1
|
Chen J, Zhang Z, Shen N, Yu H, Yu G, Qi J, Liu R, Hu C, Qu J. Bipartite trophic levels cannot resist the interference of microplastics: A case study of submerged macrophytes and snail. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137898. [PMID: 40107097 DOI: 10.1016/j.jhazmat.2025.137898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/04/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025]
Abstract
Some studies frequently focus on the toxic effects of compound pollution formed by microplastics and other pollutants on individual organisms, but it is still unclear how multi-trophic level organisms in compound communities resist the stress of microplastics. Thus, this research used a dose-response experiment (0, 0.1, 0.2, 0.5, 1 mg L-1) to illustrate the influences that microplastics might have on two symbiotic freshwater organisms Vallisneria natans and Sinotaia quadrata. The results showed the reduction of V. natans biomass in 0.5 and 1 mg L-1 groups (28-38 %), and disturbances on the photosynthetic system, reduced the chlorophyll content (15-85 %) and maximum quantum yields (10-31 %). In the case of S. quadrata, which subsisted by scraping leaf biofilms, there was a disruption in the functioning of the antioxidant system. Concurrently, the activities of digestive and neurotransmitter enzymes were affected, potentially leading to detrimental impacts on the organism's essential physiological processes. The introduction of microplastics significantly enhanced the relative abundance of specific microbial taxa, such as Proteobacteria within the biofilm of V. natans leaves and chloroflexi in the rhizosphere, thereby altering the microbial community assembly process. This means the potential ecological functions with microbes as the carrier was influenced. These results indicated that microplastic in aquatic environments can impact the metabolism, autotrophic, and heterotrophic behavior of double-end trophic organisms through symbiotic activities. Therefore, our study reveals how polystyrene microplastics affect the growth of submerged aquatic plants and snails, and from the perspective of community integrity and health, the introduction of these pollutants into freshwater environments may cause disruptive effects.
Collapse
Affiliation(s)
- Jun Chen
- Yunnan University, College of Ecology and Environment, Kunming 650500, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhiqiang Zhang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Nan Shen
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Hongwei Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Guo Yu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Jing Qi
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Rui Liu
- Yunnan University, College of Ecology and Environment, Kunming 650500, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
2
|
Deng W, Zhang X, Liu W, Wang X, Wang Z, Liu J, Zhai W, Wang J, Zhao Z. Deciphering the effects of long-term exposure to conventional and biodegradable microplastics on the soil microbiome. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137890. [PMID: 40073571 DOI: 10.1016/j.jhazmat.2025.137890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/01/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
Despite recent advances in the understanding of the impacts of microplastics (MPs) on the soil microbiome under short-term exposure, little information is known regarding the long-term ecological effects of MPs in soil, especially biodegradable MPs (BMPs). Here, we systematically compared the effects of four prevalent microplastics, including two conventional MPs (CMPs) and two BMPs, on the soil microbiome over short- and long-term exposure durations. The soil microbial community were not significantly affected by the MP addition under short-term exposure; however, the soil microbial composition was obviously impacted by MP exposure under long-term exposure, some MP-adapted microbes (e.g., the phyla Protobacteria and Actinobacteria) were enriched but the phyla Acidobacteriota declined. These results indicated that the effects of the MP exposure on the soil microbiome were time dependent. PERMANOVA analysis demonstrated that the exposure time played a more important role in the variation in soil microbiome than the polymer type. The soil microbes which were reshaped by MPs were specialized in genetic potential of lipid metabolism and xenobiotics degradation and metabolism and weakened in microbial genetic information process. The carbon metabolic capacity and nitrogen transformation of soil microbes were disturbed by MPs under long-term exposure. Compared with CMPs, many more MPs derivatives, such as dissolved organic matter and low molecular-weight oligomers, were released from BMPs during the long-term degradation process in soil; thus, BMPs had a stronger effect on the soil microbiome than CMPs under long-term exposure. This study underscores the potential risk of the replacement of conventional plastics with biodegradable plastics.
Collapse
Affiliation(s)
- Wenbo Deng
- Shanxi Key Laboratory for Ecological Restoration of Loess Plateau China, Observation and Research Station of the Ministry of Education of Shanxi Subalpine Grassland Ecosystem, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Xiaoqi Zhang
- Shanxi Key Laboratory for Ecological Restoration of Loess Plateau China, Observation and Research Station of the Ministry of Education of Shanxi Subalpine Grassland Ecosystem, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Wenjuan Liu
- Shanxi Key Laboratory for Ecological Restoration of Loess Plateau China, Observation and Research Station of the Ministry of Education of Shanxi Subalpine Grassland Ecosystem, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China.
| | - Xingfei Wang
- Shanxi Key Laboratory for Ecological Restoration of Loess Plateau China, Observation and Research Station of the Ministry of Education of Shanxi Subalpine Grassland Ecosystem, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Zihan Wang
- Shanxi Key Laboratory for Ecological Restoration of Loess Plateau China, Observation and Research Station of the Ministry of Education of Shanxi Subalpine Grassland Ecosystem, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Jinxian Liu
- Shanxi Key Laboratory for Ecological Restoration of Loess Plateau China, Observation and Research Station of the Ministry of Education of Shanxi Subalpine Grassland Ecosystem, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Wenjuan Zhai
- Shanxi Key Laboratory for Ecological Restoration of Loess Plateau China, Observation and Research Station of the Ministry of Education of Shanxi Subalpine Grassland Ecosystem, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Jian Wang
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon, SK S7N 2V3, Canada
| | - Zhibo Zhao
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
3
|
Wang Y, Tong R, Liu R, Ge Y, Xing B. Aging characteristics of polylatic acid microplastics and their adsorption on hydrophilic organic pollutants: mechanistic investigations and theoretical calculations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126441. [PMID: 40368017 DOI: 10.1016/j.envpol.2025.126441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 05/11/2025] [Accepted: 05/12/2025] [Indexed: 05/16/2025]
Abstract
The extended persistence of microplastics (MPs) in aquatic habitats can result in the uptake and accumulation of various pollutants, thereby creating a serious risk to the ecosystem. The research explored how various weathering environments affect the physicochemical traits of polylactic acid (PLA) MPs and their capacity to adsorb common hydrophilic organic contaminants, such as benzoic acid (BA), sulfamethoxazole (SMZ), and sulfamethazine (SMR). The results showed that the ability to adsorb was affected by pH and was dependent on the pHPZC of PLA as well as the pKa values of the contaminants. Calculated DFT results were consistent with the actual adsorption capacity of PLA (SMX > BA > SMR). The main adsorption mechanisms included hydrophobic interaction, hydrogen bonding, and electrostatic attraction, with hydrophobicity predominating. Additionally, charge-assisted hydrogen bond (CAHB) and partition effect enhanced adsorption under specific conditions. Compared to virgin PLA, the adsorption capacity of aged PLA for hydrophilic organic pollutants generally improved, with APLA showing the most increase. The impact of oxygen concentration, surface area, and crystallinity on the adsorption ability of MPs was minimal, whereas surface charge became the primary physicochemical factor influencing the adsorption performance of aged PLA. This study would provide important theoretical references and data to deepen the understanding of the environmental behavior of PLA and its potential environmental risks.
Collapse
Affiliation(s)
- Yanhua Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China.
| | - Ruizhen Tong
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Ruihan Liu
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Yi Ge
- Shaanxi Environmental Monitoring Center, Shaanxi Key Laboratory of Environmental Monitoring and Forewarning of Trace Pollutants, Xi'an, 710054, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States
| |
Collapse
|
4
|
Liu H, Ma Y, Xiao J, Zhang Y, Li Y, Shen A, Niu Z, Chen Q, Chen B. Biofilm-mediated mass transfer of sorbed benzo[a]pyrene from polyethylene to seawater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126257. [PMID: 40239938 DOI: 10.1016/j.envpol.2025.126257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/18/2025]
Abstract
Plastic waste, including microplastics (MPs), often serves as a carrier for hydrophobic organic contaminants (HOCs) and additives in aquatic environments. However, little is known about the fate of contaminants in plastics, especially under the influence of biofilm in field conditions. In this study, polyethylene (PE) was pre-sorbed with varying concentrations of benzo[a]pyrene (BaP), a non-polar contaminant, and deployed in situ to study desorption kinetics under natural biofilm colonization. Based on the desorption kinetics of BaP from PE, a mass transfer model was developed to describe the desorption of non-polar contaminants from PE under the influence of biofilm formation. This study proved that biofilm, acting as an intermediary between plastics and the aquatic environment, did not serve as a sink for plastic-sorbed BaP, but accelerated the desorption process of BaP by reducing the partition coefficient between the plastic and the boundary layer. Furthermore, based on our developed model (IABL-ODD), the effects of biofilm on the fate of other non-polar and weakly polar contaminants in PE were predicted. This study highlights the influence of biofilm on the desorption of hydrophobic contaminants from plastics in field conditions and also informs future work on more relevant processes such as additive leaching.
Collapse
Affiliation(s)
- Hongtao Liu
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Yongzheng Ma
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China; The State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Jingen Xiao
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Ying Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yuan Li
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Ao Shen
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhiguang Niu
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Qiqing Chen
- The State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Baizhu Chen
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Guangzhou, 510006, China; School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| |
Collapse
|
5
|
Huang Y, Hu J, Zheng J, Bai Z, Chen H, Ge X, Tang T, Zhang Y, Ma Y, Luo H, Li L, Ning X. A review of microbial degradation of perfluorinated and polyfluoroalkyl substances (PFAS) during waste biotransformation processes: influencing factors and alleviation measures. ENVIRONMENTAL RESEARCH 2025; 279:121795. [PMID: 40340003 DOI: 10.1016/j.envres.2025.121795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 04/27/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are stable synthetic compounds that pose significant risks to humans and tend to accumulate during the biotransformation of municipal waste. Although physical and chemical methods can effectively remove PFASs, their high costs and susceptibility to secondary contamination have limited broader adoption. Microbial degradation of PFASs is an environmentally friendly and cost-effective approach, making it a highly promising method for removing PFASs in municipal waste biotransformation. This paper summarizes recent advancements in the mechanisms of PFASs removal in common waste biotransformation processes, such as composting, anaerobic digestion and biological wastewater treatment. Microorganisms remove PFAS from municipal waste mainly through adsorption and biodegradation. We suggest that the type of PFAS, the coexistence of multiple emerging pollutant and PFAS, and the nutrients provided by municipal waste are the key factors influencing microbial degradation of PFAS. We consider that in situ enrichment of microorganisms capable of degrading PFAS is an effective way to mitigate the inhibitory effect of PFAS on waste biotransformation. Also, the addition of adsorbent materials, the application of voltage, and the addition of quorum-sensing signalling molecules in combination with biodegradation can improve the effectiveness of biodegradation of PFAS. In this study, we look forward to the future research direction to understand the key metabolic pathways of microbial degradation of PFAS using isotope tracer method. This review provides new insights for efficient biotransformation of municipal waste and effective removal of PFAS.
Collapse
Affiliation(s)
- Yuanming Huang
- Liquor Making Biotechnology and Application Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science & Engineering, Yibin, 643000, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jialun Hu
- Liquor Making Biotechnology and Application Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science & Engineering, Yibin, 643000, China; Gongxian Haitian Water Co., Ltd., Yibin, Sichuan, 644500, China
| | - Jia Zheng
- Key Laboratory of Wuliangye-flavor Liquor Solid-state Fermentation, China National Light Industry, Yibin, 644007, China; Wuliangye Yibin Co., Ltd., Yibin, Sichuan, 644000, China
| | - Zhihui Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Hao Chen
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Xiaopeng Ge
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Tang Tang
- Liquor Making Biotechnology and Application Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science & Engineering, Yibin, 643000, China
| | - Yao Zhang
- Liquor Making Biotechnology and Application Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science & Engineering, Yibin, 643000, China
| | - Yi Ma
- Liquor Making Biotechnology and Application Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science & Engineering, Yibin, 643000, China
| | - Huibo Luo
- Liquor Making Biotechnology and Application Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science & Engineering, Yibin, 643000, China
| | - Lei Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Xinqiang Ning
- Liquor Making Biotechnology and Application Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science & Engineering, Yibin, 643000, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
6
|
Lee S, Tsuruda Y, Honda M, Mukai K, Hirasawa T, Wijaya DC, Takai Y, Simasaki Y, Oshima Y. Fragmentation of expanded polystyrene to microplastics by wharf roach Ligia spp. MARINE POLLUTION BULLETIN 2025; 214:117769. [PMID: 40043659 DOI: 10.1016/j.marpolbul.2025.117769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025]
Abstract
The East Asian region is an area of high human and fishery activity, where a substantial amount of plastic, especially expanded polystyrene (EPS), is discharged into the environment and reaches sandy and rocky seashores. EPS pollution and its impact on organisms inhabiting sandy and rocky areas may be suspected. In a field study conducted in the West Japan sandy and rocky seashore region, wharf roaches, Ligia spp., which are ubiquitous and cosmopolitan organisms in the Pacific area, were found to ingest EPS more frequently than polypropylene and polyethylene microplastics. Furthermore, the results of our feeding experiment indicate that wharf roaches are capable of not only grazing on EPS, but also fragmenting EPS to microplastics ranging from 2 to 214 μm in diameter when estimated as circles. We conclude that wharf roaches may contribute to the decomposition and fragmentation of EPS microplastics.
