1
|
Sunouchi T, Goto A, Tue NM, Tajima Y, Yamada TK, Iwata H, Tanabe S, Kunisue T. Comprehensive Screening of Anthropogenic and Natural Organohalogen Compounds in 11 Species of Toothed Whales Stranded along Japanese Coasts: Species-Specific Accumulation Profiles and Potential Indicators for Understanding Their Habitats. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3792-3804. [PMID: 39951723 DOI: 10.1021/acs.est.4c14352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
Comprehensive screening studies have revealed the accumulation of a large number of routinely unmonitored organohalogen compounds (OHCs) in cetaceans. However, these previous studies targeted only a limited number of whale species. In this study, we conducted screening and quantitative analyses to comprehensively identify OHCs accumulated in 48 adult male blubber samples of 11 whale species and to elucidate species-specific accumulation profiles. A total of 313 OHCs were detected in the blubber samples. Quantification and semiquantification results for anthropogenic OHCs and halogenated natural products (HNPs) showed compound- and species-specific accumulation patterns. Polychlorinated terphenyls and Cl5-7-substituted homologues of dichlorodiphenyldichloroethylenes accumulated significantly in coastal cetaceans, whereas hexachlorocyclohexanes and hexachlorobenzene were more prominent in cold-water species, suggesting the influence of the mobility of these compounds from coastal sources. In addition, cluster analysis revealed specific HNP accumulation profiles for different habitats. Therefore, the HNP accumulation profile in each species can be a useful indicator of their habitat and migration patterns as the profile may reflect interspecies differences in exposure associated with their habitat-specific preys.
Collapse
Affiliation(s)
- Tomoya Sunouchi
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Akitoshi Goto
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Nguyen Minh Tue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Yuko Tajima
- Department of Zoology, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba 305-0005, Japan
| | - Tadasu K Yamada
- Department of Zoology, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba 305-0005, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| |
Collapse
|
2
|
Xu Y, Su Y, Cai S, Yao Y, Chen X. Environmental and occupational exposure to organochlorine pesticides associated with Parkinson's disease risk: A systematic review and meta-analysis based on epidemiological evidence. Public Health 2024; 237:374-386. [PMID: 39520734 DOI: 10.1016/j.puhe.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES The purpose of this study was to analyze the association between environmental and occupational organochlorine pesticides (OCPs) exposure and Parkinson's disease (PD) risk. STUDY DESIGN Systematic review and meta-analysis. METHODS A comprehensive search of articles before March 18, 2024, was conducted through PubMed, Cochrane, Embase, Medlin and Web of Science databases, and the relevant data were expressed as odds ratios (OR) and 95 % confidence intervals (CI). Newcastle-Ottawa Scale (NOS) was used to evaluate literature quality. STATA (Version 11.0) was used for analysis. RESULTS This meta-analysis included 17 case-control studies. The results showed that OCPs exposure increased PD risk, including seven blood sample assessment exposure (BOCPs) studies (OR = 1.54, 95 % CI = 1.32-1.79) and 10 indirect assessment exposure (IOCPs) studies (OR = 1.19, 95 % CI = 1.04-1.35). Location subgroup analysis showed that OCPs was positively associated with PD risk in Asia, while there was no statistical significance in North America and Europe. The IOCPs functional subclasses subgroup results suggested that organochlorine insecticides were significantly associated with PD risk (OR = 1.18, 95%CI = 1.03-1.37). Study time may be a factor of high heterogeneity in BOCPs. In addition, BOCPs (OR = 1.49, 95%CI = 1.28-1.74) and IOCPs (OR = 1.10, 95%CI = 0.95-1.26) showed different results with PD risk. CONCLUSIONS Study suggests that OCPs exposure may be a risk factor for PD, but there may be location and OCPs type differences.
Collapse
Affiliation(s)
- Yang Xu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230000, China
| | - Yan Su
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230000, China
| | - Sheng Cai
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230000, China
| | - Yuanhang Yao
- Materials Science and Engineering, School of Physics and Materials Engineering, Hefei Normal University, Hefei, Anhui, 238076, China
| | - Xianwen Chen
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230000, China.
| |
Collapse
|
3
|
McGill L, Sleugh T, Petrik C, Schiff K, McLaughlin K, Aluwihare L, Semmens B. The persistent DDT footprint of ocean disposal, and ecological controls on bioaccumulation in fishes. Proc Natl Acad Sci U S A 2024; 121:e2401500121. [PMID: 39467121 PMCID: PMC11551384 DOI: 10.1073/pnas.2401500121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/12/2024] [Indexed: 10/30/2024] Open
Abstract
Globally, ocean dumping of chemical waste is a common method of disposal and relies on the assumption that dilution, diffusion, and dispersion at ocean scales will mitigate human exposure and ecosystem impacts. In southern California, extensive dumping of agrochemical waste, particularly chlorinated hydrocarbon contaminants such as DDT, via sewage outfalls and permitted offshore barging occurred for most of the last century. This study compiled a database of existing sediment and fish DDT measurements to examine how this unique legacy of regional ocean disposal translates into the contemporary contamination of the coastal ocean. We used spatiotemporal modeling to derive continuous estimates of sediment DDT contamination and show that the spatial signature of disposal (i.e., high loadings near historic dumping sites) is highly conserved in sediments. Moreover, we demonstrate that the proximity of fish to areas of high sediment loadings explained over half of the variation in fish DDT concentrations. The relationship between sediment and fish contamination was mediated by ecological predictors (e.g., species, trophic ecology, habitat use), and the relative influence of each predictor was context-dependent, with habitat exhibiting greater importance in heavily contaminated areas. Thus, despite more than half a century since the cessation of industrial dumping in the region, local ecosystem contamination continues to mirror the spatial legacy of dumping, suggesting that sediment can serve as a robust predictor of fish contamination, and general ecological characteristics offer a predictive framework for unmeasured species or locations.
Collapse
Affiliation(s)
- Lillian McGill
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA92093
| | - Toni Sleugh
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA92093
| | - Colleen Petrik
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA92093
| | - Kenneth Schiff
- Southern California Coastal Water Research Project, Costa Mesa, CA92626
| | - Karen McLaughlin
- Southern California Coastal Water Research Project, Costa Mesa, CA92626
| | - Lihini Aluwihare
- Geosciences Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA92093
| | - Brice Semmens
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA92093
| |
Collapse
|
4
|
Cossaboon JM, Teh SJ, Sant KE. Reproductive toxicity of DDT in the Japanese medaka fish model: Revisiting the impacts of DDT+ on female reproductive health. CHEMOSPHERE 2024; 357:141967. [PMID: 38615950 PMCID: PMC11160350 DOI: 10.1016/j.chemosphere.2024.141967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
The organochlorine pesticide dichlorodiphenyltrichloroethane (DDT) is an endocrine-disrupting compound (EDC) that has been banned by most countries for decades. However, it continues to be detected in nearly all humans and wildlife due to its biological and environmental persistence. The ovarian dysgenesis syndrome hypothesis speculates that exposure to EDCs during sensitive developmental windows such as early gonadal differentiation lead to reproductive disorders later in life. Yet, mechanisms by which DDT affects developing gonads remain unclear due to the inherent challenge of getting developmental exposure data from adults presenting with reproductive disease. The Japanese medaka (Oryzias latipes) is a valuable fish model for sex-specific toxicological studies due to its chromosomal sex determination, external embryonic development, short generation time, and extensively mapped genome. It is well documented that medaka exposed to DDT and its metabolites and byproducts (herein referred to as DDT+) at different developmental time points experience permanent alterations in gonadal morphology, reproductive success, and molecular and hormonal signaling. However, the overwhelming majority of studies focus primarily on functional and morphological outcomes in males and females and have rarely investigated long-term transcriptional or molecular effects. This review summarizes previous experimental findings and the state of our knowledge concerning toxic effects DDT + on reproductive development, fertility, and health in the valuable medaka model. It also identifies gaps in knowledge, emphasizing a need for more focus on molecular mechanisms of ovarian endocrine disruption using enhanced molecular tools that have become increasingly available over the past few decades. Furthermore, DDT forms a myriad of over 45 metabolites and transformation products in biota and the environment, very few of which have been evaluated for environmental abundance or health effects. This reinforces the demand for high throughput and economical in vivo models for predictive toxicology screening, and the Japanese medaka is uniquely positioned to meet this need.
Collapse
Affiliation(s)
| | - Swee J Teh
- School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Karilyn E Sant
- School of Public Health, San Diego State University, San Diego, CA, 92182, USA.
| |
Collapse
|
5
|
Schmidt JT, Wu MSC, Kittner HE, Arey JS, Hammond DE, Group EA, Valentine DL. Disentangling the History of Deep Ocean Disposal for DDT and Other Industrial Waste Off Southern California. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4346-4356. [PMID: 38380834 PMCID: PMC10919092 DOI: 10.1021/acs.est.3c08575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Ocean disposal of industrial waste from technical DDT [mainly 1,1'-(2,2,2-trichloroethane-1,1-diyl)bis(4-chlorobenzene), or 4,4'-DDT] manufacture occurred historically in the Southern California Bight. However, the paucity of historical records highlights uncertainties as to the mode, location, and timing of disposal or ongoing ecological effects of these wastes. This study combines sampling, chemical analysis, and numerical modeling of deep San Pedro Basin sediments revealing substantial DDT contamination that extends at least 25 km from the mainland. These findings narrate bulk DDT waste disposal to the offshore that peaked in the 1950s, prior to the onset of formal regulations; was agnostic to later-designated disposal sites; and has experienced sluggish transformation. Our findings further indicate an attenuating secondary source for the DDT daughter product, 1-chloro-4-[2,2-dichloro-1-(4-chlorophenyl)ethenyl]benzene (4,4'-DDE), which still deposits into deep San Pedro Basin sediments. While demonstrating the severity of DDT contamination to the region, these findings further define the burial potential of DDT wastes and inform the past, present, and future contamination potential that is needed to understand and predict ecological consequences. This work also points firmly to bulk, not containerized, disposal of DDT waste and to potential alternative contents of collocated waste.
Collapse
Affiliation(s)
- Jacob T Schmidt
- Interdepartmental Graduate Program in Marine Science, University of California, Santa Barbara, California 93106, United States
| | - Mong Sin Christine Wu
- Department of Earth Science, University of California, Santa Barbara, California 93106, United States
| | - Hailie E Kittner
- Department of Earth Science, University of California, Santa Barbara, California 93106, United States
| | - J Samuel Arey
- Oleolytics, LLC, State College, Pennsylvania 16801, United States
| | - Douglas E Hammond
- Department of Earth Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Earth A Group
- Department of Earth Science, University of California, Santa Barbara, California 93106, United States
| | - David L Valentine
- Department of Earth Science, University of California, Santa Barbara, California 93106, United States
- Marine Science Institute, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
6
|
Danil K, Colegrove KM, Delaney MA, Mena A, Stedman N, Wurster E. Systemic Erysipelas Outbreak among Free-Ranging Bottlenose Dolphins, San Diego, California, USA, 2022. Emerg Infect Dis 2023; 29:2561-2563. [PMID: 37987589 PMCID: PMC10683814 DOI: 10.3201/eid2912.230811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023] Open
Abstract
We diagnosed fatal Erysipelothrix rhusiopathiae sepsis in 3 stranded bottlenose dolphins (Tursiops truncatus) during summer 2022, in San Diego, California, USA. The previously undetected disease in this relatively small, regional population of dolphins most likely indicates an environmental or biological change in the coastal ocean or organisms.
