1
|
Zhang X, Chang X, Chai R, Zhang X, Li J, Guo Z, Qiu Z, Song Y, Shi S, Hu Y, Du B. Xin-Fu-Kang oral liquid mitigates chronic heart failure through NR4A1-Dependent regulation of endoplasmic reticulum-mitochondrial crosstalk in Cardiomyocytes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156467. [PMID: 40036990 DOI: 10.1016/j.phymed.2025.156467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/16/2025] [Accepted: 02/03/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND Chronic heart failure (CHF) is the terminus of a variety of cardiovascular diseases. Xin-Fu-Kang oral liquid (XFK), a natural herbal compound, has been used in CHF treatment for decades. However, further investigation is required to elucidate the fundamental mechanisms. STUDY DESIGN AND METHODS Transverse aortic constriction (TAC) was performed in mouse models. The pharmacological efficacy of XFK was confirmed by assessing cardiac function and the observation of pathological alterations in myocardial tissue. Following this, single-cell sequencing (scRNA-seq) was implemented. With the identification of XFK metabolites in rat serum via UPLC-QE MS, molecular docking was utilized to conduct preliminary validation of putative therapeutic targets. Subsequently, the phenylephrine-induced model of cardiac pressure overload was established for conducting additional verification and rescue experiments by silencing NR4A1 in vitro. RESULTS XFK intervention significantly ameliorated cardiac function in the TAC-induced CHF model. Based on scRNA-seq, cardiomyocytes exhibited the most notable alterations following XFK intervention, with NR4A1 identified as a significantly differentially expressed gene after both TAC induction and XFK intervention. In vitro experiments demonstrated that XFK enhanced mitochondrial function, mitigated oxidative stress, and restored mitophagy in a NR4A1-dependent manner, consequently decreasing apoptosis in PE-induced H9C2. Furthermore, the upstream mechanism was associated with capacity of XFK to mitigate endoplasmic reticulum stress and regulate crosstalk between the two organelles. CONCLUSION XFK counteracts cardiac chronic pressure overload through regulating NR4A1-mediated functional interaction between endoplasmic reticulum and mitochondria in cardiomyocytes, further preserves mitochondria function and prevents apoptosis. This finding indicates a novel pharmacological therapy for CHF.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xing Chang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruoning Chai
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuesong Zhang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaran Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zezhen Guo
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Zhiling Qiu
- Department of Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuguo Song
- Beijing University of Chinese Medicine, Beijing, China
| | - Shuqing Shi
- Department of Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yuanhui Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Bai Du
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Zhang YZ, Huo DY, Liu Z, Li XD, Wang Z, Li W. Review on ginseng and its potential active substance G-Rg2 against age-related diseases: Traditional efficacy and mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118781. [PMID: 39260708 DOI: 10.1016/j.jep.2024.118781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/04/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to the Shen Nong Herbal Classic, Ginseng (Panax ginseng C.A. Meyer) is documented to possess life-prolonging effects and is extensively utilized in traditional Chinese medicine for the treatment of various ailments such as qi deficiency, temper deficiency, insomnia, and forgetfulness. Ginseng is commonly employed for replenishing qi and nourishing blood, fortifying the body and augmenting immunity; it has demonstrated efficacy in alleviating fatigue, enhancing memory, and retarding aging. Furthermore, it exhibits a notable ameliorative impact on age-related conditions including cardiovascular diseases and neurodegenerative disorders. One of its active constituents - ginsenoside Rg2 (G-Rg2) - exhibits potential therapeutic efficacy in addressing these ailments. AIM OF THE REVIEW The aim of this review is to explore the traditional efficacy of ginseng in anti-aging diseases and the modern pharmacological mechanism of its potential active substance G-Rg2, in order to provide strong theoretical support for further elucidating the mechanism of its anti-aging effect. METHODS This review provides a comprehensive analysis of the traditional efficacy of ginseng and the potential mechanisms underlying the anti-age-related disease properties of G-Rg2, based on an extensive literature review up to March 12, 2024, from PubMed, Web of Science, Scopus, Cochrane, and Google Scholar databases. Potential anti-aging mechanisms of G-Rg2 were predicted using network pharmacology and molecular docking analysis techniques. RESULTS In traditional Chinese medicine theory, ginseng has been shown to improve aging-related diseases with a variety of effects, including tonifying qi, strengthening the spleen and stomach, nourishing yin, regulating yin and yang, as well as calming the mind. Its potential active ingredient G-Rg2 has demonstrated significant therapeutic potential in age-related diseases, especially central nervous system and cardiovascular diseases. G-Rg2 exhibited a variety of pharmacological activities, including anti-apoptotic, anti-inflammatory and antioxidant effects. Meanwhile, the network pharmacological analyses and molecular docking results were consistent with the existing literature review, further validating the potential efficacy of G-Rg2 as an anti-aging agent. CONCLUSION The review firstly explores the ameliorative effects of ginseng on a wide range of age-related diseases based on TCM theories. Secondly, the article focuses on the remarkable significance and value demonstrated by G-Rg2 in age-related cardiovascular and neurodegenerative diseases. Consequently, G-Rg2 has broad prospects for development in intervening in aging and treating age-related health problems.
Collapse
Affiliation(s)
- Yu-Zhuo Zhang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - De-Yang Huo
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Zhi Liu
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Xin-Dian Li
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
3
|
Shang S, Yang H, Qu L, Fan D, Deng J. Ginsenoside, a potential natural product against liver diseases: a comprehensive review from molecular mechanisms to application. Crit Rev Food Sci Nutr 2025:1-25. [PMID: 39810734 DOI: 10.1080/10408398.2025.2451761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Liver disease constitutes a significant cause of global mortality, with its pathogenesis being multifaceted. Identifying effective pharmacological and preventive strategies is imperative for liver protection. Ginsenosides, the major bioactive compounds found in ginseng, exhibit multiple pharmacological activities including protection against liver-related diseases by mitigating liver fat accumulation and inflammation, preventing hepatic fibrosis, and exerting anti-hepatocarcinogenic effects. However, a comprehensive overview elucidating the regulatory pathways associated with ginsenosides in liver disease remains elusive. This review aims to consolidate the molecular mechanisms through which different ginsenosides ameliorate distinct liver diseases, alongside the pathogenic factors underlying liver ailments. Notably, ginsenosides Rb1 and Rg1 demonstrate significantly effective in treating fatty liver, hepatitis, and liver fibrosis, and ginsenosides CK and Rh2 exhibit potent anti-hepatocellular carcinogenic effects. Their molecular mechanisms underlying these effects primarily involve the modulation of AMPK, NF-κB, TGF-β, NFR2, JNK, and other pathways, thereby attenuating hepatic fat accumulation, inflammation, inhibition of hepatic stellate cell activation, and promoting apoptosis in hepatocellular carcinoma cells. Furthermore, it provides insights into the safety profile and current applications of ginsenosides, thereby facilitating their clinical development. Consequently, ginsenosides present promising prospects for liver disease management, underscoring their potential as valuable therapeutic agents in this context.
Collapse
Affiliation(s)
- Shiyan Shang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Linlin Qu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Li K, Wang YJ, Wei K, Li WL, Liu YB, Hu JN, Chang WG, Zhang WX, Chen L, Li W. Ginsenoside Rg2 Alleviates HFD/STZ-Induced Diabetic Nephropathy by Inhibiting Pyroptosis via NF-κB/NLRP3 Signaling Pathways. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2025; 53:909-930. [PMID: 40374378 DOI: 10.1142/s0192415x2550034x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Diabetes mellitus (DM) is considered to be the most widespread epidemic worldwide, and diabetic nephropathy (DN) is one of the most serious diabetic complications. Its complex pathogenesis makes treatment of DN an ongoing medical challenge. Ginseng (Panax ginseng. C. A Meyer) is a valuable medicinal herb with a long medicinal and culinary history. Ginsenoside Rg2 (Rg2), an important active component in ginseng, has effective inhibitory effects on lipogenesis and hepatic glucose production. However, the potential effect and mechanism of Rg2 on DN remain unclear. In this study, we investigated the effect of Rg2 on DN in high fat diet/streptozotocin (HFD/STZ)-induced type 2 diabetic mice and high glucose (HG)-induced human kidney 2 (HK-2) cells. The results demonstrated that Rg2 significantly improved the levels of FBG, dyslipidemia and impaired kidney function in DN mice. Additionally, Rg2 decreased the phosphorylation levels of IKKβ, IκBα, and NF-κB p65, inhibited the activation of NLRP3 inflammasomes (NLRP3, ASC, and Caspase 1), and restrained release of inflammatory factors (IL-18 and IL-1[Formula: see text]. In HG-induced HK-2 cells, Rg2 showed similar inhibitory effects on pyroptosis via NF-κB/NLRP3 signaling pathways. Moreover, the effect of Rg2 on inhibiting the activation of NF-κB/NLRP3 signaling pathways may have a relationship to reducing the overproduction of reactive oxygen species (ROS), which is further supported by the ROS inhibitor N-acetylcysteine (NAC). In conclusion, our findings clearly indicated that Rg2 could prevent the progress of DN by inhibiting the activation of pyroptosis-related NF-κB/NLRP3 signaling pathways in vivo and in vitro, suggesting that Rg2 may be a novel and promising therapeutic agent in the treatment of DN.
