1
|
Sweet NM, Lunderberg DM, Molinier B, Pfannerstill EY, Katz EF, Misztal PK, Liu Y, Arata C, Kristensen K, Tian Y, Nazaroff WW, Goldstein AH. Influence of Cleaning on Indoor Air Concentrations of Volatile and Semivolatile Organic Compounds in Residences. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:10022-10031. [PMID: 40369961 PMCID: PMC12124216 DOI: 10.1021/acs.est.4c11274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/16/2025]
Abstract
Cleaning activities can affect indoor air composition long after the cleaning is completed. Utilizing data from detailed observational monitoring campaigns, conducted over 21 weeks, we explore the influence of cleaning activities in two normally occupied, single-family houses. To study emissions and chemistry, we quantified more than 200 volatile organic compounds (VOCs) using a proton-transfer reaction time-of-flight mass spectrometer and 52 semivolatile organic compounds (SVOCs) using a semivolatile thermal-desorption gas chromatograph. During regular professional home cleaning, we observed postcleaning concentration enhancements in ∼60% of measured VOCs and ∼80% of measured SVOCs. Most of these concentration enhancements were not clearly linked to either primary emission from cleaning products or secondary formation through reactive chemistry. Instead, we infer that shifts in the sorptive properties of indoor surfaces account for most of these observations. Cleaning-associated enhancements mostly ebbed within a few hours, with some VOCs and lower-volatility SVOCs persisting more than 5 h, longer than would be expected for removal of inert species by ventilation. The use of carpet cleaner was associated with direct emission of 2-butoxyethanol, which persisted at elevated concentrations for days after the initial event. Home cleaning is potentially relevant for the health of professional cleaners and residents.
Collapse
Affiliation(s)
- Nathan M. Sweet
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California94720, United States
| | - David M. Lunderberg
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California94720, United States
- Department
of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California94720, United States
| | - Betty Molinier
- Department
of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California94720, United States
| | - Eva Y. Pfannerstill
- Department
of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California94720, United States
| | - Erin F. Katz
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California94720, United States
- Department
of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California94720, United States
| | - Pawel K. Misztal
- Department
of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California94720, United States
| | - Yingjun Liu
- Department
of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California94720, United States
| | - Caleb Arata
- Department
of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California94720, United States
| | - Kasper Kristensen
- Department
of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California94720, United States
| | - Yilin Tian
- Department
of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California94720, United States
| | - William W. Nazaroff
- Department
of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California94720, United States
| | - Allen H. Goldstein
- Department
of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California94720, United States
- Department
of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California94720, United States
| |
Collapse
|
2
|
Jiao X, Zhou L, Zhao W, Yuan W, Yang B, Zhang L, Huang W, Long S, Xu J, Shen H, Tao S, Wang C. Significant Cross-Contamination Caused by Cooking Fume Transport between Dwelling Units in Multilayer Buildings. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9665-9675. [PMID: 40340370 DOI: 10.1021/acs.est.4c13818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Cross-contamination in multiunit residential buildings is an inevitable but poorly studied issue. We conducted a 2-month monitoring campaign in a multilayer residential building, identifying 53 interunit kitchen exhaust transmission events (∼2 per day), causing enhanced exposure of particulate matters (PM), black carbon (BC), NOx, and CO and volatile organic compounds (VOCs) in both the kitchen and living room. These events resulted in a 40-80% increase in PM deposition in the respiratory systems for occupants in the living room, especially fine particles depositing in the alveolar region. Evidence indicates that these pollutant events originated from cooking fume transport. The geometric mean diameter of kitchen particles decreased from 76 nm during background periods to 62 nm during transport events, consistent with smaller PM from cooking activities. Furthermore, 30 cooking-related VOCs were identified as transport indicators, including hazardous species such as aldehydes. We confirmed that leakage of cooking fume through the shared kitchen exhaust duct led to cross-contamination, which can be effectively mitigated by using exhaust hoods, air cleaners, or opening windows during mealtimes. This research provides the first quantitative assessment of cooking emission transport between dwellings in multilayer housing, highlighting the significant impact of cross-contamination in high-density residential environments.
Collapse
Affiliation(s)
- Xiaoqiao Jiao
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Coastal Atmosphere and Climate of the Greater Bay Area Observation and Research Station of Guangdong Province, Southern University of Science and Technology, Shenzhen 518055, China
| | - Li Zhou
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Coastal Atmosphere and Climate of the Greater Bay Area Observation and Research Station of Guangdong Province, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wangchao Zhao
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Coastal Atmosphere and Climate of the Greater Bay Area Observation and Research Station of Guangdong Province, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenting Yuan
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Coastal Atmosphere and Climate of the Greater Bay Area Observation and Research Station of Guangdong Province, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bo Yang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Coastal Atmosphere and Climate of the Greater Bay Area Observation and Research Station of Guangdong Province, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lifang Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Coastal Atmosphere and Climate of the Greater Bay Area Observation and Research Station of Guangdong Province, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weilin Huang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Coastal Atmosphere and Climate of the Greater Bay Area Observation and Research Station of Guangdong Province, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shiqian Long
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Coastal Atmosphere and Climate of the Greater Bay Area Observation and Research Station of Guangdong Province, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiwen Xu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Coastal Atmosphere and Climate of the Greater Bay Area Observation and Research Station of Guangdong Province, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huizhong Shen
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Coastal Atmosphere and Climate of the Greater Bay Area Observation and Research Station of Guangdong Province, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shu Tao
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Coastal Atmosphere and Climate of the Greater Bay Area Observation and Research Station of Guangdong Province, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Carbon Neutrality, Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Chen Wang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Coastal Atmosphere and Climate of the Greater Bay Area Observation and Research Station of Guangdong Province, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Mishra N, Patel S. Need for a Holistic Approach to Assessing Sustainable, Green, and Healthy Buildings. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:218-226. [PMID: 40144326 PMCID: PMC11934202 DOI: 10.1021/envhealth.4c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 03/28/2025]
Abstract
With the rising global population, economic development, and urbanization, building stock is bound to grow, warranting measures for optimizing their embodied and operational energy and resource consumption. Further, a building's indoor environment quality significantly affects occupants' health, productivity, and well-being since people spend almost 90% of their time indoors. Buildings safeguard occupant's well-being by shielding them from the outdoor air pollution and increasing climate extremes. However, buildings can also lead to acute and chronic exposure to pollutants trapped inside. The recent pandemic has demonstrated that indoor environments can prevent and promote airborne disease transmission depending on buildings' design and operation. The current segregated rating systems and regulations to gauge buildings' sustainability, health and safety, and energy efficiency have led to a fragmented approach hampering sustainable and healthy buildings' design, construction, and operations. This work discusses the environmental sustainability of buildings, their impacts on occupants' health and productivity, and if and how the existing global policies and frameworks regulate and promote the same. Developing a holistic and comprehensive framework is critical to ensure buildings' sustainability, occupants' health, and energy efficiency.
Collapse
Affiliation(s)
- Nishchaya
Kumar Mishra
- Department
of Civil Engineering, Indian Institute of
Technology Gandhinagar, Palaj,
Gandhinagar, Gujarat 382355, India
| | - Sameer Patel
- Department
of Civil Engineering, Indian Institute of
Technology Gandhinagar, Palaj,
Gandhinagar, Gujarat 382355, India
- Department
of Chemical Engineering, Indian Institute
of Technology Gandhinagar, Palaj,
Gandhinagar, Gujarat 382355, India
- Kiran
C. Patel Centre for Sustainable Development, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
4
|
Borghi F, Spinazzè A, Fanti G, Albareda A, Ghiraldini J, Campagnolo D, Carminati A, Keller M, Rovelli S, Zellino C, Giovanni DV, Cattaneo A, Cavallo DM. Exposure to airborne particulate matter in working from office and working from home employees. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025; 35:319-329. [PMID: 38741242 DOI: 10.1080/09603123.2024.2352608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
The main aim of this study is to quantitatively evaluate the differences, in terms of exposure to PM (particulate matter), between WFO (working-from-office) and WFH (working-from-home) conditions. Two measurement surveys were performed: a long-term and a short-term campaign, focused on the monitoring of personal exposure to size-fractionated PM in these different working conditions. Results of the long-term campaign show that the WFH subject is exposed to higher (up to 4 times) PM concentration, compared to the WFO subject. Specific activities performed by the subjects impacted their exposure concentrations, even if the most relevant contribution to total exposure was made by desk work. Results of the short-term campaign indicate that the subjects can be divided into two groups: subjects most exposed during the WFH mode (HE_H - Higher_Exposure_Home) and subjects most exposed during the WFO mode (HE_O - Higher_Exposure_Office). HE_H group is exposed to levels of pollutants up to 4 times higher in the domestic than in the office environment, during the moment of desk work. The HE_O group is exposed to higher (double) concentration levels during desk work during the WFO day. Considering the possible growing trend towards remote work it is important to evaluate these "new domestic offices" comprehensively.
Collapse
Affiliation(s)
- Francesca Borghi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Department of Science and High Technology, University of Insubria, Como, Italy
| | - Andrea Spinazzè
- Department of Science and High Technology, University of Insubria, Como, Italy
| | - Giacomo Fanti
- Department of Science and High Technology, University of Insubria, Como, Italy
| | - Angelica Albareda
- Department of Science and High Technology, University of Insubria, Como, Italy
| | - Jacopo Ghiraldini
- Department of Science and High Technology, University of Insubria, Como, Italy
| | - Davide Campagnolo
- Department of Science and High Technology, University of Insubria, Como, Italy
| | - Alessio Carminati
- Department of Science and High Technology, University of Insubria, Como, Italy
| | - Marta Keller
- Department of Science and High Technology, University of Insubria, Como, Italy
| | - Sabrina Rovelli
- Department of Science and High Technology, University of Insubria, Como, Italy
| | - Carolina Zellino
- Department of Science and High Technology, University of Insubria, Como, Italy
| | - De Vito Giovanni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Andrea Cattaneo
- Department of Science and High Technology, University of Insubria, Como, Italy
| | | |
Collapse
|
5
|
Østerstrøm FF, Carter TJ, Shaw DR, Abbatt JPD, Abeleira A, Arata C, Bottorff BP, Cardoso-Saldaña FJ, DeCarlo PF, Farmer DK, Goldstein AH, Ruiz LH, Kahan TF, Mattila JM, Novoselac A, Stevens PS, Reidy E, Rosales CMF, Wang C, Zhou S, Carslaw N. Modelling indoor radical chemistry during the HOMEChem campaign. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:188-201. [PMID: 39688182 DOI: 10.1039/d4em00628c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
In the indoor environment, occupants are exposed to air pollutants originating from continuous indoor sources and exchange with the outdoor air, with the highest concentration episodes dominated by activities performed indoors such as cooking and cleaning. Here we use the INdoor CHEMical model in Python (INCHEM-Py) constrained by measurements from the House Observations of Microbial and Environmental Chemistry (HOMEChem) campaign, to investigate the impact of a bleach cleaning event and cooking on indoor air chemistry. Measurements of the concentrations of longer-lived organic and inorganic compounds, as well as measured photolysis rates, have been used as input for the model, and the modelled hydroxyl (OH) radicals, hydroperoxyl radicals, and nitrous acid (HONO) concentrations compared to the measured values. The peak modelled OH, , and HONO concentrations during cooking and cleaning activities are about 30%, 10%, and 30% higher than the observations, respectively, within experimental uncertainties. We have determined rates for the rapid loss of HONO formed through cooking activities onto a wet surface during the cleaning events and also for the subsequent slow release of HONO from the cleaned surface back into the gas-phase. Using INCHEM-Py we have also predicted peak concentrations of chlorine (Cl) atoms, (0.75-2.3) × 105 atom per cm3 at the time of cleaning. Model predictions of the Cl atom and OH radical reactivities were also explored, showing high Cl atom reactivity throughout the day, peaking around 5000-9000 s-1. The OH reactivity was found to increase from a background value close to urban outdoor levels of 20-40 s-1, to levels exceeding observations in outdoor polluted areas following cooking and cleaning activities (up to 160 s-1). This underlines the high oxidation capacity of the indoor atmospheric environment through determining the abundance of volatile organic compounds.
Collapse
Affiliation(s)
| | - Toby J Carter
- Department of Environment and Geography, University of York, York, UK.
| | - David R Shaw
- Department of Environment and Geography, University of York, York, UK.
| | | | - Andrew Abeleira
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Caleb Arata
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, USA
| | - Brandon P Bottorff
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA
| | | | - Peter F DeCarlo
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Delphine K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Allen H Goldstein
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, USA
- Department of Civil and Environmental Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Lea Hildebrandt Ruiz
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Tara F Kahan
- Department of Chemistry, Syracuse University, Syracuse, NY, USA
- Department of Chemistry, University of Saskatchewan, Saskatoon, Canada
| | - James M Mattila
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Atila Novoselac
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, TX, USA
| | - Philip S Stevens
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA
- O'Neill School of Public and Environmental Affairs, Indiana University Bloomington, Bloomington, IN, USA
| | - Emily Reidy
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA
| | - Colleen Marciel F Rosales
- O'Neill School of Public and Environmental Affairs, Indiana University Bloomington, Bloomington, IN, USA
| | - Chen Wang
- Department of Chemistry, University of Toronto, Toronto, Canada
| | - Shan Zhou
- Department of Chemistry, Syracuse University, Syracuse, NY, USA
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| | - Nicola Carslaw
- Department of Environment and Geography, University of York, York, UK.
| |
Collapse
|
6
|
Rathbone CJ, Bousiotis D, Rose OG, Pope FD. Using low-cost sensors to assess common air pollution sources across multiple residences. Sci Rep 2025; 15:1803. [PMID: 39806034 PMCID: PMC11729851 DOI: 10.1038/s41598-025-85985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
The rapid development of low-cost sensors provides the opportunity to greatly advance the scope and extent of monitoring of indoor air pollution. In this study, calibrated particle matter (PM) sensors and a non-negative matrix factorisation (NMF) source apportionment technique are used to investigate PM concentrations and source contributions across three households in an urban residential area. The NMF is applied to combined data from all houses to generate source profiles that can be used to understand how PM source characteristics are similar or differ between different households in the same urban area. PM2.5 and PM10 concentrations in all three houses were greater, more variable, and significantly different to ambient concentrations recorded at a nearby ambient monitoring site. Concentrations were also significantly different between houses, with the World Health Organisation 24-h guideline limits for PM2.5 breached in one household. The applied methodology was highly successful at modelling concentrations for all the houses (R2 ≥ 0.983), finding that across the houses the I/O (indoor to outdoor sources ratio) was the lowest for PM1 (down to 0.08), and greatest for PM10 (up to 4.93). Whilst the sources could not be clearly distinguished further than being outdoors or indoors, the methodology provides clear insights to source variability within and between the monitored houses. These results highlight the importance of monitoring indoor air pollution to improve pollution exposure estimates, as whilst people may live in areas with acceptable ambient air quality, they can be exposed to unhealthy concentrations in their own homes. This method may be applied in future studies for extended periods to investigate the influence of source seasonality on PM concentrations or scaled up to investigate source variability across larger geographical areas.
