1
|
Sule RO, Rivera GDT, Vaidya T, Gartrell E, Gomes AV. Environmental Toxins and Oxidative Stress: The Link to Cardiovascular Diseases. Antioxidants (Basel) 2025; 14:604. [PMID: 40427486 PMCID: PMC12108754 DOI: 10.3390/antiox14050604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/07/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Cardiovascular diseases (CVDs) remain a leading global health concern, responsible for substantial morbidity and mortality. In recent years, as our understanding of the multifaceted nature of CVDs has increased, it has become increasingly evident that traditional risk factors alone do not account for the entirety of cardiovascular morbidity and mortality. Environmental toxins, a heterogeneous group of substances ubiquitous in our surroundings, have now entered the spotlight as offenders in the development and progression of CVDs. Environmental toxins include heavy metals, air pollutants, pesticides, and endocrine-disrupting chemicals, among others. Upon exposure, they can elicit oxidative stress, a condition characterized by an imbalance between the production of reactive oxygen species (ROS) and the body's ability to detoxify and repair the resulting damage. Oxidative stress triggers a cascade of events, including inflammation, endothelial dysfunction, lipid peroxidation, and vascular remodeling, which can contribute to the development of atherosclerosis, hypertension, and other cardiovascular pathologies. This article delves into the molecular mechanisms underpinning oxidative stress-mediated cardiovascular damage induced by environmental toxins, emphasizing the role of specific toxins in this process. Further research is necessary to understand how individual susceptibility and genotype influence the impact of environmental toxins on oxidative stress and the risk of CVD.
Collapse
Affiliation(s)
- Rasheed O. Sule
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, USA; (R.O.S.); (G.D.T.R.)
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Gabriela Del Toro Rivera
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, USA; (R.O.S.); (G.D.T.R.)
| | - Tanishq Vaidya
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, USA; (R.O.S.); (G.D.T.R.)
| | - Emily Gartrell
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, USA; (R.O.S.); (G.D.T.R.)
| | - Aldrin V. Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, USA; (R.O.S.); (G.D.T.R.)
- Department of Physiology and Membrane Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
2
|
Maher AM, Elsanosy GA, Ghareeb DA, Elblehi SS, Saleh SR. 10-Hydroxy Decanoic Acid and Zinc Oxide Nanoparticles Retrieve Nrf2/HO-1 and Caspase-3/Bax/Bcl-2 Signaling in Lead-Induced Testicular Toxicity. Biol Trace Elem Res 2025; 203:2728-2751. [PMID: 39349706 DOI: 10.1007/s12011-024-04374-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/10/2024] [Indexed: 12/14/2024]
Abstract
There has been a significant increase in human exposure to heavy metals (HMs) over the course of the previous century, primarily due to the extensive industrial processes. Male infertility is a prominent complication associated with lead exposure, wherein lead has the potential to accumulate within the testes, resulting in oxidative stress and inflammation. In addition, 10-hydroxydecanoic acid (10-HDA) is a component found in the secretions of worker bees and possesses the capacity to mitigate oxidative stress and prevent inflammation. Due to their advantageous properties, zinc oxide nanoparticles (ZnO-NPs) possess a wide range of applications in the field of biomedicine. This study aimed to assess the therapeutic effect of 10-HDA and ZnO-NPs on testicular toxicity in rats induced by lead acetate (PbAc). PbAc was administered orally for a period of 3 months. Following that, 10-HDA and/or ZnO-NPs were administrated for 1 month. PbAc deformed seminal analysis, decreased seminal fructose and sex hormonal levels, and resulted in the development of histopathological complications. Additionally, PbAc increased MDA and decreased Nrf2 and HO-1 expression, confirmed by the declined antioxidant defense system. Furthermore, an increase in testicular inflammatory markers and the Bax/Bcl-2 ratio was observed subsequent to the administration of PbAc. The administration of 10-HDA and ZnO-NPs demonstrated significant efficacy in the restoration of semen quality, pituitary/gonadal hormones, antioxidants, and testicular histoarchitecture. Moreover, 10-HDA and ZnO-NPs decreased testicular inflammatory markers and apoptotic proteins (caspase-3 and Bax expression levels). In conclusion, combining 10-HDA and ZnO-NPs demonstrated synergistic potential in treating PbAc-induced testicular toxicity, thereby presenting a promising approach in nanomedicine and natural drugs.
Collapse
Affiliation(s)
- Adham M Maher
- Bio-Screening and Preclinical Trial Lab, Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| | - Ghidaa A Elsanosy
- Bio-Screening and Preclinical Trial Lab, Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Doaa A Ghareeb
- Bio-Screening and Preclinical Trial Lab, Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- Pharmaceutical and Fermentation Industries Development Centre (PFIDC), The City of Scientific Research and Technological Applications (SRTA-City), Borg Al‑Arab, Alexandria, Egypt
- Research Projects Unit, Pharos University, Alexandria, Egypt
| | - Samar S Elblehi
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt
| | - Samar R Saleh
- Bio-Screening and Preclinical Trial Lab, Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| |
Collapse
|
3
|
Yang Y, Deng Y, Zhang J, Xia Y, Bao L, Su Y, Wang J, Zhang N. From open-field to greenhouse cultivation: characteristics, and driving factors of soil bioavailable lead and cadmium changes in Southwest China. ENVIRONMENTAL RESEARCH 2025; 278:121745. [PMID: 40311896 DOI: 10.1016/j.envres.2025.121745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 04/26/2025] [Accepted: 04/29/2025] [Indexed: 05/03/2025]
Abstract
Understanding the dynamics of bioavailable lead (Pb-ava) and cadmium (Cd-ava) in soils from open-field and greenhouse cultivation is crucial for mitigating health risks. Research on Pb-ava and Cd-ava in greenhouse soils was limited. This study analyzed soils from leafy vegetable and grape plantations in Southwest China. Results indicated that in soils cultivated in greenhouses for 1-10 years, Pb-ava first increased and then significantly declined, while Cd-ava decreased initially and then rose sharply. The interactions of Pb-ava and Cd-ava with total lead (Pb-total) and total cadmium (Cd-total), along with meteorological factors, soil texture, properties, particulate matter 10 (PM10), and fertilization, were examined using redundancy analysis (RDA), structural equation modeling (SEM), and multiple linear regression with Lindeman-Merenda-Gold (MLR-LMG). In open-field conditions, Pb-ava and Cd-ava had minimal contributions to Pb-total and Cd-total; Pb-ava primarily stemmed from nitrogen fertilizer (Nfer, 21.57 %) and soil organic matter (SOM, 19.18 %), while PM10 contributed 16.42 % to Cd-ava. In the first 1-5 years of greenhouse cultivation, Pb-total contributed 54.50 % to Pb-ava. PM10 was the primary factor reducing soil Pb-ava, while Nfer and silt were the main factors influencing its increase. For the later 6-10 years, Pb-ava originates from Nfer. Cd-total contributed 8.40 % to Cd-ava in greenhouse soils during the first 1-5 years and 21.49 % during the 6-10 years, with sand significantly affecting Cd-ava. Our research highlights the importance of managing bioavailable lead and cadmium inputs from fertilization practices and soil texture under greenhouse conditions to mitigate soil pollution risk.
Collapse
Affiliation(s)
- Yanqing Yang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China; Yunnan Soil Fertility and Pollution Restoration Laboratory, Yunnan Agricultural University, Kunming, 650201, China; The Research Center for Smart Greenhouse Agriculture Engineering of Yunnan Provincial Universities, Yunnan Agricultural University, Kunming, 650201, China
| | - Yishu Deng
- Yunnan Soil Fertility and Pollution Restoration Laboratory, Yunnan Agricultural University, Kunming, 650201, China; The Research Center for Smart Greenhouse Agriculture Engineering of Yunnan Provincial Universities, Yunnan Agricultural University, Kunming, 650201, China
| | - Jilai Zhang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China; Yunnan Soil Fertility and Pollution Restoration Laboratory, Yunnan Agricultural University, Kunming, 650201, China
| | - Yunsheng Xia
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China; Yunnan Soil Fertility and Pollution Restoration Laboratory, Yunnan Agricultural University, Kunming, 650201, China
| | - Li Bao
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China; Yunnan Soil Fertility and Pollution Restoration Laboratory, Yunnan Agricultural University, Kunming, 650201, China
| | - Youbo Su
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China; Yunnan Soil Fertility and Pollution Restoration Laboratory, Yunnan Agricultural University, Kunming, 650201, China
| | - Jing Wang
- Yunnan Soil Fertility and Pollution Restoration Laboratory, Yunnan Agricultural University, Kunming, 650201, China; The Research Center for Smart Greenhouse Agriculture Engineering of Yunnan Provincial Universities, Yunnan Agricultural University, Kunming, 650201, China
| | - Naiming Zhang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China; Yunnan Soil Fertility and Pollution Restoration Laboratory, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
4
|
Du J, Zhou K, Jiang H, Hu S, Zhang W, Zheng Q, Zhou G, Zhang N. Individual and combined contamination of the toxic metals in commercial cat and dog food. Sci Rep 2025; 15:13237. [PMID: 40247022 PMCID: PMC12006530 DOI: 10.1038/s41598-025-98066-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 04/09/2025] [Indexed: 04/19/2025] Open
Abstract
As the long-term accumulation of toxic metals in food poses significant health risks to pets, there is a growing concern among people regarding toxic metal contamination in pet food. In order to investigate the toxic metals levels in pet food in China, we collected a total of 93 imported cat and dog food from the Chinese market produced in 2021-2022, comprising 45 cat food and 48 dog food, and determined the concentrations of lead (Pb), cadmium (Cd), chromium (Cr), mercury (Hg) and arsenic (As) in them. The concentrations of Pb, Cd and Cr were determined by flame atomic absorption spectrometry, while Hg and As were quantified by atomic fluorescence spectrometry. The most contaminated of all samples were Cr and As, which were detected in all samples, followed by Hg, which was detected in 91 samples. In cat food, Cr and As were the most prevalent toxic metals, and Cr and Hg were found in all dog food. Pb was not detected in the canned food, while both cat and dog canned foods showed relatively high contamination rates of Cr, As, and Hg. Cr, Hg and As had the highest contamination levels in dry food. Some samples exceed the limits set by Hygienical Standard for Pet Feed of China (Announcement No. 20 of 2018) regarding Pb and Cr, while other toxic metals remained within acceptable limits. Canned food, however, met all regulatory limits for toxic metals. Across all types of pet food, Cr, Hg, and As were consistently the most prevalent combined contaminants. Analysis of the acute hazard index (aHI) values showed that both cats and dogs face potential dietary exposure risks to the toxic metals investigated, with Cr posing the most significant risk, followed by Pb and As. This study underscores the extensive presence of toxic metal contamination in pet foods, posing a significant risk to pet health due to ongoing exposure to multiple toxic metals.
Collapse
Affiliation(s)
- Jiaying Du
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Kerui Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Han Jiang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Shen Hu
- Institute of Veterinary Drug of Hubei Province, Wuhan, 430070, Hubei Province, China
| | - Wei Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Qiang Zheng
- Institute of Veterinary Drug of Hubei Province, Wuhan, 430070, Hubei Province, China
| | - Guangteng Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Niya Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
5
|
Münzel T, Kuntic M, Lelieveld J, Aschner M, Nieuwenhuijsen MJ, Landrigan PJ, Daiber A. The links between soil and water pollution and cardiovascular disease. Atherosclerosis 2025; 403:119160. [PMID: 40074641 DOI: 10.1016/j.atherosclerosis.2025.119160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025]
Abstract
Soil and water pollution represent significant threats to global health, ecosystems, and biodiversity. Healthy soils underpin terrestrial ecosystems, supporting food production, biodiversity, water retention, and carbon sequestration. However, soil degradation jeopardizes the health of 3.2 billion people, while over 2 billion live in water-stressed regions. Pollution of soil, air, and water is a leading environmental cause of disease, contributing to over 9 million premature deaths annually. Soil contamination stems from heavy metals, synthetic chemicals, pesticides, and plastics, driven by industrial activity, agriculture, and waste mismanagement. These pollutants induce oxidative stress, inflammation, and hormonal disruption, significantly increasing risks for non-communicable diseases (NCDs) such as cardiovascular disease (CVD). Emerging contaminants like micro- and nanoplastics amplify health risks through cellular damage, oxidative stress, and cardiovascular dysfunction. Urbanization and climate change exacerbate soil degradation through deforestation, overfertilization, and pollution, further threatening ecosystem sustainability and human health. Mitigation efforts, such as reducing chemical exposure, adopting sustainable land-use practices, and advancing urban planning, have shown promise in lowering pollution-related health impacts. Public health initiatives, stricter pollution controls, and lifestyle interventions, including antioxidant-rich diets, can also mitigate risks. Pollution remains preventable, as demonstrated by high-income nations implementing cost-effective solutions. Policies like the European Commission's Zero-Pollution Vision aim to reduce pollution to safe levels by 2050, promoting sustainable ecosystems and public health. Addressing soil pollution is critical to combating the global burden of NCDs, particularly CVDs, and fostering a healthier environment for future generations.