Collapse
Affiliation(s)
- Ke Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ya-Jun Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Kun Wei
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, China
| | - Wen-Lin Li
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yong-Bo Liu
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jun-Nan Hu
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wen-Guang Chang
- Institute for Translational Medicine, The Affiliated Hospital, Qingdao University, Qingdao 266000, China
| | - Wen-Xuan Zhang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Long Chen
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wei Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
5
|
Xia F, Hu Y, Wang Y, Xue M, Zhu L, Li Y, Zhang Y, Wang S, Wang R, Yuan Q, He Y, Yuan D, Zhang J, Yuan C. Total saponins from Panax japonicus mediate the paracrine interaction between adipocytes and macrophages to promote lipolysis in the adipose tissue during aging via the NLRP3 inflammasome/GDF3/ATGL axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156304. [PMID: 39662098 DOI: 10.1016/j.phymed.2024.156304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/01/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
Adipocytic lipolysis is strongly related to the increase of visceral fat, decrease of exercise capacity, and various other metabolic syndromes during aging. It is significantly influenced by the paracrine relationship between adipocytes and the adipose tissue macrophages (ATMs), and the cytokines secreted by ATMs have endocrine effects on adjacent tissues. We previously reported that the total saponins from Panax japonicus (TSPJs) can enhance lipid metabolism. In this work, we for the first time proved that TSPJs promoted adipocytic lipolysis by preventing NLRP3 activation in ATMs to inhibit the expression of GDF3. The decrease of GDF3 by TSPJs restored the expression of the adipose triglyceride lipase (ATGL) and phosphorylated hormone-sensitive lipase (p-HSL), both of which are known to decrease with aging. Thus, the NLRP3 inflammasome/GDF3/ATGL axis may be a worthy target in developing future clinical solutions for aging-related obesity.
Collapse
Affiliation(s)
- Fangqi Xia
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Yaqi Hu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Yaqi Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Mengzhen Xue
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Leiqi Zhu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Yuanyang Li
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Yifan Zhang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Shuwen Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Rui Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Qi Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Yumin He
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Ding Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Jihong Zhang
- Hubei Clinical Research Center for Functional Digestive Diseases of Traditional Chinese Medicine& Traditional Chinese Medicine Hospital of China Three Gorges University, Yichang, 443002, China
| | - Chengfu Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
6
|
Zhao W, Shen Y, Bao Y, Monroig Ó, Zhu T, Sun P, Tocher DR, Zhou Q, Jin M. Fucoidan alleviates hepatic lipid deposition by modulating the Perk-Eif2α-Atf4 axis via Sirt1 activation in Acanthopagrus schlegelii. Int J Biol Macromol 2024; 282:137266. [PMID: 39505163 DOI: 10.1016/j.ijbiomac.2024.137266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024]
Abstract
With the increasing use of high-fat diets (HFD), fatty liver disease has become common in fish, and fucoidan is of interest as a natural sulfated polysaccharide with lipid-lowering activity. To explore the molecular regulatory mechanisms of fucoidan's alleviation of HFD-induced lipid deposition in liver, black seabream (Acanthopagrus schlegelii) was used to construct in vivo and in vitro HFD models. In vivo HFD stimulated the protein kinase RNA-like endoplasmic reticulum kinase (Perk) pathway, and up-regulated proliferator-activated receptor gamma (Pparγ) nuclear translocation and expression of lipogenic genes, while it down-regulated Ppar alpha (Pparα) nuclear translocation and expression of lipolytic genes. However, fucoidan reversed these effects of HFD and significantly alleviated HFD-induced lipid accumulation in liver. Moreover, after sirtuin 1 (sirt1) knockdown, these effects of fucoidan disappeared. In the in vitro HFD model, GSK2606414 (GSK)-specific inhibition of the Perk pathway, decreased Pparγ nuclear translocation and increased Pparα nuclear translocation. Overall, fucoidan mitigated HFD-induced, Perk pathway-mediated lipid deposition in the liver of black seabream by activating Sirt1. The findings provided a new prospect for the application of green polysaccharides in aquatic animal feeds.
Collapse
Affiliation(s)
- Wenli Zhao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo 315211, China
| | - Yuedong Shen
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo 315211, China
| | - Yangguang Bao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo 315211, China
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, 12595 Ribera de Cabanes, Castellon, Spain
| | - Tingting Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo 315211, China
| | - Peng Sun
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo 315211, China
| | - Douglas R Tocher
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo 315211, China
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
7
|
Yan C, Yang S, Shao S, Zu R, Lu H, Chen Y, Zhou Y, Ying X, Xiang S, Zhang P, Li Z, Yuan Y, Zhang Z, Wang P, Xie Z, Wang W, Ma H, Sun Y. Exploring the anti-ferroptosis mechanism of Kai-Xin-San against Alzheimer's disease through integrating network pharmacology, bioinformatics, and experimental validation strategy in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117915. [PMID: 38360383 DOI: 10.1016/j.jep.2024.117915] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kai Xin San (KXS), first proposed by Sun Simiao during the Tang Dynasty, has been utilized to treat dementia by tonifying qi and dispersing phlegm. AIM OF THE STUDY This study aimed to elucidate the mechanism by which KXS exerts its therapeutic effects on Alzheimer's disease (AD) by targeting ferroptosis, using a combination of network pharmacology, bioinformatics, and experimental validation strategies. MATERIALS AND METHODS The active target sites and the further potential mechanisms of KXS in protecting against AD were investigated through molecular docking, molecular dynamics simulation, and network pharmacology, and combined with the validation of animal experiments. RESULTS Computational and experimental findings provide the first indication that KXS significantly improves learning and memory defects and inhibits neuronal ferroptosis by repairing mitochondria damage and upregulating the protein expression of ferroptosis suppressor protein 1 (FSP1) in vivo APP/PS1 mice AD model. According to bioinformatics analysis, the mechanism by which KXS inhibits ferroptosis may involve SIRT1. KXS notably upregulated the mRNA and protein expression of SIRT1 in both vivo APP/PS1 mice and in vitro APP-overexpressed HT22 cells. Additionally, KXS inhibited ferroptosis induced by APP-overexpression in HT22 cells through activating the SIRT1-FSP1 signal pathway. CONCLUSIONS Collectively, our findings suggest that KXS may inhibit neuronal ferroptosis through activating the SIRT1/FSP1 signaling pathway. This study reveals the scientific basis and underlying modern theory of replenishing qi and eliminating phlegm, which involves the inhibition of ferroptosis. Moreover, it highlights the potential application of SIRT1 or FSP1 activators in the treatment of AD and other ferroptosis-related diseases.
Collapse
Affiliation(s)
- Chenchen Yan
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Song Yang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, PR China
| | - Simai Shao
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Runru Zu
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Hao Lu
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China
| | - Yuanzhao Chen
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Yangang Zhou
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China
| | - Xiran Ying
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China
| | - Shixie Xiang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Peixu Zhang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Zhonghua Li
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Ye Yuan
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Zhenqiang Zhang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Pan Wang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Zhishen Xie
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| | - Wang Wang
- School of basic medicine, Nanchang Medical College, Nanchang, 330052, Jiangxi, PR China.
| | - Huifen Ma
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| | - Yiran Sun
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China.
| |
Collapse
|
8
|
Tian C, Huang R, Xiang M. SIRT1: Harnessing multiple pathways to hinder NAFLD. Pharmacol Res 2024; 203:107155. [PMID: 38527697 DOI: 10.1016/j.phrs.2024.107155] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/04/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses hepatic steatosis, non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma. It is the primary cause of chronic liver disorders, with a high prevalence but no approved treatment. Therefore, it is indispensable to find a trustworthy therapy for NAFLD. Recently, mounting evidence illustrates that Sirtuin 1 (SIRT1) is strongly associated with NAFLD. SIRT1 activation or overexpression attenuate NAFLD, while SIRT1 deficiency aggravates NAFLD. Besides, an array of therapeutic agents, including natural compounds, synthetic compounds, traditional Chinese medicine formula, and stem cell transplantation, alleviates NALFD via SIRT1 activation or upregulation. Mechanically, SIRT1 alleviates NAFLD by reestablishing autophagy, enhancing mitochondrial function, suppressing oxidative stress, and coordinating lipid metabolism, as well as reducing hepatocyte apoptosis and inflammation. In this review, we introduced the structure and function of SIRT1 briefly, and summarized the effect of SIRT1 on NAFLD and its mechanism, along with the application of SIRT1 agonists in treating NAFLD.