Collapse
Affiliation(s)
- Catrin J Rathbone
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Dimitrios Bousiotis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Owain G Rose
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Francis D Pope
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
7
|
Wagner D, Jung N, Boor BE. Spatiotemporal Mapping of Ultrafine Particle Fluxes in an Office HVAC System with a Diffusion Charger Sensor Array. ACS ES&T AIR 2025; 2:49-63. [PMID: 39817256 PMCID: PMC11730965 DOI: 10.1021/acsestair.4c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 01/18/2025]
Abstract
Commercial HVAC systems intended to mitigate indoor air pollution are operated based on standards that exclude aerosols with smaller diameters, such as ultrafine particles (UFPs, Dp ≤ 100 nm), which dominate a large proportion of indoor and outdoor number-based particle size distributions. UFPs generated from occupant activities or infiltrating from the outdoors can be recirculated and accumulate indoors when they are not successfully filtered by an air handling unit. Monitoring UFPs in real occupied environments is vital to understanding these source and mitigation dynamics, but capturing their rapid transience across multiple locations can be challenging due to high-cost instrumentation. This 9-month field measurement campaign pairs four medium-cost diffusion charger sensors with volumetric airflow rates modulated and monitored in a cloud-based building automation system of an open-plan living laboratory office and dedicated air handling unit to evaluate spatiotemporal particle number and surface area concentrations and migration trends. Particle number flux rates reveal that an estimated daily median of 8 × 1013 UFPs enter the air handling unit from the outdoors. Switching from a MERV14 to a HEPA filter reduces the number of UFPs supplied to the room by tens of trillions of UFPs daily, increasing the median filtration efficiency from 40% to 96%. These results demonstrate the efficacy of an optimal air handling unit's performance to improve indoor air quality, while highlighting UFP dynamics that are not accounted for in current filtration standards nor in occupant-centered HVAC control. Scalable sensor development can popularize UFP monitoring and allow for future UFP integration within building control and automation platforms. The framework established for this campaign can be used to evaluate particle fluxes considering different analytes.
Collapse
Affiliation(s)
- Danielle
N. Wagner
- Lyles
School of Civil & Construction Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Ray
W. Herrick Laboratories, Center for High Performance Buildings, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nusrat Jung
- Lyles
School of Civil & Construction Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Ray
W. Herrick Laboratories, Center for High Performance Buildings, Purdue University, West Lafayette, Indiana 47907, United States
| | - Brandon E. Boor
- Lyles
School of Civil & Construction Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Ray
W. Herrick Laboratories, Center for High Performance Buildings, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
8
|
Chen H, Harui A, Feng Y, Li L, Patel S, Schmidt J, Roth MD, Zhu Y. A Ventilated Three-Dimensional Artificial Lung System for Human Inhalation Exposure Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22919-22929. [PMID: 39681299 PMCID: PMC11697334 DOI: 10.1021/acs.est.4c08315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/17/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
Traditional in vitro and in vivo models for inhalation toxicology studies often fail to replicate the anatomical and physiological conditions of the human lung. This limitation hinders our understanding of intrapulmonary exposures and their related health effects. To address this gap, we developed a ventilated artificial lung system that replicates human inhalation exposures in four key aspects: (1) facilitating continuous breathing with adjustable respiratory parameters; (2) distributing inhaled aerosols through transitional airflow fields in 3D-printed airway structures, which enables size-dependent particle deposition; (3) duplicating the warm and humid lung environment to promote inhaled aerosol dynamics, such as hygroscopic growth; and (4) supporting the cultivation of human airway epithelium for aerosol exposure and toxicological analyses. As a proof-of-concept application, we exposed human bronchial epithelial cells to electronic cigarette aerosols in the system. Our results show that electronic cigarette particles undergo significant hygroscopic growth within the artificial lung, leading to a 19% greater deposition dose compared to data collected at room temperature and relative humidity. Additionally, short-term exposure altered epithelial production of the chemokine Fractalkine in a nicotine-dependent manner, but no acute toxic effects were observed. This artificial lung system provides a more physiologically relevant in vitro model for studying inhalation exposures.
Collapse
Affiliation(s)
- Haoxuan Chen
- Department
of Environmental Health Sciences, Jonathan and Karin Fielding School
of Public Health, University of California, Los Angeles, California 90095, United States
| | - Airi Harui
- Division
of Pulmonary and Critical Care, Department of Medicine, David Geffen
School of Medicine, University of California, Los Angeles, California 90095, United States
| | - Yu Feng
- School
of Chemical Engineering, Oklahoma State
University, Stillwater, Oklahoma 74078, United States
| | - Liqiao Li
- Department
of Environmental Health Sciences, Jonathan and Karin Fielding School
of Public Health, University of California, Los Angeles, California 90095, United States
| | - Saagar Patel
- Institute
of the Environment and Sustainability, University
of California, Los Angeles, California 90095, United States
| | - Jacob Schmidt
- Department
of Bioengineering, Samueli School of Engineering, University of California, Los
Angeles, California 90095, United States
| | - Michael D. Roth
- Division
of Pulmonary and Critical Care, Department of Medicine, David Geffen
School of Medicine, University of California, Los Angeles, California 90095, United States
| | - Yifang Zhu
- Department
of Environmental Health Sciences, Jonathan and Karin Fielding School
of Public Health, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
9
|
Naseri M, Sultanbekovna AA, Malekipirbazari M, Kenzhegaliyeva E, Buonanno G, Stabile L, Hopke PK, Cassee F, Crape B, Sabanov S, Zhumambayeva S, Ozturk F, Tadi MJ, Torkmahalleh MA, Shah D. Human exposure to aerosol from indoor gas stove cooking and the resulting cardiovascular system responses. Toxicol Rep 2024; 13:101716. [PMID: 39262849 PMCID: PMC11387595 DOI: 10.1016/j.toxrep.2024.101716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/24/2024] [Accepted: 08/16/2024] [Indexed: 09/13/2024] Open
Abstract
The effect of cooking aerosol on the human heart was investigated in this study. The heart rate and blood pressure of 33 healthy adults were monitored before, exactly after, and two hours post-exposure (30 minutes, 60 minutes, 90 minutes, and 120 minutes after cooking). One hundred twenty grams of ground beef was fried in sunflower oil for twenty minutes using a gas stove without ventilation. Ultrafine particles, indoor temperature, relative humidity, carbon dioxide, oil, and meat temperatures were monitored during the experiment. The average particle emission rate (S) and average decay rate (a+k) for meat frying were found to be 2.09×1013 (SD=3.94 ×1013, R2=0.98, P <0.0001) particles/min, and 0.055 (SD=0.019, R2=0.91, P <0.0001) particles/min, respectively. No statistically significant changes in diastolic blood pressure (DBP) and heart rate (HR) were observed. The average systolic blood pressure (SBP) statistically significantly increased from 98 mmHg (before the exposure) to 106 mmHg 60 minutes after the exposure. The results suggested that frying emission statistically significantly impacted blood pressure.
Collapse
Affiliation(s)
- Motahareh Naseri
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| | - Aigerim Abilova Sultanbekovna
- Clinical Academic Department of Laboratory Medicine, Pathology and Genetics, University Medical Center, Astana, Kazakhstan
| | - Milad Malekipirbazari
- Department of Computer Science and Engineering, Chalmers University of Technology, Gothenburg SE41296, Sweden
| | - Elzira Kenzhegaliyeva
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| | - Giorgio Buonanno
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, via Di Biasio 43, Cassino 03043, Italy
| | - Luca Stabile
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, via Di Biasio 43, Cassino 03043, Italy
| | - Philip K. Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Flemming Cassee
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Byron Crape
- Department of Medicine, School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | - Sergei Sabanov
- Department of mining, School of Mining and Geosciences, Nazarbayev University, Astana, Kazakhstan
| | - Saule Zhumambayeva
- Department of children diseases with courses in allergy hematology and endocrinology, Astana Medical University, Astana, Kazakhstan
| | - Fatma Ozturk
- Environmental Engineering Department, Faculty of Engineering, Bolu Abant Izzet Baysal University (BAIBU), Golkoy Campus, Bolu 14030, Turkey
| | - Mehrdad Jafari Tadi
- Department of Cell and Molecular Medicine, Rush University Medical Center, Chicago, IL 60607, USA
| | - Mehdi Amouei Torkmahalleh
- Division of Environmental and Occupational Health Sciences, School of Public Health, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Dhawal Shah
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
10
|
Goss MB, Kroll JH. Organic aerosol formation from 222 nm germicidal light: ozone-initiated vs. non-ozone pathways. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024. [PMID: 39440930 PMCID: PMC11497901 DOI: 10.1039/d4em00384e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Germicidal ultraviolet lamps outputting 222 nm light (GUV222) have the potential to reduce the airborne spread of disease through effective inactivation of pathogens, while remaining safe for direct human exposure. However, recent studies have identified these lamps as a source of ozone and other secondary pollutants such as secondary organic aerosol (SOA), and the health effects of these pollutants must be balanced against the benefits of pathogen inactivation. While ozone reactions are likely to account for much of this secondary indoor air pollution, 222 nm light may initiate additional non-ozone chemical processes, including the formation of other oxidants and direct photolytic reactions, which are not as well understood. This work examines the impacts of GUV222 on SOA formation and composition by comparing limonene oxidation under GUV222 and O3-only control conditions in a laboratory chamber. Differences between these experiments enable us to distinguish patterns in aerosol formation driven by ozone chemistry from those driven by other photolytic processes. These experiments also examine the influence of the addition of NO2 and nitrous acid (HONO), and investigate SOA formation in sampled outdoor air. SOA composition and yield vary only slightly with respect to GUV222vs. ozone-only conditions; NO2 and HONO photolysis do not appreciably affect the observed chemistry. In contrast, we observe consistent new particle formation under high-fluence 222 nm light (45 μW cm-2) that differs substantially from ozone-only experiments. This observed new particle formation represents an additional reason to keep GUV222 fluence rates to the lowest effective levels.
Collapse
Affiliation(s)
- Matthew B Goss
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
- Now at Harvard University Center for the Environment, Harvard University, Cambridge, Massachusetts 02138, USA
- Now at John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
| | - Jesse H Kroll
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
11
|
Caracci E, Iannone A, Carriera F, Notardonato I, Pili S, Murru A, Avino P, Campagna M, Buonanno G, Stabile L. Size-segregated content of heavy metals and polycyclic aromatic hydrocarbons in airborne particles emitted by indoor sources. Sci Rep 2024; 14:20739. [PMID: 39237605 PMCID: PMC11377746 DOI: 10.1038/s41598-024-70978-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024] Open
Abstract
Indoor air quality is negatively affected by the emission of different combustion sources releasing airborne particles and related particle-bound toxic compounds (e.g., heavy metals and polycyclic aromatic hydrocarbons). To date, very few studies focused on the chemical characterization of the airborne particles emitted by indoor sources were carried out; moreover, no data on their size-resolved chemical compositions are available. In the present study, an experimental analysis aimed at determining the size-segregated content of heavy metals and polycyclic aromatic hydrocarbons in airborne particles (including sub-micrometric ones) emitted by widely-used indoor combustion sources (i.e., incenses, candles, mosquito-coils, and cooking activities) was carried out. To this purpose, airborne particles were collected through an electric low-pressure impactor and were post-analyzed by means of chromatography-mass spectrometry and atomic emission spectrometry techniques. Results of the analyses showed that the chemical composition of the emitted particles is not invariant to the particle size, indeed, an important contribution of sub-micrometric particle range to the total mass of chemical compounds emitted by the sources was noticed. These findings also demonstrated that significant underestimations of particle-bound compounds depositing in the lungs could occur if size-dependent compositions are not adopted.
Collapse
Affiliation(s)
- E Caracci
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy
| | - A Iannone
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - F Carriera
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - I Notardonato
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - S Pili
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
| | - A Murru
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
| | - P Avino
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - M Campagna
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
| | - G Buonanno
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Luca Stabile
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy.
| |
Collapse
|
12
|
Pantelic J, Tang M, Byun K, Knobloch Y, Son YJ. Comparison of cooking emissions mitigation between automated and manually operated air quality interventions in one-bedroom apartments. Sci Rep 2024; 14:20630. [PMID: 39232024 PMCID: PMC11374985 DOI: 10.1038/s41598-024-69731-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024] Open
Abstract
We implemented a crossover study design exposing 15 participants to two indoor air quality conditions in the Well Living Lab. The first condition, the Standard Control Condition, resembled the ventilation and air supply of a typical home in the USA with a manually operated stove hood. The second condition, Advanced Control, had an automated: (i) stove hood, (ii) two portable air cleaners (PAC), and (iii) bathroom exhaust. The PM2.5 sensors were placed in the kitchen, living room, bedroom, and bathroom. Once the sensor detected a PM2.5 level of 15 μg/m3 or higher, an air quality intervention (stove hood, PAC or bathroom exhaust) in that space was activated and turned off when the corresponding PM2.5 sensor had three consecutive readings below 6 μg/m3. Advanced Control in the overall apartment reduced PM2.5 concentration by 40% compared to the Standard Control. The PM2.5 concentration difference between Advanced and Standard Control was ~ 20% in the kitchen. This can be attributed to using the stove hood manually in 66.5% of cooking PM2.5 emission events for 323.6 h compared to 88 h stove hood used in automated mode alongside 61.9 h and 33.7 h of PAC use in living room and bedroom, respectively.
Collapse
Affiliation(s)
| | - Mengjia Tang
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, TX, 78712, USA
- Buildings and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | | | - Yaakov Knobloch
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | | |
Collapse
|
13
|
Tsameret S, Furuta D, Saha P, Kwak N, Hauryliuk A, Li X, Presto AA, Li J. Low-Cost Indoor Sensor Deployment for Predicting PM 2.5 Exposure. ACS ES&T AIR 2024; 1:767-779. [PMID: 39144754 PMCID: PMC11321336 DOI: 10.1021/acsestair.3c00105] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 08/16/2024]
Abstract
Indoor air quality is critical to human health, as individuals spend an average of 90% of their time indoors. However, indoor particulate matter (PM) sensor networks are not deployed as often as outdoor sensor networks. In this study, indoor PM2.5 exposure is investigated via 2 low-cost sensor networks in Pittsburgh. The concentrations reported by the networks were fed into a Monte Carlo simulation to predict daily PM2.5 exposure for 4 demographics (indoor workers, outdoor workers, schoolchildren, and retirees). Additionally, this study compares the effects of 4 different correction factors on reported concentrations from the PurpleAir sensors, including both empirical and physics-based corrections. The results of the Monte Carlo simulation show that mean PM2.5 exposure varied by 1.5 μg/m3 or less when indoor and outdoor concentrations were similar. When indoor PM concentrations were lower than outdoor, increasing the time spent outdoors on the simulation increased exposure by up to 3 μg/m3. These differences in exposure highlight the importance of carefully selecting sites for sensor deployment and show the value of having a robust low-cost sensor network with both indoor and outdoor sensor placement.
