1
|
Bulut E, Murphy SI, Strawn LK, Danyluk MD, Wiedmann M, Ivanek R. Risk assessment of Escherichia coli O157:H7 along the farm-to-fork fresh-cut romaine lettuce supply chain. Sci Rep 2025; 15:17421. [PMID: 40394101 DOI: 10.1038/s41598-025-01585-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 05/07/2025] [Indexed: 05/22/2025] Open
Abstract
Outbreaks of Escherichia coli O157:H7 (ECO157) in romaine lettuce remain an ongoing public health concern. Quantitative microbial risk assessment (QMRA) models are key tools for identifying control measures to mitigate foodborne diseases. Here, we introduce a comprehensive QMRA framework along the farm-to-fork fresh-cut romaine lettuce chain, including a novel preharvest difference equation model, to predict annual ECO157 illness cases in the United States and evaluate control strategies. We demonstrated the importance of managing irrigation-related contamination at preharvest to control illness cases. Wildlife intrusions pose lower health risk, followed by runoffs and biological soil amendments of animal origin. When preharvest contamination persists and combines with time-temperature abuses at postharvest, the predicted ECO157 illness cases rise considerably. We showed a broad range of interventions targeting both preharvest and postharvest stages can effectively improve the microbial safety of fresh-cut romaine. The comprehensive practices and interventions explored in this study will aid decision-makers in establishing/enhancing food safety best management practices.
Collapse
Affiliation(s)
- Ece Bulut
- Department of Population Medicine and Diagnostic Sciences, Cornell University, 602 Tower Rd, Ithaca, NY, 14853, USA.
| | - Sarah I Murphy
- Department of Population Medicine and Diagnostic Sciences, Cornell University, 602 Tower Rd, Ithaca, NY, 14853, USA
| | - Laura K Strawn
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Michelle D Danyluk
- Food Science and Human Nutrition Department, University of Florida, Lake Alfred, FL, 33850, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Renata Ivanek
- Department of Population Medicine and Diagnostic Sciences, Cornell University, 602 Tower Rd, Ithaca, NY, 14853, USA
| |
Collapse
|
2
|
Seurat J, Gerbino KR, Meyer JR, Borin JM, Weitz JS. Design, optimization, and inference of biphasic decay of infectious virus particles. J Theor Biol 2025; 600:112042. [PMID: 39799993 DOI: 10.1016/j.jtbi.2025.112042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/05/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
Virus population dynamics are driven by counter-balancing forces of production and loss. Whereas viral production arises from complex interactions with susceptible hosts, the loss of infectious virus particles is often approximated as a first-order kinetic process. As such, experimental protocols to measure infectious virus loss are not typically designed to identify non-exponential decay processes. Here, we propose methods to evaluate if an experimental design is adequate to identify multiphasic virus particle decay and to optimize the sampling times of decay experiments, accounting for uncertainties in viral kinetics. First, we evaluate synthetic scenarios of biphasic decays, with varying decay rates and initial proportions of subpopulations. We show that robust inference of multiphasic decay is more likely when the faster decaying subpopulation predominates insofar as early samples are taken to resolve the faster decay rate. Moreover, design optimization involving non-equal spacing between observations increases the precision of estimation while reducing the number of samples. We then apply these methods to infer multiple decay rates associated with the decay of bacteriophage ('phage') ΦD9, an evolved isolate derived from phage Φ21. A pilot experiment confirmed that ΦD9 decay is multiphasic, but was unable to resolve the rate or proportion of the fast decaying subpopulation(s). We then applied a Fisher information matrix-based design optimization method to propose non-equally spaced sampling times. Using this strategy, we were able to robustly estimate multiple decay rates and the size of the respective subpopulations. Notably, we conclude that the vast majority (94%) of the phage ΦD9 population decays at a rate 16-fold higher than the slow decaying population. Altogether, these results provide both a rationale and a practical approach to quantitatively estimate heterogeneity in viral decay.
Collapse
Affiliation(s)
- Jérémy Seurat
- Institut de Biologie, Ecole Normale Superieure, Paris, 75005, France; School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332, GA, USA
| | - Krista R Gerbino
- Division of Biological Sciences, University of California San Diego, La Jolla, 92093, CA, USA
| | - Justin R Meyer
- Division of Biological Sciences, University of California San Diego, La Jolla, 92093, CA, USA
| | - Joshua M Borin
- Division of Biological Sciences, University of California San Diego, La Jolla, 92093, CA, USA
| | - Joshua S Weitz
- Institut de Biologie, Ecole Normale Superieure, Paris, 75005, France; School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332, GA, USA; Department of Biology, University of Maryland, College Park, 20742, MD, USA.
| |
Collapse
|
3
|
Basualdo J, Iocoli GA, Gómez MA, Zabaloy MC. Dairy effluent management systems as a potential persistence source of Shiga toxin-producing Escherichia coli (STEC) strains. Rev Argent Microbiol 2025; 57:70-77. [PMID: 39516110 DOI: 10.1016/j.ram.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 08/01/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a group of pathogenic enterobacteria of significant public health importance due to their association with highly prevalent human diseases. STEC is ubiquitous in livestock environments, and its presence in the environment emphasizes the importance of properly managing agricultural effluents to reduce health risks from contamination. In order to detect STEC in the effluent treatment systems of two dairy farms ("A" and "B") in the southwest of Buenos Aires province, samples ("A", n=88; "B", n=72) were taken at two different times of the year (winter and spring) and at various points in the treatment systems. Analysis markers for virulence genes (stx, eae, saa, and ehxA) revealed the presence of STEC in 13.1% of the samples, showing an increase in spring and differences between dairy farms possibly related to their maintenance conditions. After manure, sediments showed the highest proportion of STEC-positive samples, which is relevant due to the ability of these strains to survive in the environment through biofilm formation. Eight genetic profiles were identified among all STEC-positive samples, which are associated with STEC strains that can cause hemolytic uremic syndrome (HUS) and other gastrointestinal diseases. This demonstrates the role of dairy farm environments in the region as reservoirs of pathogenic STEC strains and their impact on public health.
Collapse
Affiliation(s)
- Jessica Basualdo
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Gastón A Iocoli
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Marisa A Gómez
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - María Celina Zabaloy
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina.
| |
Collapse
|
4
|
Gómez-Gómez C, Ramos-Barbero MD, Sala-Comorera L, Morales-Cortes S, Vique G, García-Aljaro C, Muniesa M. Persistence of crAssBcn phages in conditions of natural inactivation and disinfection process and their potential role as human source tracking markers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177450. [PMID: 39536863 DOI: 10.1016/j.scitotenv.2024.177450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/16/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Due to their abundance in the human gut, human specificity, and global distribution, some crAss-like phages, including the original p-crAssphage, have been proposed as indicators of human fecal pollution suitable for microbial source tracking (MST). The prevalence of crAss-like phages in water, and consequently their usefulness as MST indicators, is determined by their ability to survive various inactivation and disinfection processes. Recently, we isolated new crAss-like phages (named crAssBcn phages) capable of infecting Bacteroides intestinalis and exhibiting a wide geographical distribution. Here, we assessed the infectivity and DNA integrity of three crAssBcn phages (ΦCrAssBcn6, 10, and 15) and ΦCrAss001, the first crAss-like phage isolated, at different pHs and temperatures, after UV and chlorine treatments, and under natural conditions. Their bacterial host, B. intestinalis and a siphovirus Bacteroides-infecting phage GA17-A were used as controls. Infectious crAssBcn phages remained stable for a month at 4, 22, and 37 °C, and at pH 7, but inactivated when exposed to pH 3. Infective crAssBcn phages decreased by 5 log10 after treatment with 10 ppm of chlorine for 1 min and after UV treatment at a fluence of 5.94 mJ/cm2. However, heat treatment at 60 and 70 °C resulted in only a moderate decrease (<1 log10 and almost 3 log10 units of reduction, respectively). Experiments under natural conditions in outdoor mesocosms revealed that inactivation rates for crAssBcn phages, as for the other microorganisms, were higher in summer (up to 6 log10) than in winter (<4 log10), suggesting a higher incidence of inactivation factors, such as sunlight and temperature, in the warmer months. B. intestinalis was significantly more prone to inactivation than phages in most conditions except for the irradiation treatment. In contrast, crAssBcn phage DNA remained stable, with minimal reduction under most of the tested conditions, except in the summer mesocosm and UV assays.
Collapse
Affiliation(s)
- Clara Gómez-Gómez
- Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, School of Biology, University of Barcelona, Diagonal 643, E-08028 Barcelona, Spain
| | - Maria Dolores Ramos-Barbero
- Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, School of Biology, University of Barcelona, Diagonal 643, E-08028 Barcelona, Spain
| | - Laura Sala-Comorera
- Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, School of Biology, University of Barcelona, Diagonal 643, E-08028 Barcelona, Spain
| | - Sara Morales-Cortes
- Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, School of Biology, University of Barcelona, Diagonal 643, E-08028 Barcelona, Spain
| | - Gloria Vique
- Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, School of Biology, University of Barcelona, Diagonal 643, E-08028 Barcelona, Spain
| | - Cristina García-Aljaro
- Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, School of Biology, University of Barcelona, Diagonal 643, E-08028 Barcelona, Spain
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, School of Biology, University of Barcelona, Diagonal 643, E-08028 Barcelona, Spain.
| |
Collapse
|
5
|
Sojecka AA, Drozd-Rzoska A, Rzoska SJ. Food Preservation in the Industrial Revolution Epoch: Innovative High Pressure Processing (HPP, HPT) for the 21st-Century Sustainable Society. Foods 2024; 13:3028. [PMID: 39410062 PMCID: PMC11475462 DOI: 10.3390/foods13193028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
The paper presents the 'progressive review' for high pressure preservation/processing (HPP) (cold pasteurization) of foods and the next-generation high-pressure and high temperature (HPHT, HPT) food sterilization technologies. It recalls the basics of HPP and HPT, showing their key features and advantages. It does not repeat detailed results regarding HPP and HPT implementations for specific foods, available in numerous excellent review papers. This report focuses on HPP and HPT-related issues that remain challenging and can hinder further progress. For HPP implementations, the reliable modeling of microorganisms' number decay after different times of high pressure treatment or product storage is essential. This report indicates significant problems with model equations standard nonlinear fitting paradigm and introduces the distortion-sensitive routine enabling the ultimate validation. An innovative concept based on the barocaloric effect is proposed for the new generation of HPT technology. The required high temperature appears only for a strictly defined short time period controlled by the maximal pressure value. Results of the feasibility test using neopentyl glycol as the barocaloric medium are presented. Attention is also paid to feedback interactions between socioeconomic and technological issues in the ongoing Industrial Revolution epoch. It indicates economic constraints for HPP and HPT developments and emerging business possibilities. The discussion recalls the inherent feedback interactions between technological and socioeconomic innovations as the driving force for the Industrial Revolution epoch.
Collapse
Affiliation(s)
- Agata Angelika Sojecka
- Department of Marketing, University of Economics in Katowice, ul. 1 Maja 50, 40-257 Katowice, Poland;
| | - Aleksandra Drozd-Rzoska
- Institute of High Pressure Physics Polish Academy of Sciences, ul. Sokołowska 29/37, 01-142 Warsaw, Poland;
| | - Sylwester J. Rzoska
- Institute of High Pressure Physics Polish Academy of Sciences, ul. Sokołowska 29/37, 01-142 Warsaw, Poland;
| |
Collapse
|
6
|
Owade JO, Bergholz TM, Mitchell J. A review of conditions influencing fate of Shiga toxin-producing Escherichia coli O157:H7 in leafy greens. Compr Rev Food Sci Food Saf 2024; 23:e70013. [PMID: 39230391 DOI: 10.1111/1541-4337.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
The accuracy of predictive microbial models used in quantitative microbial risk assessment (QMRA) relies on the relevancy of conditions influencing growth or inactivation. The continued use of log-linear models in studies remains widespread, despite evidence that they fail to accurately account for biphasic kinetics or include parameters to account for the effect of environmental conditions within the model equation. Although many experimental studies detail conditions of interest, studies that do not do so lead to uncertainty in QMRA modeling because the applicability of the predictive microbial models to the conditions in the risk scenarios is questionable or must be extrapolated. The current study systematically reviewed 65 articles that provided quantitative data and documented the conditions influencing the inactivation or growth of Shiga toxin-producing Escherichia coli (STEC) O157:H7 in leafy greens. The conditions were identified and categorized as environmental, biological, chemical, and/or processing. Our study found that temperature (n = 37 studies) and sanitizing and washing procedures (n = 12 studies) were the most studied conditions in the farm-to-table continuum of leafy greens. In addition, relative humidity was also established to affect growth and inactivation in more than one stage in the continuum. This study proposes the evaluation of the interactive effects of multiple conditions in processing and storage stages from controlled experiments as they relate to the fate of STEC O157:H7 in leafy greens for future quantitative analysis.