Collapse
Affiliation(s)
- Thomas Münzel
- University Medical Center Mainz, Department of Cardiology at the Johannes Gutenberg University, Germany; German Cardiovascular Research Center (DZHK), Partner Site Rhine Main, Mainz, Germany.
| | - Marin Kuntic
- University Medical Center Mainz, Department of Cardiology at the Johannes Gutenberg University, Germany
| | - Jos Lelieveld
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Michael Aschner
- Molecular Pharmacology, Albert Einstein College of Medicine, United States
| | - Mark J Nieuwenhuijsen
- Institute for Global Health (ISGlobal), Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Philip J Landrigan
- Global Observatory on Planetary Health, Boston College, USA; Centre Scientifique de Monaco, MC, Monaco
| | - Andreas Daiber
- University Medical Center Mainz, Department of Cardiology at the Johannes Gutenberg University, Germany; German Cardiovascular Research Center (DZHK), Partner Site Rhine Main, Mainz, Germany
| |
Collapse
|
6
|
Jalilian M, Parvizi P, Zangeneh MR. Advances in graphene-based nanomaterials for heavy metal removal from water: Mini review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70062. [PMID: 40123408 DOI: 10.1002/wer.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/18/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
The environment and public health are seriously at risk from the increasing levels of heavy metal (HM) pollution in water bodies, hence efficient remediation techniques must be developed. Unique physicochemical properties of graphene (Gn) such as its enormous surface area, chemical stability, and extraordinary adsorption capabilities have made it a promising candidate for application in various adsorption processes. Recent studies indicate the heavy metal removal capabilities of Gn-based materials such as Gn oxide (GO) and reduced GO (rGO) reach 99% efficiency rates for lead (Pb2+), cadmium (Cd2+), and mercury (Hg2+) through strong electrostatic bonds and metal coordination along with π-π stacking interactions. In addition, the selective nature of Gn-based adsorbents grows better through functionalization because it incorporates thiol, amine, and sulfonic acid groups. The integration of Gn-based materials with metal-organic frameworks (MOFs) combined with magnetic nanoparticles along with bio-based polymers enhances adsorption efficiency and increases stability while offering recyclability features. The conclusion of this study discusses the current obstacles such as cost, scalability, environmental impact, and selectivity and potential future developments for the widespread use of Gn-based adsorbents in water treatment, highlighting the significance of continued research to improve these substances for useful environmental applications. PRACTITIONER POINTS: Graphene-based materials exhibit high capacity for adsorbing various heavy metals, enhancing water purification. Functionalization of graphene improves its ability to selectively target and remove specific heavy metals like mercury and lead. Graphene derivatives can achieve heavy metal removal within minutes, making them efficient for water treatment. Despite high synthesis costs, graphene's superior performance may lower long-term operational costs in wastewater treatment.
Collapse
Affiliation(s)
- Milad Jalilian
- Department of Physics, Faculty of Science, Lorestan University, Khorramabad, Iran
- Pooya Power Knowledge Enterprise, Tehran, Iran
| | - Pooya Parvizi
- Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham, Edgbaston, UK
| | - Mohammad Reza Zangeneh
- Pooya Power Knowledge Enterprise, Tehran, Iran
- Department of Energy and Mechanical Engineering, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
7
|
Balali-Mood M, Eizadi-Mood N, Hassanian-Moghaddam H, Etemad L, Moshiri M, Vahabzadeh M, Sadeghi M. Recent advances in the clinical management of intoxication by five heavy metals: Mercury, lead, chromium, cadmium and arsenic. Heliyon 2025; 11:e42696. [PMID: 40040983 PMCID: PMC11876891 DOI: 10.1016/j.heliyon.2025.e42696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 12/15/2024] [Accepted: 02/12/2025] [Indexed: 03/06/2025] Open
Abstract
Metals have been used for many centuries, but their nutritional and toxic effects have been investigated since the last century. The common toxic heavy metals (THM) include mercury, lead, chromium cadmium, and arsenic. As human exposure to THM increasingly causes systemic and organ complications, it seems required to review the recent advances of treatment of the toxic metals. Despite the current knowledge of the hazards of heavy metals, there is still high incidents of their poisonings particularly in developing countries. In this review, after an introduction, we briefly describe the routes of exposure, clinical features and prognosis of each metal poisoning. Then, review the different treatments for each metal with particular attention to recent advances in the treatment of both acute and chronic poisonings. The main antidotes for all THM are still chelating agents, but new agents were developed over the past decades and have been used successfully for the THM poisonings. Dimercaptosuccinic acid (DMSA) known as succimer has been prescribed as a safe oral chelator in lead poisoning. Similarly, dimercapto-propanesulfonic acid (DMPS) has also revealed fewer side effects than the old chelating agents. The two are currently gaining increased acceptance among clinical toxicologists. However, there is no specific antidote for mercury poisoning. Dimercaprol is almost no longer used as an antidote of choice in the treatment of chronic THM poisoning. Comparison of clinical management of intoxication by the five heavy metals reveals similar treatment strategies. On the other hand, some of them require specific interventions to reduce the toxicity. Because of drawbacks in the application of commonly known chelating agents, treatment with bioactive compounds which have antioxidant and anti-inflammatory properties has been the subject of much interest in recent research. However, despite the promising results observed in experimental animals, clinical trials on their clinical therapeutic benefits have not been yet successful and need further studies to determine their efficacy and safety in humans. Development of less toxic chelating agents are still under investigations. Moreover, the development of orally administrable chelating agents for home health care would likely be of great interest for future research.
Collapse
Affiliation(s)
- Mahdi Balali-Mood
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Nastaran Eizadi-Mood
- Department of Clinical Toxicology, School of Medicine, Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Hassanian-Moghaddam
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Royal Perth Bentley Group, Next Step Drug and Alcohol Services, Perth, Australia
| | - Leila Etemad
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical and Food Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Moshiri
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Vahabzadeh
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmood Sadeghi
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
8
|
Flores-Espinosa P, Menon R, Kammala A, Richardson LS. Lead exposure at the feto-maternal interface: a cause for concern for fetal membrane trophoblasts. Toxicol Sci 2025; 203:195-205. [PMID: 39579145 PMCID: PMC11775422 DOI: 10.1093/toxsci/kfae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024] Open
Abstract
The integrity of fetal membranes enables biological functions that protect the fetus and maintain the pregnancy. Any compromise in fetal membrane function can predispose a pregnant woman to prelabor rupture of the membranes (pPROMs) and subsequently to preterm birth (PTB). Epidemiologic data suggest that lead exposure during pregnancy is one of several risk factors associated with PTB and pPROM. This heavy metal can cross placental and fetal membrane barriers, disrupting homeostasis in these tissues. Autophagy contributes to the maintenance of fetal membrane homeostasis during gestation, and dysfunctional autophagy is associated with pPROM. In this study, we determined the mechanistic impact of lead-induced cellular changes, autophagy, senescence, and inflammation in chorion trophoblast cells (CTCs) and amnion epithelial cells (AECs) of the fetal membranes. Lead exposure in CTCs induced autophagy dysfunction (increase in LC3B-II), augmented senescence (increased SA-β-galactosidase activity), and increased the release of inflammation. In AECs, lead exposure did effect autophagy, senescence, nor inflammation. The differential changes observed in CTCs and AECs after exposure to high lead concentrations may promote the weakening of fetal membranes and contribute to preterm rupture.
Collapse
Affiliation(s)
- Pilar Flores-Espinosa
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1062, United States
- Laboratorio de Inmunología de la Unidad Feto-Placentaria, Department of Immunobiochemestry, Instituto Nacional de Perinatología I.E.R, Mexico City 11000, Mexico
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1062, United States
| | - Ananth Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1062, United States
| | - Lauren S Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1062, United States
| |
Collapse
|
9
|
Singh D, Bist P, Choudhary S. Effect of co-exposure to multiple metals (Pb, Cd, Cr, Hg, Fe, Mn and Ni) and metalloid (As) on liver function in Swiss albino mice. Biometals 2025; 38:135-152. [PMID: 39414706 DOI: 10.1007/s10534-024-00643-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 09/27/2024] [Indexed: 10/18/2024]
Abstract
The study examined the cumulative toxic effect of multiple elements, As, Pb, Cd, Cr, Hg, Fe, Mn and Ni on the liver function and their association with inflammation and apoptosis. To explore the health consequence of simultaneous exposure to multiple metals and metalloid, male and female Swiss Albino mice were randomly divided into 14 groups and subjected to different doses [MPL (maximum permissible limit), 1×, 5×, 10×, 50× or 100×] of metal(loid)s mixture via drinking water for 8 weeks. Data showed that combined effect of multiple elements impaired the liver function. This was associated with significant decrease in the antioxidant enzymes and the elevation in lipid peroxidation for high exposure dose of 50× and 100× (p < 0.05). The metal(loid)s mixture exposure led to significant increase (p < 0.05) in cytokines, TNF-α, IL-6 and effector caspases (3 and 6) in exposure groups above 10× dose. Histopathological observation also revealed significant damage in the hepatic tissue on exposure to high dose. Dose dependent accumulation of respective elements (As, Cd, Cr, and Pb) in the liver was observed in each of the exposure groups. However, similar dose related increment was not observed for essential metals such as Ni, Fe and Mn. Differential accumulation of metals in the liver may be attributed to the effect of co-contaminant exposure, which could affect the divalent cation absorption due to antagonism and competitive transport process. Overall findings in this study manifest the complexity of possible joint effect of co-exposure to multiple metals and metalloid on the liver function.
Collapse
Affiliation(s)
- Damini Singh
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, 304022, India
| | - Priyanka Bist
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, 304022, India
| | - Sangeeta Choudhary
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, 304022, India.
| |
Collapse
|
10
|
Münzel T, Hahad O, Lelieveld J, Aschner M, Nieuwenhuijsen MJ, Landrigan PJ, Daiber A. Soil and water pollution and cardiovascular disease. Nat Rev Cardiol 2025; 22:71-89. [PMID: 39317838 DOI: 10.1038/s41569-024-01068-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 09/26/2024]
Abstract
Healthy, uncontaminated soils and clean water support all life on Earth and are essential for human health. Chemical pollution of soil, water, air and food is a major environmental threat, leading to an estimated 9 million premature deaths worldwide. The Global Burden of Disease study estimated that pollution was responsible for 5.5 million deaths related to cardiovascular disease (CVD) in 2019. Robust evidence has linked multiple pollutants, including heavy metals, pesticides, dioxins and toxic synthetic chemicals, with increased risk of CVD, and some reports suggest an association between microplastic and nanoplastic particles and CVD. Pollutants in soil diminish its capacity to produce food, leading to crop impurities, malnutrition and disease, and they can seep into rivers, worsening water pollution. Deforestation, wildfires and climate change exacerbate pollution by triggering soil erosion and releasing sequestered pollutants into the air and water. Despite their varied chemical makeup, pollutants induce CVD through common pathophysiological mechanisms involving oxidative stress and inflammation. In this Review, we provide an overview of the relationship between soil and water pollution and human health and pathology, and discuss the prevalence of soil and water pollutants and how they contribute to adverse health effects, focusing on CVD.
Collapse
Affiliation(s)
- Thomas Münzel
- University Medical Center Mainz, Department of Cardiology, Johannes Gutenberg University Mainz, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Omar Hahad
- University Medical Center Mainz, Department of Cardiology, Johannes Gutenberg University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Jos Lelieveld
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Philip J Landrigan
- Global Observatory on Planetary Health, Boston College, Boston, MA, USA
- Centre Scientifique de Monaco, Monaco, Monaco
| | - Andreas Daiber
- University Medical Center Mainz, Department of Cardiology, Johannes Gutenberg University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
11
|
Arteaga‐Silva M, Vigueras‐Villaseñor RM, Guillen‐Herrera G, Landero‐Huerta DA, Contreras‐García IJ, Montes S, Ríos C, Limón‐Morales O, Rojas‐Castañeda JC. Perinatal exposure to lead alters male reproductive behaviour and immunoreactivity of androgen and oestrogen receptors in the brain. Int J Exp Pathol 2025; 106:e12521. [PMID: 39676704 PMCID: PMC11730980 DOI: 10.1111/iep.12521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/22/2024] [Accepted: 11/09/2024] [Indexed: 12/17/2024] Open
Abstract
Lead (Pb) exposure during perinatal development alters testosterone (T) concentrations and delays puberty in children and laboratory rodents. In addition, exposure to the metal during adult life decreases T and libido in men and affects male reproductive behaviour (MRB) in rats. MRB is regulated by various brain nuclei including the medial preoptic area (MPOa) and the medial amygdala (MeA), in which T and oestradiol (E2) act through their respective androgen (AR) and oestrogen (ER) receptors. However, the mechanism by which MRB is affected by Pb exposure is not known. The objectives of the present study were to evaluate whether perinatal Pb exposure affects MRB and the number of cells immunoreactive to AR and ERα in the MPOa and the MeA. Male Wistar rats exposed to Pb (320 ppm) in drinking water from the beginning of pregnancy until weaning were used. The experimental group experienced significant alterations in MRB, an important decrease in T and E2 concentrations, and a significant increase in Pb concentrations in the blood, MPOa (hypothalamus) and MeA. In addition, in the studied areas the number of cells immunoreactive to AR and ERα, or detected using the Nissl technique, decreased significantly. These results show that perinatal exposure to Pb alters MRB. This event may be related to a decrease in both the concentrations of sex hormones and the number of cells that express their receptors as well as in the neuronal Nissl staining population. This ultimately affects the quality of life of the individual.