Collapse
|
7
|
Merrifield ST, Celona S, McCarthy RA, Pietruszka A, Batchelor H, Hess R, Nager A, Young R, Sadorf K, Levin LA, Valentine DL, Conrad JE, Terrill EJ. Wide-Area Debris Field and Seabed Characterization of a Deep Ocean Dump Site Surveyed by Autonomous Underwater Vehicles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18162-18171. [PMID: 37319331 PMCID: PMC10666539 DOI: 10.1021/acs.est.3c01256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
Disposal of industrial and hazardous waste in the ocean was a pervasive global practice in the 20th century. Uncertainty in the quantity, location, and contents of dumped materials underscores ongoing risks to marine ecosystems and human health. This study presents an analysis of a wide-area side-scan sonar survey conducted with autonomous underwater vehicles (AUVs) at a dump site in the San Pedro Basin, California. Previous camera surveys located 60 barrels and other debris. Sediment analysis in the region showed varying concentrations of the insecticidal chemical dichlorodiphenyltrichloroethane (DDT), of which an estimated 350-700 t were discarded in the San Pedro Basin between 1947 and 1961. A lack of primary historical documents specifying DDT acid waste disposal methods has contributed to the ambiguity surrounding whether dumping occurred via bulk discharge or containerized units. Barrels and debris observed during previous surveys were used for ground truth classification algorithms based on size and acoustic intensity characteristics. Image and signal processing techniques identified over 74,000 debris targets within the survey region. Statistical, spectral, and machine learning methods characterize seabed variability and classify bottom-type. These analytical techniques combined with AUV capabilities provide a framework for efficient mapping and characterization of uncharted deep-water disposal sites.
Collapse
Affiliation(s)
| | - Sean Celona
- Scripps
Institution of Oceanography, La
Jolla, California 92037, United States
| | - Ryan A. McCarthy
- Scripps
Institution of Oceanography, La
Jolla, California 92037, United States
| | - Andrew Pietruszka
- Scripps
Institution of Oceanography, La
Jolla, California 92037, United States
| | - Heidi Batchelor
- Scripps
Institution of Oceanography, La
Jolla, California 92037, United States
| | - Robert Hess
- Scripps
Institution of Oceanography, La
Jolla, California 92037, United States
| | - Andrew Nager
- Scripps
Institution of Oceanography, La
Jolla, California 92037, United States
| | - Raymond Young
- Scripps
Institution of Oceanography, La
Jolla, California 92037, United States
| | - Kurt Sadorf
- Scripps
Institution of Oceanography, La
Jolla, California 92037, United States
| | - Lisa A. Levin
- Scripps
Institution of Oceanography, La
Jolla, California 92037, United States
| | - David L. Valentine
- University
of California, Santa Barbara, Santa
Barbara, California 93106, United States
| | - James E. Conrad
- U.S.
Geological Survey, Pacific Coastal and Marine
Science Center, Santa Cruz, California 95060, United States
| | - Eric J. Terrill
- Scripps
Institution of Oceanography, La
Jolla, California 92037, United States
| |
Collapse
|
8
|
Singh RR, Aminot Y, Héas-Moisan K, Preud'homme H, Munschy C. Cracked and shucked: GC-APCI-IMS-HRMS facilitates identification of unknown halogenated organic chemicals in French marine bivalves. ENVIRONMENT INTERNATIONAL 2023; 178:108094. [PMID: 37478678 DOI: 10.1016/j.envint.2023.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
High resolution mass spectrometry (HRMS)-based non-target analysis coupled with ion mobility spectrometry (IMS) is gaining momentum due to its ability to provide complementary information which can be useful in the identification of unknown organic chemicals in support of efforts in unraveling the complexity of the chemical exposome. The chemical exposome in the marine environment, though not as well studied as its freshwater counterparts, is not foreign to chemical diversity specially when it comes to potentially bioaccumulative and bioactive polyhalogenated organic contaminants and natural products. In this work we present in detail how we utilized IMS-HRMS coupled with gas chromatographic separation and atmospheric pressure chemical ionization (APCI) to annotate polyhalogenated organic chemicals in French bivalves collected from 25 sites along the French coasts. We describe how we used open cheminformatic tools to exploit isotopologue patterns, isotope ratios, Kendrick mass defect (Cl scale), and collisional cross section (CCS), in order to annotate 157 halogenated features (level 1: 54, level 2: 47, level 3: 50, and level 4: 6). Grouping the features into 11 compound classes was facilitated by a KMD vs CCS plot which showed co-clustering of potentially structurally-related compounds. The features were semi-quantified to gain insight into the distribution of these halogenated features along the French coast, ultimately allowing us to differentiate between sites that are more anthropologically impacted versus sites that are potentially biodiverse.
Collapse
Affiliation(s)
- Randolph R Singh
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000, Nantes, France.
| | - Yann Aminot
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000, Nantes, France
| | - Karine Héas-Moisan
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000, Nantes, France
| | - Hugues Preud'homme
- IPREM-UMR5254, E2S UPPA, CNRS, Technopôle Helioparc, 2 Avenue P. Angot, 64053 Pau Cedex 9, France
| | - Catherine Munschy
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000, Nantes, France
| |
Collapse
|
9
|
Guo Y, Gui D, Liu W, Xie Q, Wu Y. Hormonal biomarkers provide insights into the reproductive biology and pollutants-associated health hazards of endangered dolphins. CHEMOSPHERE 2023; 337:139328. [PMID: 37379981 DOI: 10.1016/j.chemosphere.2023.139328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023]
Abstract
Contaminants are known to contribute to the reproductive health hazards of wildlife, but pollutants-associated detrimental impacts on the endangered Indo-Pacific humpback dolphins (Sousa chinensis, IPHD) are largely unknown due to a lack of reproductive parameters. Here we validated and applied blubber progesterone and testosterone as reproductive biomarkers to assess reproductive parameters of IPHD (n = 72). The gender-specific progesterone concentrations and progesterone/testosterone (P/T) supported progesterone and testosterone as valid biomarkers in identifying the genders of IPHD. Significant month-to-month variations of two hormones indicated a seasonal reproduction, in accordance with the observation of photo-identification approach, further supporting testosterone and progesterone as ideal reproductive biomarkers. Progesterone and testosterone concentrations showed significant differences between Lingding Bay and West-four region, possibly due to chronically geographic-specific pollutants differences. The significant relationships between sex hormones and multiple contaminants suggested that contaminants contribute to the disruption of testosterone and progesterone homeostasis. The best explanatory models between pollutants and hormones suggested that dichlorodiphenyltrichloroethanes (DDTs), lead (Pb) and selenium (Se) were the major risk factors jeopardizing the reproductive health of IPHD. This is the first study on the relationship between pollutant exposure and reproductive hormones in IPHD and represents a substantial advance in understanding the detrimental reproductive impacts of pollutants on endangered cetaceans.
Collapse
Affiliation(s)
- Yongwei Guo
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China
| | - Duan Gui
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China.
| | - Wen Liu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China
| | - Qiang Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China
| | - Yuping Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China.
| |
Collapse
|
10
|
Schwartz AV, Sant KE, George UZ. Development of a Dynamic Network Model to Identify Temporal Patterns of Structural Malformations in Zebrafish Embryos Exposed to a Model Toxicant, Tris(4-chlorophenyl)methanol. J Xenobiot 2023; 13:284-297. [PMID: 37367497 DOI: 10.3390/jox13020021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
Embryogenesis is a well-coordinated process relying on precise cues and environmental signals that direct spatiotemporal embryonic patterning. Quite often, when one error in this process occurs, others tend to co-occur. We posit that investigating the co-occurrence of these abnormalities over time would yield additional information about the mode of toxicity for chemicals. Here, we use the environmental contaminant tris(4-chlorophenyl)methanol (TCPMOH) as a model toxicant to assess the relationship between exposures and co-occurrence of developmental abnormalities in zebrafish embryos. We propose a dynamic network modeling approach to study the co-occurrence of abnormalities, including pericardial edema, yolk sac edema, cranial malformation, spinal deformity, delayed/failed swim bladder inflation, and mortality induced by TCPMOH exposure. TCPMOH-exposed samples revealed increased abnormality co-occurrence when compared to controls. The abnormalities were represented as nodes in the dynamic network model. Abnormalities with high co-occurrence over time were identified using network centrality scores. We found that the temporal patterns of abnormality co-occurrence varied between exposure groups. In particular, the high TCPMOH exposure group experienced abnormality co-occurrence earlier than the low exposure group. The network model also revealed that pericardial and yolk sac edema are the most common critical nodes among all TCPMOH exposure levels, preceding further abnormalities. Overall, this study introduces a dynamic network model as a tool for assessing developmental toxicology, integrating structural and temporal features with a concentration response.
Collapse
Affiliation(s)
- Ashley V Schwartz
- Computational Science Research Center, San Diego State University, San Diego, CA 92182, USA
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182, USA
| | - Karilyn E Sant
- School of Public Health, Division of Environmental Health, San Diego State University, San Diego, CA 92182, USA
| | - Uduak Z George
- Computational Science Research Center, San Diego State University, San Diego, CA 92182, USA
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
11
|
Huang D, Gao L, Zhu S, Qiao L, Liu Y, Ai Q, Xu C, Wang W, Lu M, Zheng M. Target and non-target analysis of organochlorine pesticides and their transformation products in an agrochemical-contaminated area. CHEMOSPHERE 2023; 324:138314. [PMID: 36889467 DOI: 10.1016/j.chemosphere.2023.138314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Organochlorine pesticides show biological toxicity and their degradation typically takes many years. Previous studies of agrochemical-contaminated areas have mainly focused on limited target compounds, and emerging pollutants in soil have been overlooked. In this study, we collected soil samples from an abandoned agrochemical-contaminated area. Target analysis and non-target suspect screening by gas chromatography coupled with time-of-flight mass spectrometry were combined for qualitative and quantitative analysis of organochlorine pollutants. Target analysis showed that dichlorodiphenyltrichloroethane (DDT), dichlorodiphenyldichloroethylene (DDE), and dichlorodiphenyldichloroethane (DDD) were the main pollutants. With concentrations between 3.96 × 106 and 1.38 × 107 ng/g, these compounds posed significant health risks at the contaminated site. Non-target suspect screening identified 126 organochlorine compounds, most of which were chlorinated hydrocarbons and 90% of the compounds contained a benzene ring structure. The possible transformation pathways of DDT were inferred from proven pathways and the compounds identified by non-target suspect screening that had similar structures to DDT. This study will be useful for studies of the degradation mechanism of DDT. Semi-quantitative and hierarchical cluster analysis of compounds in soil showed that the distribution of contaminants in soil was influenced by the types of pollution sources and distance to them. Twenty-two contaminants were found in the soil at relatively high concentrations. The toxicities of 17 of these compounds are currently not known. These results improve our understanding of the environmental behavior of organochlorine contaminants in soil and are useful for further risk assessments of agrochemical-contaminated areas.
Collapse
Affiliation(s)
- Di Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lirong Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
| | - Shuai Zhu
- National Research Center for Geoanalysis, Beijing, 100037, China
| | - Lin Qiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qiaofeng Ai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chi Xu
- State Environmental Protection Key Laboratory of Quality Control in Environmental Monitoring, China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Wenwen Wang
- Agilent Technologies, Inc., Beijing, 100102, China
| | - Meiling Lu
- Agilent Technologies, Inc., Beijing, 100102, China
| | | |
Collapse
|
12
|
Montone RC, Alonso MB, Santos MCO, Méndez-Fernandez P, Taniguchi S, Barbosa APM, Gonçalves RM, Padilha JDA, Bertozzi C, da Silva J, Marigo J, Pereira ADS, Lourenço RA. Temporal trends of persistent organic pollutant contamination in Franciscana dolphins from the Southwestern Atlantic. ENVIRONMENTAL RESEARCH 2023; 216:114473. [PMID: 36195158 DOI: 10.1016/j.envres.2022.114473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/05/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Persistent organic pollutants (POPs) were analyzed in 136 blubber samples of Franciscana dolphins from Brazil (Pontoporia blainvillei), which is the most threatened dolphin in the Southwestern Atlantic. The dolphins were caught by the fishery fleet and collected from 2000 to 2018 in three regions of São Paulo state: northern São Paulo (SPN), central São Paulo (SPC), and southern São Paulo (SPS). The POPs analyzed in this study were polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDTs), Mirex, hexachlorobenzene (HCB), chlordane compounds (CHLs), hexachlorocyclohexane isomers (HCHs), and polybrominated diphenyl ethers (PBDEs). The concentrations ranged from 36 to 7200 ng g-1 lipid weight (lw) and 113-42200 ng g-1 lw for predominant compounds DDTs and PCBs, respectively. Similar profiles of PCB congeners were observed with a predominance of hexachlorinated compounds, representing approximately 50% of the total PCB amount; the highest PCB concentrations were observed from Baixada Santista (SPC) proximate to a highly urbanized and industrial coastal area. Significant differences were observed between the sexes and maturity of dolphins, mainly for PCBs, DDTs, and Mirex. In general, POPs other than HCB in Franciscana dolphins showed downward temporal trends, matching the regulatory periods for restricting and/or banning these compounds. Although POP concentrations are declining, PCB levels remain high in small dolphins, suggesting adverse health effects on Franciscanas. As organic contaminants are one of the numerous threats Franciscanas have been vulnerable to along the Brazilian coast, we recommend monitoring POPs levels every five years to check for declining (or stabilizing) trends.
