1
|
Bai L, Zhang X, Li J, Wang Y, Jiang G. Widening the Lens on Ultraviolet Absorbers: New Evidence from the Microenvironment of Agricultural Greenhouses and Workers' Risk Ranking Based on External Exposure and Internal Metabolic Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40392925 DOI: 10.1021/acs.est.5c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Greenhouses offer optimum growth conditions for plants and create a unique microenvironment for workers who work in them. Information about human exposure to UVAs particularly those employed in agricultural greenhouses remains unknown. In the present study, UVAs employed in agricultural greenhouses in North China were comprehensively analyzed and screened. The geometric mean concentration of ∑10UVAs in agricultural greenhouse plastic films (132 ng/g) was found significantly higher than that in the control films (27.1 ng/g) (p < 0.001), with UV-531 (35.9 ng/g) and UV-326 (24.9 ng/g) as the dominant components in used films, followed by that in soil and fine particles, indicating elevated levels of UVAs in agricultural greenhouses. Temperature was acquired as the main factor for the release of UVAs in agricultural greenhouses. Consistently, relatively high levels of UV-360 and UV-P were identified in the urine of greenhouse workers. The quantitative assessment of UVA exposure risks was conducted using Monte Carlo simulation, which identified soil contact as the main pathway, accounting for 88.22% of the total estimated exposure. Importantly, by integrating environmental exposure assessment, human ADME (absorption, distribution, metabolism, and excretion) parameters, and urinary biomonitoring data, UV-328 and UV-234 were identified as the highest-priority congeners for occupational health monitoring among greenhouse workers. The present study is the first to combine environmental exposure and metabolic behavior for the prioritization of UVA risks, emphasizing the urgent need for early intervention toward the health and safety of agricultural greenhouse workers.
Collapse
Affiliation(s)
- Lu Bai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Juan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
2
|
He WT, Huang JW, Zhang YT, Trevathan E, Qian Z, Boyd R, Elliott M, Lin LZ, Gui ZH, Liu RQ, Hu LW, Dong GH. Chlorinated paraffins exposure in particulate matter increase the risk of attention-deficit/hyperactivity disorder symptoms in children and adolescents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126120. [PMID: 40157481 DOI: 10.1016/j.envpol.2025.126120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/14/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Chlorinated paraffins (CPs), widely distributed environmental and industrial pollutants, have been linked to impaired neurodevelopment. However, evidence for this potential association between CP exposure and the risk of Attention-Deficit Hyperactivity Disorder (ADHD) and subtypes is lacking. To investigate this possible association between chlorinated paraffins exposure and the risk of ADHD and its subtypes in children and adolescents, a large cross-sectional study was conducted in the Pearl River Delta (PRD) in China involving 122,965 completed questionnaires. Particle matters <2.5 μm (PM2.5) samples and PM2.5-bound short-chain CPs (SCCPs), medium-chain CPs (MCCPs), and long-chain CPs (LCCPs) in the PRD were collected and detected. Generalized linear mixed models (GLMM) and restricted cubic spline (RCS) models were used to estimate the association between CP exposure and ADHD symptoms and subtypes, as well as dose-response relationships. Quantile g-computation models (qgcomp) were performed to explore further the joint effects of a mixture of CPs exposure on ADHD symptoms and subtypes. A total of 7139 participants (5.8 %) were diagnosed with ADHD. GLMM analysis found that an interquartile range (IQR) increase in ∑CP concentrations was associated with the risk of ADHD after adjusting the covariates, and the odds ratio and corresponding 95 % confidence interval was 1.57 (1.54, 1.61). The RCS model showed a monotone-increased dose-response association between CP exposure and ADHD symptoms. Qgcomp model analysis indicated that SCCPs and MCCPs were the major contributors to the risk of ADHD symptoms. Furthermore, girls exhibited a significantly higher risk of developing ADHD and it subtypes compared to boys following exposure to CPs. Above all, our findings suggest that PM2.5-bound CP exposure may increase the risk of ADHD symptoms and subtypes, and provide novel evidence for atmospheric environmental risk factors for ADHD.
Collapse
Affiliation(s)
- Wan-Ting He
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jing-Wen Huang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yun-Ting Zhang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Edwin Trevathan
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Zhengmin Qian
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO 63104, USA
| | - Ri'enna Boyd
- George Warren Brown School of Social Work, Washington University in Saint Louis, Saint Louis, MO 63105, USA
| | - Michael Elliott
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO 63104, USA
| | - Li-Zi Lin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhao-Huan Gui
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ru-Qing Liu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Wen Hu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
3
|
Fang K, Sun YB, He RM, Qian JK, Gu W, Lu YF, Dong ZM, Wan Y, Wang C, Tang S. A critical review of human internal exposure to short-chain chlorinated paraffins and its concerning health risks. ENVIRONMENTAL RESEARCH 2025; 272:121179. [PMID: 39983965 DOI: 10.1016/j.envres.2025.121179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Short-chain chlorinated paraffins (SCCPs) are a complex mixture of chlorinated derivatives of n-alkanes with a chain length of 10-13 carbon atoms. SCCPs have been extensively used in industrial applications, although an alarming concern is increasingly raised in hazarding environmental matrices and biological organisms due to the environmental persistence, bioaccumulation potential, biotoxicity, and long-range atmospheric transport. Herein, this study conducted a critical review of human internal exposure to SCCPs and its concerning health risks by thoroughly analyzing 63 relevant articles screened in online databases, including the Web of Science, PubMed, Elsevier ScienceDirect, and China National Knowledge Infrastructure (CNKI). The review focused on various biological matrices, including blood, breast milk, and placenta, to assess human internal exposure to SCCPs, and summarized systematic health risk assessments for external exposures across different population groups. The primary exposure routes of SCCPs were dietary intake and dust ingestion and dermal absorption. Particularly, vulnerable population groups of infants, children, and occupational workers suffered from an elevated health risk of SCCPs, with the daily SCCPs intake approaching or exceeding the tolerable daily intake (TDI). So far, existing literature on an internal exposure to SCCPs by detecting human biological samples is insufficient and lacks a comprehensive, life cycle-wide monitoring of vulnerable and occupational populations. The relationship between human exposure to SCCPs and the consequent adverse health effects requires a further deep mining. Moreover, there is a lack of established exposure warning guidance values, and available internal exposure assessment models of SCCPs are currently limited. The future research priority is to knit together the assessment of human internal exposure to SCCPs and the following health risk by advanced sample pre-treatment and analytical methodologies, standardized operating procedures, and non-targeted screening combined with targeted detection techniques. Through a continuous monitoring of human internal exposure to SCCPs, clear illustration of the exposure-effect relationship and comprehensive health risk assessments via multiple exposure routes, these results shed lights on developing and revising regulatory frameworks for governing the production and handling of SCCPs.
Collapse
Affiliation(s)
- Ke Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Yi-Bin Sun
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Run-Ming He
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Jian-Kun Qian
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China; School of Public Health, China Medical University, Shenyang, 110122, China
| | - Wen Gu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Yi-Fu Lu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Zhao-Min Dong
- School of Public Health, Southeast University, Nanjing, 211189, China
| | - Yi Wan
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Chao Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
4
|
Yin S, Folarin BT, Bosschaerts S, Oluseyi T, Poma G, Liu X, Covaci A. Human exposure to polychlorinated alkanes (C 8-36) in soil and dust from Nigerian e-waste sites: Occurrence, homologue pattern and health risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136954. [PMID: 39721250 DOI: 10.1016/j.jhazmat.2024.136954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Electronic waste (e-waste) dismantling and dumpsite processes are recognized as significant sources of chlorinated paraffin (CP) exposure. This study aims to investigate the environmental occurrence and distribution of polychlorinated alkanes (PCAs-C8-36), specifically in soil and outdoor dust samples collected from e-waste dumpsites and automobile dismantling and resale sites in Nigeria. The results revealed a widespread occurrence of PCAs across all sampled locations. For the PCAs homologue groups ∑PCAs-C10-13, ∑PCAs-C14-17, and ∑PCAs-C18-20, the median concentrations were 1150 ng/g dry weight (dw), 1180 ng/g dw, and 370 ng/g dw in the dust samples, and 2840 ng/g dw, 1820 ng/g dw, and 830 ng/g dw in the soil samples, respectively. Notably, the homologue distribution patterns of PCAs-C8-36 were similar in both dust and soil samples. However, PCAs-C10-13 was found to be higher in the soil samples, likely due to the wet and/or dry deposition effect of the aerosols, given these chemicals' volatile nature and ease of atmospheric dispersion. Pearson correlation analysis further revealed a co-occurrence of contaminants in the soil samples, supporting the hypothesis that soil acts as a sink for persistent organic pollutants (POPs). Additionally, lower molecular weight polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) showed reduced correlation with the PCAs. Health risk assessments indicated that working on e-waste sites could potentially pose a risk to the workers' health. This study highlights the urgent need for mitigating occupational exposure to PCAs, especially in informal e-waste processing environments where personal protective measures are often lacking.
Collapse
Affiliation(s)
- Shanshan Yin
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China; Toxicological Centre, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Bilikis T Folarin
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium; Department of Chemistry, University of Lagos, Lagos State, Nigeria; Chemistry Department, Chrisland University, Ogun State 23409, Nigeria
| | - Stijn Bosschaerts
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Temilola Oluseyi
- Department of Chemistry, University of Lagos, Lagos State, Nigeria; Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Xuanchen Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium.
| |
Collapse
|
5
|
Zhou X, Wu J, He Q, Wang B, Xu X, Zhao X, Gao M, Yan B. Short-chain chlorinated paraffins induce liver injury in mice through mitochondrial disorders and disruption of cholesterol-bile acid pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125323. [PMID: 39549995 DOI: 10.1016/j.envpol.2024.125323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024]
Abstract
Short-chain chlorinated paraffins (SCCPs) are pervasive organic pollutants recognized for their persistence and bio-toxicity. This study investigated the hepatotoxic mechanisms of SCCPs at environmentally relevant concentration (0.7 μg/kg). The results showed that SCCPs exposure in mice resulted in dysregulated blood and liver lipids, marked by elevated cholesterol levels. Additionally, liver function was compromised, as indicated by increased levels of aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase. Histopathological examination of liver tissue post-SCCPs exposure revealed hepatocyte enlargement, vacuolar degeneration, and mild ballooning degeneration. Mechanistically, SCCPs induced mitochondrial abnormalities, evidenced by heightened Hoechst 33258 fluorescence, and augmented reactive oxygen species and malondialdehyde levels in liver tissue. This was accompanied by a reduction in total antioxidant capacity, culminating in elevated apoptosis markers, including cytochrome C and caspase-3. Moreover, SCCPs perturbed hepatocellular energy metabolism, characterized by increased glycolysis, lactic acid, and fatty acid oxidation, alongside a disruption in the tricarboxylic acid cycle and a decline in mitochondrial energy metabolic function. Furthermore, SCCPs exposure downregulated the expression of genes involved in bile acid synthesis (cyp27a1, fxr, and shp), thereby precipitating the cholesterol-bile acid metabolism disorders and cholesterol accumulation. Collectively, these findings underscore that SCCPs, even at environmentally relevant levels, can induce lipid dysregulation, mitochondrial disorders and cholesterol deposition in the hepatocytes, contributing to liver damage. The study's insights contribute to a comprehension of SCCPs-induced hepatotoxicity and may inform potential preventative and treatment targets for hepatic damage associated with SCCPs exposure.