Collapse
Affiliation(s)
- Shahar Tsameret
- Department
of Mechanical & Aerospace Engineering, University of Miami, Coral
Gables, Florida 33146, United States
| | - Daniel Furuta
- Department
of Mechanical & Aerospace Engineering, University of Miami, Coral
Gables, Florida 33146, United States
| | - Provat Saha
- Center
for Atmospheric Particle Studies, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Civil Engineering, Bangladesh University
of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Nohhyeon Kwak
- Department
of Mechanical & Aerospace Engineering, University of Miami, Coral
Gables, Florida 33146, United States
| | - Aliaksei Hauryliuk
- Air
Monitoring & Source Testing Program, Allegheny County, Pittsburgh, Pennsylvania 15219, United States
| | - Xiang Li
- South
Coast Air Quality Management District, Diamond Bar, California 91765, United States
| | - Albert A. Presto
- Center
for Atmospheric Particle Studies, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jiayu Li
- Department
of Mechanical & Aerospace Engineering, University of Miami, Coral
Gables, Florida 33146, United States
| |
Collapse
|
14
|
Yang S, Licina D. Nanocluster Aerosols from Ozone-Human Chemistry Are Dominated by Squalene-Ozone Reactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:716-722. [PMID: 39006814 PMCID: PMC11238579 DOI: 10.1021/acs.estlett.4c00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/14/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024]
Abstract
Nanocluster aerosols (NCAs, <3 nm particles) are associated with climate feedbacks and potentially with human health. Our recent study revealed NCA formation owing to the reaction of ozone with human surfaces. However, the underlying mechanisms driving NCA emissions remain unexplored. Squalene is the most abundant compound in human skin lipids that reacts with ozone, followed by unsaturated fatty acids. This study aims to examine the contribution of the squalene-ozone reaction to NCA formation and the influence of ozone and ammonia (NH3) levels. In a climate-controlled chamber, we painted squalene and 6-hexadecenoic acid (C16:1n6) on glass plates to facilitate their reactions with ozone. The squalene-ozone reaction was further investigated at different ozone levels (15 and 90 ppb) and NH3 levels (0 and 375 ppb). The results demonstrate that the ozonolysis of human skin lipid compounds contributes to NCA formation. With a typical squalene-C16:1n6 ratio found in human skin lipids (4:1), squalene generated 40 times more NCAs than did C16:1n6 and, thus, dominated NCA formation. More NCAs were generated with increased ozone levels, whereas increased NH3 levels were associated with the stronger generation of larger NCAs but fewer of the smallest ones. This study experimentally confirms that NCAs are primarily formed from squalene-ozone reactions in ozone-human chemistry.
Collapse
Affiliation(s)
- Shen Yang
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Dusan Licina
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
15
|
He J, Zhong K, Yang R, Wen C, Liu S, Yang Y, Zhong Q. Solid fuel use and low birth weight: a systematic review and meta-analysis. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 0:reveh-2024-0055. [PMID: 38963124 DOI: 10.1515/reveh-2024-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024]
Abstract
Solid fuel use is increasingly linked to low birth weight (LBW), but conclusions were inconsistent. We aimed to summarize the association between solid fuel use and LBW. Twenty-one studies that met the inclusion criteria were identified through PubMed, Qvid Medline, and Web of Science databases. The final search occurred on March 20, 2024. Summary relative effect and 95 % confidence intervals were estimated with a random-effects model. Subgroup analyses and sensitivity analyses were performed to investigate possible sources of heterogeneity and to test the stability of the results. Nineteen studies evaluated the association between solid fuel use in pregnant woman and LBW (1.188 for solid fuels: 1.055 to 1.322). No significant heterogeneity was identified among the included studies (p=0.010, Tau2=0.02, I2=48.1 %). Subgroup analysis found positive correlations for Asia, data years prior to 2014, and rural studies (1.245 for Asia: 1.077 to 1.412; Tau2=0.03, I2=56.0 %; 1.243 for data years prior to 2014: 1.062 to 1.424; Tau2=0.04, I2=60.98 %; 1.514 for rural: 1.258 to 1.771; Tau2=0.00, I2=0.0 %). Our meta-analysis showed that solid fuel use in pregnant women had an impact on LBW. Measures and policies are also needed to promote energy conversion and to limit and reduce the use of solid fuels.
Collapse
Affiliation(s)
- Jie He
- School of Public Health, 12485 Anhui Medical University , Hefei, Anhui, P.R. China
| | - Kangkang Zhong
- School of Public Health, 12485 Anhui Medical University , Hefei, Anhui, P.R. China
| | - Rui Yang
- School of Public Health, 12485 Anhui Medical University , Hefei, Anhui, P.R. China
| | - Chuanting Wen
- School of Public Health, 12485 Anhui Medical University , Hefei, Anhui, P.R. China
| | - Shubo Liu
- School of Public Health, 12485 Anhui Medical University , Hefei, Anhui, P.R. China
| | - Yiping Yang
- School of Public Health, 12485 Anhui Medical University , Hefei, Anhui, P.R. China
| | - Qi Zhong
- School of Public Health, 12485 Anhui Medical University , Hefei, Anhui, P.R. China
| |
Collapse
|
16
|
Farmer DK, Vance ME, Poppendieck D, Abbatt J, Alves MR, Dannemiller KC, Deeleepojananan C, Ditto J, Dougherty B, Farinas OR, Goldstein AH, Grassian VH, Huynh H, Kim D, King JC, Kroll J, Li J, Link MF, Mael L, Mayer K, Martin AB, Morrison G, O'Brien R, Pandit S, Turpin BJ, Webb M, Yu J, Zimmerman SM. The chemical assessment of surfaces and air (CASA) study: using chemical and physical perturbations in a test house to investigate indoor processes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024. [PMID: 38953218 DOI: 10.1039/d4em00209a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The Chemical Assessment of Surfaces and Air (CASA) study aimed to understand how chemicals transform in the indoor environment using perturbations (e.g., cooking, cleaning) or additions of indoor and outdoor pollutants in a well-controlled test house. Chemical additions ranged from individual compounds (e.g., gaseous ammonia or ozone) to more complex mixtures (e.g., a wildfire smoke proxy and a commercial pesticide). Physical perturbations included varying temperature, ventilation rates, and relative humidity. The objectives for CASA included understanding (i) how outdoor air pollution impacts indoor air chemistry, (ii) how wildfire smoke transports and transforms indoors, (iii) how gases and particles interact with building surfaces, and (iv) how indoor environmental conditions impact indoor chemistry. Further, the combined measurements under unperturbed and experimental conditions enable investigation of mitigation strategies following outdoor and indoor air pollution events. A comprehensive suite of instruments measured different chemical components in the gas, particle, and surface phases throughout the study. We provide an overview of the test house, instrumentation, experimental design, and initial observations - including the role of humidity in controlling the air concentrations of many semi-volatile organic compounds, the potential for ozone to generate indoor nitrogen pentoxide (N2O5), the differences in microbial composition between the test house and other occupied buildings, and the complexity of deposited particles and gases on different indoor surfaces.
Collapse
Affiliation(s)
- Delphine K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Marina E Vance
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA.
| | | | - Jon Abbatt
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Michael R Alves
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, USA
| | - Karen C Dannemiller
- Department of Civil, Environmental, and Geodetic Engineering, Division of Environmental Health Sciences, The Ohio State University, Columbus, OH, USA
- Sustainability Institute, The Ohio State University, Columbus, OH, USA
| | | | - Jenna Ditto
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Brian Dougherty
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Olivia R Farinas
- Department of Civil, Environmental, and Geodetic Engineering, Division of Environmental Health Sciences, The Ohio State University, Columbus, OH, USA
| | - Allen H Goldstein
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, USA
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Han Huynh
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Deborah Kim
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Jon C King
- Department of Civil, Environmental, and Geodetic Engineering, Division of Environmental Health Sciences, The Ohio State University, Columbus, OH, USA
| | - Jesse Kroll
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jienan Li
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Michael F Link
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Liora Mael
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA.
| | - Kathryn Mayer
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Andrew B Martin
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA.
| | - Glenn Morrison
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Rachel O'Brien
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Shubhrangshu Pandit
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Barbara J Turpin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Marc Webb
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Jie Yu
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
17
|
Sultan Z, Li J, Pantelic J, Schiavon S. Particle characterization in commercial buildings: A cross-sectional study in 40 offices in Singapore. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172126. [PMID: 38569949 DOI: 10.1016/j.scitotenv.2024.172126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/10/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
There is a knowledge gap in understanding how existing office buildings are protecting occupants from exposure to particles from both indoor and outdoor sources. We report a cross-sectional study involving weekly measurements of size-resolved indoor and outdoor particle concentrations in forty commercial building offices in Singapore. The outdoor and indoor particles size distributions were single mode with daytime peak number concentrations at 36.5 nm and 48.7 nm. Outdoor concentrations were significantly greater than indoors for all particle diameters. Indoor particle concentrations were generally low due to: 1) relatively high indoor particle removal (IPR) rates; 2) low indoor source strengths; and 3) low indoor particle of outdoor proportion (IPOP). We found that the ventilation system type had a substantial effect on indoor particle levels, IPR and IPOP. Through linear mixed model analyses, we identified dependencies of IPR rates with the use of MERV13 filters in supply air and filter maintenance frequency, IPOP with the use of MERV13 filters in the fresh air and supply air ducts and low particle source strength with regular daily cleaning presumably due to dust reservoir removal. Lastly, the contribution of outdoor sources was mainly seen for ultrafine and fine particles but less pronounced for coarse particles. This study provided detailed understanding of particle exposure in building offices and their influencing factors, facilitating future research on health impact of particle exposures.
Collapse
Affiliation(s)
- Zuraimi Sultan
- Berkeley Education Alliance for Research in Singapore (BEARS) Limited, Singapore.
| | - Jiayu Li
- Berkeley Education Alliance for Research in Singapore (BEARS) Limited, Singapore; University of California Berkeley, Center for the Built Environment, USA
| | - Jovan Pantelic
- Katholieke Universiteit Leuven, Belgium; Well Living Lab, USA
| | - Stefano Schiavon
- Berkeley Education Alliance for Research in Singapore (BEARS) Limited, Singapore; University of California Berkeley, Center for the Built Environment, USA
| |
Collapse
|
18
|
Choi SH, Bae HJ, Kim SY, Mony TJ, Kim HJ, Cho YE, Choi YY, An JY, Cho SY, Kim DH, Park SJ. Particulate matter (PM 10) exacerbates on MK-801-induced schizophrenia-like behaviors through the inhibition of ERK-CREB-BDNF signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116294. [PMID: 38574646 DOI: 10.1016/j.ecoenv.2024.116294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/02/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Particulate matter (PM), released into the air by a variety of natural and human activities, is a key indicator of air pollution. Although PM is known as the extensive health hazard to affect a variety of illness, few studies have specifically investigated the effects of PM10 exposure on schizophrenic development. In the present study, we aimed to investigate the impact of PM10 on MK-801, N-methyl-D-aspartate (NMDA) receptor antagonist, induced schizophrenia-like behaviors in C57BL/6 mouse. Preadolescent mice were exposed PM10 to 3.2 mg/m3 concentration for 4 h/day for 2 weeks through a compartmentalized whole-body inhalation chamber. After PM10 exposure, we conducted behavioral tests during adolescence and adulthood to investigate longitudinal development of schizophrenia. We found that PM10 exacerbated schizophrenia-like behavior, such as psychomotor agitation, social interaction deficits and cognitive deficits at adulthood in MK-801-induced schizophrenia animal model. Furthermore, the reduced expression levels of brain-derived neurotrophic factor (BDNF) and the phosphorylation of BDNF related signaling molecules, extracellular signal-regulated kinase (ERK) and cAMP response element-binding protein (CREB), were exacerbated by PM10 exposure in the adult hippocampus of MK-801-treated mice. Thus, our present study demonstrates that exposure to PM10 in preadolescence exacerbates the cognitive impairment in animal model of schizophrenia, which are considered to be facilitated by the decreased level of BDNF through reduced ERK-CREB expression.
Collapse
Affiliation(s)
- Seung-Hyuk Choi
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ho Jung Bae
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - So-Yeon Kim
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Tamanna Jahan Mony
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, USA
| | - Hyun-Jeong Kim
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ye Eun Cho
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yu-Yeong Choi
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ju-Yeon An
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - So-Young Cho
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dong Hyun Kim
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Se Jin Park
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea; School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
19
|
Vicente ED, Calvo AI, Sainnokhoi TA, Kováts N, de la Campa AS, de la Rosa J, Oduber F, Nunes T, Fraile R, Tomé M, Alves CA. Indoor PM from residential coal combustion: Levels, chemical composition, and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170598. [PMID: 38340837 DOI: 10.1016/j.scitotenv.2024.170598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Indoor air quality is crucial for human health due to the significant time people spend at home, and it is mainly affected by internal sources such as solid fuel combustion for heating. This study investigated the indoor air quality and health implications associated with residential coal burning covering gaseous pollutants (CO, CO2 and total volatile organic compounds), particulate matter, and toxicity. The PM10 chemical composition was obtained by ICP-MS/OES (elements), ion chromatography (water-soluble ions) and thermal-optical analysis (organic and elemental carbon). During coal combustion, PM10 levels were higher (up to 8.8 times) than background levels and the indoor-to-outdoor ratios were, on average, greater than unity, confirming the existence of a significant indoor source. The chemical characterisation of PM10 revealed increased concentrations of organic carbon and elemental carbon during coal combustion as well as arsenic, cadmium and lead. Carcinogenic risks associated with exposure to arsenic exceeded safety thresholds. Indoor air quality fluctuated during the study, with varying toxicity levels assessed using the Aliivibrio fischeri bioluminescence inhibition assay. These findings underscore the importance of mitigating indoor air pollution associated with coal burning and highlight the potential health risks from long-term exposure. Effective interventions are needed to improve indoor air quality and reduce health risks in coal-burning households.