Collapse
Affiliation(s)
- Rosalinda C Montone
- Instituto Oceanográfico - Universidade de São Paulo, 05508-120 Praça do Oceanográfico, 191, São Paulo, SP, Brazil.
| | - Mariana B Alonso
- Instituto Oceanográfico - Universidade de São Paulo, 05508-120 Praça do Oceanográfico, 191, São Paulo, SP, Brazil; Instituto de Biofísica Carlos Chagas Filho- Universidade Federal do Rio de Janeiro, 21941-902, Av. Carlos Chagas Filho, 373, Rio de Janeiro, RJ, Brazil
| | - Marcos César O Santos
- Instituto Oceanográfico - Universidade de São Paulo, 05508-120 Praça do Oceanográfico, 191, São Paulo, SP, Brazil
| | - Paula Méndez-Fernandez
- Observatoire Pelagis, UMS 3462- La Rochelle Université - CNRS, 5 allées de l'océan, 17000, La Rochelle, France
| | - Satie Taniguchi
- Instituto Oceanográfico - Universidade de São Paulo, 05508-120 Praça do Oceanográfico, 191, São Paulo, SP, Brazil
| | - Ana Paula M Barbosa
- Instituto Oceanográfico - Universidade de São Paulo, 05508-120 Praça do Oceanográfico, 191, São Paulo, SP, Brazil
| | - Renato M Gonçalves
- Instituto Oceanográfico - Universidade de São Paulo, 05508-120 Praça do Oceanográfico, 191, São Paulo, SP, Brazil
| | - Janeide de Assis Padilha
- Instituto Oceanográfico - Universidade de São Paulo, 05508-120 Praça do Oceanográfico, 191, São Paulo, SP, Brazil; Centro de Biologia Molecular e Ambiental (CBMA), Departamento de Biologia, Universidade do Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Carolina Bertozzi
- Instituto de Biociências - Universidade Estadual Paulista - UNESP, câmpus do Litoral Paulista, São Vicente, SP, Brazil
| | - Josilene da Silva
- Instituto Oceanográfico - Universidade de São Paulo, 05508-120 Praça do Oceanográfico, 191, São Paulo, SP, Brazil
| | - Juliana Marigo
- Faculdade de Medicina Veterinária e Zootecnia - Universidade de São Paulo, 05508-270 São Paulo, SP, Brazil
| | - Antonio Derley S Pereira
- Instituto Oceanográfico - Universidade de São Paulo, 05508-120 Praça do Oceanográfico, 191, São Paulo, SP, Brazil
| | - Rafael A Lourenço
- Instituto Oceanográfico - Universidade de São Paulo, 05508-120 Praça do Oceanográfico, 191, São Paulo, SP, Brazil
| |
Collapse
|
13
|
Van Bressem MF, Van Waerebeek K, Duignan PJ. Tattoo Skin Disease in Cetacea: A Review, with New Cases for the Northeast Pacific. Animals (Basel) 2022; 12:ani12243581. [PMID: 36552501 PMCID: PMC9774126 DOI: 10.3390/ani12243581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Tattoo skin disease (TSD) is a poxviral dermatopathy diagnosed in cetaceans. We review the literature on TSD aetiology, clinical characteristics, pathology and epidemiology and evaluate immune responses against the virus. In addition, necropsy reports for fifty-five harbour porpoises (Phocoena phocoena), twenty-two Delphinidae and four Kogiidae stranded in northern California in 2018-2021 were checked for diagnostic tattoo lesions. TSD occurs in the Mediterranean, North and Barents Seas, as well as in the Atlantic, eastern Pacific and Indian Oceans in at least 21 cetacean species, with varying prevalence. Two cetacean poxvirus (CePV) clades are recognised: CePV-1 in odontocetes and CePV-2 in mysticetes. CePV-1 isolates were recovered from six Delphinidae and one Phocoenidae in the Americas, Europe and Hong Kong. Strains from Delphinidae are closely related. Among Phocoenidae, poxviruses were sampled only in harbour porpoises around the British Isles. CePV-2 isolates were obtained from southern right whales (Eubalaena australis) and a bowhead whale (Balaena mysticetus). In healthy animals, an immune response develops over time, with young calves protected by maternal immunity. Salinity and sea surface temperature do not seem to influence TSD prevalence in free-ranging cetaceans. High concentrations of immunotoxic halogenated organochlorines may cause a more severe clinical disease. Substitution and loss of genes involved in anti-viral immunity may favour CePV entry, replication and persistence in the epidermis. Off California, Delphinidae were less often (26.3%) affected by TSD than harbour porpoises (43.6%). Male porpoises were significantly more prone (58.1%) to show clinical disease than females (25%). Among males, TSD affected a high proportion of juveniles and subadults. TSD was not detected in the Kogiidae.
Collapse
Affiliation(s)
- Marie-Françoise Van Bressem
- Cetacean Conservation Medicine Group, Peruvian Centre for Cetacean Research, Museo de Delfines, Lima 20, Peru
- Correspondence:
| | - Koen Van Waerebeek
- Cetacean Conservation Medicine Group, Peruvian Centre for Cetacean Research, Museo de Delfines, Lima 20, Peru
- ProDelphinus, Miraflores, Lima 18, Peru
| | | |
Collapse
|
14
|
Rebryk A, Haglund P. Comprehensive non-target screening of biomagnifying organic contaminants in the Baltic Sea food web. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158280. [PMID: 36029819 DOI: 10.1016/j.scitotenv.2022.158280] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/21/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
High-resolution mass spectrometry (HRMS) based non-target screening (NTS) is a powerful approach for the simultaneous determination of multiple environmental contaminant classes in complex biota samples. In this study, trophic biomagnification factor (TMF) directed NTS was performed to find and (tentatively) identify known, emerging, and new chemical contaminants that are persistent and biomagnify in Baltic Sea biota. The investigated food web included seven species: one filter feeder (blue mussel, Mytilus edulis), two fish (eelpout, Zoarces viviparous; herring, Clupea harengus), two marine mammals (harbor porpoise, Phocoena phocoena; grey seal, Halichoerus grypus) and two birds (guillemot, Uria aalge; white-tailed sea eagle, Haliaeetus albicilla). The NTS procedure included extraction with organic solvent mixtures, two-step high-resolution gel permeation chromatography clean-up, Florisil® fractionation, gas chromatography (GC) HRMS analysis in electron ionization (EI) and electron capture negative ion chemical ionization (ECNI) modes, and NTS data processing. The latter was performed differently for the EI and ECNI data: the EI data were treated using a flexible and highly automated TMF-directed NTS workflow, whereas the ECNI data were treated with a simpler and less automated workflow that specifically screened for brominated compounds. The two workflows collectively revealed biomagnification (statistically significant TMF values) of >250 tentatively identified compounds, including legacy persistent organic pollutants (POPs), such as PCBs and PCB-related compounds, DDT and its metabolites, and organochlorine pesticides (OCPs), contaminants of emerging concern (CECs), and halogenated natural products (HNPs). Among the tentatively identified CECs, nine have not previously been reported in environmental biota samples. These included four polymer additives (used as antioxidants, rubber additives or plasticizers) and two cosmetic product additives (ethyl myristate and isopropyl palmitate). The CECs should be prioritized for future structure verification and quantification using reference standards.
Collapse
Affiliation(s)
- Andriy Rebryk
- Department of Chemistry, Chemical Biological Centre (KBC), Umeå University, Linnaeus väg 6, 901 87 Umeå, Sweden.
| | - Peter Haglund
- Department of Chemistry, Chemical Biological Centre (KBC), Umeå University, Linnaeus väg 6, 901 87 Umeå, Sweden
| |
Collapse
|
15
|
Stack ME, Cossaboon JM, Tubbs CW, Vilchis LI, Felton RG, Johnson JL, Danil K, Heckel G, Hoh E, Dodder NG. Assessing Marine Endocrine-Disrupting Chemicals in the Critically Endangered California Condor: Implications for Reintroduction to Coastal Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7800-7809. [PMID: 35579339 DOI: 10.1021/acs.est.1c07302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Coastal reintroduction sites for California condors (Gymnogyps californianus) can lead to elevated halogenated organic compound (HOC) exposure and potential health impacts due to the consumption of scavenged marine mammals. Using nontargeted analysis based on comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC/TOF-MS), we compared HOC profiles of plasma from inland and coastal scavenging California condors from the state of California (CA), and marine mammal blubber from CA and the Gulf of California off Baja California (BC), Mexico. We detected more HOCs in coastal condors (32 ± 5, mean number of HOCs ± SD, n = 7) than in inland condors (8 ± 1, n = 10) and in CA marine mammals (136 ± 87, n = 25) than in BC marine mammals (55 ± 46, n = 8). ∑DDT-related compounds, ∑PCBs, and total tris(chlorophenyl)methane (∑TCPM) were, respectively, ∼7, ∼3.5, and ∼148 times more abundant in CA than in BC marine mammals. The endocrine-disrupting potential of selected polychlorinated biphenyls (PCB) congeners, TCPM, and TCPMOH was determined by in vitro California condor estrogen receptor (ER) activation. The higher levels of HOCs in coastal condors compared to those in inland condors and lower levels of HOC contamination in Baja California marine mammals compared to those from the state of California are factors to consider in condor reintroduction efforts.
Collapse
Affiliation(s)
- Margaret E Stack
- San Diego State University Research Foundation, San Diego, California 92182, United States
| | - Jennifer M Cossaboon
- School of Public Health, San Diego State University, San Diego, California 92182, United States
| | - Christopher W Tubbs
- Conservation Science Wildlife Health, San Diego Zoo Wildlife Alliance, Escondido, California 92027, United States
| | - L Ignacio Vilchis
- Conservation Science Wildlife Health, San Diego Zoo Wildlife Alliance, Escondido, California 92027, United States
| | - Rachel G Felton
- Conservation Science Wildlife Health, San Diego Zoo Wildlife Alliance, Escondido, California 92027, United States
| | - Jade L Johnson
- School of Public Health, San Diego State University, San Diego, California 92182, United States
| | - Kerri Danil
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanographic and Atmospheric Administration, La Jolla, California 92037, United States
| | - Gisela Heckel
- Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, 22860 Ensenada, Baja California, Mexico
| | - Eunha Hoh
- School of Public Health, San Diego State University, San Diego, California 92182, United States
| | - Nathan G Dodder
- San Diego State University Research Foundation, San Diego, California 92182, United States
- School of Public Health, San Diego State University, San Diego, California 92182, United States
| |
Collapse
|
16
|
Sun J, Xu C, Peng H, Wan Y, Luo K, Barrett H, Hu J. Behaviors and trophodynamics of o,p'-dichlorodiphenyltrichloroethane (o,p'-DDT) in the aquatic food web: Comparison with p,p'-DDT. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153447. [PMID: 35092765 DOI: 10.1016/j.scitotenv.2022.153447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/16/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
The broad-spectrum insecticide p,p'-dichlorodiphenyltrichloroethane (p,p'-DDT) has been banned in most countries since the 1970s on account of its environmental persistence as well as the high biomagnification of its major metabolite 1,1-dichloro-2,2-bis(4-chorophenyl)ethylene (p,p'-DDE). However, the information on the bioaccumulation and behavior of p,p'-DDTs in aquatic organisms is lacking. In this study, all 6 DDT isomers were detected in biota from the food web of the Liaodong Bay, China, and the total concentrations of DDT isomers in Chinese anchovy (Thrissa kammalensis) and Japanese Spanish mackerel (Scomberomrus niphonius) were 223 ± 42 ng/g ww and 242 ± 70 ng/g ww, respectively. In biota, o,p'-DDD dominated among the o,p'-isomers (80.5 ± 17.3%), while p,p'-DDE dominated among the p,p'-isomers (61.8 ± 15.2%). Contrastingly, sediment from the Liaodong Bay contained similar proportions of o,p'-DDT and p,p'-DDTs, suggesting an isomer-specific metabolism of the compounds in biota. A well-controlled laboratory exposure experiment with Japanese medaka (Oryzias latipes) demonstrated that o,p'-DDT was more difficult to metabolize to o,p'-DDE compared with that of p,p'-DDT. Significantly positive regressions were found between trophic levels and lipid equivalent concentrations for both o,p'-DDT and o,p'-DDD, and the trophic magnification factors (TMFs) were estimated as 12.3 and 9.12 (p < 0.05), respectively. The TMFs of o,p'-DDT and o,p'-DDD in the aquatic food web were higher than p,p'-DDT (7.76), p,p'-DDD (4.17), and p,p'-DDE (3.39), which may be explained by the isomer-specific metabolism differences in biota.