Collapse
Affiliation(s)
- Xianpeng Zhou
- School of Resources and Environmental Science and Engineering, Hubei University of Science and Technology, Xianning, 437100, China
| | - Jiang Wu
- Xianning Public Inspection and Testing Center, Xianning, 437000, China
| | - Qiang He
- Xianning Public Inspection and Testing Center, Xianning, 437000, China
| | - Beibei Wang
- School of Pharmacy, Hubei University of Science and Technology, Xianning, 437000, China
| | - Xulong Xu
- School of Pharmacy, Hubei University of Science and Technology, Xianning, 437000, China
| | - Xue Zhao
- School of Pharmacy, Hubei University of Science and Technology, Xianning, 437000, China
| | - Minmin Gao
- School of Pharmacy, Hubei University of Science and Technology, Xianning, 437000, China
| | - Biao Yan
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, China.
| |
Collapse
|
6
|
Zhou W, Bu D, Huang K, Liang Y, Fu J, Zhang Q, Zhang Q, Zhang A, Fu J, Jiang G. From environment to free-range chickens: Broad exposure to short- and medium-chain chlorinated paraffins in rural Tibetan Plateau, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136288. [PMID: 39471632 DOI: 10.1016/j.jhazmat.2024.136288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/30/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
Chlorinated paraffins (CPs) are widely employed in various consumer products. Rapid socioeconomic development drives the elevation of CPs contamination by increasing the usage of modern lifestyle products, but limited information exists about their occurrence in remote rural areas. In this study, the occurrence, and profiles of short- and medium-chain CPs (SCCPs and MCCPs) in soils, plants, chicken feeds, eggs, and free-range chicken tissues in the rural Tibetan Plateau were investigated. The median concentrations of SCCPs and MCCPs were 108 and 141 ng/g dry weight (dw) in soils, 1.76 × 103 and 1.16 × 103 ng/g dw in plants, 43.6 and 24.3 ng/g dw in chicken feeds, 299 and 251 ng/g lipid weight in free-range chicken eggs, and 182 -3.45 × 103 and 396 -7.75 × 103 ng/g lipid weight in chicken tissues, respectively. Correlation analysis demonstrated that soil was the primary source of CPs, and free-range chicken eggs were effective bioindicators for SCCPs and MCCPs contamination. Tissue distribution showed that SCCPs and MCCPs were highly accumulated in chicken tissues that local resident preferred to consume (such as muscle and stomach). Our findings lay the foundations for further evaluation of the potential risks of CPs on the ecosystem and human health in remote rural areas.
Collapse
Affiliation(s)
- Wei Zhou
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Duo Bu
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Kai Huang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jie Fu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Qiangying Zhang
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Qun Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Aiqian Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianjie Fu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Ecology and Environment, Tibet University, Lhasa 850000, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Ecology and Environment, Tibet University, Lhasa 850000, China
| |
Collapse
|
7
|
Liang N, Cao R, Jiang N, Shi C, Guo Z, Gao Y, Zhang R, Zhang H, Chen J, Geng N. Occurrence and fate of atmospheric short/medium chain chlorinated paraffins: Size distribution and inhalation exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176507. [PMID: 39341256 DOI: 10.1016/j.scitotenv.2024.176507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
Chlorinated paraffins (CPs) are intricate industrial compounds synthesized through alkane chlorination. Researches on the size distribution of short-chain (SCCPs) and medium-chain chlorinated paraffins (MCCPs) in atmospheric particulate matter (PM) are limited. Here, we conducted a thorough investigation on the size-dependent distribution characteristics, deposition behavior in respiratory tract, and health risks associated with CPs in atmospheric PM. The concentration of SCCPs in atmospheric particulate matter (PM10) was much higher than MCCPs, with concentration ranges of 2.53-31.8 and 1.07-4.62 ng m-3, respectively. Concentrations of CPs increase with decreasing PM size, peaking at aerodynamic diameters (Dp) < 0.49 μm. Physicochemical properties influence the distribution of CP homologs in PM. Those with lower vapor pressure, higher octanol-air and octanol-water partition coefficients tended to accumulate in PM with larger geometric mean diameters. Most of the inhaled CPs in PM deposited in the upper airways, with a small amount in the trachea and alveolar regions. The estimated daily intakes values were highest when Dp < 0.49 μm. Particle size is an essential determinant for the deposition of inhaled CPs in PM and should be considered in health risk assessments.
Collapse
Affiliation(s)
- Naibing Liang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Rong Cao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Nan Jiang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Chengcheng Shi
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Zhangpeng Guo
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Yuan Gao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ruiqin Zhang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Haijun Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiping Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ningbo Geng
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
8
|
Beloki Ezker I, Yuan B, Bohlin-Nizzetto P, Borgen AR, Wang T. Polychlorinated alkanes in indoor environment: A review of levels, sources, exposure, and health implications for chlorinated paraffin mixtures. CHEMOSPHERE 2024; 365:143326. [PMID: 39306115 DOI: 10.1016/j.chemosphere.2024.143326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 10/03/2024]
Abstract
Polychlorinated n-alkanes (PCAs) are the main components of chlorinated paraffins (CPs) mixtures, that have been commonly grouped into short-chain (SCCPs, C10-13), medium-chain (MCCPs, C14-17), and long-chain (LCCPs, C18-30) CPs. PCAs pose a significant risk to human health as they are broadly present in indoor environments and are potentially persistent, bioaccumulative, and toxic. The lack of specific terminology and harmonization in analytical methodologies for PCA analysis complicates direct comparisons between studies. The present work summarizes the different methodologies applied for the analysis of PCAs in indoor dust, air, and organic films. The large variability between the reviewed studies points to the difficulties to assess PCA contamination in these matrices and to mitigate risks associated with indoor exposure. Based on our review of physicochemical properties of PCAs and previously reported sum of measurable S/M/LCCPs levels, the homologue groups PCAs-C10-13 are found to be mostly present in the gas phase, PCAs-C14-17 in particulate matter and organic films, and PCAs-C≥18 in settled dust. However, we emphasized that mapping PCA sources and distribution in the indoors is highly dependent on the individual homologues. To further comprehend indoor PCA distribution, we described the uses of PCA in building materials and household products to apportion important indoor sources of emissions and pathways for human exposure. The greatest risk for indoor PCAs were estimated to arise from dermal absorption and ingestion through contact with dust and CP containing products. In addition, there are several factors affecting indoor PCA levels and exposure in different regions, including legislation, presence of specific products, cleaning routines, and ventilation frequency. This review provides comprehensive analysis of available indoor PCA data, the physicochemical properties, applied analytical methods, possible interior sources, variables affecting the levels, human exposure to PCAs, as well as need for more information, thereby providing perspectives for future research studies.
Collapse
Affiliation(s)
- Idoia Beloki Ezker
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83, Linköping, Sweden
| | - Bo Yuan
- Department of Chemistry, Norwegian University of Science and Technology, 7491, Trondheim, Norway.
| | | | | | - Thanh Wang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83, Linköping, Sweden; Department of Thematic Studies - Environmental Change, Linköping University, 581 83, Linköping, Sweden
| |
Collapse
|
9
|
Zhao Y, Bai L, Wang X, Huo M, Gao W, Jiang L, Jin J, Wang Y, Cao D. Exposure Assessment of Benzotriazole Ultraviolet Absorbers in Plastic Sports Field Dust and Indoor Dust: Are Plastic Sports Fields High Exposure Scenarios? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17419-17428. [PMID: 39292546 DOI: 10.1021/acs.est.4c03930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Benzotriazole ultraviolet absorbers (BUVs), as emerging contaminants of extensive use, especially in plastic sports fields, have aroused increasing concern due to their potential human and environmental impacts. However, BUV exposure from plastic sports field dust is still unknown. This study compared BUVs in plastic sports field dust and indoor dust for the first time. The order of the geometric mean concentrations of the total BUVs (ΣBUVs) in plastic sports field dust was indoor badminton courts (11023 ng g-1) > basketball courts (4777 ng g-1) > plastic tracks (3779 ng g-1) > synthetic turf (1920 ng g-1) > tennis courts (689 ng g-1). The geometric mean concentrations of ΣBUVs in indoor dust (1150 ng g-1) were lower than those in most plastic sports field dust. The dominant BUV was 2-hydroxy-4-(octyloxy)benzophenone (UV-531) in plastic sports field dust, while 2,2'-methylenebis[4-(1,1,3,3-tetramethylbutyl)-6-2H-benzotriazole-2-yl)phenol] (UV-360) was the dominant BUV in indoor dust. Releases from plastic track materials, sneaker soles, and friction between them might be important BUV sources in plastic track dust. The average estimated daily intakes of ΣBUVs from plastic sports field dust for general exercisers were lower than those from indoor dust, but those for exercisers with long time or professional athletes might be higher, potentially posing health risks.
Collapse
Affiliation(s)
- Yuqian Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Lu Bai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinying Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Mengmeng Huo
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Wei Gao
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Lu Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jie Jin
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dandan Cao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
10
|
Zhu C, Cao Z, Hu B, Li Z, Huang S, Han X, Luo X, Yuan H, Li L. Human bare and clothing-covered skin exposure to chlorinated paraffins for the general populations: Exposure pattern differential and significance of indirect dermal exposure via clothing-to-skin transport. ENVIRONMENT INTERNATIONAL 2024; 192:109068. [PMID: 39406162 DOI: 10.1016/j.envint.2024.109068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
To investigate human exposure to short-chain chlorinated paraffins (SCCPs) and medium-chain chlorinated paraffins (MCCPs) through dermal and oral intake via hand-to-mouth contact, wipes from the face, forearm, hand, and foot of 30 volunteers were sampled. The concentration of ∑SCCPs and ∑MCCPs ranged from 0.66 to 119 and 0.71 to 565 µg/m2, respectively. Hands exhibited significantly higher ∑CPs concentrations than other skin areas, indicating that direct contact with indoor surfaces contributed considerable CP levels on this bare skin area. Gender differences in CP levels were observed in wipes from all locations, except for the hands, possibly because of the significant variability in residuals on the hands. A significant positive relationship was found between CP levels on the hands and faces, and the CP ratios of the hands/faces were related to log KOA. Bare skin showed more significant variations in CP partitioning among related congeners and between genders than skin covered by clothing, as elucidated by the linear analysis of RSD and log KOA. Although concentrations on clothing-covered areas were relatively lower than on bare skin, the median estimated dermal absorption doses of ∑SCCPs and ∑MCCPs (152 and 737 ng/kg bw/day, respectively) for the entire body were approximately 1-2 orders of magnitude higher than those for oral ingestion (1.62 and 7.94 ng/kg bw/day, respectively), emphasizing indirect dermal uptake as a significant exposure pathway for humans.
Collapse
Affiliation(s)
- Chunyou Zhu
- Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Beibei Hu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Zhi Li
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Simin Huang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Xu Han
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Haoran Yuan
- Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Liangzhong Li
- Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
11
|
Zhang Z, Geng N, Ning C, Zhu X, Zhang H, Chen J, Cao R. Physicochemical properties dominating the behaviors of short/medium chain chlorinated paraffins in the atmosphere. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135335. [PMID: 39079292 DOI: 10.1016/j.jhazmat.2024.135335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024]
Abstract
Chlorinated paraffins (CPs) are chlorinated alkane mixtures widely used as flame retardants and plasticizers in multiple industrial products. Systematic research on how homolog-specific properties affect their atmospheric behaviors is limited. Herein, we investigated the levels of short-chain CPs (SCCPs) and medium-chain CPs (MCCPs) in long-timescale, seasonal, and size-fractioned particles in the urban area of Dalian, a coastal city in northern China. The average SCCP and MCCP concentrations in particles with diameters ≤ 10 µm were 3.36 and 4.89 ng/m3, respectively, and a general increase in the SCCP concentration was observed from 2.59 ng/m3 in 2018 - 2019 to 7.84 ng/m3 in 2021 - 2023. CP levels and patterns showed significant seasonal variation, with a higher abundance of C11-13Cl7-9 in winter and C10-12Cl5 in summer. Elevated particle levels in winter and high temperatures in summer contributed to the seasonal variations. SCCPs and MCCPs were concentrated on particles with diameters of < 1 µm and their geometric mean diameter increased with the increasing carbon and chlorine numbers. Total Daily intake of SCCP and MCCP was calculated to be 0.15 and 0.22 ng/kg bw/day for adults. 53.1 %, 8.5 %, and 38.4 % of inhaled SCCPs, and 60.6 %, 7.6 %, and 31.8 % of inhaled MCCPs deposited into the head airway, tracheobronchial region, and alveolar region, respectively. This study reports on how homolog-specific physicochemical properties alter the temporal variations, size distributions, and inhaled fractions of CPs.
