronics Co., Ltd., Seoul 06756, Republic of Korea
| | - Jinhwan Kim
- Department of Electrical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Seungmin Kwak
- Micro-Nano Fabrication Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk, Seoul 02792, South Korea
| | - Dohwan Lee
- Department of Electrical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
- School of Electrical and Computer Engineering, Georgia Institute of Technology, 791 Atlantic Dr NW, Atlanta, Georgia 30332, United States
| | - Dae Sung Yoon
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
- Astrion Inc, Seoul 02841, Republic of Korea
| | - Jeong Hoon Lee
- Department of Electrical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
- CALTH Inc., Changeop-ro 54, Seongnam, Gyeonggi 13449, Republic of Korea
| |
Collapse
|
35
|
Mayr AL, Hummel K, Leitsch D, Razzazi-Fazeli E. A Comparison of Bottom-Up Proteomic Sample Preparation Methods for the Human Parasite Trichomonas vaginalis. ACS OMEGA 2024; 9:9782-9791. [PMID: 38434803 PMCID: PMC10905575 DOI: 10.1021/acsomega.3c10040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 03/05/2024]
Abstract
Bottom-up proteomic approaches depend on the efficient digestion of proteins into peptides for mass spectrometric analysis. Sample preparation strategies, based on magnetic beads, filter-aided systems, or in-solution digests, are commonly used for proteomic analysis. Time-intensive methods like filter-aided sample preparation (FASP) have led to the development of new, more time-efficient filter-based strategies like suspension trappings (S-Traps) or magnetic bead-based strategies like SP3. S-Traps have been reported as an alternative proteomic sample preparation method as they allow for high sodium dodecyl sulfate (SDS) concentrations to be present in the sample. In this study, we compare the efficiency of different protocols for FASP, SP3, and S-Trap-based digestion of proteins after extraction from Trichomonas vaginalis. Overall, we found a high number of protein IDs for all tested methods and a high degree of reproducibility within each method type. However, FASP with a 3 kDa cutoff filter unit outperformed the other methods analyzed, referring to the number of protein IDs. This is the first work providing the direct comparison of four different bottom-up proteomic approaches regarding the most efficient proteomic sample preparation protocol for the human parasite T. vaginalis.
Collapse
Affiliation(s)
- Anna-Lena Mayr
- VetCore
Facility, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Karin Hummel
- VetCore
Facility, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - David Leitsch
- ISPTM, Medical
University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Ebrahim Razzazi-Fazeli
- VetCore
Facility, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| |
Collapse
|
36
|
Smeriglio N, Li H, Mazli WNAB, Bendel K, Hao L. Contaminant Spot Check and Removal Assay (ContamSPOT) for Mass Spectrometry Analysis. Anal Chem 2024; 96:2574-2581. [PMID: 38291764 DOI: 10.1021/acs.analchem.3c05020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Mass spectrometry (MS) analysis is often challenged by contaminations from detergents, salts, and polymers that compromise data quality and can damage the chromatography and MS instruments. However, researchers often discover contamination issues only after they acquire the data. There is no existing contaminant assay that is sensitive enough to detect trace amounts of contaminants from a few microliters of samples prior to MS analysis. To address this crucial need in the field, we developed a sensitive, rapid, and cost-effective contaminant spot check and removal assay (ContamSPOT) to detect and quantify trace amounts of contaminants, such as detergents, salts, and other chemicals commonly used in the MS sample preparation workflow. Only 1 μL of the sample was used prior to MS injection to quantify contaminants by ContamSPOT colorimetric or fluorometric assay on a thin layer chromatography (TLC) plate. We also optimized contaminant removal methods to salvage samples with minimal loss when ContamSPOT showed a positive result. ContamSPOT was then successfully applied to evaluate commonly used bottom-up proteomic methods regarding the effectiveness of removing detergent, peptide recovery, reproducibility, and proteome coverage. We expect ContamSPOT to be widely adopted by MS laboratories as a last-step quality checkpoint prior to MS injection. We provided a practical decision tree and a step-by-step protocol with a troubleshooting guide to facilitate the use of ContamSPOT by other researchers. ContamSPOT can also provide a unique readout of sample cleanliness for developing new MS-based sample preparation methods in the future.