Collapse
Affiliation(s)
- Cheng Tian
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rongrong Huang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
9
|
Huang J, Li J, Peng Y, Cui T, Guo J, Duan S, Zhou K, Huang S, Chen J, Yi Q, Qiu M, Chen T, Wu X, Ma C, Zhang Z, Zheng Y, Tang X, Pang Y, Zhang L, Zhong C, Gao Y. The lack of PPARα exacerbated the progression of non-alcoholic steatohepatitis in mice with spleen deficiency syndrome by triggering an inflammatory response. Front Immunol 2024; 15:1381340. [PMID: 38633246 PMCID: PMC11021588 DOI: 10.3389/fimmu.2024.1381340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
Background In addition to abnormal liver inflammation, the main symptoms of non-alcoholic steatohepatitis (NASH) are often accompanied by gastrointestinal digestive dysfunction, consistent with the concept of spleen deficiency (SD) in traditional Chinese medicine. As an important metabolic sensor, whether peroxisome proliferator-activated receptor alpha (PPARα) participates in regulating the occurrence and development of NASH with SD (NASH-SD) remains to be explored. Methods Clinical liver samples were collected for RNA-seq analysis. C57BL/6J mice induced by folium sennae (SE) were used as an SD model. qPCR analysis was conducted to evaluate the inflammation and metabolic levels of mice. PPARα knockout mice (PPARαko) were subjected to SE and methionine-choline-deficient (MCD) diet to establish the NASH-SD model. The phenotype of NASH and the inflammatory indicators were measured using histopathologic analysis and qPCR as well. Results The abnormal expression of PPARα signaling, coupled with metabolism and inflammation, was found in the results of RNA-seq analysis from clinical samples. SD mice showed a more severe inflammatory response in the liver evidenced by the increases in macrophage biomarkers, inflammatory factors, and fibrotic indicators in the liver. qPCR results also showed differences in PPARα between SD mice and control mice. In PPARαko mice, further evidence was found that the lack of PPARα exacerbated the inflammatory response phenotype as well as the lipid metabolism disorder in NASH-SD mice. Conclusion The abnormal NR signaling accelerated the vicious cycle between lipotoxicity and inflammatory response in NAFLD with SD. Our results provide new evidence for nuclear receptors as potential therapeutic targets for NAFLD with spleen deficiency.
Collapse
Affiliation(s)
- Jiawen Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiayu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuan Peng
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Tianqi Cui
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingyi Guo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Siwei Duan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kaili Zhou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shangyi Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiabing Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qincheng Yi
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Qiu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tingting Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoqin Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chenlu Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziyi Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Zheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xi Tang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanqing Pang
- Department of Phase I Clinical Research Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Lei Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Chong Zhong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
10
|
Zhang S, Zhang Y, Wen Z, Yang Y, Bu T, Wei R, Chen Y, Ni Q. Jinkui Shenqi pills ameliorate diabetes by regulating hypothalamic insulin resistance and POMC/AgRP expression and activity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155297. [PMID: 38342019 DOI: 10.1016/j.phymed.2023.155297] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/10/2023] [Accepted: 12/16/2023] [Indexed: 02/13/2024]
Abstract
BACKGROUND Research on the imbalance of proopiomelanocortin (POMC)/agouti-related protein (AgRP) neurons in the hypothalamus holds potential insights into the pathophysiology of diabetes. Jinkui Shenqi pills (JSP), a prevalent traditional Chinese medicine, regulate hypothalamic function and treat diabetes. PURPOSE To investigate the hypoglycemic effect of JSP and explore the probable mechanism in treating diabetes. METHODS A type 2 diabetes mouse model was used to investigate the pharmacodynamics of JSP. The glucose-lowering efficacy of JSP was assessed through various metrics including body weight, food consumption, fasting blood glucose (FBG), serum insulin levels, and an oral glucose tolerance test (OGTT). To elucidate the modulatory effects of JSP on hypothalamic mechanisms, we quantified the expression and activity of POMC and AgRP and assessed the insulin-mediated phosphoinositide 3-kinase (PI3K)/protein kinase A (AKT)/forkhead box O1 (FOXO1) pathway in diabetic mice via western blotting and immunohistochemistry. Additionally, primary hypothalamic neurons were exposed to high glucose and palmitic acid levels to induce insulin resistance, and the influence of JSP on POMC/AgRP protein expression and activation was evaluated by PI3K protein inhibition using western blotting and immunofluorescence. RESULTS Medium- and high-dose JSP treatment effectively inhibited appetite, resulting in a steady declining trend in body weight, FBG, and OGTT results in diabetic mice (p < 0.05). These JSP groups also had significantly increased insulin levels (p < 0.05). Importantly, the medium-dose group exhibited notable protection of hypothalamic neuronal and synaptic structures, leading to augmentation of dendritic length and branching (p < 0.05). Furthermore, low-, medium-, and high-dose JSP groups exhibited increased phosphorylated (p) INSR, PI3K, pPI3K, AKT, and pAKT expression, as well as decreased FOXO1 and increased pFOXO1 expression, indicating improved hypothalamic insulin resistance in diabetic mice (p < 0.05). Treatment with 10% JSP-enriched serum produced a marked elevation of both expression and activation of POMC (p < 0.05), with a concurrent reduction in AgRP expression and activation within primary hypothalamic neurons (p < 0.05). Intriguingly, these effects could be attributed to the regulatory dynamics of PI3K activity. CONCLUSION Our findings suggest that JSP can ameliorate diabetes by regulating POMC/AgRP expression and activity. The insulin-mediated PI3K/AKT/FOXO1 pathway plays an important regulatory role in this intricate process.
Collapse
Affiliation(s)
- Shan Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yueying Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Zhige Wen
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yanan Yang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Tianjie Bu
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Ruoyu Wei
- Department of Traditional Chinese Medicine, The Fifth Hospital of Xingtai, Hebei, 054000, China
| | - Yupeng Chen
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Qing Ni
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
11
|
Zhang D, Ding H, Liu C, Huang Y, Tai W, Feng S, Wang X, Zhao C, Li Y. Circulating exosome-mediated AMPKα-SIRT1 pathway regulates lipid metabolism disorders in calf hepatocytes. Res Vet Sci 2024; 169:105177. [PMID: 38350170 DOI: 10.1016/j.rvsc.2024.105177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
Subclinical ketosis (SCK) in dairy cows is often misdiagnosed because it lacks clinical signs and detection indicators. However, it is highly prevalent and may transform into clinical ketosis if not treated promptly. Due to the negative energy balance, a large amount of fat is mobilized, producing NEFA that exceeds the upper limit of liver processing, which in turn leads to the disturbance of liver lipid metabolism. The silent information regulator 1 (SIRT1) is closely related to hepatic lipid metabolism disorders. Exosomes as signal transmitters, also play a role in the circulatory system. We hypothesize that the circulating exosome-mediated adenosine 5'-monophosphate (AMP)-activated protein kinase alpha (AMPKα)-SIRT1 pathway regulates lipid metabolism disorders in SCK cows. We extracted the exosomes required for the experiment from the peripheral circulating blood of non-ketotic (NK) and SCK cows. We investigated the effect of circulating exosomes on the expression levels of mRNA and protein of the AMPKα-SIRT1 pathway in non-esterified fatty acid (NEFA)-induced dairy cow primary hepatocytes using in vitro cell experiments. The results showed that circulating exosomes increased the expression levels of Lipolysis-related genes and proteins (AMPKα, SIRT1, and PGC-1α) in hepatocytes treated with 1.2 mM NEFA, and inhibited the expression of lipid synthesis-related genes and protein (SREBP-1C). The regulation of exosomes on lipid metabolism disorders caused by 1.2 mM NEFA treatment showed the same trend as for SIRT1-overexpressing adenovirus. The added exosomes could regulate NEFA-induced lipid metabolism in hepatocytes by mediating the AMPKα-SIRT1 pathway, consistent with the effect of transfected SIRT1 adenovirus.