Collapse
Affiliation(s)
- Joshua Ombaka Owade
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Teresa M Bergholz
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| | - Jade Mitchell
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
7
|
Seurat J, Gerbino KR, Meyer JR, Borin JM, Weitz JS. Design, optimization, and inference of biphasic decay of infectious virus particles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.23.581735. [PMID: 38464262 PMCID: PMC10925204 DOI: 10.1101/2024.02.23.581735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Virus population dynamics are driven by counter-balancing forces of production and loss. Whereas viral production arises from complex interactions with susceptible hosts, the loss of infectious virus particles is often approximated as a first-order kinetic process. As such, experimental protocols to measure infectious virus loss are not typically designed to identify non-exponential decay processes. Here, we propose methods to evaluate if an experimental design is adequate to identify multiphasic virus particle decay and to optimize the sampling times of decay experiments, accounting for uncertainties in viral kinetics. First, we evaluate synthetic scenarios of biphasic decays, with varying decay rates and initial proportions of subpopulations. We show that robust inference of multiphasic decay is more likely when the faster decaying subpopulation predominates insofar as early samples are taken to resolve the faster decay rate. Moreover, design optimization involving non-equal spacing between observations increases the precision of estimation while reducing the number of samples. We then apply these methods to infer multiple decay rates associated with the decay of bacteriophage ('phage') Φ D 9 , an evolved isolate derived from phage Φ 21 . A pilot experiment confirmed that Φ D 9 decay is multiphasic, but was unable to resolve the rate or proportion of the fast decaying subpopulation(s). We then applied a Fisher information matrix-based design optimization method to propose non-equally spaced sampling times. Using this strategy, we were able to robustly estimate multiple decay rates and the size of the respective subpopulations. Notably, we conclude that the vast majority (94%) of the phage Φ D 9 population decays at a rate 16-fold higher than the slow decaying population. Altogether, these results provide both a rationale and a practical approach to quantitatively estimate heterogeneity in viral decay.
Collapse
Affiliation(s)
- Jérémy Seurat
- Institut de Biologie, Ecole Normale Superieure, Paris, 75005, France
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332, GA, USA
| | - Krista R. Gerbino
- Division of Biological Sciences, University of California San Diego, La Jolla, 92093, CA, USA
| | - Justin R. Meyer
- Division of Biological Sciences, University of California San Diego, La Jolla, 92093, CA, USA
| | - Joshua M. Borin
- Division of Biological Sciences, University of California San Diego, La Jolla, 92093, CA, USA
| | - Joshua S. Weitz
- Institut de Biologie, Ecole Normale Superieure, Paris, 75005, France
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332, GA, USA
- Department of Biology, University of Maryland, College Park, 20742, MD, USA
| |
Collapse
|
8
|
Su Y, Gao R, Huang F, Liang B, Guo J, Fan L, Wang A, Gao SH. Occurrence, transmission and risks assessment of pathogens in aquatic environments accessible to humans. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120331. [PMID: 38368808 DOI: 10.1016/j.jenvman.2024.120331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Pathogens are ubiquitously detected in various natural and engineered water systems, posing potential threats to public health. However, it remains unclear which human-accessible waters are hotspots for pathogens, how pathogens transmit to these waters, and what level of health risk associated with pathogens in these environments. This review collaboratively focuses and summarizes the contamination levels of pathogens on the 5 water systems accessible to humans (natural water, drinking water, recreational water, wastewater, and reclaimed water). Then, we showcase the pathways, influencing factors and simulation models of pathogens transmission and survival. Further, we compare the health risk levels of various pathogens through Quantitative Microbial Risk Assessment (QMRA), and assess the limitations of water-associated QMRA application. Pathogen levels in wastewater are consistently higher than in other water systems, with no significant variation for Cryptosporidium spp. among five water systems. Hydraulic conditions primarily govern the transmission of pathogens into human-accessible waters, while environmental factors such as temperature impact pathogens survival. The median and mean values of computed public health risk levels posed by pathogens consistently surpass safety thresholds, particularly in the context of recreational waters. Despite the highest pathogens levels found in wastewater, the calculated health risk is significantly lower than in other water systems. Except pathogens concentration, variables like the exposure mode, extent, and frequency are also crucial factors influencing the public health risk in water systems. This review shares valuable insights to the more accurate assessment and comprehensive management of public health risk in human-accessible water environments.
Collapse
Affiliation(s)
- Yiyi Su
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Rui Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Fang Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Lu Fan
- Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Shu-Hong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China.
| |
Collapse
|
9
|
Lievens EJP, Agarkova IV, Dunigan DD, Van Etten JL, Becks L. Efficient assays to quantify the life history traits of algal viruses. Appl Environ Microbiol 2023; 89:e0165923. [PMID: 38092674 PMCID: PMC10734466 DOI: 10.1128/aem.01659-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 12/22/2023] Open
Abstract
IMPORTANCE Viruses play a crucial role in microbial ecosystems by liberating nutrients and regulating the growth of their hosts. These effects are governed by viral life history traits, i.e., by the traits determining viral reproduction and survival. Understanding these traits is essential to predicting viral effects, but measuring them is generally labor intensive. In this study, we present efficient methods to quantify the full life cycle of lytic viruses. We developed these methods for viruses infecting unicellular Chlorella algae but expect them to be applicable to other lytic viruses that can be quantified by flow cytometry. By making viral phenotypes accessible, our methods will support research into the diversity and ecological effects of microbial viruses.
Collapse
Affiliation(s)
- Eva J. P. Lievens
- Aquatic Ecology and Evolution Group, Limnological Institute, University of Konstanz, Konstanz, Germany
| | - Irina V. Agarkova
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - David D. Dunigan
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - James L. Van Etten
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Lutz Becks
- Aquatic Ecology and Evolution Group, Limnological Institute, University of Konstanz, Konstanz, Germany
| |
Collapse
|
10
|
Ren W, Feng Y. Persistence of human- and cattle-associated Bacteroidales and mitochondrial DNA markers in freshwater mesocosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165742. [PMID: 37487899 DOI: 10.1016/j.scitotenv.2023.165742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Accurate identification of the origins of non-point source pollution is essential for the effective control of fecal pollution. Host-associated Bacteroidales and mitochondrial DNA (mtDNA) markers have been developed to identify the sources of human and cattle fecal pollution. However, the differences in persistence between these two types of markers under different environmental conditions are still poorly understood. Here, we conducted mesocosm experiments to investigate the influence of indigenous microbiota and nutrients on the decay of Bacteroidales and mtDNA markers associated with humans and cattle. Raw sewage or cattle feces were inoculated into mesocosms containing natural eutrophic water, sterile eutrophic water or artificial freshwater. The Bacteroidales markers HF183 (human) and CowM3 (cattle) and mtDNA markers HcytB (human) and QMIBo (cattle) were quantified using the quantitative polymerase chain reaction (qPCR) assays. All markers but HF183 decreased the fastest in the presence of indigenous microbiota. Nutrients caused a decrease in the persistence of HF183; however, no significant nutrient effects were observed for HcytB, CowM3, and QMIBo. The time to reach one log reduction (T90) for HF183 and HcytB was similar; CowM3 reached T90 earlier than QMIBo in all the treatments but eutrophic water. E. coli persisted longer than both Bacteroidales and mtDNA markers in the mesocosms regardless of inoculum type. Additionally, 16S rRNA gene amplicon sequencing was used to determine the changes in bacterial communities accompanying the marker decay. Analysis using the SourceTracker software showed that bacterial communities in the mesocosms became more dissimilar to those in the corresponding inoculants over time. Our results indicate that environmental factors are important determinants of genetic markers' persistence, but their impact can vary depending on the genetic markers. The cattle Bacteroidales markers may be more suitable for determining recent fecal contamination than cattle mtDNA.
Collapse
Affiliation(s)
- Wenjing Ren
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL 36849, USA
| | - Yucheng Feng
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
11
|
Gamża AM, Hagenaars TJ, Koene MGJ, de Jong MCM. Combining a parsimonious mathematical model with infection data from tailor-made experiments to understand environmental transmission. Sci Rep 2023; 13:12986. [PMID: 37563156 PMCID: PMC10415373 DOI: 10.1038/s41598-023-38817-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/15/2023] [Indexed: 08/12/2023] Open
Abstract
Although most infections are transmitted through the environment, the processes underlying the environmental stage of transmission are still poorly understood for most systems. Improved understanding of the environmental transmission dynamics is important for effective non-pharmaceutical intervention strategies. To study the mechanisms underlying environmental transmission we formulated a parsimonious modelling framework including hypothesised mechanisms of pathogen dispersion and decay. To calibrate and validate the model, we conducted a series of experiments studying distance-dependent transmission of Campylobacter jejuni in broilers. We obtained informative simultaneous estimates for all three model parameters: the parameter of C. jejuni inactivation, the diffusion coefficient describing pathogen dispersion, and the transmission rate parameter. The time and distance dependence of transmission in the fitted model is quantitatively consistent with marked spatiotemporal patterns in the experimental observations. These results, for C. jejuni in broilers, show that the application of our modelling framework to suitable transmission data can provide mechanistic insight in environmental pathogen transmission.
Collapse
Affiliation(s)
- Anna M Gamża
- Quantitative Veterinary Epidemiology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands.
- Wageningen Bioveterinary Research, Wageningen University and Research, 8221 RA, Lelystad, The Netherlands.
| | - Thomas J Hagenaars
- Wageningen Bioveterinary Research, Wageningen University and Research, 8221 RA, Lelystad, The Netherlands.
| | - Miriam G J Koene
- Wageningen Bioveterinary Research, Wageningen University and Research, 8221 RA, Lelystad, The Netherlands
| | - Mart C M de Jong
- Quantitative Veterinary Epidemiology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
12
|
Brandl MT, Ivanek R, Allende A, Munther DS. Predictive Population Dynamics of Escherichia coli O157:H7 and Salmonella enterica on Plants: a Mechanistic Mathematical Model Based on Weather Parameters and Bacterial State. Appl Environ Microbiol 2023; 89:e0070023. [PMID: 37347166 PMCID: PMC10370311 DOI: 10.1128/aem.00700-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/24/2023] [Indexed: 06/23/2023] Open
Abstract
Weather affects key aspects of bacterial behavior on plants but has not been extensively investigated as a tool to assess risk of crop contamination with human foodborne pathogens. A novel mechanistic model informed by weather factors and bacterial state was developed to predict population dynamics on leafy vegetables and tested against published data tracking Escherichia coli O157:H7 (EcO157) and Salmonella enterica populations on lettuce and cilantro plants. The model utilizes temperature, radiation, and dew point depression to characterize pathogen growth and decay rates. Additionally, the model incorporates the population level effect of bacterial physiological state dynamics in the phyllosphere in terms of the duration and frequency of specific weather parameters. The model accurately predicted EcO157 and S. enterica population sizes on lettuce and cilantro leaves in the laboratory under various conditions of temperature, relative humidity, light intensity, and cycles of leaf wetness and dryness. Importantly, the model successfully predicted EcO157 population dynamics on 4-week-old romaine lettuce plants under variable weather conditions in nearly all field trials. Prediction of initial EcO157 population decay rates after inoculation of 6-week-old romaine plants in the same field study was better than that of long-term survival. This suggests that future augmentation of the model should consider plant age and species morphology by including additional physical parameters. Our results highlight the potential of a comprehensive weather-based model in predicting contamination risk in the field. Such a modeling approach would additionally be valuable for timing field sampling in quality control to ensure the microbial safety of produce. IMPORTANCE Fruits and vegetables are important sources of foodborne disease. Novel approaches to improve the microbial safety of produce are greatly lacking. Given that bacterial behavior on plant surfaces is highly dependent on weather factors, risk assessment informed by meteorological data may be an effective tool to integrate into strategies to prevent crop contamination. A mathematical model was developed to predict the population trends of pathogenic E. coli and S. enterica, two major causal agents of foodborne disease associated with produce, on leaves. Our model is based on weather parameters and rates of switching between the active (growing) and inactive (nongrowing) bacterial state resulting from prevailing environmental conditions on leaf surfaces. We demonstrate that the model has the ability to accurately predict dynamics of enteric pathogens on leaves and, notably, sizes of populations of pathogenic E. coli over time after inoculation onto the leaves of young lettuce plants in the field.