Collapse
Affiliation(s)
- Jianxian Sun
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Chenke Xu
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Hui Peng
- Department of Chemistry, University of Toronto, Canada; School of the Environment, University of Toronto, Canada
| | - Yi Wan
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Kai Luo
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Holly Barrett
- Department of Chemistry, University of Toronto, Canada
| | - Jianying Hu
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China.
| |
Collapse
|
17
|
Renaguli A, Fernando S, Holsen TM, Hopke PK, Adams DH, Balazs GH, Jones TT, Work TM, Lynch JM, Crimmins BS. Characterization of Halogenated Organic Compounds in Pelagic Sharks and Sea Turtles Using a Nontargeted Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16390-16401. [PMID: 34846854 DOI: 10.1021/acs.est.1c03798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Halogenated organic compounds (HOCs) in marine species collected from the Atlantic Ocean [3 shortfin mako (Isurus oxyrinchus) and 1 porbeagle (Lamna nasus)], and 12 sea turtles collected from the Pacific Ocean [3 loggerhead (Caretta caretta), 3 green (Chelonia mydas), 3 olive ridley (Lepidochelys olivacea), and 3 hawksbill (Eretmochelys imbricata)] were analyzed with a nontargeted analytical method using two-dimensional gas chromatography coupled to high-resolution time-of-flight mass spectrometry. Sharks and sea turtles had distinct HOC profiles. Halogenated methoxyphenols (halo-MeOPs) were the most abundant compound class identified in sea turtle livers, while polychlorinated biphenyls (PCBs) were the most abundant in shark livers. In addition to legacy contaminants and halo-MeOPs, a total of 110 nontargeted/novel HOCs (NHOCs) were observed in the shark livers. Shortfin mako collected from the northern Gulf of Mexico contained the largest number (89) and most diverse structural classes of NHOCs. Among all NHOCs, a group of compounds with the elemental composition C14H12-nCln (n = 5-8) exhibited the highest concentrations, followed by chlorocarbazoles and tris(chlorophenyl) methanes (TCPMs). Using nontargeted workflows, a variety of known and unknown HOCs were observed, which demonstrate the need to develop more complete chemical profiles in the marine environment.
Collapse
Affiliation(s)
- Aikebaier Renaguli
- Institute for a Sustainable Environment, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Sujan Fernando
- Center for Air and Aquatic Resources Engineering and Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Thomas M Holsen
- Center for Air and Aquatic Resources Engineering and Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
- Department of Civil and Environmental Engineering, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Philip K Hopke
- Center for Air and Aquatic Resources Engineering and Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Douglas H Adams
- Cape Canaveral Scientific Inc., 220 Surf Road, Melbourne Beach, Florida 32951, United States
| | - George H Balazs
- Golden Honu Services of Oceania, Honolulu, Hawaii 96825 United States
| | - T Todd Jones
- Golden Honu Services of Oceania, Honolulu, Hawaii 96825 United States
| | - Thierry M Work
- U.S. Geological Survey, National Wildlife Health Center, Honolulu Field Station, Honolulu, Hawaii 96818, United States
| | - Jennifer M Lynch
- National Institute of Standards and Technology, Chemical Sciences Division, 41-202 Kalaniana'ole Highway Ste #9, Waima̅nalo, Hawai'i 96795, United States
- Center for Marine Debris Research, Hawai'i Pacific University, 41-202 Kalaniana'ole Highway Ste #9, Waima̅nalo, Hawai'i 96795, United States
| | - Bernard S Crimmins
- Department of Civil and Environmental Engineering, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
- AEACS, LLC, New Kensington, Pennsylvania 15068, United States
| |
Collapse
|
18
|
Chang D, Richardot WH, Miller EL, Dodder NG, Sedlak MD, Hoh E, Sutton R. Framework for nontargeted investigation of contaminants released by wildfires into stormwater runoff: Case study in the northern San Francisco Bay area. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2021; 17:1179-1193. [PMID: 34009690 DOI: 10.1002/ieam.4461] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/29/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
Wildfires can be extremely destructive to communities and ecosystems. However, the full scope of the ecological damage is often hard to assess, in part due to limited information on the types of chemicals introduced to affected landscapes and waterways. The objective of this study was to establish a sampling, analytical, and interpretive framework to effectively identify and monitor contaminants of emerging concern in environmental water samples impacted by wildfire runoff. A nontargeted analysis consisting of comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC × GC/TOF-MS) was conducted on stormwater samples from watersheds in the City of Santa Rosa and Sonoma and Napa Counties, USA, after the three most destructive fires during the October 2017 Northern California firestorm. Chemicals potentially related to wildfires were selected from the thousands of chromatographic features detected through a screening method that compared samples from fire-impacted sites versus unburned reference sites. This screening led to high confidence identifications of 76 potentially fire-related compounds. Authentic standards were available for 48 of these analytes, and 46 were confirmed by matching mass spectra and GC × GC retention times. Of these 46 compounds, 37 had known commercial and industrial uses as intermediates or ingredients in plastics, personal care products, pesticides, and as food additives. Nine compounds had no known uses or sources and may be oxidation products resulting from burning of natural or anthropogenic materials. Preliminary examination of potential toxicity associated with the 46 compounds, conducted via online databases and literature review, indicated limited data availability. Regional comparison suggested that more structural damage may yield a greater number of unique, potentially wildfire-related compounds. We recommend further study of post-wildfire runoff using the framework described here, which includes hypothesis-driven site selection and nontargeted analysis, to uncover potentially significant stormwater contaminants not routinely monitored after wildfires and inform risk assessment. Integr Environ Assess Manag 2021;17:1179-1193. © 2021 SETAC.
Collapse
Affiliation(s)
- Daniel Chang
- San Diego State University Research Foundation, San Diego, California, USA
| | | | - Ezra L Miller
- San Francisco Estuary Institute, Richmond, California, USA
| | - Nathan G Dodder
- San Diego State University Research Foundation, San Diego, California, USA
- School of Public Health, San Diego State University, San Diego, California, USA
| | | | - Eunha Hoh
- School of Public Health, San Diego State University, San Diego, California, USA
| | - Rebecca Sutton
- San Francisco Estuary Institute, Richmond, California, USA
| |
Collapse
|
19
|
Mutlu E, Cao Y, Pierfelice J, Graber B, Burback B, Waidyanatha S. Validated Gas Chromatography – Mass Spectrometry (GC-MS) Method for Simultaneous Quantitation of Tris(4-Chlorophenyl)Methane and Tris(4-Chlorophenyl)Methanol in Rat Plasma and Fetus. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1946554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Esra Mutlu
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Yu Cao
- Battelle Memorial Institute, Columbus, OH, USA
| | | | | | | | - Suramya Waidyanatha
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
20
|
Tue NM, Goto A, Fumoto M, Nakatsu S, Tanabe S, Kunisue T. Nontarget Screening of Organohalogen Compounds in the Liver of Wild Birds from Osaka, Japan: Specific Accumulation of Highly Chlorinated POP Homologues in Raptors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8691-8699. [PMID: 34100289 DOI: 10.1021/acs.est.1c00357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nontarget screening studies have recently revealed the accumulation of typically unmonitored organohalogen compounds (OHCs) in various marine animals, but information for terrestrial food chains is still lacking. This study investigated the accumulation profiles of known and unknown OHCs in the liver of representative wild bird specimens from Osaka, Japan using nontarget analysis based on two-dimensional gas chromatography-time-of-flight mass spectrometry. A large number of unmonitored OHCs were identified, including anthropogenic contaminants and marine halogenated natural products (HNPs), and their accumulation profiles were considered to be influenced by terrestrial and brackish water-based diets. Anthropogenic OHCs were highly accumulated in terrestrial predator species (peregrine falcon, hawks, and black kite), and some unmonitored highly chlorinated contaminants reached the levels of microgram per gram lipid in the liver, i.e., C10-/C15-based chlordane related compounds (CHLs) and their epoxides, dichlorodiphenyldichloroethylene (DDE) homologues, and polychlorinated terphenyls (PCTs). In contrast, HNPs were accumulated at higher levels in piscivorous birds (gray heron and common cormorant). Considering the enrichment of the unmonitored C10-/C15-based CHLs, PCTs, and DDE homologues relative to structurally similar persistent organic pollutants (POPs) in high trophic-level species such as raptors, further studies are needed to elucidate their environmental levels, behavior in terrestrial food chains, and ecotoxicological impacts.
Collapse
Affiliation(s)
- Nguyen Minh Tue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Akitoshi Goto
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Mitsuo Fumoto
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Susumu Nakatsu
- Nakatsu Veterinary Surgery, 2-2-15 Shorinjichonishi, Sakai 590-0960, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| |
Collapse
|
21
|
Navarrete J, Wilson P, Allsing N, Gordon C, Margolis R, Schwartz AV, Cho C, Rogowski B, Topps J, George UZ, Sant KE. The ecotoxicological contaminant tris(4-chlorophenyl)methanol (TCPMOH) impacts embryonic development in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 235:105815. [PMID: 33838494 PMCID: PMC8113121 DOI: 10.1016/j.aquatox.2021.105815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Tris(4-chlorophenyl)methanol (TCPMOH) is a water contaminant with unknown etiology, but is believed to be a byproduct of DDT manufacturing. It is highly persistent in the environment, and bioaccumulates in marine species. TCPMOH has also been measured in human breast milk, which poses a risk for developing infants. However, almost no toxicity data is currently available. In this study, we investigate the hazard posed by developmental TCPMOH exposures using the zebrafish model (Danio rerio). Zebrafish (Danio rerio) embryos were exposed to 0, 0.1, 0.5, 1, or 5 µM TCPMOH beginning at 24 h post fertilization (hpf). Embryonic mortality and incidence of morphological deformities increased in a concentration-dependent manner with TCPMOH exposure. RNA sequencing assessed changes in gene expression associated with acute (4 hour) exposures to 50 nM TCPMOH. Developmental exposure to TCPMOH decreased expression of ahr2, as well as metabolic enzymes cyp1a1, cyp1b1, cyp1c1, cyp1c2, and cyp2y3 (p<0.05). These findings were concordant with decreased Cyp1a1 induction measured by the ethoxyresorufin-O-deethylase (EROD) assay (p<0.05). Pathways associated with xenobiotic metabolism, lipid metabolism, and transcriptional and translational regulation were decreased. Pathways involved in DNA replication and repair, carbohydrate metabolism, and endocrine function were upregulated. Overall, this study demonstrates that TCPMOH is acutely toxic to zebrafish embryos at elevated concentrations.