Collapse
Affiliation(s)
- Daoliang Zhang
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China
| | - Hongyan Ding
- Research Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, Anhui Province 230031, China
| | - Chang Liu
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China
| | - Yingying Huang
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China
| | - Wenjun Tai
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China
| | - Shibin Feng
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China
| | - Chang Zhao
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China.
| | - Yu Li
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China.
| |
Collapse
|
12
|
Gong P, Long H, Guo Y, Wang Z, Yao W, Wang J, Yang W, Li N, Xie J, Chen F. Chinese herbal medicines: The modulator of nonalcoholic fatty liver disease targeting oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116927. [PMID: 37532073 DOI: 10.1016/j.jep.2023.116927] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plants are a natural treasure trove; their secondary metabolites participate in several pharmacological processes, making them a crucial component in the synthesis of novel pharmaceuticals and serving as a reserve resource foundation in this process. Nonalcoholic fatty liver disease (NAFLD) is associated with the risk of progression to hepatitis and liver cancer. The "Treatise on Febrile Diseases," "Compendium of Materia Medica," and "Thousand Golden Prescriptions" have listed herbal remedies to treat liver diseases. AIM OF THE REVIEW Chinese herbal medicines have been widely used for the prevention and treatment of NAFLD owing to their efficacy and low side effects. The production of reactive oxygen species (ROS) during NAFLD, and the impact and potential mechanism of ROS on the pathogenesis of NAFLD are discussed in this review. Furthermore, common foods and herbs that can be used to prevent NAFLD, as well as the structure-activity relationships and potential mechanisms, are discussed. METHODS Web of Science, PubMed, CNKI database, Google Scholar, and WanFang database were searched for natural products that have been used to treat or prevent NAFLD in the past five years. The primary search was performed using the following keywords in different combinations in full articles: NAFLD, herb, natural products, medicine, and ROS. More than 400 research papers and review articles were found and analyzed in this review. RESULTS By classifying and discussing the literature, we obtained 86 herbaceous plants, 28 of which were derived from food and 58 from Chinese herbal medicines. The mechanism of NAFLD was proposed through experimental studies on thirteen natural compounds (quercetin, hesperidin, rutin, curcumin, resveratrol, epigallocatechin-3-gallate, salvianolic acid B, paeoniflorin, ginsenoside Rg1, ursolic acid, berberine, honokiol, emodin). The occurrence and progression of NAFLD could be prevented by natural antioxidants through several pathways to prevent ROS accumulation and reduce hepatic cell injuries caused by excessive ROS. CONCLUSION This review summarizes the natural products and routinely used herbs (prescription) in the prevention and treatment of NAFLD. Firstly, the mechanisms by which natural products improve NAFLD through antioxidant pathways are elucidated. Secondly, the potential of traditional Chinese medicine theory in improving NAFLD is discussed, highlighting the safety of food-medicine homology and the broader clinical potential of multi-component formulations in improving NAFLD. Aiming to provide theoretical basis for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Pin Gong
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Hui Long
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yuxi Guo
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Zhineng Wang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wenbo Yao
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jing Wang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wenjuan Yang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Nan Li
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jianwu Xie
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China.
| |
Collapse
|
13
|
Meng D, Zhang F, Yu W, Zhang X, Yin G, Liang P, Feng Y, Chen S, Liu H. Biological Role and Related Natural Products of SIRT1 in Nonalcoholic Fatty Liver. Diabetes Metab Syndr Obes 2023; 16:4043-4064. [PMID: 38089432 PMCID: PMC10715014 DOI: 10.2147/dmso.s437865] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/26/2023] [Indexed: 01/03/2025] Open
Abstract
Non-alcoholic fatty liver disease(NAFLD) is an umbrella term for a range of diseases ranging from hepatic fat accumulation and steatosis to non-alcoholic steatohepatitis (NASH) in the absence of excessive alcohol consumption and other definite liver damage factors. The incidence of NAFLD has increased significantly in recent years and will continue to grow in the coming decades. NAFLD has become a huge health problem and economic burden. SIRT1 is a member of Sirtuins, a group of highly conserved histone deacetylases regulated by NAD+, and plays a vital role in regulating cholesterol and lipid metabolism, improving oxidative stress, inflammation, and insulin resistance through deacetylating some downstream transcription factors and thus improving NAFLD. Although there are no currently approved drugs for treating NAFLD and some unresolved limitations in developing SIRT1 activators, SIRT1 holds promise as a proper therapeutic target for NAFLD and other metabolic diseases. In recent years, natural products have played an increasingly important role in drug development due to their safety and efficacy. It has been discovered that some natural products may be able to prevent and treat NAFLD by targeting SIRT1 and its related pathways. This paper reviews the mechanism of SIRT1 in the improvement of NALFD and the natural products that regulate NAFLD through SIRT1 and its associated pathways, and discusses the potential of SIRT1 as a therapeutic target for treating NAFLD and the effectiveness of these related natural products as clinical drugs or dietary supplements. These works may provide some new ideas and directions for finding new therapeutic targets for NAFLD and the development of anti-NAFLD drugs with good pharmacodynamic properties.
Collapse
Affiliation(s)
- Decheng Meng
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of China
| | - Fengxia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of China
| | - Wenfei Yu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of China
| | - Xin Zhang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of China
| | - Guoliang Yin
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of China
| | - Pengpeng Liang
- Shenzhen Hospital, Shanghai University of Traditional Chinese Medicine, Shenzhen, 518001, People’s Republic of China
| | - Yanan Feng
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of China
| | - Suwen Chen
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of China
| | - Hongshuai Liu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of China
| |
Collapse
|
14
|
Liu S, Chen W, Zhao Y, Zong Y, Li J, He Z. Research Progress on Effects of Ginsenoside Rg2 and Rh1 on Nervous System and Related Mechanisms. Molecules 2023; 28:7935. [PMID: 38067664 PMCID: PMC10708332 DOI: 10.3390/molecules28237935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Neurological-related disorders are diseases that affect the body's neurons or peripheral nerve tissue, such as Parkinson's disease (PD) and Alzheimer's disease (AD). The development of neurological disorders can cause serious harm to the quality of life and functioning of the patient. The use of traditional therapeutic agents such as dopamine-promoting drugs, anticholinergic drugs, cholinesterase inhibitors, and NMDA receptor antagonists is often accompanied by a series of side effects such as drug resistance, cardiac arrhythmia, liver function abnormalities, and blurred vision. Therefore, there is an urgent need to find a therapeutic drug with a high safety profile and few side effects. Herbal medicines are rich in active ingredients that are natural macromolecules. Ginsenoside is the main active ingredient of ginseng, which has a variety of pharmacological effects and is considered to have potential value in the treatment of human diseases. Modern pharmacological studies have shown that ginsenosides Rg2 and Rh1 have strong pharmacological activities in the nervous system, with protective effects on nerve cells, improved resistance to neuronal injury, modulation of neural activity, resistance to cerebral ischemia/reperfusion injury, improvement of brain damage after eclampsia hemorrhage, improvement of memory and cognitive deficits, treatment of AD and vascular dementia, alleviation of anxiety, pain, and inhibition of ionic-like behavior. In this article, we searched the pharmacological research literature of Rg2 and Rh1 in the field of neurological diseases, summarized the latest research progress of the two ginsenosides, and reviewed the pharmacological effects and mechanisms of Rg2 and Rh1, which provided a new way of thinking for the research of the active ingredients in ginseng anti-neurological diseases and the development of new drugs.
Collapse
Affiliation(s)
- Silu Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (W.C.); (Y.Z.); (Y.Z.); (J.L.)
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (W.C.); (Y.Z.); (Y.Z.); (J.L.)
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (W.C.); (Y.Z.); (Y.Z.); (J.L.)
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (W.C.); (Y.Z.); (Y.Z.); (J.L.)
| | - Jianming Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (W.C.); (Y.Z.); (Y.Z.); (J.L.)
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (W.C.); (Y.Z.); (Y.Z.); (J.L.)
| |
Collapse
|
15
|
Wang L, Yan Y, Wu L, Peng J. Natural products in non-alcoholic fatty liver disease (NAFLD): Novel lead discovery for drug development. Pharmacol Res 2023; 196:106925. [PMID: 37714392 DOI: 10.1016/j.phrs.2023.106925] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
With changing lifestyles, non-alcoholic fatty liver disease (NAFLD) has become the most prevalent liver disease worldwide. A substantial increase in the incidence, mortality, and associated burden of NAFLD-related advanced liver disease is expected. Currently, the initial diagnosis of NAFLD is still based on ultrasound and there is no approved treatment method. Lipid-lowering drugs, vitamin supplementation, and lifestyle improvement treatments are commonly used in clinical practice. However, most lipid-lowering drugs can produce poor patient compliance and specific adverse effects. Therefore, the exploration of bio-diagnostic markers and active lead compounds for the development of innovative drugs is urgently needed. More and more studies have reported the anti-NAFLD effects and mechanisms of natural products (NPs), which have become an important source for new drug development to treat NAFLD due to their high activity and low side effects. At present, berberine and silymarin have been approved by the US FDA to enter clinical phase IV studies, demonstrating the potential of NPs against NAFLD. Studies have found that the regulation of lipid metabolism, insulin resistance, oxidative stress, and inflammation-related pathways may play important roles in the process. With the continuous updating of technical means and scientific theories, in-depth research on the targets and mechanisms of NPs against NAFLD can provide new possibilities to find bio-diagnostic markers and innovative drugs. As we know, FXR agonists, PPARα agonists, and dual CCR2/5 inhibitors are gradually coming on stage for the treatment of NAFLD. Whether NPs can exert anti-NAFLD effects by regulating these targets or some unknown targets remains to be further studied. Therefore, the study reviewed the potential anti-NAFLD NPs and their targets. Some works on the discovery of new targets and the docking of active lead compounds were also discussed. It is hoped that this review can provide some reference values for the development of non-invasive diagnostic markers and new drugs against NAFLD in the clinic.