Collapse
Affiliation(s)
- Maria T. Brandl
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| | - Renata Ivanek
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Ana Allende
- Research Group of Microbiology and Quality of Fruit and Vegetables, Food Science and Technology Department, CEBAS-CSIC, Murcia, Spain
| | - Daniel S. Munther
- Department of Mathematics and Statistics, Cleveland State University, Cleveland, Ohio, USA
| |
Collapse
|
13
|
Metcalf R, White HL, Ormsby MJ, Oliver DM, Quilliam RS. From wastewater discharge to the beach: Survival of human pathogens bound to microplastics during transfer through the freshwater-marine continuum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120955. [PMID: 36581243 DOI: 10.1016/j.envpol.2022.120955] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/05/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Large quantities of microplastics are regularly discharged from wastewater treatment plants (WWTPs) into the aquatic environment. Once released, these plastics can rapidly become colonised by microbial biofilm, forming distinct plastisphere communities which may include potential pathogens. We hypothesised that the protective environment afforded by the plastisphere would facilitate the survival of potential pathogens during transitions between downstream environmental matrices and thus increase persistence and the potential for environmental dissemination of pathogens. The survival of Escherichia coli, Enterococcus faecalis and Pseudomonas aeruginosa colonising polyethylene or glass particles has been quantified in mesocosm incubation experiments designed to simulate, (1) the direct release of microplastics from WWTPs into freshwater and seawater environments; and (2) the movement of microplastics downstream following discharge from the WWTP through the river-estuary-marine-beach continuum. Culturable E. coli, E. faecalis and P. aeruginosa were successfully able to survive and persist on particles whether they remained in one environmental matrix or transitioned between different environmental matrices. All three bacteria were still detectable on both microplastic and glass particles after 25 days, with higher concentrations on microplastic compared to glass particles; however, there were no differences in bacterial die-off rates between the two materials. This potential for environmental survival of pathogens in the plastisphere could facilitate their transition into places where human exposure is greater (e.g., bathing waters and beach environments). Therefore, risks associated with pathogen-microplastic co-pollutants in the environment, emphasises the urgency for updated regulations on wastewater discharge and the management of microplastic generation and release.
Collapse
Affiliation(s)
- Rebecca Metcalf
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - Hannah L White
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Michael J Ormsby
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - David M Oliver
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
14
|
Weissberg O, Aharonovich D, Sher D. Phototroph-heterotroph interactions during growth and long-term starvation across Prochlorococcus and Alteromonas diversity. THE ISME JOURNAL 2023; 17:227-237. [PMID: 36335212 PMCID: PMC9860064 DOI: 10.1038/s41396-022-01330-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 11/08/2022]
Abstract
Due to their potential impact on ecosystems and biogeochemistry, microbial interactions, such as those between phytoplankton and bacteria, have been studied intensively using specific model organisms. Yet, to what extent interactions differ between closely related organisms, or how these interactions change over time, or culture conditions, remains unclear. Here, we characterize the interactions between five strains each of two globally abundant marine microorganisms, Prochlorococcus (phototroph) and Alteromonas (heterotroph), from the first encounter between individual strains and over more than a year of repeated cycles of exponential growth and long-term nitrogen starvation. Prochlorococcus-Alteromonas interactions had little effect on traditional growth parameters such as Prochlorococcus growth rate, maximal fluorescence, or lag phase, affecting primarily the dynamics of culture decline, which we interpret as representing cell mortality and lysis. The shape of the Prochlorococcus decline curve and the carrying capacity of the co-cultures were determined by the phototroph and not the heterotroph strains involved. Comparing various mathematical models of culture mortality suggests that Prochlorococcus death rate increases over time in mono-cultures but decreases in co-cultures, with cells potentially becoming more resistant to stress. Our results demonstrate intra-species differences in ecologically relevant co-culture outcomes. These include the recycling efficiency of N and whether the interactions are mutually synergistic or competitive. They also highlight the information-rich growth and death curves as a useful readout of the interaction phenotype.
Collapse
Affiliation(s)
- Osnat Weissberg
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Dikla Aharonovich
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Daniel Sher
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
15
|
Murphy RJ, Maclaren OJ, Calabrese AR, Thomas PB, Warne DJ, Williams ED, Simpson MJ. Computationally efficient framework for diagnosing, understanding and predicting biphasic population growth. J R Soc Interface 2022; 19:20220560. [PMID: 36475389 PMCID: PMC9727659 DOI: 10.1098/rsif.2022.0560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Throughout the life sciences, biological populations undergo multiple phases of growth, often referred to as biphasic growth for the commonly encountered situation involving two phases. Biphasic population growth occurs over a massive range of spatial and temporal scales, ranging from microscopic growth of tumours over several days, to decades-long regrowth of corals in coral reefs that can extend for hundreds of kilometres. Different mathematical models and statistical methods are used to diagnose, understand and predict biphasic growth. Common approaches can lead to inaccurate predictions of future growth that may result in inappropriate management and intervention strategies being implemented. Here, we develop a very general computationally efficient framework, based on profile likelihood analysis, for diagnosing, understanding and predicting biphasic population growth. The two key components of the framework are as follows: (i) an efficient method to form approximate confidence intervals for the change point of the growth dynamics and model parameters and (ii) parameter-wise profile predictions that systematically reveal the influence of individual model parameters on predictions. To illustrate our framework we explore real-world case studies across the life sciences.
Collapse
Affiliation(s)
- Ryan J. Murphy
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Oliver J. Maclaren
- Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | - Alivia R. Calabrese
- Queensland Bladder Cancer Initiative and School of Biomedical Sciences, Faculty of Health, Queensland University of Technology at Translational Research Institute, Brisbane, Australia
| | - Patrick B. Thomas
- Queensland Bladder Cancer Initiative and School of Biomedical Sciences, Faculty of Health, Queensland University of Technology at Translational Research Institute, Brisbane, Australia
| | - David J. Warne
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Elizabeth D. Williams
- Queensland Bladder Cancer Initiative and School of Biomedical Sciences, Faculty of Health, Queensland University of Technology at Translational Research Institute, Brisbane, Australia
| | - Matthew J. Simpson
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
16
|
Dean K, Mitchell J. Identifying water quality and environmental factors that influence indicator and pathogen decay in natural surface waters. WATER RESEARCH 2022; 211:118051. [PMID: 35051677 DOI: 10.1016/j.watres.2022.118051] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Biphasic decay has been observed for indicators and pathogens in bench-scale and in-situ water experiments for decades, however, first-order decay kinetics continue to be applied to persistence data because of their simplicity and ease of application. Model uncertainty introduced by broadly applying first-order decay kinetics to persistence data may lead to erroneous decision making in the fields of water management and protection. As surface waters are exposed to highly variable environmental and water quality factors that influence microbial and viral persistence, it is expected that first-order decay kinetics are not representative of most of the persistence literature for indicators and pathogens in surface water matrices. This review compiled the methods and results of 61 studies that conducted experiments evaluating the persistence of fecal indicator bacteria (FIB), bacteriophages, pathogenic bacteria, viruses, and protozoa in natural surface water matrices. The goals of this review were trifold: (1) collate studies in the literature with data available for future persistence modeling, (2) present the current state of knowledge with regards to the environmental and water quality factors affecting persistence in natural surface waters, and (3) identify recurrent evidence for interactions between the frequently studied factors to inform future factor analyses. Comparing the methods and results across the 61 studies suggest potential interactions between sunlight and water type; sunlight and method of detection; predation and water type; predation and temperature; and water type and method of detection. The majority of the identified literature evaluated FIB or bacteria persistence; future experiments are needed that focus on protozoa, brackish or marine water types, and molecular-based methods of detection.
Collapse
Affiliation(s)
- Kara Dean
- Department of Biosystems and Agricultural Engineering, Michigan State University, USA
| | - Jade Mitchell
- Department of Biosystems and Agricultural Engineering, Michigan State University, USA.
| |
Collapse
|
17
|
Nag R, Russell L, Nolan S, Auer A, Markey BK, Whyte P, O'Flaherty V, Bolton D, Fenton O, Richards KG, Cummins E. Quantitative microbial risk assessment associated with ready-to-eat salads following the application of farmyard manure and slurry or anaerobic digestate to arable lands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151227. [PMID: 34715220 DOI: 10.1016/j.scitotenv.2021.151227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Farmyard manure and slurry (FYM&S) and anaerobic digestate are potentially valuable soil conditioners providing important nutrients for plant development and growth. However, these organic fertilisers may pose a microbial health risk to humans. A quantitative microbial risk assessment (QMRA) model was developed to investigate the potential human exposure to pathogens following the application of FYM&S and digestate to agricultural land. The farm-to-fork probabilistic model investigated the fate of microbial indicators (total coliforms and enterococci) and foodborne pathogens in the soil with potential contamination of ready-to-eat salads (RTEs) at the point of human consumption. The processes examined included pathogen inactivation during mesophilic anaerobic digestion (M-AD), post-AD pasteurisation, storage, dilution while spreading, decay in soil, post-harvest washing processes, and finally, the potential growth of the pathogen during refrigeration/storage at the retail level in the Irish context. The QMRA highlighted a very low annual probability of risk (Pannual) due to Clostridium perfringens, norovirus, and Salmonella Newport across all scenarios. Mycobacterium avium may result in a very high mean Pannual for the application of raw FYM&S, while Cryptosporidium parvum and pathogenic E. coli showed high Pannual, and Listeria monocytogenes displayed moderate Pannual for raw FYM&S application. The use of AD reduces this risk; however, pasteurisation reduces the Pannual to an even greater extent posing a very low risk. An overall sensitivity analysis revealed that mesophilic-AD's inactivation effect is the most sensitive parameter of the QMRA, followed by storage and the decay on the field (all negatively correlated to risk estimate). The information generated from this model can help to inform guidelines for policymakers on the maximum permissible indicator or pathogen contamination levels in the digestate. The QMRA can also provide the AD industry with a safety assessment of pathogenic organisms resulting from the digestion of FYM&S.