Collapse
Affiliation(s)
- Julian Navarrete
- San Diego State University School of Public Health, 5500 Campanile Dr., Hardy Tower 119, San Diego, CA, 92182, USA
| | - Peyton Wilson
- San Diego State University School of Public Health, 5500 Campanile Dr., Hardy Tower 119, San Diego, CA, 92182, USA
| | - Nicholas Allsing
- San Diego State University Biology Department, San Diego, CA, 92182, USA
| | - Chandi Gordon
- San Diego State University School of Public Health, 5500 Campanile Dr., Hardy Tower 119, San Diego, CA, 92182, USA
| | - Rachel Margolis
- San Diego State University School of Public Health, 5500 Campanile Dr., Hardy Tower 119, San Diego, CA, 92182, USA
| | - Ashley V Schwartz
- San Diego State University Department of Mathematics, San Diego, CA, 92182, USA
| | - Christine Cho
- San Diego State University School of Public Health, 5500 Campanile Dr., Hardy Tower 119, San Diego, CA, 92182, USA
| | - Brynn Rogowski
- San Diego State University School of Public Health, 5500 Campanile Dr., Hardy Tower 119, San Diego, CA, 92182, USA
| | - Jennifer Topps
- San Diego State University School of Public Health, 5500 Campanile Dr., Hardy Tower 119, San Diego, CA, 92182, USA
| | - Uduak Z George
- San Diego State University Department of Mathematics, San Diego, CA, 92182, USA
| | - Karilyn E Sant
- San Diego State University School of Public Health, 5500 Campanile Dr., Hardy Tower 119, San Diego, CA, 92182, USA.
| |
Collapse
|
22
|
Non-targeted discovery of class-distinguishing metabolites in Argentinian pacu fish by comprehensive two-dimensional gas chromatography with principal component analysis. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Dziobak MK, Wells RS, Pisarski EC, Wirth EF, Hart LB. Demographic Assessment of Mono(2-ethylhexyl) Phthalate (MEHP) and Monoethyl Phthalate (MEP) Concentrations in Common Bottlenose Dolphins ( Tursiops truncatus) From Sarasota Bay, FL, USA. GEOHEALTH 2021; 5:e2020GH000348. [PMID: 34036207 PMCID: PMC8137278 DOI: 10.1029/2020gh000348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/22/2021] [Accepted: 04/14/2021] [Indexed: 05/15/2023]
Abstract
Common bottlenose dolphins (Tursiops truncatus) have previously demonstrated exposure to phthalate esters. Phthalates and phthalate esters are commonly added to consumer goods to enhance desirable properties. As the amount of plastic marine debris increases, these chemicals can easily leach from these products into the surrounding environment. To evaluate demographic variability in exposure, eight phthalate metabolites were quantified in urine samples collected from free-ranging bottlenose dolphins sampled in Sarasota Bay, FL, USA (2010-2019; n = 51). Approximately 75% of individual dolphins had detectable concentrations of at least one phthalate metabolite. The most frequently detected metabolites were mono(2-ethylhexyl) phthalate (MEHP; n = 28; GM = 4.57 ng/mL; 95% CI = 2.37-8.80; KM mean = 7.95; s.d. = 15.88) and monoethyl phthalate (MEP; GM = 4.51 ng/mL; 95% CI = 2.77-7.34; ROS mean = 2.24; s.d. = 5.58). Urinary concentrations of MEHP and MEP were not significantly different between sex (MEHP p = 0.09; MEP p = 0.22) or age class (i.e., calf/juvenile vs. adult; MEHP p = 0.67; MEP p = 0.13). Additionally, there were no significant group differences in the likelihood of MEHP or MEP detection for any demographic as determined by a Peto-Peto test. Frequency of detection was similar for both metabolites between males and females (MEHP p = 0.10; MEP p = 0.40) as well as between juveniles and adults (MEHP p = 0.50; MEP: p = 0.60). These findings suggest ubiquitous exposure risk for both sexes and age classes, warranting further investigation into potential sources and health implications.
Collapse
Affiliation(s)
- M. K. Dziobak
- Environmental and Sustainability Studies Graduate ProgramCollege of CharlestonCharlestonSCUSA
| | - R. S. Wells
- Chicago Zoological Society’s Sarasota Dolphin Research Programc/o Mote Marine LaboratorySarasotaFLUSA
| | - E. C. Pisarski
- CSS Inc., (Under Contract to NOAA/NOS/NCCOS)CharlestonSCUSA
| | - E. F. Wirth
- National Oceanic and Atmospheric AdministrationNational Ocean ServiceNational Centers for Coastal Ocean ScienceCharlestonSCUSA
| | - L. B. Hart
- Department of Health and Human PerformanceCollege of CharlestonCharlestonSCUSA
| |
Collapse
|
24
|
Non-targeted screening workflows for gas chromatography-high-resolution mass spectrometry analysis and identification of biomagnifying contaminants in biota samples. Anal Bioanal Chem 2020; 413:479-501. [PMID: 33156400 PMCID: PMC7806533 DOI: 10.1007/s00216-020-03018-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/12/2020] [Accepted: 10/19/2020] [Indexed: 11/11/2022]
Abstract
The health of key species in the Baltic region has been impaired by exposure to anthropogenic hazardous substances (AHSs), which accumulate in organisms and are transferred through food chains. There is, thus, a need for comprehensive characterization of the occurrence and accumulation of AHSs in the ecosystem. In this study, we use a non-target screening (NTS) approach for this purpose. A major challenge in NTS of biological samples is the removal of matrix components such as lipids that may interfere with the detection and identification of compounds of interest. Here, we combine gel permeation chromatography with Florisil® column fractionation to achieve sufficient lipid removal for gas chromatography–high-resolution mass spectrometry analysis using electron ionization (EI) and electron capture negative ion chemical ionization (ECNI). In addition, we present new data processing workflows designed to systematically find and identify frequently occurring and biomagnifying AHSs, including known, emerging, and new contaminants. Using these workflows, we discovered a wide range of contaminants in tissue samples from blue mussels, fish, and marine mammals, and calculated their biomagnification factors (BMFs). Compounds with BMFs above 1 for herring and at least one marine mammal included legacy chlorinated pollutants (polychlorinated biphenyls, DDTs, chloro-benzenes/cyclohexanes, chlordanes, toxaphenes, dieldrin), polybrominated diphenyl ethers (PBDEs), and brominated biphenyls. However, there were also several halogenated natural products (halogenated methoxylated brominated diphenyl ethers, 1′-methyl-1,2′-bipyrroles, 1,1′-dimethyl-2,2′-bipyrroles, and the halogenated monoterpene mixed halogenated compound 1) as well as the novel flame retardant Dechlorane 602 and several polycyclic aromatic hydrocarbons, terpenoids, and steroids. The legacy pollutants exhibited the expected biomagnification behavior, demonstrating the utility of the unguided data processing workflow. Graphical abstract ![]()
Collapse
|
25
|
Huang H, Li J, Zhang Y, Chen W, Ding Y, Chen W, Qi S. How persistent are POPs in remote areas? A case study of DDT degradation in the Qinghai-Tibet Plateau, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114574. [PMID: 33618471 DOI: 10.1016/j.envpol.2020.114574] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 06/12/2023]
Abstract
Persistent organic pollutants (POPs) can undergo long-range atmospheric transport (LRAT) and deposit in remote areas. How persistent are POPs in remote areas? To answer this question, we measured two parent-DDTs and eight metabolites in soil and air along a transect in the Qinghai-Tibet Plateau, China, to quantitatively evaluate the degree of degradation of DDTs. DDTs were ubiquitous in soil and air with the total DDT concentrations (Σ10DDTs) ranging 37.7-70,100 pg g-1 dw and 3.4-175 pg m-3, respectively. The air-soil equilibrium status indicated that the forest/basin soil was a source for most DDTs, while the plateau soil was a sink receiving DDTs from the LRAT and photodegradation in the air (for metabolites). The metabolites accounted for avg. 64.1% of Σ10DDTs in soil, with avg. 93.2% from local degradation, implying the overall high degradation of DDTs. With the significant degradation, the continuous input via LRAT was deemed to be the main reason for the stable level (persistence) of POPs in the Qinghai-Tibet Plateau. Therefore, we emphasize the importance of source control for the risk management of POPs. POPs in the environment might decline rapidly due to a reduction in source input and significant degradation as indicated by our study.
Collapse
Affiliation(s)
- Huanfang Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, China Academic of Sciences, Guangzhou, 510640, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, China Academic of Sciences, Guangzhou, 510640, China
| | - Yuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Wenwen Chen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Yang Ding
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Wei Chen
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
26
|
Zhu X, Dsikowitzky L, Ricking M, Schwarzbauer J. Molecular insights into the formation and remobilization potential of nonextractable anthropogenic organohalogens in heterogeneous environmental matrices. JOURNAL OF HAZARDOUS MATERIALS 2020; 381:120959. [PMID: 31401459 DOI: 10.1016/j.jhazmat.2019.120959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Anthropogenic organohalogens (AOHs) are toxic and persistent pollutants that occur ubiquitously in the environment. An unneglectable portion of them can convert into nonextractable residues (NER) in the natural solid substances. NER-AOHs are not detectable by conventional solvent-extraction, and will get remobilized through changes of surrounding environment. Consequently, the formation and fate of NER-AOHs should be investigated comprehensively. In this study, solvent extraction, sequential chemical degradation and thermochemolysis were applied on different sample matrices (sediments, soils and groundwater sludge, collected from industrial areas) to release extractable and nonextractable AOHs. Covalent linkages were observed most favorable for the hydrophilic-group-containing monocyclic aromatic AOHs (HiMcAr-AOHs) (e.g. halogenated phenols, benzoic acids and anilines) incorporating into the natural organic matter (NOM) as NER. Physical entrapment mainly contributed to the NER formation of hydrophobic monocyclic aromatic AOHs (HoMcAr-AOHs) and polycyclic aromatic AOHs (PcAr-AOHs). The hypothesized remobilization potential of these NER-AOHs follow the order HiMcAr-AOHs > HoMcAr-AOHs/ aliphatic AOHs > PcAr-AOHs. In addition, the NOM macromolecular structures of the studied samples were analyzed. Based on the derived results, a conceptual model of the formation mechanisms of NER-AOHs is proposed. This model provides basic molecular insights that are of high value for risk assessment and remediation of AOHs.
Collapse
Affiliation(s)
- Xiaojing Zhu
- Institute of Geology and Geochemistry of Petroleum and Coal, RWTH Aachen University, Lochnerstr. 4-20, 52064 Aachen, Germany
| | - Larissa Dsikowitzky
- Institute of Geology and Geochemistry of Petroleum and Coal, RWTH Aachen University, Lochnerstr. 4-20, 52064 Aachen, Germany
| | - Mathias Ricking
- Dpt Wastewater Technology Research, German Environment Agency, Corrensplatz 1, 14195 Berlin, Germany
| | - Jan Schwarzbauer
- Institute of Geology and Geochemistry of Petroleum and Coal, RWTH Aachen University, Lochnerstr. 4-20, 52064 Aachen, Germany.
| |
Collapse
|
27
|
Tran CD, Dodder NG, Quintana PJE, Watanabe K, Kim JH, Hovell MF, Chambers CD, Hoh E. Organic contaminants in human breast milk identified by non-targeted analysis. CHEMOSPHERE 2020; 238:124677. [PMID: 31524616 PMCID: PMC6832863 DOI: 10.1016/j.chemosphere.2019.124677] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 08/20/2019] [Accepted: 08/24/2019] [Indexed: 05/06/2023]
Abstract
Understanding the health implications of human exposure to mixtures of chemical contaminants is aided by analytical methods that can screen for a broad range of both expected and unexpected compounds. We performed a proof-of-concept analysis combining human breast milk, a biomonitoring matrix for determining contaminant exposure to mothers and infants, with a non-targeted method based on comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC/TOF-MS). A total of 172 presumably anthropogenic halogenated compounds and non-halogenated cyclic and aromatic compounds were tentatively identified in breast milk from San Diego, California through mass spectral database searches. Forty of the compounds were prioritized for confirmation based on halogenation or 100% frequency of detection, and the identities of 30 were verified using authentic standards. Thirty-four (85%) of the prioritized contaminants are not typically monitored in breast milk surveys, and 31 (77%) are regulated in at least one market worldwide, indicating breast milk may be a useful biomonitoring matrix for non-targeted analysis and the assessment of human exposure to future emerging or undiscovered contaminants.