Collapse
Affiliation(s)
- Zhijie Zhang
- School of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China; CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ningbo Geng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Cuiping Ning
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Xiuhua Zhu
- School of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China.
| | - Haijun Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rong Cao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
12
|
Zhu C, Liu S, Cao Z, Hu B, Yang C, Luo X, Yuan H, Li L. Human dermal exposure to short- and medium-chain chlorinated paraffins: Effect of populations, activities, gender, and haze pollution. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135169. [PMID: 39024769 DOI: 10.1016/j.jhazmat.2024.135169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/16/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
Human dermal exposure to chlorinated paraffins (CPs) has not been well documented. Therefore, hand wipes were collected from four occupational populations to analyze short-chain CPs (SCCPs) and medium-chain CPs (MCCPs) in order to estimate dermal uptake and oral ingestion via hand-to-mouth contact. The total CP levels (∑SCCPs and ∑MCCPs) in wipes ranged from 71.4 to 2310 µg/m2 in security guards, 37.6 to 333 µg/m2 in taxi drivers, 20.8 to 559 µg/m2 in office workers, and 20.9 to 932 µg/m2 in undergraduates, respectively. Security guards exhibited the highest levels of ∑SCCPs among four populations (p < 0.01). In undergraduates engaged in outdoor activities, C13 emerged as the most dominant SCCPs homologue group, followed by C12, C11, and C10. The levels of ∑SCCPs and ∑MCCPs in males in light haze pollution were significantly higher than that in heavy haze pollution (p < 0.05). The median estimated dermal absorption dose of SCCPs and MCCPs via hand was 22.2 and 104 ng (kg of bw)-1 day-1, respectively, approximately 1.5 times the oral ingestion [12.3 and 74.4 ng (kg of bw)-1 day-1], suggesting that hand contact is a significant exposure source to humans.
Collapse
Affiliation(s)
- Chunyou Zhu
- Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Shijun Liu
- Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Beibei Hu
- Southern Marine Science and Engineering Guangdong Laboratory Guangzhou, Guangzhou 511458, China.
| | - Chenyu Yang
- Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Haoran Yuan
- Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Liangzhong Li
- Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
13
|
Wu X, Zhang S, Cao J, Tian J, Zhou W, Gao H, Dong S. Chlorinated paraffins in takeout food and its packaging in Beijing, China and dietary exposure risk. ENVIRONMENTAL RESEARCH 2024; 252:118768. [PMID: 38521355 DOI: 10.1016/j.envres.2024.118768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Chlorinated paraffins (CPs) are hazardous to humans, and dietary intake acts as the primary pathway for human exposure to CPs. Takeout food is popular worldwide, but the presence of CPs in takeout food and its packaging is unclear. In this study, the concentrations and distributions of short- and median-chain CPs (SCCPs and MCCPs, respectively) were measured in 97 samples of four categories of takeout food and 33 samples of three types of takeout packaging. The SCCP and MCCP median concentrations for the takeout food samples were 248 and 339, 77.2 and 98.2, 118 and 258, 42.9 and 64.4 ng/g wet weight in meat, starch, half meat/half starch, and vegetables, respectively. Takeout food contained higher concentrations of SCCPs than MCCPs. The dominant SCCP and MCCP congener groups in takeout food were C10Cl6-7 and C14Cl7-8, respectively. The CP concentrations in takeout food were lower than those in packaging. The SCCP and MCCP median concentrations, respectively, in packaging were 9750 and 245 ng/g in polypropylene, 2830 and 135 ng/g in paper, and 2060 and 119 ng/g in aluminum foil. The concentrations of SCCPs and MCCPs were comparable in aluminum foil, whereas the concentrations of SCCPs were higher than those of MCCPs in polypropylene and paper. Correlations between CP concentrations in the takeout food and packaging indicated that CPs in packaging were potentially an important source of CPs in the takeout food. A dietary exposure risk assessment showed the takeout food posed a low risk for human exposure to CPs; however, high-frequency consumption may pose a health risk. This study clarified the current contamination situation in takeout food in Beijing, China. The resulting data could be used to prevent human exposure to CPs through dietary intake and to facilitate the market's control over the quality of takeout food.
Collapse
Affiliation(s)
- Xingyi Wu
- College of Science, China Agricultural University, Beijing 100193, China
| | - Su Zhang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jun Cao
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiangxin Tian
- College of Science, China Agricultural University, Beijing 100193, China
| | - Wenfeng Zhou
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Haixiang Gao
- College of Science, China Agricultural University, Beijing 100193, China
| | - Shujun Dong
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
14
|
Zhou W, Bu D, Huang K, Zhang Q, Cui X, Dan Z, Yang Y, Fu Y, Yang Q, Teng Y, Fu J, Zhang A, Fu J, Jiang G. First comprehensive assessment of dietary chlorinated paraffins intake and exposure risk for the rural population of the Tibetan Plateau, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172435. [PMID: 38615758 DOI: 10.1016/j.scitotenv.2024.172435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Knowledge regarding the occurrence of short-chain and medium-chain chlorinated paraffins (SCCPs and MCCPs) in foodstuffs and their dietary exposure risks for rural Tibetan residents remains largely unknown. Herein, we collected main foodstuffs (including highland barley, vegetables, Tibetan butter, mutton, and yak beef) across the rural Tibetan Plateau and characterized the CP profiles and concentrations. The highest SCCPs concentrations were detected in Tibetan butter (geometric mean (GM): 240.6 ng/g wet weight (ww)), followed by vegetables (59.4 ng/g ww), mutton (51.4 ng/g ww), highland barley (46.3 ng/g ww), and yak beef (31.7 ng/g ww). For MCCPs, the highest concentrations were also detected in Tibetan butter (319.5 ng/g ww), followed by mutton (181.9 ng/g ww), vegetables (127.0 ng/g ww), yak beef (71.2 ng/g ww), and highland barley (30.3 ng/g ww). The predominant congener profiles of SCCPs were C13Cl7-8 in mutton and yak beef, C10Cl7-8 in Tibetan butter, and C10-11Cl6-7 in highland barley and vegetables. The predominant congener profiles of MCCPs were C14Cl7-9 in all sample types. Combined with our previous results of free-range chicken eggs, the median estimated daily intakes (EDIs) of SCCPs and MCCPs via diet for Tibetan rural adults and children was estimated to be 728.8 and 1853.9 ng/kg bw/day and 2565.6 and 5952.8 ng/kg bw/day, respectively. In the worst scenario, MCCPs might induce potential health risks for rural Tibetan population. To our knowledge, this is the first systematic dietary exposure research of SCCPs and MCCPs in the remote rural areas.
Collapse
Affiliation(s)
- Wei Zhou
- School of Ecology and Environment, Tibet University, Lhasa 850000, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Duo Bu
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Kai Huang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Qiangying Zhang
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Xiaomei Cui
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Zeng Dan
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Yinzheng Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yilin Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qianyuan Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunhe Teng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jie Fu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jianjie Fu
- School of Ecology and Environment, Tibet University, Lhasa 850000, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Guibin Jiang
- School of Ecology and Environment, Tibet University, Lhasa 850000, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
15
|
Wang R, Lin Y, Le S, Lu D, Gao L, Feng C, Wang G, Xiao P. Short- and medium-chain chlorinated paraffins in breast milk in Shanghai, China: Occurrence, characteristics, and risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123690. [PMID: 38452837 DOI: 10.1016/j.envpol.2024.123690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
As novel contaminants, short-chain chlorinated paraffins (SCCPs) and medium-chain chlorinated paraffins (MCCPs) have been of great concern in the past several years. Shanghai was one of the provinces with the largest chlorinated paraffins (CPs) emission in China; nevertheless, there is currently little information on the human exposure to SCCPs and MCCPs, particularly MCCPs. In this study, 25 breast milk samples were collected in Shanghai from 2016 to 2017. The concentrations of SCCPs and MCCPs were determined using two-dimensional gas chromatography coupled with orbitrap high-resolution mass spectrometry (GC × GC-orbitrap-HRMS) to investigate their characteristics and assess the associated health risks for breast-fed infants. Compared with the previous studies in other areas, the current study presented the higher CPs concentrations, with median concentrations of SCCPs and MCCPs up to 771 and 125 ng/g lipid weight (lw), respectively. The exposure profiles of the CPs were characterized by C10 and Cl6-7 as the predominant congeners of SCCPs, while C14 and Cl7-9 were identified as the dominant groups of MCCPs. CP-42 and CP-52 were identified as potential sources of CPs found in breast milk samples collected in Shanghai. The concentrations of MCCPs exhibited a positive correlation (p value < 0.05) with the dietary consumption of meat and poultry. No significant positive correlations were observed for SCCPs and MCCPs with polychlorinated dibenzodioxins/furans (PCDD/Fs) congeners. A preliminary exposure assessment showed that SCCPs in breast milk potentially posed high risks to the breast-fed infants in Shanghai.
Collapse
Affiliation(s)
- Runhua Wang
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, 200336, China.
| | - Yuanjie Lin
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, 200336, China.
| | - Sunyang Le
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, 200336, China.
| | - Dasheng Lu
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, 200336, China.
| | - Lirong Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Chao Feng
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, 200336, China.
| | - Guoquan Wang
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, 200336, China.
| | - Ping Xiao
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, 200336, China.
| |
Collapse
|
16
|
Zhou W, Huang K, Bu D, Zhang Q, Fu J, Hu B, Zhou Y, Chen W, Fu Y, Zhang A, Fu J, Jiang G. Remarkable Contamination of Short- and Medium-Chain Chlorinated Paraffins in Free-Range Chicken Eggs from Rural Tibetan Plateau. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5093-5102. [PMID: 38386012 DOI: 10.1021/acs.est.3c08815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Rapid social-economic development introduces modern lifestyles into rural areas, not only bringing numerous modern products but also new pollutants, such as chlorinated paraffins (CPs). The rural Tibetan Plateau has limited industrial activities and is a unique place to investigate this issue. Herein we collected 90 free-range chicken egg pool samples across the rural Tibetan Plateau to evaluate the pollution status of CPs. Meanwhile, CPs in related soils, free-range chicken eggs from Jiangxi, and farmed eggs from markets were also analyzed. The median concentrations of SCCPs (159 ng g-1 wet weight (ww)) and MCCPs (1390 ng g-1 ww) in Tibetan free-range chicken eggs were comparable to those from Jiangxi (259 and 938 ng g-1 ww) and significantly higher than those in farmed eggs (22.0 and 81.7 ng g-1 ww). In the rural Tibetan Plateau, the median EDI of CPs via egg consumption by adults and children were estimated to be 81.6 and 220.2 ng kg-1 bw day-1 for SCCPs and 483.4 and 1291 ng kg-1 bw day-1 for MCCPs, respectively. MCCPs might pose potential health risks for both adults and children in the worst scenario. Our study demonstrates that new pollutants should not be ignored and need further attention in remote rural areas.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Kai Huang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Duo Bu
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Qiangying Zhang
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Jie Fu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Boyuan Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yunqiao Zhou
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Weifang Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yilin Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| |
Collapse
|
17
|
Chen C, Li L, Endo S, Jiang S, Wania F. Are We Justified in Modeling Human Exposure to Chlorinated Paraffin Mixtures Using the Average Properties of Congeners and Homologues? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4535-4544. [PMID: 38408178 DOI: 10.1021/acs.est.3c09186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Concern over human exposure to chlorinated paraffin (CP) mixtures keeps increasing. The absence of a comprehensive understanding of how human exposure varies with the physicochemical properties of CP constituents has hindered the ability to determine at what level of aggregation exposure to CPs should be assessed. We answer this question by comparing exposure predicted with either a "complex" method that utilizes isomer-specific properties or "simplified" methods that rely on median properties of congener, homologue, or short-/medium-/long-chain CP groups. Our results demonstrate the wide range of physicochemical properties across CP mixtures and their dependence on molecular structures. Assuming unit emissions in the environment, these variances translate into an extensive disparity in whole-body concentrations predicted for different isomers, spanning ∼11 orders of magnitude. CPs with 13-19 carbons and 6-10 chlorines exhibit the highest human exposure potential, primarily owing to moderate to high hydrophobicity and slow environmental degradation and biotransformation. Far-field exposure is dominant for most CP constituents. Our study underscores that using average properties of congener, homologue, or S/M/LCCP groups yields results that are consistent with those derived from isomer-based modeling, thus offering an efficient and practical framework for future risk assessments and human exposure studies of CPs and other complex chemical mixtures.