Collapse
Affiliation(s)
- Marcela Arteaga‐Silva
- Departamento de Biología de la Reproducción, División de Ciencias Biológicas y de la SaludUniversidad Autónoma Metropolitana‐IztapalapaCiudad de MéxicoMexico
| | | | - Gustavo Guillen‐Herrera
- Departamento de Biología de la Reproducción, División de Ciencias Biológicas y de la SaludUniversidad Autónoma Metropolitana‐IztapalapaCiudad de MéxicoMexico
| | | | | | - Sergio Montes
- Departamento de Farmacología, Unidad Académica Multidisciplinaria Reynos‐Aztlan ReynosaUniversidad Autónoma de TamaulipasReynosaTamaulipasMexico
| | - Camilo Ríos
- Instituto Nacional de Rehabilitación Luis Guillermo Ibarra IbarraCiudad de MéxicoMexico
| | - Ofelia Limón‐Morales
- Departamento de Biología de la Reproducción, División de Ciencias Biológicas y de la SaludUniversidad Autónoma Metropolitana‐IztapalapaCiudad de MéxicoMexico
| | | |
Collapse
|
12
|
Jomova K, Alomar SY, Nepovimova E, Kuca K, Valko M. Heavy metals: toxicity and human health effects. Arch Toxicol 2025; 99:153-209. [PMID: 39567405 PMCID: PMC11742009 DOI: 10.1007/s00204-024-03903-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
Heavy metals are naturally occurring components of the Earth's crust and persistent environmental pollutants. Human exposure to heavy metals occurs via various pathways, including inhalation of air/dust particles, ingesting contaminated water or soil, or through the food chain. Their bioaccumulation may lead to diverse toxic effects affecting different body tissues and organ systems. The toxicity of heavy metals depends on the properties of the given metal, dose, route, duration of exposure (acute or chronic), and extent of bioaccumulation. The detrimental impacts of heavy metals on human health are largely linked to their capacity to interfere with antioxidant defense mechanisms, primarily through their interaction with intracellular glutathione (GSH) or sulfhydryl groups (R-SH) of antioxidant enzymes such as superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione reductase (GR), and other enzyme systems. Although arsenic (As) is believed to bind directly to critical thiols, alternative hydrogen peroxide production processes have also been postulated. Heavy metals are known to interfere with signaling pathways and affect a variety of cellular processes, including cell growth, proliferation, survival, metabolism, and apoptosis. For example, cadmium can affect the BLC-2 family of proteins involved in mitochondrial death via the overexpression of antiapoptotic Bcl-2 and the suppression of proapoptotic (BAX, BAK) mechanisms, thus increasing the resistance of various cells to undergo malignant transformation. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important regulator of antioxidant enzymes, the level of oxidative stress, and cellular resistance to oxidants and has been shown to act as a double-edged sword in response to arsenic-induced oxidative stress. Another mechanism of significant health threats and heavy metal (e.g., Pb) toxicity involves the substitution of essential metals (e.g., calcium (Ca), copper (Cu), and iron (Fe)) with structurally similar heavy metals (e.g., cadmium (Cd) and lead (Pb)) in the metal-binding sites of proteins. Displaced essential redox metals (copper, iron, manganese) from their natural metal-binding sites can catalyze the decomposition of hydrogen peroxide via the Fenton reaction and generate damaging ROS such as hydroxyl radicals, causing damage to lipids, proteins, and DNA. Conversely, some heavy metals, such as cadmium, can suppress the synthesis of nitric oxide radical (NO·), manifested by altered vasorelaxation and, consequently, blood pressure regulation. Pb-induced oxidative stress has been shown to be indirectly responsible for the depletion of nitric oxide due to its interaction with superoxide radical (O2·-), resulting in the formation of a potent biological oxidant, peroxynitrite (ONOO-). This review comprehensively discusses the mechanisms of heavy metal toxicity and their health effects. Aluminum (Al), cadmium (Cd), arsenic (As), mercury (Hg), lead (Pb), and chromium (Cr) and their roles in the development of gastrointestinal, pulmonary, kidney, reproductive, neurodegenerative (Alzheimer's and Parkinson's diseases), cardiovascular, and cancer (e.g. renal, lung, skin, stomach) diseases are discussed. A short account is devoted to the detoxification of heavy metals by chelation via the use of ethylenediaminetetraacetic acid (EDTA), dimercaprol (BAL), 2,3-dimercaptosuccinic acid (DMSA), 2,3-dimercapto-1-propane sulfonic acid (DMPS), and penicillamine chelators.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University in Nitra, 949 74, Nitra, Slovakia
| | - Suliman Y Alomar
- Doping Research Chair, Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
- Center of Advanced Innovation Technologies, VSB-Technical University of Ostrava, 708 00, Ostrava-Poruba, Czech Republic
| | - Kamil Kuca
- Center of Advanced Innovation Technologies, VSB-Technical University of Ostrava, 708 00, Ostrava-Poruba, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia.
| |
Collapse
|
13
|
Jolaosho TL. Characterization of potentially toxic elements in leachates from active and closed landfills in Nigeria and their effects on groundwater systems using spatial, indexical, chemometric and health risk techniques. CHEMOSPHERE 2024; 369:143678. [PMID: 39528129 DOI: 10.1016/j.chemosphere.2024.143678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
This study examines potentially toxic elements (PTEs) in leachates from three landfills (active and closed sites) to quantify and compare their degree of toxicity and percolation effects on aquifer groundwater based on distance zonation. The finding revealed that the active landfill leachates had higher concentrations (P < 0.05) of PTEs, with EC, TDS, Cd, Cu, Fe, Zn, Pb, and Mn being above the standard limits for wastewater. The leachate pollution index confirmed high toxicity of the active sites. The geospatial maps suggest that the aquifer was influenced by leachate migration effects, with the groundwater situated within 100 m of the landfills exceeding the regulatory limits. Based on the Ficklin-Caboi assessment, the groundwaters were categorized into "low metals-near neutral" and "high metals-near neutral." The contamination degree, heavy metal contamination index, groundwater quality index, and water pollution index denote that over 40% of the groundwaters are "highly to extremely" polluted and are unfit for drinking, while over 50% are "excellently pure." The geospatial maps revealed that all the groundwaters within 100 m of the landfills are polluted, especially those near the active landfills. The prevailing factors impairing the quality of groundwater were Pb > Cd > TDS > Fe > EC > Cr > pH > Mn > Se > Co. The correlation coefficients, principal components, and cluster analyses confirmed the heterogeneous nature of the landfills and that the solid wastes were mainly from industrial, commercial, and household sources. Aside from the migration effect of leachates, other anthropogenic and geological factors are influencing the aquifer systems. The health risk assessment showed that the groundwaters within 100-500 m of the landfills are capable of causing noncarcinogenic and cancer health risks in exposed populations, with children and those within the distance of 100 m being the most vulnerable groups.
Collapse
Affiliation(s)
- Toheeb Lekan Jolaosho
- Department of Fisheries, Faculty of Science, Lagos State University, Ojo, Lagos State, Nigeria; Faculty of Spatial Science, University of Groningen, Netherlands.
| |
Collapse
|
14
|
Singh LK, Kumar A, Siddiqi NJ, Sharma B. Heavy metals altered the xenobiotic metabolism of rats by targeting the GST enzyme: An in vitro and in silico study. Toxicology 2024; 509:153946. [PMID: 39270966 DOI: 10.1016/j.tox.2024.153946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/24/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Among all the heavy metals, Pb, Cd, and As are the most harmful pollutants in the environment. They reach into the organisms via various levels of food chains i.e. air and water. Glutathione-s-transferase (GST, E.C. 2.5.1.18), a key enzyme of xenobiotics metabolism, plays an important role in the removal of several toxicants. The present study aimed to evaluate any inhibitory action of these heavy metals on the GST enzyme isolated from the hepatic tissues of rats. A 10 % (w/v) homogenate of rat liver was prepared in cold and centrifuged at 4 °C at 9000xg for 30 min. The supernatant was collected and kept frozen at -20 °C or used fresh for carrying out different experiments. The activity of GST was monitored spectrophotometrically at 340 nm using 220 μg of soluble protein with varying equal substrate concentrations (0.125-2 mM) in phosphate buffer (50 mM, pH 6.5). To assess the impact of heavy metals on the enzyme activity, different concentrations of Cd (0-0.6 mM) and Pb (0-2 mM) were added to the reaction mixture followed by monitoring the residual activity. The optimum temperature and pH of rat liver GST were found to be 37 °C and 6.5, respectively. The Km value for GST was 0.69 mM and the Vmax was found to be 78.67 U/mg. The Cd and Pb significantly altered the kinetic behaviour of the enzyme. The Vmax and Kcat/Km parameters of GST were recorded to be decreased after interaction with Cd and Pb individually and showed a mixed type of inhibition pattern suggesting that these inhibitors may have a greater binding affinity either for the free enzyme or the substrate-enzyme complex. These metals showed a time-dependent enzyme inhibition profile. Cd was found to be the most potent inhibitor when compared to other treated metals; the order of inhibitory effect of metal ions was Cd>Pb>As. The in silico ion docking analysis for determining the probable interactions of Cd and Pb with fragmented GST validated that Cd exhibited higher inhibition potential for the enzyme as compared to Pb. The results of the present study indicated that exposure of both the Cd and Pb may cause significant inhibition of hepatic GST; the former with higher inhibitory potential than the later. However, As proved to be least effective against the enzyme under the aforesaid experimental conditions.
Collapse
Affiliation(s)
- Lalit Kumar Singh
- Department of Biochemistry, University of Allahabad, Prayagraj 211002, India
| | - Abhishek Kumar
- Department of Biochemistry, University of Allahabad, Prayagraj 211002, India
| | - Nikhat Jamal Siddiqi
- Department of Internal Surgical Nursing, College of Nursing, King Saud University, Riyadh 11421 Saudi Arabia
| | - Bechan Sharma
- Department of Biochemistry, University of Allahabad, Prayagraj 211002, India.
| |
Collapse
|
15
|
Ray S, Vashishth R. Assessing the risk of consuming fish from Kanyakumari (Tamil Nadu), India: An evaluative study on bioaccumulated heavy metals in different fish species using inductively coupled plasma mass spectrometry. Toxicol Rep 2024; 13:101727. [PMID: 39309632 PMCID: PMC11415344 DOI: 10.1016/j.toxrep.2024.101727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Environmental pollutants which are developing an alarming situation in the contemporary world captured attention in the present research. When it comes to food safety and security concerns it becomes an important field to be studied rigorously as food contributes majorly to human and animal health. The pollution of aquatic ecosystems by heavy metals (HMs) ultimately results in adverse effect on the food chain, which is covered in the current study. Fish is considered to be one of the main components of a balanced diet plate due to its high-quality protein, which sets it apart from other dietary sources. On the other hand, it is also susceptible to the absorption and bioaccumulation of HMs at toxic levels. In our study, we have considered three different species (Nemipterus japonicus, Oreochromis mossambicus, and Lates calcarifer) of fish collected from Kanyakumari, Tamil Nadu (India). Three organs namely liver, gill, and muscle were taken into consideration for the HM profiling using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The Arsenic (As), Cadmium (Cd), Chromium (Cr), Mercury (Hg) and Lead (Pb) were found to be in varied concentrations ranging from 0.1 to 1.13, 0.89-1.45, 9.95-30.66, 0.14-1.62, and 24.69-189.5 µg/kg respectively, in the studied organs of fish. Carcinogenic and noncarcinogenic risk assessments were also done indicating a notable level of Pb and Cr in selected fish species. The Hazard Index (HI) for Oreochromis mossambicus was >1 for adults and children, indicating future possibility of probable health hazards on daily consumption of these fish. In Oreochromis mossambicus, the cancer risk (CR) values for Cr and As were significantly high, particularly for children, indicating a possible occurrence of acute health risk as it exceeded the threshold of 1 × 10-3 and suggesting a significant concern. Though consumption of fish on daily basis in such significant quantity is practically impossible both for adult and children, rendering these species safe.
Collapse
Affiliation(s)
- Suryapratap Ray
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Rahul Vashishth
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
16
|
Jolaosho TL, Mustapha AA, Hundeyin ST. Hydrogeochemical evolution and heavy metal characterization of groundwater from southwestern, Nigeria: An integrated assessment using spatial, indexical, irrigation, chemometric, and health risk models. Heliyon 2024; 10:e38364. [PMID: 39430452 PMCID: PMC11490828 DOI: 10.1016/j.heliyon.2024.e38364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024] Open
Abstract
This study examines the hydrogeochemical and heavy metal parameters of groundwater in Ojo District to determine its suitability for use, potential sources, and human health implications. Ten groundwater samples were assessed, and hydrogeochemical modelling was performed via the Aquachem software. The chemical ions were in the following order: EC > (107.78-448.65 μS/cm) > TDS (182.02-320.77 mg/l) > TH (46.22-182.45 mg/l) > pH (5.55-6.35); HCO3 - (64.13-125.82 mg/l) > Na+ (36.87-96.49 mg/l) > Ca2+ (47.65-58.88 mg/l) > SO4 2- (19.94-53.67) > NO3 - (15.55-44.25 mg/l) > Cl- (20.43-27.16 mg/l) > Mg2+ (11.09-16.87 mg/l) and K+ (2.55-7.86 mg/l). The concentrations of heavy metals in groundwater were in the range of: Fe (0.11-0.27 mg/l) > Mn (0.003-0.16 mg/l) > Ni (0.05-0.12 mg/l) > Zn (0.003-0.05 mg/l) > Pb (0.001-0.03 mg/l) > As (0.001-0.005 mg/l) > Cr (0.002-0.005 mg/l) > Cd (0.001-0.003 mg/l) and Cu (0.001-0.0002 mg/l), with Pb, Mn, and Ni exceeding their allowable limits. The Schoeller and Gibbs plots revealed that the major mechanisms controlling the aquifer groundwater in Ojo region are geological rock weathering and mineralization, with a minimal influence of saltwater intrusion. The piper trilinear diagram also revealed that none of the cation was dominant while the anions were strongly dominated by HCO3 - (weak acids). The hydrogeochemical facies which describes the geochemical characteristics of the groundwater were classified into 3 types; "Ca2+-Mg+-HCO3 - (65 %)", "mixing zones (30 %)", and "Na+-K+-Cl--HCO3 - (5 %)". The hydrogeochemical modelling revealed that the groundwater is characterized by forward cation exchange, while rock-water interactions (silicate dissolution) were heavily involved in the geochemical processes. The single pollution index showed that Pb, Ni, and Mn contributed significantly to contamination, and the multi-pollution indices showed that the groundwater was slightly-moderately polluted. The integrated groundwater quality index revealed that only 10 % were clean, 50 % were poor or moderately unclean, 30 % were highly unclean, and only 10 % were extremely unclean (unfit for utilization). The water pollution index showed that 70 % of the groundwater was good. The irrigation indices suggest that the groundwater would enhance soil quality and support plant growth. Multivariate analysis revealed that the groundwater is being influenced by geogenic factors and anthropogenic activities. The health risk assessment (Hazard Quotient and Hazard Index) showed that exposure of adults to the investigated groundwaters could result in noncarcinogenic adverse effects. The cancer risk values also exceeded the minimum limit (1.0 x 10-6) and thresholds (1.0 x 10-4) for adults, indicating the carcinogenic potential of the groundwater.