Collapse
Affiliation(s)
- Rajat Nag
- University College Dublin, School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland.
| | - Lauren Russell
- Teagasc, Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland; University College Dublin, School of Veterinary Medicine, Belfield, Dublin 4, Ireland.
| | - Stephen Nolan
- National University of Ireland Galway, School of Natural Sciences and Ryan Institute, Galway, Ireland.
| | - Agathe Auer
- University College Dublin, School of Veterinary Medicine, Belfield, Dublin 4, Ireland.
| | - Bryan K Markey
- University College Dublin, School of Veterinary Medicine, Belfield, Dublin 4, Ireland.
| | - Paul Whyte
- University College Dublin, School of Veterinary Medicine, Belfield, Dublin 4, Ireland.
| | - Vincent O'Flaherty
- National University of Ireland Galway, School of Natural Sciences and Ryan Institute, Galway, Ireland.
| | - Declan Bolton
- Teagasc, Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland.
| | - Owen Fenton
- Teagasc, Environment Research Centre, Johnstown Castle, County Wexford, Ireland.
| | - Karl G Richards
- Teagasc, Environment Research Centre, Johnstown Castle, County Wexford, Ireland.
| | - Enda Cummins
- University College Dublin, School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland.
| |
Collapse
|
18
|
Eisfeld C, van der Wolf JM, van Breukelen BM, Medema G, Velstra J, Schijven JF. Die-off of plant pathogenic bacteria in tile drainage and anoxic water from a managed aquifer recharge site. PLoS One 2021; 16:e0250338. [PMID: 33951075 PMCID: PMC8099070 DOI: 10.1371/journal.pone.0250338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/05/2021] [Indexed: 11/19/2022] Open
Abstract
Managed aquifer recharge (MAR) can provide irrigation water and overcome water scarcity in agriculture. Removal of potentially present plant pathogens during MAR is essential to prevent crop diseases. We studied the die-off of three plant pathogenic bacteria in water microcosms with natural or filtered tile drainage water (TDW) at 10 and 25°C and with natural anoxic aquifer water (AW) at 10°C from a MAR site. These bacteria were: Ralstonia solanacearum (bacterial wilt), and the soft rot Pectobacteriaceae (SRP) Dickeya solani and Pectobacterium carotovorum sp. carotovorum (soft rot, blackleg). They are present in surface waters and cause destructive crop diseases worldwide which have been linked to contaminated irrigation water. Nevertheless, little is known about the survival of the SRP in aqueous environments and no study has investigated the persistence of R. solanacearum under natural anoxic conditions. We found that all bacteria were undetectable in 0.1 mL samples within 19 days under oxic conditions in natural TDW at 10°C, using viable cell counting, corresponding to 3-log10 reduction by die-off. The SRP were no longer detected within 6 days at 25°C, whereas R. solanacearum was detectable for 25 days. Whereas in anoxic natural aquifer water at 10°C, the bacterial concentrations declined slower and the detection limit was reached within 56 days. Finally, we modelled the inactivation curves with a modified Weibull model that can simulate different curve shapes such as shoulder phenomena in the beginning and long tails reflecting persistent bacterial populations. The non-linear model was shown to be a reliable tool to predict the die-off of the analysed plant pathogenic bacteria, suggesting its further application to other pathogenic microorganisms in the context of microbial risk assessment.
Collapse
Affiliation(s)
- Carina Eisfeld
- Faculty of Civil Engineering and Geosciences, Department of Water Management, Delft University of Technology, Delft, The Netherlands
| | | | - Boris M. van Breukelen
- Faculty of Civil Engineering and Geosciences, Department of Water Management, Delft University of Technology, Delft, The Netherlands
| | - Gertjan Medema
- Faculty of Civil Engineering and Geosciences, Department of Water Management, Delft University of Technology, Delft, The Netherlands
- KWR Watercycle Research Institute, Nieuwegein, The Netherlands
| | | | - Jack F. Schijven
- Department of Earth Sciences, Environmental Hydrogeology Group, Utrecht University, Utrecht, The Netherlands
- Department of Statistics, Informatics and Modelling, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| |
Collapse
|
19
|
de Oliveira LC, Torres-Franco AF, Lopes BC, Santos BSÁDS, Costa EA, Costa MS, Reis MTP, Melo MC, Polizzi RB, Teixeira MM, Mota CR. Viability of SARS-CoV-2 in river water and wastewater at different temperatures and solids content. WATER RESEARCH 2021; 195:117002. [PMID: 33714910 PMCID: PMC7927590 DOI: 10.1016/j.watres.2021.117002] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 05/04/2023]
Abstract
COVID-19 patients can excrete viable SARS-CoV-2 virus via urine and faeces, which has raised concerns over the possibility of COVID-19 transmission via aerosolized contaminated water or via the faecal-oral route. These concerns are especially exacerbated in many low- and middle-income countries, where untreated sewage is frequently discharged to surface waters. SARS-CoV-2 RNA has been detected in river water (RW) and raw wastewater (WW) samples. However, little is known about SARS-CoV-2 viability in these environmental matrices. Determining the persistence of SARS-CoV-2 in water under different environmental conditions is of great importance for basic assumptions in quantitative microbial risk assessment (QMRA). In this study, the persistence of SARS-CoV-2 was assessed using plaque assays following spiking of RW and WW samples with infectious SARS-CoV-2 that was previously isolated from a COVID-19 patient. These assays were carried out on autoclaved RW and WW samples, filtered (0.22 µm) and unfiltered, at 4 °C and 24 °C. Linear and nonlinear regression models were adjusted to the data. The Weibull regression model achieved the lowest root mean square error (RMSE) and was hence chosen to estimate T90 and T99 (time required for 1 log and 2 log reductions, respectively). SARS-CoV-2 remained viable longer in filtered compared with unfiltered samples. RW and WW showed T90 values of 1.9 and 1.2 day and T99 values of 6.4 and 4.0 days, respectively. When samples were filtered through 0.22 µm pore size membranes, T90 values increased to 3.3 and 1.5 days, and T99 increased to 8.5 and 4.5 days, for RW and WW samples, respectively. Remarkable increases in SARS-CoV-2 persistence were observed in assays at 4 °C, which showed T90 values of 7.7 and 5.5 days, and T99 values of 18.7 and 17.5 days for RW and WW, respectively. These results highlight the variability of SARS-CoV-2 persistence in water and wastewater matrices and can be highly relevant to efforts aimed at quantifying water-related risks, which could be valuable for understanding and controlling the pandemic.
Collapse
Affiliation(s)
- Leonardo Camilo de Oliveira
- Biochemistry and Immunology Department, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Andrés Felipe Torres-Franco
- Deparment of Sanitary and Environmental Engineering Department, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Bruna Coelho Lopes
- Deparment of Sanitary and Environmental Engineering Department, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | | | - Erica Azevedo Costa
- Veterinary School, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | - Mauro Martins Teixeira
- Biochemistry and Immunology Department, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
| | - César Rossas Mota
- Deparment of Sanitary and Environmental Engineering Department, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
20
|
Linsak DT, Kese D, Broznic D, Lusic DV, Cenov A, Moric M, Gobin I. Sea water whirlpool spa as a source of Legionella infection. JOURNAL OF WATER AND HEALTH 2021; 19:242-253. [PMID: 33901021 DOI: 10.2166/wh.2021.150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bacterial pneumonia caused by the inhalation of aerosols contaminated with Legionella spp. is also known as Legionnaires' disease. In this study, we report a case of pneumonia caused by Legionella pneumophila sg.1 in a 58-year-old man who visited a sea water-filled whirlpool within a hotel and spa complex. The patient's Legionella urine antigen test was positive for L. pneumophila sg.1. During the field study, samples were taken from both the outdoor and indoor sea water-filled pools. Samples from the whirlpool were culture positive for L. pneumophila sg.1. Typing results indicated sea water isolate belonged to Sequence type ST82 and Allentown/France MAb subgroup. In vitro experiments showed that L. pneumophila strains are able to survive within sea water up to 7 days, and survival time is prolonged with sea water dilution. Also, our results indicate that L. pneumophila Allentown strain was the most resistant to adverse conditions in sea water with the highest values of DT50 (420 min) and DT90 (1,396 min). The possible source of infection was adding potable water for filling up the whirlpool. The survival of the L. pneumophila in additionally conditioned sea water should be considered in a further study.
Collapse
Affiliation(s)
- Dijana Tomic Linsak
- Faculty of Medicine, Department of Health Ecology, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia E-mail: ; Teaching Institute of Public Health of Primorje-Gorski Kotar County, Kresimirova 52a, 51000 Rijeka, Croatia
| | - Darja Kese
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana, Slovenia
| | - Dalibor Broznic
- Faculty of Medicine, Department of Medical Chemistry, Biochemistry and Clinical Chemistry, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia
| | - Darija Vukic Lusic
- Faculty of Medicine, Department of Health Ecology, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia E-mail: ; Teaching Institute of Public Health of Primorje-Gorski Kotar County, Kresimirova 52a, 51000 Rijeka, Croatia
| | - Arijana Cenov
- Teaching Institute of Public Health of Primorje-Gorski Kotar County, Kresimirova 52a, 51000 Rijeka, Croatia
| | - Milan Moric
- Teaching Institute of Public Health of Primorje-Gorski Kotar County, Kresimirova 52a, 51000 Rijeka, Croatia
| | - Ivana Gobin
- Faculty of Medicine, Department of Microbiology, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia
| |
Collapse
|
21
|
Impact of Freeze-Thaw Cycles on Die-Off of E. coli and Intestinal Enterococci in Deer and Dairy Faeces: Implications for Landscape Contamination of Watercourses. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17196999. [PMID: 32987924 PMCID: PMC7579438 DOI: 10.3390/ijerph17196999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 01/28/2023]
Abstract
Characterising faecal indicator organism (FIO) survival in the environment is important for informing land management and minimising public health risk to downstream water users. However, key gaps in knowledge include understanding how wildlife contribute to catchment-wide FIO sources and how FIO survival is affected by low environmental temperatures. The aim of this study was to quantify E. coli and intestinal enterococci die-off in dairy cow versus red deer faecal sources exposed to repeated freeze–thaw cycles under controlled laboratory conditions. Survival of FIOs in water exposed to freeze–thaw was also investigated to help interpret survival responses. Both E. coli and intestinal enterococci were capable of surviving sub-freezing conditions with the faeces from both animals able to sustain relatively high FIO concentrations, as indicated by modelling, and observations revealing persistence in excess of 11 days and in some cases confirmed beyond 22 days. Die-off responses of deer-derived FIOs in both faeces and water exposed to low temperatures provide much needed information to enable better accounting of the varied catchment sources of faecal pollution and results from this study help constrain the parameterisation of die-off coefficients to better inform more integrated modelling and decision-making for microbial water quality management.
Collapse
|
22
|
Evidence for a Growth Zone for Deep-Subsurface Microbial Clades in Near-Surface Anoxic Sediments. Appl Environ Microbiol 2020; 86:AEM.00877-20. [PMID: 32709727 DOI: 10.1128/aem.00877-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/17/2020] [Indexed: 11/20/2022] Open
Abstract
Global marine sediments harbor a large and highly diverse microbial biosphere, but the mechanism by which this biosphere is established during sediment burial is largely unknown. During burial in marine sediments, concentrations of easily metabolized organic compounds and total microbial cell abundance decrease. However, it is unknown whether some microbial clades increase with depth. We show total population increases in 38 microbial families over 3 cm of sediment depth in the upper 7.5 cm of White Oak River (WOR) estuary sediments. Clades that increased with depth were more often associated with one or more of the following: anaerobes, uncultured, or common in deep marine sediments relative to those that decreased. Maximum doubling times (in situ steady-state growth rates could be faster to balance cell decay) were estimated as 2 to 25 years by combining sedimentation rate with either quantitative PCR (qPCR) or the product of the fraction read abundance of 16S rRNA genes and total cell counts (FRAxC). Doubling times were within an order of magnitude of each other in two adjacent cores, as well as in two laboratory enrichments of Cape Lookout Bight (CLB), NC, sediments (average difference of 28% ± 19%). qPCR and FRAxC in sediment cores and laboratory enrichments produced similar doubling times for key deep subsurface uncultured clades Bathyarchaeota (8.7 ± 1.9 years) and Thermoprofundales/MBG-D (4.1 ± 0.7 years). We conclude that common deep subsurface microbial clades experience a narrow zone of growth in shallow sediments, offering an opportunity for selection of long-term subsistence traits after resuspension events.IMPORTANCE Many studies show that the uncultured microbes that dominate global marine sediments do not actually increase in population size as they are buried in marine sediments; rather, they exist in a sort of prolonged torpor for thousands of years. This is because, although studies have shown biomass turnover in these clades, no evidence has ever been found that deeper sediments have larger populations for specific clades than shallower layers. We discovered that they actually do increase population sizes during burial, but only in the upper few centimeters. This suggests that marine sediments may be a vast repository of mostly nongrowing microbes with a thin and relatively rapid area of cell abundance increase in the upper 10 cm, offering a chance for subsurface organisms to undergo natural selection.