Collapse
Affiliation(s)
- Chengkang Chen
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Li Li
- School of Public Health, University of Nevada Reno, 1664 N Virginia Street, Reno, Nevada 89557, United States
| | - Satoshi Endo
- Health and Environmental Risk Division, National Institute for Environmental Studies (NIES), Onogawa 16-2, Tsukuba 305-8506, Ibaraki, Japan
| | - Shaoxiang Jiang
- Institute for Global Health and Development, Peking University, Beijing 100871, China
| | - Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| |
Collapse
|
18
|
Amoura C, Larvor F, Marchand P, Bizec BL, Cariou R, Bichon E. Quantification of chlorinated paraffins by chromatography coupled to high-resolution mass spectrometry - Part B: Influence of liquid chromatography separation. CHEMOSPHERE 2024; 352:141401. [PMID: 38346520 DOI: 10.1016/j.chemosphere.2024.141401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
The analysis of chlorinated paraffins (CPs) is today an analytical challenge. Indeed, it is still impractical to describe their real composition in terms of polychlorinated alkanes (PCAs) homologue groups, which dominate technical mixtures. The co-elution of PCA congeners generates interferences due to the competition phenomena which occur during the ionisation process as well as to the dependence of the ionisation sources on the PCA chemistry. Therefore, the aim of this study was to investigate the influence of chromatographic separation, by LC-ESI-HRMS coupling, on the PCA homologue group pattern and, eventually, on their determination in food samples from interlaboratory studies. For this, three different mobile phases and six LC chromatographic columns were studied in order to optimise the analysis of CP mixtures. The first results showed that the use of a MeOH/H2O mobile phase reveals more appropriately the higher chlorinated PCAs. However, using ACN/H2O led to less ion species, with almost exclusively [M + Cl]- adducts, formed using post-column dichloromethane addition. Regarding the choice of the stationary phases, Hypercarb column provided a completely different homologue group pattern from the other chromatographic columns, in relation with the stronger retention of PCAs. Among the other columns, the C30 column better highlighted the short-chain PCAs compared to the C18 column conventionally used. Because the regulations now concern short-chain CPs, the quantification of food samples was then carried out on the C30 column. The optimised LC-ESI-HRMS conditions using C30 column and MeOH/H2O solvent mixture led to a quantification of PCAs in samples from interlaboratory studies with satisfactory accuracy (|Z-score| ≤ 2) and precision (<15%).
Collapse
|
19
|
Chen J, Zhang S, Xu W, Chen C, Chen A, Lu R, Jing Q, Liu J. Exploring long-term global environmental impacts of chlorinated paraffins (CPs) in waste: Implications for the Stockholm and Basel Conventions and the global plastic treaty. ENVIRONMENT INTERNATIONAL 2024; 185:108527. [PMID: 38422873 DOI: 10.1016/j.envint.2024.108527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/01/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Chlorinated paraffins (CPs), mainly short-chain CPs (SCCPs) and medium-chain CPs (MCCPs), are currently the most produced and used industrial chemicals related to persistent organic pollutants (POPs) globally. These chemicals are widely detected in the environment and in the human body. As the release of SCCPs and MCCPs from products represents only a small fraction of their stock in products, the potential long-term release of CPs from a large variety of products at the waste stage has become an issue of great concern. The results of this study showed that, by 2050, SCCPs and MCCPs used between 2000 and 2021 will cumulatively generate 226.49 Mt of CP-containing wastes, comprising 8610.13 kt of SCCPs and MCCPs. Approximately 79.72 Mt of CP-containing wastes is predicted to be generated abroad through the international trade of products using SCCPs and MCCPs. The magnitude, distribution, and growth of CP-containing wastes subject to environmentally sound disposal will depend largely on the relevant provisions of the Stockholm and Basel Conventions and the forthcoming global plastic treaty. According to multiple scenarios synthesizing the provisions of the three conventions, 26.6-101.1 Mt of CP-containing wastes will be subject to environmentally sound disposal as POP wastes, which would pose a great challenge to the waste disposal capacity of China, as well as for countries importing CP-containing products. The additional 5-year exemption period for MCCPs is expected to see an additional 10 Mt of CP-containing wastes subject to environmentally sound disposal. Thus, there is an urgent need to strengthen the Stockholm and Basel Conventions and the global plastic treaty.
Collapse
Affiliation(s)
- Jiazhe Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shaoxuan Zhang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Weiguang Xu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chengkang Chen
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Anna Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Rongjing Lu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Qiaonan Jing
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jianguo Liu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Institute of Carbon Neutrality, Peking University, Beijing 100871, China.
| |
Collapse
|
20
|
Yu J, Tang Q, Yin G, Chen W, Lv J, Li L, Zhang C, Ye Y, Song X, Zhao X, Tang T, Zhang C, Zeng L, Xu Z. Uptake, accumulation and toxicity of short chain chlorinated paraffins to wheat (Triticum aestivum L.). JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132954. [PMID: 37972496 DOI: 10.1016/j.jhazmat.2023.132954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Short chain chlorinated paraffins (SCCPs) are ubiquitous persistent organic pollutants. They have been widely detected in plant-based foods and might cause adverse impacts on humans. Nevertheless, uptake and accumulation mechanisms of SCCPs in plants remain unclear. In this study, the soil culture data indicated that SCCPs were strongly absorbed by roots (root concentration factor, RCF>1) yet limited translocated to shoots (translocation factor<1). The uptake mechanism was explored by hydroponic exposure, showing that hydrophobicity and molecular size influenced the root uptake and translocation of SCCPs. RCFs were significantly correlated with logKow values and molecular weights in a parabolic curve relationship. Besides, it was extremely difficult for SCCPs to translocate from shoots back to roots via phloem. An active energy-dependent process was proposed to be involved in the root uptake of SCCPs, which was supported by the uptake inhibition by the low temperature and metabolic inhibitor. Though SCCPs at environmentally relevant concentrations had no negative impacts on root morphology and chlorophyll contents, it caused obvious changes in cellular ultrastructure of root tip cells and induced a significant increase in superoxide dismutase activity. This information may be beneficial to moderate crop contamination by SCCPs, and to remedy soils polluted by SCCPs with plants.
Collapse
Affiliation(s)
- Jianzhong Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agroproducts, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qing Tang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ge Yin
- Shimadzu (China) Co., LTD, Shanghai 200233, China
| | - Weifang Chen
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lingxiangyu Li
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Chenghao Zhang
- Institute of Agricultural Equipment, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yunxiang Ye
- Institute of Agricultural Equipment, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xijiao Song
- Central Laboratory of Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agroproducts, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agroproducts, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Changpeng Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agroproducts, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Zhenlan Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agroproducts, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
21
|
Zhang G, Zhang Q, Guan X, Liu M, Meng L, Han X, Li Y, Jiang G. Short-chain chlorinated paraffin (SCCP) exposure and type 2 diabetes risk: A population-based case-control study in East China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168192. [PMID: 37924874 DOI: 10.1016/j.scitotenv.2023.168192] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
Exposure to persistent organic pollutants may be associated to type 2 diabetes, but the studies on associations between short-chain chlorinated paraffin (SCCP) exposure and type 2 diabetes risk in humans are still scarce. Here, we conducted a case-control study involving 344 participants in Shandong Province, East China, to explore the effects of SCCPs on type 2 diabetes risk and their correlations with glycemic biomarker and serum lipid parameters. SCCPs were detected in all serum samples with a median concentration of 24 ng mL-1 in cases and 19 ng mL-1 in controls. Exposure to C10-CPs, C11-CPs, and ΣSCCPs were positively associated with the risk of type 2 diabetes after adjusting for confounders. The associations remained consistent in stratified analyses but stronger in male participants and obese individuals. In the control group, there were significant and positive correlations between SCCP exposure and levels of total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C), total lipid, and non-high-density lipoprotein-cholesterol. Significant joint effects on SCCP exposure and lipid parameters were observed in females when analyzed by the quantile-based g-computation model, and C10-CPs showed the highest contribution. Mediation analysis showed that LDL-C had significant mediation effects on the associations between C10-CPs, C11-CPs, and ΣSCCPs exposure and risk of type 2 diabetes. Moreover, TC and high-density lipoprotein-cholesterol were mediators in the relationship between C11-CPs and type 2 diabetes. Taken together, our study revealed that human exposure to SCCPs may increase the risk of type 2 diabetes and disrupt lipid metabolism.
Collapse
Affiliation(s)
- Gaoxin Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Xiaoling Guan
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
| | - Mei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lingling Meng
- Department of Nursing, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China.
| | - Xu Han
- Sinopec Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
22
|
Tahir A, Abbasi NA, He C, Ahmad SR. Exposure and human health risk assessment of chlorinated paraffins in indoor and outdoor dust from a metropolitan city, Lahore, Pakistan. CHEMOSPHERE 2024; 347:140687. [PMID: 37952823 DOI: 10.1016/j.chemosphere.2023.140687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Chlorinated paraffins (CPs) are widely used in commercial products due to their stability and durability and are subsequently released in the environment posing serious health risks in human population. In this study, dust samples from indoor and outdoor settings of residential, commercial and industrial zones as well as from vehicles were collected from a metropolitan city, Lahore, Pakistan. A total of 83 dust samples were analyzed for short (SCCPs) and medium (MCCPs) chained CPs through quadrupole time of flight mass spectrometer in atmospheric pressure chemical ionization (APCI QToF-MS) mode. The median concentrations of ƩCPs (C10-17) in outdoor dust were higher than indoor dust in industries (0.97 vs 0.48 μg/g), and residential areas (0.70 vs 0.13 μg/g) while lower in commercial areas (0.28 vs 0.44 μg/g) reflecting their higher prevalence in industrial and residential zones. The vehicular dust had median ƩCPs of 0.16 μg/g which was similar to residential indoor dust. Overall, ƩSCCPs were dominant among all zones with C10,12 and Cl7-8 as abundant carbon and chlorine congeners in both indoor and outdoor dusts. No significant correlations were observed between indoor and outdoor dust for ƩSCCPs and ƩMCCPs indicating their varying exposure. Health hazard index and margin of exposure revealed that toddlers were at higher risk compared to adults as a results of CPs exposure from both indoor and outdoor environments. This is the first ever assessment of CPs in Pakistan reflecting higher prevalence of SCCPs than MCCPs in dust of local environment posing some serious health consequences hence needed intensive investigation and effective management.
Collapse
Affiliation(s)
- Areej Tahir
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Naeem Akhtar Abbasi
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan.
| | - Chang He
- Queensland Alliance for Environmental Health Science, The University of Queensland, Brisbane, 4102, Australia
| | - Sajid Rashid Ahmad
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
23
|
Liao H, Li X, Zhou Y, Wu Y, Cao Y, Yang J, Zhang J. Biomonitoring, exposure routes and risk assessment of chlorinated paraffins in humans: a mini-review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1588-1603. [PMID: 37655634 DOI: 10.1039/d3em00235g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Chlorinated paraffins (CPs), which were conventionally classified into short- (SCCPs), medium- (MCCPs) and long- (LCCPs) chain CPs, have received growing attention due to their wide usage and extensive detection in environmental samples and biota. The number of studies regarding the biomonitoring of CPs in human beings increased rapidly and their health risk gained great concern. This review summarized their occurrence and homologue patterns in human matrices including blood/serum, placenta, cord serum and breast milk. As the production and usage of SCCPs was progressively banned after being listed in Annex A of the Stockholm Convention, the production of MCCPs and LCCPs was stimulated. Accordingly, the ratio of MCCPs/SCCPs in human samples has increased rapidly in the last 5 years. The current understanding of exposure routes and risk assessments of CPs was also reviewed. Oral dietary intake is the most predominant source of daily CP intake, but dust ingestion, inhalation and dermal exposure is also nonnegligible, especially for MCCPs and LCCPs. Furthermore, the reported upper bound of the estimated daily intakes (EDIs) in various risk assessment studies was close to or exceeded the tolerable daily intakes (TDIs). Considering the bioaccumulation and long-lasting exposure of CPs, their health impacts on humans and the ecosystem required continuous monitoring and evaluation.