Collapse
Affiliation(s)
- Estela D Vicente
- Department of Physics, University of León, 24071 León, Spain; Department of Environment and Planning, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana I Calvo
- Department of Physics, University of León, 24071 León, Spain
| | - Tsend-Ayush Sainnokhoi
- Centre for Environmental Sciences, University of Pannonia, Egyetem str. 10, 8200 Veszprém, Hungary
| | - Nora Kováts
- Centre for Environmental Sciences, University of Pannonia, Egyetem str. 10, 8200 Veszprém, Hungary
| | - Ana Sánchez de la Campa
- Associate Unit CSIC-University of Huelva "Atmospheric Pollution", Centre for Research in Sustainable Chemistry - CIQSO, University of Huelva, E21071 Huelva, Spain; Department of Mining, Mechanic, Energetic and Construction Engineering, ETSI, University of Huelva, 21071 Huelva, Spain
| | - Jesús de la Rosa
- Associate Unit CSIC-University of Huelva "Atmospheric Pollution", Centre for Research in Sustainable Chemistry - CIQSO, University of Huelva, E21071 Huelva, Spain; Department of Mining, Mechanic, Energetic and Construction Engineering, ETSI, University of Huelva, 21071 Huelva, Spain
| | - Fernanda Oduber
- Department of Physics, University of León, 24071 León, Spain
| | - Teresa Nunes
- Department of Environment and Planning, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Roberto Fraile
- Department of Physics, University of León, 24071 León, Spain
| | - Mário Tomé
- PROMETHEUS, School of Technology and Management (ESTG), Polytechnic University of Viana do Castelo, 4900-348 Viana do Castelo, Portugal
| | - Célia A Alves
- Department of Environment and Planning, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
20
|
Yang S, Müller T, Wang N, Bekö G, Zhang M, Merizak M, Wargocki P, Williams J, Licina D. Influence of Ventilation on Formation and Growth of 1-20 nm Particles via Ozone-Human Chemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4704-4715. [PMID: 38326946 PMCID: PMC10938884 DOI: 10.1021/acs.est.3c08466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
Ozone reaction with human surfaces is an important source of ultrafine particles indoors. However, 1-20 nm particles generated from ozone-human chemistry, which mark the first step of particle formation and growth, remain understudied. Ventilation and indoor air movement could have important implications for these processes. Therefore, in a controlled-climate chamber, we measured ultrafine particles initiated from ozone-human chemistry and their dependence on the air change rate (ACR, 0.5, 1.5, and 3 h-1) and operation of mixing fans (on and off). Concurrently, we measured volatile organic compounds (VOCs) and explored the correlation between particles and gas-phase products. At 25-30 ppb ozone levels, humans generated 0.2-7.7 × 1012 of 1-3 nm, 0-7.2 × 1012 of 3-10 nm, and 0-1.3 × 1012 of 10-20 nm particles per person per hour depending on the ACR and mixing fan operation. Size-dependent particle growth and formation rates increased with higher ACR. The operation of mixing fans suppressed the particle formation and growth, owing to enhanced surface deposition of the newly formed particles and their precursors. Correlation analyses revealed complex interactions between the particles and VOCs initiated by ozone-human chemistry. The results imply that ventilation and indoor air movement may have a more significant influence on particle dynamics and fate relative to indoor chemistry.
Collapse
Affiliation(s)
- Shen Yang
- Human-Oriented
Built Environment Lab, School of Architecture, Civil and Environmental
Engineering, École Polytechnique
Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Tatjana Müller
- Max
Planck Institute for Chemistry, Hahn-Meitner Weg 1, 55128 Mainz, Germany
| | - Nijing Wang
- Max
Planck Institute for Chemistry, Hahn-Meitner Weg 1, 55128 Mainz, Germany
| | - Gabriel Bekö
- International
Centre for Indoor Environment and Energy, Department of Environmental
and Resource Engineering, Technical University
of Denmark, 2800 Kongens Lyngby, Denmark
| | - Meixia Zhang
- Human-Oriented
Built Environment Lab, School of Architecture, Civil and Environmental
Engineering, École Polytechnique
Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- School
of Mechanical Engineering, Beijing Institute
of Technology, 100081 Beijing, China
| | - Marouane Merizak
- Human-Oriented
Built Environment Lab, School of Architecture, Civil and Environmental
Engineering, École Polytechnique
Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Pawel Wargocki
- International
Centre for Indoor Environment and Energy, Department of Environmental
and Resource Engineering, Technical University
of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jonathan Williams
- Max
Planck Institute for Chemistry, Hahn-Meitner Weg 1, 55128 Mainz, Germany
- Energy,
Environment and Water Research Center, The
Cyprus Institute, 2121 Nicosia, Cyprus
| | - Dusan Licina
- Human-Oriented
Built Environment Lab, School of Architecture, Civil and Environmental
Engineering, École Polytechnique
Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
21
|
Fahy WD, Wania F, Abbatt JPD. When Does Multiphase Chemistry Influence Indoor Chemical Fate? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4257-4267. [PMID: 38380897 DOI: 10.1021/acs.est.3c08751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Human chemical exposure often occurs indoors, where large variability in contaminant concentrations and indoor chemical dynamics make assessments of these exposures challenging. A major source of uncertainty lies in the rates of chemical transformations which, due to high surface-to-volume ratios and rapid air change rates relative to rates of gas-phase reactions indoors, are largely gas-surface multiphase processes. It remains unclear how important such chemistry is in controlling indoor chemical lifetimes and, therefore, human exposure to both parent compounds and transformation products. We present a multimedia steady-state fugacity-based model to assess the importance of multiphase chemistry relative to cleaning and mass transfer losses, examine how the physicochemical properties of compounds and features of the indoor environment affect these processes, and investigate uncertainties pertaining to indoor multiphase chemistry and chemical lifetimes. We find that multiphase reactions can play an important role in chemical fate indoors for reactive compounds with low volatility, i.e., octanol-air equilibrium partitioning ratios (Koa) above 108, with the impact of this chemistry dependent on chemical identity, oxidant type and concentration, and other parameters. This work highlights the need for further research into indoor chemical dynamics and multiphase chemistry to constrain human exposure to chemicals in the built environment.
Collapse
Affiliation(s)
- William D Fahy
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto at Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
22
|
Nassikas NJ, McCormack MC, Ewart G, Balmes JR, Bond TC, Brigham E, Cromar K, Goldstein AH, Hicks A, Hopke PK, Meyer B, Nazaroff WW, Paulin LM, Rice MB, Thurston GD, Turpin BJ, Vance ME, Weschler CJ, Zhang J, Kipen HM. Indoor Air Sources of Outdoor Air Pollution: Health Consequences, Policy, and Recommendations: An Official American Thoracic Society Workshop Report. Ann Am Thorac Soc 2024; 21:365-376. [PMID: 38426826 PMCID: PMC10913763 DOI: 10.1513/annalsats.202312-1067st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Indoor sources of air pollution worsen indoor and outdoor air quality. Thus, identifying and reducing indoor pollutant sources would decrease both indoor and outdoor air pollution, benefit public health, and help address the climate crisis. As outdoor sources come under regulatory control, unregulated indoor sources become a rising percentage of the problem. This American Thoracic Society workshop was convened in 2022 to evaluate this increasing proportion of indoor contributions to outdoor air quality. The workshop was conducted by physicians and scientists, including atmospheric and aerosol scientists, environmental engineers, toxicologists, epidemiologists, regulatory policy experts, and pediatric and adult pulmonologists. Presentations and discussion sessions were centered on 1) the generation and migration of pollutants from indoors to outdoors, 2) the sources and circumstances representing the greatest threat, and 3) effective remedies to reduce the health burden of indoor sources of air pollution. The scope of the workshop was residential and commercial sources of indoor air pollution in the United States. Topics included wood burning, natural gas, cooking, evaporative volatile organic compounds, source apportionment, and regulatory policy. The workshop concluded that indoor sources of air pollution are significant contributors to outdoor air quality and that source control and filtration are the most effective measures to reduce indoor contributions to outdoor air. Interventions should prioritize environmental justice: Households of lower socioeconomic status have higher concentrations of indoor air pollutants from both indoor and outdoor sources. We identify research priorities, potential health benefits, and mitigation actions to consider (e.g., switching from natural gas to electric stoves and transitioning to scent-free consumer products). The workshop committee emphasizes the benefits of combustion-free homes and businesses and recommends economic, legislative, and education strategies aimed at achieving this goal.
Collapse
|
23
|
Cummings BE, Lakey PSJ, Morrison GC, Shiraiwa M, Waring MS. Composition of indoor organic surface films in residences: simulating the influence of sources, partitioning, particle deposition, and air exchange. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:305-322. [PMID: 38108243 DOI: 10.1039/d3em00399j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Indoor surfaces are coated with organic films that modulate thermodynamic interactions between the surfaces and room air. Recently published models can simulate film formation and growth via gas-surface partitioning, but none have statistically investigated film composition. The Indoor Model of Aerosols, Gases, Emissions, and Surfaces (IMAGES) was used here to simulate ten years of nonreactive film growth upon impervious indoor surfaces within a Monte Carlo procedure representing a sub-set of North American residential buildings. Film composition was resolved into categories reflecting indoor aerosol (gas + particle phases) factors from three sources: outdoor-originating, indoor-emitted, and indoor-generated secondary organic material. In addition to gas-to-film partitioning, particle deposition was modeled as a vector for organics to enter films, and it was responsible for a majority of the film mass after ∼1000 days of growth for the median simulation and is likely the main source of LVOCs within films. Therefore, the organic aerosol factor possessing the most SVOCs contributes most strongly to the composition of early films, but as the film ages, films become more dominated by the factor with the highest particle concentration. Indoor-emitted organics (e.g. from cooking) often constituted at least a plurality of the simulated mass in developed films, but indoor environments are diverse enough that any major organic material source could be the majority contributor to film mass, depending on building characteristics and indoor activities. A sensitivity analysis suggests that rapid film growth is most likely in both newer, more air-tight homes and older homes near primary pollution sources.
Collapse
|
24
|
Patra SS, Jiang J, Ding X, Huang C, Reidy EK, Kumar V, Price P, Keech C, Steiner G, Stevens P, Jung N, Boor BE. Dynamics of nanocluster aerosol in the indoor atmosphere during gas cooking. PNAS NEXUS 2024; 3:pgae044. [PMID: 39015346 PMCID: PMC11250196 DOI: 10.1093/pnasnexus/pgae044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/16/2024] [Indexed: 07/18/2024]
Abstract
Nanocluster aerosol (NCA: particles in the size range of 1-3 nm) are a critically important, yet understudied, class of atmospheric aerosol particles. NCA efficiently deposit in the human respiratory system and can translocate to vital organs. Due to their high surface area-to-mass ratios, NCA are associated with a heightened propensity for bioactivity and toxicity. Despite the human health relevance of NCA, little is known regarding the prevalence of NCA in indoor environments where people spend the majority of their time. In this study, we quantify the formation and transformation of indoor atmospheric NCA down to 1 nm via high-resolution online nanoparticle measurements during propane gas cooking in a residential building. We observed a substantial pool of sub-1.5 nm NCA in the indoor atmosphere during cooking periods, with aerosol number concentrations often dominated by the newly formed NCA. Indoor atmospheric NCA emission factors can reach up to ∼1016 NCA/kg-fuel during propane gas cooking and can exceed those for vehicles with gasoline and diesel engines. Such high emissions of combustion-derived indoor NCA can result in substantial NCA respiratory exposures and dose rates for children and adults, significantly exceeding that for outdoor traffic-associated NCA. Combustion-derived indoor NCA undergo unique size-dependent physical transformations, strongly influenced by particle coagulation and condensation of low-volatility cooking vapors. We show that indoor atmospheric NCA need to be measured directly and cannot be predicted using conventional indoor air pollution markers such as PM2.5 mass concentrations and NO x (NO + NO2) mixing ratios.
Collapse
Affiliation(s)
- Satya S Patra
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA
- Ray W. Herrick Laboratories, Center for High Performance Buildings, Purdue University, West Lafayette, IN 47907, USA
| | - Jinglin Jiang
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA
- Ray W. Herrick Laboratories, Center for High Performance Buildings, Purdue University, West Lafayette, IN 47907, USA
| | - Xiaosu Ding
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Chunxu Huang
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA
- Ray W. Herrick Laboratories, Center for High Performance Buildings, Purdue University, West Lafayette, IN 47907, USA
| | - Emily K Reidy
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Vinay Kumar
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405, USA
| | - Paige Price
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405, USA
| | | | - Gerhard Steiner
- GRIMM Aerosol Technik Ainring GmbH & Co. KG, Ainring 83404, Germany
| | - Philip Stevens
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405, USA
| | - Nusrat Jung
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Brandon E Boor
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA
- Ray W. Herrick Laboratories, Center for High Performance Buildings, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
25
|
Lunderberg DM, Liang Y, Singer BC, Apte JS, Nazaroff WW, Goldstein AH. Assessing residential PM 2.5 concentrations and infiltration factors with high spatiotemporal resolution using crowdsourced sensors. Proc Natl Acad Sci U S A 2023; 120:e2308832120. [PMID: 38048461 PMCID: PMC10723120 DOI: 10.1073/pnas.2308832120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/21/2023] [Indexed: 12/06/2023] Open
Abstract
Building conditions, outdoor climate, and human behavior influence residential concentrations of fine particulate matter (PM2.5). To study PM2.5 spatiotemporal variability in residences, we acquired paired indoor and outdoor PM2.5 measurements at 3,977 residences across the United States totaling >10,000 monitor-years of time-resolved data (10-min resolution) from the PurpleAir network. Time-series analysis and statistical modeling apportioned residential PM2.5 concentrations to outdoor sources (median residential contribution = 52% of total, coefficient of variation = 69%), episodic indoor emission events such as cooking (28%, CV = 210%) and persistent indoor sources (20%, CV = 112%). Residences in the temperate marine climate zone experienced higher infiltration factors, consistent with expectations for more time with open windows in milder climates. Likewise, for all climate zones, infiltration factors were highest in summer and lowest in winter, decreasing by approximately half in most climate zones. Large outdoor-indoor temperature differences were associated with lower infiltration factors, suggesting particle losses from active filtration occurred during heating and cooling. Absolute contributions from both outdoor and indoor sources increased during wildfire events. Infiltration factors decreased during periods of high outdoor PM2.5, such as during wildfires, reducing potential exposures from outdoor-origin particles but increasing potential exposures to indoor-origin particles. Time-of-day analysis reveals that episodic emission events are most frequent during mealtimes as well as on holidays (Thanksgiving and Christmas), indicating that cooking-related activities are a strong episodic emission source of indoor PM2.5 in monitored residences.