Collapse
Affiliation(s)
- Seokhyun Lee
- Laboratory of Marine Environmental Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Yukinari Tsuruda
- Laboratory of Marine Environmental Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Masato Honda
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Koki Mukai
- Laboratory of Marine Environmental Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | | | - Daniel Christian Wijaya
- Laboratory of Marine Environmental Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Yuki Takai
- Laboratory of Marine Environmental Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Yohei Simasaki
- Laboratory of Marine Environmental Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Yuji Oshima
- Laboratory of Marine Environmental Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan; Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa 920-1192, Japan.
| |
Collapse
|
7
|
Ma S, Min X, Xu L, Jiang X, Liu Y, Gao P, Ji P, Kim H, Cai L. Aging of textile-based microfibers in both air and water environments. WATER RESEARCH 2025; 282:123731. [PMID: 40328151 DOI: 10.1016/j.watres.2025.123731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/08/2025]
Abstract
Textile-based microfibers (MFs) are a predominant source of global microplastics (MPs) pollution. Yet, less is known about the aging of textile-based MFs. This study explored the aging behavior of textile-based polyethylene terephthalate (PET) MFs with white (without pigment) and black (with carbon black as pigment) colors in both air and water environments. Ultraviolet (UV) and plasma aging were carried out to simulate the short- and long-term aging of MFs. Results indicated that white MFs exhibited more pronounced surface changes, formed more -OH bonds, and showed a higher increase in the oxygen-to-carbon(O/C) ratio than black MFs in both air and water environments. For example, in the air environment, the percentage increase of O/C for white MFs was 24.43 %, compared to 16.4 % for black MFs during plasma aging process. Further investigations were conducted to elucidate the mechanisms driving higher degree of aging of white MFs. It was verified that the carbon black in the black MFs could enhance their tensile strength and hardness, thereby countering the aging process. Furthermore, excitation-emission-matrix (EEM) analysis of dissolved organic matter (DOM) released from MFs, combined with the detection of reactive oxygen species (ROS) generated by MFs in the water environment, confirmed that carbon black functioned as an effective anti-aging additive. Its protective role, attributed to UV and plasma shielding and reactive radical-trapping mechanisms, led to higher aging degree in white MFs compared to black MFs. These findings provide insights into predicting the aging behaviors of textile-based MFs with different colors in air and water environments.
Collapse
Affiliation(s)
- Shuyu Ma
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaopeng Min
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Lin Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaolong Jiang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Pin Gao
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Peng Ji
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Hyunjung Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Li Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
8
|
Lu X, Wang L, Li J, Li W, Yan R, Duan X, Tang Y. Microplastics inhibit lead binding to sediment components: Influence of surface functional groups and charge environment. WATER RESEARCH 2025; 281:123661. [PMID: 40280004 DOI: 10.1016/j.watres.2025.123661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/07/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
The coexistence of heavy metals and microplastics in sediments is well recognized, yet the interactions within ternary systems remain underexplored, and comprehensive studies addressing the diverse sequences of sediment-microplastic-heavy metal coexistence are lacking. In this study, we systematically investigated the interactions among lead (Pb), polystyrene (PS) microplastics, and sediments (using goethite (Goe) and goethite-humic acid composite (GH) as examples) under different coexistence orders. The presence of PS significantly inhibited Pb adsorption by both Goe and GH. For Goe, adsorption kinetics and hydrochemical condition effects showed that PS reduced the electrostatic repulsion between Goe and Pb, leading to a fourfold increase in the mass transfer rate of Pb to the Goe surface. However, Pb 4f deconvolution indicated competition between PS and Pb for hydroxyl groups on Goe, resulting in a 7.4% reduction in Pb adsorption. In the GH system, hydrophobic interactions and coordination complexes between PS and humic acid on GH inhibited the electrostatic adsorption and mass transfer processes between Pb and GH. Pb adsorption behavior and changes in Pb-O content under different coexistence orders further verified that competition between PS and Pb for carboxyl and hydroxyl groups on GH led to a 28.0% reduction in Pb adsorption. This study highlights the inhibitory effect of PS on Pb adsorption by Goe and GH, providing a theoretical basis for understanding the migration and transformation patterns of microplastics and heavy metals in sediments.
Collapse
Affiliation(s)
- Xiao Lu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China; School of Chemical Engineering, The University of Adelaide, Adelaide SA 5005, Australia
| | - Lijuan Wang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Jiawei Li
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Wenqiu Li
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Ruoqun Yan
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide SA 5005, Australia
| | - Yuanyuan Tang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China.
| |
Collapse
|
9
|
Song K, Gao SH, Pan Y, Gao R, Li T, Xiao F, Zhang W, Fan L, Guo J, Wang A. Ecological and Health Risk Mediated by Micro(nano)plastics Aging Process: Perspectives and Challenges. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5878-5896. [PMID: 40108891 DOI: 10.1021/acs.est.4c11813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Aged micro(nano)plastics (MNPs) are normally the ultimate state of plastics in the environment after aging. The changes in the physical and chemical characteristics of aged MNPs significantly influence their environmental behavior by releasing additives, forming byproducts, and adsorbing contaminants. However, a systematic review is lacking on the effects of aged MNPs on ecological and human health regarding the increasing but scattered studies and results. This Review first summarizes the unique characteristics of aged MNPs and methods for quantifying their aging degree. Then we focused on the potential impacts on organisms, ecosystems, and human health, including the "Trojan horse" under real environmental conditions. Through combining meta-analysis and analytic hierarchy process (AHP) model, we demonstrated that, compared to virgin MNPs, aged MNPs would result in biomass decrease and oxidative stress increase on organisms and lead to total N/P decrease and greenhouse gas emissions increase on ecosystems while causing cell apoptosis, antioxidant system reaction, and inflammation in human health. Within the framework of ecological and human health risk assessment, we used the risk quotient (RQ) and physiologically based pharmacokinetic (PBK) models as examples to illustrate the importance of considering aging characteristics and the degree of MNPs in the process of data acquisition, model building, and formula evaluation. Given the ecological and health risks of aged MNPs, our urgent call for more studies of aged MNPs is to understand the potential hazards of MNPs in real-world environments.
Collapse
Affiliation(s)
- Kexiao Song
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shu-Hong Gao
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Yusheng Pan
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Rui Gao
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tianyao Li
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Fan Xiao
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Wanying Zhang
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Lu Fan
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Aijie Wang
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| |
Collapse
|
10
|
Liu Y, Li B, Zhou J, Li D, Liu Y, Wang Y, Huang W, Ruan Z, Yao J, Qiu R, Chen G. Effects of naturally aged microplastics on arsenic and cadmium accumulation in lettuce: Insights into rhizosphere microecology. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136988. [PMID: 39731888 DOI: 10.1016/j.jhazmat.2024.136988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/14/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Naturally aged microplastics (NAMPs) are commonly found in farmland soils contaminated with heavy metals (HMs), such as arsenic (As) and cadmium (Cd); yet their combined effects on soil-plant ecosystems remain poorly understood. In this study, we investigated the toxic effects of NAMPs and As-Cd on lettuce, considering the influence of earthworm activity, and examined changes in As-Cd bioavailability in the rhizosphere. Four experimental systems were established: soil-only, soil-lettuce, soil-earthworms, and soil-lettuce-earthworms systems, with four NAMPs concentrations (0, 0.1, 0.5, 1 %). Our results showed that exposure to 0.1 % NAMPs reduced As accumulation in lettuce shoots (0.17-0.25 mg kg-1) and roots (1.13-1.72 mg kg-1), while increasing biomass and enhancing root growth by alleviating toxicity. In contrast, the combined stress of higher NAMPs concentration (0.5 %/1 %) and As-Cd caused a 28.4-58.4 % reduction in root activity, which stimulated low-molecular-weight organic acid (LMWOA) secretion in the rhizosphere, increasing the bioavailability of As and Cd and enhancing their absorption by lettuce. Partial least squares path modeling (PLS-PM) revealed that co-exposure altered LMWOA content, soil enzyme activity, and microbial community stability in the rhizosphere, ultimately influencing the bioavailability and uptake of As and Cd by lettuce.
Collapse
Affiliation(s)
- Yanwei Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Bingqian Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Juanjuan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Dongqin Li
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou 501640, China
| | - Yuanyang Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Weigang Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhepu Ruan
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jun Yao
- School of Water Resource and Environmental Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences (Beijing), Beijing 100083, China
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Guikui Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
11
|
Nguyen JK, Karthikraj R, Habyarimana JB, Kim UJ. A review on microplastic fibers and beads in wastewater: The current knowledge on their occurrence, analysis, treatment, and insights on human exposure impact. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178818. [PMID: 39970555 DOI: 10.1016/j.scitotenv.2025.178818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/21/2025]
Abstract
The persistent presence of microplastic (MP) pollution in conventional wastewater treatment plants (WWTPs) is observed worldwide as they are currently not designed to remove MPs effectively. This pollution eventually re-enters and circulate in the environment, elevating the risks posed to ecosystems and organisms through biotoxicity and ecological destabilization. The most common MP shape in wastewater are microfibers (MFs) yet focused comprehensive studies on MFs is limited. Although not as abundant as MFs, microbeads (MBs) are also an important shape in WWTPs as they were among the first shapes to be targeted for production regulation, highlighting their significant impacts. Targeting these specific shapes are crucial as they represent the foundational components of wastewater MP pollution, and the current lack of these studies hinders our ability to address MP persistence and mitigation and management strategies properly. Therefore, this review aims to present the most up-to-date information on the distribution of MFs and MBs across WWTPs. Specifically, the source, detection, and analysis of MFs and MBs in wastewater, physicochemical characterization and interactions of common MF/MB polymers, and the current efforts to mitigate the production and release of these shaped MPs are summarized. This is the first literature review to focus on MFs and MBs in the aspects of their source, human toxicity, detection, and analysis in wastewater.
Collapse
Affiliation(s)
- Jenny Kim Nguyen
- Department of Earth and Environmental Sciences, The University of Texas at Arlington, 500 Yates Street, Arlington, TX 76019, USA
| | - Rajendiran Karthikraj
- Bone-Muscle Research Center, Department of Kinesiology, College of Nursing & Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Jean Baptiste Habyarimana
- Department of Earth and Environmental Sciences, The University of Texas at Arlington, 500 Yates Street, Arlington, TX 76019, USA
| | - Un-Jung Kim
- Department of Earth and Environmental Sciences, The University of Texas at Arlington, 500 Yates Street, Arlington, TX 76019, USA.
| |
Collapse
|
12
|
Ding P, Han Y, Sun Y, Chen X, Ge Q, Huang W, Zhang L, Li AJ, Hu G, Yu Y. Synergistic neurotoxicity of clothianidin and photoaged microplastics in zebrafish: Implications for neuroendocrine disruption. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125797. [PMID: 39909329 DOI: 10.1016/j.envpol.2025.125797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/09/2025] [Accepted: 02/03/2025] [Indexed: 02/07/2025]
Abstract
Microplastics (MPs), widely found in aquatic environments, pose a growing threat to environmental and biological health due to their complex interactions with pollutants and microorganisms. This study investigates the adsorption characteristics of clothianidin (CLO) on polystyrene (PS) and photoaged polystyrene (P-PS) and explores the neurotoxic effects of CLO combined with PS/P-PS in larval zebrafish (Danio rerio). Adsorption kinetics and isotherms showed that P-PS exhibited a higher adsorption capacity and faster equilibrium compared to PS, indicating the significant role of photoaging in enhancing CLO adsorption. Exposed to CLO combined with PS/P-PS resulted in reduced locomotor activity, particularly in the P-PS + CLO group, suggesting amplified neurotoxicity due to P-PS. Analysis of the hypothalamic-pituitary-interrenal (HPI) axis revealed elevated levels of adrenocorticotropic hormone (ACTH) and cortisol, along with downregulated expression of stress-related genes in co-exposed zebrafish, indicating disruption of neuroendocrine function. Neurotransmitter analysis showed significant changes in acetylcholine (ACh), dopamine (DA), serotonin (5-HT), and γ-aminobutyric acid (GABA) levels, further confirming the neurotoxic impact of co-exposure. The findings highlight the synergistic neurotoxicity of CLO and photoaged MPs, with potential implications for aquatic ecosystems. This study advances the field of environmental science by addressing critical knowledge gaps in pollutant-microplastic interactions, providing a foundation for developing targeted mitigation strategies and enhancing ecological risk management frameworks.