Collapse
|
23
|
Reichert EN, Hume JCC, Sagara I, Healy SA, Assadou MH, Guindo MA, Barney R, Rashid A, Yang IK, Golden A, Domingo GJ, Duffy PE, Slater HC. Ultra-sensitive RDT performance and antigen dynamics in a high-transmission Plasmodium falciparum setting in Mali. Malar J 2020; 19:323. [PMID: 32883286 PMCID: PMC7469912 DOI: 10.1186/s12936-020-03389-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/25/2020] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The recent expansion of tools designed to accurately quantify malaria parasite-produced antigens has enabled us to evaluate the performance of rapid diagnostic tests (RDTs) as a function of the antigens they detect-typically histidine rich protein 2 (HRP2) or lactate dehydrogenase (LDH). METHODS For this analysis, whole blood specimens from a longitudinal study in Bancoumana, Mali were used to evaluate the performance of the ultra-sensitive HRP2-based Alere™ Malaria Ag P.f RDT (uRDT). The samples were collected as part of a transmission-blocking vaccine trial in a high transmission region for Plasmodium falciparum malaria. Furthermore, antigen dynamics after successful anti-malarial drug treatment were evaluated in these samples using the Q-Plex Human Malaria Array (4-Plex) to quantify antigen concentrations. RESULTS The uRDT had a 50% probability of a positive result at 207 pg/mL HRP2 [95% credible interval (CrI) 160-268]. Individuals with symptomatic infection remained positive by uRDT for a median of 33 days [95% confidence interval (CI) 28-47] post anti-malarial drug treatment. Biphasic exponential decay models accurately captured the population level post-treatment dynamics of both HRP2 and Plasmodium LDH (pLDH), with the latter decaying more rapidly. Motivated by these differences in rates of decay, a novel algorithm that used HRP2:pLDH ratios to predict if an individual had active versus recently cleared P. falciparum infection was developed. The algorithm had 77.5% accuracy in correctly classifying antigen-positive individuals as those with and without active infection. CONCLUSIONS These results characterize the performance of the ultra-sensitive RDT and demonstrate the potential for emerging antigen-quantifying technologies in the field of malaria diagnostics to be helpful tools in distinguishing between active versus recently cleared malaria infections.
Collapse
Affiliation(s)
| | - Jen C C Hume
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Issaka Sagara
- Malaria Research and Training Center, Mali-National Institute of Allergy and Infectious Diseases International Center for Excellence in Research, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Sara A Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Mahamadoun H Assadou
- Malaria Research and Training Center, Mali-National Institute of Allergy and Infectious Diseases International Center for Excellence in Research, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Merepen A Guindo
- Malaria Research and Training Center, Mali-National Institute of Allergy and Infectious Diseases International Center for Excellence in Research, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | | | | | | | | | | | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | | |
Collapse
|
24
|
Belias AM, Sbodio A, Truchado P, Weller D, Pinzon J, Skots M, Allende A, Munther D, Suslow T, Wiedmann M, Ivanek R. Effect of Weather on the Die-Off of Escherichia coli and Attenuated Salmonella enterica Serovar Typhimurium on Preharvest Leafy Greens following Irrigation with Contaminated Water. Appl Environ Microbiol 2020; 86:e00899-20. [PMID: 32591379 PMCID: PMC7440809 DOI: 10.1128/aem.00899-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/21/2020] [Indexed: 11/25/2022] Open
Abstract
The Food Safety Modernization Act (FSMA) includes a time-to-harvest interval following the application of noncompliant water to preharvest produce to allow for microbial die-off. However, additional scientific evidence is needed to support this rule. This study aimed to determine the impact of weather on the die-off rate of Escherichia coli and Salmonella on spinach and lettuce under field conditions. Standardized, replicated field trials were conducted in California, New York, and Spain over 2 years. Baby spinach and lettuce were grown and inoculated with an ∼104-CFU/ml cocktail of E. coli and attenuated Salmonella Leaf samples were collected at 7 time points (0 to 96 h) following inoculation; E. coli and Salmonella were enumerated. The associations of die-off with study design factors (location, produce type, and bacteria) and weather were assessed using log-linear and biphasic segmented log-linear regression. A segmented log-linear model best fit die-off on inoculated leaves in most cases, with a greater variation in the segment 1 die-off rate across trials (-0.46 [95% confidence interval {95% CI}, -0.52, -0.41] to -6.99 [95% CI, -7.38, -6.59] log10 die-off/day) than in the segment 2 die-off rate (0.28 [95% CI, -0.20, 0.77] to -1.00 [95% CI, -1.16, -0.85] log10 die-off/day). A lower relative humidity was associated with a faster segment 1 die-off and an earlier breakpoint (the time when segment 1 die-off rate switches to the segment 2 rate). Relative humidity was also found to be associated with whether die-off would comply with FSMA's specified die-off rate of -0.5 log10 die-off/day.IMPORTANCE The log-linear die-off rate proposed by FSMA is not always appropriate, as the die-off rates of foodborne bacterial pathogens and specified agricultural water quality indicator organisms appear to commonly follow a biphasic pattern with an initial rapid decline followed by a period of tailing. While we observed substantial variation in the net culturable population levels of Salmonella and E. coli at each time point, die-off rate and FSMA compliance (i.e., at least a 2 log10 die-off over 4 days) appear to be impacted by produce type, bacteria, and weather; die-off on lettuce tended to be faster than that on spinach, die-off of E. coli tended to be faster than that of attenuated Salmonella, and die-off tended to become faster as relative humidity decreased. Thus, the use of a single die-off rate for estimating time-to-harvest intervals across different weather conditions, produce types, and bacteria should be revised.
Collapse
Affiliation(s)
| | - Adrian Sbodio
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Pilar Truchado
- Department of Food Science and Technology, CEBAS-CSIC (Spanish National Research Council), Murcia, Spain
| | - Daniel Weller
- Department of Food Science, Cornell University, Ithaca, New York, USA
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York, USA
| | - Janneth Pinzon
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Mariya Skots
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Ana Allende
- Department of Food Science and Technology, CEBAS-CSIC (Spanish National Research Council), Murcia, Spain
| | - Daniel Munther
- Department of Mathematics, Cleveland State University, Cleveland, Ohio, USA
| | - Trevor Suslow
- Department of Plant Sciences, University of California, Davis, California, USA
- Produce Marketing Association, Newark, Delaware, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Renata Ivanek
- Department of Population Medicine and Diagnostic Sciences, Cornell University, New York, USA
| |
Collapse
|
25
|
Tran DTQ, Bradbury MI, Ogtrop FFVAN, Bozkurt H, Jones BJ, McCONCHIE R. Environmental Drivers for Persistence of Escherichia coli and Salmonella in Manure-Amended Soils: A Meta-Analysis. J Food Prot 2020; 83:1268-1277. [PMID: 32577760 DOI: 10.4315/0362-028x.jfp-19-460] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 02/04/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Application of organic amendments to agricultural land improves soil quality and provides nutrients essential for plant growth; however, they are also a reservoir for zoonotic pathogens whose presence poses a significant risk to public health. The persistence of bacteria in manure-amended soil, and differences in manure handling practices, are important issues from a food safety perspective. The primary objective of this study was to quantitatively summarize the variations in the rate of decline of Escherichia coli and Salmonella spp. in manure-amended soil under laboratory and field conditions, and to assess the impact of environmental factors. Available literature data on persistence of E. coli and Salmonella spp. in manure-amended soil from 42 primary research studies were extracted and statistically analyzed using a mixed-effect regression model. The results indicated that temperature (soil and air combined) was the most prominent factor affecting persistence of both E. coli and Salmonella spp. under laboratory conditions (P < 0.001), and of E. coli under field conditions (P < 0.05). The time required for a log reduction of E. coli under field conditions was significantly higher at low temperature (0 to 10°C) than at high temperature (greater than 20°C) (P < 0.05). In addition, application method was identified as a significant factor, with manure incorporation to soil inducing longer survival compared with surface application by approximately 1.2 times. The significant variation observed among primary research studies of bacterial persistence has highlighted that mitigation strategies associated with the use of manures in fresh produce production need to be improved by addressing factors such as climate, soil management, application method, and initial microbial levels. These findings may be used to support guidelines establishing exclusion periods between manure fertilization and the grazing or harvesting of crops, and may be useful for the generation of quantitative microbial risk models for fresh produce. HIGHLIGHTS
Collapse
Affiliation(s)
- Dao T Q Tran
- ARC Training Centre for Food Safety in the Fresh Produce Industry, School of Life and Environmental Sciences, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, NSW 2006, Australia
| | - Mark I Bradbury
- ARC Training Centre for Food Safety in the Fresh Produce Industry, School of Life and Environmental Sciences, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, NSW 2006, Australia
| | - Floris F VAN Ogtrop
- ARC Training Centre for Food Safety in the Fresh Produce Industry, School of Life and Environmental Sciences, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, NSW 2006, Australia
| | - Hayriye Bozkurt
- ARC Training Centre for Food Safety in the Fresh Produce Industry, School of Life and Environmental Sciences, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, NSW 2006, Australia
| | - Brian J Jones
- ARC Training Centre for Food Safety in the Fresh Produce Industry, School of Life and Environmental Sciences, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, NSW 2006, Australia
| | - Robyn McCONCHIE
- ARC Training Centre for Food Safety in the Fresh Produce Industry, School of Life and Environmental Sciences, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
26
|
Boyles C, Sobeck SJS. Photostability of organic red food dyes. Food Chem 2020; 315:126249. [PMID: 32000082 DOI: 10.1016/j.foodchem.2020.126249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/16/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022]
Abstract
The shift from artificial to natural ingredients is a rising trend in the food industry. However, natural coloring agents tend to be less stable than their synthetic counterparts when exposed to light, air, changes in pH, and heat. This study compares the photostability of three organic red dyes, Red 40 (allura red AC), betanin and carminic acid, in aqueous and soft drink solutions. The degradation, traced through absorbance spectroscopy, is well fit to first-order kinetics. Two distinct timescales are observed in aqueous solution but only a single, faster decay in the soft drink matrix. Betanin is the least stable dye in both solvent environments and Red 40 exhibits the greatest destabilization in the soft drink solution. Anoxia has different impacts dependent upon both the dye and solvent system. The analysis provides further insight into the degradation mechanisms for these different red dyes and the role of environment on their photostability.