Collapse
Affiliation(s)
- Hanyu Liao
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Xue Li
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Yuanyuan Zhou
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Yinyin Wu
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Yifei Cao
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Jun Yang
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Jianyun Zhang
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| |
Collapse
|
24
|
McGrath TJ, Poma G, Hutinet S, Fujii Y, Dodson RE, Johnson-Restrepo B, Muenhor D, Dervilly G, Cariou R, Covaci A. An international investigation of chlorinated paraffin concentrations and homologue distributions in indoor dust. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121994. [PMID: 37302785 DOI: 10.1016/j.envpol.2023.121994] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
In this study, very short-, short-, medium-, and long-chain chlorinated paraffins (vSCCPs, SCCPs, MCCPs and LCCPs, respectively) were measured in 40 indoor dust samples from four countries including Japan (n = 10), Australia (n = 10), Colombia (n = 10) and Thailand (n = 10). Homologues of the chemical formula CxH(2x+2-y)Cly ranging C6-36 and Cl3-30 were analysed using liquid chromatography coupled to Orbitrap high resolution mass spectrometry (LC-Orbitrap-HRMS) and integrated using novel custom-built CP-Seeker software. CPs were detected in all dust samples with MCCPs the dominant homologue group in all countries. Overall median ∑SCCP, ∑MCCP and ∑LCCP (C18-20) concentrations determined in dust samples were 30 μg/g (range; 4.0-290 μg/g), 65 μg/g (range; 6.9-540 μg/g) and 8.6 μg/g (range; <1.0-230 μg/g), respectively. Of the quantified CP classes, overall concentrations were generally highest in the samples from Thailand and Colombia, followed by Australia and Japan. vSCCPs with C≤9 were detected in dust from each country with an overall frequency of 48%, while LCCPs (C21-36) were present in 100% of samples. Estimated daily intakes (EDIs) calculated for SCCPs and MCCPs relating to ingestion of contaminated indoor dust were considered not to represent health risks based on currently available toxicological data using the margin of exposure (MOE) approach. To the authors' knowledge, this study provides the first data on CPs in indoor dust from Japan, Colombia and Thailand, and is among the first reports of vSCCPs in indoor dust, globally. These findings indicate that further toxicological data and the availability of appropriate analytical standards are needed to evaluate the potential for negative health outcomes deriving from exposure to vSCCPs and LCCPs.
Collapse
Affiliation(s)
- Thomas J McGrath
- Toxicological Centre, University of Antwerp, 2610, Wilrijk, Belgium; Oniris, INRAE, LABERCA, 44300, Nantes, France.
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, 2610, Wilrijk, Belgium
| | | | - Yukiko Fujii
- Toxicological Centre, University of Antwerp, 2610, Wilrijk, Belgium; Daiichi University of Pharmacy, Fukuoka, 815-8511, Japan
| | | | - Boris Johnson-Restrepo
- Environmental Chemistry Research Group, University of Cartagena, Cartagena, 130015, Colombia
| | - Dudsadee Muenhor
- Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Health Impact Assessment Research Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Bangkok, 10330, Thailand
| | | | | | - Adrian Covaci
- Toxicological Centre, University of Antwerp, 2610, Wilrijk, Belgium
| |
Collapse
|
25
|
Li Q, Cheng L, Jin X, Liu L, Shangguan J, Chang S, Sun R, Shang Y, Lv Q, Li J, Zhang G. Chlorinated paraffins in multimedia during residential interior finishing: Occurrences, behavior, and health risk. ENVIRONMENT INTERNATIONAL 2023; 178:108072. [PMID: 37406371 DOI: 10.1016/j.envint.2023.108072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Though with bioaccumulation and toxicity, chlorinated paraffins (CPs) are still high produced and widely utilized in various daily necessities for extender plasticization and flame retardation. CPs can be released during the reprocessing processes of finishing materials and distributed in multi-environmental media. Herein, concentrations and compositions of CPs in four representative media including interior finishing materials, PM10, total suspended particulate (TSP), and dust samples collected from eight interior finishing stages were studied. Unexpectedly, CP concentrations in ceramic tiles was found to be high with a mean value of 7.02 × 103 μg g-1, which could be attributed to the presence of CPs in the protective wax coated on ceramic tiles surfaces. Furthermore, the pollution characteristics of short-chain and medium-chain CPs (SCCPs and MCCPs) in those samples were inconsistent. According to the investigation regarding Kdust-TSP and [Formula: see text] , the occurrence and distribution of CPs in indoor atmospheric particles (PM10 and TSP) and dust were highly affected by reprocessing processes (cutting, hot melting, etc.) compared to that in the finishing materials. Moreover, dermal contact was the primary pathway of CP exposure for the occupational population (interior construction workers) for most interior finishing stages, and the interior finishing process is the prime CP exposure period for the occupational groups. As suggested by our assessment, though hardly posing an immediate health risk, CPs exposure still presents unneglected adverse health effects, which calls for adequate personal protections during interior finishing, especially in developing countries.
Collapse
Affiliation(s)
- Qilu Li
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China.
| | - Lei Cheng
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Xinjie Jin
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Linjie Liu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Jingfang Shangguan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| | - Shixiang Chang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Ruoxi Sun
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Yihan Shang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Qing Lv
- Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
26
|
Zhang J, Liao H, Chen Y, Li X, Chen R, Han S, Liu S, Yin S. Concentrations and homologue patterns of SCCPs and MCCPs in the serum of the general population of adults in Hangzhou, China. CHEMOSPHERE 2023:139131. [PMID: 37285971 DOI: 10.1016/j.chemosphere.2023.139131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/12/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
Due to their ubiquitous presence in the environment and humans, chlorinated paraffins (CPs) are a major environmental and public health concern. CPs are known to persist, bioaccumulate and potentially threaten human health, but reports on their internal exposure in the adult general population are still scarce. In this study, serum samples collected from adults living in Hangzhou, China, were quantified for SCCPs and MCCPs using GC-NCI-MS methods. A total of 150 samples were collected and subjected to analysis. ∑SCCPs were detected in 98% of the samples with a median concentration of 721 ng/g lw. MCCPs were found in all serum samples with a median concentration of 2210 ng/g lw, indicating that MCCPs were the dominant homologous group. For SCCPs and MCCPs, ∑C10 and ∑C14 were found to be the dominant carbon chain length homologues. Our results showed that age, BMI and lifestyle were not found to be significantly associated with internal exposure to CPs for the samples in this study. Based on PCA analysis, an age-specific distribution of CP homologues was observed. This suggests that internal exposure to CPs in the general population is related to exposure scenarios and history. The results of this study may contribute to a better understanding of the internal exposure to CPs in the general population and may provide a direction for the investigation of the source of exposure to CPs in the environment and daily life.
Collapse
Affiliation(s)
- Jianyun Zhang
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, 311121, China
| | - Hanyu Liao
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yanhong Chen
- Division of Health Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xue Li
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, 311121, China
| | - Rong Chen
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, 311121, China
| | - Shufen Han
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, 311121, China
| | - Shuren Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Shanshan Yin
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China; Toxicological Centre, Universiteit Antwerpen, Wilrijk, 2610, Belgium.
| |
Collapse
|
27
|
Choo G, Ekpe OD, Kim DH, Oh JE. Human exposure to short-chain chlorinated paraffins and organophosphate flame retardants in relation to paired multiple sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162681. [PMID: 36889397 DOI: 10.1016/j.scitotenv.2023.162681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
In this study, the levels and distributions of short chain chlorinated paraffins (SCCPs) and organophosphate flame retardants (OPFRs) were determined in 10-88 aged human serum/hair and their paired multiple exposure sources, including one-day composite food, drinking water, and house dust. The average concentration of SCCPs and OPFRs were respectively 6313 and 176 ng/g lipid weight (lw) in serum, 1008 and 108 ng/g dry weight (dw) in hair, 1131 and 27.2 ng/g dw in food, not detected and 45.1 ng/L in drinking water, and 2405 and 864 ng/g in house dust. The levels of SCCPs in serum of adults were significantly higher than those of juvenile (Mann-Whitney U test, p < 0.05), whereas gender showed no statistically significant difference in SCCPs and OPFRs levels. In addition, there were significant relationships of OPFR concentrations between serum and drinking water as well as hair and food using the multiple linear regression analysis, whereas no correlation was observed for SCCPs. Based on the estimated daily intake, the major exposure pathway for SCCPs was food, while for OPFRs, it was food and drinking water with three order magnitude safety margin.
Collapse
Affiliation(s)
- Gyojin Choo
- School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Okon Dominic Ekpe
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Da-Hye Kim
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea; Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
28
|
Yang R, Wang X, Niu Y, Chen X, Shao B. Fluorinated liquid-crystal monomers in paired breast milk and indoor dust: A pilot prospective study. ENVIRONMENT INTERNATIONAL 2023; 176:107993. [PMID: 37263127 DOI: 10.1016/j.envint.2023.107993] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Fluorinated liquid-crystal monomers (FLCMs), one class of emerging persistent, bioaccumulative and toxic (PBT) compounds, are widely used in liquid-crystal displays (LCDs). As a result, they have been found in the environment and serum from occupational workers. However, little is known about their occurrence in non-occupational exposing populations. Herein, we provided an evaluation of the health risks of FLCMs for infants based on breastfeeding exposure and dust ingestion. The detection frequencies (DF) of FLCMs in indoor dust and breast milk was 100 %, with median concentrations of 12.00 ng/g dry weight (dw) and 133.40 ng/g lipid weight (lw), respectively. 1-butoxy-2,3-difluoro-4-(trans-4-propylcyclohexyl)benzene (BDPrB) was the predominant pollutant in indoor dust and human breast milk. Significant positive correlations were observed between the dust concentrations of seven FLCMs including BDPrB, and their breast milk concentrations (r = 0.275-0.660, P < 0.05). Further, associations were also found in some demographic and behavioral factors and concentrations of some FLCMs (P < 0.05). The highest EDI of ∑FLCMs was observed for infants who were < 1 month of age, with a median breast milk intake of 700.35 ng/kg bw/day, in which 1-ethoxy-2,3-difluoro-4-(trans-4-propylcyclohexyl)benzene (EDPrB), BDPrB, and 4'-[(trans, trans)-4'-butyl[1,1'-bicyclohexyl]-4-yl]-3,4-difluoro-1,1'-biphenyl (BBDB) collectively contributed 94.4 % of the total EDIs. Notably, the lactational intake of FLCMs was higher than that of some environmental pollutants (EPs). Overall, our results suggest higher exposure risks for infants and breastfeeding is the predominant exposure route for daily intake of FLCMs for infants.
Collapse
Affiliation(s)
- Runhui Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xinyi Wang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Yumin Niu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Xianggui Chen
- School of Food and Biological Engineering, Xihua University, Chengdu 610039, China
| | - Bing Shao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; School of Food and Biological Engineering, Xihua University, Chengdu 610039, China.
| |
Collapse
|
29
|
Mu YW, Cheng D, Zhang CL, Zhao XL, Zeng T. The potential health risks of short-chain chlorinated paraffin: A mini-review from a toxicological perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162187. [PMID: 36781137 DOI: 10.1016/j.scitotenv.2023.162187] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Short-chain chlorinated paraffins (SCCPs) are ubiquitously distributed in various environmental matrics due to their wide production and consumption globally in the past and ongoing production and use in some developing countries. SCCPs have been detected in various human samples including serum, milk, placenta, nail, and hair, and internal SCCP levels were found to be positively correlated with biomarkers of some diseases. While the environmental occurrence has been reported in a lot of studies, the toxicity and underlying molecular mechanisms of SCCPs remain largely unknown. The current tolerable daily intakes (TDIs) recommended by the world health organization/international programme on chemical safety (WHO/IPCS, 100 μg/kg bw/d) and the UK Committee on Toxicity (COT, 30 μg/kg bw/d) were obtained based on a no observed adverse effect level (NOAEL) of SCCP from the repeated-dose study (90 d exposure) in rodents performed nearly 40 years ago. Importantly, the health risks assessment of SCCPs in a variety of studies has shown that the estimated daily intakes (EDIs) may approach and even over the established TDI by UK COT. Furthermore, recent studies revealed that lower doses of SCCPs could also result in damage to multiple organs including the liver, kidney, and thyroid. Long-term effects of SCCPs at environmental-related doses are warranted.
Collapse
Affiliation(s)
- Ying-Wen Mu
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Dong Cheng
- Department of Health Test and Detection, Shandong Center for Disease Control and Prevention, Jinan, Shandong 250014, China
| | - Cui-Li Zhang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiu-Lan Zhao
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
30
|
Wu Y, Gao S, Zeng X, Liang Y, Liu Z, He L, Yuan J, Yu Z. Levels and diverse composition profiles of chlorinated paraffins in indoor dust: possible sources and potential human health related concerns. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023:10.1007/s10653-023-01524-9. [PMID: 36881246 DOI: 10.1007/s10653-023-01524-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Chlorinated paraffins (CPs), a group of mixtures with different carbon chain lengths and chlorine contents, are widely used as plasticizers and flame retardants in various indoor materials. CPs could be released from CP-containing materials into the ambient environment and then enter the human body via inhalation, dust ingestion and dermal absorption, resulting in potential effects on human health. In this study, we collected residential indoor dust in Wuhan, the largest city in central China, and focused on the co-occurrence and composition profiles of CPs as well as the resultant human risk via dust ingestion and dermal absorption. The results indicated that CPs with C9-40 were ubiquity in indoor dust with medium-chain CPs (MCCPs, C14-17) as the main components (6.70-495 μg g-1), followed by short-chain CPs (SCCPs, C10-13) (4.23-304 μg g-1) and long-chain (LCCPs, C≥18) CPs (3.68-331 μg g-1). Low levels (not detected-0.469 μg g-1) of very short-chain CPs (vSCCPs, C9) were also found in partial indoor dust. The dominant homolog groups were C9 and Cl6-7 groups for vSCCPs, C13 and Cl6-8 groups for SCCPs, C14 and Cl6-8 groups for MCCPs, and C18 and Cl8-9 groups for LCCPs. Based on the measured concentrations, vSCCPs, SCCPs, MCCPs, and LCCPs posed limited human health risks to local residents via dust ingestion and dermal absorption.