Collapse
Affiliation(s)
- Cuong D Tran
- School of Public Health, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA; San Diego State University Research Foundation, 5250 Campanile Drive, San Diego, CA, 92182, USA
| | - Nathan G Dodder
- School of Public Health, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA; San Diego State University Research Foundation, 5250 Campanile Drive, San Diego, CA, 92182, USA
| | - Penelope J E Quintana
- School of Public Health, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Kayo Watanabe
- School of Public Health, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA; San Diego State University Research Foundation, 5250 Campanile Drive, San Diego, CA, 92182, USA
| | - Jae H Kim
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Melbourne F Hovell
- School of Public Health, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Christina D Chambers
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA; Department of Family Medicine and Public Health, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Eunha Hoh
- School of Public Health, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA.
| |
Collapse
|
28
|
Non-targeted Screening in Environmental Monitoring Programs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:731-741. [PMID: 31347081 DOI: 10.1007/978-3-030-15950-4_43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Contaminant monitoring programs have been tasked with understanding the fate and transport of toxic chemicals in the environment. Mass spectrometry based methods have traditionally been developed to maximize sensitivity and accuracy of a select set of target compounds. As mass spectrometry methods have advanced, so has the breadth of questions proposed by environmental chemists. Incorporating these methods in chemical monitoring programs provides large data sets to explore the effects of complex mixtures on environmental systems.
Collapse
|
29
|
Trego ML, Hoh E, Whitehead A, Kellar NM, Lauf M, Datuin DO, Lewison RL. Contaminant Exposure Linked to Cellular and Endocrine Biomarkers in Southern California Bottlenose Dolphins. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3811-3822. [PMID: 30852886 DOI: 10.1021/acs.est.8b06487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cetaceans in the Southern California Bight (SCB) are exposed to high levels of halogenated organic contaminants (HOCs), which have previously been linked to impaired reproductive health and immune responses. We used a combination of molecular tools to examine the potential physiological impacts of HOC exposure in two bottlenose dolphin ( Tursiops truncatus) ecotypes in the SCB. We quantified 25 HOCs in the blubber of 22 biopsies collected from males between 2012 and 2016. We then analyzed genome-wide gene expression in skin using RNA-sequencing and measured blubber testosterone to compare HOC exposure with cellular and endocrine biomarkers. We found high levels of HOCs in both ecotypes with significantly higher total polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), tris(4-chlorophenyl)methanol (TCPMOH), and chlordane-related compounds in the coastal ecotype versus the offshore ecotype. We found evidence of PBDE bioaccumulation in both ecotypes, however, the pattern of bioaccumulation or endocrine disruption for other HOCs was different between the ecotypes, suggesting potential endocrine disruption in the coastal ecotype. We also observed correlations between HOCs and gene coexpression networks enriched for xenobiotic metabolism, hormone metabolism, and immune response that could indicate cellular effects from HOC exposure. By integrating measurements of HOC load with both transcriptome profiling and endocrine biomarkers, our approach provides insight into HOC exposure and potential impacts on wild cetacean health in southern California.
Collapse
Affiliation(s)
- Marisa L Trego
- Department of Biology , San Diego State University , 5500 Campanile Drive , San Diego , California 92182 , United States
- Department of Environmental Toxicology , University of California-Davis , 1 Shields Avenue , Davis , California 95616 , United States
| | - Eunha Hoh
- School of Public Health , San Diego State University , 5500 Campanile Drive , San Diego , California 92182 , United States
| | - Andrew Whitehead
- Department of Environmental Toxicology , University of California-Davis , 1 Shields Avenue , Davis , California 95616 , United States
| | - Nicholas M Kellar
- Ocean Associates, Incorporated, under contract to the Southwest Fisheries Science Center, National Marine Fisheries Service , National Oceanic and Atmospheric Administration , Arlington , Virginia 22207 , United States
| | - Morgane Lauf
- Ocean Associates, Incorporated, under contract to the Southwest Fisheries Science Center, National Marine Fisheries Service , National Oceanic and Atmospheric Administration , Arlington , Virginia 22207 , United States
| | - Dana O Datuin
- School of Public Health , San Diego State University , 5500 Campanile Drive , San Diego , California 92182 , United States
| | - Rebecca L Lewison
- Department of Biology , San Diego State University , 5500 Campanile Drive , San Diego , California 92182 , United States
| |
Collapse
|
30
|
Bahaghighat HD, Freye CE, Synovec RE. Recent advances in modulator technology for comprehensive two dimensional gas chromatography. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.04.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
31
|
Cossaboon JM, Hoh E, Chivers SJ, Weller DW, Danil K, Maruya KA, Dodder NG. Apex marine predators and ocean health: Proactive screening of halogenated organic contaminants reveals ecosystem indicator species. CHEMOSPHERE 2019; 221:656-664. [PMID: 30665094 PMCID: PMC6392016 DOI: 10.1016/j.chemosphere.2019.01.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 05/22/2023]
Abstract
Despite decades-long bans on the production and use of certain chemicals, many halogenated organic compounds (HOCs) are persistent and can bioaccumulate in the marine environment with the potential to cause physiological harm to marine fauna. Highly lipid-rich tissue (e.g., marine mammal blubber) functions as a reservoir for HOCs, and selecting ideal indicator species is a priority for retrospective and proactive screening efforts. We selected five marine mammal species as possible indicators for the Southern California Bight (SCB) and applied a non-targeted analytical method paired with an automated data reduction strategy to catalog a broad range of known, known but unexpected, and unknown compounds in their blubber. A total of 194 HOCs were detected across the study species (n = 25 individuals), 81% of which are not routinely monitored, including 30 halogenated natural products and 45 compounds of unknown structure and origin. The cetacean species (long-beaked common dolphin, short-beaked common dolphin, and Risso's dolphin) averaged 128 HOCs, whereas pinnipeds (California sea lion and Pacific harbor seal) averaged 47 HOCs. We suspect this disparity can be attributed to differences in life history, foraging strategies, and/or enzyme-mediated metabolism. Our results support proposing (1) the long- and short-beaked common dolphin as apex marine predator sentinels for future and retrospective biomonitoring of the SCB ecosystem and (2) the use of non-targeted contaminant analyses to identify and prioritize emerging contaminants. The use of a sentinel marine species together with the non-targeted analytical approach will enable a proactive approach to environmental contaminant monitoring.
Collapse
Affiliation(s)
| | - Eunha Hoh
- School of Public Health, San Diego State University, San Diego, CA 92182, USA
| | - Susan J Chivers
- Southwest Fisheries Science Center, National Oceanographic and Atmospheric Administration, La Jolla, CA 92037, USA
| | - David W Weller
- Southwest Fisheries Science Center, National Oceanographic and Atmospheric Administration, La Jolla, CA 92037, USA
| | - Kerri Danil
- Southwest Fisheries Science Center, National Oceanographic and Atmospheric Administration, La Jolla, CA 92037, USA
| | - Keith A Maruya
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA 92626, USA
| | - Nathan G Dodder
- School of Public Health, San Diego State University, San Diego, CA 92182, USA; San Diego State University Research Foundation, San Diego, CA 92182, USA.
| |
Collapse
|
32
|
Kivenson V, Lemkau KL, Pizarro O, Yoerger DR, Kaiser C, Nelson RK, Carmichael C, Paul BG, Reddy CM, Valentine DL. Ocean Dumping of Containerized DDT Waste Was a Sloppy Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2971-2980. [PMID: 30829032 DOI: 10.1021/acs.est.8b05859] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Industrial-scale dumping of organic waste to the deep ocean was once common practice, leaving a legacy of chemical pollution for which a paucity of information exists. Using a nested approach with autonomous and remotely operated underwater vehicles, a dumpsite offshore California was surveyed and sampled. Discarded waste containers littered the site and structured the suboxic benthic environment. Dichlorodiphenyltrichloroethane (DDT) was reportedly dumped in the area, and sediment analysis revealed substantial variability in concentrations of p, p-DDT and its analogs, with a peak concentration of 257 μg g-1, ∼40 times greater than the highest level of surface sediment contamination at the nearby DDT Superfund site. The occurrence of a conspicuous hydrocarbon mixture suggests that multiple petroleum distillates, potentially used in DDT manufacture, contributed to the waste stream. Application of a two end-member mixing model with DDTs and polychlorinated biphenyls enabled source differentiation between shelf discharge versus containerized waste. Ocean dumping was found to be the major source of DDT to more than 3000 km2 of the region's deep seafloor. These results reveal that ocean dumping of containerized DDT waste was inherently sloppy, with the contents readily breaching containment and leading to regional scale contamination of the deep benthos.
Collapse
Affiliation(s)
- Veronika Kivenson
- Interdepartmental Graduate Program in Marine Science , University of California , Santa Barbara , California 93106 , United States
| | - Karin L Lemkau
- Marine Science Institute , University of California , Santa Barbara , California 93106 , United States
| | - Oscar Pizarro
- Australian Centre for Field Robotics , University of Sydney , Sydney 2006 , Australia
| | - Dana R Yoerger
- Department of Applied Ocean Physics and Engineering , Woods Hole Oceanographic Institution , Woods Hole , Massachusetts 02453 , United States
| | - Carl Kaiser
- Department of Applied Ocean Physics and Engineering , Woods Hole Oceanographic Institution , Woods Hole , Massachusetts 02453 , United States
| | - Robert K Nelson
- Department of Marine Chemistry and Geochemistry , Woods Hole Oceanographic Institution , Woods Hole , Massachusetts 02453 , United States
| | - Catherine Carmichael
- Department of Marine Chemistry and Geochemistry , Woods Hole Oceanographic Institution , Woods Hole , Massachusetts 02453 , United States
| | - Blair G Paul
- Marine Science Institute , University of California , Santa Barbara , California 93106 , United States
| | - Christopher M Reddy
- Department of Marine Chemistry and Geochemistry , Woods Hole Oceanographic Institution , Woods Hole , Massachusetts 02453 , United States
| | - David L Valentine
- Marine Science Institute , University of California , Santa Barbara , California 93106 , United States
- Department of Earth Science , University of California , Santa Barbara , California 93106 , United States
| |
Collapse
|
33
|
Transformation Products of Organic Contaminants and Residues-Overview of Current Simulation Methods. Molecules 2019; 24:molecules24040753. [PMID: 30791496 PMCID: PMC6413221 DOI: 10.3390/molecules24040753] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/14/2019] [Accepted: 02/16/2019] [Indexed: 01/27/2023] Open
Abstract
The formation of transformation products (TPs) from contaminants and residues is becoming an increasing focus of scientific community. All organic compounds can form different TPs, thus demonstrating the complexity and interdisciplinarity of this topic. The properties of TPs could stand in relation to the unchanged substance or be more harmful and persistent. To get important information about the generated TPs, methods are needed to simulate natural and manmade transformation processes. Current tools are based on metabolism studies, photochemical methods, electrochemical methods, and Fenton’s reagent. Finally, most transformation processes are based on redox reactions. This review aims to compare these methods for structurally different compounds. The groups of pesticides, pharmaceuticals, brominated flame retardants, and mycotoxins were selected as important residues/contaminants relating to their worldwide occurrence and impact to health, food, and environmental safety issues. Thus, there is an increasing need for investigation of transformation processes and identification of TPs by fast and reliable methods.