Collapse
Affiliation(s)
- Noah Smeriglio
- Department of Chemistry, The George Washington University, Science and Engineering Hall 4000, 800 22nd St., NW, Washington, D.C. 20052, United States
| | - Haorong Li
- Department of Chemistry, The George Washington University, Science and Engineering Hall 4000, 800 22nd St., NW, Washington, D.C. 20052, United States
| | - Wan Nur Atiqah Binti Mazli
- Department of Chemistry, The George Washington University, Science and Engineering Hall 4000, 800 22nd St., NW, Washington, D.C. 20052, United States
| | - Katharine Bendel
- Department of Chemistry, The George Washington University, Science and Engineering Hall 4000, 800 22nd St., NW, Washington, D.C. 20052, United States
| | - Ling Hao
- Department of Chemistry, The George Washington University, Science and Engineering Hall 4000, 800 22nd St., NW, Washington, D.C. 20052, United States
- Department of Biochemistry and Molecular Medicine, The George Washington University, Science and Engineering Hall 4000, 800 22nd St., NW, Washington, D.C. 20052, United States
| |
Collapse
|
37
|
Šilhavý J, Mlejnek P, Šimáková M, Liška F, Malínská H, Marková I, Hüttl M, Miklánková D, Mušálková D, Stránecký V, Kmoch S, Sticová E, Vrbacký M, Mráček T, Pravenec M. Spontaneous nonsense mutation in the tuftelin 1 gene is associated with abnormal hair appearance and amelioration of glucose and lipid metabolism in the rat. Physiol Genomics 2024; 56:65-73. [PMID: 37955133 DOI: 10.1152/physiolgenomics.00084.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023] Open
Abstract
Recently, we have identified a recessive mutation, an abnormal coat appearance in the BXH6 strain, a member of the HXB/BXH set of recombinant inbred (RI) strains. The RI strains were derived from the spontaneously hypertensive rat (SHR) and Brown Norway rat (BN-Lx) progenitors. Whole genome sequencing of the mutant rats identified the 195875980 G/A mutation in the tuftelin 1 (Tuft1) gene on chromosome 2, which resulted in a premature stop codon. Compared with wild-type BXH6 rats, BXH6-Tuft1 mutant rats exhibited lower body weight due to reduced visceral fat and ectopic fat accumulation in the liver and heart. Reduced adiposity was associated with decreased serum glucose and insulin and increased insulin-stimulated glycogenesis in skeletal muscle. In addition, mutant rats had lower serum monocyte chemoattractant protein-1 and leptin levels, indicative of reduced inflammation. Analysis of the liver proteome identified differentially expressed proteins from fatty acid metabolism and β-oxidation, peroxisomes, carbohydrate metabolism, inflammation, and proteasome pathways. These results provide evidence for the important role of the Tuft1 gene in the regulation of lipid and glucose metabolism and suggest underlying molecular mechanisms.NEW & NOTEWORTHY A new spontaneous mutation, abnormal hair appearance in the rat, has been identified as a nonfunctional tuftelin 1 (Tuft1) gene. The pleiotropic effects of this mutation regulate glucose and lipid metabolism. Analysis of the liver proteome revealed possible molecular mechanisms for the metabolic effects of the Tuft1 gene.
Collapse
Affiliation(s)
- Jan Šilhavý
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Mlejnek
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Miroslava Šimáková
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - František Liška
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Hana Malínská
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Irena Marková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martina Hüttl
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Denisa Miklánková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Dita Mušálková
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Viktor Stránecký
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Stanislav Kmoch
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eva Sticová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Pathology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marek Vrbacký
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Mráček
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
38
|
Chen CW, Tsai CF, Lin MH, Lin SY, Hsu CC. Suspension Trapping-Based Sample Preparation Workflow for In-Depth Plant Phosphoproteomics. Anal Chem 2023; 95:12232-12239. [PMID: 37552764 DOI: 10.1021/acs.analchem.3c00786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Plant phosphoproteomics provides a global view of phosphorylation-mediated signaling in plants; however, it demands high-throughput methods with sensitive detection and accurate quantification. Despite the widespread use of protein precipitation for removing contaminants and improving sample purity, it limits the sensitivity and throughput of plant phosphoproteomic analysis. The multiple handling steps involved in protein precipitation lead to sample loss and process variability. Herein, we developed an approach based on suspension trapping (S-Trap), termed tandem S-Trap-IMAC (immobilized metal ion affinity chromatography), by integrating an S-Trap micro-column with a Fe-IMAC tip. Compared with a precipitation-based workflow, the tandem S-Trap-IMAC method deepened the coverage of the Arabidopsis (Arabidopsis thaliana) phosphoproteome by more than 30%, with improved number of multiply phosphorylated peptides, quantification accuracy, and short sample processing time. We applied the tandem S-Trap-IMAC method for studying abscisic acid (ABA) signaling in Arabidopsis seedlings. We thus discovered that a significant proportion of the phosphopeptides induced by ABA are multiply phosphorylated peptides, indicating their importance in early ABA signaling and quantified several key phosphorylation sites on core ABA signaling components across four time points. Our results show that the optimized workflow aids high-throughput phosphoproteome profiling of low-input plant samples.