Collapse
Affiliation(s)
- Catherine Boyles
- The College of Wooster, Department of Chemistry, 943 College Mall, Wooster, OH 44691, United States
| | - Sarah J Schmidtke Sobeck
- The College of Wooster, Department of Chemistry, 943 College Mall, Wooster, OH 44691, United States.
| |
Collapse
|
27
|
Munther DS, Carter MQ, Aldric CV, Ivanek R, Brandl MT. Formation of Escherichia coli O157:H7 Persister Cells in the Lettuce Phyllosphere and Application of Differential Equation Models To Predict Their Prevalence on Lettuce Plants in the Field. Appl Environ Microbiol 2020; 86:e01602-19. [PMID: 31704677 PMCID: PMC6952222 DOI: 10.1128/aem.01602-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/06/2019] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli O157:H7 (EcO157) infections have been recurrently associated with produce. The physiological state of EcO157 cells surviving the many stresses encountered on plants is poorly understood. EcO157 populations on plants in the field generally follow a biphasic decay in which small subpopulations survive over longer periods of time. We hypothesized that these subpopulations include persister cells, known as cells in a transient dormant state that arise through phenotypic variation in a clonal population. Using three experimental regimes (with growing, stationary at carrying capacity, and decaying populations), we measured the persister cell fractions in culturable EcO157 populations after inoculation onto lettuce plants in the laboratory. The greatest average persister cell fractions on the leaves within each regime were 0.015, 0.095, and 0.221%, respectively. The declining EcO157 populations on plants incubated under dry conditions showed the largest increase in the persister fraction (46.9-fold). Differential equation models were built to describe the average temporal dynamics of EcO157 normal and persister cell populations after inoculation onto plants maintained under low relative humidity, resulting in switch rates from a normal cell to a persister cell of 7.7 × 10-6 to 2.8 × 10-5 h-1 Applying our model equations from the decay regime, we estimated model parameters for four published field trials of EcO157 survival on lettuce and obtained switch rates similar to those obtained in our study. Hence, our model has relevance to the survival of this human pathogen on lettuce plants in the field. Given the low metabolic state of persister cells, which may protect them from sanitization treatments, these cells are important to consider in the microbial decontamination of produce.IMPORTANCE Despite causing outbreaks of foodborne illness linked to lettuce consumption, E. coli O157:H7 (EcO157) declines rapidly when applied onto plants in the field, and few cells survive over prolonged periods of time. We hypothesized that these cells are persisters, which are in a dormant state and which arise naturally in bacterial populations. When lettuce plants were inoculated with EcO157 in the laboratory, the greatest persister fraction in the population was observed during population decline on dry leaf surfaces. Using mathematical modeling, we calculated the switch rate from an EcO157 normal to persister cell on dry lettuce plants based on our laboratory data. The model was applied to published studies in which lettuce was inoculated with EcO157 in the field, and switch rates similar to those obtained in our study were obtained. Our results contribute important new knowledge about the physiology of this virulent pathogen on plants to be considered to enhance produce safety.
Collapse
Affiliation(s)
- Daniel S Munther
- Department of Mathematics, Cleveland State University, Cleveland, Ohio, USA
| | - Michelle Q Carter
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| | - Claude V Aldric
- Department of Mathematics, Cleveland State University, Cleveland, Ohio, USA
| | - Renata Ivanek
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
| | - Maria T Brandl
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| |
Collapse
|
28
|
Coffey R, Butcher J, Benham B, Johnson T. Modeling the Effects of Future Hydroclimatic Conditions on Microbial Water Quality and Management Practices in Two Agricultural Watersheds. TRANSACTIONS OF THE ASABE 2020; 63:753-770. [PMID: 34327039 PMCID: PMC8318128 DOI: 10.13031/trans.13630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Anticipated future hydroclimatic changes are expected to alter the transport and survival of fecally-sourced waterborne pathogens, presenting an increased risk of recreational water quality impairments. Managing future risk requires an understanding of interactions between fecal sources, hydroclimatic conditions and best management practices (BMPs) at spatial scales relevant to decision makers. In this study we used the Hydrologic Simulation Program FORTRAN to quantify potential fecal coliform (FC - an indicator of the potential presence of pathogens) responses to a range of mid-century climate scenarios and assess different BMP scenarios (based on reduction factors) for reducing the risk of water quality impairment in two, small agricultural watersheds - the Chippewa watershed in Minnesota, and the Tye watershed in Virginia. In each watershed, simulations show a wide range of FC responses, driven largely by variability in projected future precipitation. Wetter future conditions, which drive more transport from non-point sources (e.g. manure application, livestock grazing), show increases in FC loads. Loads typically decrease under drier futures; however, higher mean FC concentrations and more recreational water quality criteria exceedances occur, likely caused by reduced flow during low-flow periods. Median changes across the ensemble generally show increases in FC load. BMPs that focus on key fecal sources (e.g., runoff from pasture, livestock defecation in streams) within a watershed can mitigate the effects of hydroclimatic change on FC loads. However, more extensive BMP implementation or improved BMP efficiency (i.e., higher FC reductions) may be needed to fully offset increases in FC load and meet water quality goals, such as total maximum daily loads and recreational water quality standards. Strategies for managing climate risk should be flexible and to the extent possible include resilient BMPs that function as designed under a range of future conditions.
Collapse
Affiliation(s)
- R Coffey
- formerly ORISE Fellow, Office of Research and Development, U.S. Environmental Protection Agency, Washington, D.C., USA
| | - J Butcher
- Director, Tetra Tech, Inc., Research Triangle Park, North Carolina, USA
| | - B Benham
- Professor, Department of Biological Systems Engineering, Seitz Hall, Virginia Tech, Blacksburg, VA, USA
| | - T Johnson
- Physical Scientist, Office of Research and Development, U.S. Environmental Protection Agency, Washington, D.C., USA
| |
Collapse
|
29
|
Zhang Y, Liu H, Yang S, Luo R, Chen HF. Well-Balanced Force Field ff03 CMAP for Folded and Disordered Proteins. J Chem Theory Comput 2019; 15:6769-6780. [PMID: 31657215 DOI: 10.1021/acs.jctc.9b00623] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Molecular dynamics simulation as an important complement of experiment is widely used to study protein structures and functions. However, previous studies indicate that the current force fields cannot, simultaneously, provide accurate descriptions of folded proteins and intrinsically disordered proteins (IDPs). Therefore, a correction maps (CMAP)-optimized force field based on the Amber ff03 force field (termed ff03CMAP herein) was developed for a balanced sampling of folded proteins and IDPs. Extensive validations of short peptides, folded proteins, disordered proteins, and fast-folding proteins show that simulated chemical shifts, J-coupling constants, order parameters, and residual dipolar couplings (RDCs) with the ff03CMAP force field are in very good agreement with nuclear magnetic resonance measurements and are more accurate than other ff03-series force fields. The influence of solvent models was also investigated. It was found that the combination of ff03CMAP/TIP4P-Ew is suitable for folded proteins, and that of ff03CMAP/TIP4PD is better for disordered proteins. These findings confirm that the newly developed force field ff03CMAP can improve the balance of conformer sampling between folded proteins and IDPs.
Collapse
Affiliation(s)
- Yangpeng Zhang
- State Key Laboratory of Microbial metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Hao Liu
- State Key Laboratory of Microbial metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Sheng Yang
- State Key Laboratory of Microbial metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Ray Luo
- Departments of Molecular Biology and Biochemistry, Chemical and Molecular Engineering, and Materials Science and Engineering, and Biomedical Engineering , University of California , Irvine , California 92697 , United States
| | - Hai-Feng Chen
- State Key Laboratory of Microbial metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China.,Shanghai Center for Bioinformation Technology , Shanghai 200235 , China
| |
Collapse
|
30
|
Mielke SR, Garabed R. Environmental persistence of foot-and-mouth disease virus applied to endemic regions. Transbound Emerg Dis 2019; 67:543-554. [PMID: 31595659 DOI: 10.1111/tbed.13383] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 09/21/2019] [Accepted: 10/03/2019] [Indexed: 11/30/2022]
Abstract
The consequences of foot-and-mouth disease impact regional economies and food security through animal mortality and morbidity, trade restrictions and burdens to veterinary infrastructure. Despite efforts to control the disease, some regions, mostly in warmer climates, persistently report disease outbreaks. Consequently, it is necessary to understand how environmental factors influence transmission, of this economically devastating disease. Extensive research covers basic aetiology and transmission potential of livestock and livestock products for foot-and-mouth disease virus (FMDV), with a subset evaluating environmental survival. However, this subset, completed in the early to mid-20th century in Northern Europe and the United States, is not easily generalized to today's endemic locations. This review uncovered 20 studies, to assess current knowledge and analyse the effects of environmental variables on FMDV survival, using a Cox proportional hazards (Coxph) model. However, the dataset is limited, for example pH was included in three studies and only five studies reported both relative humidity (RH) and temperature. After dropping pH from the analysis, our results suggest that temperature alone does not describe FMDV survival; instead, interactions between RH and temperature have broader impacts across various conditions. For instance, FMDV is expected to survive longer during the wet season (survival at day 50 is ~90% at 16°C and 86% RH) versus the dry season (survival at day 50 approaches 0% at 16°C and 37.5% RH) or comparatively in the UK versus the Southwestern United States. Additionally, survival on vegetation topped 70% on day 75 when conditions exceeded 20°C with high RH (86%), drastically higher than the survival on inanimate surfaces at the same temperature and RH (~0%). This is important in tropical regions, where high temperatures can persist throughout the year, but RH varies. Therefore, parameter estimates, for disease modelling and control in endemic areas, require environmental survival data from a wider range of conditions.
Collapse
Affiliation(s)
- Sarah R Mielke
- Ohio State University College of Veterinary Medicine, Columbus, OH, USA
| | - Rebecca Garabed
- Ohio State University College of Veterinary Medicine, Columbus, OH, USA
| |
Collapse
|
31
|
Miller-Dickson MD, Meszaros VA, Almagro-Moreno S, Brandon Ogbunugafor C. Hepatitis C virus modelled as an indirectly transmitted infection highlights the centrality of injection drug equipment in disease dynamics. J R Soc Interface 2019; 16:20190334. [PMID: 31480919 PMCID: PMC6769301 DOI: 10.1098/rsif.2019.0334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/05/2019] [Indexed: 01/05/2023] Open
Abstract
The hepatitis C virus (HCV) epidemic often occurs through the persistence of injection drug use. Mathematical models have been useful in understanding various aspects of the HCV epidemic, and especially, the importance of new treatment measures. Until now, however, few models have attempted to understand HCV in terms of an interaction between the various actors in an HCV outbreak-hosts, viruses and the needle injection equipment. In this study, we apply perspectives from the ecology of infectious diseases to model the transmission of HCV among a population of injection drug users. The products of our model suggest that modelling HCV as an indirectly transmitted infection-where the injection equipment serves as an environmental reservoir for infection-facilitates a more nuanced understanding of disease dynamics, by animating the underappreciated actors and interactions that frame disease. This lens may allow us to understand how certain public health interventions (e.g. needle exchange programmes) influence HCV epidemics. Lastly, we argue that this model is of particular importance in the light of the modern opioid epidemic, which has already been associated with outbreaks of viral diseases.
Collapse
Affiliation(s)
| | - Victor A. Meszaros
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02906, USA
| | - Salvador Almagro-Moreno
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32827, USA
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL 32816, USA
| | - C. Brandon Ogbunugafor
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02906, USA
| |
Collapse
|
32
|
Biancalani T, Gore J. Disentangling bacterial invasiveness from lethality in an experimental host-pathogen system. Mol Syst Biol 2019; 15:e8707. [PMID: 31186282 PMCID: PMC6558951 DOI: 10.15252/msb.20188707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 11/09/2022] Open
Abstract
Quantifying virulence remains a central problem in human health, pest control, disease ecology, and evolutionary biology. Bacterial virulence is typically quantified by the LT50 (i.e., the time taken to kill 50% of infected hosts); however, such an indicator cannot account for the full complexity of the infection process, such as distinguishing between the pathogen's ability to colonize versus kill the hosts. Indeed, the pathogen needs to breach the primary defenses in order to colonize, find a suitable environment to replicate, and finally express the virulence factors that cause disease. Here, we show that two virulence attributes, namely pathogen lethality and invasiveness, can be disentangled from the survival curves of a laboratory population of Caenorhabditis elegans nematodes exposed to three bacterial pathogens: Pseudomonas aeruginosa, Serratia marcescens, and Salmonella enterica We first show that the host population eventually experiences a constant mortality rate, which quantifies the lethality of the pathogen. We then show that the time necessary to reach this constant mortality rate regime depends on the pathogen growth rate and colonization rate, and thus determines the pathogen invasiveness. Our framework reveals that Serratia marcescens is particularly good at the initial colonization of the host, whereas Salmonella enterica is a poor colonizer yet just as lethal once established. Pseudomonas aeruginosa, on the other hand, is both a good colonizer and highly lethal after becoming established. The ability to quantitatively characterize the ability of different pathogens to perform each of these steps has implications for treatment and prevention of disease and for the evolution and ecology of pathogens.