Collapse
Affiliation(s)
- David M. Lunderberg
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA94720
- Department of Chemistry, University of California, Berkeley, CA94720
| | - Yutong Liang
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA94720
- College of Engineering, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA30332
| | - Brett C. Singer
- Indoor Environment Group, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Joshua S. Apte
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA94720
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, CA94720
| | - William W. Nazaroff
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA94720
| | - Allen H. Goldstein
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA94720
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA94720
| |
Collapse
|
26
|
Jeong SG, Wallace L, Rim D. Size-resolved emission rates of episodic indoor sources and ultrafine particle dynamics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122680. [PMID: 37821040 DOI: 10.1016/j.envpol.2023.122680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/17/2023] [Accepted: 10/01/2023] [Indexed: 10/13/2023]
Abstract
Indoor airborne ultrafine particles (UFPs) are mainly originated from occupant activities, such as candle burning and cooking. Elevated exposure to UFPs has been found to increase oxidative stress and cause DNA damage. UFPs originating from indoor sources undergo dynamic aerosol transformation mechanisms. This study investigates the dynamics of UFPs following episodic indoor releases of the six distinct emission sources: 1) candle, 2) gas stove, 3) clothes dryer, 4) tea & toast, 5) broiled fish, and 6) incense. Based on the analytical model of aerosol dynamic processes, this study reports size-resolved source emission rates along with relative contributions of coagulation, deposition, and ventilation to the particle size distribution dynamics. The study findings indicate a significant variation in the geometric mean diameter (GMD) and size-resolved number concentration over time for the sources that emit a substantial amount of UFPs smaller than 10 nm. As the emission progresses, the UFP number concentrations increase in a log-normal distribution, while the GMD shows a tendency to increase over time. The observed result suggests that coagulation can have a considerable impact on UFP number concentration and size, even during the indoor UFP emission. The estimated emission rates of the six indoor sources appear to follow a log-normal distribution while the emission rate ranges from 107 min-1 to 1012 min-1. The indoor UFP concentration and size distribution dynamics are substantially affected by the interplay of the three aerosol loss mechanisms that compete with each other, and this impact varies according to the source type and the indoor environmental conditions. Ultimately, using the aerosol transformation mechanisms examined in this study, researchers can refine exposure assessment for epidemiological studies on indoor ultrafine particles.
Collapse
Affiliation(s)
- Su-Gwang Jeong
- Department of Architectural Engineering, Soongsil University, Seoul, 06978, Republic of Korea
| | | | - Donghyun Rim
- Department of Architectural Engineering, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
27
|
Amos HM, Skaff NK, Uz SS, Policelli FS, Slayback D, Macorps E, Jo MJ, Patel K, Keller CA, Abue P, Buchard V, Werner AK. Public Health Data Applications Using the CDC Tracking Network: Augmenting Environmental Hazard Information With Lower-Latency NASA Data. GEOHEALTH 2023; 7:e2023GH000971. [PMID: 38098874 PMCID: PMC10719610 DOI: 10.1029/2023gh000971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023]
Abstract
Exposure to environmental hazards is an important determinant of health, and the frequency and severity of exposures is expected to be impacted by climate change. Through a partnership with the U.S. National Aeronautics and Space Administration, the U.S. Centers for Disease Control and Prevention's National Environmental Public Health Tracking Network is integrating timely observations and model data of priority environmental hazards into its publicly accessible Data Explorer (https://ephtracking.cdc.gov/DataExplorer/). Newly integrated data sets over the contiguous U.S. (CONUS) include: daily 5-day forecasts of air quality based on the Goddard Earth Observing System Composition Forecast, daily historical (1980-present) concentrations of speciated PM2.5 based on the modern era retrospective analysis for research and applications, version 2, and Moderate Resolution Imaging Spectroradiometer (MODIS) daily near real-time maps of flooding (MCDWD). Data integrated into the CDC Tracking Network are broadly intended to improve community health through action by informing both research and early warning activities, including (a) describing temporal and spatial trends in disease and potential environmental exposures, (b) identifying populations most affected, (c) generating hypotheses about associations between health and environmental exposures, and (d) developing, guiding, and assessing environmental public health policies and interventions aimed at reducing or eliminating health outcomes associated with environmental factors.
Collapse
Affiliation(s)
- H. M. Amos
- Earth Science DivisionGoddard Space Flight CenterNational Aeronautics and Space AdministrationGreenbeltMDUSA
- Science Systems and Applications, Inc.LanhamMDUSA
| | - N. K. Skaff
- National Center for Environmental HealthCenters for Disease Control and PreventionAtlantaGAUSA
| | - S. Schollaert Uz
- Earth Science DivisionGoddard Space Flight CenterNational Aeronautics and Space AdministrationGreenbeltMDUSA
| | - F. S. Policelli
- Earth Science DivisionGoddard Space Flight CenterNational Aeronautics and Space AdministrationGreenbeltMDUSA
| | - D. Slayback
- Earth Science DivisionGoddard Space Flight CenterNational Aeronautics and Space AdministrationGreenbeltMDUSA
- Science Systems and Applications, Inc.LanhamMDUSA
| | - E. Macorps
- Earth Science DivisionGoddard Space Flight CenterNational Aeronautics and Space AdministrationGreenbeltMDUSA
- NASA Postdoctoral Program, NASA Goddard Space Flight CenterGreenbeltMDUSA
| | - M. J. Jo
- Earth Science DivisionGoddard Space Flight CenterNational Aeronautics and Space AdministrationGreenbeltMDUSA
- University of Maryland Baltimore CountyBaltimoreMDUSA
| | - K. Patel
- Science Systems and Applications, Inc.LanhamMDUSA
- University of TexasAustinTXUSA
| | - C. A. Keller
- Earth Science DivisionGoddard Space Flight CenterNational Aeronautics and Space AdministrationGreenbeltMDUSA
- Morgan State UniversityBaltimoreMDUSA
| | - P. Abue
- Science Systems and Applications, Inc.LanhamMDUSA
- University of TexasAustinTXUSA
| | - V. Buchard
- Earth Science DivisionGoddard Space Flight CenterNational Aeronautics and Space AdministrationGreenbeltMDUSA
- University of Maryland Baltimore CountyBaltimoreMDUSA
| | - A. K. Werner
- National Center for Environmental HealthCenters for Disease Control and PreventionAtlantaGAUSA
| |
Collapse
|
28
|
Cummings BE, Pothier MA, Katz EF, DeCarlo PF, Farmer DK, Waring MS. Model Framework for Predicting Semivolatile Organic Material Emissions Indoors from Organic Aerosol Measurements: Applications to HOMEChem Stir-Frying. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17374-17383. [PMID: 37930106 DOI: 10.1021/acs.est.3c04183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Cooking activities emit myriad low-volatility, semivolatile, and highly volatile organic compounds that together form particles that can accumulate to large indoor concentrations. Absorptive partitioning thermodynamics governs the particle-phase organic aerosol concentration mainly via temperature and sorbing mass impacts. Cooking activities can increase the organic sorbing mass by 1-2 orders of magnitude, increasing particle-phase concentrations and affecting emission rate calculations. Although recent studies have begun to probe the volatility characteristics of indoor cooking particles, parametrizations of cooking particle mass emissions have largely neglected these thermodynamic considerations. Here, we present an improved thermodynamics-based model framework for estimating condensable organic material emission rates from a time series of observed concentrations, given that adequate measurements or assumptions can be made about the volatility of the emitted species. We demonstrate the performance of this methodology by applying data from stir-frying experiments performed during the House Observations of Microbial and Environmental Chemistry (HOMEChem) campaign to a two-zone box model representing the UTest House. Preliminary estimates of organic mass emitted on a per-stir-fry basis for three types of organic aerosol factors are presented. Our analysis highlights that using traditional nonvolatile particle models and emission characterizations for some organic aerosol emitting activities can incorrectly attribute concentration changes to emissions rather than thermodynamic effects.
Collapse
Affiliation(s)
- Bryan E Cummings
- Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Matson A Pothier
- Colorado State University, Fort Collins, Colorado 80523, United States
| | - Erin F Katz
- University of California, Berkeley, California 94720, United States
| | - Peter F DeCarlo
- Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Delphine K Farmer
- Colorado State University, Fort Collins, Colorado 80523, United States
| | - Michael S Waring
- Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
29
|
Sankaran G, Tan ST, Yap R, Chua ML, Ng LC, George S. Characterization of size-differentiated airborne particulate matter collected from indoor environments of childcare facilities. CHEMOSPHERE 2023; 340:139670. [PMID: 37541440 DOI: 10.1016/j.chemosphere.2023.139670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
Inhalation of particulate matter (PM) present in indoor atmospheres has been associated with poor health and wellbeing of occupants. Here we report the characteristics of airborne PM collected from twenty-two air-conditioned childcare centres in Singapore. Airborne PM were collected using cascade impactors and characterized for morphology, elemental composition, endotoxin levels, ability to generate abiotic reactive oxygen species, and oxidative stress-dependent cytotoxicity in BEAS-2B cell lines. The mass concentrations of ultrafine particles (PM0.06-1) were more abundant than that of larger particles (PM1-4, PM4-20, and PM20-35 particles). PM20-35 and PM4-20 were irregularly shaped particles, PM1-4 particles had membranous flaky structures and PM0.06-1 particles were pseudo-spherical with the occasional presence of crystalline structures. Carbonaceous matter dominated PM20-35 particles, and the abundance of inorganic salts, iron and sulfur increased with decreasing PM size. Measured endotoxin levels were especially higher in PM4-20 particles. Compared to other particle size fractions, PM0.06-1 particles generated the highest ROS and were also the most potent in generating intracellular ROS in BEAS-2B cell lines. However, total mass concentrations, elemental compositions, abiotic responses, and PM collected from centres with split air-conditioning systems and no active outdoor air supply (SAC) were not statistically different compared with PM collected from centres with air conditioning with mechanical ventilation (ACMV). In conclusion, our study showed obvious distinctions in mass concentrations, morphology, elemental compositions, and cytotoxic potential of different sized particles collected from childcare centres, where the smallest particles (PM0.06-1) exhibited higher hazard potential.
Collapse
Affiliation(s)
- Gayatri Sankaran
- Environmental Health Institute, National Environment Agency, 138667, Singapore
| | - Sze Tat Tan
- Environmental Health Institute, National Environment Agency, 138667, Singapore
| | - Rowena Yap
- Environmental Health Institute, National Environment Agency, 138667, Singapore
| | - Mei Ling Chua
- Centre for Sustainable Nanotechnology, School of Chemical and Life Sciences, Nanyang Polytechnic, 569830, Singapore
| | - Lee Ching Ng
- Environmental Health Institute, National Environment Agency, 138667, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore.
| | - Saji George
- Centre for Sustainable Nanotechnology, School of Chemical and Life Sciences, Nanyang Polytechnic, 569830, Singapore; S.A.F.E-Nano Lab, Department of Food and Agricultural Chemistry, Macdonald-Stewart Building, Room-1039, Macdonald Campus, McGill University, 21111 Lakeshore, Ste Anne de Bellevue, Quebec, H9X 3V9, Canada.
| |
Collapse
|
30
|
Milsom A, Squires AM, Ward AD, Pfrang C. Molecular Self-Organization in Surfactant Atmospheric Aerosol Proxies. Acc Chem Res 2023; 56:2555-2568. [PMID: 37688543 PMCID: PMC10552546 DOI: 10.1021/acs.accounts.3c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Indexed: 09/11/2023]
Abstract
ConspectusAerosols are ubiquitous in the atmosphere. Outdoors, they take part in the climate system via cloud droplet formation, and they contribute to indoor and outdoor air pollution, impacting human health and man-made environmental change. In the indoor environment, aerosols are formed by common activities such as cooking and cleaning. People can spend up to ca. 90% of their time indoors, especially in the western world. Therefore, there is a need to understand how indoor aerosols are processed in addition to outdoor aerosols.Surfactants make significant contributions to aerosol emissions, with sources ranging from cooking to sea spray. These molecules alter the cloud droplet formation potential by changing the surface tension of aqueous droplets and thus increasing their ability to grow. They can also coat solid surfaces such as windows ("window grime") and dust particles. Such surface films are more important indoors due to the higher surface-to-volume ratio compared to the outdoor environment, increasing the likelihood of surface film-pollutant interactions.A common cooking and marine emission, oleic acid, is known to self-organize into a range of 3-D nanostructures. These nanostructures are highly viscous and as such can impact the kinetics of aerosol and film aging (i.e., water uptake and oxidation). There is still a discrepancy between the longer atmospheric lifetime of oleic acid compared with laboratory experiment-based predictions.We have created a body of experimental and modeling work focusing on the novel proposition of surfactant self-organization in the atmosphere. Self-organized proxies were studied as nanometer-to-micrometer films, levitated droplets, and bulk mixtures. This access to a wide range of geometries and scales has resulted in the following main conclusions: (i) an atmospherically abundant surfactant can self-organize into a range of viscous nanostructures in the presence of other compounds commonly encountered in atmospheric aerosols; (ii) surfactant self-organization significantly reduces the reactivity of the organic phase, increasing the chemical lifetime of these surfactant molecules and other particle constituents; (iii) while self-assembly was found over a wide range of conditions and compositions, the specific, observed nanostructure is highly sensitive to mixture composition; and (iv) a "crust" of product material forms on the surface of reacting particles and films, limiting the diffusion of reactive gases to the particle or film bulk and subsequent reactivity. These findings suggest that hazardous, reactive materials may be protected in aerosol matrixes underneath a highly viscous shell, thus extending the atmospheric residence times of otherwise short-lived species.
Collapse
Affiliation(s)
- Adam Milsom
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Adam M. Squires
- Department
of Chemistry, University of Bath, South Building, Soldier Down Ln,
Claverton Down, Bath BA2
7AY, U.K.
| | - Andrew D. Ward
- STFC
Rutherford Appleton Laboratory, Central
Laser Facility, Didcot OX11 0FA, U.K.
| | - Christian Pfrang
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
- Department
of Meteorology, University of Reading, Whiteknights, Earley Gate, Reading RG6 6UR, U.K.
| |
Collapse
|
31
|
Kamanzi C, Becker M, Jacobs M, Konečný P, Von Holdt J, Broadhurst J. The impact of coal mine dust characteristics on pathways to respiratory harm: investigating the pneumoconiotic potency of coals. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7363-7388. [PMID: 37131112 PMCID: PMC10517901 DOI: 10.1007/s10653-023-01583-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/19/2023] [Indexed: 05/04/2023]
Abstract
Exposure to dust from the mining environment has historically resulted in epidemic levels of mortality and morbidity from pneumoconiotic diseases such as silicosis, coal workers' pneumoconiosis (CWP), and asbestosis. Studies have shown that CWP remains a critical issue at collieries across the globe, with some countries facing resurgent patterns of the disease and additional pathologies from long-term exposure. Compliance measures to reduce dust exposure rely primarily on the assumption that all "fine" particles are equally toxic irrespective of source or chemical composition. For several ore types, but more specifically coal, such an assumption is not practical due to the complex and highly variable nature of the material. Additionally, several studies have identified possible mechanisms of pathogenesis from the minerals and deleterious metals in coal. The purpose of this review was to provide a reassessment of the perspectives and strategies used to evaluate the pneumoconiotic potency of coal mine dust. Emphasis is on the physicochemical characteristics of coal mine dust such as mineralogy/mineral chemistry, particle shape, size, specific surface area, and free surface area-all of which have been highlighted as contributing factors to the expression of pro-inflammatory responses in the lung. The review also highlights the potential opportunity for more holistic risk characterisation strategies for coal mine dust, which consider the mineralogical and physicochemical aspects of the dust as variables relevant to the current proposed mechanisms for CWP pathogenesis.