Collapse
Affiliation(s)
- Yang Wu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Shutao Gao
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Xiangying Zeng
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China.
| | - Yi Liang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Zhiyang Liu
- Institute of Atmospheric Environment, Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China
| | - Lixiong He
- Fujian Academy of Environmental Sciences, Fuzhou, 350013, China
| | - Jing Yuan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| |
Collapse
|
31
|
Yu H, Gao Y, Zhan F, Zhang H, Chen J. Release Mechanism of Short- and Medium-Chain Chlorinated Paraffins from PVC Materials under Thermal Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3095-3103. [PMID: 36799869 DOI: 10.1021/acs.est.2c07548] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chlorinated paraffins (CPs) as plasticizers are massively added to polyvinyl chloride (PVC) products, during whose life cycle CPs can be continuously released especially under thermal stress. In this study, a PVC cable sheath was adopted as a representative kind of PVC material to investigate the release behaviors of short- and medium-chain CPs (SCCPs and MCCPs) under thermal treatment. Release percentages of CPs with increasing temperature followed a Gaussian-like curve. At the unmolten stage of 80 °C, heating for 10 min caused 0.051% of added SCCPs and 0.029% of added MCCPs to be released. At the molten stage of 270 °C, accumulative release rates of SCCPs and MCCPs within 10 min were up to 30 and 14%, respectively. The developed emission model indicated that material-gas partitioning and internal diffusion simultaneously governed the release of CPs. During thermal treatment, the release of CPs could be remarkably affected by the thermal expansion of the PVC material and the formation of breakage and micropores. Congener group profiles of released CPs indicated a slight fractionation effect for SCCPs during the release process. Furthermore, the release risk of CPs from the whole life cycle of PVC products was preliminarily evaluated.
Collapse
Affiliation(s)
- Haoran Yu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Gao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Faqiang Zhan
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Haijun Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| |
Collapse
|
32
|
Lu R, Xia D, Ma X, Zhao S, Liu Y, Sun Y. Short and medium-chain chlorinated paraffins in indoor dust from a multistory residential building in Beijing, China: Vertical distribution and potential health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160642. [PMID: 36470386 DOI: 10.1016/j.scitotenv.2022.160642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
In this study, we conducted a preliminary investigation of the vertical distribution and potential health risks of short and medium-chain chlorinated paraffins (SCCPs and MCCPs) in indoor dust from a multistory residential building in Beijing, China. Forty-eight SCCP and MCCP congener groups in dust from different floors of the multistory residential building were determined by two-dimensional gas chromatography coupled with electron capture negative ionization mass spectrometry. The concentration ranges for SCCPs and MCCPs in the dust samples were 0.0239-207 μg/g and 0.135-2903 μg/g, respectively. MCCPs were the dominant group, on average accounting for 76.8 % of ∑CPs. Generally, the concentrations of both SCCPs and MCCPs greatly decreased as the floor level increased, which indicated that the CP contamination was attributed to exogenous atmospheric transport and deposition. C13Cl7-8 and C14Cl7-8 were the dominant SCCP and MCCP congener groups, possibly indicating the use of industrial CP-52 products was the main source of CPs. In the worst-case scenario using the maximum concentrations of CPs, the daily intake of SCCPs for toddlers was of the same order of magnitude as the reference dose. It should be noted that CPs exposure may be more serious when indoor decorations, furniture, and various plastic products are taken into consideration. Overall, more attention should be paid to CPs exposure and control measures in high-rise buildings.
Collapse
Affiliation(s)
- Rongjing Lu
- School of Space and Environment, Beihang University, Beijing 100191, China
| | - Dan Xia
- School of Space and Environment, Beihang University, Beijing 100191, China.
| | - Xiao Ma
- School of Space and Environment, Beihang University, Beijing 100191, China
| | - Shuangshuang Zhao
- School of Space and Environment, Beihang University, Beijing 100191, China
| | - Yusong Liu
- School of Space and Environment, Beihang University, Beijing 100191, China
| | - Yifei Sun
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
33
|
Niu S, Chen X, Chen R, Zou Y, Zhang Z, Li L, Hageman KJ, Ng C, Dong L. Understanding inter-individual variability in short-chain chlorinated paraffin concentrations in human blood. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130235. [PMID: 36368064 DOI: 10.1016/j.jhazmat.2022.130235] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Chlorinated paraffins (CPs), particularly short-chain CPs (SCCPs), have been reported in human blood with high detection frequency and often high variation among individuals. However, factors associated with and their contributions to inter-individual variability in SCCP concentrations in human blood have not been assessed. In this study, we first measured SCCP concentrations in 57 human blood samples collected from individuals living in the same vicinity in China. We then used the PROduction-To-Exposure model to investigate the impacts of variations in sociodemographic data, biotransformation rates, dietary patterns, and indoor contamination on inter-individual variability in SCCP concentrations in human blood. Measured ∑SCCP concentrations varied by a factor of 10 among individuals with values ranging from 122 to 1230 ng/g, wet weight. Model results show that age, sex, body weight, and dietary composition played a minor role in causing variability in ∑SCCP concentrations in human blood given that modeled ∑SCCP concentrations ranged over a factor of 2 - 3 correlated to the variations of these factors. In contrast, variations in the modeled ΣSCCP concentrations increased to factors of 6 and 8 when variability in biotransformation rates and indoor contamination were considered, respectively, indicating these two factors could be the most influential on inter-individual variability in SCCP concentrations in human blood.
Collapse
Affiliation(s)
- Shan Niu
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA; National Research Center for Environmental Analysis and Measurement, Beijing, Beijing, China.
| | - Xi Chen
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ruiwen Chen
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yun Zou
- Organic Biological Analytical Chemistry Group, Department of Chemistry, University of Liège, Liège, Belgium
| | - ZhiZhen Zhang
- School of Public Health, University of Nevada, Reno, NV, USA
| | - Li Li
- School of Public Health, University of Nevada, Reno, NV, USA
| | - Kimberly J Hageman
- Department of Chemistry & Biochemistry, Utah State University, Logan, UT, USA
| | - Carla Ng
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental & Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Liang Dong
- National Research Center for Environmental Analysis and Measurement, Beijing, Beijing, China
| |
Collapse
|
34
|
Yu X, McPhedran KN, Huang R. Chlorinated paraffins: A review of sample preparation, instrumental analysis, and occurrence and distribution in food samples. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120875. [PMID: 36526055 DOI: 10.1016/j.envpol.2022.120875] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Chlorinated paraffins (CPs) are released into natural environment during processes of production and utilization with diet being the most important exposure route of CPs for human beings. Short-chain chlorinated paraffins (SCCPs) have lower molecular weights, higher vapor pressures, and higher water solubilities than medium-chain chlorinated paraffins (MCCPs) and long-chain chlorinated paraffins (LCCPs), making SCCPs more likely to be readily released into the environment. Thus, SCCPs were enlisted as persistent organic pollutants being included in the Stockholm Convention in 2017. This review article summarized sample preparation and instrumental analysis methods of CPs for food types such as oil, meat, and aquatic foods. In addition, reported concentrations and profiles, dietary intake and risk assessment of CPs in food samples from various regions, such as China, Japan, and Germany are discussed for studies published between 2005 and 2022. This review is timely given the lack of a recent literature summary of the concentration and distribution of CPs in food. All these studies warranted the necessity to maintain continuous monitoring of CPs concentrations and their potential health risks given the concentrations of CPs in food are increasing worldwide.
Collapse
Affiliation(s)
- Xi Yu
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Kerry Neil McPhedran
- Department of Civil, Geological & Environmental Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Rongfu Huang
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
35
|
Bai L, Lv K, Li J, Gao W, Liao C, Wang Y, Jiang G. Evaluating the dynamic distribution process and potential exposure risk of chlorinated paraffins in indoor environments of Beijing, China. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129907. [PMID: 36099735 DOI: 10.1016/j.jhazmat.2022.129907] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/18/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Chlorinated paraffins (CPs) are typical semi-volatile chemicals (SVOCs) that have been used in copious quantities in indoor material additives. SVOCs distribute dynamically between the gas phase and various condensate phases, especially organic films. Investigating the dynamic behaviors of existing CPs in indoor environments is necessary for understanding their potential risk to humans from indoor exposure. We investigate the distribution profiles of CPs in both gas phase and organic films in indoor environments of residential buildings in Beijing, China. The concentrations of CPs were in the range of 32.21-1447 ng/m3 in indoor air and in the range of 42.30-431.1 μg/m2 and in organic films. Cooking frequency was identified as a key factor that affected the distribution profiles of CPs. Furthermore, a film/gas partitioning model was constructed to explore the transportation and fate of CPs. Interestingly, a re-emission phenomenon from organic films was observed for chemical groups with lower log Koa components, and, importantly, their residue levels in indoor air were well predicted. The estimated exposure risk of CPs in indoor environment was obtained. For the first time, these results produced convincing evidence that the co-exposure risk of short-chain CPs (SCCPs), medium-chain CPs (MCCPs), and long-chain CPs (LCCPs) in indoor air could be further increased by film/gas distribution properties, which is relevant for performing risk assessments of exposure to these SVOCs in indoor environments.
Collapse
Affiliation(s)
- Lu Bai
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Juan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Wei Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Public Health, Qingdao University, Qingdao 266021, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yawei Wang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
36
|
Yuan B, Haug LS, Tay JH, Padilla-Sánchez JA, Papadopoulou E, de Wit CA. Dietary Intake Contributed the Most to Chlorinated Paraffin Body Burden in a Norwegian Cohort. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17080-17089. [PMID: 36378808 PMCID: PMC9730849 DOI: 10.1021/acs.est.2c04998] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Determining the major human exposure pathways is a prerequisite for the development of effective management strategies for environmental pollutants such as chlorinated paraffins (CPs). As a first step, the internal and external exposure to CPs were quantified for a well-defined human cohort. CPs in participants' plasma and diet samples were analyzed in the present study, and previous results on paired air, dust, and hand wipe samples were used for the total exposure assessment. Both one compartment pharmacokinetic modeling and forensic fingerprinting indicate that dietary intake contributed the most to body burden of CPs in this cohort, contributing a median of 60-88% of the total daily intakes. The contribution from dust ingestion and dermal exposure was greater for the intake of long-chain CPs (LCCPs) than short-chain CPs (SCCPs), while the contribution from inhalation was greater for the intake of SCCPs than medium-chain CPs (MCCPs) and LCCPs. Significantly higher concentrations of SCCPs and MCCPs were observed in diets containing butter and eggs, respectively (p < 0.05). Additionally, other exposure sources were correlated to plasma levels of CPs, including residence construction parameters such as the construction year (p < 0.05). This human exposure to CPs is not a local case. From a global perspective, there are major knowledge gaps in biomonitoring and exposure data for CPs from regions other than China and European countries.