Collapse
Affiliation(s)
- Tommaso Biancalani
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeff Gore
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
33
|
Brouwer AF, Eisenberg MC, Love NG, Eisenberg JNS. Phenotypic variations in persistence and infectivity between and within environmentally transmitted pathogen populations impact population-level epidemic dynamics. BMC Infect Dis 2019; 19:449. [PMID: 31113377 PMCID: PMC6530054 DOI: 10.1186/s12879-019-4054-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 04/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human pathogens transmitted through environmental pathways are subject to stress and pressures outside of the host. These pressures may cause pathogen pathovars to diverge in their environmental persistence and their infectivity on an evolutionary time-scale. On a shorter time-scale, a single-genotype pathogen population may display wide variation in persistence times and exhibit biphasic decay. METHODS We use a transmission modeling framework to develop an infectious disease model with biphasic pathogen decay. We take a differential algebra approach to assessing model identifiability, calculate basic reproduction numbers by the next generation method, and use simulation to explore model dynamics. RESULTS For both long and short time-scales, we demonstrate that epidemic-potential-preserving trade-offs have implications for epidemic dynamics: less infectious, more persistent pathogens cause epidemics to progress more slowly than more infectious, less persistent (labile) pathogens, even when the overall risk is the same. Using identifiability analysis, we show that the usual disease surveillance data does not sufficiently inform these underlying pathogen population dynamics, even when combined with basic environmental monitoring data. However, risk could be indirectly ascertained by developing methods to separately monitor labile and persistent subpopulations. Alternatively, determining the relative infectivity of persistent pathogen subpopulations and the rates of phenotypic conversion will help ascertain how much disease risk is associated with the long tails of biphasic decay. CONCLUSION A better understanding of persistence-infectivity trade-offs and associated dynamics can improve our ecological understanding of environmentally transmitted pathogens, as well as our risk assessment and disease control strategies.
Collapse
Affiliation(s)
- Andrew F Brouwer
- Department of Epidemiology, University of Michigan, 1415 Washington Heights, Ann Abor, 48109, MI, USA.
| | - Marisa C Eisenberg
- Department of Epidemiology, University of Michigan, 1415 Washington Heights, Ann Abor, 48109, MI, USA
| | - Nancy G Love
- Department of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, Ann Arbor, 48109, MI, USA
| | - Joseph N S Eisenberg
- Department of Epidemiology, University of Michigan, 1415 Washington Heights, Ann Abor, 48109, MI, USA
| |
Collapse
|
34
|
Porter KDH, Quilliam RS, Reaney SM, Oliver DM. High resolution characterisation of E. coli proliferation profiles in livestock faeces. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 87:537-545. [PMID: 31109554 DOI: 10.1016/j.wasman.2019.02.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/03/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Agricultural intensification can lead to high volumes of livestock faeces being applied to land, either as solid or liquid manures or via direct defecation, and can result in reservoirs of faecal indicator organisms (FIOs) persisting within farmland. Understanding the survival of FIOs, e.g. E. coli, in agricultural environments, and in particular within different livestock faeces, is key to developing catchment management practices for the protection of ecosystem services provided by clean water. Frequently, controlled laboratory studies, under constant temperature regimes, are used to determine the impact of environmental factors on E. coli persistence in livestock faeces; however, such studies oversimplify the diurnal variations and interactions of real world conditions. The aim of this study was to investigate the survival of E. coli using a controlled environment facility, which simulated diurnal variation of temperatures typically experienced during a British spring and summer. The approach provided a comparison of E. coli persistence profiles within faeces of sheep, beef cattle and dairy cattle to allow novel interpretations of E. coli regrowth patterns in contrasting livestock faeces in the period immediately post-defecation. Thus, the coupling of a tightly controlled environment facility with high resolution monitoring enabled the development of a new non-linear, asymptotic description of E. coli proliferation in livestock faeces, with increased potential for E. coli growth observed during warmer temperatures for all livestock types. While this study focused on temperatures typical of the UK, the occurrence of a phase of E. coli regrowth has implications for microbial water quality management worldwide.
Collapse
Affiliation(s)
- Kenneth D H Porter
- Biological & Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Richard S Quilliam
- Biological & Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Sim M Reaney
- Department of Geography, Durham University, Durham DH1 3LE, UK
| | - David M Oliver
- Biological & Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK.
| |
Collapse
|
35
|
Fan XT, Li H, Chen QL, Zhang YS, Ye J, Zhu YG, Su JQ. Fate of Antibiotic Resistant Pseudomonas putida and Broad Host Range Plasmid in Natural Soil Microcosms. Front Microbiol 2019; 10:194. [PMID: 30881351 PMCID: PMC6407330 DOI: 10.3389/fmicb.2019.00194] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/23/2019] [Indexed: 12/03/2022] Open
Abstract
Plasmid conjugation is one of the dominant mechanisms of horizontal gene transfer, playing a noticeable role in the rapid spread of antibiotic resistance genes (ARGs). Broad host range plasmids are known to transfer to diverse bacteria in extracted soil bacterial communities when evaluated by filter mating incubation. However, the persistence and dissemination of broad range plasmid in natural soil has not been well studied. In this study, Pseudomonas putida with a conjugative antibiotic resistance plasmid RP4 was inoculated into a soil microcosm, the fate and persistence of P. putida and RP4 were monitored by quantitative PCR. The concentrations of P. putida and RP4 both rapidly decreased within 15-day incubation. P. putida then decayed at a significantly lower rate during subsequent incubation, however, no further decay of RP4 was observed, resulting in an elevated RP4/P. putida ratio (up to 10) after 75-day incubation, which implied potential transfer of RP4 to soil microbiota. We further sorted RP4 recipient bacteria from the soil microcosms by fluorescence-activated cell sorting. Spread of RP4 increased during 75-day microcosm operation and was estimated at around 10-4 transconjugants per recipient at the end of incubation. Analysis of 16S rRNA gene sequences of transconjugants showed that host bacteria of RP4 were affiliated to more than 15 phyla, with increased diversity and shift in the composition of host bacteria. Proteobacteria was the most dominant phylum in the transconjugant pools. Transient transfer of RP4 to some host bacteria was observed. These results emphasize the prolonged persistence of P. putida and RP4 in natural soil microcosms, and highlight the potential risks of increased spread potential of plasmid and broader range of host bacteria in disseminating ARGs in soil.
Collapse
Affiliation(s)
- Xiao-Ting Fan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hu Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Qing-Lin Chen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Yu-Sen Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jun Ye
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
36
|
Clark GG, Jamal R, Weidhaas J. Roofing material and irrigation frequency influence microbial risk from consuming homegrown lettuce irrigated with harvested rainwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:1011-1019. [PMID: 30266046 DOI: 10.1016/j.scitotenv.2018.09.277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
Rooftop harvested rainwater has become an alternative, potable, and non-potable water source used around the world. In the United States, rooftop harvested rainwater is most commonly used for irrigation. Rooftop harvested rainwater may contain contaminants from bird or animal feces that may present a risk to water users. Different roofing materials may influence the survival of fecal bacteria on the rooftop prior to runoff during rainfall. In this study, three pathogen groups (E. coli, enterococci and Salmonella enterica) in rooftop runoff from three, replicated roof types (asphalt shingle, synthetic slate, and wood shake) were quantified in multiple rain events. Matched roofs were selected from locations with differing amounts of tree cover. Enterococci were the most frequently detected bacteria from all roof types. Wood shake and asphalt shingle roofing materials had the poorest microbial water quality. Rainwater runoff from two of the six buildings failed to meet United States Food and Drug Administration microbial standards for irrigation water. A quantitative microbial risk assessment indicated that the annual probability of illness from consuming lettuce irrigated with rooftop harvested rainwater varied by roofing material, irrigation water withholding period, and exposure frequency. Consuming lettuce immediately after irrigation with rooftop rainwater presented the highest human health risk based on the probability of illness from E. coli and enterococci exposure. Withholding irrigation by 1 day prior to harvest decreased the annual probability of illness from E. coli by 2 log, but had a minimal effect on the risk from enterococci.
Collapse
Affiliation(s)
- Gemma G Clark
- Civil and Environmental Engineering, University of Utah, 110 Central Campus Drive Suite 2000, Salt Lake City, UT 84112, USA
| | - Rubayat Jamal
- Civil and Environmental Engineering, University of Utah, 110 Central Campus Drive Suite 2000, Salt Lake City, UT 84112, USA
| | - Jennifer Weidhaas
- Civil and Environmental Engineering, University of Utah, 110 Central Campus Drive Suite 2000, Salt Lake City, UT 84112, USA.
| |
Collapse
|
37
|
Ahmed W, Zhang Q, Kozak S, Beale D, Gyawali P, Sadowsky MJ, Simpson S. Comparative decay of sewage-associated marker genes in beach water and sediment in a subtropical region. WATER RESEARCH 2019; 149:511-521. [PMID: 30500686 DOI: 10.1016/j.watres.2018.10.088] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 05/26/2023]
Abstract
There is a growing move towards using the quantitative polymerase chain (qPCR)-based sewage-associated marker genes to assess surface water quality. However, a lack of understanding about the persistence of many sewage-associated markers creates uncertainty for those tasked with investigating microbial water quality. In this study, we investigated the decay of two qPCR FIB [E. coli (EC), and Enterococcus spp. (ENT) 23S rRNA genes] and four sewage-associated microbial source tracking (MST) marker genes [human Bacteroides HF183 16S rRNA, adenovirus (HAdV), and polyomavirus (HPyV), and crAssphage, a recently described bacteriophage in feces], in outdoor mesocosms containing fresh and marine waters and their corresponding sediments. Decay rates of EC 23S rRNA, ENT 23S rRNA, and HF183 16S rRNA were significantly (p < 0.05) faster than the HAdV, HPyV and crAssphage markers in water samples from all mesocosms. In general, decay rates of bacterial targets were similar in the water columns of the studied mesocosms. Similarly, decay rates of viral targets were also alike in mesocosm water columns in relation to each other. The decay rates of FIB and sewage-associated markers were significantly faster in water samples compared to sediments in all three mesocosms. In the event of resuspension, FIB and marker genes from sediments can potentially recontaminate overlying waters. Thus, care should be taken when interpreting the occurrence of FIB and sewage-associated MST markers in water, which may have originated from sediments. The differential decay of these targets may also influence health outcomes and need to be considered in risk assessment models.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld, 4102, Australia.
| | - Qian Zhang
- BioTechnology Institute, Departments of Soil, Water & Climate, and Plant & Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Sonya Kozak
- School of Medicine, Griffith University, Gold Coast, Australia
| | - David Beale
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld, 4102, Australia
| | - Pradip Gyawali
- Institute of Environmental Science and Research Ltd., Kenepuru Science Center, Porirura, 5240, New Zealand
| | - Michael J Sadowsky
- BioTechnology Institute, Departments of Soil, Water & Climate, and Plant & Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Stuart Simpson
- CSIRO Land and Water, Lucas Heights, NSW, 2234, Australia
| |
Collapse
|
38
|
Scoullos IM, Lopez Vazquez CM, van de Vossenberg J, Hammond M, Brdjanovic D. Effect of Artificial Solar Radiation on the Die-Off of Pathogen Indicator Organisms in Urban Floods. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH 2018; 13:107-116. [PMID: 30873212 PMCID: PMC6383957 DOI: 10.1007/s41742-018-0160-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/04/2018] [Accepted: 11/12/2018] [Indexed: 05/26/2023]
Abstract
In the last decade, flooding has caused the death of over 60,000 people and affected over 900 million people globally. This is expected to increase as a result of climate change, increased populations and urbanisation. Floods can cause infections due to the release of water-borne pathogenic microorganisms from surcharged combined sewers and other sources of fecal contamination. This research contributes to a better understanding of how the occurrence of water-borne pathogens in contaminated shallow water bodies is affected by different environmental conditions. The inactivation of fecal indicator bacteria Escherichia coli was studied in an open stirred reactor, under controlled exposure to simulated sunlight, mimicking the effect of different latitudes and seasons, and different concentrations of total suspended solids (TSS) corresponding to different levels of dilution and runoff. While attachment of bacteria on the solid particles did not take place, the decay rate coefficient, k (d-1), was found to depend on light intensity, I (W m-2), and duration of exposure to sunlight, T (h d-1), in a linear way (k = k D+ 0.03·I and k = k D+ 0.65·T, respectively) and on the concentration of TSS (mg L-1), in an inversely proportional exponential way (k = k D+ 14.57·e-0.02·[TSS] ). The first-order inactivation rate coefficient in dark conditions, k D= 0.37 d-1, represents the effect of stresses other than light. This study suggests that given the sunlight conditions during an urban flood, and the concentration of indicator organisms and TSS, the above equations can give an estimate of the fate of selected pathogens, allowing rapid implementation of appropriate measures to mitigate public health risks.