Collapse
Affiliation(s)
- Conchita Kamanzi
- Department of Chemical Engineering, Minerals to Metals Initiative, University of Cape Town, Cape Town, South Africa.
- Department of Chemical Engineering, Centre for Minerals Research, University of Cape Town, Cape Town, South Africa.
| | - Megan Becker
- Department of Chemical Engineering, Minerals to Metals Initiative, University of Cape Town, Cape Town, South Africa
- Department of Chemical Engineering, Centre for Minerals Research, University of Cape Town, Cape Town, South Africa
| | - Muazzam Jacobs
- Division of Immunology, Department of Pathology, Institute for Infectious Diseases and Molecular Medicine, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Service, Johannesburg, South Africa
| | - Petr Konečný
- Division of Immunology, Department of Pathology, Institute for Infectious Diseases and Molecular Medicine, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Johanna Von Holdt
- Department of Environmental and Geographical Science, University of Cape Town, Cape Town, South Africa
| | - Jennifer Broadhurst
- Department of Chemical Engineering, Minerals to Metals Initiative, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
32
|
Davies HL, O'Leary C, Dillon T, Shaw DR, Shaw M, Mehra A, Phillips G, Carslaw N. A measurement and modelling investigation of the indoor air chemistry following cooking activities. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1532-1548. [PMID: 37609942 DOI: 10.1039/d3em00167a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Domestic cooking is a source of indoor air pollutants, including volatile organic compounds (VOCs), which can impact on indoor air quality. However, the real-time VOC emissions from cooking are not well characterised, and similarly, the resulting secondary chemistry is poorly understood. Here, selected-ion flow-tube mass spectrometry (SIFT-MS) was used to monitor the real-time VOC emissions during the cooking of a scripted chicken and vegetable stir-fry meal, in a room scale, semi-realistic environment. The VOC emissions were dominated by alcohols (70% of total emission), but also contained a range of aldehydes (14%) and terpenes (5%), largely attributable to the heating of oil and the preparation and heating of spices, respectively. The direct cooking-related VOC emissions were then simulated using the Indoor Chemical Model in Python (INCHEM-Py), to investigate the resulting secondary chemistry. Modelling revealed that VOC concentrations were dominated by direct emissions, with only a small contribution from secondary products, though the secondary species were longer lived than the directly emitted species. Following cooking, hydroxyl radical concentrations reduced by 86%, while organic peroxy radical levels increased by over 700%, later forming secondary organic nitrates, peroxyacylnitrates (PANs) and formaldehyde. Monoterpene emissions were shown to drive the formation of secondary formaldehyde, albeit to produce relatively modest concentrations (average of 60 ppt). Sensitivity analysis of the simulation conditions revealed that increasing the outdoor concentrations of ozone and NOx species (2.9× and 9×, respectively) resulted in the greatest increase in secondary product formation indoors (≈400%, 200% and 600% increase in organic nitrates, PANs and formaldehyde production, respectively). Given the fact that climate change is likely to result in increased ozone concentrations in the future, and that increased window-opening in response to rising temperatures is also likely, higher concentrations of indoor oxidants are likely in homes in the future. This work, therefore, suggests that cooking could be a more important source of secondary pollutants indoors in the future.
Collapse
Affiliation(s)
- Helen L Davies
- Department of Environment and Geography, University of York, Heslington, York, UK.
| | - Catherine O'Leary
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, Heslington, York, UK
| | - Terry Dillon
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, Heslington, York, UK
| | - David R Shaw
- Department of Environment and Geography, University of York, Heslington, York, UK.
| | - Marvin Shaw
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, Heslington, York, UK
| | - Archit Mehra
- Department of Physical, Mathematical and Engineering Sciences, University of Chester, Chester, UK
| | - Gavin Phillips
- Department of Physical, Mathematical and Engineering Sciences, University of Chester, Chester, UK
| | - Nicola Carslaw
- Department of Environment and Geography, University of York, Heslington, York, UK.
| |
Collapse
|
33
|
Mishra A, Lelieveld S, Pöschl U, Berkemeier T. Multiphase Kinetic Modeling of Air Pollutant Effects on Protein Modification and Nitrotyrosine Formation in Epithelial Lining Fluid. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12642-12653. [PMID: 37587684 PMCID: PMC10469477 DOI: 10.1021/acs.est.3c03556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
Exposure to ambient air pollution is a major risk factor for human health. Inhalation of air pollutants can enhance the formation of reactive species in the epithelial lining fluid (ELF) of the respiratory tract and can lead to oxidative stress and oxidative damage. Here, we investigate the chemical modification of proteins by reactive species from air pollution and endogenous biological sources using an extended version of the multiphase chemical kinetic model KM-SUB-ELF 2.0 with a detailed mechanism of protein modification. Fine particulate matter (PM2.5) and nitrogen dioxide (•NO2) act synergistically and increase the formation of nitrotyrosine (Ntyr), a common biomarker of oxidative stress. Ozone (O3) is found to be a burden on the antioxidant defense system but without substantial influence on the Ntyr concentration. In simulations with low levels of air pollution, the Ntyr concentration in the ELF is consistent with the range of literature values for bronchoalveolar lavage fluid from healthy individuals. With high levels of air pollution, however, we obtain strongly elevated Ntyr concentrations. Our model analysis shows how chemical reactions of air pollutants can modify proteins and thus their functionality in the human body, elucidating a molecular pathway that may explain air pollutant effects on human health.
Collapse
Affiliation(s)
- Ashmi Mishra
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128, Mainz, Germany
| | - Steven Lelieveld
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128, Mainz, Germany
| | - Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128, Mainz, Germany
| | - Thomas Berkemeier
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128, Mainz, Germany
| |
Collapse
|
34
|
Shi Y, Du Z, Zhang J, Han F, Chen F, Wang D, Liu M, Zhang H, Dong C, Sui S. Construction and evaluation of hourly average indoor PM 2.5 concentration prediction models based on multiple types of places. Front Public Health 2023; 11:1213453. [PMID: 37637795 PMCID: PMC10447970 DOI: 10.3389/fpubh.2023.1213453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
Background People usually spend most of their time indoors, so indoor fine particulate matter (PM2.5) concentrations are crucial for refining individual PM2.5 exposure evaluation. The development of indoor PM2.5 concentration prediction models is essential for the health risk assessment of PM2.5 in epidemiological studies involving large populations. Methods In this study, based on the monitoring data of multiple types of places, the classical multiple linear regression (MLR) method and random forest regression (RFR) algorithm of machine learning were used to develop hourly average indoor PM2.5 concentration prediction models. Indoor PM2.5 concentration data, which included 11,712 records from five types of places, were obtained by on-site monitoring. Moreover, the potential predictor variable data were derived from outdoor monitoring stations and meteorological databases. A ten-fold cross-validation was conducted to examine the performance of all proposed models. Results The final predictor variables incorporated in the MLR model were outdoor PM2.5 concentration, type of place, season, wind direction, surface wind speed, hour, precipitation, air pressure, and relative humidity. The ten-fold cross-validation results indicated that both models constructed had good predictive performance, with the determination coefficients (R2) of RFR and MLR were 72.20 and 60.35%, respectively. Generally, the RFR model had better predictive performance than the MLR model (RFR model developed using the same predictor variables as the MLR model, R2 = 71.86%). In terms of predictors, the importance results of predictor variables for both types of models suggested that outdoor PM2.5 concentration, type of place, season, hour, wind direction, and surface wind speed were the most important predictor variables. Conclusion In this research, hourly average indoor PM2.5 concentration prediction models based on multiple types of places were developed for the first time. Both the MLR and RFR models based on easily accessible indicators displayed promising predictive performance, in which the machine learning domain RFR model outperformed the classical MLR model, and this result suggests the potential application of RFR algorithms for indoor air pollutant concentration prediction.
Collapse
Affiliation(s)
- Yewen Shi
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Zhiyuan Du
- Department of Environmental Health, Key Laboratory of the Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Jianghua Zhang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Fengchan Han
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Feier Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Duo Wang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Mengshuang Liu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Hao Zhang
- Department of Environmental Health, Key Laboratory of the Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Chunyang Dong
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Shaofeng Sui
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| |
Collapse
|
35
|
Laursen KR, Christensen NV, Mulder FA, Schullehner J, Hoffmann HJ, Jensen A, Møller P, Loft S, Olin AC, Rasmussen BB, Rosati B, Strandberg B, Glasius M, Bilde M, Sigsgaard T. Airway and systemic biomarkers of health effects after short-term exposure to indoor ultrafine particles from cooking and candles - A randomized controlled double-blind crossover study among mild asthmatic subjects. Part Fibre Toxicol 2023; 20:26. [PMID: 37430267 DOI: 10.1186/s12989-023-00537-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/28/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND There is insufficient knowledge about the systemic health effects of exposure to fine (PM2.5) and ultrafine particles emitted from typical indoor sources, including cooking and candlelight burning. We examined whether short-term exposure to emissions from cooking and burning candles cause inflammatory changes in young individuals with mild asthma. Thirty-six non-smoking asthmatics participated in a randomized controlled double-blind crossover study attending three exposure sessions (mean PM2.5 µg/m3; polycyclic aromatic hydrocarbons ng/m3): (a) air mixed with emissions from cooking (96.1; 1.1), (b) air mixed with emissions from candles (89.8; 10), and (c) clean filtered air (5.8; 1.0). Emissions were generated in an adjacent chamber and let into a full-scale exposure chamber where participants were exposed for five hours. Several biomarkers were assessed in relation to airway and systemic inflammatory changes; the primary outcomes of interest were surfactant Protein-A (SP-A) and albumin in droplets in exhaled air - novel biomarkers for changes in the surfactant composition of small airways. Secondary outcomes included cytokines in nasal lavage, cytokines, C-reactive protein (CRP), epithelial progenitor cells (EPCs), genotoxicity, gene expression related to DNA-repair, oxidative stress, and inflammation, as well as metabolites in blood. Samples were collected before exposure start, right after exposure and the next morning. RESULTS SP-A in droplets in exhaled air showed stable concentrations following candle exposure, while concentrations decreased following cooking and clean air exposure. Albumin in droplets in exhaled air increased following exposure to cooking and candles compared to clean air exposure, although not significant. Oxidatively damaged DNA and concentrations of some lipids and lipoproteins in the blood increased significantly following exposure to cooking. We found no or weak associations between cooking and candle exposure and systemic inflammation biomarkers including cytokines, CRP, and EPCs. CONCLUSIONS Cooking and candle emissions induced effects on some of the examined health-related biomarkers, while no effect was observed in others; Oxidatively damaged DNA and concentrations of lipids and lipoproteins were increased in blood after exposure to cooking, while both cooking and candle emissions slightly affected the small airways including the primary outcomes SP-A and albumin. We found only weak associations between the exposures and systemic inflammatory biomarkers. Together, the results show the existence of mild inflammation following cooking and candle exposure.
Collapse
Affiliation(s)
- Karin Rosenkilde Laursen
- Environment, Occupation and Health, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Nichlas Vous Christensen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Frans Aa Mulder
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Jörg Schullehner
- Environment, Occupation and Health, Department of Public Health, Aarhus University, Aarhus, Denmark
- Geological Survey of Denmark and Greenland, Aarhus, Denmark
| | - Hans Jürgen Hoffmann
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Annie Jensen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Aarhus, Denmark
| | - Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Aarhus, Denmark
| | - Steffen Loft
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Aarhus, Denmark
| | - Anna-Carin Olin
- Department of Public Health and Community Medicine, University of Gothenburg, Gothenburg, Sweden
| | | | - Bernadette Rosati
- Department of Chemistry, Aarhus University, Aarhus, Denmark
- Faculty of Physics, University of Vienna, Vienna, Austria
| | - Bo Strandberg
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | | | - Merete Bilde
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Torben Sigsgaard
- Environment, Occupation and Health, Department of Public Health, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
36
|
Sun L, Singer BC. Cooking methods and kitchen ventilation availability, usage, perceived performance and potential in Canadian homes. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:439-447. [PMID: 37059807 PMCID: PMC10234804 DOI: 10.1038/s41370-023-00543-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Cooking is a substantial contributor to air pollutant exposures in many residences. Effective use of kitchen ventilation can mitigate exposure; however, information on its availability, usage, and potential to increase its use across the population has been limited. OBJECTIVE This study aimed to obtain nationally representative information on cooking methods, kitchen ventilation availability and usage, and the potential for education to increase effective usage. METHODS An online survey was sent to a representative sample of Canadian homes to collect data on cooking methods, the presence and use of mechanical kitchen ventilation devices, perceived device performance, and willingness to implement mitigation strategies. Responses were weighted to match key demographic factors and analyzed using non-parametric statistics. RESULTS Among the 4500 respondents, 90% had mechanical ventilation devices over the cooktop (66% of which were vented to the outside), and 30% reported regularly using their devices. Devices were used most often for deep-frying, followed by stir-frying, sautéing or pan-frying, indoor grilling, boiling or steaming. Almost half reported rarely or never using their ventilation devices during baking or oven self-cleaning. Only 10% were fully satisfied with their devices. More frequent use was associated with the device being vented to the outdoors, having more than two speed settings, quiet operation if only one speed, covering over half of the cooktop, and higher perceived effectiveness. After being informed of the benefits of kitchen ventilation, 64% indicated they would consider using their devices more often, preferentially using back burners with ventilation, and/or using higher ventilation device settings when needed. IMPACT This study provides population-representative data on the most used cooking methods, kitchen ventilation availability and usage, and influencing factors in Canadian homes. Such data are needed for exposure assessments and evaluating the potential to mitigate cooking-related pollutant exposures via more effective use of kitchen ventilation. The data can be reasonably extrapolated to the United States, given the similarities in residential construction practices and cultural norms between the two countries.