Collapse
Affiliation(s)
- Ping Ding
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510630, China
| | - Yajing Han
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Yanan Sun
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - XiaoXia Chen
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Qing Ge
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; School of Public Health, China Medical University, Liaoning, 110122, China
| | - Wei Huang
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Lijuan Zhang
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510630, China
| | - Adela Jing Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510630, China.
| | - Guocheng Hu
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| | - Yunjiang Yu
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| |
Collapse
|
13
|
Xia R, Yin X, Balcazar JL, Huang D, Liao J, Wang D, Alvarez PJJ, Yu P. Bacterium-Phage Symbiosis Facilitates the Enrichment of Bacterial Pathogens and Antibiotic-Resistant Bacteria in the Plastisphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2948-2960. [PMID: 39836086 DOI: 10.1021/acs.est.4c08265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The plastisphere, defined as the ecological niche for microbial colonization of plastic debris, has been recognized as a hotspot of pathogenic and antibiotic-resistant bacteria. However, the interactions between bacteria and phages facilitated by the plastisphere, as well as their impact on microbial risks to public health, remain unclear. Here, we analyzed public metagenomic data from 180 plastisphere and environmental samples, stemming from four different habitats and two plastic types (biodegradable and nonbiodegradable plastics) and obtained 611 nonredundant metagenome-assembled genomes (MAGs) and 4061 nonredundant phage contigs. The plastisphere phage community exhibited decreased diversity and virulent proportion compared to those found in environments. Indexes of phage-host interaction networks indicated significant associations of phages with pathogenic and antibiotic-resistant bacteria (ARB), particularly for biodegradable plastics. Known phage-encoded auxiliary metabolic genes (AMGs) were involved in nutrient metabolism, antibiotic production, quorum sensing, and biofilm formation in the plastisphere, which contributed to enhanced competition and survival of pathogens and ARB hosts. Phages also carried transcriptionally active virulence factor genes (VFGs) and antibiotic resistance genes (ARGs), and could mediate their horizontal transfer in microbial communities. Overall, these discoveries suggest that plastisphere phages form symbiotic relationships with their hosts, and that phages encoding AMGs and mediating horizontal gene transfer (HGT) could increase the source of pathogens and antibiotic resistance from the plastisphere.
Collapse
Affiliation(s)
- Rong Xia
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaole Yin
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | | | - Dan Huang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingqiu Liao
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Dongsheng Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering and Rice WaTER Institute, Rice University, Houston, Texas 77005, United States
| | - Pingfeng Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
14
|
Pan T, Guo Z, Hu S, Dong D, Li J, Yang X, Dai Y, Li L, Wu F, Wu Z, Xi S. Additive release and prediction of biofilm-colonized microplastics in three typical freshwater ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178671. [PMID: 39892235 DOI: 10.1016/j.scitotenv.2025.178671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/18/2024] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Widely used plastics are discarded and broken into microplastics (MPs), threatening the health of plants and animals, and affecting the natural world. The global spread of plastic additives, as unavoidable components in plastic preparation, raises concerns about their leaching in different environments. This paper aims to infer the leaching of hazardous plastic additives (e.g.FP-127 fluorescent additives) by investigating the effect of biofilm communities on the release of additives from plastics after 35 days of incubation in three typical freshwater ecosystems (Hubing Pool, Baogong Park, and Feihe River) in Hefei, China. In this research, we prepared different plastics, crushed them and then put them into natural freshwater we sampled in the laboratory. The results showed that the biofilms attached to the various MPs contained different biomass that were related to water environmental conditions and the properties of MPs. Compared to the natural release in deionized water, the concentration of leaching MPs additives can be 5, 10, and 20 times higher in Hubing Pool, Baogong Park, and Feihe River, respectively. The analysis results also clearly showed that the relative abundance of core communities was proportional to FP-127 additive leaching from the MPs into the surrounding environment. Moreover, we also modeled two equations to predict the release of additives. These findings would be valuable for predicting the potential of MPs to release toxic additives under different freshwater ecosystems.
Collapse
Affiliation(s)
- Tao Pan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China; School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Zhi Guo
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China; School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China.
| | - Shuheng Hu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China; School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China.
| | - Dazhuang Dong
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Jie Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Xue Yang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Yaodan Dai
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Lele Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Feiyan Wu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Zhangzhen Wu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Shanshan Xi
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
| |
Collapse
|
15
|
Kapelewska J, Karpińska J, Klekotka U, Piotrowska-Niczyporuk A. Effect of polyethylene microplastic biodegradation by algae on their sorption properties and toxicity. CHEMOSPHERE 2025; 370:143993. [PMID: 39706491 DOI: 10.1016/j.chemosphere.2024.143993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Microplastics (MPs) in aquatic environments constitute an ideal surface for biofilm formation, facilitating or hindering the transport of contaminants. This study aims to provide knowledge on the sorption behavior of high-density polyethylene (μ-HDPE) after algal degradation toward UV filters. Up to now, the oxidation of μ-HDPE using the microalga Acutodesmus obliquus has not been studied. The results obtained by infrared spectroscopy (IR), scanning electron microscopy (SEM), and porosimetry analysis revealed a biofilm formation on the surface of μ-HDPE and the presence of carbonyl and double bond functional groups. Also, this is the first time that the simultaneous sorption of benzophenone (BPh), 4-methylbenzylidene camphor (4MBC), benzophenone 3 (BPh3), and benzophenone 2 (BPh2) onto biofilm-covered HDPE (biofilm-HDPE) in water have been studied. Filters' sorption on biofilm-HDPE particles follows pseudo-second-order kinetics, and film diffusion was the stage that limited the sorption rate. The Langmuir isothermal model describes the adsorption process for 4MBC, BPh, and BPh2 well, and the linear model is fit for the sorption of BPh3. Hydrophobic interactions, van der Waals forces, electrostatic, and π-π bon are the main mechanisms responsible for the sorption. Biological analysis indicated that HDPE at concentrations of 500 mg L-1 inhibits A. obliquus growth and reduces the levels of proteins, sugars, and chlorophylls. In contrast, the activity of antioxidant enzymes and the contents of small molecular weight antioxidants significantly increased in algal cells treated with microplastic. These findings confirm the toxicity of μ-HDPE and demonstrate the induction of defense mechanisms in A. obliquus as a response to environmental pollutants.
Collapse
Affiliation(s)
- Justyna Kapelewska
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K Street, 15-245, Bialystok, Poland.
| | - Joanna Karpińska
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K Street, 15-245, Bialystok, Poland
| | - Urszula Klekotka
- Department of Materials Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K Street, 15-245, Bialystok, Poland
| | - Alicja Piotrowska-Niczyporuk
- Department of Plant Biology and Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J Street, 15-245, Bialystok, Poland
| |
Collapse
|
16
|
Zhou R, Huang X, Ni Y, Ma Z, Wei H, Jin Q, Ding Z. Physicochemical behavior and ecological risk of biofilm-mediated microplastics in aquatic environments. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107209. [PMID: 39708762 DOI: 10.1016/j.aquatox.2024.107209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
The prevalence of microplastics (MPs) in aquatic environments has become the core of environmental pollution. In recent years, the inevitable biological aging process of MPs in natural environments has attracted researchers' attention. Such biofilm-mediated MPs, colonized by microorganisms, affect the physicochemical behavior and potential ecological risks of MPs. Therefore, it is critical to understand the impact of MPs' biofilm formation on the environmental fate and toxicity of MPs. This review presented a comprehensive discussion of the impact of biofilm formation on unique carrier effects and toxicological effects of MPs in aquatic environments. First, the biofilm formation process on MPs, the compositions of microorganisms in biofilm and the factors influencing biofilm formation were briefly summarized. Second, the sorption of pollutants and enrichment of antibiotic resistance genes onto biofilm-mediated MPs were discussed. Third, the potential effects of biofilm-mediated MPs on gut microbiota were analyzed. Finally, gaps in the field that require further investigations were put forward. This review emphasized that biofilm-mediated MPs have higher environmental risks and ecotoxicity, which is helpful in providing new insights for pollution prevention and control of new pollutant MPs.
Collapse
Affiliation(s)
- Ranran Zhou
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Xirong Huang
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Yongtao Ni
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Zewei Ma
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Hengchen Wei
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Qijie Jin
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Zhuhong Ding
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China.
| |
Collapse
|
17
|
Xiao X, Hodson ME, Sallach JB. Biodegradable microplastics adsorb more Cd than conventional microplastic and biofilms enhance their adsorption. CHEMOSPHERE 2025; 371:144062. [PMID: 39755213 DOI: 10.1016/j.chemosphere.2025.144062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/29/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
Biodegradable polylactic acid (PLA) mulch has been developed to replace conventional polyethylene (PE) mulch in agriculture to reduce plastic pollution and the accumulation of microplastics (MPs) in soil. Cadmium (Cd) is a significant soil contaminant, and can be adsorbed by MPs. It is increasingly recognised that in the natural environment biofilms can develop on MPs and that this can affect their adsorption properties. We exposed PLA and PE mulches outdoors for 16 months. MPs were then generated from pristine and weathered mulches. Biofilms developed on the weathered plastics. Oxygen-containing functional groups were detected on the weathered, but not the pristine PE, abundance of these groups increased for the weathered PLA. After removal of the biofilm the observed increases in oxygen-containing functional groups relative to the pristine plastics remained. In adsorption experiments pristine PLA MPs had a greater maximum adsorption capacity than pristine PE MPs (106-126 vs 23.2 mg/kg) despite having a lower specific surface area (0.325 m2/g vs 1.82 m2/g) suggesting that the greater levels of adsorption were due to MP chemistry. The weathered plastics adsorbed more Cd than the pristine plastics (e.g. maximum adsorption capacities of 153-185 and 152 mg/kg for the weathered PLA and PE respectively). However, after removal of the biofilm, adsorption of Cd to the weathered MPs was no greater than for the pristine plastics. This suggests that the increased adsorption of Cd due to weathering was caused primarily by adsorption onto the biofilm.
Collapse
Affiliation(s)
- X Xiao
- Department of Environment and Geography, University of York, York, YO10 5NG, United Kingdom.
| | - M E Hodson
- Department of Environment and Geography, University of York, York, YO10 5NG, United Kingdom
| | - J B Sallach
- Department of Environment and Geography, University of York, York, YO10 5NG, United Kingdom
| |
Collapse
|
18
|
Zhang X, Wu L, Han X, Shi Y, Huang J, Ding B, Zhang Y, Zhang Z, Shi Y, Li F. Effects of ionic strength, cation type and pH on the cotransport of microplastics with PFOA in saturated porous media. CHEMOSPHERE 2025; 370:143942. [PMID: 39675580 DOI: 10.1016/j.chemosphere.2024.143942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Both perfluorooctanoic acid (PFOA) and polystyrene microplastics (PS-MPs) are emerging contaminants commonly found in aqueous environments. In co-contaminated areas, MPs may act as carriers for PFOA, complicating transport dynamics. However, information on their cotransport in porous media is limited. This study investigates the transport behaviors of PFOA and PS-MPs in saturated quartz sand columns under varying ionic strength (IS), cation type, and pH. Using the DLVO interaction energy theory and a mathematical model, we analyzed their cotransport. The results demonstrated that PS-MPs inhibited PFOA transport due to hydrophobic adsorption, reducing PFOA mobility. However, at pH 5, PS-MPs facilitated PFOA transport through competitive adsorption on sand surfaces. Conversely, PFOA significantly accelerated PS-MPs transport, likely due to electrostatic repulsion and reduced PS-MPs size. The promoting effect of PFOA on PS-MPs was similar in NaCl and CaCl2 solutions. It is noteworthy that under acidic conditions, the increased electrostatic attraction between PS-MPs and quartz sand leads to substantial adsorption of PS-MPs onto the quartz sand surface. Under these conditions, PFOA exerts almost no promoting effect on PS-MPs. This study showed that the coexistence of PS-MPs and PFOA would influence the mobility of each other in the saturated porous media. Overall, the findings from this work could greatly improve our understanding of cotransport behaviors and environmental risk of PS-MPs and PFOA.