Collapse
Affiliation(s)
- Bo Yuan
- Department
of Environmental Science, Stockholm University, StockholmSE-10691, Sweden
- ,
| | - Line Småstuen Haug
- Department
for Food Safety, Norwegian Institute of
Public Health, OsloNO-0213, Norway
| | - Joo Hui Tay
- Department
of Environmental Science, Stockholm University, StockholmSE-10691, Sweden
| | | | - Eleni Papadopoulou
- Department
for Food Safety, Norwegian Institute of
Public Health, OsloNO-0213, Norway
| | - Cynthia A. de Wit
- Department
of Environmental Science, Stockholm University, StockholmSE-10691, Sweden
| |
Collapse
|
37
|
McGrath TJ, Christia C, Poma G, Covaci A. Seasonal variation of short-, medium- and long-chain chlorinated paraffin distribution in Belgian indoor dust. ENVIRONMENT INTERNATIONAL 2022; 170:107616. [PMID: 36370602 DOI: 10.1016/j.envint.2022.107616] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Chlorinated paraffins (CPs) are high production volume plasticizers and flame retardants, which have exhibited bioaccumulative and toxic properties. CPs may be released from treated consumer goods and bind with indoor dust, leading to human exposure via unintentional dust ingestion. In this study, the concentrations and homologue distribution of CPs were measured in 50 indoor dust samples collected in paired winter and summer sampling campaigns from 25 homes in Flanders, Belgium. Short-, medium- and long-chain CPs (SCCPs (C10-13), MCCPs (C14-17) and LCCPs (C18-20), respectively) were each detected in all Belgian indoor dust samples with overall median concentrations of 6.1 µg/g (range 0.61 to 120 µg/g), 45 µg/g (range 4.5 to 520 µg/g) and 4.5 µg/g (range 0.3 to 50 µg/g), respectively. Concentrations were significantly higher in the winter samples than summer for each of the three groups (p < 0.05). LCCPs homologues ranging from C21-32 were also detected in dust samples and accounted for approximately half of the LCCP relative abundance based on instrumental peak area, although a lack of appropriate analytical standards prevented quantification of these homologues. While clear sources of CP contamination in dust could not be identified, significant associations between concentrations of ∑SCCPs, ∑MCCPs and ∑LCCPs (C18-20) (p < 0.05) suggested the combined application within materials or products in homes. Based on typical exposure scenarios, estimated daily intake of ∑CPs (C10-20) for adults and toddlers were 14 and 270 ng/kg bw/day, respectively, though margin of exposure assessments for SCCPs and MCCPs indicated that adverse health effects were unlikely for all exposure scenarios. This study presents the first evidence of seasonal variation in the levels and distribution for each of the SCCP, MCCP and LCCP classes in indoor dust and highlights the urgent need for appropriate analytical standards for LCCP quantification.
Collapse
Affiliation(s)
- Thomas J McGrath
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Christina Christia
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
38
|
Li H, Li H, Zhang S, Li H, Zhao Y, Chen X, Cai Z. Dietary exposure and risk assessment of chlorinated paraffins in roots and rhizomes of traditional Chinese medicine herbs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80637-80645. [PMID: 35725876 DOI: 10.1007/s11356-022-21527-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Traditional Chinese medicine (TCM) provides therapeutic and health care effects through dietary intake. Owing to the susceptibility of plants to contaminations, a risk assessment system is urgently needed to ensure the safe use of TCMs. In this study, the contamination levels and risks associated with the dietary intake of short-chain chlorinated paraffins (SCCPs) and medium-chain chlorinated paraffins (MCCPs) were investigated in six kinds of frequently-used TCM herbs. The concentrations varied from 144.4 to 1527.8 ng·g-1 dw for SCCPs and non-detect to 1214.1 ng·g-1 dw for MCCPs, with mean values of 551.5 and 259.8 ng·g-1 dw, respectively. A geographic distribution analysis indicated that the concentrations of CPs in TCMs were mainly associated with their levels of contamination in the ambient environment. Carbon atom-chlorine congener profiles of CPs were dominated by C10Cl7-8 and C14Cl7-8 congeners, accounting for 20.1% and 32.4% of the total SCCP and MCCP concentrations, respectively. Principal component analysis indicated that the TCM species might be the main factor influencing the accumulation of SCCPs congeners. Finally, a risk assessment reveals that the estimated daily intake and margin of exposure were far below levels that might pose a health risk, indicating an acceptable dietary intake of SCCPs and MCCPs in the studied TCMs. This is the first report of CPs in the TCM herbs and the obtained results are expected to aid in future evaluation of the quality of TCMs and ensuring diet and drug safety.
Collapse
Affiliation(s)
- Huijuan Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Hui Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Shishan Zhang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Huizhi Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Yanfang Zhao
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Xiangfeng Chen
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China.
| | - Zongwei Cai
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
39
|
Hua L, Guo S, Xu J, Yang X, Zhu H, Yao Y, Zhu L, Li Y, Zhang J, Sun H, Zhao H. Phthalates in dormitory dust and human urine: A study of exposure characteristics and risk assessments of university students. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157251. [PMID: 35817099 DOI: 10.1016/j.scitotenv.2022.157251] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/26/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Phthalate diesters (PAEs) are prevalent and potentially toxic to human health. The university dormitory represents a typical and relatively uniform indoor environment. This study evaluated the concentrations of phthalate monoesters (mPAEs) in urine samples from 101 residents of university status, and the concentrations of PAEs in dust collected from 36 corresponding dormitories. Di-(2-ethylhexyl) phthalate (DEHP, median: 68.0 μg/g) was the major PAE in dust, and mono-ethyl phthalate (47.9 %) was the most abundant mPAE in urine. The levels of both PAEs in dormitory dust and mPAEs in urine were higher in females than in males, indicating higher PAE exposure in females. Differences in lifestyles (dormitory time and plastic product use frequency) may also affect human exposure to PAEs. Moreover, there were significant positive correlations between the estimated daily intakes of PAEs calculated by using concentrations of PAEs in dust (EDID) and mPAEs in urine (EDIU), suggesting that PAEs in dust could be a significant source of human exposure to PAEs. The value of EDID/EDIU for low molecular weight PAEs (3-6 carbon atoms in their backbone) was lower than that of high molecular weight PAEs. The contribution rate of various pathways to PAE exposure illustrated that non-dietary ingestion (87.8 %) was the major pathway of human exposure to PAEs in dust. Approximately 4.95 % of university students' hazard quotients of DEHP were >1, indicating that there may be some health risks associated with DEHP exposure among PAEs. Furthermore, it is recommended that some measures be taken to reduce the production and application of DEHP.
Collapse
Affiliation(s)
- Liting Hua
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Sai Guo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiaping Xu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaomeng Yang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yongcheng Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingran Zhang
- SCIEX, Analytical Instrument Trading Co., Ltd, Beijing 100015, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongzhi Zhao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
40
|
South L, Saini A, Harner T, Niu S, Parnis JM, Mastin J. Medium- and long-chain chlorinated paraffins in air: A review of levels, physicochemical properties, and analytical considerations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157094. [PMID: 35779735 DOI: 10.1016/j.scitotenv.2022.157094] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Chlorinated paraffins (CPs) are synthetic chemicals that are produced at high volumes and have a global presence. CPs are generally divided into three groups based on their carbon chain lengths: short-chain CPs (SCCPs, C10-13), medium-chain CPs (MCCPs, C14-17), and long-chain CPs (LCCPs, C≥18). SCCPs have been formally recognized as persistent organic pollutants (POPs) and have been listed under the Stockholm Convention on POPs. Concerns about increases in MCCP and LCCP production as replacements for SCCP products are rising, given their similar properties to SCCPs and the fact that they remain relatively understudied with only a few reported measurements in air. Passive air samplers with polyurethane foam disks (PUF-PAS), which have been successfully applied to SCCPs, provide an opportunity to expand the existing body of data on MCCP and LCCP air concentrations, as they are inexpensive and require little maintenance. The uptake of MCCPs and LCCPs by PUF disk samplers is characterized in this paper based on newly derived PUF-air partitioning coefficients using COSMOtherm. The ability of PUF disk samplers to capture both gas-phase and particle fractions is important because MCCPs and LCCPs have reduced volatility compared to SCCPs and therefore are mainly associated with particulate matter in air. In addition, due to their use as additives in plastics and rubber products, they are associated with micro- and nanoplastics, which are considered to be potential vectors for the long-range atmospheric transport (LRAT) of these chemicals. The review has highlighted other limitations to reporting of MCCPs and LCCPs in air, including the lack of suitable analytical standards and the requirement for advanced analytical methods to detect and resolve these complex mixtures. Overall, this review indicates that further research is needed in many areas for medium- and long-chain chlorinated paraffins in order to better understand their occurrence, transport and fate in air.
Collapse
Affiliation(s)
- Lauren South
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Amandeep Saini
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada.
| | - Tom Harner
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Shan Niu
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - J Mark Parnis
- Department of Chemistry and Canadian Environmental Modelling Centre, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Jacob Mastin
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| |
Collapse
|
41
|
McGrath TJ, Fujii Y, Jeong Y, Bombeke J, Covaci A, Poma G. Levels of Short- and Medium-Chain Chlorinated Paraffins in Edible Insects and Implications for Human Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13212-13221. [PMID: 35969810 DOI: 10.1021/acs.est.2c03255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study reports on the occurrence and distribution of short- and medium-chain chlorinated paraffins (SCCPs and MCCPs, respectively) in edible insects purchased from Asia and Europe. A total of 36 edible insect samples (n = 24 from Asia, n = 12 from Europe) authorized and prepared for human consumption were purchased and analyzed for SCCPs and MCCPs via gas chromatography and mass spectrometry. SCCPs were detected in 83% of all edible insect samples with an overall median ∑SCCP concentration of 8.7 ng/g dry weight (dw) and a range of <2.0 to 410 ng/g dw, while MCCPs were present in 92% of samples with a median ∑MCCP concentration of 51 ng/g dw and a range of <6.0 to 380 ng/g dw. Median ∑SCCP and ∑MCCP levels in edible insects purchased in Asia were approximately two- and four-times higher, respectively, than those from Europe, while the difference was statistically significant for ∑MCCPs (p < 0.001). Differences in homologue patterns were also observed between Asian and European samples to suggest diverse sources of CP contamination to insects which may include environmental accumulation, industrial processing equipment and food additives. Estimated daily intake of SCCPs and MCCPs via consumption of edible insects suggested that adverse health outcomes were very unlikely, but that continued monitoring of insect farming and processing practices are warranted.
Collapse
Affiliation(s)
- Thomas J McGrath
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Yukiko Fujii
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
- Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Yunsun Jeong
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Jasper Bombeke
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| |
Collapse
|
42
|
Zhang Z, Li H, Zhang S, Li H, Chen X. Initial dietary risk assessment of chlorinated paraffins in edible fungi in Chinese markets. J Food Sci 2022; 87:4761-4770. [PMID: 36102048 DOI: 10.1111/1750-3841.16319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022]
Abstract
Dietary intake is one of the main pathways for residents to become exposed to chlorinated paraffins (CPs). In China, due to the popularization of nutritional and medicinal edible fungi, consumption has increased on a yearly basis. Edible fungi have a variety of active substances and are consumed daily by residents. However, there is limited information on the concentration and source of chlorinated paraffins in edible fungi. In this study, the concentrations of short-chain chlorinated paraffins (SCCPs) and medium-chain chlorinated paraffins (MCCPs) in 105 edible fungi samples and 36 culture material samples were detected. The concentration range of SCCPs was 79.8 ng/g dw to 3879.3 ng/g dw, and the MCCPs was ND to 572.3 ng/g dw. Spearman correlation analysis indicated that the sources of SCCPs and MCCPs in edible fungi were similar (r = 0.57, p < 0.01). The preponderant SCCPs and MCCPs congener group profiles were C10 Cl7-8 and C14 Cl6-8 . CPs were detected in culture materials, the concentration range of SCCPs was 320.2 ng/g dw to 4326 ng/g dw, and the MCCPs was 333.4 ng/g dw to 4517.4 ng/g dw. And the preponderant SCCPs and MCCPs homologues in culture materials were C11-12 Cl6 and C14 Cl6 . The linear discriminant analysis results indicated different contamination models of CPs between edible fungi and culture materials. The mean estimated daily intake values of SCCPs and MCCPs were 308.1 ng/kg bw/d and 94.4 ng/kg bw/d, respectively, indicating no potential health risk posed by CP exposure in edible fungi.
Collapse
Affiliation(s)
- Zhiguo Zhang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Hui Li
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China.,Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Shishan Zhang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Huijuan Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Xiangfeng Chen
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China.,School of Pharmaceutical sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| |
Collapse
|
43
|
Chlorinated paraffins in nut-nougat and chocolate spreads from the German market. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Occurrence, Distribution and Health Risk of Short-Chain Chlorinated Paraffins (SCCPs) in China: A Critical Review. SEPARATIONS 2022. [DOI: 10.3390/separations9080208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
With being listed in the Stockholm Convention, the ban on short-chain chlorinated paraffins (SCCPs) has been put on the agenda in China. Based on the literature over the past decade, this study comprehensively analyzed the occurrence, distribution of and human exposure to SCCPs in China, aiming to provide a reference for the changes in SCCPs after the ban. SCCPs were ubiquitous in environmental matrices, and the levels were considerably higher than those in other countries. SCCPs from the emission region were 2–4 orders of magnitude higher than those in the background area. Environmental processes may play an important role in the SCCP profiles in the environment, and C10 and Cl6 were identified as potential factors distinguishing their spatial distribution. River input was the dominant source in the sea areas, and atmospheric transport was the main source in the remote inland areas. Ingestion and dermal absorption and food intake may pose potential risk to residents, especially for children and infants. More studies are needed on their temporal trend, source emission and environmental degradation. The enactment of the restriction order will have a great impact on China’s CP industry; nevertheless, it will play a positive role in the remediation of SCCP pollution in the environment.