Collapse
|
34
|
Zhu X, Dsikowitzky L, Kucher S, Ricking M, Schwarzbauer J. Formation and Fate of Point-Source Nonextractable DDT-Related Compounds on Their Environmental Aquatic-Terrestrial Pathway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:1305-1314. [PMID: 30608655 DOI: 10.1021/acs.est.8b06018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nonextractable residues (NER) are pollutants incorporated into the matrix of natural solid matter via different binding mechanisms. They can become bioavailable or remobilize during physical-chemical changes of the surrounding conditions and should thus not be neglected in environmental risk assessment. Sediments, soils, and groundwater sludge contaminated with DDXs (DDT, dichlorodiphenyltrichloroethane; and its metabolites) were treated with solvent extraction, sequential chemical degradation, and thermochemolysis to study the fate of NER-DDX along different environmental aquatic-terrestrial pathways. The results showed that DDT and its first degradation products, DDD (dichlorodiphenyldichloroethane) and DDE (dichlorodiphenyldichloroethylene), were dominant in the free extractable fraction, whereas DDM (dichlorodiphenylmethane), DBP (dichlorobenzophenone), and DDA (dichlorodiphenylacetic acid) were observed primarily after chemical degradation. The detection of DDA, DDMUBr (bis( p-chlorophenyl)-bromoethylene), DDPU (bis( p-chlorophenyl)-propene) and DDPS (bis( p-chlorophenyl)-propane) after chemical treatments evidenced the covalent bindings between these DDXs and the organic matrix. The identified NER-DDXs were categorized into three groups according to the three-step degradation process of DDT. Their distribution along the different pathways demonstrated significant specificity. Based on the obtained results, a conceptual model of the fate of NER-DDXs on their different environmental aquatic-terrestrial pathways is proposed. This model provides basic knowledge for risk assessment and remediation of both extractable and nonextractable DDT-related contaminations.
Collapse
Affiliation(s)
- Xiaojing Zhu
- Institute of Geology and Geochemistry of Petroleum and Coal , RWTH Aachen University , Lochnerstr. 4-20 , 52064 Aachen , Germany
| | - Larissa Dsikowitzky
- Institute of Geology and Geochemistry of Petroleum and Coal , RWTH Aachen University , Lochnerstr. 4-20 , 52064 Aachen , Germany
| | - Sebastian Kucher
- Institute of Geology and Geochemistry of Petroleum and Coal , RWTH Aachen University , Lochnerstr. 4-20 , 52064 Aachen , Germany
| | - Mathias Ricking
- Department of Earth Sciences , Freie Universitäte Berlin , Malteser Str. 74-100 , 12249 Berlin , Germany
| | - Jan Schwarzbauer
- Institute of Geology and Geochemistry of Petroleum and Coal , RWTH Aachen University , Lochnerstr. 4-20 , 52064 Aachen , Germany
| |
Collapse
|
35
|
Manzano CA, Dodder NG, Hoh E, Morales R. Patterns of Personal Exposure to Urban Pollutants Using Personal Passive Samplers and GC × GC/ToF-MS. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:614-624. [PMID: 30575390 DOI: 10.1021/acs.est.8b06220] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The performance of silicon wristband passive samplers (WB), combined with comprehensive two-dimensional gas-chromatography/time-of-flight mass-spectrometry (GC × GC/ToF-MS), for the analysis of urban derived pollutants in the personal environment was evaluated. Cumulative 5-day exposure samples from 27 individuals in areas with different geographical/socioeconomic characteristics within the Santiago Metropolitan Region (Chile) were collected during winter and summer (2016-2017). Samples were extracted without cleanup/fractionation and analyzed using targeted and nontargeted methods. The quantified semivolatile organic compounds (SVOCs, n = 33) (targeted analysis), and tentatively identified features ( n = 595-1011) (nontargeted analysis) were classified according to their use/source. Seasonal differences were observed in the targeted analysis, while seasonal and spatial differences were observed in the nontargeted analysis. Higher concentrations of combustion products were observed in winter, while higher concentrations of consumer products were found in summer. Spatial differences were observed in hierarchical clustering analysis of the nontargeted data, with distinct clusters corresponding to specific subregions of the urban area. Results from this study provide spatial and seasonal distributions of urban pollutants within an urban area and establish the utility of linking WB with nontargeted analysis as a tool to identify and prioritize new exposures to urban contaminants at the local/community level.
Collapse
Affiliation(s)
- Carlos A Manzano
- Center for Environmental Science, Faculty of Science , Universidad de Chile , Santiago , Chile
- School of Public Health , San Diego State University , San Diego , California United States
| | - Nathan G Dodder
- School of Public Health , San Diego State University , San Diego , California United States
- San Diego State University Research Foundation , San Diego , California United States
| | - Eunha Hoh
- School of Public Health , San Diego State University , San Diego , California United States
| | - Raul Morales
- Center for Environmental Science, Faculty of Science , Universidad de Chile , Santiago , Chile
| |
Collapse
|
36
|
Tang C, Tan J. Quasi-targeted analysis of halogenated organic pollutants in fly ash, soil, ambient air and flue gas using gas chromatography-high resolution mass spectrometry with isotopologue distribution comparison and predicted retention time alignment. J Chromatogr A 2018; 1555:74-88. [DOI: 10.1016/j.chroma.2018.04.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 01/20/2023]
|
37
|
Schmitt CJ, Echols KR, Peterman PH, Orazio CE, Grim KC, Tan S, Diggs NE, Marra PP. Organochlorine Chemical Residues in Northern Cardinal (Cardinalis cardinalis) Eggs from Greater Washington, DC USA. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 100:741-747. [PMID: 29796875 DOI: 10.1007/s00128-018-2357-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
Northern Cardinal eggs from six neighborhoods near Washington DC were analyzed for organochlorine pesticides and PCBs. All compounds were detected more frequently and at higher concentrations in more heavily urbanized neighborhoods. DDT (mostly as p,p'-DDE) was detected in all neighborhoods. p,p'-DDT was typically 0.5‒16 ng/g (ww) in most suburban neighborhoods but was not detected (< 0.1 ng/g) in more rural areas; however, p,p'-DDT was 127‒1130 ng/g in eggs from two suburban Maryland nests and comprised 65.7% of total p,p'-DDT isomers in the most contaminated sample, indicating recent exposure to un-weathered DDT. Total chlordane (sum of 5 compounds) was 2‒70 ng/g; concentrations were greatest in older suburban neighborhoods. Total PCB (sum of detected congeners) was < 5‒21 ng/g. Congener patterns were similar in all neighborhoods and resembled those typical of weathered mixtures. Results indicate that wildlife remains exposed to low concentrations of legacy contaminants in suburban neighborhoods and that cardinal eggs can be used to monitor localized contamination.
Collapse
Affiliation(s)
- Christopher J Schmitt
- Columbia Environmental Research Center, U.S. Geological Survey, 4200 New Haven Road, Columbia, MO, 652011, USA.
| | - Kathy R Echols
- Columbia Environmental Research Center, U.S. Geological Survey, 4200 New Haven Road, Columbia, MO, 652011, USA
| | - Paul H Peterman
- Columbia Environmental Research Center, U.S. Geological Survey, 4200 New Haven Road, Columbia, MO, 652011, USA
| | - Carl E Orazio
- Columbia Environmental Research Center, U.S. Geological Survey, 4200 New Haven Road, Columbia, MO, 652011, USA
| | - K Christiana Grim
- Center for Species Survival, Smithsonian National Zoological Park, Front Royal, VA, USA
| | - Shirlee Tan
- Center for Species Survival, Smithsonian National Zoological Park, Front Royal, VA, USA
- Public Health Seattle and King County, 401 5th Ave., Seattle, WA, 98104, USA
| | - Nora E Diggs
- Smithsonian Migratory Bird Center, National Zoological Park, 3001 Connecticut Avenue NW, Washington, DC, 20008, USA
| | - Peter P Marra
- Smithsonian Migratory Bird Center, National Zoological Park, 3001 Connecticut Avenue NW, Washington, DC, 20008, USA
| |
Collapse
|
38
|
Zheng J, McKinnie SMK, El Gamal A, Feng W, Dong Y, Agarwal V, Fenical W, Kumar A, Cao Z, Moore BS, Pessah IN. Organohalogens Naturally Biosynthesized in Marine Environments and Produced as Disinfection Byproducts Alter Sarco/Endoplasmic Reticulum Ca 2+ Dynamics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5469-5478. [PMID: 29617551 PMCID: PMC6195434 DOI: 10.1021/acs.est.8b00512] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Contemporary sources of organohalogens produced as disinfection byproducts (DBPs) are receiving considerable attention as emerging pollutants because of their abundance, persistence, and potential to structurally mimic natural organohalogens produced by bacteria that serve signaling or toxicological functions in marine environments. Here, we tested 34 organohalogens from anthropogenic and marine sources to identify compounds active toward ryanodine receptor (RyR1), known toxicological targets of non-dioxin-like polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). [3H]Ryanodine ([3H]Ry) binding screening (≤2 μM) identified 10 highly active organohalogens. Further analysis indicated that 2,3-dibromoindole (14), tetrabromopyrrole (31), and 2,3,5-tribromopyrrole (34) at 10 μM were the most efficacious at enhancing [3H]Ry binding. Interestingly, these congeners also inhibited microsomal sarcoplasmic/endoplasmic reticulum (SR/ER) Ca2+ ATPase (SERCA1a). Dual SERCA1a inhibition and RyR1 activation triggered Ca2+ efflux from microsomal vesicles with initial rates rank ordered 31 > 34 > 14. Hexabromobipyrroles (25) enhanced [3H]Ry binding moderately with strong SERCA1a inhibition, whereas pyrrole (24), 2,3,4-tribromopyrrole (26), and ethyl-4-bromopyrrole-2-carboxylate (27) were inactive. Of three PBDE derivatives of marine origin active in the [3H]Ry assay, 4'-hydroxy-2,3',4,5',6-pentabromodiphenyl ether (18) was also a highly potent SERCA1a inhibitor. Molecular targets of marine organohalogens that are also DBPs of emerging environmental concern are likely to contribute to their toxicity.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California 95616, United States
- Department of TCM Pharmacology, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Shaun M. K. McKinnie
- Center for Oceans and Human Health, Scripps Institution of Oceanography & Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0021, United States
| | - Abrahim El Gamal
- Center for Oceans and Human Health, Scripps Institution of Oceanography & Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0021, United States
| | - Wei Feng
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California 95616, United States
| | - Yao Dong
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California 95616, United States
| | | | | | - Abdhesh Kumar
- Center for Oceans and Human Health, Scripps Institution of Oceanography & Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0021, United States
| | - Zhengyu Cao
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California 95616, United States
- Department of TCM Pharmacology, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Bradley S. Moore
- Center for Oceans and Human Health, Scripps Institution of Oceanography & Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0021, United States
| | - Isaac N. Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California 95616, United States
| |
Collapse
|
39
|
Clatterbuck CA, Lewison RL, Dodder NG, Zeeman C, Schiff K. Seabirds as regional biomonitors of legacy toxicants on an urbanized coastline. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:460-469. [PMID: 29156266 DOI: 10.1016/j.scitotenv.2017.11.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/19/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
Seabirds are often cited as sentinels of the marine environment, but are rarely used in traditional ocean and coastal contaminant monitoring. Four classes of persistent organic pollutants (POPs, n=68) and three trace elements (mercury, selenium, and arsenic) were measured in the eggs of California least terns (Sterna antillarum browni), caspian terns (Hydroprogne caspia), double-crested cormorants (Phalacrocorax auritus), and western gulls (Larus occidentalis) that nest in the Southern California Bight. Building on a periodic five year regional monitoring program, we measured contaminant exposure and assessed the utility of seabirds as regional contaminant biomonitors. We found that the eggs of larger, more piscivorous species generally had the highest concentrations of POPs and trace elements while California least terns had the lowest concentrations, except for mercury which was higher in least terns. As expected, DDT concentrations were elevated near the Palos Verdes Superfund site. However, we also detected a previously unknown latitudinal pattern in PBDE concentrations in least terns. POP congener profiles also confirmed differences in contamination in urban least tern colonies closest to urban centers. Though toxicants were at detectable levels across species and sites, concentrations were below those known to cause adverse effects in avian taxa and are steady or declining compared to previous studies in this region. Our results suggest that regional seabird monitoring can inform site-specific remediation and support management and protection of regionally-threatened wildlife and coastal systems. Integration of seabird contaminant data with traditional sediment, water, bivalve and fish monitoring is needed to further our understanding of exposure pathways and food web contaminant transfer.