Collapse
Affiliation(s)
- Xu Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Ji'nan, 250101, China.
| | - Lixingzi Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Ji'nan, 250101, China.
| | - Xinle Han
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Ji'nan, 250101, China.
| | - Yuzhi Shi
- Water Resources Research Institute of Shandong Province, Ji'nan, 250013, China.
| | - Jiwen Huang
- Water Resources Research Institute of Shandong Province, Ji'nan, 250013, China.
| | - Botao Ding
- Shandong Academy for Environmental Planning, Ji'nan, 250101, China.
| | - Yanhao Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Ji'nan, 250101, China.
| | - Zhibin Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Ji'nan, 250101, China.
| | - Yanfeng Shi
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Ji'nan, 250101, China; State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China; Water Resources Research Institute of Shandong Province, Ji'nan, 250013, China.
| | - Fulin Li
- Water Resources Research Institute of Shandong Province, Ji'nan, 250013, China.
| |
Collapse
|
19
|
Xie L, Zhu K, Chen N, Deng Y, Jiang W, Jia H. A Critical Review of an Environmental Risk Substance Induced by Aging Microplastics: Insights into Environmentally Persistent Free Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22502-22518. [PMID: 39661042 DOI: 10.1021/acs.est.4c09107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Microplastics (MPs), as an emerging contaminants category, can undergo complex aging in a variety of environmental matrices in which the chemical bonds of polymer molecules can be broken to form free radicals. While the existence of free radicals in aged plastics has been known for over half a century, only recently has significant research on a new type of environmentally risky substance, namely environmentally persistent free radicals (EPFRs), present in aged MPs and their environmental effects, been started, but it is still in its infancy. To address these issues, this work examines EPFR generation on MPs and their environmental effect by reviewing publications from 2012 to 2023. The aging processes and mechanisms of MPs in the environment are first summarized. Then, the occurrence and formation mechanisms of EPFRs on aged MPs are specifically discussed. Additionally, the reactivity of EPFRs on aging MPs and their influencing factors are comprehensively considered, such as their physicochemical properties, oxygen content, and coexisting substances. Due to their reactivity, EPFRs can interact directly with some substances (e.g., p-nitrophenol and proteins, etc.) or induce the generation of reactive oxygen species, leading to diverse environmental effects, including pollutant transformation, biotoxicity, and health risks. Finally, research challenges and perspectives for EPFRs formation on aging MPs and related environmental implications are presented. Given the environmental fate and risk of MPs-EPFRs, our urgent call for a better understanding of the potential hazards of aged MPs is to help develop a sustainable path for plastics management.
Collapse
Affiliation(s)
- Linyang Xie
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Kecheng Zhu
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Na Chen
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Yongxi Deng
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Wenjun Jiang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Hanzhong Jia
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| |
Collapse
|
20
|
Soltanighias T, Umar A, Abdullahi M, Abdallah MAE, Orsini L. Combined toxicity of perfluoroalkyl substances and microplastics on the sentinel species Daphnia magna: Implications for freshwater ecosystems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125133. [PMID: 39419463 DOI: 10.1016/j.envpol.2024.125133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Persistent chemicals from industrial processes, particularly perfluoroalkyl substances (PFAS), have become pervasive in the environment due to their persistence, long half-lives, and bioaccumulative properties. Used globally for their thermal resistance and repellence to water and oil, PFAS have led to widespread environmental contamination. These compounds pose significant health risks with exposure through food, water, and dermal contact. Aquatic wildlife is particularly vulnerable as water bodies act as major transport and transformation mediums for PFAS. Their co-occurrence with microplastics may intensify the impact on aquatic species by influencing PFAS sorption and transport. Despite progress in understanding the occurrence and fate of PFAS and microplastics in aquatic ecosystems, the toxicity of PFAS mixtures and their co-occurrence with other high-concern compounds remains poorly understood, especially over organisms' life cycles. Our study investigates the chronic toxicity of PFAS and microplastics on the sentinel species Daphnia, a species central to aquatic foodwebs and an ecotoxicology model. We examined the effects of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and polyethylene terephthalate microplastics (PET) both individually and in mixtures on Daphnia ecological endpoints. Unlike conventional studies, we used two Daphnia genotypes with distinct histories of chemical exposure. This approach revealed that PFAS and microplastics cause developmental failures, delayed sexual maturity and reduced somatic growth, with historical exposure to environmental pollution reducing tolerance to these persistent chemicals due to cumulative fitness costs. We also observed that the combined effect of the persistent chemicals analysed was 59% additive and 41% synergistic, whereas no antagonistic interactions were observed. The genotype-specific responses observed highlight the complex interplay between genetic background and pollutant exposure, emphasizing the importance of incorporating multiple genotypes in environmental risk assessments to more accurately predict the ecological impact of chemical pollutants.
Collapse
Affiliation(s)
- Tayebeh Soltanighias
- School of Biosciences and Institute for Interdisciplinary Data Science and AI, University of Birmingham, Birmingham, B15 2TT, UK; College of Engineering and Physical Sciences Department of Civil Engineering, Aston University, Birmingham, B4 7ET, UK
| | - Abubakar Umar
- School of Biosciences and Institute for Interdisciplinary Data Science and AI, University of Birmingham, Birmingham, B15 2TT, UK; School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Muhammad Abdullahi
- School of Biosciences and Institute for Interdisciplinary Data Science and AI, University of Birmingham, Birmingham, B15 2TT, UK
| | | | - Luisa Orsini
- School of Biosciences and Institute for Interdisciplinary Data Science and AI, University of Birmingham, Birmingham, B15 2TT, UK; Centre for Environmental Research and Justice (CERJ), University of Birmingham, Birmingham, B15 2TT, UK; The Alan Turing Institute, British Library, 96 Euston Road, London, NW1 2DB, UK; Robust Nature Excellence Initiative, Max-von-Laue-Straße 13, 60438 Frankfurt Am Main, Germany.
| |
Collapse
|
21
|
Barhoumi B, Metian M, Alonso-Hernández CM, Oberhaensli F, Mourgkogiannis N, Karapanagioti HK, Bersuder P, Tolosa I. Insight into the effect of natural aging of polystyrene microplastics on the sorption of legacy and emerging per- and polyfluorinated alkyl substances in seawater. Heliyon 2024; 10:e40490. [PMID: 39654741 PMCID: PMC11626057 DOI: 10.1016/j.heliyon.2024.e40490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
Microplastics (MPs) are abundant in aquatic environments and due to their small size, surface properties, and strong hydrophobicity, they can easily sorb chemicals, thus potentially acting as pollutant carriers. To date, most studies investigating the sorption of chemicals on MPs have principally focused on virgin MPs. However, MPs in the environment undergo aging effects, which changes their physical-chemical properties and aptitude to interact with chemicals, such as per- and polyfluorinated alkyl substances (PFAS) referred to as "forever chemicals". In this study, we compared the sorption behavior of nine PFAS, exhibiting different physical-chemical properties, on virgin and naturally aged polystyrene microplastic (PS-MPs) to explore to what extent the environmental aging affects the sorption behavior of the PS-MPs for different legacy and emerging PFAS in seawater. Differences in the morphology and surface properties of aged PS-MPs were examined by infrared spectroscopy, surface area analysis, scanning electron microscopy, and X-ray diffraction. Results revealed that compared to virgin PS-MPs, aged PS-MPs exhibited morphological changes (e.g. cavities, pits, and rough surfaces) with biofilm development and signs of oxidation on the MPs surface. PFAS sorption on PS-MPs was enhanced for the aged PS-MPs compared to virgin PS-MPs with Kd values ranging from 327 L kg-1 for PFOA to 3247 L kg-1 for PFOS in aged PS-MPs. The difference in sorption capacity was mainly attributed to the physical-chemical changes and the adhered biofilm observed in aged PS-MPs. Results also showed that virgin PS-MPs adsorb PFAS mainly through steric hindrance, while the aged PS-MPs may involve more complex sorption mechanisms. This research provides additional insights into the ability of aged MPs as potential carriers of legacy and emerging contaminants in the marine environment.
Collapse
Affiliation(s)
- Badreddine Barhoumi
- IAEA Marine Environment Laboratories, 4a Quai Antoine 1er, 98000, Principality of Monaco, Monaco
| | - Marc Metian
- IAEA Marine Environment Laboratories, 4a Quai Antoine 1er, 98000, Principality of Monaco, Monaco
| | | | - François Oberhaensli
- IAEA Marine Environment Laboratories, 4a Quai Antoine 1er, 98000, Principality of Monaco, Monaco
| | | | | | - Philippe Bersuder
- IAEA Marine Environment Laboratories, 4a Quai Antoine 1er, 98000, Principality of Monaco, Monaco
| | - Imma Tolosa
- IAEA Marine Environment Laboratories, 4a Quai Antoine 1er, 98000, Principality of Monaco, Monaco
| |
Collapse
|
22
|
Frost H, Bond T, Sizmur T, Felipe-Sotelo M. Sorption of metal ions onto PET-derived microplastic fibres. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:2309-2319. [PMID: 39555912 DOI: 10.1039/d4em00373j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
This study investigated microplastic polyester fibres representative of those shed during laundering as sorbents for metal ions. During sewage distribution and treatment, microplastics are exposed to elevated concentrations of metal ions, typically for several days. Cryogenic milling was used to generate polyethylene terephthalate (PET) fibres. Characterisation using optical microscopy and Raman spectroscopy revealed that milling did not cause significant chemical alteration to the fibres. Milled fibres were subsequently assessed in screening tests for their capacity to retain 12 metal ions-Sb(III), As(III), Cd(II), Cr(VI), Cu(II), Co(II), Pb(II), Hg(II), Mo(VI), Ni(II), V(V) and Zn(II)-at pH 8. All metal ions were sorbed onto PET fibres. The highest distribution coefficient (Kd) was observed for Pb2+ (939 mL g-1), followed by Cd2+ (898 mL g-1), Cu2+ (507 mL g-1), Hg2+ (403 mL g-1), and Zn2+ (235 mL g-1). The extent of sorption is largely explicable by electrostatic interactions between the PET surface (1.95 point of zero net charge) and the predicted metal ion species. The sorption behaviour of Cd2+ and Hg2+ was examined in more detail since both showed high sorption capacity and are highly toxic. Kinetic experiments revealed that the sorption of both elements was relatively fast, with a steady state reached within six hours. Experimental data from isotherm tests fitted well to the Langmuir sorption model and demonstrated that PET fibres had a much greater sorption capacity for Hg2+ (17.3-23.1 μg g-1) than for Cd2+ (4.3-5.3 μg g-1). Overall, the results indicate that retention of metal ions onto PET fibres originating from laundry is expected during full-scale sewage treatment, which facilitates the subsequent transfer of metals into the terrestrial environment, given that sewage sludge is commonly applied to agricultural land.
Collapse
Affiliation(s)
- H Frost
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK.
- School of Civil Engineering and Surveying, University of Portsmouth, Portland Building, Portland Street, Portsmouth PO1 3AH, UK
| | - T Bond
- School of Sustainability, Civil and Environmental Engineering, University of Surrey, Guildford, GU2 7XH, UK
- Water Research Centre, Frankland Rd, Swindon SN5 8YF, UK
| | - T Sizmur
- Department of Geography and Environmental Science, University of Reading, Reading, RG6 6DW, UK
| | - M Felipe-Sotelo
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK.
| |
Collapse
|
23
|
Zhang Q, Xu P, Yan N, Ren Y, Liang X, Guo X. Adsorption of neonicotinoid insecticides by mulch film-derived microplastics and their combined toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177238. [PMID: 39490386 DOI: 10.1016/j.scitotenv.2024.177238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Mulch films allow for efficient crop production, yet their low recovery after use causes severe microplastics (MPs) pollution in agricultural soils. MPs in agricultural environments undergo complex ageing processes, which can alter their interactions with coexisting neonicotinoids and result in unpredictable ecological risks. Here, polyethylene (PE) and polybutylene adipate terephthalate (PBAT), typical mulch films, were chosen for the preparation of PE-MPs and PBAT-MPs. The adsorption of two common neonicotinoids, imidacloprid and dinotefuran, by the two MPs and their joint toxicity were examined. We found that the specific surface area of PBAT-MPs (7.59 m2 g-1) is greater than that of PE-MPs (2.83 m2 g-1), which results in a greater adsorption capacity for neonicotinoids. Additionally, ageing increased the adsorption capacity of MPs for neonicotinoids by 37.50-40.68 % for PBAT-MPs and 44.23-72.34 % for PE-MPs. This enhancement is attributed to the introduction of additional oxygen-containing functional groups on the MPs' surfaces, which can form hydrogen bonds with the amino groups in imidacloprid and dinotefuran. Furthermore, compared to single MPs and neonicotinoids, stronger inhibition in the growth of Escherichia coli and the germination of lettuce seeds was observed when they coexisted. This study highlights the importance of assessing the interactions between MPs and neonicotinoids and their joint toxicity, thereby improving our understanding of the potential risks of MPs towards the agricultural ecosystems.
Collapse
Affiliation(s)
- Quanxin Zhang
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| | - Pingfan Xu
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China.
| | - Nana Yan
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| | - Yujing Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xujun Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
24
|
Liu J, Xie Y, Zhou L, Lu G, Li Y, Gao P, Hou J. Co-accumulation characteristics and interaction mechanism of microplastics and PFASs in a large shallow lake. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135780. [PMID: 39259996 DOI: 10.1016/j.jhazmat.2024.135780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Microplastics (MPs) and per- and polyfluoroalkyl substances (PFASs) coexist widely in lakes and affect ecological security. The coexistence characteristics and adsorption-desorption mechanisms between MPs and typical PFASs were explored in a typical eutrophic shallow lake (Taihu Lake). Polyvinyl chloride (PVC) and polyethylene (PE) are the primary types of MPs in Taihu Lake, with average abundances in water and sediment of 18630 n/m3 and 584 n/kg, respectively. The average concentrations of PFASs in water and sediment are 288.93 ng/L and 4.33 ng/g, with short-chain PFASs (C4-C7) being the main pollutants. Perfluorobutanoic acid (PFBA) in both water and sediment contributed 38.48 % and 44.53 %, respectively, followed by hexafluoropropylene oxide dimer acid (HFPO-DA). The morphological characteristics of MPs influence the distribution of long-chain PFAS in lake water, while the presence of HFPO-DA and perfluorohexanoic acid (PFHxA) in sediment is directly linked to the concentration and size of MPs. A combination of field investigations and indoor experiments revealed that the irreversible adsorption characteristics between MPs and HFPO-DA may promote the high cumulative flux of HFPO-DA in sediment, and the biofilm on the surface of MPs significantly accelerates this accumulation process. The results provide a new perspective on the co-transport behavior of emerging pollutants in aquatic environments.