Collapse
Affiliation(s)
- Lu Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yonghuan Yan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Linfang Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jinyong Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| |
Collapse
|
16
|
Cui T, Xiao X, Pan Z, Tang K, Zhong Y, Chen Y, Guo J, Duan S, Zhong G, Li T, Li X, Wu X, Lin C, Yang X, Gao Y, Zhang D. Harnessing the Therapeutic Potential of Ginsenoside Rd for Activating SIRT6 in Treating a Mouse Model of Nonalcoholic Fatty Liver Disease. ACS OMEGA 2023; 8:29735-29745. [PMID: 37599957 PMCID: PMC10433470 DOI: 10.1021/acsomega.3c04122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a prevalent global condition and a common precursor to liver cancer, yet there is currently no specific medication available for its treatment. Ginseng, renowned for its medicinal and dietary properties, has been utilized in NAFLD management, although the precise underlying mechanism remains elusive. To investigate the effectiveness of ginsenoside Rd, we employed mouse and cell models to induce NAFLD using high-fat diets, oleic acid, and palmitic acid. We explored and confirmed the specific mechanism of ginsenoside Rd-induced hepatic steatosis through experiments involving mice with a liver-specific knockout of SIRT6, a crucial protein involved in metabolic regulation. Our findings revealed that administration of ginsenoside Rd significantly reduced the inflammatory response, reactive oxygen species (ROS) levels, lipid peroxide levels, and mitochondrial stress induced by oleic acid and palmitic acid in primary hepatocytes, thereby mitigating excessive lipid accumulation. Moreover, ginsenoside Rd administration effectively enhanced the mRNA content of key proteins involved in fatty acid oxidation, with a particular emphasis on SIRT6 and its target proteins. We further validated that ginsenoside Rd directly binds to SIRT6, augmenting its deacetylase activity. Notably, we made a significant observation that the protective effect of ginsenoside Rd against hepatic disorders induced by a fatty diet was almost entirely reversed in mice with a liver-specific SIRT6 knockout. Our findings highlight the potential therapeutic impact of Ginsenoside Rd in NAFLD treatment by activating SIRT6. These results warrant further investigation into the development of Ginsenoside Rd as a promising agent for managing this prevalent liver disease.
Collapse
Affiliation(s)
- Tianqi Cui
- The
Fourth Clinical Medical College of Guangzhou University of Chinese
Medicine, Shenzhen 518033, China
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaoxia Xiao
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Zhisen Pan
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Kaijia Tang
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Yadi Zhong
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Yingjian Chen
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Jingyi Guo
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Siwei Duan
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Guangcheng Zhong
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Tianyao Li
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Xiang Li
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Xiumei Wu
- Emergency
Department of the First Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510006, China
| | - Chuanquan Lin
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaoying Yang
- Jiangsu
Key Laboratory of Immunity and Metabolism, Department of Pathogen
Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yong Gao
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Dong Zhang
- The
Fourth Clinical Medical College of Guangzhou University of Chinese
Medicine, Shenzhen 518033, China
| |
Collapse
|
17
|
Guo J, Huang S, Yi Q, Liu N, Cui T, Duan S, Chen J, Li J, Li J, Wang L, Gao Y, Nie G. Hepatic Clstn3 Ameliorates Lipid Metabolism Disorders in High Fat Diet-Induced NAFLD through Activation of FXR. ACS OMEGA 2023; 8:26158-26169. [PMID: 37521618 PMCID: PMC10373204 DOI: 10.1021/acsomega.3c02347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become serious liver disease all over the world. At present, NAFLD caused by high calorie and fat diet is increasing. Calsyntenin-3 (Clstn3) is a transmembrane protein that has recently been found to participate in lipid energy metabolism. But whether Clstn3 affects NAFLD lipid metabolism has not been analyzed. We stimulate the mice primary hepatocytes (MPHs) with oleic acid and palmitic acid (OA&PA) to establish a cell model. Then, potential targets, including Clstn3 gene, were validated for improving lipid metabolism disorder in NAFLD model mice (HFD and db/db) by silencing and overexpressing hepatic Clstn3. Moreover, the effects of Clstn3 on lipid homeostasis were determined by functional determination, triglyceride (TG) levels, total cholesterol (TC) levels, ELISA, and qRT-PCR detection. Our results displayed that Clstn3 was decreased in the NAFLD mice model. Also, overexpression of Clstn3 improved lipid metabolism disorders, gluconeogenesis, and energy homeostasis and reduced liver injury, inflammation, and oxidative stress injury. However, opposite results were obtained in Clstn3-silencing mice, suggesting that the Clstn3 gene is closely related to lipid metabolism disorder in NAFLD. RNAseq expression demonstrated that Farnesoid X Receptor (FXR) expression was increased after overexpression of Clstn3. Clstn3 supplementation in FXRKO mice can improve the dysfunction caused by insufficient FXR, suggesting that Clstn3 can improve the NAFLD lipid metabolism disorder to some extent through FXR, which may provide a new method for the treatment of NAFLD.
Collapse
Affiliation(s)
- Jingyi Guo
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou, Guangdong 510080, China
- State
Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Shangyi Huang
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou, Guangdong 510080, China
| | - Qincheng Yi
- State
Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Naihua Liu
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou, Guangdong 510080, China
| | - Tianqi Cui
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou, Guangdong 510080, China
| | - Siwei Duan
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou, Guangdong 510080, China
| | - Jiabing Chen
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou, Guangdong 510080, China
| | - Jiayu Li
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou, Guangdong 510080, China
| | - Jun Li
- State
Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Lei Wang
- State
Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou, Guangdong 510120, China
- Department
of Cardiovascular Medicine, The Second Affiliated
Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Yong Gao
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou, Guangdong 510080, China
| | - Guangning Nie
- State
Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou, Guangdong 510120, China
- Department
of Gynecology, The Second Affiliated Hospital
of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| |
Collapse
|
18
|
Gao T, Li M, Wu D, Xiao N, Huang D, Deng L, Yang L, Tian C, Cao Y, Zhang J, Gu J, Yu Y. Exploring the pathogenesis of colorectal carcinoma complicated with hepatocellular carcinoma via microarray data analysis. Front Pharmacol 2023; 14:1201401. [PMID: 37383715 PMCID: PMC10293624 DOI: 10.3389/fphar.2023.1201401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
Background: Despite the increasing number of research endeavors dedicated to investigating the relationship between colorectal carcinoma (CRC) and hepatocellular carcinoma (HCC), the underlying pathogenic mechanism remains largely elusive. The aim of this study is to shed light on the molecular mechanism involved in the development of this comorbidity. Methods: The gene expression profiles of CRC (GSE90627) and HCC (GSE45267) were downloaded from the Gene Expression Omnibus (GEO) database. After identifying the common differentially expressed genes (DEGs) of psoriasis and atherosclerosis, three kinds of analyses were performed, namely, functional annotation, protein-protein interaction (PPI) network and module construction, and hub gene identification, survival analysis and co-expression analysis. Results: A total of 150 common downregulated differentially expressed genes and 148 upregulated differentially expressed genes were selected for subsequent analyses. The significance of chemokines and cytokines in the pathogenesis of these two ailments is underscored by functional analysis. Seven gene modules that were closely connected were identified. Moreover, the lipopolysaccharide-mediated signaling pathway is intricately linked to the development of both diseases. Finally, 10 important hub genes were identified using cytoHubba, including CDK1, KIF11, CDC20, CCNA2, TOP2A, CCNB1, NUSAP1, BUB1B, ASPM, and MAD2L1. Conclusion: Our study reveals the common pathogenesis of colorectal carcinoma and hepatocellular carcinoma. These common pathways and hub genes may provide new ideas for further mechanism research.
Collapse
Affiliation(s)
- Tianqi Gao
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mengping Li
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Oncology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dailin Wu
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ni Xiao
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dan Huang
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Deng
- Department of Oncology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lunwei Yang
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunhong Tian
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Cao
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jun Zhang
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jihong Gu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yang Yu
- Department of Gastrointestinal and Thyroid Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
19
|
Yang SJ, Wang JJ, Cheng P, Chen LX, Hu JM, Zhu GQ. Ginsenoside Rg1 in neurological diseases: From bench to bedside. Acta Pharmacol Sin 2023; 44:913-930. [PMID: 36380226 PMCID: PMC10104881 DOI: 10.1038/s41401-022-01022-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Abstract
Ginseng has been used in China as a superior medicinal material for thousands of years that can nourish the five internal organs, calm the mind and benefit wisdom. Due to its anti-inflammatory, antioxidant and neuroprotective activities, one of the active components of ginseng, ginsenoside Rg1, has been extensively investigated in the remedy of brain disorders, especially dementia and depression. In this review, we summarized the research progress on the action mechanisms of Rg1 ameliorating depression-like behaviors, including inhibition of hyperfunction of hypothalamic-pituitary-adrenal (HPA) axis, regulation of synaptic plasticity and gut flora. Rg1 may alleviate Alzheimer's disease in the early phase, as well as in the middle-late phases through repairing dendrite, axon and microglia- and astrocyte-related inflammations. We also proposed that Rg1 could regulate memory state (the imbalance of working and aversive memory) caused by distinct stimuli. These laboratory studies would further the clinical trials on Rg1. From the prospective of drug development, we discussed the limitations of the present investigations and proposed our ideas to increase permeability and bioavailability of Rg1. Taken together, Rg1 has the potential to treat neuropsychiatric disorders, but a future in-depth investigation of the mechanisms is still required. In addition, drug development will benefit from the clinical trials in one specific neuropsychiatric disorder.