Collapse
Affiliation(s)
- I. M. Scoullos
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, P.O. Box 3015, 2601 DA Delft, The Netherlands
| | - C. M. Lopez Vazquez
- Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, P.O. Box 3015, 2601 DA Delft, The Netherlands
| | - J. van de Vossenberg
- Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, P.O. Box 3015, 2601 DA Delft, The Netherlands
| | - M. Hammond
- Environment and Natural Resources Global Practice, World Bank Group, Washington, DC USA
| | - D. Brdjanovic
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, P.O. Box 3015, 2601 DA Delft, The Netherlands
| |
Collapse
|
39
|
Wang D, Huber A, Dunfield K, Murray K, Wu F, Warriner K. Comparative persistence of Salmonella and Escherichia coli O157:H7 in loam or sandy loam soil amended with bovine or swine manure. Can J Microbiol 2018; 64:979-991. [PMID: 30148968 DOI: 10.1139/cjm-2018-0234] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The fate of Salmonella and Escherichia coli O157:H7 in swine or dairy manure amended into sandy loam or loam soil under field conditions was studied. Soil was amended with manure inoculated with a Salmonella or E. coli O157:H7 cocktail, then transferred to 0.22 μm pore size membrane walled vials. The vials were then placed on the surface or at 15 cm depth in the test plots. Pathogen numbers, soil moisture, rainfall, and temperature were measured throughout the three trials (20-47 weeks duration) representing spring or fall application. Survival curves were characterized by having an initial rapid decline in pathogen numbers followed by a slower inactivation phase with an occasional increase in culturable cells. The CT99.9 values (time to reach a 3 log CFU reduction) varied from 2 to 120 days, with the most rapid decrease being observed on the surface of sandy loam soil. The persistence of pathogens is primarily governed by variations in moisture and temperature, although season of application along with manure and soil type also contribute. To generate more accurate predictive pathogen models, there is a need for laboratory-based trials to mirror the dynamic variation in temperature and soil moisture encountered within the natural environment.
Collapse
Affiliation(s)
- D Wang
- a Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - A Huber
- b Soil Research Group, Guelph, ON N1H 2Y5, Canada
| | - K Dunfield
- c School of Environmental Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - K Murray
- a Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - F Wu
- a Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - K Warriner
- a Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
40
|
Kraay ANM, Brouwer AF, Lin N, Collender PA, Remais JV, Eisenberg JNS. Modeling environmentally mediated rotavirus transmission: The role of temperature and hydrologic factors. Proc Natl Acad Sci U S A 2018; 115:E2782-E2790. [PMID: 29496960 PMCID: PMC5866583 DOI: 10.1073/pnas.1719579115] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rotavirus is considered a directly transmitted disease due to its high infectivity. Environmental pathways have, therefore, largely been ignored. Rotavirus, however, persists in water sources, and both its surface water concentrations and infection incidence vary with temperature. Here, we examine the potential for waterborne rotavirus transmission. We use a mechanistic model that incorporates both direct and waterborne transmission pathways, coupled with a hydrological model, and we simulate rotavirus transmission between two communities with interconnected water sources. To parameterize temperature dependency, we estimated temperature-dependent decay rates in water through a meta-analysis. Our meta-analysis suggests that rotavirus decay rates are positively associated with temperature (n = 39, P [Formula: see text] 0.001). This association is stronger at higher temperatures (over 20 °C), consistent with tropical climate conditions. Our model analysis demonstrates that water could disseminate rotavirus between the two communities for all modeled temperatures. While direct transmission was important for disease amplification within communities, waterborne transmission could also amplify transmission. In standing-water systems, the modeled increase in decay led to decreased disease, with every 1 °C increase in temperature leading to up to a 2.4% decrease in incidence. These effect sizes are consistent with prior meta-analyses, suggesting that environmental transmission through water sources may partially explain the observed associations between temperature and rotavirus incidence. Waterborne rotavirus transmission is likely most important in cooler seasons and in communities that use slow-moving or stagnant water sources. Even when indirect transmission through water cannot sustain outbreaks, it can seed outbreaks that are maintained by high direct transmission rates.
Collapse
Affiliation(s)
- Alicia N M Kraay
- Department of Epidemiology, University of Michigan, Ann Arbor, MI 48104
| | - Andrew F Brouwer
- Department of Environmental Health Sciences, University of California, Berkeley, CA 94720
| | - Nan Lin
- Department of Environmental Health Sciences, University of California, Berkeley, CA 94720
| | - Philip A Collender
- Department of Environmental Health Sciences, University of California, Berkeley, CA 94720
| | - Justin V Remais
- Department of Environmental Health Sciences, University of California, Berkeley, CA 94720
| | | |
Collapse
|
41
|
McClary JS, Boehm AB. Transcriptional Response of Staphylococcus aureus to Sunlight in Oxic and Anoxic Conditions. Front Microbiol 2018; 9:249. [PMID: 29599752 PMCID: PMC5863498 DOI: 10.3389/fmicb.2018.00249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/31/2018] [Indexed: 12/20/2022] Open
Abstract
The transcriptional response of Staphylococcus aureus strain Newman to sunlight exposure was investigated under both oxic and anoxic conditions using RNA sequencing to gain insight into potential mechanisms of inactivation. S. aureus is a pathogenic bacterium detected at recreational beaches which can cause gastrointestinal illness and skin infections, and is of increasing public health concern. To investigate the S. aureus photostress response in oligotrophic seawater, S. aureus cultures were suspended in seawater and exposed to full spectrum simulated sunlight. Experiments were performed under oxic or anoxic conditions to gain insight into the effects of oxygen-mediated and non-oxygen-mediated inactivation mechanisms. Transcript abundance was measured after 6 h of sunlight exposure using RNA sequencing and was compared to transcript abundance in paired dark control experiments. Culturable S. aureus decayed following biphasic inactivation kinetics with initial decay rate constants of 0.1 and 0.03 m2 kJ−1 in oxic and anoxic conditions, respectively. RNA sequencing revealed that 71 genes had different transcript abundance in the oxic sunlit experiments compared to dark controls, and 18 genes had different transcript abundance in the anoxic sunlit experiments compared to dark controls. The majority of genes showed reduced transcript abundance in the sunlit experiments under both conditions. Three genes (ebpS, NWMN_0867, and NWMN_1608) were found to have the same transcriptional response to sunlight between both oxic and anoxic conditions. In the oxic condition, transcripts associated with porphyrin metabolism, nitrate metabolism, and membrane transport functions were increased in abundance during sunlight exposure. Results suggest that S. aureus responds differently to oxygen-dependent and oxygen-independent photostress, and that endogenous photosensitizers play an important role during oxygen-dependent indirect photoinactivation.
Collapse
Affiliation(s)
- Jill S McClary
- Civil and Environmental Engineering, Stanford University, Stanford, CA, United States
| | - Alexandria B Boehm
- Civil and Environmental Engineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
42
|
Aquino de Carvalho N, Stachler EN, Cimabue N, Bibby K. Evaluation of Phi6 Persistence and Suitability as an Enveloped Virus Surrogate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:8692-8700. [PMID: 28657725 DOI: 10.1021/acs.est.7b01296] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Recent outbreaks involving enveloped viruses, such as Ebola virus, have raised questions regarding the persistence of enveloped viruses in the water environment. Efforts have been made to find enveloped virus surrogates due to challenges investigating viruses that require biosafety-level 3 or 4 handling. In this study, the enveloped bacteriophage Phi6 was evaluated as a surrogate for enveloped waterborne viruses. The persistence of Phi6 was tested in aqueous conditions chosen based on previously published viral persistence studies. Our results demonstrated that the predicted T90 (time for 90% inactivation) of Phi6 under the 12 evaluated conditions varied from 24 min to 117 days depending on temperature, biological activity, and aqueous media composition. Phi6 persistence was then compared with persistence values from other enveloped viruses reported in the literature. The apparent suitability of Phi6 as an enveloped virus surrogate was dependent on the temperature and composition of the media tested. Of evaluated viruses, 33%, including all conditions considered, had T90 values greater than the 95% confidence interval for Phi6. Ultimately, these results highlight the variability of enveloped virus persistence in the environment and the value of working with the virus of interest for environmental persistence studies.
Collapse
Affiliation(s)
- Nathalia Aquino de Carvalho
- Department of Civil and Environmental Engineering, and ‡Department of Computational and Systems Biology, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Elyse N Stachler
- Department of Civil and Environmental Engineering, and ‡Department of Computational and Systems Biology, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Nicole Cimabue
- Department of Civil and Environmental Engineering, and ‡Department of Computational and Systems Biology, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Kyle Bibby
- Department of Civil and Environmental Engineering, and ‡Department of Computational and Systems Biology, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
43
|
Brouwer AF, Weir MH, Eisenberg MC, Meza R, Eisenberg JNS. Dose-response relationships for environmentally mediated infectious disease transmission models. PLoS Comput Biol 2017; 13:e1005481. [PMID: 28388665 PMCID: PMC5400279 DOI: 10.1371/journal.pcbi.1005481] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/21/2017] [Accepted: 03/27/2017] [Indexed: 11/18/2022] Open
Abstract
Environmentally mediated infectious disease transmission models provide a mechanistic approach to examining environmental interventions for outbreaks, such as water treatment or surface decontamination. The shift from the classical SIR framework to one incorporating the environment requires codifying the relationship between exposure to environmental pathogens and infection, i.e. the dose-response relationship. Much of the work characterizing the functional forms of dose-response relationships has used statistical fit to experimental data. However, there has been little research examining the consequences of the choice of functional form in the context of transmission dynamics. To this end, we identify four properties of dose-response functions that should be considered when selecting a functional form: low-dose linearity, scalability, concavity, and whether it is a single-hit model. We find that i) middle- and high-dose data do not constrain the low-dose response, and different dose-response forms that are equally plausible given the data can lead to significant differences in simulated outbreak dynamics; ii) the choice of how to aggregate continuous exposure into discrete doses can impact the modeled force of infection; iii) low-dose linear, concave functions allow the basic reproduction number to control global dynamics; and iv) identifiability analysis offers a way to manage multiple sources of uncertainty and leverage environmental monitoring to make inference about infectivity. By applying an environmentally mediated infectious disease model to the 1993 Milwaukee Cryptosporidium outbreak, we demonstrate that environmental monitoring allows for inference regarding the infectivity of the pathogen and thus improves our ability to identify outbreak characteristics such as pathogen strain.
Collapse
Affiliation(s)
- Andrew F. Brouwer
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
- * E-mail:
| | - Mark H. Weir
- Division of Environmental Health Sciences, The Ohio State University, Columbus, OH, United States of America
| | - Marisa C. Eisenberg
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Rafael Meza
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Joseph N. S. Eisenberg
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|