Collapse
Affiliation(s)
- Jianchao Liu
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yinuo Xie
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Lv Zhou
- Nanjing Water Supply and Water Conservation Guidance Center, Nanjing 210004, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Yiping Li
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Peng Gao
- Department of Environmental and Occupational Health, and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, United States
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
25
|
Jia J, Liu Q, Zhao E, Li X, Xiong X, Wu C. Biofilm formation on microplastics and interactions with antibiotics, antibiotic resistance genes and pathogens in aquatic environment. ECO-ENVIRONMENT & HEALTH 2024; 3:516-528. [PMID: 39605964 PMCID: PMC11599983 DOI: 10.1016/j.eehl.2024.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/11/2024] [Accepted: 05/04/2024] [Indexed: 11/29/2024]
Abstract
Microplastics (MPs) in aquatic environments easily support biofilm development, which can interact with other environmental pollutants and act as harbors for microorganisms. Recently, numerous studies have investigated the fate and behavior of MP biofilms in aquatic environments, highlighting their roles in the spread of pathogens and antibiotic resistance genes (ARGs) to aquatic organisms and new habitats. The prevalence and effects of MP biofilms in aquatic environments have been extensively investigated in recent decades, and their behaviors in aquatic environments need to be synthesized systematically with updated information. This review aims to reveal the development of MP biofilm and its interactions with antibiotics, ARGs, and pathogens in aquatic environments. Recent research has shown that the adsorption capabilities of MPs to antibiotics are enhanced after the biofilm formation, and the adsorption of biofilms to antibiotics is biased towards chemisorption. ARGs and microorganisms, especially pathogens, are selectively enriched in biofilms and significantly different from those in surrounding waters. MP biofilm promotes the propagation of ARGs through horizontal gene transfer (HGT) and vertical gene transfer (VGT) and induces the emergence of antibiotic-resistant pathogens, resulting in increased threats to aquatic ecosystems and human health. Some future research needs and strategies in this review are also proposed to better understand the antibiotic resistance induced by MP biofilms in aquatic environments.
Collapse
Affiliation(s)
- Jia Jia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qian Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - E. Zhao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xin Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiong Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chenxi Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
26
|
Huang Y, Hu T, Lin B, Ke Y, Li J, Ma J. Microplastics-biofilm interactions in biofilm-based wastewater treatment processes: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124836. [PMID: 39216664 DOI: 10.1016/j.envpol.2024.124836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Microplastics, pervasive contaminants from plastic, present significant challenges to wastewater treatment processes. This review critically examines the interactions between microplastics and biofilm-based treatment technologies, specifically focusing on the concepts of "biofilm on microplastics" and "microplastics in biofilm". It discusses the implications of these interactions in contaminant removal and process performance. Advanced characterization techniques, including morphological characterization, chemical composition analysis, and bio-information analysis, are assessed to elucidate the complex interplay between microplastics and biofilms within biofilters, biological aerated filters (BAFs), rotating biological contactors (RBCs), and moving bed biofilm reactors (MBBRs). This review synthesizes current research findings, highlighting that microplastics can either hinder or enhance the treatment processes, contingent on their concentration, physicochemical properties, and the specific biofilm technology employed. The insights gained from this review are essential for developing strategies to mitigate the adverse effects of microplastics and for optimizing the design and operation of wastewater treatment.
Collapse
Affiliation(s)
- Yaning Huang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Tanqiu Hu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Bincheng Lin
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Youqing Ke
- China Construction Eighth Engineering Division. Corp. Ltd., Guangzhou, 510663, China
| | - Jibin Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Jinxing Ma
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
27
|
Adamu H, Bello U, IbrahimTafida U, Garba ZN, Galadima A, Lawan MM, Abba SI, Qamar M. Harnessing bio and (Photo)catalysts for microplastics degradation and remediation in soil environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122543. [PMID: 39305881 DOI: 10.1016/j.jenvman.2024.122543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/02/2024] [Accepted: 09/16/2024] [Indexed: 11/17/2024]
Abstract
Soil pollution by microplastics (MPs) is an escalating environmental crisis with far-reaching consequences. However, current research on the degradation and/or remediation of MPs has mainly focused on water-simulated environments, with little attention given to soil MPs. Therefore, the review explores such terrestrial territory, exploring the potential of biodegradation and novel photocatalytic technologies for MPs degradation/remediation in soil. This review comprehensively investigates the potential of biological and photocatalytic approaches for soil MPs degradation and remediation. A temporal analysis of research from 2004 to 2024 highlights the increasing focus on this critical issue. The review explores the biocatalytic roles of diverse enzymes, including cutinase, PETase, MHETase, hydrolase, lipase, laccase, lignin peroxidase, and Mn-peroxidase, in MPs degradation. Strategies for enzyme engineering, such as protein engineering and immobilization, are explored to enhance catalytic efficiency. The potential for developing enzyme consortia for optimized MP degradation is also discussed. Photocatalytic remediation using TiO2, ZnO, clay, hydrogel, and other photocatalysts is examined, emphasizing their mechanisms and effectiveness. Computational modeling is proposed to deepen understanding of soil MPs-catalyst interactions, primarily aiming to develop novel catalysts tailored for soil environments for environmental safety and sustainable restoration. A comparative analysis of biological and photocatalytic approaches evaluates their environmental implications and the potential for synergistic combinations, with emphasis on soil quality protection, restoration and impact on soil ecosystems. Hence, this review accentuates the urgent need for innovative solutions to address MPs pollution in soil and provides a foundational understanding of the current knowledge gaps, as well as paves the way for future research and development.
Collapse
Affiliation(s)
- Haruna Adamu
- Department of Environmental Management Technology, Abubakar Tafawa Balewa University, Yelwa Campus, 740272, Bauchi, Nigeria; Department of Chemistry, Abubakar Tafawa Balewa University, Gubi Campus, 740102, Bauchi, Nigeria.
| | - Usman Bello
- Department of Chemistry, Abubakar Tafawa Balewa University, Gubi Campus, 740102, Bauchi, Nigeria; Biofuel and Biochemical Research Group, Department of Chemical Engineering, Universiti Teknologi, PETRONAS, Seri Iskandar, 32610, Malaysia
| | - Usman IbrahimTafida
- Department of Chemistry, Abubakar Tafawa Balewa University, Gubi Campus, 740102, Bauchi, Nigeria
| | | | - Ahmad Galadima
- Department of Chemistry, Federal University Gusau, Nigeria
| | | | - Sani Isah Abba
- Department of Chemical Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia; Water Research Centre, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - Mohammad Qamar
- Department of Materials Science and Engineering (MSE), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
28
|
Liu S, Liu S, Xiao X, Liu L, Peijnenburg W, Xu Y, Wang Y, Yu Y, Li L, She X. Fibrous microplastics in the environment: Sources, occurrence, impacts, and mitigation strategies. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107119. [PMID: 39437451 DOI: 10.1016/j.aquatox.2024.107119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 09/04/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024]
Abstract
Fibrous microplastics (FMPs), a unique class of microplastics, are increasingly recognized as a significant environmental threat due to their ubiquitous presence and potential risks to ecological and human health. This review provides a comprehensive overview of FMPs, including their sources, prevalence in various environmental media, and potential impacts. FMPs, which can be found in over 90 % of certain environmental samples, originate from a diverse range of sources, including synthetic textiles, landfill waste, industrial emissions, and atmospheric deposition. These persistent pollutants pose a threat to both terrestrial and marine ecosystems. Their insidious presence can lead to ingestion by organisms, potentially disrupting ecosystems and posing risks to human health. Addressing the challenge of FMPs requires a multi-faceted approach. Reducing the production and use of synthetic fibers, implementing effective waste management practices, and developing new technologies to remove FMPs from wastewater and the broader environment are all crucial components of the solution. However, further research is essential to fully understand the long-term implications of FMPs on ecosystems and human health, laying the foundation for the development of robust and effective mitigation strategies.
Collapse
Affiliation(s)
- Shaochong Liu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Sizhi Liu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Xiangyang Xiao
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Lu Liu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Willie Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, RA Leiden 2300, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, Bilthoven, the Netherlands
| | - Yan Xu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yanhao Wang
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yaqi Yu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Lianzhen Li
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Xilin She
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
29
|
Pang R, Wang X, Zhang L, Lei L, Han Z, Xie B, Su Y. Genome-Centric Metagenomics Insights into the Plastisphere-Driven Natural Degradation Characteristics and Mechanism of Biodegradable Plastics in Aquatic Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18915-18927. [PMID: 39380403 DOI: 10.1021/acs.est.4c04965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Biodegradable plastics (BPs) are pervasively available as alternatives to traditional plastics, but their natural degradation characteristics and microbial-driven degradation mechanisms are poorly understood, especially in aquatic environments, the primary sink of plastic debris. Herein, the three-month dynamic degradation process of BPs (the copolymer of poly(butylene adipate-co-terephthalate) and polylactic acid (PLA) (PBAT/PLA) and single PLA) in a natural aquatic environment was investigated, with nonbiodegradable plastics polyvinyl chloride, polypropylene, and polystyrene as controls. PBAT/PLA showed the weight loss of 47.4% at 50 days and severe fragmentation within two months, but no significant decay for other plastics. The significant increase in the specific surface area and roughness and the weakening of hydrophobicity within the first month promoted microbial attachment to the PBAT/PLA surface. Then, a complete microbial succession occurred, including biofilm formation, maturation, and dispersion. Metagenomic analysis indicated that plastispheres selectively enriched degraders. Based on the functional genes involved in BPs degradation, a total of 16 high-quality metagenome-assembled genomes of degraders (mainly Burkholderiaceae) were recovered from the PBAT/PLA plastisphere. These microbes showed the greatest degrading potential at the biofilm maturation stage and executed the functions by PLA_depolymerase, polyesterase, hydrolase, and esterase. These findings will enhance understanding of BPs' environmental behavior and microbial roles on plastic degradation.
Collapse
Affiliation(s)
- Ruirui Pang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xueting Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Liangmao Zhang
- College of Resource Environment and Tourism, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Lang Lei
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zhibang Han
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
30
|
Zhang X, Yin Z, Xiang S, Yan H, Tian H. Degradation of Polymer Materials in the Environment and Its Impact on the Health of Experimental Animals: A Review. Polymers (Basel) 2024; 16:2807. [PMID: 39408516 PMCID: PMC11478708 DOI: 10.3390/polym16192807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/09/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
The extensive use of polymeric materials has resulted in significant environmental pollution, prompting the need for a deeper understanding of their degradation processes and impacts. This review provides a comprehensive analysis of the degradation of polymeric materials in the environment and their impact on the health of experimental animals. It identifies common polymers, delineates their degradation pathways, and describes the resulting products under different environmental conditions. The review covers physical, chemical, and biological degradation mechanisms, highlighting the complex interplay of factors influencing these processes. Furthermore, it examines the health implications of degradation products, using experimental animals as proxies for assessing potential risks to human health. By synthesizing current research, the review focuses on studies related to small organisms (primarily rodents and invertebrates, supplemented by fish and mollusks) to explore the effects of polymer materials on living organisms and underscores the urgency of developing and implementing effective polymer waste management strategies. These strategies are crucial for mitigating the adverse environmental and health impacts of polymer degradation, thus promoting a more sustainable interaction between human activities and the natural environment.
Collapse
Affiliation(s)
- Xiyu Zhang
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China; (X.Z.); (Z.Y.); (S.X.)
| | - Zhenxing Yin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China; (X.Z.); (Z.Y.); (S.X.)
| | - Songbai Xiang
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China; (X.Z.); (Z.Y.); (S.X.)
| | - Huayu Yan
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China; (X.Z.); (Z.Y.); (S.X.)
| | - Hailing Tian
- Laboratory Animal Center, Yanbian University, Yanji 133002, China
| |
Collapse
|
31
|
Chen ZW, Hua ZL. Effect of Co-exposure to Additional Substances on the Bioconcentration of Per(poly)fluoroalkyl Substances: A Meta-Analysis Based on Hydroponic Experimental Evidence. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 87:270-286. [PMID: 39367139 DOI: 10.1007/s00244-024-01087-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/22/2024] [Indexed: 10/06/2024]
Abstract
A consensus has yet to emerge regarding the bioconcentration responses of per(poly)fluoroalkyl substances under co-exposure with other additional substances in aqueous environments. This study employed a meta-analysis to systematically investigate the aforementioned issues on the basis of 1,085 published datasets of indoor hydroponic simulation experiments. A hierarchical meta-analysis model with an embedded variance covariance matrix was constructed to eliminate the non-independence and shared controls of the data. Overall, the co-exposure resulted in a notable reduction in PFAS bioaccumulation (cumulative effect size, CES = - 0.4287, p < 0.05) and bioconcentration factor (R2 = 0.9507, k < 1, b < 0) in hydroponics. In particular, the inhibition of PFAS bioconcentration induced by dissolved organic matter (percentage form of the effect size, ESP = - 48.98%) was more pronounced than that induced by metal ions (ESP = - 35.54%), particulate matter (ESP = - 24.70%) and persistent organic pollutants (ESP = - 18.66%). A lower AS concentration and a lower concentration ratio of ASs to PFASs significantly promote PFAS bioaccumulation (p < 0.05). The bioaccumulation of PFASs with long chains or high fluoride contents tended to be exacerbated in the presence of ASs. Furthermore, the effect on PFAS bioaccumulation was also significantly dependent on the duration of co-exposure (p < 0.05). The findings of this study provide novel insights into the fate and bioconcentration of PFAS in aquatic environments under co-exposure conditions.