Collapse
Affiliation(s)
- Shao-Jie Yang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jing-Ji Wang
- The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei, 230061, China.
| | - Ping Cheng
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Li-Xia Chen
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jia-Min Hu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Guo-Qi Zhu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
20
|
Wang X, Jin X, Li H, Zhang X, Chen X, Lu K, Chu C. Effects of various interventions on non-alcoholic fatty liver disease (NAFLD): A systematic review and network meta-analysis. Front Pharmacol 2023; 14:1180016. [PMID: 37063273 PMCID: PMC10090390 DOI: 10.3389/fphar.2023.1180016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Background: With the increasing prevalence of obesity and metabolic syndrome, the incidence of non-alcoholic fatty liver disease (NAFLD) is also increasing. In the next decade, NAFLD may become the main cause of liver transplantation. Therefore, the choice of treatment plan is particularly important. The purpose of this study was to compare several interventions in the treatment of NAFLD to provide some reference for clinicians in selecting treatment methods.Methods: We searched Public Medicine (PubMed), Medline, Excerpta Medica Database (Embase), and Cochrane Library from January 2013 to January 2023 to identify randomized controlled trials (RCTs) published in English. The network meta-analysis was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Forty-three studies accounting for a total of 2,969 patients were included, and alanine aminotransferase (ALT), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL) were selected as outcome measures for analysis and comparison.Results: We evaluated the results of drug, diet, and lifestyle interventions between the intervention and control groups. Curcumin (CUN) and probiotics (PTC) were selected for medication, the Mediterranean diet (MDED) was selected for special diet (SPD), and various kinds of exercise and lifestyle advice were selected for lifestyle interventions (LFT). The SUCRA was used to rank interventions according to the effect on ALT indicators (SUCRA: PTC 80.3%, SPD 65.2%, LFT 61.4%, PLB 32.8%, CUN 10.2%), TC indicators (SUCRA: PTC 89.4%, SPD 64%, CUN 34%, LFT 36.6%, PLB 17%), and LDL indicators (SUCRA: PTC 84.2%, CUN 69.5%, LFT 51.7%, PLB 30.1%, SPD 14.5%). The pairwise meta-analysis results showed that MDED was significantly better than NT in improving ALT [SMD 1.99, 95% CI (0.38, 3.60)]. In terms of improving TC and LDL, ATS was significantly better than NT [SMD 0.19, 95% CI (0.03, 0.36)] [SMD 0.18, 95% CI (0.01, 0.35)].Conclusion: Our study showed that PTC is most likely to be the most effective treatment for improving NAFLD indicators. Professional advice on diet or exercise was more effective in treating NAFLD than no intervention.
Collapse
Affiliation(s)
- Xinchen Wang
- Department of Pharmaceutical Engineering, College of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, Guangdong, China
| | - Xiaoqian Jin
- Rehabilitation Medicine Department, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Hancheng Li
- Department of Pharmaceutical Engineering, College of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, Guangdong, China
| | - Xianyu Zhang
- Department of Pharmaceutical Engineering, College of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, Guangdong, China
| | - Xi Chen
- Department of Epidemiology and Statistics, School of Public Health, Medical College, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kuan Lu
- Department of Pharmaceutical Engineering, College of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, Guangdong, China
| | - Chenliang Chu
- Department of Pharmaceutical Engineering, College of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, Guangdong, China
- *Correspondence: Chenliang Chu,
| |
Collapse
|
21
|
Che L, Zhu C, Huang L, Xu H, Ma X, Luo X, He H, Zhang T, Wang N. Ginsenoside Rg2 Promotes the Proliferation and Stemness Maintenance of Porcine Mesenchymal Stem Cells through Autophagy Induction. Foods 2023; 12:foods12051075. [PMID: 36900592 PMCID: PMC10000966 DOI: 10.3390/foods12051075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) can be used as a cell source for cultivated meat production due to their adipose differentiation potential, but MSCs lose their stemness and undergo replicative senescence during expansion in vitro. Autophagy is an important mechanism for senescent cells to remove toxic substances. However, the role of autophagy in the replicative senescence of MSCs is controversial. Here, we evaluated the changes in autophagy in porcine MSCs (pMSCs) during long-term culture in vitro and identified a natural phytochemical, ginsenoside Rg2, that could stimulate pMSC proliferation. First, some typical senescence characteristics were observed in aged pMSCs, including decreased EdU-positive cells, increased senescence-associated beta-galactosidase activity, declined stemness-associated marker OCT4 expression, and enhanced P53 expression. Importantly, autophagic flux was impaired in aged pMSCs, suggesting deficient substrate clearance in aged pMSCs. Rg2 was found to promote the proliferation of pMSCs using MTT assay and EdU staining. In addition, Rg2 inhibited D-galactose-induced senescence and oxidative stress in pMSCs. Rg2 increased autophagic activity via the AMPK signaling pathway. Furthermore, long-term culture with Rg2 promoted the proliferation, inhibited the replicative senescence, and maintained the stemness of pMSCs. These results provide a potential strategy for porcine MSC expansion in vitro.
Collapse
Affiliation(s)
- Lina Che
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Caixia Zhu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Lei Huang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Hui Xu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Xinmiao Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Xuegang Luo
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Hongpeng He
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Tongcun Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Nan Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
- Correspondence: ; Tel.: +86-2260-6020-99; Fax: +86-2260-6022-98
| |
Collapse
|
22
|
Yang K, Kim HH, Shim YR, Song MJ. The Efficacy of Panax ginseng for the Treatment of Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis of Preclinical Studies. Nutrients 2023; 15:721. [PMID: 36771427 PMCID: PMC9919883 DOI: 10.3390/nu15030721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Although tremendous research has reported the protective effects of natural compounds in nonalcoholic fatty liver disease (NAFLD), there is still no approved drug. This study aimed to examine the efficacy of Panax ginseng in NAFLD in preclinical studies. A total of 41 studies were identified by searching the PubMed, Web of Science, and Cochrane Library databases. The methodological quality was assessed by the risk of bias tool from the Systematic Review Center for Laboratory Animal Experimentation. The standardized mean difference (SMD) with a 95% confidence interval was calculated, and the random effects model was used to examine overall efficacy or heterogeneity. The publication bias was analyzed by Egger's test. The results showed that Panax ginseng treatment significantly reduced the systemic levels of alanine aminotransferase (SMD: -2.15 IU/L; p < 0.0001), aspartate aminotransferase (SMD: -2.86 IU/L; p < 0.0001), triglyceride (SMD: -2.86 mg/dL; p < 0.0001), total cholesterol (SMD: -1.69 mg/dL; p < 0.0001), low-density lipoprotein (SMD: -1.46 mg/dL; p < 0.0001), and fasting glucose (SMD: -1.45 mg/dL; p < 0.0001) while increasing high-density lipoprotein (SMD: 1.22 mg/dL; p = 0.0002) in NAFLD regardless of animal models or species. These findings may suggest that Panax ginseng is a promising therapeutic agent for NAFLD treatment.
Collapse
Affiliation(s)
- Keungmo Yang
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hee-Hoon Kim
- Life Science Research Institute, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Young-Ri Shim
- Life Science Research Institute, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Myeong Jun Song
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
23
|
Jin W, Li C, Yang S, Song S, Hou W, Song Y, Du Q. Hypolipidemic effect and molecular mechanism of ginsenosides: a review based on oxidative stress. Front Pharmacol 2023; 14:1166898. [PMID: 37188264 PMCID: PMC10175615 DOI: 10.3389/fphar.2023.1166898] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Hyperlipidemia is considered a risk factor for cardiovascular and endocrine diseases. However, effective approaches for treating this common metabolic disorder remain limited. Ginseng has traditionally been used as a natural medicine for invigorating energy or "Qi" and has been demonstrated to possess antioxidative, anti-apoptotic, and anti-inflammatory properties. A large number of studies have shown that ginsenosides, the main active ingredient of ginseng, have lipid-lowering effects. However, there remains a lack of systematic reviews detailing the molecular mechanisms by which ginsenosides reduce blood lipid levels, especially in relation to oxidative stress. For this article, research studies detailing the molecular mechanisms through which ginsenosides regulate oxidative stress and lower blood lipids in the treatment of hyperlipidemia and its related diseases (diabetes, nonalcoholic fatty liver disease, and atherosclerosis) were comprehensively reviewed. The relevant papers were search on seven literature databases. According to the studies reviewed, ginsenosides Rb1, Rb2, Rb3, Re, Rg1, Rg3, Rh2, Rh4, and F2 inhibit oxidative stress by increasing the activity of antioxidant enzymes, promoting fatty acid β-oxidation and autophagy, and regulating the intestinal flora to alleviate high blood pressure and improve the body's lipid status. These effects are related to the regulation of various signaling pathways, such as those of PPARα, Nrf2, mitogen-activated protein kinases, SIRT3/FOXO3/SOD, and AMPK/SIRT1. These findings suggest that ginseng is a natural medicine with lipid-lowering effects.