Collapse
Affiliation(s)
- Toheeb Lekan Jolaosho
- Department of Fisheries, Faculty of Science, Lagos State University, Ojo, Lagos State, Nigeria
| | | | | |
Collapse
|
17
|
Rao Z, Cao D, Geng F, Huang H, Kang Y. Determination of the Localized Surface Plasmon Resonance Alteration of AgNPs via Multiwavelength Evanescent Scattering Microscopy for Pb(II) Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37981-37993. [PMID: 39007740 DOI: 10.1021/acsami.4c05900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
We developed multiwavelength evanescent scattering microscopy (MWESM), which can acquire plasmonic nanoparticle images at the particle level using the evanescent field as the incident source and distinguish different LSPR (localized surface plasmon resonance) spectral peaks among four wavelengths. Our microscope could be easily and simply built by modifying a commercial total internal reflection fluorescence microscope (TIRFM) with the substitution of a beamsplitter and the addition of a semicircular stop. The ultrathin depth of illumination and rejection of the reflected incident source together contribute to the high sensitivity and contrast of single nanoparticle imaging. We first validated the capability of our imaging system in distinguishing plasmonic nanoparticles bearing different LSPR spectral peaks, and the results were consistent with the scattering spectra results of hyperspectral imaging. Moreover, we demonstrated high imaging quality from the aspects of the signal/noise ratio and point spread function of the single-particle images. Meaningfully, the system can be utilized in rapidly determining the concentration of toxic lead ions in environmental and biological samples with good linearity and sensitivity, based on single-particle evanescent scattering imaging through the detection of the alteration of the LSPR of silver nanoparticles. This system holds the potential to advance the field of nanoparticle imaging and foster the application of nanomaterials as sensors.
Collapse
Affiliation(s)
- Ziyu Rao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Fanglan Geng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Honglin Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Yuehui Kang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| |
Collapse
|
18
|
Tlenshieva AM, Shalakhmetova TM, Witeska M. Effect of Pb, Cu and Zn on development and Wnt/β-catenin signaling pathway genes expression of Ctenopharyngodon idella. Toxicol Res (Camb) 2024; 13:tfae092. [PMID: 38883410 PMCID: PMC11170660 DOI: 10.1093/toxres/tfae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/27/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024] Open
Abstract
Pollution of the aquatic environment with heavy metals is a serious environmental problem, since they accumulate in aquatic organisms and can affect their development and worsen their condition. According to the scheme of Fig. 1 zinc (Zn), copper (Cu) or lead (Pb) were studied when exposed to concentrations of: Zn (0.01; 0.1; 1 mg/L), Cu (0.001; 0.01; 0.1 mg/L), Pb (0.006; 0.06; 0.6 mg/L) for 144 h after fertilization (hpf) on the grass carp (Ctenopharyngodon idella), one of the important commercial fish species of Kazakhstan, the activity of superoxide dismutase (SOD) and the expression of genes of the Wnt/β-catenin signaling pathway involved in development. All metals significantly reduced survival, hatching rate, and changed biometric parameters and heart rate of cupid larvae. In addition, these metals (mainly Pb and Cu) inhibited superoxide dismutase (SOD) activity and mRNA transcription of genes encoding genes of the Wnt/β-catenin signaling pathway. These results showed that Pb, Cu and Zn not only affect the survival and development of fish at an early stage of life, but also cause oxidative stress and prevent fish detoxification.
Collapse
Affiliation(s)
- A M Tlenshieva
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, The Republic of Kazakhstan
| | - T M Shalakhmetova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, The Republic of Kazakhstan
| | - M Witeska
- Department of Ichthyology and Biotechnology in Aquaculture Institute of Animal Science, Warsaw University of Life Sciences, Poland
| |
Collapse
|
19
|
Issler T, Sule K, Lewrenz AM, Prenner EJ. Differential interactions of essential and toxic metal ions with biologically relevant phosphatidic acid and phosphatidylserine membranes. Biometals 2024; 37:631-648. [PMID: 38289415 DOI: 10.1007/s10534-023-00576-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/20/2023] [Indexed: 05/18/2024]
Abstract
Metal pollutants are a growing concern due to increased use in mining and other industrial processes. Moreover, the use of metals in daily life is becoming increasingly prevalent. Metals such as manganese (Mn), cobalt (Co), and nickel (Ni) are toxic in high amounts whereas lead (Pb) and cadmium (Cd) are acutely toxic at low µM concentrations. These metals are associated with system dysfunction in humans including cancer, neurodegenerative diseases, Alzheimer's disease, Parkinson's disease, and other cellular process'. One known but lesser studied target of these metals are lipids that are key membrane building blocks or serve signalling functions. It was shown that Mn, Co, Ni, Pb, and Cd cause rigidification of liposomes and increase the phase transition in membranes composed of both saturated or partly unsaturated phosphatidic acid (PA) and phosphatidylserine (PS). The selected metals showed differential effects that were more pronounced on saturated lipids. In addition, more rigidity was induced in the biologically relevant liquid-crystalline phase. Moreover, metal affinity, induced rigidification and liposome size increases also varied with the headgroup architecture, whereby the carboxyl group of PS appeared to play an important role. Thus, it can be inferred that Mn, Co, Ni, Cd, and Pb may have preferred binding coordination with the lipid headgroup, degree of acyl chain unsaturation, and membrane phase.
Collapse
Affiliation(s)
- Travis Issler
- Deptartment of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Kevin Sule
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Anna-Marie Lewrenz
- Deptartment of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Elmar J Prenner
- Deptartment of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
20
|
Yan L, Wang J, Dai D, Zhang Y, Li Y, Xiao W. Testicular protective effects of hesperidin against chemical and biological toxicants. Toxicol Res (Camb) 2024; 13:tfae078. [PMID: 38799410 PMCID: PMC11116832 DOI: 10.1093/toxres/tfae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/25/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
Toxic agents can adversely impact the male reproductive system mainly via activating oxidative stress affecting the seminiferous epithelia, spermatogenesis, sperms, and the testis. Toxic agents lead to the excessive generation of reactive oxygen species (ROS), such as hydroxyl radicals, hydrogen peroxide, and superoxide anions. ROS exert a cytotoxic effect and oxidative damage to nucleic acids, proteins, and membrane lipids. Hesperidin is a pharmacologically active phytoflavone abundantly occurring in citrus fruits, such as oranges and lemons. It has shown various pharmacological properties such as antioxidant, anti-inflammatory, anti-carcinogenic, analgesic, antiviral, anti-coagulant, hypolipidemic, and hypoglycemic effects. Hesperidin has been found to exert protective effects against natural and chemical toxins-induced organ toxicity. Considerable evidence has implicated the testicular protective effects of hesperidin against the toxicological properties of pharmaceutical drugs as well as biological and chemical agents, and in the present review, we discussed, for the first time, the reported studies. The resultant data indicate that hesperidin can exert testicular protective effects through antioxidant properties.
Collapse
Affiliation(s)
- Linyin Yan
- Hainan Vocational University of Science and Technology, No. 18, Qiongshan Avenue, Meilan District, Haikou City, Hainan 570100, China
| | - Jia Wang
- Institute of Orthopedic Biomedical and Device Innovation, School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, China
| | - Decai Dai
- Hainan Vocational University of Science and Technology, No. 18, Qiongshan Avenue, Meilan District, Haikou City, Hainan 570100, China
| | - Yu Zhang
- Hainan Vocational University of Science and Technology, No. 18, Qiongshan Avenue, Meilan District, Haikou City, Hainan 570100, China
| | - Yanqiang Li
- Hainan Vocational University of Science and Technology, No. 18, Qiongshan Avenue, Meilan District, Haikou City, Hainan 570100, China
| | - Wei Xiao
- Wuhan Aimin Pharmaceutical Co., LTD, No. 10, Entrepreneurship Avenue, Gedian Economic and Technological Development Zone, Ezhou City, Wuhan, Hubei, China
| |
Collapse
|
21
|
Ray I, Misra S, Chen M, Wang X, Das R. Entrapment of atmospheric particle bound heavy metals by ferns as evidenced by lead (Pb) isotope and MixSIAR: Implications for improving air quality. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134014. [PMID: 38503208 DOI: 10.1016/j.jhazmat.2024.134014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/03/2024] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
Plant metal uptake can occur through both soil-root and atmospheric transfer from leaves. The latter holds potential implications for development of biofiltration systems. To explore this potential, it is crucial to understand entrapment capacity and metal sources within plants. As ferns absorb materials from atmosphere, this study focuses on two abundant fern species growing in densely populated and highly polluted regions of Eastern India. Gravimetric quantification, elemental concentration and Pb isotopic analyses were performed by segregating the ferns into distinct components: foliage dusts (loose dust (LD) and wax-bound dust (WD)) and plant tissue (leaves and roots). To understand metal sources, the study analyzes soil, and atmospheric particulates (PM10 and dust fall (DF)). Results indicate that, while LDs have soil dust influence, wax entraps atmospheric particulates and translocates them inside the leaves. Furthermore, roots demonstrate dissimilar isotopic ratios from soil, while displaying close association with atmospheric particulates. Isotopic composition and subsequent mixing model reveal dominant contribution from DF in leaves (53-73%) and roots (33-86%). Apart from DF, leaf Pb is sourced from PM10 (21-38%) with minimal contribution from soil (6-10%). Conversely, in addition to dominance from DF, roots source Pb primarily from soil (12-62%) with a meagre 2-8% contribution from PM10.
Collapse
Affiliation(s)
- Iravati Ray
- School of Environmental Studies, Jadavpur University, Kolkata, India.
| | - Sambuddha Misra
- Centre for Earth Sciences, Indian Institute of Sciences, Bangalore, India
| | - Mengli Chen
- Tropical Marine Science Institute, National University of Singapore, Singapore; Earth Observatory of Singapore, Nanyang Technological University, Singapore
| | - Xianfeng Wang
- Earth Observatory of Singapore, Nanyang Technological University, Singapore; Asian School of Environment, Nanyang Technological University, Singapore
| | - Reshmi Das
- School of Environmental Studies, Jadavpur University, Kolkata, India; Earth Observatory of Singapore, Nanyang Technological University, Singapore.
| |
Collapse
|
22
|
Zhang Y, Li JN, Wang JX, Hu J, Sun JL, Li YF, Li WL, Tang ZH, Zhang ZF. Aniline antioxidants in road dust, parking lot dust, and green-belt soil in Harbin, a megacity in China: Occurrence, profile, and seasonal variation. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134001. [PMID: 38479136 DOI: 10.1016/j.jhazmat.2024.134001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 04/07/2024]
Abstract
Aniline antioxidants (ANs) are widely used as industrial chemicals in products composed of rubber. ANs originate mainly from vehicles, where tire wear particles end up in dust and soil after being deposited on roads. Nowadays, limited information is available on the fate and seasonal variation of ANs in the road environment. In this study, we investigated the occurrence of 32 ANs in dust and soil from different road environments, including road dust, garage dust, parking lot dust, and green-belt soil. The total concentrations of ANs were 369 ng g-1 in road dust, 712 ng g-1 in garage dust, and 687 ng g-1 in parking lot dust. These concentrations are several times higher than that in green-belt soil (128 ng g-1). The highest concentrations of N-(1,3-dimethylbutyl)-N'-phenyl-1,4-phenylenediamine (6PPD) were found in dust and soil. Furthermore, notable seasonal differences were observed, with significantly higher concentrations of ANs in autumn than those in spring. In the main urban area, roads with high traffic volume exhibited higher concentrations of ANs than those with low traffic volume, indicating that ANs were produced by vehicle-related sources.
Collapse
Affiliation(s)
- Ye Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jin-Nong Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jian-Xin Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jie Hu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jia-Lin Sun
- Biological Science and Technology Department, Heilongjiang Vocational College for Nationalities, Harbin 150066, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; IJRC-PTS-NA & IJRC-AEE-NA, Toronto, Ontario M2N 6×9, Canada
| | - Wen-Long Li
- Wadsworth Center, New York State Department of Health, Albany, NY 12237, United States
| | - Zhong-Hua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
23
|
Xue J, Liu H, Yin T, Zhou X, Song X, Zou Y, Li L, Jia R, Fu Y, Zhao X, Yin Z. Rat Hepatocytes Protect against Lead-Cadmium-Triggered Apoptosis Based on Autophagy Activation. TOXICS 2024; 12:285. [PMID: 38668508 PMCID: PMC11055059 DOI: 10.3390/toxics12040285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
Lead and cadmium are foodborne contaminants that threaten human and animal health. It is well known that lead and cadmium produce hepatotoxicity; however, defense mechanisms against the co-toxic effects of lead and cadmium remain unknown. We investigated the mechanism of autophagy (defense mechanism) against the co-induced toxicity of lead and cadmium in rat hepatocytes (BRL-3A cells). Cultured rat liver BRL-3A cell lines were co-cultured with 10, 20, 40 μM lead and 2.5, 5, 10 μM cadmium alone and in co-culture for 12 h and exposed to 5 mM 3-Methyladenine (3-MA), 10 μM rapamycin (Rapa), and 50 nM Beclin1 siRNA to induce cellular autophagy. Our results show that treatment of BRL-3A cells with lead and cadmium significantly decreased the cell viability, increased intracellular reactive oxygen species levels, decreased mitochondrial membrane potential levels, and induced apoptosis, which are factors leading to liver injury, and cell damage was exacerbated by co-exposure to lead-cadmium. In addition, the results showed that lead and cadmium co-treatment induced autophagy. We further observed that the suppression of autophagy with 3-MA or Beclin1 siRNA promoted lead-cadmium-induced apoptosis, whereas enhancement of autophagy with Rapa suppressed lead-cadmium-induced apoptosis. These results demonstrated that co-treatment with lead and cadmium induces apoptosis in BRL-3A cells. Interestingly, the activation of autophagy provides cells with a self-protective mechanism against induced apoptosis. This study provides insights into the role of autophagy in lead-cadmium-induced apoptosis, which may be beneficial for the treatment of lead-cadmium-induced liver injury.