Collapse
Affiliation(s)
- Zi-Wei Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Zu-Lin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
- Yangtze Institute for Conservation and Development, Nanjing, 210098, People's Republic of China.
| |
Collapse
|
32
|
Kteeba SM, Guo L. Photodegradation Processes and Weathering Products of Microfibers in Aquatic Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16535-16546. [PMID: 39215709 DOI: 10.1021/acs.est.4c03667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microplastics, particularly microfibers (MFs), pose a significant threat to the environment. Despite their widespread presence, the photochemical reactivity, weathering products, and environmental fate of MFs remain poorly understood. To address this knowledge gap, photodegradation experiments were conducted on three prevalent MFs: polyester (POL), nylon (NYL), and acrylic (ACR), to elucidate their degradation pathways, changes in surface morphology and polymer structure, and chemical and colloidal characterization of weathering products during photochemical degradation of MFs. The results showed that concentrations of dissolved organic carbon, chromophoric dissolved organic matter (DOM), and fluorescent components consistently increased during weathering, exhibiting a continuous release of DOM. Scanning electron microscopy and Raman spectroscopy revealed changes in the surface morphology and polymer spectra of the MFs. During the weathering experiments, DOM aromaticity (SUVA254) decreased, while spectral slope increased, indicating concurrent DOM release and degradation of aromatic components. The released DOM or nanoplastics were negatively charged with sizes between 128 and 374 nm. The production rate constants of DOM or the photochemical reactivity of MFs followed the order ACR > NYL ≥ POL, consistent with their differences in chemical structures. These findings provide an improved understanding of the photochemical reactivity, degradation pathways, weathering products, and environmental fate of microfibers in the environment.
Collapse
Affiliation(s)
- Shimaa M Kteeba
- School of Freshwater Sciences, University of Wisconsin─Milwaukee, Milwaukee, Wisconsin 53204, United States
- Faculty of Science, Damietta University, New Damietta, Damietta 34511, Egypt
| | - Laodong Guo
- School of Freshwater Sciences, University of Wisconsin─Milwaukee, Milwaukee, Wisconsin 53204, United States
| |
Collapse
|
33
|
Battulga B, Munkhbat D, Matsueda M, Atarashi-Andoh M, Oyuntsetseg B, Koarashi J, Kawahigashi M. Uncovering the characteristics of plastic-associated biofilm from the inland river system of Mongolia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124427. [PMID: 38914199 DOI: 10.1016/j.envpol.2024.124427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 06/26/2024]
Abstract
The occurrence and characteristics of plastic debris in aquatic and terrestrial environments have been extensively studied. However, limited information exists on the properties and dynamic behavior of plastic-associated biofilms in the environment. In this study, we collected plastic samples from an inland river system in Mongolia and extracted biofilms to uncover their characteristics using spectroscopic, isotopic, and thermogravimetric techniques. Mixtures of organic and mineral particles were detected in the extracted biofilms, revealing plastic as a carrier for exogenous substances, including contaminants, in the river ecosystem. Thermogravimetric analysis (TGA) indicated the predominant contribution of minerals primarily comprising aluminosilicate and calcite, representing approximately 80 wt% of the biofilms. Differential thermal analysis (DTA) coupled with Fourier transform infrared (FTIR) spectrometry operated at 25°C-600 °C enabled the detection of gaseous decomposition products, such as CO2, H2O, CO, and functional groups (O-H, C-H, C-O, CO, CC, and C-C), released from biopolymers in the extracted biofilms. Dehydration, dehydroxylation, and decarboxylation reactions explain the thermal properties of biofilms. The stable carbon (δ13C) and nitrogen (δ15N) isotope ratios of the biofilms demonstrated variable signatures ranging from -24.1‰ to -27.0‰ and 3.1‰-12.3‰, respectively. A significant difference in the δ13C value (p < 0.05) among the upstream, middle, and downstream research sites could be characterized by available organic carbon sources in the river environment, depending on the research sites. This study provides insights into the characteristics and environmental behavior of biofilms which are useful to elucidate the impact of plastic-associated biofilms on organic matter and material cycling in aquatic ecosystems.
Collapse
Affiliation(s)
- Batdulam Battulga
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Tokai, Ibaraki, 319-1195, Japan; Department of Geography, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan.
| | - Dolgormaa Munkhbat
- Department of Geography, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Makoto Matsueda
- Collaborative Laboratories for Advanced Decommissioning Science, Japan Atomic Energy Agency, Fukushima, 963-7700, Japan
| | - Mariko Atarashi-Andoh
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Tokai, Ibaraki, 319-1195, Japan
| | - Bolormaa Oyuntsetseg
- Department of Chemistry, National University of Mongolia, Ikh Surguuliin Gudamj-1, Ulaanbaatar, 14201, Mongolia
| | - Jun Koarashi
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Tokai, Ibaraki, 319-1195, Japan
| | - Masayuki Kawahigashi
- Department of Geography, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| |
Collapse
|
34
|
Tang S, Ma S, Lin L, Ding Y, Zhang X, Wu X, Zhang Q, Pervez MN, Cao C, Zhao Y. Carrier effects of face mask-derived microplastics on metal ions: Enhanced adsorption by photoaging combined with biofilms, exemplified with Pb(Ⅱ). JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135311. [PMID: 39068889 DOI: 10.1016/j.jhazmat.2024.135311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Face masks have emerged as a significant source of microplastics (MPs) under the influence of biotic and abiotic interactions. However, the combined effects of abiotic photoaging and biofilm-loading on mask-derived MPs as carriers of metal ions are not clear. We investigated the Pb(Ⅱ) adsorption onto polypropylene (PP) and polyurethane (PU) mask-derived MPs treated by photoaging, biofilm-loading, and both combinations, evaluating the composite risks. PU mask-derived MPs (1.157.47 mg/g) exhibited greater Pb(Ⅱ) adsorption capacity than PP mask-derived MPs (0.842.08 mg/g) because of the presence of intrinsic carbonyl functional groups. Photoaging (30.5%, 88.4%), biofilm-loading (110.7%, 87.1%), and both combinations (146.7%, 547.0%) of PP and PU masks enhanced Pb(Ⅱ) adsorption compared to virgin mask-derived MPs due to the increase of oxygen-containing functional groups. High-throughput sequencing indicated that the structural morphology and chemical composition of masks significantly affected the microbial community. Adsorption mechanisms involved electrostatic force and surface complexation. A combination of photoaging and biofilms increased the ecological risk index of mask-derived MPs in freshwater, showing the risk level to be high (PP mask) and very high (PU mask). This research highlights the crucial role of photoaging combined with biofilms in controlling metal ion adsorption onto mask-derived MPs, thereby increasing the composite risks.
Collapse
Affiliation(s)
- Shuai Tang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Shengjia Ma
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Lujian Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Yimei Ding
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaoting Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Xiaowei Wu
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Qun Zhang
- School of Public Health, Shandong Second Medical University, Weifang 261053, China
| | - Md Nahid Pervez
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Chengjin Cao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yaping Zhao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
35
|
Huang F, Chen L, Yang X, Jeyakumar P, Wang Z, Sun S, Qiu T, Zeng Y, Chen J, Huang M, Wang H, Fang L. Unveiling the impacts of microplastics on cadmium transfer in the soil-plant-human system: A review. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135221. [PMID: 39096630 DOI: 10.1016/j.jhazmat.2024.135221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/14/2024] [Indexed: 08/05/2024]
Abstract
The co-contamination of soils by microplastics (MPs) and cadmium (Cd), one of the most perilous heavy metals, is emerging as a significant global concern, posing risks to plant productivity and human health. However, there remains a gap in the literature concerning comprehensive evaluations of the combined effects of MPs and Cd on soil-plant-human systems. This review examines the interactions and co-impacts of MPs and Cd in soil-plant-human systems, elucidating their mechanisms and synergistic effects on plant development and health risks. We also review the origins and contamination levels of MPs and Cd, revealing that sewage, atmospheric deposition, and biosolid applications are contributors to the contamination of soil with MPs and Cd. Our meta-analysis demonstrates that MPs significantly (p<0.05) increase the bioavailability of soil Cd and the accumulation of Cd in plant shoots by 6.9 and 9.3 %, respectively. The MPs facilitate Cd desorption from soils through direct adsorption via surface complexation and physical adsorption, as well as indirectly by modifying soil physicochemical properties, such as pH and dissolved organic carbon, and altering soil microbial diversity. These interactions augment the bioavailability of Cd, along with MPs, adversely affect plant growth and its physiological functions. Moreover, the ingestion of MPs and Cd through the food chain significantly enhances the bioaccessibility of Cd and exacerbates histopathological alterations in human tissues, thereby amplifying the associated health risks. This review provides insights into the coexistence of MPs and Cd and their synergistic effects on soil-plant-human systems, emphasizing the need for further research in this critical subject area.
Collapse
Affiliation(s)
- Fengyu Huang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Chen
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| | - Paramsothy Jeyakumar
- Environmental Sciences Group, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Zhe Wang
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Shiyong Sun
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Tianyi Qiu
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Yi Zeng
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Huang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Linchuan Fang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
36
|
Li X, Luo J, Zeng H, Yang X, Hou X, Lu X. Preferential adsorption of medium molecular weight proteins in extracellular polymeric substance alleviates toxicity of small-sized microplastics to Skeletonema costatum. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135034. [PMID: 38954856 DOI: 10.1016/j.jhazmat.2024.135034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
Extracellular polymeric substances (EPS) secreted by organisms tend to encapsulate microplastics (MPs), forming an EPS-corona that affects the fate of MPs in marine ecosystems. However, the impact of the EPS-corona on the biotoxicity of MPs to marine organisms remains poorly understood. Herein, the effect of the EPS-corona on the toxicity of polystyrene (PS) MPs of different sizes (0.1 and 1 µm) to Skeletonema costatum (S. costatum) was investigated. The preferential adsorption of medium molecule weight (∼55 kDa) proteins onto PS MPs mainly contributed to the EPS-corona formation, decreasing the surface charge negativity of small-sized PS MPs (0.1 µm) by 72.4 %. Nitrogen (N) and oxygen (O) moieties in polysaccharides and proteins were identified as the preferential adsorption sites in the EPS-PS MPs interaction. Density functional theory (DFT) calculations confirmed the nuclear magnetic resonance spectroscopy (NMR) results, revealing that the binding mode between EPS and PS MPs was mainly hydrogen bonding. In addition, EPS-corona increased the cell density of S. costatum by 35.5-36.0 % when exposed to small-sized PS MPs (0.1 µm, 25-50 mg/L). These findings provide new insights into how EPS-corona affects the environmental fate and ecological risks associated with micro- and nano-sized plastics in marine ecosystems.