Collapse
|
45
|
Ai Q, Zhang P, Gao L, Zhou X, Liu Y, Huang D, Qiao L, Weng J, Zheng M. Air-soil exchange of and risks posed by short- and medium-chain chlorinated paraffins: Case study in a contaminated area in China. CHEMOSPHERE 2022; 297:134230. [PMID: 35257700 DOI: 10.1016/j.chemosphere.2022.134230] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Short-chain (SC) and medium-chain (MC) chlorinated paraffins (CPs) are found widely in the environment. Little research into air-soil exchange of SCCPs and MCCPs has been performed. In this study, CP concentrations, congener group profiles, and air-soil exchange in a typical contaminated area were investigated. A total of 10 soil samples and 10 air samples were collected from Zhoushan, an island in China. The samples were analyzed by two-dimensional gas chromatography electron capture negative ionization mass spectrometry. The SCCP and MCCP concentrations in the soil samples were 72-3842 and 117-8819 ng/g, respectively, and the SCCP and MCCP concentrations in the air samples were 57-208 and 1.8-25 ng/m3, respectively. The highest CP concentrations in both soil and air were found in samples from near shipyards, possibly because of CPs being emitted from metal cutting fluids and marine paints used at the shipyards. C14-15Cl7-9 were the dominant CP congener groups in the soil samples. C10Cl6-7 were the dominant CP congener groups in the air samples. Chlorinated decane and undecane and penta-, hexa-, and hepta-chlorinated CPs were enriched in the air relative to the soil. These congeners may have been released from the commercial CP-42 and CP-52. The fugacity fractions (ffs) of 48 homologs decreased as Koa increased. The ffs indicated that SCCPs and MCCPs dominated deposition. The net air-soil exchange fluxes of CPs were 201-769 ng/(m2·h). A preliminary risk assessment indicated that CPs pose low ecological risk except at sampling site S7 and do not pose significant health risks.
Collapse
Affiliation(s)
- Qiaofeng Ai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peixuan Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Lirong Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
| | - Xin Zhou
- Zhejiang Ecological and Environmental Monitoring Center, Zhejiang, 310012, China
| | - Yang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Di Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Qiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiyuan Weng
- University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | | |
Collapse
|
46
|
Luo Y, Li J, Gao W, Gao L, Ke R, Yang C, Wang Y, Gao Y, Wang Y, Jiang G. Exposure to short-, medium-, and long-chain chlorinated paraffins for infant via cow infant formula, goat infant formula and baby food. Food Chem Toxicol 2022; 165:113178. [DOI: 10.1016/j.fct.2022.113178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/26/2022] [Accepted: 05/21/2022] [Indexed: 11/30/2022]
|
47
|
Darnerud PO, Bergman Å. Critical review on disposition of chlorinated paraffins in animals and humans. ENVIRONMENT INTERNATIONAL 2022; 163:107195. [PMID: 35447436 DOI: 10.1016/j.envint.2022.107195] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Even though the chlorinated paraffins (CPs) have been on the environmental pollution agenda throughout the last 50 years it is a class of chemicals that only now is discussed in terms of an emerging issue with extensive annual publication rates. Major reviews on CPs have been produced, but a deeper understanding of the chemical fate of CPs, including formation of metabolites in animals and humans, is still missing. Thus, the present review aims to critically compile our present knowledge on the disposition, i.e. Adsorption, Disposition, Metabolism, and Excretion (ADME) of CPs in biota and to identify research needs. We conclude that CPs could be effectively absorbed from the gastro-intestinal tract (GI) tract, and probably also from the lungs, and transported to various organs. A biphasic elimination is suggested, with a rapid initial phase followed by a terminal phase, the latter (e.g., fat tissues) covering half-lives of weeks and months. CPs are metabolized in the liver and excreted mainly via the bile and faeces, and the metabolic rate and type of metabolites are dependent on chlorine content and chain length. Results that strengthen CP metabolism are in vivo findings of phase II metabolites in bile, and CP degradation to carbon fragments in experimental animals. Still the metabolic transformations of CPs are poorly studied, and no metabolic scheme has yet been presented. Further, toxicokinetic mass balance calculations suggest that a large part of a given dose (not found as parent compound) is transformation products of CPs, and in vitro metabolism studies present numerous CP metabolites (e.g., chloroalkenes, chlorinated ketones, aldehydes, and carboxylic acids).
Collapse
Affiliation(s)
- Per Ola Darnerud
- Department of Organismal Biology, Environmental Toxicology, Norbyvägen 18A, SE-752 36 Uppsala, Sweden.
| | - Åke Bergman
- Department of Environmental Science (ACES), Stockholm University, SE-106 92 Stockholm, Sweden; Department of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden; College of Environmental Science and Engineering, Tongji University, Shanghai, China.
| |
Collapse
|
48
|
Ding L, Zhang S, Zhu Y, Zhao N, Yan W, Li Y. Overlooked long-chain chlorinated paraffin (LCCP) contamination in foodstuff from China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149775. [PMID: 34467914 DOI: 10.1016/j.scitotenv.2021.149775] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Data on long-chain chlorinated paraffins (LCCPs) is extremely sparse, despite their use and emission are increasing with the phasing out of short-chain chlorinated paraffins (SCCPs). In this study, we analyzed chlorinated paraffins (CPs) in foodstuff samples (551 pooled samples, 93 items) divided into eight categories collected from Jinan, Shandong Province of China, by atmospheric-pressure chemical ionization quadrupole time-of-flight mass spectrometry (APCI-qToF-MS), to investigate the occurrence, contamination patterns and homologue patterns of LCCPs in foodstuff commonly consumed in traditional Chinese diet. LCCP intake through diet was estimated as well. LCCPs were detected in all pooled samples with geometric mean (GM) concentrations ranging from 1.8 to 21.9 ng/g wet weight (ng/g ww), contributing to 9-28% of the total CP mass in the studied foodstuff categories. The contamination patterns of LCCPs differed from SCCPs and medium-chain chlorinated paraffins (MCCPs), as reflected by the patterns of mass distribution, and by the lack of correlations between LCCP and S/MCCP concentrations in various foodstuff categories. The homologue profiles of LCCPs were extremely complex and diverse, with frequent detection of C30-36Cl2-15 very-long-chain chlorinated paraffin (vLCCP) congeners. The homologue profiles of eggs stood out for their high abundance of C18-22Cl9-13 LCCP congeners. LCCPs contributed 6.0-25.2% (8.9% for median estimation) to the estimated dietary intake (EDI) for total CPs through diet based on estimations using different percentiles of CP concentrations. The median estimate of dietary LCCP intake for adults in Jinan was 287.9 ng/kg_bw/day, reaching ~10- to 100-fold of that in Sweden and Canada. Considering the continuing production, use and emission of LCCPs, as well as the similar toxicity effects induced by LCCPs as SCCPs and MCCPs, attention should be paid to the health risk posed by LCCPs, or all CPs as a class of contaminants.
Collapse
Affiliation(s)
- Lei Ding
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Shiwen Zhang
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Yuting Zhu
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Nan Zhao
- School of Environmental Science and Engineering, Shandong University, Binhai Road 72, Qingdao 266237, China.
| | - Wenbao Yan
- Environmental Monitoring Station of Lanshan Branch of Rizhao Ecological and Environment Bureau, Jiaodingshan Road 539, Rizhao 276800, China
| | - Yahui Li
- Jinan Ecological Environmental Protection Grid Supervision Center, Lvyou Road 17199, Jinan 250098, China
| |
Collapse
|
49
|
McGrath TJ, Limonier F, Poma G, Bombeke J, Winand R, Vanneste K, Andjelkovic M, Van Hoeck E, Joly L, Covaci A. Concentrations and distribution of chlorinated paraffins in Belgian foods. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118236. [PMID: 34582924 DOI: 10.1016/j.envpol.2021.118236] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/26/2021] [Accepted: 09/24/2021] [Indexed: 05/22/2023]
Abstract
This study reports on concentrations of short- and medium-chain chlorinated paraffins (SCCPs and MCCPs, respectively) in a wide range of food samples (n = 211) purchased in Belgium during 2020. Samples were analysed by gas chromatography-mass spectrometry (GC-MS) and quantified using chlorine content calibration. ∑SCCPs were present above LOQ in 25% of samples with an overall range of <LOQ to 58 ng/g wet weight (ww), while ∑MCCPs were identified in 66% of samples ranging from <LOQ to 250 ng/g ww. ∑MCCP concentrations were greater than those of ∑SCCPs in all 48 samples in which both groups were detected with an average ∑MCCP/∑SCCP ratio of 5.8 (ranging from 1.3 to 81). In general, the greatest CP concentrations were observed in foods classified as animal and vegetable fats and oils and sugar and confectionary for both SCCPs and MCCPs. Significant correlations between lipid content in food samples and CP levels illustrated the role of lipids in accumulating CPs within foodstuffs, while industrial processing, food packaging and environmental conditions are each likely to contribute to overall CP loads. Selected samples (n = 20) were further analysed by liquid chromatography-high resolution MS (LC-HRMS) to investigate homologue profiles and the occurrence of long-chain CPs (LCCPs). LCCPs were detected in 35% of the 20 subset samples while the HRMS results for SCCPs and MCCPs matched closely with those obtained by GC-MS. This study reveals the widespread occurrence of SCCPs and MCCPs in Belgian food and indicates that LCCPs may represent a substantial contribution to overall CP levels in foodstuffs.
Collapse
Affiliation(s)
- Thomas J McGrath
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Franck Limonier
- Chemical and Physical Health Risks Department, Sciensano, Rue Juliette Wytsman 14, 1050, Ixelles, Belgium
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Jasper Bombeke
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Raf Winand
- Transversal Activities in Applied Genomics, Sciensano, Rue Juliette Wytsman 14, 1050, Ixelles, Belgium
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Rue Juliette Wytsman 14, 1050, Ixelles, Belgium
| | - Mirjana Andjelkovic
- Chemical and Physical Health Risks Department, Sciensano, Rue Juliette Wytsman 14, 1050, Ixelles, Belgium
| | - Els Van Hoeck
- Chemical and Physical Health Risks Department, Sciensano, Rue Juliette Wytsman 14, 1050, Ixelles, Belgium
| | - Laure Joly
- Chemical and Physical Health Risks Department, Sciensano, Rue Juliette Wytsman 14, 1050, Ixelles, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| |
Collapse
|
50
|
Han X, Chen H, Shen M, Deng M, Du B, Zeng L. Hair and nails as noninvasive bioindicators of human exposure to chlorinated paraffins: Contamination patterns and potential influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149257. [PMID: 34315053 DOI: 10.1016/j.scitotenv.2021.149257] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Most of the studies on short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) in human tissues have focused on human milk and blood. However, little is known about the occurrence of CPs in human hair and nails. In this study, SCCPs and MCCPs were analyzed in 62 pairs of human hair and nails from North China. Median concentrations (range) of SCCPs and MCCPs in human hair were 239 (19.2-877) and 325 (16.9-893) ng/g dw, respectively, all of which were significantly higher than 154 (57.7-355) and 233 (61.0-476) ng/g dw, respectively, in nail samples (p < 0.05). The homologue profiles of CPs in human hair were similar to those in nails, where SCCPs and MCCPs were dominated by C10Cl6-7 and C14Cl7-8, respectively. A significant positive relationship was observed between CP levels and age of people for hair, whereas negative linear correlations were observed for nails. The redundancy analysis indicated that age of people might be the main influencing factor on the accumulation of CPs in hair and nails. The present study performed comprehensive evaluation of CP exposure levels in human hair and nail and highlights the need for more data on relationship between internal and external exposure to CPs.
Collapse
Affiliation(s)
- Xu Han
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Hui Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Mingjie Shen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Man Deng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Bibai Du
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China.
| |
Collapse
|