Collapse
Affiliation(s)
- Wei Jin
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunrun Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Shihui Yang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Shiyi Song
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Weiwei Hou
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Song
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yang Song, ; Quanyu Du,
| | - Quanyu Du
- Endocrinology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yang Song, ; Quanyu Du,
| |
Collapse
|
24
|
Terpenoids: Natural Compounds for Non-Alcoholic Fatty Liver Disease (NAFLD) Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010272. [PMID: 36615471 PMCID: PMC9822439 DOI: 10.3390/molecules28010272] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023]
Abstract
Natural products have been the most productive source for the development of drugs. Terpenoids are a class of natural active products with a wide range of pharmacological activities and therapeutic effects, which can be used to treat a variety of diseases. Non-alcoholic fatty liver disease (NAFLD), a common metabolic disorder worldwide, results in a health burden and economic problems. A literature search was conducted to obtain information relevant to the treatment of NAFLD with terpenoids using electronic databases, namely PubMed, Web of Science, Science Direct, and Springer, for the period 2011-2021. In total, we found 43 terpenoids used in the treatment of NAFLD. Over a dozen terpenoid compounds of natural origin were classified into five categories according to their structure: monoterpenoids, sesquiterpenoids, diterpenoids, triterpenoids, and tetraterpenoids. We found that terpenoids play a therapeutic role in NAFLD, mainly by regulating lipid metabolism disorder, insulin resistance, oxidative stress, and inflammation. The AMPK, PPARs, Nrf-2, and SIRT 1 pathways are the main targets for terpenoid treatment. Terpenoids are promising drugs and will potentially create more opportunities for the treatment of NAFLD. However, current studies are restricted to animal and cell experiments, with a lack of clinical research and systematic structure-activity relationship (SAR) studies. In the future, we should further enrich the research on the mechanism of terpenoids, and carry out SAR studies and clinical research, which will increase the likelihood of breakthrough insights in the field.
Collapse
|
25
|
Kong D, Mai Z, Chen Y, Luo L, Liu H, Zhao L, Huang R, Wang S, Chen R, Zhou H, Chen H, Zhang J, Yu H, Ding Y. ATL I, Acts as a SIRT6 Activator to Alleviate Hepatic Steatosis in Mice via Suppression of NLRP3 Inflammasome Formation. Pharmaceuticals (Basel) 2022; 15:ph15121526. [PMID: 36558977 PMCID: PMC9781479 DOI: 10.3390/ph15121526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidence has highlighted that sirtuin-6 (SIRT6) plays an important role in hepatic gluconeogenesis and lipogenesis. We aim to investigate the underlying mechanisms and pharmacological interventions of SIRT6 on hepatic steatosis treatment. Herein, our results showed that atractylenolide I (ATL I) activated the deacetylase activity of SIRT6 to promote peroxisome proliferator-activated receptor alpha (PPARα) transcription and translation, while suppressing nuclear factor NF-kappa-B (NFκB)-induced NACHT, LRR, and PYD domains containing protein 3 (NLRP3) inflammasome formation. Together, these decreased the infiltration of F4/80 and CD11B positive macrophages, accompanied by decreased mRNA expression and serum levels of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL6), and interleukin-1 beta (IL1β). Additionally, these changes decreased sterol regulatory element-binding protein-1c (SREBP-1c) expression, while restoring carnitine O-palmitoyltransferase 1a (Cpt1a) expression, to decrease the size of adipocytes and adipose deposition, which, in turn, reversed high-fat diet (HFD)-induced liver weight and body weight accumulation in C57 mice. SIRT6 knockout or hepatic SIRT6 knockout in C57 mice largely abolished the effect of ATL I on ameliorating hepatic steatosis. Taken together, our results suggest that ATL I acts as a promising compound that activates SIRT6/PPARα signaling and attenuates the NLRP3 inflammasome to ameliorate hepatic inflammation and steatosis.
Collapse
Affiliation(s)
- Danli Kong
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Zhenhua Mai
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan 523808, China
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524002, China
| | - Yongze Chen
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan 523808, China
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524002, China
| | - Ling Luo
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Hao Liu
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Le Zhao
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Ruixian Huang
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Shuang Wang
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Rong Chen
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Hao Zhou
- Department of Hospital Infection Management of Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hao Chen
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Jingjing Zhang
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Haibing Yu
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yuanlin Ding
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan 523808, China
- Correspondence: ; Tel.: +86-0769-22896575
| |
Collapse
|
26
|
Wei W, Liu L, Liu X, Tao Y, Zhao X, Gong J, Wang Y, Liu S. Exploring the Therapeutic Effects of Black Ginseng on Non-alcoholic Fatty Liver Disease by Using Network Pharmacology and Molecular Docking. Chem Biodivers 2022; 19:e202200719. [PMID: 36040357 DOI: 10.1002/cbdv.202200719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/30/2022] [Indexed: 11/11/2022]
Abstract
This study aimed to investigate the therapeutic effect of BG on non-alcoholic fatty liver disease (NAFLD) using network pharmacology combined with the molecular docking strategy. The saponin composition of BG was analyzed by liquid chromatography-mass spectrometry (LC-MS) instrument. Then the network pharmacology was applied to explore the potential targets and related mechanisms of BG in the treatment of NAFLD. After screening out key targets, molecular docking was used to predict the binding modes between ginsenoside and target. Finally, a methionine and choline deficiency (MCD) diet-induced NAFLD mice model was established to further confirm the therapeutic effect of BG on NAFLD. Twenty-four ginsenosides were annotated based on the MS and tandem MS information. Ten proteins were screened out as key targets closely related to BG treatment of NAFLD. The molecular docking showed that most of the ginsenosides had good binding affinities with ALT1. The validation experiment revealed that BG administration could reduce serum ALT, and AST levels and improve the MCD diet-induced histological changes in liver tissue. Moreover, BG could upregulate the phosphorylation level of AKT in the liver of NAFLD mice, thereby exerting the therapeutic effect on NAFLD. Further studies on the active ginsenosides as well as their synergistic action on NAFLD will be required to reveal the underlying mechanisms in-depth. This study demonstrates that network pharmacological prediction in conjunction with molecular docking is a viable technique for screening the active chemicals and related targets of BG that can be applied to other herbal medicines.
Collapse
Affiliation(s)
- Wei Wei
- Changchun University of Chinese Medicine, Jilin ginseng academy, Boshuo Road 1035, Changchun, Jilin, China, 130117, Changchun, CHINA
| | - Liming Liu
- Jilin Agricultural Science and Technology University, College of Animal Science and Technology, Hanlin Road 77, Jilin, CHINA
| | - Xiaokang Liu
- Changchun University of Chinese Medicine, School of Pharmaceutical Sciences, Boshuo Road 1035, Changchun, Jilin, China, 130117, Changchun, CHINA
| | - Ye Tao
- Changchun University of Chinese Medicine, School of Pharmaceutical Sciences, Boshuo Road 1035, Changchun, Jilin, China, 130117, Changchun, CHINA
| | - Xu Zhao
- Chinese PLA General Hospital Fifth Medical Center South Campus, Department of Hepatology, Beijing, Beijing, CHINA
| | - Jiyu Gong
- Changchun University of Chinese Medicine, School of Pharmaceutical Sciences, Boshuo Road 1035, Changchun, Jilin, China, 130117, Changchun, CHINA
| | - Yang Wang
- Changchun University of Chinese Medicine, Jilin Ginseng Academy, Boshuo Road 1035, Changchun, Jilin, China, 130117, Changchun, CHINA
| | - Shuying Liu
- Changchun University of Chinese Medicine, Jilin ginseng academy, Boshuo Road 1035, Changchun, Jilin, China, 130117, Changchun, CHINA
| |
Collapse
|
27
|
Wu Y, Cai Y, Ma L, Li F, Zhang M, Wang Y, Zheng F, Pi Z, Yue H. Identification and chemical profiling of anti-alcoholic liver disease biomarkers of ginseng Huang jiu using UPLC-Q-Orbitrap-HRMS and network pharmacology-based analyses. Front Nutr 2022; 9:978122. [PMID: 36034901 PMCID: PMC9412739 DOI: 10.3389/fnut.2022.978122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022] Open
Abstract
This study investigated the mechanism of characteristic non-volatile organic compounds (NVOCs) from ginseng Huang jiu (GH) in the treatment of alcoholic liver disease through UPLC-Q-Orbitrap-HRMS and network pharmacological analyses. Changes in NVOC contents in ginseng Huang jiu and ginseng-soaked wine fermented by different processing technologies were analyzed through liquid chromatography–mass spectrometry (LC-MS). A total of 96 ginsenosides were identified in ginseng Huang jiu throughout the fermentation process, which included 37 protopanaxadiol-type ginsenosides, 47 protopanaxatriol-type ginsenosides, and 4 oleanolic acid-type ginsenosides. Orthogonal partial least squares-discriminant analysis (OPLS-DA) revealed that 20(R)-Rg2, Gypenoside XVII, 20(S)-Rf3, CK, Rg5, Rh2, and other rare ginsenosides in ginseng Huang jiu could be the potential index for determining ginseng Huang jiu. In addition, ginseng Huang jiu could improve alcoholic liver disease by regulating the GSTP1, HRAS, AKR1B1, GSTA1, Androgen receptor (AR), GSR, and LDHB genes through bioinformatics analysis. This study provides new insights into improving the industrial production of ginseng Huang jiu and treating alcoholic liver disease with medicinal and food products.