Collapse
Affiliation(s)
- Junshu Xue
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Huimao Liu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Tianyi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xun Zhou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Renyong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.Z.)
| | - Yuping Fu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinghong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
24
|
Guerrini A, Roncada P, Al-Qudah KM, Isani G, Pacicco F, Peloso M, Sardi L, Tedesco DEA, Romeo GA, Caprai E. Content of Toxic Elements (Arsenic, Cadmium, Mercury, Lead) in Eggs from an Ethically Managed Laying Hen Farm. Animals (Basel) 2024; 14:1133. [PMID: 38612373 PMCID: PMC11010967 DOI: 10.3390/ani14071133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Domestic chicken farming has been promoted and spread in several Italian municipalities and worldwide as an aid to the self-consumption of domestically produced food. This study investigated the levels of four toxic elements (As, Cd, Hg, and Pb) in eggs from an ethical laying hen farm, comparing the element concentrations with those possibly present in supermarket eggs. A total of 201 eggs, 141 from the farm and produced by different hen genotypes, and 60 from the supermarket, were collected. The levels of the toxic elements were evaluated in the yolk, albumen, and eggshells of all eggs. The results show that the supermarket eggs' yolk and albumen were more contaminated with lead, compared to the rural eggs. Contrarily, the mean content of arsenic was higher in the albumen and eggshells of the rural eggs, compared to the supermarket eggs. The cadmium content was below the LOQ (0.005 mg/kg) in all samples. The mercury content was below or around the LOQ in all rural eggs. Overall, the supermarket egg albumens were significantly more contaminated than the rural ones. No significant differences were found in quality parameters for both types of eggs. The toxic element values that were detected were in line with other studies in the literature. However, despite the concentrations found not representing a risk to the consumers' health, the results of this study raise a potential food safety issue, and it would be desirable to set specific MRLs for eggs for consumers' protection.
Collapse
Affiliation(s)
- Alessandro Guerrini
- Department of Environmental Science and Policy, University of Milan, Via Celoria 10, 20133 Milan, Italy; (A.G.); (D.E.A.T.)
| | - Paola Roncada
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell’Emilia, Italy; (G.I.); (L.S.)
| | - Khaled Mefleh Al-Qudah
- Department of Veterinary Clinical Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Gloria Isani
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell’Emilia, Italy; (G.I.); (L.S.)
| | - Fausto Pacicco
- Department of Economics, LIUC Cattaneo University, Via Corso G. Matteotti 22, 21053 Castellanza, Italy;
| | - Mariantonietta Peloso
- Chemical Food Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna ‘Bruno Ubertini’, Via P. Fiorini 5, 40127 Bologna, Italy; (M.P.); (E.C.)
| | - Luca Sardi
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell’Emilia, Italy; (G.I.); (L.S.)
| | - Doriana Eurosia Angela Tedesco
- Department of Environmental Science and Policy, University of Milan, Via Celoria 10, 20133 Milan, Italy; (A.G.); (D.E.A.T.)
| | - Gianluca Antonio Romeo
- Directorate General for Animal Health and Veterinary Medicinal Products (DGSAF), Italian Ministry of Health (MOH), Office 4, Viale Giorgio Ribotta 5, 00144 Roma, Italy;
| | - Elisabetta Caprai
- Chemical Food Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna ‘Bruno Ubertini’, Via P. Fiorini 5, 40127 Bologna, Italy; (M.P.); (E.C.)
| |
Collapse
|
25
|
Regencia ZJG, Zhao W, Torres-Roja C, Jones BC, Baja ES. Association between lead and circulating markers of inflammation among traffic enforcers in Metro Manila, Philippines: the MMDA traffic enforcer's health study. Int Arch Occup Environ Health 2024; 97:303-311. [PMID: 38351350 DOI: 10.1007/s00420-023-02044-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/30/2023] [Indexed: 03/19/2024]
Abstract
PURPOSE Several epidemiological studies have linked lead (Pb) exposure to induced oxidative stress and the promotion of inflammatory response. We performed a within-subjects study (repeated measures study) to evaluate the relationship between the concentration of blood lead (B-Pb) and toenail lead (T-Pb) and circulating markers of inflammation. METHODS We evaluated the associations between B-Pb concentrations and T-Pb concentrations and circulating markers of inflammation, soluble intracellular adhesion molecule-1 (s-ICAM-1), soluble vascular adhesion molecule-1 (s-VCAM-1), and high-sensitivity C-reactive protein (hs-CRP) on 158 traffic enforcers from the Metropolitan Manila Development Authority (MMDA) traffic enforcer's health study. Linear mixed-effects models with random subject-specific intercepts were fitted to estimate the association between B-Pb and T-Pb exposure and circulating markers of inflammation, adjusting for confounding factors. RESULTS Traffic enforcers were middle-aged men (89.4%) with a mean age (± SD) of 37.1 years ± 8.9 years and had a total of 293 valid markers of inflammation measurements. B-Pb concentration was related to increased hs-CRP levels. A 10% increase in B-Pb was associated with a 5.7% increase in hs-CRP level [95% confidence interval (95% CI): 1.3-10.1]. However, B-Pb was not associated with s-ICAM-1 and s-VCAM-1. Furthermore, no associations were observed between T-Pb and all the circulating markers of inflammation. CONCLUSIONS Low-level B-Pb may increase hs-CRP among traffic enforcers. Moreover, the study suggests that Pb via the oxidative and inflammation pathways may have an essential role in the development of cardiovascular disease. Furthermore, MMDA and the Department of Labor and Employment can use our study's findings as evidence to conduct routine screening of blood heavy metals, especially Pb, among MMDA and other traffic enforcers as part of their yearly medical examination.
Collapse
Affiliation(s)
- Zypher Jude G Regencia
- Department of Clinical Epidemiology, College of Medicine, University of the Philippines Manila, Room 103, Paz Mendoza Bldg., 547 Pedro Gil Street, 1000, Manila, Philippines
- Institute of Clinical Epidemiology, National Institutes of Health, University of the Philippines Manila, Room 201, NIH Bldg., 623 Pedro Gil Street, Ermita, 1000, Manila, Philippines
| | - Wenyuan Zhao
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Carolina Torres-Roja
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Byron C Jones
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Emmanuel S Baja
- Department of Clinical Epidemiology, College of Medicine, University of the Philippines Manila, Room 103, Paz Mendoza Bldg., 547 Pedro Gil Street, 1000, Manila, Philippines.
- Institute of Clinical Epidemiology, National Institutes of Health, University of the Philippines Manila, Room 201, NIH Bldg., 623 Pedro Gil Street, Ermita, 1000, Manila, Philippines.
| |
Collapse
|
26
|
Singh D, Shaktawat S, Yadav SK, Verma R, Singh KR, Singh J. Chitosan-assisted self-assembly of flower-shaped ε-Fe 2O 3 nanoparticles on screen-printed carbon electrode for Impedimetric detection of Cd 2+, Pb 2+, and Hg 2+ heavy metal ions in various water samples. Int J Biol Macromol 2024; 265:130867. [PMID: 38508557 DOI: 10.1016/j.ijbiomac.2024.130867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/17/2024] [Accepted: 03/12/2024] [Indexed: 03/22/2024]
Abstract
This study focuses on the fabrication of a novel sensing platform on a screen-printed carbon electrode, modified by a combination of hydrothermally synthesized iron dioxide (ε-Fe2O3) nanoparticles and Chitosan (CS) biopolymer. This unique organic-inorganic hybrid material was developed for Electrochemical Impedance Spectroscopy (EIS) sensing, specifically targeting heavy metal ions that include Hg2+, Cd2+, as well as Pb2+. The investigation encompassed a comprehensive analysis of various aspects of the prepared Fe2O3 and CS/ε-Fe2O3 nanocomposites, including phase identification, determination of crystallite size, assessment of surface morphology, etc. CS/ε-Fe2O3 was drop-casted and deposited on the Screen-Printed Electrode (SPE). The resulting sensor exhibited excellent performance in the precise and selective quantification of Hg2+, Cd2+, and Pb2+ ions, with minimal interference from other substances. The fabricated sensor exhibits excellent performance as the detection range for Hg2+, Cd2+, and Pb2+ ions linearity is 2-20 μM, sensitivity, and LOD are 243 Ω/ μM cm2 and 0.191 μM, 191 Ω/μM cm2, and 0.167 μM, 879 Ω/ μM cm2, and 0.177 μM respectively. The stability of the CS/ε-Fe2O3/SPE electrode is demonstrated by checking its conductivity for up to 60 days for Hg2+, Cd2+, and Pb2+ ions. The reusability of the fabricated electrode is 14 scans, 13 scans, and 12 scans for Hg2+, Cd2+, and Pb2+ ions respectively. The findings indicate the successful development of an innovative CS/ε-Fe2O3 electrode for the EIS sensing platform. This platform demonstrates notable potential for addressing the critical need for efficient and sensitive EIS sensors capable of detecting a range of hazardous heavy metal ions, including Hg2+, Cd2+, and Pb2+.
Collapse
Affiliation(s)
- Diksha Singh
- Department of Chemistry, Institute of Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Sarita Shaktawat
- Department of Chemistry, Institute of Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Surendra K Yadav
- Department of Chemistry, Institute of Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ranjana Verma
- Department of Physics, Institute of Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Kshitij Rb Singh
- Department of Chemistry, Institute of Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Jay Singh
- Department of Chemistry, Institute of Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
27
|
Gautam R, Priyadarshini E, Patel AK, Arora T. Assessing the impact and mechanisms of environmental pollutants (heavy metals and pesticides) on the male reproductive system: a comprehensive review. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024; 42:126-153. [PMID: 38240636 DOI: 10.1080/26896583.2024.2302738] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The escalation of technological advancements, coupled with the increased use of hazardous chemicals, has emerged as a significant concern for human health. Exposure to environmental pollutants like heavy metals and pesticides (insecticides, herbicides and fungicides) is known to significantly contribute to various health problems, particularly affecting reproductive health. Disturbances in reproductive potential and reproductive toxicity in males are particularly worrisome. Existing literature suggests that exposure to these environmental pollutants significantly alters male reproductive parameters. Thus, it is imperative to thoroughly analyze, comprehend, and evaluate their impact on male reproductive toxicity. Oxidative stress and disruptions in redox equilibrium are major factors through which these pollutants induce changes in sperm parameters and affect the reproductive system. Insecticides, fungicides, and herbicides act as endocrine disruptors, interfering with the secretion and function of reproductive hormones such as testosterone and luteinizing hormone (LH), consequently impacting spermatogenesis. Additionally, heavy metals are reported to bio-accumulate in reproductive organs, acting as endocrine disruptors and triggering oxidative stress. The co-operative association of these pollutants can lead to severe damage. In this comprehensive review, we have conducted an in-depth analysis of the impact of these environmental pollutants on the male reproductive system, shedding light on the underlying mechanisms of action.
Collapse
Affiliation(s)
- Rohit Gautam
- Division of RCN, Indian Council of Medical Research, New Delhi, India
| | | | - Arbind Kumar Patel
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Taruna Arora
- Division of RCN, Indian Council of Medical Research, New Delhi, India
| |
Collapse
|
28
|
Koyama H, Kamogashira T, Yamasoba T. Heavy Metal Exposure: Molecular Pathways, Clinical Implications, and Protective Strategies. Antioxidants (Basel) 2024; 13:76. [PMID: 38247500 PMCID: PMC10812460 DOI: 10.3390/antiox13010076] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Heavy metals are often found in soil and can contaminate drinking water, posing a serious threat to human health. Molecular pathways and curation therapies for mitigating heavy metal toxicity have been studied for a long time. Recent studies on oxidative stress and aging have shown that the molecular foundation of cellular damage caused by heavy metals, namely, apoptosis, endoplasmic reticulum stress, and mitochondrial stress, share the same pathways as those involved in cellular senescence and aging. In recent aging studies, many types of heavy metal exposures have been used in both cellular and animal aging models. Chelation therapy is a traditional treatment for heavy metal toxicity. However, recently, various antioxidants have been found to be effective in treating heavy metal-induced damage, shifting the research focus to investigating the interplay between antioxidants and heavy metals. In this review, we introduce the molecular basis of heavy metal-induced cellular damage and its relationship with aging, summarize its clinical implications, and discuss antioxidants and other agents with protective effects against heavy metal damage.
Collapse
Affiliation(s)
- Hajime Koyama
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Teru Kamogashira
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
- Tokyo Teishin Hospital, Tokyo 102-0071, Japan
| |
Collapse
|
29
|
Han B, Kamogashira T, Kikuta S, Yamasoba T. Endoplasmic reticulum stress associated with lead (Pb)-induced olfactory epithelium toxicity in an olfactory dark basal cell line. FEBS Open Bio 2023; 13:2162-2171. [PMID: 37803507 PMCID: PMC10699098 DOI: 10.1002/2211-5463.13714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/08/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023] Open
Abstract
Lead (Pb) can damage organs and also have undesirable effects on neural development. To explore the effects of Pb on olfactory cells, we investigated Pb-induced cell toxicity in the DBC1.2 olfactory cell line, with a focus on endoplasmic reticulum (ER) stress, apoptosis, and necroptosis. Representative markers of ER stress, apoptosis, and necroptosis were analyzed by quantitative PCR. The mRNA expression levels of GRP94, GRP78, spliced XBP1, PERK, and ATF6 increased significantly after Pb exposure in a dose-dependent manner. The expression of Caspase 3 and Caspase 12 did not increase after Pb exposure, which suggested that apoptosis-induced cell death was not activated after Pb exposure. However, the mRNA of RIPK3 and MLKL showed increases in expression, which indicated that necroptosis-induced cell death was activated after Pb exposure. These results indicate that Pb exposure induced dose-dependent cytotoxicity through ER stress and necroptosis pathways in DBC1.2 cells, whereas the apoptosis pathway was not significantly stimulated. HEPES buffer showed a partial protective effect in terms of ER stress, apoptosis, and necroptosis. In summary, the necroptosis pathway plays a crucial rule in Pb exposure-induced cytotoxicity in olfactory cells.