Collapse
Affiliation(s)
- Xue Li
- School of Life and Health Sciences, Hainan University, Haikou 570228, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiwei Luo
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| | - Hui Zeng
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Xuan Hou
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xueqiang Lu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
37
|
Bhagat K, Doussiemo DRB, Mushro N, Rajwade K, Kumar A, Apul O, Perreault F. Effect of Biofouling on the Sorption of Organic Contaminants by Microplastics. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1973-1981. [PMID: 38924544 DOI: 10.1002/etc.5938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/19/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Microplastics in the aquatic environment are susceptible to colonization by surrounding microorganisms, which form biofilms over the microplastic's surface. These biofilm-laden microplastics can then interact with a diverse array of contaminants. In the present study, biofilms were grown on microplastics in a laboratory setting using Pseudomonas aeruginosa as a model biofilm-forming bacterium for periods of 5 to 15 days. The sorption of three organic compounds representing different levels of hydrophobicity, namely methylene blue (MB), phenanthrol, and phenanthrene, was used to evaluate the effect of biofilm biomass on the adsorption of organic contaminants to microplastics. The sorption of MB and phenanthrol was found to increase with biofouling time, indicating affinity between these contaminants and the biofilm biomass on the particle. However, the presence of a biofilm did not influence the sorption of phenanthrene on the microplastics. These results suggest that the hydrophobicity of organic contaminants plays a major role in how biofouling of microplastics will influence contaminant sorption by microplastics. For some contaminants, biofilm can enhance the role of microplastics as contaminant vectors. These findings emphasize the need to understand the biomass load on environmental microplastics and the contaminants that associate with it for an accurate representation of the risk associated with microplastics in the environment. Environ Toxicol Chem 2024;43:1973-1981. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Kartik Bhagat
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
| | | | - Noelle Mushro
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
| | - Kimya Rajwade
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
| | - Abhishek Kumar
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
| | - Onur Apul
- Department of Civil and Environmental Engineering, University of Maine, Orono, Maine, USA
| | - François Perreault
- Department of Chemistry, University of Quebec in Montreal, Montreal, Quebec, Canada
| |
Collapse
|
38
|
Yan X, Chio C, Li H, Zhu Y, Chen X, Qin W. Colonization characteristics and surface effects of microplastic biofilms: Implications for environmental behavior of typical pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173141. [PMID: 38761927 DOI: 10.1016/j.scitotenv.2024.173141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
This paper summarizes the colonization dynamics of biofilms on microplastics (MPs) surfaces in aquatic environments, encompassing bacterial characteristics, environmental factors affecting biofilm formation, and matrix types and characteristics. The interaction between biofilm and MPs was also discussed. Through summarizing recent literatures, it was found that MPs surfaces offer numerous benefits to microorganisms, including nutrient enrichment and enhanced resistance to environmental stress. Biofilm colonization changes the surface physical and chemical properties as well as the transport behavior of MPs. At the same time, biofilms also play an important role in the fragmentation and degradation of MPs. In addition, we also investigated the coexistence level, adsorption mechanism, enrichment, and transformation of MPs by environmental pollutants mediated by biofilms. Moreover, an interesting aspect about the colonization of biofilms was discussed. Biofilm colonization not only had a great effect on the accumulation of heavy metals by MPs, but also affects the interaction between particles and environmental pollutants, thereby changing their toxic effects and increasing the difficulty of MPs treatment. Consequently, further attention and research are warranted to delve into the internal mechanisms, environmental risks, and the control of the coexistence of MPs and biofilms.
Collapse
Affiliation(s)
- Xiurong Yan
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China
| | - Chonlong Chio
- Department of Biology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada
| | - Hua Li
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China
| | - Yuen Zhu
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China; Department of Biology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada.
| | - Xuantong Chen
- Department of Biology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada
| | - Wensheng Qin
- Department of Biology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada.
| |
Collapse
|
39
|
Lahiri SK, Azimi Dijvejin Z, Gholamreza F, Shabanian S, Khatir B, Wotherspoon L, Golovin K. Liquidlike, Low-Friction Polymer Brushes for Microfibre Release Prevention from Textiles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400580. [PMID: 38529758 DOI: 10.1002/smll.202400580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/12/2024] [Indexed: 03/27/2024]
Abstract
During synthetic textile washing, rubbing between fibres or against the washing machine, exacerbated by the elevated temperature, initiates the release of millions of microplastic fibres into the environment. A general tribological strategy is reported that practically eliminates the release of microplastic fibres from laundered apparel. The two-layer fabric finishes combine low-friction, liquidlike polymer brushes with "molecular primers", that is, molecules that durably bond the low-friction layers to the surface of the polyester or nylon fabrics. It is shown that when the coefficient of friction is below a threshold of 0.25, microplastic fibre release is substantially reduced, by up to 96%. The fabric finishes can be water-wicking or water-repellent, and their comfort properties are retained after coating, indicating a tunable and practical strategy toward a sustainable textile industry and plastic-free oceans and marine foodstuffs.
Collapse
Affiliation(s)
- Sudip Kumar Lahiri
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Zahra Azimi Dijvejin
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Farzan Gholamreza
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Sadaf Shabanian
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Behrooz Khatir
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Lauren Wotherspoon
- Department of Materials Science & Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Kevin Golovin
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
- Department of Materials Science & Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| |
Collapse
|
40
|
Yan R, Li J, Li J, Liu Y, Xu Z, Ge X, Lu X, Yadav KK, Obaidullah AJ, Tang Y. Deciphering morphology patterns of environmental microfibers: Insights into source apportionment. WATER RESEARCH 2024; 259:121814. [PMID: 38820730 DOI: 10.1016/j.watres.2024.121814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/08/2024] [Accepted: 05/19/2024] [Indexed: 06/02/2024]
Abstract
Microfibers, a prevalent form of microplastics, undergo diverse environmental interactions resulting in varied morphological changes. These changes can offer insights into their environmental trajectories. Despite its importance, comprehensive studies on microfiber morphology are scarce. This study collected 233 microfibers from the East China Sea and South China Sea. Based on morphological features observed in microscopic images of microfibers, such as curvature, cross-sectional shapes, diameter variations, and crack shapes, we identified a general morphological pattern, classifying the environmental microfibers into three distinct morphological types. Our findings highlight noticeable differences in morphological metrics (e.g., length, diameter, and surface roughness) across three types, especially the diameter. Microfibers of Type I had an average diameter of 19.45 ± 4.93 μm, significantly smaller than Type II (263.00 ± 75.15 μm) and Type III (299.68 ± 85.62 μm). Within the three-dimensional (3D) space fully defined by these quantitative parameters, the clustering results of microfibers are also consistent with the proposed morphology pattern, with each category showing a potential correlation with specific chemical compositions. Type I microfibers correspond to synthetic cellulose, while 94.79 % of Types II and III are composed of polymers. Notably, we also validated the great applicability of the morphology categories to microfibers in diverse environmental compartments, including water and sediments in nearshore and offshore areas. This classification aids in the efficient determination of microfiber sources and the assessment of their ecological risks, marking a significant advancement in microfiber environmental studies.
Collapse
Affiliation(s)
- Ruoqun Yan
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Jiangpeng Li
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Jiawei Li
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Zhe Xu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Xinyu Ge
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Xiao Lu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah 64001, Iraq
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Yuanyuan Tang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China.
| |
Collapse
|
41
|
Yu F, Wu J, Wang H, Bao Y, Xing H, Ye W, Li X, Huang M. Interaction of microplastics with perfluoroalkyl and polyfluoroalkyl substances in water: A review of the fate, mechanisms and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:175000. [PMID: 39053539 DOI: 10.1016/j.scitotenv.2024.175000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
It is well known that microplastics can act as vectors of pollutants in the environment and are widely spread in freshwater and marine environments. PFAS (perfluoroalkyl and polyfluoroalkyl substances) can remain in the aqueous environment for long periods due to their wide application and good stability. The coexistence of microplastics and PFAS in the aqueous environment creates conditions for their interaction and combined toxicity. Studies on adsorption experiments between them and combined toxicity have been documented in the literature but have not been critically summarized and reviewed. Therefore, in this review, we focused on the interaction mechanisms, influencing factors, and combined toxicity between microplastics and PFAS. It was found that surface complexation may be a new interaction mechanism between microplastics and PFAS. In addition, aged microplastics reduce the adsorption of PFAS due to the presence of oxygenated groups on the surface compared to virgin microplastics. Attached biofilms can increase the adsorption capacity and create conditions for biodegradation. And, the interaction of microplastics and PFAS affects their spatial and temporal distribution in the environment. This review can provide insights into the fate of microplastics and PFAS in the global aquatic environment, fill knowledge gaps on the interactions between microplastics and PFAS, and provide a basic reference for assessing their combined toxicity.
Collapse
Affiliation(s)
- Fan Yu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jiaping Wu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Huangyingzi Wang
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yinzhou Bao
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Haoyu Xing
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wenpei Ye
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xuhua Li
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Manhong Huang
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China.
| |
Collapse
|
42
|
Graca B, Rychter A, Bełdowska M, Wojdasiewicz A. Seasonality of mercury and its fractions in microplastics biofilms -comparison to natural biofilms, suspended particulate matter and bottom sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174814. [PMID: 39032739 DOI: 10.1016/j.scitotenv.2024.174814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Biofilms can enhance the sorption of heavy metals onto microplastic (MP) surfaces. However, most research in this field relies on laboratory experiments and neglects metal fractions and seasonal variations. Further studies of the metal/biofilm interaction in the aquatic environment are essential for assessing the ecological threat that MPs pose. The present study used in situ experiments in an environment conducive to biofouling (Vistula Lagoon, Baltic Sea). The objective was to investigate the sorption of mercury and its fractions (thermodesorption technique) in MP (polypropylene-PP, polystyrene-PS, polylactide-PLA) biofilms and natural matrices across three seasons. After one month of incubation, the Hg concentrations in MP and natural substratum (gravel grains-G) biofilms were similar (MP: 145 ± 45 ng/g d.w.; G: 132 ± 23 ng/g d.w.) and approximately twofold those of suspended particulate matter (SPM) (63 ± 27 ng/g d.w.). Hg concentrations in biofilms and sediments were similar, but labile fractions dominated in biofilms and stable fractions in sediments. Seasonal Hg concentrations in MP biofilms decreased over summer>winter>spring, with significant variation for mineral and loosely bound Hg fractions. Multiple regression analysis revealed that hydrochemical conditions and sediment resuspension played a crucial role in the observed variability. The influence of polymer type and morphology (pellets, fibres, aged MP) on Hg sorption in biofilms was visible only in high summer temperatures. In this season, PP fibres and aged PP pellets encouraged biofilm growth and the accumulation of labile Hg fractions. Additionally, high concentrations of mineral (stable and semi-labile) Hg fractions were found in expanded PS biofilms. These findings suggest that organisms that ingest MPs or feed on the biofilms are exposed to the adverse effects of Hg and the presence of MPs in aquatic ecosystems may facilitate the transfer of mercury within the food chain.
Collapse
Affiliation(s)
- Bożena Graca
- University of Gdansk, Faculty of Oceanography and Geography, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Agata Rychter
- University of Applied Sciences in Elbląg, Ul. Wojska Polskiego 1, 82-300 Elbląg, Poland
| | - Magdalena Bełdowska
- University of Gdansk, Faculty of Oceanography and Geography, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Adriana Wojdasiewicz
- University of Gdansk, Faculty of Oceanography and Geography, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| |
Collapse
|
43
|
Lu B, Lou Y, Wang J, Liu Q, Yang SS, Ren N, Wu WM, Xing D. Understanding the Ecological Robustness and Adaptability of the Gut Microbiome in Plastic-Degrading Superworms ( Zophobas atratus) in Response to Microplastics and Antibiotics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12028-12041. [PMID: 38838251 DOI: 10.1021/acs.est.4c01692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Recent discoveries indicate that several insect larvae are capable of ingesting and biodegrading plastics rapidly and symbiotically, but the ecological adaptability of the larval gut microbiome to microplastics (MPs) remains unclear. Here, we described the gut microbiome assemblage and MP biodegradation of superworms (Zophobas atratus larvae) fed MPs of five major petroleum-based polymers (polyethylene, polypropylene, polystyrene, polyvinyl chloride, and polyethylene terephthalate) and antibiotics. The shift of molecular weight distribution, characteristic peaks of C═O, and metabolic intermediates of residual polymers in egested frass proved depolymerization and biodegradation of all MPs tested in the larval intestines, even under antibiotic suppression. Superworms showed a wide adaptation to the digestion of the five polymer MPs. Antibiotic suppression negatively influenced the survival rate and plastic depolymerization patterns. The larval gut microbiomes differed from those fed MPs and antibiotics, indicating that antibiotic supplementation substantially shaped the gut microbiome composition. The larval gut microbiomes fed MPs had higher network complexity and stability than those fed MPs and antibiotics, suggesting that the ecological robustness of the gut microbiomes ensured the functional adaptability of larvae to different MPs. In addition, Mantel's test indicated that the gut microbiome assemblage was obviously related to the polymer type, the plastic degradability, antibiotic stress, and larval survival rate. This finding provided novel insights into the self-adaptation of the gut microbiome of superworms in response to different MPs.
Collapse
Affiliation(s)
- Baiyun Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Yu Lou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Jing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Qiang Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, Department of Chemistry, William & Cloy Codiga Resource Recovery Center, Center for Sustainable Development & Global Competitiveness, Stanford University, Stanford, California 94305, United States
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| |
Collapse
|
44
|
Zhang Y, Xu X, Xu J, Li Z, Cheng L, Fu J, Sun W, Dang C. When antibiotics encounter microplastics in aquatic environments: Interaction, combined toxicity, and risk assessments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172455. [PMID: 38636871 DOI: 10.1016/j.scitotenv.2024.172455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Antibiotics and microplastics (MPs), known as emerging pollutants, are bound to coexist in aquatic environments due to their widespread distribution and prolonged persistence. To date, few systematic summaries are available for the interaction between MPs and antibiotics in aquatic ecosystems, and a comprehensive reanalysis of their combined toxicity is also needed. Based on the collected published data, we have analyzed the source and distribution of MPs and antibiotics in global aquatic environments, finding their coexistence occurs in a lot of study sites. Accordingly, the presence of MPs can directly alter the environmental behavior of antibiotics. The main influencing factors of interaction between antibiotics and MPs have been summarized in terms of the characteristics of MPs and antibiotics, as well as the environmental factors. Then, we have conducted a meta-analysis to evaluate the combined toxicity of antibiotics and MPs on aquatic organisms and the related toxicity indicators, suggesting a significant adverse effect on algae, and inapparent on fish and daphnia. Finally, the environmental risk assessments for antibiotics and MPs were discussed, but unfortunately the standardized methodology for the risk assessment of MPs is still challenging, let alone assessment for their combined toxicity. This review provides insights into the interactions and environment risks of antibiotics and MPs in the aquatic environment, and suggests perspectives for future research.