Collapse
Affiliation(s)
- Liu Sun
- Air Sectors Assessment and Exposure Science Division, Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada.
| | - Brett C Singer
- Indoor Environment Group, Sustainable Energy and Environmental Systems Department, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
37
|
Bousiotis D, Alconcel LNS, Beddows DCS, Harrison RM, Pope FD. Monitoring and apportioning sources of indoor air quality using low-cost particulate matter sensors. ENVIRONMENT INTERNATIONAL 2023; 174:107907. [PMID: 37012195 DOI: 10.1016/j.envint.2023.107907] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Air quality is one of the most important factors in public health. While outdoor air quality is widely studied, the indoor environment has been less scrutinised, even though time spent indoors is typically much greater than outdoors. The emergence of low-cost sensors can help assess indoor air quality. This study provides a new methodology, utilizing low-cost sensors and source apportionment techniques, to understand the relative importance of indoor and outdoor air pollution sources upon indoor air quality. The methodology is tested with three sensors placed in different rooms inside an exemplar house (bedroom, kitchen and office) and one outdoors. When the family was present, the bedroom had the highest average concentrations for PM2.5 and PM10 (3.9 ± 6.8 ug/m3 and 9.6 ± 12.7 μg/m3 respectively), due to the activities undertaken there and the presence of softer furniture and carpeting. The kitchen, while presenting the lowest PM concentrations for both size ranges (2.8 ± 5.9 ug/m3 and 4.2 ± 6.9 μg/m3 respectively), presented the highest PM spikes, especially during cooking times. Increased ventilation in the office resulted in the highest PM1 concentration (1.6 ± 1.9 μg/m3), highlighting the strong effect of infiltration of outdoor air for the smallest particles. Source apportionment, via positive matrix factorisation (PMF), showed that up to 95 % of the PM1 was found to be of outdoor sources in all the rooms. This effect was reduced as particle size increased, with outdoor sources contributing >65 % of the PM2.5, and up to 50 % of the PM10, depending on the room studied. The new approach to elucidate the contributions of different sources to total indoor air pollution exposure, described in this paper, is easily scalable and translatable to different indoor locations.
Collapse
Affiliation(s)
- Dimitrios Bousiotis
- Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Leah-Nani S Alconcel
- School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - David C S Beddows
- Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Roy M Harrison
- Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Francis D Pope
- Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
38
|
Kristensen K, Lunderberg DM, Liu Y, Misztal PK, Tian Y, Arata C, Nazaroff WW, Goldstein AH. Gas-Particle Partitioning of Semivolatile Organic Compounds in a Residence: Influence of Particles from Candles, Cooking, and Outdoors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3260-3269. [PMID: 36796310 DOI: 10.1021/acs.est.2c07172] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Semivolatile organic compounds (SVOCs) represent an important class of indoor pollutants. The partitioning of SVOCs between airborne particles and the adjacent air influences human exposure and uptake. Presently, little direct experimental evidence exists about the influence of indoor particle pollution on the gas-particle phase partitioning of indoor SVOCs. In this study, we present time-resolved gas- and particle-phase distribution data for indoor SVOCs in a normally occupied residence using semivolatile thermal desorption aerosol gas chromatography. Although SVOCs in indoor air are found mostly in the gas phase, we show that indoor particles from cooking, candle use, and outdoor particle infiltration strongly affect the gas-particle phase distribution of specific indoor SVOCs. From gas- and particle-phase measurements of SVOCs spanning a range of chemical functionalities (alkanes, alcohols, alkanoic acids, and phthalates) and volatilities (vapor pressures from 10-13 to 10-4 atm), we find that the chemical composition of the airborne particles influences the partitioning of individual SVOC species. During candle burning, the enhanced partitioning of gas-phase SVOCs to indoor particles not only affects the particle composition but also enhances surface off-gassing, thereby increasing the total airborne concentration of specific SVOCs, including diethylhexyl phthalate.
Collapse
Affiliation(s)
- Kasper Kristensen
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, 94720 California, United States
- Now at Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus C, Denmark
| | - David M Lunderberg
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, 94720 California, United States
- Department of Chemistry, University of California, Berkeley, 94720 California, United States
| | - Yingjun Liu
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, 94720 California, United States
- Now at BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, 100871 Beijing, China
| | - Pawel K Misztal
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, 94720 California, United States
- Now at Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yilin Tian
- Department of Civil and Environmental Engineering, University of California, Berkeley, 94720 California, United States
| | - Caleb Arata
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, 94720 California, United States
| | - William W Nazaroff
- Department of Civil and Environmental Engineering, University of California, Berkeley, 94720 California, United States
| | - Allen H Goldstein
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, 94720 California, United States
- Department of Civil and Environmental Engineering, University of California, Berkeley, 94720 California, United States
| |
Collapse
|
39
|
Pothier MA, Boedicker E, Pierce JR, Vance M, Farmer DK. From the HOMEChem frying pan to the outdoor atmosphere: chemical composition, volatility distributions and fate of cooking aerosol. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:314-325. [PMID: 36519677 DOI: 10.1039/d2em00250g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cooking organic aerosol (COA) is frequently observed in urban field studies. Like other forms of organic aerosol, cooking emissions partition between gas and particle phases; a quantitative understanding of the species volatility governing this partitioning is essential to model the transport and fate of COA. However, few cooking-specific volatility measurements are available, and COA is often assumed to be semi-volatile. We use measurements from a thermodenuder coupled to an aerosol chemical speciation monitor during the HOMEChem study to investigate the chemical components and volatility of near-source COA. We found that fresh emissions of COA have three chemical components: a biomass burning-like component (COABBOA), a lower volatility component associated with cooking oil (COAoil-2), and a higher volatility component associated with cooking oil (COAoil-1). We provide characteristic mass spectra and volatility profiles for these components. We develop a model to describe the partitioning of these emissions as they dilute through the house and outdoor atmosphere. We show that the total emissions from cooking can be misclassified in air quality studies that use semi-volatile emissions as a proxy for cooking aerosol, due to the presence of substantial mass in lower volatility bins of COA not generally represented in models. Primary emissions of COA can thus be not only primary sources of urban aerosol pollution, but also sources of semi-volatile organic compounds that undergo secondary chemistry in the atmosphere and contribute to ozone formation and secondary organic aerosol.
Collapse
Affiliation(s)
- Matson A Pothier
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Erin Boedicker
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Jeffrey R Pierce
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
| | - Marina Vance
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Delphine K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
40
|
Baeza_Romero MT, Dudzinska MR, Amouei Torkmahalleh M, Barros N, Coggins AM, Ruzgar DG, Kildsgaard I, Naseri M, Rong L, Saffell J, Scutaru AM, Staszowska A. A review of critical residential buildings parameters and activities when investigating indoor air quality and pollutants. INDOOR AIR 2022; 32:e13144. [PMID: 36437669 PMCID: PMC9828800 DOI: 10.1111/ina.13144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/27/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Indoor air in residential dwellings can contain a variety of chemicals, sometimes present at concentrations or in combinations which can have a negative impact on human health. Indoor Air Quality (IAQ) surveys are often required to characterize human exposure or to investigate IAQ concerns and complaints. Such surveys should include sufficient contextual information to elucidate sources, pathways, and the magnitude of exposures. The aim of this review was to investigate and describe the parameters that affect IAQ in residential dwellings: building location, layout, and ventilation, finishing materials, occupant activities, and occupant demography. About 180 peer-reviewed articles, published from 01/2013 to 09/2021 (plus some important earlier publications), were reviewed. The importance of the building parameters largely depends on the study objectives and whether the focus is on a specific pollutant or to assess health risk. When considering classical pollutants such as particulate matter (PM) or volatile organic compounds (VOCs), the building parameters can have a significant impact on IAQ, and detailed information of these parameters needs to be reported in each study. Research gaps and suggestions for the future studies together with recommendation of where measurements should be done are also provided.
Collapse
Affiliation(s)
- María Teresa Baeza_Romero
- Universidad de Castilla‐La Mancha. Dpto. Química‐Física, Escuela de Ingeniería Industrial y AeroespacialToledoSpain
| | | | - Mehdi Amouei Torkmahalleh
- Division of Environmental and Occupational Health Sciences, School of Public HealthUniversity of Illinois ChicagoChicagoIllinoisUSA
- Department of Chemical and Materials Engineering, School of Engineering and Digital SciencesNazarbayev UniversityAstanaKazakhstan
| | - Nelson Barros
- UFP Energy, Environment and Health Research Unit (FP‐ENAS)University Fernando PessoaPortoPortugal
| | - Ann Marie Coggins
- School of Natural Sciences & Ryan InstituteNational University of IrelandGalwayIreland
| | - Duygu Gazioglu Ruzgar
- School of Mechanical EngineeringPurdue UniversityWest LafayetteIndianaUSA
- Metallurgical and Materials Engineering DepartmentBursa Technical UniversityBursaTurkey
| | | | - Motahareh Naseri
- Department of Chemical and Materials Engineering, School of Engineering and Digital SciencesNazarbayev UniversityAstanaKazakhstan
| | - Li Rong
- Department of Civil and Architectural EngineeringAarhus UniversityAarhus CDenmark
| | | | | | - Amelia Staszowska
- Faculty of Environmental EngineeringLublin University of TechnologyLublinPoland
| |
Collapse
|
41
|
Cummings BE, Shiraiwa M, Waring MS. Phase state of organic aerosols may limit temperature-driven thermodynamic repartitioning following outdoor-to-indoor transport. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1678-1696. [PMID: 35920302 DOI: 10.1039/d2em00093h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ambient aerosols often experience temperature and humidity gradients following outdoor-to-indoor transport, causing organic aerosols (OA) to either gain or lose mass via gas-particle repartitioning. Recent models have sought to quantify these effects using equilibrium partitioning thermodynamics. However, evidence suggests some indoor OA may possess glassy or semisolid phase states with higher viscosities than liquid OA. Characteristic partitioning timescales of higher-viscosity particles are significantly longer than for liquid particles, which may either fully or partially inhibit repartitioning. For outdoor OA experiencing a temperature change during transport indoors, the ultimate repartitioning state depends on the relationship between the gas-particle partitioning rate coefficient (kgp) of semivolatile organics and the indoor particle loss rate coefficient (lp). That is, thermodynamic equilibrium partitioning may occur when semivolatile kgp ≫ lp, no repartitioning when semivolatile kgp ≪ lp, and partial repartitioning when their magnitudes are similar. Longer indoor particle lifetimes, higher particle number, and larger particle sizes all raise kgp (driving repartitioning towards equilibrium). For simulated U.S. residences, equilibrium condensation was likely reached in humid climate zones during warm meteorological conditions. In colder regions, the degree of evaporative repartitioning depended on whether organics could repartition before the particle phase state adjusts to indoor conditions, which is uncertain. When an appreciable temperature gradient exists, this study not only confirmed that all outdoor-originating OA that is liquid indoors will reach thermodynamic equilibrium, but also concluded that a plurality (46% for this domain) of such OA that is semisolid may also achieve thermodynamic equilibrium during its indoor lifetime.
Collapse
|
42
|
Wagner DN, Odhiambo SR, Ayikukwei RM, Boor BE. High time-resolution measurements of ultrafine and fine woodsmoke aerosol number and surface area concentrations in biomass burning kitchens: A case study in Western Kenya. INDOOR AIR 2022; 32:e13132. [PMID: 36305061 PMCID: PMC9828051 DOI: 10.1111/ina.13132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/05/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Indoor air pollution associated with biomass combustion for cooking remains a significant environmental health challenge in rural regions of sub-Saharan Africa; however, routine monitoring of woodsmoke aerosol concentrations continues to remain sparse. There is a paucity of field data on concentrations of combustion-generated ultrafine particles, which efficiently deposit in the human respiratory system, in such environments. Field measurements of ultrafine and fine woodsmoke aerosol (diameter range: 10-2500 nm) with field-portable diffusion chargers were conducted across nine wood-burning kitchens in Nandi County, Kenya. High time-resolution measurements (1 Hz) revealed that indoor particle number (PN) and particle surface area (PSA) concentrations of ultrafine and fine woodsmoke aerosol are strongly temporally variant, reach exceedingly high levels (PN > 106 /cm3 ; PSA > 104 μm2 /cm3 ) that are seldom observed in non-biomass burning environments, are influenced by kitchen architectural features, and are moderately to poorly correlated with carbon monoxide concentrations. In five kitchens, PN concentrations remained above 105 /cm3 for more than half of the day due to frequent cooking episodes. Indoor/outdoor ratios of PN and PSA concentrations were greater than 10 in most kitchens and exceeded 100 in several kitchens. Notably, the use of metal chimneys significantly reduced indoor PN and PSA concentrations.
Collapse
Affiliation(s)
- Danielle N. Wagner
- Lyles School of Civil Engineering, Purdue UniversityWest LafayetteIndianaUSA
- Ray W. Herrick Laboratories, Center for High Performance BuildingsPurdue UniversityWest LafayetteIndianaUSA
| | | | | | - Brandon E. Boor
- Lyles School of Civil Engineering, Purdue UniversityWest LafayetteIndianaUSA
- Ray W. Herrick Laboratories, Center for High Performance BuildingsPurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
43
|
Hodshire AL, Carter E, Mattila JM, Ilacqua V, Zambrana J, Abbatt JPD, Abeleira A, Arata C, DeCarlo PF, Goldstein AH, Ruiz LH, Vance ME, Wang C, Farmer DK. Detailed Investigation of the Contribution of Gas-Phase Air Contaminants to Exposure Risk during Indoor Activities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12148-12157. [PMID: 35952310 PMCID: PMC9454252 DOI: 10.1021/acs.est.2c01381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 05/31/2023]
Abstract
Analytical capabilities in atmospheric chemistry provide new opportunities to investigate indoor air. HOMEChem was a chemically comprehensive indoor field campaign designed to investigate how common activities, such as cooking and cleaning, impacted indoor air in a test home. We combined gas-phase chemical data of all compounds, excluding those with concentrations <1 ppt, with established databases of health effect thresholds to evaluate potential risks associated with gas-phase air contaminants and indoor activities. The chemical composition of indoor air is distinct from outdoor air, with gaseous compounds present at higher levels and greater diversity─and thus greater predicted hazard quotients─indoors than outdoors. Common household activities like cooking and cleaning induce rapid changes in indoor air composition, raising levels of multiple compounds with high risk quotients. The HOMEChem data highlight how strongly human activities influence the air we breathe in the built environment, increasing the health risk associated with exposure to air contaminants.
Collapse
Affiliation(s)
- Anna L. Hodshire
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80524, United States
| | - Ellison Carter
- Department
of Civil and Environmental Engineering, Colorado State University, Fort
Collins, Colorado 80521, United States
| | - James M. Mattila
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80524, United States
| | - Vito Ilacqua
- U.S.
Environmental Protection Agency, Office of Radiation and Indoor Air, Washington District of Columbia 20460, United States
| | - Jordan Zambrana
- U.S.