Collapse
Affiliation(s)
- Bing Han
- Department of Otolaryngology and Head and Neck Surgery, Faculty of MedicineUniversity of TokyoTokyoJapan
| | - Teru Kamogashira
- Department of Otolaryngology and Head and Neck Surgery, Faculty of MedicineUniversity of TokyoTokyoJapan
| | - Shu Kikuta
- Department of Otolaryngology and Head and Neck Surgery, Faculty of MedicineUniversity of TokyoTokyoJapan
- Department of Otolaryngology and Head and Neck SurgeryNihon UniversityTokyoJapan
| | - Tatsuya Yamasoba
- Department of Otolaryngology and Head and Neck Surgery, Faculty of MedicineUniversity of TokyoTokyoJapan
| |
Collapse
|
30
|
Oladeji O, Aasa O, Adelusi O, Mugivhisa L. Assessment of heavy metals and their human health risks in selected spices from South Africa. Toxicol Rep 2023; 11:216-220. [PMID: 37719202 PMCID: PMC10502432 DOI: 10.1016/j.toxrep.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/28/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023] Open
Abstract
The concerns of food safety are rising in developing countries such as South Africa as a result of heavy metal contamination of culinary herbs and spices. Spices and herbs are used for therapeutic purposes as well as flavoring and coloring food. Heavy metals in spices represent significant health risks due to their high toxicity in high quantities. A total of 20 spices samples were purchased from different registered shops, for heavy metals analysis. The samples were prepared, digested, and analyzed with an inductively coupled plasma mass spectrometer (ICP-MS). To ensure the method's accuracy, Polish Certified Reference Mixed Polish Herbs (INCT-MPH-2) from the Food and Drugs Control Center, Poland, was analyzed. The concentrations of Fe (32.22 ± 1.22-131.1 ± 3.26 mg/kg), As (ND to 0.12 ± 0.04 mg/kg), Cr (0.08 ± 0.01-3.2 ± 0.09 mg/kg), Pb (N.D - 0.21 ± 0.02 mg/kg) and Cd (ND to 0.14 ± 0.08 mg/kg) mg/kg were measured. The results revealed that the concentrations of Cr in all spice samples tested were much higher than the Maximum permissible limit (MPL) values. All spices in this study had THQ and HI values less than one, indicating that consumers will experience no potential health hazards from consuming specific metals through spices. However, continual scrutiny should be maintained.
Collapse
Affiliation(s)
- O.M. Oladeji
- Department of Biology and Environmental Sciences, School of Science and Technology, Sefako Makgatho Health Sciences University, Ga-Rankuwa 0208, South Africa
| | - O.A. Aasa
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, 208 Johannesburg, South Africa
| | - O.A. Adelusi
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, 208 Johannesburg, South Africa
| | - L.L. Mugivhisa
- Department of Biology and Environmental Sciences, School of Science and Technology, Sefako Makgatho Health Sciences University, Ga-Rankuwa 0208, South Africa
| |
Collapse
|
31
|
Almeer R, Alyami NM. Renal-protective effect of Asparagus officinalis aqueous extract against lead-induced nephrotoxicity mouse model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112745-112757. [PMID: 37837591 DOI: 10.1007/s11356-023-30280-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
Lead is one of the cursed substances that threaten all human life. Lead poisoning can occur through food or water contaminations and it is hard to be detected. This incognito metal accumulates over time and resides in the liver, kidneys, and brain tissues leading to serious medical conditions, affecting organ functions, causing failure, kidney tubule degeneration, and destroying neuronal development. However, known metal chelators have bad negative effects. Asparagus officinalis (AO) is a promising herb; its root extract exhibited antioxidant, antiapoptotic, protective, and immunomodulatory activities. Inspired by those reasons, this study investigated to which extent Asparagus extract affected male mice's renal toxicity caused by lead acetate (LA) and antioxidant defense system. This work screened for its nephroprotective activity in four mouse groups: negative and positive control, LA group with renal injury, and diseased but pretreated mice with AO extract (AOE). Kidney index and kidney function biomarkers were evaluated. Antioxidant activities, lipid peroxidation, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), nitric oxide (NO), and reduced glutathione (GSH) were also tested. Furthermore, inflammatory cytokine (tumor necrosis factor-α (TNF-α), interleukin-1 β (IL-1β), and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)), inducible nitric oxide synthase (iNOS), renal pro-apoptotic protein (Bax), antiapoptotic protein (Bcl-2), and caspase-3 levels were evaluated. The results showed that LA administration induced oxidative stress, renal inflammation, apoptosis, and renal histopathological alteration. However, due to its antioxidant activities, AOE was found to restrain oxidative stress, therefore preventing inflammation and apoptosis. Collectively, AOE perfectly clogged lead poisoning sneaking, stopped the bad deterioration, and succeeded to protect kidney tissues from toxicity, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Rafa Almeer
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Nouf M Alyami
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
32
|
Seo JS, Lee SH, Won HS, Yang M, Nahm SS, Nam SM. Effects of Gestational and Lactational Lead Exposure and High Fat Diet Feeding on Cerebellar Development of Postnatal Rat Offspring. Nutrients 2023; 15:4325. [PMID: 37892401 PMCID: PMC10609260 DOI: 10.3390/nu15204325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Obesity and heavy metals, such as lead (Pb), are detrimental to the adult brain because they impair cognitive function and structural plasticity. However, the effects of co-administration of Pb and a high-fat diet (HFD) on the developing cerebellum is not clearly elucidated. We investigated the effects of Pb exposure (0.3% lead acetate) on developing cerebellum in the pups of an HFD-fed obese rat model. One week before mating, we fed a chow diet (CD) or HFD to the rats for one week and additionally administered Pb to HFD-fed female SD rats. Thereafter, treatment with Pb and a HFD was continued during the gestational and lactational periods. On postnatal day 21, the pups were euthanized to sample the brain tissue and blood for further analysis. Blood Pb levels were significantly higher in HFD-fed rats than in CD-fed rats. Histologically, the prominent degeneration of Purkinje cells was induced by the co-administration of Pb and HFD. The calbindin-28Kd-, GAD67-, NMDAR1-, and PSD95-immunopositive Purkinje cells and inhibitory synapse-forming pinceau structures were significantly decreased following Pb and HFD co-administration. MBP-immunoreactive myelinated axonal fibers were also impaired by HFD but were significantly damaged by the co-administration of HFD and Pb. Oxidative stress-related Nrf2-HO1 signaling was activated by HFD feeding, and Pb exposure further aggravated oxidative stress, as demonstrated by the consumption of endogenous anti-oxidant in HFD-Pb rats. The pro-inflammatory response was also increased by the co-administration of HFD and Pb in the cerebellum of the rat offspring. The present results suggest that HFD and Pb treatment during the gestational and lactational periods are harmful to cerebellar development.
Collapse
Affiliation(s)
- Jin Seok Seo
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (J.S.S.); (S.-S.N.)
| | - Shin Hyo Lee
- Department of Anatomy, School of Medicine and Jesaeng-Euise Clinical Anatomy Center, Wonkwang University, Iksan 54538, Republic of Korea; (S.H.L.); (H.-S.W.); (M.Y.)
| | - Hyung-Sun Won
- Department of Anatomy, School of Medicine and Jesaeng-Euise Clinical Anatomy Center, Wonkwang University, Iksan 54538, Republic of Korea; (S.H.L.); (H.-S.W.); (M.Y.)
| | - Miyoung Yang
- Department of Anatomy, School of Medicine and Jesaeng-Euise Clinical Anatomy Center, Wonkwang University, Iksan 54538, Republic of Korea; (S.H.L.); (H.-S.W.); (M.Y.)
| | - Sang-Seop Nahm
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (J.S.S.); (S.-S.N.)
| | - Sung Min Nam
- Department of Anatomy, School of Medicine and Jesaeng-Euise Clinical Anatomy Center, Wonkwang University, Iksan 54538, Republic of Korea; (S.H.L.); (H.-S.W.); (M.Y.)
| |
Collapse
|
33
|
Rasool N, Omer MO, Javeed A, Nawaz M, Imran M, Hussain M, Mushtaq Z, AL Jbawi E. Pharmacological effect of Argyrolobium roseum (Camb.) Jaub & Spach extracts against lead-induced toxicity in rats. Food Sci Nutr 2023; 11:6312-6323. [PMID: 37823099 PMCID: PMC10563752 DOI: 10.1002/fsn3.3570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 10/13/2023] Open
Abstract
Argyrolobium roseum (Camb.) Jaub & Spach (Papilionaceae) is a medicinal plant, cultivated in northern areas of Pakistan. The consumption of trace minerals (lead) is very toxic to the vital organs of the body, therefore the overcome of these minerals is very necessary. In this regard, this study aimed to assess the potential pharmacological effect of aqueous and ethanolic extract of Argyrolobium roseum (Camb.) Jaub & Spach against pb-induced oxidative stress, histological changes in Pb-induced rats' liver and kidney, and anti-inflammatory effect. The metal concentrations in liver and kidney homogenates were measured through atomic absorption spectrophotometer. The antioxidant activity was measured through DPPH and FRAP assay. Pb concentrations were significantly higher in liver and kidney homogenates after injection of Pb acetate was given intraperitoneally (45.2 ± 6.8 and 58.8 ± 7.9, respectively; p < .0001). The level of Pb in liver and kidney homogenates was significantly reduced by aqueous and ethanolic extracts of Argyrolobium roseum (Camb.) Jaub & Spach. The Pb + Aq-600 mg/kg-treated rats exhibited a protective effect on hepatocytes cells against Pb-induced liver injury and restored the cells of the kidney. Pb + Aq-600 mg/kg showed higher antioxidant activity as compared to other treated groups. The highest decreased MDA level was found in liver and kidney homogenate of Pb + Aq-600 mg/kg rats (11.2 ± 1.51 nmol/mg; p < .001) and GSH and CAT levels tended to normal after treatment of Pb + Aq-600 mg/kg in rats. The ALAD, ALT, AST, and ALP level were enhanced and tended to be normal after the Aq-400 and Aq-600 mg/kg treatment in Pb-exposed rats. The result showed that 600 mg/kg Aq + Pb exhibited significant (p < .001) anti-inflammatory activity. The findings of this study concluded that treatment of the aqueous extract of Argyrolobium roseum (Camb.) Jaub & Spach reduces the renal and hepatic damage in Pb-induced rats and it also decreases oxidative stress via improving antioxidant components.
Collapse
Affiliation(s)
- Naeem Rasool
- Department of Pharmacology and ToxicologyUniversity of Veterinary and Animal SciencesLahorePakistan
| | - Muhammad Ovais Omer
- Department of Pharmacology and ToxicologyUniversity of Veterinary and Animal SciencesLahorePakistan
| | - Aqeel Javeed
- Department of Pharmacology and ToxicologyUniversity of Veterinary and Animal SciencesLahorePakistan
| | - Muhammad Nawaz
- Department of MicrobiologyUniversity of Veterinary and Animal SciencesLahorePakistan
| | - Muhammad Imran
- Department of Food Science and TechnologyUniversity of Narowal‐PakistanNarowalPakistan
| | - Muzzamal Hussain
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Zarina Mushtaq
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | | |
Collapse
|
34
|
Abu-Khudir R, Almutairi HH, Abd El-Rahman SS, El-Said KS. The Palliative and Antioxidant Effects of Hesperidin against Lead-Acetate-Induced Testicular Injury in Male Wistar Rats. Biomedicines 2023; 11:2390. [PMID: 37760831 PMCID: PMC10525152 DOI: 10.3390/biomedicines11092390] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Lead (Pb)-induced reprotoxicity is a detrimental consequence of Pb exposure, which results in abnormal spermatogenesis, testicular degeneration, and pathogenic sperm changes. The association between impaired male reproductive function and Pb-induced oxidative stress (OS) has been demonstrated, with consequent testicular antioxidant deficiency. The current study investigated the protective role of the natural antioxidant hesperidin (HSD) against lead-acetate (PbAc)-induced testicular toxicity. Male Wistar rats (n = 40) were randomly divided into four experimental groups: Group I (negative control) received 2.0 mL/kg BW 0.9% saline; Group II received 100 mg/kg BW PbAc; Group III received 100 mg/kg BW HSD; and Group IV received HSD two hours before PbAc using the abovementioned doses. The treatments were administered daily for 30 consecutive days. The results showed that HSD treatment significantly restored PbAc-induced decrease in body, epididymal, and testicular weights as well as in semen parameters, reproductive hormones, and testicular markers of OS. Reduced MDA levels and improved testicular histopathological findings were also observed. Collectively, this study sheds light on the preventive role of HSD against PbAc-induced testicular injury, which is mediated via the suppression of OS and the modulation of reproductive hormones as well as the plausibility of HSD being used as a supplementary therapeutic option for recovery.
Collapse
Affiliation(s)
- Rasha Abu-Khudir
- Chemistry Department, College of Science, King Faisal University, Al-Ahsa, P.O. Box 380, Hofuf 31982, Saudi Arabia;
- Chemistry Department, Biochemistry Branch, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Hayfa Habes Almutairi
- Chemistry Department, College of Science, King Faisal University, Al-Ahsa, P.O. Box 380, Hofuf 31982, Saudi Arabia;
| | - Sahar S. Abd El-Rahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Karim Samy El-Said
- Chemistry Department, Biochemistry Branch, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| |
Collapse
|
35
|
Wang H, Wang H, Guan J, Guan W, Liu Z. Lead induces mouse skin fibroblast apoptosis by disrupting intracellular homeostasis. Sci Rep 2023; 13:9670. [PMID: 37316700 DOI: 10.1038/s41598-023-36835-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 06/10/2023] [Indexed: 06/16/2023] Open
Abstract
Lead (Pb) is a critical industrial and environmental contaminant that can cause pathophysiological changes in several cellular and organ systems and their processes, including cell proliferation, differentiation, apoptosis, and survival. The skin is readily exposed to and damaged by Pb, but the mechanisms through which Pb damages cells are not fully understood. We examined the apoptotic properties of Pb in mouse skin fibroblast (MSF) in vitro. Treatment of fibroblasts with 40, 80, and 160 μM Pb for 24 h revealed morphological alterations, DNA damage, enhanced caspase-3, -8, and -9 activities, and apoptotic cell population. Furthermore, apoptosis was dosage (0-160 μM) and time (12-48 h) dependent. Concentrations of intracellular calcium (Ca2+) and reactive oxygen species were increased, and the mitochondrial membrane potential was decreased in exposed cells. Cell cycle arrest was evident at the G0/G1 phase. The Bax, Fas, caspase-3 and -8, and p53 transcript levels were increased, whereas Bcl-2 gene expression was decreased. Based on our analysis, Pb triggers MSF apoptosis bydisrupting intracellular homeostasis. Our findings enrich the knowledge about the mechanistic function of Pb-induced cytotoxicity on human skin fibroblasts and could potentially guide future Pb health risk assessments.