Collapse
Affiliation(s)
- Corey A Clatterbuck
- San Diego State University, Biology Department, San Diego, CA, USA; University of California-Davis, Graduate Group in Ecology, Davis, CA, USA.
| | | | - Nathan G Dodder
- San Diego State University Research Foundation, San Diego, CA, USA
| | - Catherine Zeeman
- US Fish and Wildlife Service, Carlsbad Fish & Wildlife Office, Carlsbad, CA, USA
| | - Kenneth Schiff
- Southern California Coastal Water Research Project, Costa Mesa, CA, USA
| |
Collapse
|
40
|
Huang H, Zhang Y, Chen W, Chen W, Yuen DA, Ding Y, Chen Y, Mao Y, Qi S. Sources and transformation pathways for dichlorodiphenyltrichloroethane (DDT) and metabolites in soils from Northwest Fujian, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:560-570. [PMID: 29329097 DOI: 10.1016/j.envpol.2017.12.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 06/07/2023]
Abstract
Dicofol (2,2,2-trichloro-1,1-bis-(p-chlorophenyl)ethanol) found in the environment is not only a miticide originated from commercial use, but also a metabolite of dichlorodiphenyltrichloroethane (DDT), which is often overlooked. To verify the sources and transformation pathways of DDT and related metabolites in soils, we measured p,p'-(dicofol + DBP) (sum of p,p'-dicofol and 4,4'-dichlorobenzophenone), DDT and six metabolites in soils from Northwest Fujian, China. The ratios of 1,1,1-trichloro-2-(o-chlorophenyl)-2-(p-chlorophenyl)ethane (o,p'-DDT)/1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane (p,p'-DDT) and the mass balance demonstrated that p,p'-(dicofol + DBP) predominantly originated from p,p'-DDT transformation rather than from actual dicofol application. p,p'-(dicofol + DBP) accounted for 45.0% as the primary metabolites of DDT in this study, more than 1,1-dichloro-2,2-bis-(p-chlorophenyl)ethylene (p,p'-DDE) and 1,1-dichloro-2,2-bis-(p-chlorophenyl)ethane (p,p'-DDD), which might lead to large overestimations of the fresh DDT input by using the traditional ratio of (∑2DDD + ∑2DDE)/∑2DDT (with all o,p'- and p,p'- isomers included). In paddy fields where the conditions alternate between aerobic (dry period) and anaerobic (wet period), both p,p'-DDD and p,p'-DDE were likely to degrade to 1-chloro-2,2-bis-(p-chlorophenyl)ethylene (p,p'-DDMU), which further transformed to 2,2-bis(p-chlorophenyl)ethylene (p,p'-DDNU). Degradation of p,p'-DDMU to p,p'-DDNU mainly occurred in waterlogged paddy soils. However, p,p'-DDNU might not transform to other higher-order metabolites in aerobic surface soils. Overall, our study confirmed p,p'-(dicofol + DBP) as metabolites of p,p'-DDT, suggested DDE and DDD were parallel precursors of DDMU, and further verified the transformation pathways of DDT in surface soils.
Collapse
Affiliation(s)
- Huanfang Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Yuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Wei Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Wenwen Chen
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Dave A Yuen
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yang Ding
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yingjie Chen
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yao Mao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
41
|
Fernando S, Renaguli A, Milligan MS, Pagano JJ, Hopke PK, Holsen TM, Crimmins BS. Comprehensive Analysis of the Great Lakes Top Predator Fish for Novel Halogenated Organic Contaminants by GC×GC-HR-ToF Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2909-2917. [PMID: 29376336 DOI: 10.1021/acs.est.7b05999] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The U.S. Environmental Protection Agency's Great Lakes Fish Monitoring and Surveillance Program (GLFMSP) has traced the fate and transport of anthropogenic chemicals in the Great Lakes region for decades. Isolating and identifying halogenated species in fish is a major challenge due to the complexity of the biological matrix. A nontargeted screening methodology was developed and applied to lake trout using a 2-dimensional gas chromatograph coupled to a high resolution time-of-flight mass spectrometer (GC×GC-HR-ToF MS). Halogenated chemicals were identified using a combination of authentic standards and library spectral matching, with molecular formula estimations provided by exact mass spectral interpretation. In addition to the halogenated chemicals currently being targeted by the GLFMSP, more than 60 nontargeted halogenated species were identified. Most appear to be metabolites or breakdown products of larger halogenated organics. The most abundant compound class was halomethoxyphenols accounting for more than 60% of the total concentration of halogenated compounds in top predator fish from all five Great Lakes illustrating the need and utility of nontargeted halogenated screening of aquatic systems using this platform.
Collapse
Affiliation(s)
- Sujan Fernando
- Center for Air Resources Engineering and Science , Clarkson University , 8 Clarkson Avenue , Potsdam , New York 13699 , United States
| | - Aikebaier Renaguli
- Institute for a Sustainable Environment , Clarkson University , 8 Clarkson Avenue , Potsdam , New York 13699 , United States
| | - Michael S Milligan
- Department of Chemistry and Biochemistry , State University of New York at Fredonia , Houghton Hall , Fredonia , New York 14063 , United States
| | - James J Pagano
- Environmental Research Center , State University of New York at Oswego , Oswego , New York 13126 , United States
| | - Philip K Hopke
- Center for Air Resources Engineering and Science , Clarkson University , 8 Clarkson Avenue , Potsdam , New York 13699 , United States
| | - Thomas M Holsen
- Center for Air Resources Engineering and Science , Clarkson University , 8 Clarkson Avenue , Potsdam , New York 13699 , United States
- Department of Civil & Environmental Engineering , Clarkson University , 8 Clarkson Avenue , Potsdam , New York 13699 , United States
| | - Bernard S Crimmins
- Center for Air Resources Engineering and Science , Clarkson University , 8 Clarkson Avenue , Potsdam , New York 13699 , United States
- Department of Civil & Environmental Engineering , Clarkson University , 8 Clarkson Avenue , Potsdam , New York 13699 , United States
- AEACS, LLC , Alliance , Ohio 44601 , United States
| |
Collapse
|
42
|
Trego ML, Hoh E, Kellar NM, Meszaros S, Robbins MN, Dodder NG, Whitehead A, Lewison RL. Comprehensive Screening Links Halogenated Organic Compounds with Testosterone Levels in Male Delphinus delphis from the Southern California Bight. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3101-3109. [PMID: 29397698 PMCID: PMC6301072 DOI: 10.1021/acs.est.7b04652] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
While environmental pollutants have been associated with changes in endocrine health in cetaceans, efforts to link contaminant exposure with hormones have largely been limited to a list of known, targeted contaminants, overlooking minimally characterized or unknown compounds of emerging concern. To address this gap, we analyzed a suite of potential endocrine disrupting halogenated organic compounds (HOCs) in blubber from 16 male short-beaked common dolphins ( Delphinus delphis) with known maturity status collected from fishery bycatch in the Southern California Bight. We employed a suspect screening mass spectrometry-based method to investigate a wide range of HOCs that were previously observed in cetaceans from the same region. Potential endocrine effects were assessed through the measurement of blubber testosterone. We detected 167 HOCs, including 81 with known anthropogenic sources, 49 of unknown origin, and 37 with known natural sources. The sum of 11 anthropogenic and 4 unknown HOC classes were negatively correlated with blubber testosterone. Evidence suggests that elevated anthropogenic HOC load contributes to impaired testosterone production in mature male D. delphis. The application of this integrative analytical approach to cetacean contaminant analysis allows for inference of the biological consequences of accumulation of HOCs and prioritization of compounds for future environmental toxicology research.
Collapse
Affiliation(s)
- Marisa L. Trego
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA
- Department of Environmental Toxicology, University of California Davis, 1 Shields Avenue, Davis, CA, 95616, USA
- Corresponding Author, Phone: (858) 546-7066
| | - Eunha Hoh
- Graduate School of Public Health, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA
| | - Nicholas M. Kellar
- Southwest Fisheries Science Center, MMTD, NMFS, NOAA, 8901 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Sara Meszaros
- Department of Environmental Toxicology, University of California Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Michelle N. Robbins
- Ocean Associates, Inc., under contract to the Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration - USA
| | - Nathan G. Dodder
- Graduate School of Public Health, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA
| | - Andrew Whitehead
- Department of Environmental Toxicology, University of California Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Rebecca L. Lewison
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA
| |
Collapse
|
43
|
Ouyang H, Wang W, Shu Q, Fu Z. Novel chemiluminescent immunochromatographic assay using a dual-readout signal probe for multiplexed detection of pesticide residues. Analyst 2018; 143:2883-2888. [DOI: 10.1039/c8an00661j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel immunochromatographic assay utilizing luminol-reduced Au nanoparticles as a colorimetric/chemiluminescent dual-readout signal probe was developed for multiplexed detection of pesticide residues.
Collapse
Affiliation(s)
- Hui Ouyang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Ministry of Education)
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing 400716
- China
| | - Wenwen Wang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Ministry of Education)
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing 400716
- China
| | - Qi Shu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Ministry of Education)
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing 400716
- China
| | - Zhifeng Fu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Ministry of Education)
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing 400716
- China
| |
Collapse
|
44
|
Prebihalo SE, Berrier KL, Freye CE, Bahaghighat HD, Moore NR, Pinkerton DK, Synovec RE. Multidimensional Gas Chromatography: Advances in Instrumentation, Chemometrics, and Applications. Anal Chem 2017; 90:505-532. [DOI: 10.1021/acs.analchem.7b04226] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sarah E. Prebihalo
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Kelsey L. Berrier
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Chris E. Freye
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - H. Daniel Bahaghighat
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Nicholas R. Moore
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - David K. Pinkerton
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Robert E. Synovec
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| |
Collapse
|
45
|
Gallistl C, Proctor K, Bader K, Vetter W. Synthesis of the DDT metabolite 2,4-dichloro-1-[2-chloro-1-(4-chlorophenyl)ethenyl]benzene (o-Cl-DDMU) and its detection in abiotic and biotic samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:16815-16828. [PMID: 28573557 DOI: 10.1007/s11356-017-9173-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Technical dichlorodiphenyltrichloroethane (DDT) has been used worldwide as a pesticide since the beginning of the 1940s. Due to its persistence, DDT residues are still ubiquitously distributed in the environment. Photochemical UV degradation has been shown to be a potent degradation path for DDT and most of the resulting photoproducts have been identified up to now. Nevertheless, in 2012, a new DDT metabolite, most likely formed photochemically from DDE, was detected in ray liver samples from Brazil, an area which is highly contaminated with DDT. This study includes photochemical generation, chemical synthesis and isolation of this compound which was verified to consist of both cis- and trans-2,4-dichloro-1-[2-chloro-1-(4-chlorophenyl)ethenyl]benzene. Both stereoisomers were resolved by gas chromatography on a polar capillary column and detected in more than 60 biotic (e.g. marine mammals, birds, human milk) and abiotic samples (fat deposits in kitchen hoods) from different areas all over the world. The stereoisomer distribution and concentrations (0.3-3.9% relative to corresponding 1,1-dichloro-2,2-bis(p-chlorophenyl) ethane (p,p'-DDE) levels) were determined by means of the synthesized analytical standard, indicating the widespread occurrence of this compound as an additional minor metabolite of DDT.
Collapse
Affiliation(s)
- Christoph Gallistl
- Institute of Food Chemistry 170b, University of Hohenheim, Garbenstr. 28, 70599, Stuttgart, Germany
| | - Katie Proctor
- Institute of Food Chemistry 170b, University of Hohenheim, Garbenstr. 28, 70599, Stuttgart, Germany
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - Korinna Bader
- Institute of Food Chemistry 170b, University of Hohenheim, Garbenstr. 28, 70599, Stuttgart, Germany
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Walter Vetter
- Institute of Food Chemistry 170b, University of Hohenheim, Garbenstr. 28, 70599, Stuttgart, Germany.
| |
Collapse
|