Collapse
Affiliation(s)
- Chin-Wen Chen
- Institution of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Miao-Hsia Lin
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Shu-Yu Lin
- Academia Sinica Common Mass Spectrometry Facilities for Proteomics and Protein Modification Analysis, Academia Sinica, Taipei 115201, Taiwan
| | - Chuan-Chih Hsu
- Institution of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
| |
Collapse
|
39
|
Zhao Z, Khurana A, Antony F, Young JW, Hewton KG, Brough Z, Zhong T, Parker SJ, Duong van Hoa F. A Peptidisc-Based Survey of the Plasma Membrane Proteome of a Mammalian Cell. Mol Cell Proteomics 2023; 22:100588. [PMID: 37295717 PMCID: PMC10416069 DOI: 10.1016/j.mcpro.2023.100588] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 05/05/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023] Open
Abstract
Membrane proteins play critical roles at the cell surface and their misfunction is a hallmark of many human diseases. A precise evaluation of the plasma membrane proteome is therefore essential for cell biology and for discovering novel biomarkers and therapeutic targets. However, the low abundance of this proteome relative to soluble proteins makes it difficult to characterize, even with the most advanced proteomics technologies. Here, we apply the peptidisc membrane mimetic to purify the cell membrane proteome. Using the HeLa cell line as a reference, we capture 500 different integral membrane proteins, with half annotated to the plasma membrane. Notably, the peptidisc library is enriched with several ABC, SLC, GPCR, CD, and cell adhesion molecules that generally exist at low to very low copy numbers in the cell. We extend the method to compare two pancreatic cell lines, Panc-1 and hPSC. Here we observe a striking difference in the relative abundance of the cell surface cancer markers L1CAM, ANPEP, ITGB4, and CD70. We also identify two novel SLC transporters, SLC30A1 and SLC12A7, that are highly present in the Panc-1 cell only. The peptidisc library thus emerges as an effective way to survey and compare the membrane proteome of mammalian cells. Furthermore, since the method stabilizes membrane proteins in a water-soluble state, members of the library, here SLC12A7, can be specifically isolated.
Collapse
Affiliation(s)
- Zhiyu Zhao
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Arshdeep Khurana
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Frank Antony
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - John W Young
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Keeley G Hewton
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Zora Brough
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tianshuang Zhong
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Seth J Parker
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Franck Duong van Hoa
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
40
|
Yu Y, Martin K, Le H, Yang C, Lu G, Zhang X, Grimes C, Zhuang Z, Asare-Okai PN. Development of an Efficient, Effective, and Economical Technology for Proteome Analysis. RESEARCH SQUARE 2023:rs.3.rs-3165690. [PMID: 37502920 PMCID: PMC10371162 DOI: 10.21203/rs.3.rs-3165690/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Proteomics experiments have typically high economic and technical barriers to broad biomedical scientists, which not only result in costly supplies and accessories for sample preparation but also the reluctance to adapt new techniques. In the present study, we present an effective and efficient, yet economical technology, which we call E3technology, for proteomics sample preparation. By immobilizing silica microparticles into a polytetrafluoroethylene (PTFE) matrix, we developed a novel medium, which could be used as a robust and reliable proteomics platform to generate LCMS-friendly samples in a rapid and low-cost fashion. Using different formats of E3technology, including E3tip, E3filter, E3cartridge, and E3plate, we explored a variety of sample types in varied complexity, quantity, volume, and size, including bacterial, fungi, mammalian cells, mouse tissue, and human body fluids. We benchmark their performance against several established approaches. Our data suggest that E3technology outperforms many of the currently available techniques in terms of proteome identification and quantitation. It is widely applicable, highly reproducible, readily scalable and automatable, and is user-friendly and stress-free to non-expert proteomics laboratories. It does not require specialized expertise and equipment, and significantly lowers the technical and economical barrier to proteomics experiments. An enhanced version, E4technology, also opens new avenues to sample preparation for low input and/or low-cell proteomics analysis. The presented technologies by our study represent a breakthrough innovation in biomedical science, and we anticipate widespread adoption by the proteomics community.