Collapse
Affiliation(s)
- Hui Wang
- Jinzhou Medical University, Jinzhou, 121001, China
- Meat Processing and Safety Control Engineering Technology Research Center of Liaoning Province, Jinzhou, 121001, China
| | - Huinuan Wang
- Jinzhou Medical University, Jinzhou, 121001, China
| | - Jiawen Guan
- Jinzhou Medical University, Jinzhou, 121001, China
- Meat Processing and Safety Control Engineering Technology Research Center of Liaoning Province, Jinzhou, 121001, China
| | - Weijun Guan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Zheng Liu
- Jinzhou Medical University, Jinzhou, 121001, China.
- Meat Processing and Safety Control Engineering Technology Research Center of Liaoning Province, Jinzhou, 121001, China.
| |
Collapse
|
36
|
Zhao S, Gao Y, Wang H, Fan Y, Wang P, Zhao W, Wong JH, Wang D, Zhao X, Ng TB. A novel mushroom ( Auricularia polytricha) glycoprotein protects against lead-induced hepatoxicity, promotes lead adsorption, inhibits organ accumulation of lead, upregulates detoxifying proteins, and enhances immunoregulation in rats. Front Nutr 2023; 10:1144346. [PMID: 37090774 PMCID: PMC10116064 DOI: 10.3389/fnut.2023.1144346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/21/2023] [Indexed: 04/25/2023] Open
Abstract
Introduction Lead is a ubiquitous environmental and industrial pollutant. Its nonbiodegradable toxicity induces a plethora of human diseases. A novel bioactive glycoprotein containing 1.15% carbohydrate, with the ability of adsorbing lead and effecting detoxification, has been purified from Auricularia polytricha and designated as APL. Besides, its mechanisms related to regulation of hepatic metabolic derangements at the proteome level were analyzed in this study. Methods Chromatographic techniques were utilized to purify APL in the current study. For investigating the protective effects of APL, Sprague-Dawley rats were given daily intraperitoneal injections of lead acetate for establishment of an animal model, and different dosages of APL were gastrically irrigated for study of protection from lead detoxification. Liver samples were prepared for proteomic analyses to explore the detoxification mechanisms. Results and discussion The detoxifying glycoprotein APL displayed unique molecular properties with molecular weight of 252-kDa, was isolated from fruiting bodies of the edible fungus A. polytricha. The serum concentrations of lead and the liver function biomarkers aspartate and alanine aminotransferases were significantly (p<0.05) improved after APL treatment, as well as following treatment with the positive control EDTA (300 mg/kg body weight). Likewise, results on lead residue showed that the clearance ratios of the liver and kidneys were respectively 44.5% and 18.1% at the dosage of APL 160 mg/kg, which was even better than the corresponding data for EDTA. Proteomics disclosed that 351 proteins were differentially expressed following lead exposure and the expression levels of 41 proteins enriched in pathways mainly involved in cell detoxification and immune regulation were normalized after treatment with APL-H. The results signify that APL ameliorates lead-induced hepatic injury by positive regulation of immune processing, and suggest that APL can be applied as a therapeutic intervention of lead poisoning in clinical practice. This report represents the first demonstration of the protective action of a novel mushroom protein on lead-elicited hepatic toxicity.
Collapse
Affiliation(s)
- Shuang Zhao
- Institute of Agri-Food Processing and Nutrition, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing, China
| | - Yi Gao
- Department of Stomatology, Beijing Xicheng District Health Care Center for Mothers and Children, Beijing, China
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing, China
| | - Yangyang Fan
- Institute of Agri-Food Processing and Nutrition, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing, China
| | - Pan Wang
- Institute of Agri-Food Processing and Nutrition, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing, China
| | - Wenting Zhao
- Institute of Agri-Food Processing and Nutrition, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing, China
| | - Jack Ho Wong
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong, China
| | - Dan Wang
- Institute of Agri-Food Processing and Nutrition, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing, China
| | - Xiaoyan Zhao
- Institute of Agri-Food Processing and Nutrition, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing, China
| | - Tzi Bun Ng
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
37
|
Li Y, Cai W, Ai Z, Xue C, Cao R, Dong N. Protective effects of sinomenine hydrochloride on lead-induced oxidative stress, inflammation, and apoptosis in mouse liver. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:7510-7521. [PMID: 36038687 DOI: 10.1007/s11356-022-22386-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Lead, one of the most common heavy metal toxins, seriously affects the health of humans and animals. Sinomenine hydrochloride (SH) shows antioxidative, anti-inflammatory, antiviral, and anticancer properties. Hence, this study investigated the protective effects of SH against Pb-induced liver injury and explored the underlying mechanisms. First, a mouse model of lead acetate (0.5 g/L lead acetate in water, 8 weeks) was established, and SH (100 mg/kg bw in water, 8 weeks) intervention was administered by gavage. Then, the protective effect of SH against lead-induced liver injury was evaluated through serum biochemical analysis, histopathological analysis, and determination of malondialdehyde (MDA) and total antioxidant capacity (T-AOC) levels. The messenger RNA (mRNA) expression levels of the cytokines IL-1β and TNF-α and the apoptosis factors Bax, Bcl-2, and Caspase3 in the liver were detected by quantitative real-time PCR. Then, the expression levels of IL-1β and TNF-α in the liver were detected by ELISA. Immunohistochemical determination of the expression of the apoptosis factors Bax, Bcl-2, and Caspase3 was performed. SH treatment reduced the levels of liver alanine aminotransferase, aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and MDA in Pb-treated mice, indicating that SH protected the liver from injury and oxidative stress in Pb-treated mice. SH also increased the liver T-AOC of Pb-treated mice. Quantitative real-time PCR, ELISA, and immunohistochemical analysis showed that SH inhibited apoptosis, as indicated by the regulation of the mRNA expression of Bax and Bcl-2 and the reduced expression of Caspase3 and pro-inflammatory factors (IL-1β and TNF-α) in the livers of Pb-treated mice. These results suggest that SH protects the mouse liver from Pb-induced injury. The underlying mechanism involves antioxidative, anti-inflammatory, and anti-apoptotic processes.
Collapse
Affiliation(s)
- Ying Li
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Wenjie Cai
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Zichun Ai
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Chenyu Xue
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Rujing Cao
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China.
| |
Collapse
|
38
|
Brown L, Rosabal M, Dussault C, Arnemo JM, Fuchs B, Zedrosser A, Pelletier F. Lead exposure in American black bears increases with age and big game harvest density. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120427. [PMID: 36243189 DOI: 10.1016/j.envpol.2022.120427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/19/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Hunting has multiple consequences for wildlife, and it can be an important source of environmental pollution. Most big game hunters use lead (Pb) ammunition that shed metal fragments in the tissues of harvested animals. These Pb fragments become available to scavengers when hunters discard contaminated slaughter remains in the environment. This exposure route has been extensively studied in avian scavengers, but few studies have investigated Pb exposure from ammunition in mammals. Mammalian scavengers, including American black bears (Ursus americanus), frequently use slaughter remains discarded by hunters. The objective of this study was to investigate whether big game harvest density influenced long-term Pb exposure in American black bears from Quebec, Canada. Our results showed that female black bears had higher tooth Pb concentrations in areas with higher big game harvest densities, but such relationship was not evident in males. We also showed that older bears had higher tooth Pb concentrations compared to younger ones. Overall, our study showed that Pb exposure increases with age in black bears and that some of that Pb likely comes from bullet fragments embedded in slaughter remains discarded by hunters. These results suggest that hunters may drive mammalian scavengers into an evolutionary trap, whereby the long-term benefits of consuming slaughter remains could be negated due to increased Pb exposure.
Collapse
Affiliation(s)
- Ludovick Brown
- Département de Biologie, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, QC, J1K 2R1, Canada.
| | - Maikel Rosabal
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Département des Sciences biologiques, Université du Québec à Montréal, P.O. Box 8888, Succursale Centre-ville, Montréal, QC, H3C 3P8, Canada
| | - Christian Dussault
- Direction de l'expertise sur la Faune Terrestre, l'herpétofaune et l'avifaune, Ministère des Forêts, de la Faune et des Parcs, 880 Chemin Sainte-Foy, Québec, QC, G1S 4X4, Canada
| | - Jon M Arnemo
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, 2418, Elverum, Norway; Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Boris Fuchs
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, 2418, Elverum, Norway
| | - Andreas Zedrosser
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, 3800, Bø, Telemark, Norway; Institute for Wildlife Biology and Game Management, University for Natural Resources and Life Sciences, 1180, Vienna, Austria
| | - Fanie Pelletier
- Département de Biologie, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, QC, J1K 2R1, Canada
| |
Collapse
|
39
|
Hemmaphan S, Bordeerat NK. Reduced DNA Glycosylases Expression and Oxidative DNA Damage Induced by Lead. Toxicol Int 2022. [DOI: 10.18311/ti/2022/v29i3/29322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Exposure to lead (Pb) continues to be a significant worldwide problem. Pb is a highly toxic heavy metal affecting several organ systems in the body. There has been reported to have potential genotoxic properties to various cells. However, the underlying mechanisms of lead-induced toxicity are still unknown. The present study aimed to investigate the lead-induced cytotoxicity in human renal proximal tubular epithelial cells and its underlying DNA damage mechanisms. Lead exposure caused DNA damage as demonstrated by increased 8-OHdG/dG ratio in cells even at a relatively normal dose (10μg/dL). Lead also led to producing oxidative stress as characterized by increased intensity of the Reactive Oxygen Species (ROS) indicator. ROS overproduction should be the reason for lead-induced DNA damage. Therefore, the effects of Lead on ROS elimination should be the main reason for lead-induced oxidative stress in human renal proximal tubular epithelial cells. After lead acetate (PbAc) treatment, the cell viability significantly decreased in a dose-dependent manner, and the accumulation of cellular ROS was observed. 8-OHdG levels, a marker of oxidative DNA damage, were significantly increased by both acute and chronic Pb exposure. Interestingly, the mRNA expression of the 8-oxoguanine DNA glycosylase 1 (hOGG1) significantly decreased after acute and chronic exposure. In conclusion, our study provides the first evidence to demonstrate that acute and chronic Pb exposure results in the altered expression of DNA glycosylases genes indicating the impairment of DNA repair pathways and contributing to DNA damage. These findings should be useful for the more comprehensive assessment of the toxic effects of Pb.
Collapse
|
40
|
Eddie-Amadi BF, Ezejiofor AN, Orish CN, Rovira J, Allison TA, Orisakwe OE. Banana peel ameliorated hepato-renal damage and exerted anti-inflammatory and anti-apoptotic effects in metal mixture mediated hepatic nephropathy by activation of Nrf2/ Hmox-1 and inhibition of Nfkb pathway. Food Chem Toxicol 2022; 170:113471. [DOI: 10.1016/j.fct.2022.113471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
|
41
|
Deng H, Tu Y, Wang H, Wang Z, Li Y, Chai L, Zhang W, Lin Z. Environmental behavior, human health effect, and pollution control of heavy metal(loid)s toward full life cycle processes. ECO-ENVIRONMENT & HEALTH 2022; 1:229-243. [PMID: 38077254 PMCID: PMC10702911 DOI: 10.1016/j.eehl.2022.11.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 02/23/2024]
Abstract
Heavy metal(loid)s (HMs) have caused serious environmental pollution and health risks. Although the past few years have witnessed the achievements of studies on environmental behavior of HMs, the related toxicity mechanisms, and pollution control, their relationship remains a mystery. Researchers generally focused on one topic independently without comprehensive considerations due to the knowledge gap between environmental science and human health. Indeed, the full life cycle control of HMs is crucial and should be reconsidered with the combination of the occurrence, transport, and fate of HMs in the environment. Therefore, we started by reviewing the environmental behaviors of HMs which are affected by a variety of natural factors as well as their physicochemical properties. Furthermore, the related toxicity mechanisms were discussed according to exposure route, toxicity mechanism, and adverse consequences. In addition, the current state-of-the-art of available technologies for pollution control of HMs wastewater and solid wastes were summarized. Finally, based on the research trend, we proposed that advanced in-operando characterizations will help us better understand the fundamental reaction mechanisms, and big data analysis approaches will aid in establishing the prediction model for risk management.
Collapse
Affiliation(s)
- Haoyu Deng
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yuling Tu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Han Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Ziyi Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yanyu Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Wenchao Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Zhang Lin
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangdong 510006, China
| |
Collapse
|
42
|
Yan J, Zhang H, Niu J, Luo B, Wang H, Tian M, Li X. Effects of lead and cadmium co-exposure on liver function in residents near a mining and smelting area in northwestern China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4173-4189. [PMID: 35037141 DOI: 10.1007/s10653-021-01177-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Chronic exposure to environmental cadmium (Cd) and lead (Pb) may have adverse effects on the human health. In this study, we aimed to determine the primary and interactive effects of Cd and Pb exposure on liver function in residents near a mining and smelting area in northwestern China. A total of 451 subjects were recruited, from which blood samples were collected to determine the levels of Cd, Pb, and liver function indices. Additionally, the association between the levels of exposure markers and liver function indices was analysed. Cd and Pb levels were significantly higher in subjects living in the polluted area than in those living in the non-polluted reference area. The liver function levels of subjects in the polluted area were poor compared with those in the reference area. In addition, Cd and Pb levels in the blood were positively associated with gamma glutamyl transpeptidase (GGT) levels and negatively associated with direct bilirubin (DBil) levels. Cd and Pb may be risk factors for abnormal liver function. The risk of abnormal liver function was higher in subjects with moderate Cd and Pb levels, high Cd levels, high Pb levels, and high Cd and Pb levels than in those with low Cd and Pb levels. Our data show that exposure to Cd and/or Pb can cause abnormal liver function. Cd and Pb may have an antagonistic effect on liver function, and high Cd exposure alone has a more profound effect on abnormal liver function compared with co-exposure to Pb and Cd.