Environmental Protection Agency, Office of Radiation and Indoor Air, Washington District of Columbia 20460, United States
| | | | - Andrew Abeleira
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80524, United States
| | - Caleb Arata
- Department
of Environmental Science, Policy, and Management, University of California at Berkeley, Berkeley, California 94720, United States
| | - Peter F. DeCarlo
- Department
of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21212, United States
| | - Allen H. Goldstein
- Department
of Environmental Science, Policy, and Management, University of California at Berkeley, Berkeley, California 94720, United States
| | - Lea Hildebrandt Ruiz
- McKetta
Department of Chemical Engineering, The
University of Texas at Austin, Austin, Texas 78712, United States
| | - Marina E. Vance
- Department
of Mechanical Engineering, University of
Colorado Boulder, 1111 Engineering Drive, 427 UCB, Boulder, Colorado 80309, United States
| | - Chen Wang
- Department
of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Delphine K. Farmer
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80524, United States
| |
Collapse
|
44
|
A systematic literature review on indoor PM2.5 concentrations and personal exposure in urban residential buildings. Heliyon 2022; 8:e10174. [PMID: 36061003 PMCID: PMC9434053 DOI: 10.1016/j.heliyon.2022.e10174] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/15/2022] [Accepted: 07/29/2022] [Indexed: 12/01/2022] Open
Abstract
Particulate matter with an aerodynamic diameter less than 2.5μm (PM2.5) is currently a major air pollutant that has been raising public attention. Studies have found that short/long-term exposure to PM2.5 lead detrimental health effects. Since people in most region of the world spend a large proportion of time in dwellings, personal exposure to PM2.5 in home microenvironment should be carefully investigated. The objective of this review is to investigate and summary studies in terms of personal exposure to indoor PM2.5 pollutants from the literature between 2000 and 2021. Factors from both outdoor and indoor environment that have impact on indoor PM2.5 levels were explicated. Exposure studies were verified relating to individual activity pattern and exposure models. It was found that abundant investigations in terms of personal exposure to indoor PM2.5 is affected by factors including concentration level, exposure duration and personal diversity. Personal exposure models, including microenvironment model, mathematical model, stochastic model and other simulation models of particle deposition in different regions of human airway are reviewed. Further studies joining indoor measurement and simulation of PM2.5 concentration and estimation of deposition in human respiratory tract are necessary for individual health protection.
Collapse
|
45
|
Tracing of Heavy Metals Embedded in Indoor Dust Particles from the Industrial City of Asaluyeh, South of Iran. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137905. [PMID: 35805563 PMCID: PMC9265302 DOI: 10.3390/ijerph19137905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/22/2022]
Abstract
Assessment of indoor air quality is especially important, since people spend substantial amounts of time indoors, either at home or at work. This study analyzes concentrations of selected heavy metals in 40 indoor dust samples obtained from houses in the highly-industrialized Asaluyeh city, south Iran in spring and summer seasons (20 samples each). Furthermore, the health risk due to exposure to indoor air pollution is investigated for both children and adults, in a city with several oil refineries and petrochemical industries. The chemical analysis revealed that in both seasons the concentrations of heavy metals followed the order of Cr > Ni > Pb > As > Co > Cd. A significant difference was observed in the concentrations of potential toxic elements (PTEs) such as Cr, As and Ni, since the mean (±stdev) summer levels were at 60.2 ± 9.1 mg kg−1, 5.6 ± 2.7 mg kg−1 and 16.4 ± 1.9 mg kg−1, respectively, while the concentrations were significantly lower in spring (17.6 ± 9.7 mg kg−1, 3.0 ± 1.7 mg kg−1 and 13.5 ± 2.4 mg kg−1 for Cr, As and Ni, respectively). Although the hazard index (HI) values, which denote the possibility of non-carcinogenic risk due to exposure to household heavy metals, were generally low for both children and adults (HI < 1), the carcinogenic risks of arsenic and chromium were found to be above the safe limit of 1 × 10−4 for children through the ingestion pathway, indicating a high cancer risk due to household dust in Asaluyeh, especially in summer.
Collapse
|
46
|
Coffaro B, Weisel CP. Reactions and Products of Squalene and Ozone: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7396-7411. [PMID: 35648815 PMCID: PMC9231367 DOI: 10.1021/acs.est.1c07611] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 05/15/2023]
Abstract
This critical review describes the squalene-ozone (SqOz) reaction, or squalene ozonolysis. Ambient ozone penetrates indoors and drives indoor air chemistry. Squalene, a component of human skin oil, contains six carbon-carbon double bonds and is very reactive with ozone. Bioeffluents from people contribute to indoor air chemistry and affect the indoor air quality, resulting in exposures because people spend the majority of their time indoors. The SqOz reaction proceeds through various formation pathways and produces compounds that include aldehydes, ketones, carboxylic acids, and dicarbonyl species, which have a range of volatilities. In this critical review of SqOz chemistry, information on the mechanism of reaction, reaction probability, rate constants, and reaction kinetics are compiled. Characterizations of SqOz reaction products have been done in laboratory experiments and real-world settings. The effect of multiple environmental parameters (ozone concentration, air exchange rate (AER), temperature, and relative humidity (RH)) in indoor settings are summarized. This critical review concludes by identifying the paucity of available exposure, health, and toxicological data for known reaction products. Key knowledge gaps about SqOz reactions leading to indoor exposures and adverse health outcomes are provided as well as an outlook on where the field is headed.
Collapse
Affiliation(s)
- Breann Coffaro
- Environmental
and Health Sciences Institute and Graduate Program in Exposure Science, Rutgers, The State University of New Jersey, Piscataway Township, New
Jersey 08854, United
States
| | - Clifford P. Weisel
- Environmental
and Health Sciences Institute and School of Public Health, Rutgers, The State University of New Jersey, Piscataway Township, New
Jersey 08854, United
States
| |
Collapse
|
47
|
Pan D, Liu S, Huang D, Zeng X, Zhang Y, Pang Q, Wu H, Tan HJJ, Liang J, Sheng Y, Qiu X. Effects of household environmental exposure and ventilation in association with adverse birth outcomes: A prospective cohort study in rural China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153519. [PMID: 35101501 DOI: 10.1016/j.scitotenv.2022.153519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 12/27/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Prenatal exposure to outdoor air pollution have been associated with birth outcomes. However, there is limited evidence on the adverse effects of household indoor air pollution worldwide, much less in rural areas of China. This study aimed to explore the associations of household environmental factors (primary cooking fuel, housing renovation, and home ventilation) with four adverse birth outcomes (preterm birth (PTB), small for gestational age (SGA), low birth weight (LBW), and term low birth weight (T-LBW)). We conducted a cohort study involving 10,324 pregnancies in women who delivered a live-born infant from 2015 to 2018 in Guangxi, China. Risk ratios and 95% confidence intervals (CI) were estimated with control for reproductive history, lifestyle, home environmental confounders, and other potential confounders. A total of 5.4% of the infants were PTB, 10.7% were SGA, 5.5% had LBW, and 3.0% had T-LBW. Household-use induction cookers as the primary cooking fuel during pregnancy was associated with SGA (RR = 1.31, 95% CI: 1.07-1.60), LBW (1.41, 1.09-1.82), and T-LBW(1.62, 1.16-2.26), as compared with household-use gas as the primary cooking fuel. Housing renovation within one year before pregnancy was associated with PTB (1.45, 1.06-1.98) and LBW (1.56, 1.17-2.09), while housing renovation during pregnancy was associated with a higher risk of SGA only in moderate home ventilation conditions (3.74, 1.69-8.28). Our findings suggested that household-use induction cookers as the primary cooking fuel increased the risks of SGA, LBW, and T-LBW. In addition, housing renovation within one year before pregnancy increased the risks of PTB and LBW. Proper home ventilation may reduce the effect on the association between housing renovation during pregnancy and SGA.
Collapse
Affiliation(s)
- Dongxiang Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Shun Liu
- Department of Child and Adolescent Health & Maternal and Child Health, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xiaoyun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Yuanxiao Zhang
- Obstetrical Department, Pingguo Maternal and Child Health Hospital, Pingguo 531400, Guangxi, China
| | - Qiang Pang
- Department of Cardiology, Debao Maternal and Child Health Hospital, Debao 533700, Guangxi, China
| | - Huiping Wu
- Obstetrical Department, Jingxi People's Hospital, Jingxi 533800, Guangxi, China
| | - Hui Juan Jennifer Tan
- Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore, Singapore
| | - Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Yonghong Sheng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.
| |
Collapse
|
48
|
Kvasnicka J, Cohen Hubal EA, Siegel JA, Scott JA, Diamond ML. Modeling Clothing as a Vector for Transporting Airborne Particles and Pathogens across Indoor Microenvironments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5641-5652. [PMID: 35404579 PMCID: PMC9069698 DOI: 10.1021/acs.est.1c08342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Evidence suggests that human exposure to airborne particles and associated contaminants, including respiratory pathogens, can persist beyond a single microenvironment. By accumulating such contaminants from air, clothing may function as a transport vector and source of "secondary exposure". To investigate this function, a novel microenvironmental exposure modeling framework (ABICAM) was developed. This framework was applied to a para-occupational exposure scenario involving the deposition of viable SARS-CoV-2 in respiratory particles (0.5-20 μm) from a primary source onto clothing in a nonhealthcare setting and subsequent resuspension and secondary exposure in a car and home. Variability was assessed through Monte Carlo simulations. The total volume of infectious particles on the occupant's clothing immediately after work was 4800 μm3 (5th-95th percentiles: 870-32 000 μm3). This value was 61% (5-95%: 17-300%) of the occupant's primary inhalation exposure in the workplace while unmasked. By arrival at the occupant's home after a car commute, relatively rapid viral inactivation on cotton clothing had reduced the infectious volume on clothing by 80% (5-95%: 26-99%). Secondary inhalation exposure (after work) was low in the absence of close proximity and physical contact with contaminated clothing. In comparison, the average primary inhalation exposure in the workplace was higher by about 2-3 orders of magnitude. It remains theoretically possible that resuspension and physical contact with contaminated clothing can occasionally transmit SARS-CoV-2 between humans.
Collapse
Affiliation(s)
- Jacob Kvasnicka
- Department
of Earth Sciences, University of Toronto, Toronto, Ontario M5S 3B1, Canada
| | - Elaine A. Cohen Hubal
- Center
for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Durham, North Carolina 27711, United States
| | - Jeffrey A. Siegel
- Department
of Civil and Mineral Engineering, University
of Toronto, Toronto, Ontario M5S 1A4, Canada
- Dalla
Lana School of Public Health, University
of Toronto, Toronto, Ontario M5T 3M7, Canada
| | - James A. Scott
- Dalla
Lana School of Public Health, University
of Toronto, Toronto, Ontario M5T 3M7, Canada
- Department
of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, 1 King’s College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Miriam L. Diamond
- Department
of Earth Sciences, University of Toronto, Toronto, Ontario M5S 3B1, Canada
- Dalla
Lana School of Public Health, University
of Toronto, Toronto, Ontario M5T 3M7, Canada
- School of
the Environment, University of Toronto, Toronto, Ontario M5S 3E8, Canada
| |
Collapse
|
49
|
Salthammer T, Morrison GC. Temperature and indoor environments. INDOOR AIR 2022; 32:e13022. [PMID: 35622714 DOI: 10.1111/ina.13022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/20/2022] [Accepted: 03/13/2022] [Indexed: 06/15/2023]
Abstract
From the thermodynamic perspective, the term temperature is clearly defined for ideal physical systems: A unique temperature can be assigned to each black body via its radiation spectrum, and the temperature of an ideal gas is given by the velocity distribution of the molecules. While the indoor environment is not an ideal system, fundamental physical and chemical processes, such as diffusion, partitioning equilibria, and chemical reactions, are predictably temperature-dependent. For example, the logarithm of reaction rate and equilibria constants are proportional to the reciprocal of the absolute temperature. It is therefore possible to have non-linear, very steep changes in chemical phenomena over a relatively small temperature range. On the contrary, transport processes are more influenced by spatial temperature, momentum, and pressure gradients as well as by the density, porosity, and composition of indoor materials. Consequently, emergent phenomena, such as emission rates or dynamic air concentrations, can be the result of complex temperature-dependent relationships that require a more empirical approach. Indoor environmental conditions are further influenced by the thermal comfort needs of occupants. Not only do occupants have to create thermal conditions that serve to maintain their core body temperature, which is usually accomplished by wearing appropriate clothing, but also the surroundings must be adapted so that they feel comfortable. This includes the interaction of the living space with the ambient environment, which can vary greatly by region and season. Design of houses, apartments, commercial buildings, and schools is generally utility and comfort driven, requiring an appropriate energy balance, sometimes considering ventilation but rarely including the impact of temperature on indoor contaminant levels. In our article, we start with a review of fundamental thermodynamic variables and discuss their influence on typical indoor processes. Then, we describe the heat balance of people in their thermal environment. An extensive literature study is devoted to the thermal conditions in buildings, the temperature-dependent release of indoor pollutants from materials and their distribution in the various interior compartments as well as aspects of indoor chemistry. Finally, we assess the need to consider temperature holistically with regard to the changes to be expected as a result of global emergencies such as climate change.
Collapse
Affiliation(s)
- Tunga Salthammer
- Department of Material Analysis and Indoor Chemistry, Fraunhofer WKI, Braunschweig, Germany
| | - Glenn C Morrison
- Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
50
|
Amouei Torkmahalleh M, Turganova K, Zhigulina Z, Madiyarova T, Adotey EK, Malekipirbazari M, Buonanno G, Stabile L. Formation of cluster mode particles (1-3 nm) in preschools. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151756. [PMID: 34822884 DOI: 10.1016/j.scitotenv.2021.151756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
This study is the first study that reports the cluster particle (1-3 nm) formation (CPF) in two modern preschools located in Nur-Sultan city of Kazakhstan from October 28 to November 27, 2019. The average particle number concentration and mode diameter values during major CPF events in Preschool I and Preschool II were found to be 1.90 × 106 (SD 6.43 × 106) particles/cm3 and 1.60 (SD 0.85) nm, and 1.11 × 109 (SD 5.46 × 109) particles/cm3 and 2.16 (SD 1.47) nm, respectively. The ultraviolet PM concentration reached as high as 7 μg/m3 in one of the measurement days. The estimated emission rate in Preschool I for CPF events was 9.57 × 109 (SD 1.92 × 109) particles/min. For Preschool II, the emission rate was 7.25 × 109 (SD 12.4 × 109) particles/min. We identified primary cluster particles (CPs) emitted directly from the sources such as candle burning, and secondary CPs formed as a result of the oxidation of indoor VOCs or smoking VOCs. The secondary CPs are likely to be SOA. Indoor VOCs were mainly emitted during cleaning activities as well as during painting and gluing. Indoor VOCs are the controlling factors in the CPF events. Changes in the training and cleaning programs may result in significant reductions in the exposure of the children to CPs.
Collapse
Affiliation(s)
- Mehdi Amouei Torkmahalleh
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan.
| | - Kamila Turganova
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Zhuldyz Zhigulina
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Tomiris Madiyarova
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Enoch Kwasi Adotey
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Milad Malekipirbazari
- Department of Industrial Engineering, Bilkent University, 06800 Bilkent, Ankara, Turkey
| | - Giorgio Buonanno
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, via Di Biasio 43, Cassino 03043, Italy
| | - Luca Stabile
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, via Di Biasio 43, Cassino 03043, Italy
| |
Collapse
|