Collapse
|
41
|
Mousseau CB, Pierre CA, Hu DD, Champion MM. Miniprep assisted proteomics (MAP) for rapid proteomics sample preparation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:916-924. [PMID: 36373982 PMCID: PMC9933840 DOI: 10.1039/d2ay01549h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/28/2022] [Indexed: 06/14/2023]
Abstract
Complete enzymatic digestion of proteins for bottom-up proteomics is substantially improved by use of detergents for denaturation and solubilization. Detergents however, are incompatible with many proteases and highly detrimental to LC-MS/MS. Recently; filter-based methods have seen wide use due to their capacity to remove detergents and harmful reagents prior to digestion and mass spectrometric analysis. We hypothesized that non-specific protein binding to negatively charged silica-based filters would be enhanced by addition of lyotropic salts, similar to DNA purification. We sought to exploit these interactions and investigate if low-cost DNA purification spin-filters, 'Minipreps,' efficiently and reproducibly bind proteins for digestion and LC-MS/MS analysis. We propose a new method, Miniprep Assisted Proteomics (MAP), for sample preparation. We demonstrate binding capacity, performance, recovery and identification rates for proteins and whole-cell lysates using MAP. MAP recovered equivalent or greater protein yields from 0.5-50 μg analyses benchmarked against commercial trapping preparations. Nano UHPLC-MS/MS proteome profiling of lysates of Escherichia coli had 99.3% overlap vs. existing approaches and reproducibility of replicate minipreps was 98.8% at the 1% FDR protein level. Label Free Quantitative proteomics was performed and 91.2% of quantified proteins had a %CV <20% (2044/2241). Miniprep Assisted Proteomics can be performed in minutes, shows low variability, high recovery and proteome depth. This suggests a significant role for adventitious binding in developing new proteomics sample preparation techniques. MAP represents an efficient, ultra-low-cost alternative for sample preparation in a commercially obtainable device that costs ∼$0.50 (USD) per miniprep.
Collapse
Affiliation(s)
- C Bruce Mousseau
- Department of Chemistry and Biochemistry, University of Notre Dame, IN 46556, USA.
| | - Camille A Pierre
- Department of Chemistry and Biochemistry, University of Notre Dame, IN 46556, USA.
| | - Daniel D Hu
- Department of Chemistry and Biochemistry, University of Notre Dame, IN 46556, USA.
| | - Matthew M Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, IN 46556, USA.
- Berthiaume Institute for Precision Health, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
42
|
Hypolipidemic Effects of Beetroot Juice in SHR-CRP and HHTg Rat Models of Metabolic Syndrome: Analysis of Hepatic Proteome. Metabolites 2023; 13:metabo13020192. [PMID: 36837811 PMCID: PMC9965406 DOI: 10.3390/metabo13020192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Recently, red beetroot has attracted attention as a health-promoting functional food. Studies have shown that beetroot administration can reduce blood pressure and ameliorate parameters of glucose and lipid metabolism; however, mechanisms underlying these beneficial effects of beetroot are not yet fully understood. In the current study, we analysed the effects of beetroot on parameters of glucose and lipid metabolism in two models of metabolic syndrome: (i) transgenic spontaneously hypertensive rats expressing human C-reactive protein (SHR-CRP rats), and (ii) hereditary hypertriglyceridemic (HHTg) rats. Treatment with beetroot juice for 4 weeks was, in both models, associated with amelioration of oxidative stress, reduced circulating lipids, smaller visceral fat depots, and lower ectopic fat accumulation in the liver compared to the respective untreated controls. On the other hand, beetroot treatment had no significant effects on the sensitivity of the muscle and adipose tissue to insulin action in either model. Analyses of hepatic proteome revealed significantly deregulated proteins involved in glycerophospholipid metabolism, mTOR signalling, inflammation, and cytoskeleton rearrangement.
Collapse
|