Collapse
Affiliation(s)
- Yibo Zhang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Xin Xu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jing Xu
- Dezhou Eco-environment Monitoring Center of Shandong Province, Dezhou, 253000, China
| | - Zhang Li
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Long Cheng
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jie Fu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Weiling Sun
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chenyuan Dang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China.
| |
Collapse
|
45
|
Shi J, Zhang B, Tang Y, Kong F. Undisclosed contribution of microbial assemblages selectively enriched by microplastics to the sulfur cycle in the large deep-water reservoir. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134342. [PMID: 38678705 DOI: 10.1016/j.jhazmat.2024.134342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/01/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
The accumulation of microplastics in reservoirs due to river damming has drawn considerable attention due to their potential impacts on elemental biogeochemical cycling at the watershed scale. However, the effects of plastisphere communities on the sulfur cycle in the large deep-water reservoir remain poorly understood. Here, we collected microplastics and their surrounding environmental samples in the water and sediment ecosystems of Xiaowan Reservoir and found a significant spatiotemporal pattern of microplastics and sulfur distribution in this Reservoir. Based on the microbial analysis, plastic-degrading taxa (e.g., Ralstonia, Rhodococcus) involved in the sulfur cycle were enriched in the plastisphere of water and sediment, respectively. Typical thiosulfate oxidizing bacteria Limnobacter acted as keystone species in the plastisphere microbial network. Sulfate, oxidation reduction potential and organic matter drove the variations of the plastisphere. Environmental filtration significantly affected the plastisphere communities, and the deterministic process dominated the community assembly. Furthermore, predicted functional profiles related to sulfur cycling, compound degradation and membrane transport were significantly enriched in the plastisphere. Overall, our results suggest microplastics as a new microbial niche exert different effects in water and sediment environments, and provide insights into the potential impacts of the plastisphere on the sulfur biogeochemical cycle in the reservoir ecosystem.
Collapse
Affiliation(s)
- Jiaxin Shi
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, PR China
| | - Baogang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Yang Tang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Fanlong Kong
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, PR China
| |
Collapse
|
46
|
Smith CE, Gilby BL, van de Merwe J, Jones J, Tait H, Townsend KA. Predictive modelling reveals Australian continental risk hotspots for marine debris interactions with key threatened species. GLOBAL CHANGE BIOLOGY 2024; 30:e17313. [PMID: 38837834 DOI: 10.1111/gcb.17313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 06/07/2024]
Abstract
Anthropogenic debris is a global threat that impacts threatened species through various lethal and sub-lethal consequences, as well as overall ecosystem health. This study used a database of over 24,000 beach surveys of marine debris collated by the Australian Marine Debris Initiative from 2012 to 2021, with two key objectives: (1) identify variables that most influence the occurrence of debris hotspots on a continental scale and (2) use these findings to identify likely hotspots of interaction between threatened species and marine debris. The number of particles found in each beach survey was modelled alongside fifteen biological, social, and physical spatial variables including land use, physical oceanography, population, rainfall, distance to waste facilities, ports, and mangroves to identify the significant drivers of debris deposition. The model of best fit for predicting debris particle abundance was calculated using a generalized additive model. Overall, debris was more abundant at sites near catchments with high annual rainfall (mm), intensive land use (km2), and that were nearer to ports (km) and mangroves (km). These results support previous studies which state that mangroves are a significant sink for marine debris, and that large ports and urbanized catchments are significant sources for marine debris. We illustrate the applicability of these models by quantifying significant overlap between debris hotspots and the distributions for four internationally listed threatened species that exhibit debris interactions; green turtle (26,868 km2), dugong (16,164 km2), Australian sea lion (2903 km2) and Flesh-footed Shearwater (2413 km2). This equates to less than 1% (Flesh-footed Shearwater, Australian sea lion), over 2% (green sea turtle) and over 5% (dugong) of their habitat being identified as areas of high risk for marine debris interactions. The results of this study hold practical value, informing decision-making processes, managing debris pollution at continental scales, as well as identifying gaps in species monitoring.
Collapse
Affiliation(s)
- Caitlin E Smith
- School of Science, Technology and Engineering, University of the Sunshine Coast, Hervey Bay, Queensland, Australia
| | - Ben L Gilby
- School of Science, Technology and Engineering, University of the Sunshine Coast, Petrie, Queensland, Australia
| | - Jason van de Merwe
- Australian Rivers Institute, Griffith University, Southport, Queensland, Australia
| | - Jodi Jones
- Tangaroa Blue Foundation, Australian Marine Debris Initiative Database, Dunsborough, Western Australia, Australia
| | - Heidi Tait
- Tangaroa Blue Foundation, Australian Marine Debris Initiative Database, Dunsborough, Western Australia, Australia
| | - Kathy A Townsend
- School of Science, Technology and Engineering, University of the Sunshine Coast, Hervey Bay, Queensland, Australia
| |
Collapse
|
47
|
Chen X, Chen CE, Cheng S, Sweetman AJ. Bisphenol A sorption on commercial polyvinyl chloride microplastics: Effects of UV-aging, biofilm colonization and additives on plastic behaviour in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124218. [PMID: 38815887 DOI: 10.1016/j.envpol.2024.124218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Chemical additives are important components in commercial microplastics and their leaching behaviour has been widely studied. However, little is known about the potential effect of additives on the adsorption/desorption behaviour of pollutants on microplastics and their subsequent role as vectors for pollutant transport in the environment. In this study, two types of commercial polyvinyl chloride (PVC1 and PVC2) microplastics were aged by UV irradiation and biotic modification via biofilm colonization to investigate the adsorption and desorption behaviour of bisphenol A (BPA). Surface cracks and new functional groups (e.g., O-H) were found on PVC1 after UV irradiation, which increased available adsorption sites and enhanced H‒bonding interaction, resulting in an adsorption capacity increase from 1.28 μg/L to 1.85 μg/L. However, the adsorption and desorption capacity not showed significant changes for PVC2, which might be related to the few characteristic changes after UV aging with the protection of light stabilizers and antioxidants. The adsorption capacity ranged from 1.28 μg/L to 2.06 μg/L for PVC1 and PVC2 microplastics, and increased to 1.62 μg/L-2.95 μg/L after colonization by biofilms. The increased adsorption ability might be related to the N-H functional group, amide groups generated by microorganisms enhancing the affinity for BPA. The opposite effect was observed for desorption. Plasticizers can be metabolized during biofilm formation processes and might play an important role in microorganism colonization. In addition, antioxidants and UV stabilizers might also indirectly influence the colonization of microorganisms' on microplastics by controlling the degree to which PVC microplastics age under UV. The amount of biomass loading on the microplastics would further alter the adsorption/desorption behaviour of contaminants. This study provides important new insights into the evaluation of the fate of plastic particles in natural environments.
Collapse
Affiliation(s)
- Xiaoxin Chen
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Chang-Er Chen
- Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Shengming Cheng
- Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Andrew J Sweetman
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom.
| |
Collapse
|
48
|
Ke Y, Lin L, Zhang G, Hong H, Yan C. Aging behavior and leaching characteristics of microfibers in landfill leachate: Important role of surface mesh structure. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134092. [PMID: 38554515 DOI: 10.1016/j.jhazmat.2024.134092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/01/2024]
Abstract
Mesh-structured films formed by the post-processing of microfibers improves their permeability and dexterity, such as disposable masks. However, the aging behavior and potential risks of mesh-structured microfibers (MS-MFs) in landfill leachate remain poorly understood. Herein, the aging behavior and mechanisms of MS-MFs and ordinary polypropylene-films (PP-films) microplastics, as well as their leaching concerning dissolved organic matter (DOM) in landfill leachate were investigated. Results revealed that MS-MFs underwent more significant physicochemical changes than PP-films during the aging process in landfill leachate, due to their rich porous habitats. An important factor in the photoaging of MS-MFs was related to reactive oxygen species produced by DOM, and this process was promoted by photoelectrons under UV irradiation. Compared with PP-films, MS-MFs released more DOM and nano-plastics fragments into landfill leachate, altering the composition and molecular weight of DOM. Aged MS-MFs-DOM generated new components, and humus-like substances produced by photochemistry showed the largest increase. Correlation analysis revealed that leached DOM was positively correlated with oxygen-containing groups accumulated in aged MS-MFs. Overall, MS-MFs will bring higher environmental risks and become a new long-term source of DOM contaminants in landfill leachate. This study provides new insights into the impact of novel microfibers on landfill leachate carbon dynamics.
Collapse
Affiliation(s)
- Yue Ke
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Lujian Lin
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Guanglong Zhang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Hualong Hong
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China.
| | - Chongling Yan
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
49
|
Eisen A, Pioro EP, Goutman SA, Kiernan MC. Nanoplastics and Neurodegeneration in ALS. Brain Sci 2024; 14:471. [PMID: 38790450 PMCID: PMC11119293 DOI: 10.3390/brainsci14050471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Plastic production, which exceeds one million tons per year, is of global concern. The constituent low-density polymers enable spread over large distances and micro/nano particles (MNPLs) induce organ toxicity via digestion, inhalation, and skin contact. Particles have been documented in all human tissues including breast milk. MNPLs, especially weathered particles, can breach the blood-brain barrier, inducing neurotoxicity. This has been documented in non-human species, and in human-induced pluripotent stem cell lines. Within the brain, MNPLs initiate an inflammatory response with pro-inflammatory cytokine production, oxidative stress with generation of reactive oxygen species, and mitochondrial dysfunction. Glutamate and GABA neurotransmitter dysfunction also ensues with alteration of excitatory/inhibitory balance in favor of reduced inhibition and resultant neuro-excitation. Inflammation and cortical hyperexcitability are key abnormalities involved in the pathogenic cascade of amyotrophic lateral sclerosis (ALS) and are intricately related to the mislocalization and aggregation of TDP-43, a hallmark of ALS. Water and many foods contain MNPLs and in humans, ingestion is the main form of exposure. Digestion of plastics within the gut can alter their properties, rendering them more toxic, and they cause gut microbiome dysbiosis and a dysfunctional gut-brain axis. This is recognized as a trigger and/or aggravating factor for ALS. ALS is associated with a long (years or decades) preclinical period and neonates and infants are exposed to MNPLs through breast milk, milk substitutes, and toys. This endangers a time of intense neurogenesis and establishment of neuronal circuitry, setting the stage for development of neurodegeneration in later life. MNPL neurotoxicity should be considered as a yet unrecognized risk factor for ALS and related diseases.
Collapse
Affiliation(s)
- Andrew Eisen
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC V6S 1Z3, Canada;
| | - Erik P. Pioro
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC V6S 1Z3, Canada;
| | - Stephen A. Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA;
| | | |
Collapse
|
50
|
Yu Z, Qiu D, Zhou T, Zeng L, Yan C. Biofilm enhances the interactive effects of microplastics and oxytetracycline on zebrafish intestine. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106905. [PMID: 38569307 DOI: 10.1016/j.aquatox.2024.106905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/18/2024] [Accepted: 03/24/2024] [Indexed: 04/05/2024]
Abstract
The enhanced adsorption of pollutants on biofilm-developed microplastics has been proved in many studies, but the ecotoxicological effects of biofilm-developed microplastics on organisms are still unclear. In this study, adult zebrafish were exposed to original microplastics, biofilm-developed microplastics, original microplastics absorbed with oxytetracycline (OTC), and biofilm-developed microplastics absorbed with OTC for 30 days. The intestinal histological damage, intestinal biomarker response, gut microbiome and antibiotic resistance genes (ARGs) profile of zebrafish were measured to explore the roles of biofilm in the effects of microplastics. The results showed that biofilm-developed microplastics significantly increased the number of goblet cells in intestinal epithelium compared with the control group. The biofilm-developed microplastics also induced the oxidative response in the zebrafish intestines, and biofilm changed the response mode in the combined treatment with OTC. Additionally, the biofilm-developed microplastics caused intestinal microbiome dysbiosis, and induced the abundance of some pathogenic genera increasing by several times compared with the control group and the original microplastics treatments, regardless of OTC adsorption. Furthermore, the abundance of ARGs in biofilm-developed microplastics increased significantly compared with the control and the original microplastic treatments. This study emphasized the significant influence and unique role of biofilm in microplastic studies.
Collapse
Affiliation(s)
- Ziyue Yu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Donghua Qiu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Zhou
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liqing Zeng
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361021, China
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|