Collapse
Affiliation(s)
- Jun Yan
- Department of General Surgery, The First Hospital of Lanzhou University, No. 1 Donggang West Road, Chengguan District, Lanzhou, 730030, Gansu, People's Republic of China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
- Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Honglong Zhang
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Jingping Niu
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Bin Luo
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Haiping Wang
- Department of General Surgery, The First Hospital of Lanzhou University, No. 1 Donggang West Road, Chengguan District, Lanzhou, 730030, Gansu, People's Republic of China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
- Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Meng Tian
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Xun Li
- Department of General Surgery, The First Hospital of Lanzhou University, No. 1 Donggang West Road, Chengguan District, Lanzhou, 730030, Gansu, People's Republic of China.
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China.
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
- Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
43
|
Wang R, Yang M, Wu Y, Liu R, Liu M, Li Q, Su X, Xin Y, Huo W, Deng Q, Ba Y, Huang H. SIRT1 modifies DNA methylation linked to synaptic deficits induced by Pb in vitro and in vivo. Int J Biol Macromol 2022; 217:219-228. [PMID: 35839949 DOI: 10.1016/j.ijbiomac.2022.07.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 11/05/2022]
Abstract
To investigate the mechanism of Silent information regulator 1 (SIRT1) regulation of DNA methylation and thus the expression of synaptic plasticity-related genes induced by lead (Pb) exposure, the early-life Sprague-Dawley rats and PC12 cells were used to establish Pb exposure models and treated with SIRT1 agonists (resveratrol and SRT1720). In vivo results demonstrated that Pb exposure increased the expression of DNMTs, MeCP2, PP1 and cleaved caspase3, decreased the expression of SIRT1, BDNF and RELIN and altered DNA methylation levels of synaptic plasticity genes. Moreover, we observed marked pathological damage in the hippocampal CA1 region of the 0.2 % Pb-exposure group. After treatment with resveratrol, the effects of Pb exposure on the expression of the above molecules and pathological features were significantly ameliorated in the hippocampus of rats. In vitro results showed that after the treatment with SRT1720, the expression of SIRT1 was activated and thus reversed the effect on DNMTs, MeCP2, apoptosis and synaptic plasticity-related genes and their DNA methylation levels induced by Pb exposure. In conclusion, we validated the important protective role of SIRT1 in neurotoxicity induced by Pb exposure through in vivo and in vitro experiments, providing potential therapeutic targets for the treatment and prevention of brain damage.
Collapse
Affiliation(s)
- Ruike Wang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Mingzhi Yang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Yingying Wu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Rundong Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Mengchen Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Qiong Li
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Xiao Su
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Yongjuan Xin
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China
| | - Wenqian Huo
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China
| | - Qihong Deng
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China.
| |
Collapse
|
44
|
Humphries M, Myburgh J, Campbell R, Combrink X. High lead exposure and clinical signs of toxicosis in wild Nile crocodiles (Crocodylus niloticus) from a World Heritage site: Lake St Lucia estuarine system, South Africa. CHEMOSPHERE 2022; 303:134977. [PMID: 35595117 DOI: 10.1016/j.chemosphere.2022.134977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Lead (Pb) exposure is a widespread wildlife conservation threat, but impacts on reptile populations remain poorly documented. In this study, we examined Pb exposure and accumulation in a wild population of Nile crocodiles (Crocodylus niloticus) at Lake St Lucia, South Africa. Recreational angling has occurred in the area since the 1930s and incidental ingestion of Pb fishing weights has previously been identified as a major source of Pb poisoning in the local crocodile population. In 2019, we sampled blood and tail fat tissues from wild (n = 22) and captive (n = 3) crocodiles at Lake St Lucia to investigate potential impacts of chronic Pb exposure on crocodilian health. Lead was detected in blood samples of all wild crocodiles, although concentrations varied widely between individuals (86-13,100 ng ml-1). The incidence of Pb poisoning was higher in male crocodiles, with mean blood lead (BPb) concentrations in males (3780 ± 4690 ng ml-1) significantly (p < 0.001) higher compared to females (266 ± 230 ng ml-1). Blood Pb concentrations were correlated with concentrations measured in tail fat tissue (n.d - 4175 ng g-1 wet wt.). Although most of the crocodiles sampled appeared to be in good physical condition, highly elevated BPb concentrations (>6000 ng ml-1) were associated with markedly suppressed packed cell volumes (4.6-10.8%) and severe deterioration in tooth condition. These findings suggest that anaemia and tooth loss may be clinical signs of long-term environmental exposure to Pb. Although previously undocumented in crocodilians, these symptoms are consistent with Pb poisoning observed in birds and mammals, and suggest that crocodilians may be more susceptible to the long-term toxic effects of Pb than previously thought. In light of these findings, we suggest that the impact of accumulated Pb on crocodilian fitness, reproduction and mortality requires urgent attention.
Collapse
Affiliation(s)
- Marc Humphries
- School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa.
| | - Jan Myburgh
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, South Africa
| | - Robert Campbell
- National Zoological Garden, South African National Biodiversity Institute, Pretoria, South Africa
| | - Xander Combrink
- Department of Nature Conservation, Tshwane University of Technology, South Africa
| |
Collapse
|
45
|
Chormare R, Kumar MA. Environmental health and risk assessment metrics with special mention to biotransfer, bioaccumulation and biomagnification of environmental pollutants. CHEMOSPHERE 2022; 302:134836. [PMID: 35525441 DOI: 10.1016/j.chemosphere.2022.134836] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/13/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
The environment pollutants, which are landed up in environment because of human activities like urbanization, mining and industrializations, affects human health, plants and animals. The living organisms present in environment are constantly affected by the toxic pollutants through direct contact or bioaccumulation of chemicals from the environment. The toxic and hazardous pollutants are easily transferred to different environmental matrices like land, air and water bodies such as surface and ground waters. This comprehensive review deeply discusses the routes and causes of different environmental pollutants along with their toxicity, impact, occurrences and fate in the environment. Environment health and risk assessment tools that are used to evaluate the harmfulness, exposure of living organisms to pollutants and the amount of pollutant accumulated are explained with help of bio-kinetic models. Biotransfer, toxicity factor, biomagnification and bioaccumulation of different pollutants in the air, water and marine ecosystems are critically addressed. Thus, the presented survey would be collection of correlations those addresses the factors involved in assessing the environmental health and risk impacts of distinct environmental pollutants.
Collapse
Affiliation(s)
- Rishikesh Chormare
- Process Design and Engineering Cell, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India
| | - Madhava Anil Kumar
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India; Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India.
| |
Collapse
|
46
|
Mojarrad S, Naseri A, Hallaj T. Sulfur quantum dots as a novel platform to design a sensitive chemiluminescence probe and its application for Pb 2+ detection. LUMINESCENCE 2022; 37:1769-1775. [PMID: 35916778 DOI: 10.1002/bio.4356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/23/2022] [Accepted: 07/31/2022] [Indexed: 11/07/2022]
Abstract
The monitoring of Pb as a hazardous heavy metal element for the environment and human health is of high importance. In this study, a simple and sensitive chemiluminescence (CL) probe based on sulfur quantum dots (SQDs) was designed for the determination of Pb2+ . To the best of our knowledge, this is the first report about the analytical application of the CL method based on SQDs. For this purpose, SQDs were synthesized by a simple hydrothermal method and characterized by TEM, FT-IR, XPS and X-ray diffraction. Then, the direct chemiluminescence (CL) of SQDs elicited by common oxidants was investigated. The highest CL intensity was observed for the SQDs-KMnO4 reaction, and its CL mechanism was studied. We indicated that the CL intensity of introduced system can be diminished as a result of interaction between Pb2+ and SQDs, and exploited this fact for designing a CL-based probe for the determination of Pb2+ . The CL intensity of SQDs-KMnO4 reaction was linearly quenched by Pb2+ at the range of 50 to 2000 nM with a limit of detection as 16 nM (S/N=3). The probe was employed for the determination of Pb2+ in different water samples and the recovery results (95.2 to 102.8%) indicated the good analytical performance of the developed method.
Collapse
Affiliation(s)
- Sima Mojarrad
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Abdolhossein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Tooba Hallaj
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
47
|
Mosleh N, Najmi M, Parandi E, Rashidi Nodeh H, Vasseghian Y, Rezania S. Magnetic sporopollenin supported polyaniline developed for removal of lead ions from wastewater: Kinetic, isotherm and thermodynamic studies. CHEMOSPHERE 2022; 300:134461. [PMID: 35395264 DOI: 10.1016/j.chemosphere.2022.134461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
This study evaluated the synthesis of novel binary functionaladsorbent based on sporopollenin, magnetic nanoparticles, and polyaniline to produce MSP-PANI. The MSP-PANI was applied to enhance uptake of lead ions (Pb2+) from wastewater samples. The functionalities, surface morphology, magnetic properties, and elemental composition of the newly synthesized nanocomposite were investigated using Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), vibration sample magnetometer (VSM), and energy-dispersive X-ray spectroscopy (EDX), respectively. The experimental condition for the adsorption process was MSP/PANI ratio 1:1, pH ∼6, adsorbent dosage 40 mg, and contact time 90 min at room temperature. Under the proposed condition, lead ions removal were obtained as 83%, 88% and 95% for MSPE, PANI, and MSP/PANI, respectively. Based on the experimental and predicted data, the adsorption was corresponded to the psudo-second-order (R2 = 0.999) kinetics model, and the adsorption equilibrium corresponded to the Langmuir model (R2 = 0.996). Langmuir isotherm showed the maximum adsorption capacity of MSP-PANI for lead ions was 163 mg/g and followed the monolayer pattern. Hence, thermodynamic model under Van't Hoff equation suggested that the adsorption mechanism was physio-sorption with endothermic nature. Therefore, this research can help the researchers to use magnetic nanoparticles for lead removal in highly polluted areas.
Collapse
Affiliation(s)
- Nazanin Mosleh
- Department of Food Science & Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mohsen Najmi
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, P.O. Box 15875-4413, Tehran, Iran.
| | - Ehsan Parandi
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran; Food Technology and Agricultural Products Research Center, Standard Research Institute (SRI), Karaj, Iran.
| | - Hamid Rashidi Nodeh
- Food Technology and Agricultural Products Research Center, Standard Research Institute (SRI), Karaj, Iran.
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; The University of Johannesburg, Department of Chemical Engineering, P.O.Box 17011, Doornfontein 2088, South Africa.
| | - Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea.
| |
Collapse
|
48
|
Novel metal based nanocomposite for rapid and efficient removal of lead from contaminated wastewater sorption kinetics, thermodynamics and mechanisms. Sci Rep 2022; 12:8412. [PMID: 35589942 PMCID: PMC9120188 DOI: 10.1038/s41598-022-12485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/25/2022] [Indexed: 11/08/2022] Open
Abstract
A sol–gel method was utilized to prepare a novel nanocomposite adsorbent (nMgO/bentonite) and was tested for Pb(II) removal from aqueous solutions. The produced nanocomposite was investigated using, SEM–EDX, XRD, and FTIR analyses before and after Pb adsorption. Adsorption equilibrium and kinetic experiments were run in batch system under different conditions of pH, adsorbent dose, competitive cations, contact time and temperature. The results exhibited rapid Pb(II) adsorption by the nanocomposite in the first five min. Experimental lead adsorption equilibrium and kinetics data fitted well to Langmuir and power function models, respectively as indicated from the lowest standard error (SE) values. The calculated Langmuir maximum adsorption capacity (qmax) value of nanocomposite (75 mg g−1) was 4.5 times higher than that of bentonite (16.66 mg g−1). Moreover, the highest quantity of Pb(II) uptake was achieved at temperature of 307 K and pH 9. The Langmuir sorption capacity of the nanocomposite for Pb(II) increased from 75 to 145 mg g−1 with increasing temperature from 287 to 307 K. The thermodynamic parameters of Pb(II) adsorption by the nanocomposite affirm the spontaneous and endothermic nature of the adsorption process. Lead adsorption mechanisms by the nanocomposite were proposed and discussed.
Collapse
|
49
|
Famurewa AC, Renu K, Eladl MA, Chakraborty R, Myakala H, El-Sherbiny M, Elsherbini DMA, Vellingiri B, Madhyastha H, Ramesh Wanjari U, Goutam Mukherjee A, Valsala Gopalakrishnan A. Hesperidin and hesperetin against heavy metal toxicity: Insight on the molecular mechanism of mitigation. Biomed Pharmacother 2022; 149:112914. [DOI: 10.1016/j.biopha.2022.112914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/02/2022] Open
|
50
|
Khedr NF, Talkan OFA. New insights into arsenic, lead, and iron neurotoxicity: Activation of MAPK signaling pathway and oxidative stress. J Biochem Mol Toxicol 2022; 36:e23040. [DOI: 10.1002/jbt.23040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 01/27/2022] [Accepted: 03/02/2022] [Indexed: 01/14/2023]
Affiliation(s)
- Naglaa F. Khedr
- Department of Biochemistry, Faculty of Pharmacy Tanta University Tanta Egypt
| | - Ola F. A. Talkan
- Chemistry Department, Animal Health Research Institute‐Shiben El‐Kom Lab. Agriculture Research Center Menofia Shiben El‐Kom Egypt
| |
Collapse
|