Collapse
Affiliation(s)
- Yongxi Wu
- Changchun University of Chinese Medicine, Changchun, China
| | - Yongyu Cai
- Changchun University of Chinese Medicine, Changchun, China
| | - Liting Ma
- Changchun University of Chinese Medicine, Changchun, China
| | - Fangtong Li
- Changchun University of Chinese Medicine, Changchun, China
| | - Meiyu Zhang
- Changchun University of Chinese Medicine, Changchun, China
| | - Yizhu Wang
- Changchun University of Chinese Medicine, Changchun, China
| | - Fei Zheng
- Changchun University of Chinese Medicine, Changchun, China
| | - Zifeng Pi
- Changchun University of Chinese Medicine, Changchun, China
| | - Hao Yue
- Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
28
|
Li C, Yan X, Xu Z, Wang Y, Shen X, Zhang L, Zhou Z, Wang P. Pathway elucidation of bioactive rhamnosylated ginsenosides in Panax ginseng and their de novo high-level production by engineered Saccharomyces cerevisiae. Commun Biol 2022; 5:775. [PMID: 35918414 PMCID: PMC9345943 DOI: 10.1038/s42003-022-03740-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/19/2022] [Indexed: 01/16/2023] Open
Abstract
Rg2 and Re are both rhamnose-containing ginsenosides isolated exclusively from Panax plants, which exhibit broad spectrum of pharmacological activities. However, limitations of current plant-relied manufacturing methods have largely hampered their medical applications. Here, we report elucidation of the complete biosynthetic pathway of these two ginsenosides by the identification of a rhamnosyltransferase PgURT94 from Panax ginseng. We then achieve de novo bio-production of Rg2 and Re from glucose by reconstituting their biosynthetic pathways in yeast. Through stepwise strain engineering and fed-batch fermentation, the maximum yield of Rg2 and Re reach 1.3 and 3.6 g/L, respectively. Our work completes the identification of the last missing enzyme for Rg2 and Re biosynthesis and achieves their high-level production by engineered yeasts. Once scaled, this microbial biosynthesis platform will enable a robust and stable supply of Rg2 and Re and facilitate their food and medical applications.
Collapse
Affiliation(s)
- Chaojing Li
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xing Yan
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhenzhen Xu
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Sciences, Henan University, Kaifeng, China
| | - Yan Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao Shen
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lei Zhang
- Logic Informatics Co., Ltd., Shanghai, China
| | - Zhihua Zhou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Pingping Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
29
|
Ho JH, Baskaran R, Wang MF, Mohammedsaleh ZM, Yang HS, Balasubramanian B, Lin WT. Dipeptide IF and Exercise Training Attenuate Hypertension in SHR Rats by Inhibiting Fibrosis and Hypertrophy and Activating AMPKα1, SIRT1, and PGC1α. Int J Mol Sci 2022; 23:ijms23158167. [PMID: 35897743 PMCID: PMC9330102 DOI: 10.3390/ijms23158167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 01/27/2023] Open
Abstract
Bioactive peptides are physiologically active peptides produced from proteins by gastrointestinal digestion, fermentation, or hydrolysis by proteolytic enzymes. Bioactive peptides are resorbed in their whole form and have a preventive effect against various disease conditions, including hypertension, dyslipidemia, inflammation, and oxidative stress. In recent years, there has been a growing body of evidence showing that physiologically active peptides may have a function in sports nutrition. The present study aimed to evaluate the synergistic effect of dipeptide (IF) from alcalase potato protein hydrolysates and exercise training in hypertensive (SHR) rats. Animals were divided into five groups. Bioactive peptide IF and swimming exercise training normalized the blood pressure and decreased the heart weight. Cardiac, hepatic, and renal functional markers also normalized in SHR rats. The combined administration of IF peptide and exercise offer better protection in SHR rats by downregulating proteins associated with myocardial fibrosis, hypertrophy, and inflammation. Remarkably, peptide treatment alongside exercise activates the PI3K/AKT cell survival pathway in the myocardial tissue of SHR animals. Further, the mitochondrial biogenesis pathway (AMPKα1, SIRT1, and PGC1α) was synergistically activated by the combinatorial treatment of IF and exercise. Exercise training along with IF administration could be a possible approach to alleviating hypertension.
Collapse
Affiliation(s)
- Jou-Hsuan Ho
- Department of Food Science, Tunghai University, Taichung 407224, Taiwan; (J.-H.H.); (H.-S.Y.)
| | - Rathinasamy Baskaran
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413305, Taiwan;
| | - Ming-Fu Wang
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan;
| | - Zuhair M. Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Hong-Siang Yang
- Department of Food Science, Tunghai University, Taichung 407224, Taiwan; (J.-H.H.); (H.-S.Y.)
| | | | - Wan-Teng Lin
- Department of Hospitality Management, College of Agriculture, Tunghai University, Taichung 407224, Taiwan
- Correspondence: ; Tel.: +886-4-2359-0121 (ext. 37709)
| |
Collapse
|
30
|
He Z, Chen S, Pan T, Li A, Wang K, Lin Z, Liu W, Wang Y, Wang Y. Ginsenoside Rg2 Ameliorating CDAHFD-Induced Hepatic Fibrosis by Regulating AKT/mTOR-Mediated Autophagy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1911-1922. [PMID: 35104139 DOI: 10.1021/acs.jafc.1c07578] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ginsenoside Rg2 (G-Rg2) in the rhizome of Panax ginseng can modify lipid accumulation, oxidative stress, and apoptosis in the liver induced by a high-fat diet. This research adds to this by assessing the potential antifibrosis effect of G-Rg2 (including possible mechanisms). G-Rg2 significantly improved pathological changes in liver tissue induced by a choline-deficient, l-amino acid-defined, high-fat diet (CDAHFD), it inhibited serum transaminase, plasma lipopolysaccharide, and liver hydroxyproline levels; it inhibited TGF-β1, α-SMA, and COL1A1 expression, it activated the AKT/mTOR signal pathway, and it inhibited liver expression of autophagy-related proteins. The in vitro experiments showed that G-Rg2 also restored the autophagy flux impairment induced by oleic acid and inhibited TGF-β1 expression by promoting p62 degradation in hepatocytes. In hepatic stellate (HSC-T6) cells, G-Rg2 reversed lipopolysaccharide-induced activation through the AKT/mTOR signaling pathway, inhibiting autophagy. Thus, G-Rg2 ameliorates CDAHFD-induced liver fibrosis and lipopolysaccharide-induced HSC-T6 cell activation by inhibiting AKT/mTOR-mediated autophagy.
Collapse
Affiliation(s)
- Ziwei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Siyu Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Tingting Pan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ao Li
- College of Life Science, Jilin Agricultural University, Changchun 130118,China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118,China
| | - Zhuofeng Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Wei Liu
- College of Foreign Languages, Jilin Agricultural University, Changchun 130118, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118,China
- Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Yanfang Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
- Laboratory for Cultivation and Breeding of Medicinal Plants of National Administrition of Traditional Chinese Medicine, Changchun 130118, China
| |
Collapse
|
31
|
Ginsenoside Rg2 Attenuated Trastuzumab-Induced Cardiotoxicity in Rats. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8866660. [PMID: 35071601 PMCID: PMC8769853 DOI: 10.1155/2022/8866660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 01/03/2023]
Abstract
Aim Trastuzumab (TZM) is a monoclonal antibody drug for HER2-positive breast cancer by targeting epidermal growth factor 2, but it has significant cardiotoxicity. Ginsenoside Rg2 has shown a variety of biological activities. This study was aimed at investigating whether Rg2 attenuates TZM-induced cardiotoxicity. Methods A model of TZM-induced cardiotoxicity was established in Wistar rats, and the rats were pretreated with Rg2. After echocardiography analysis, the rats were killed and the hearts were dissected for RNAseq analysis. Primary human cardiomyocytes (HCMs) were treated with TZM with or without pretreatment with Rg2 and then subjected to a colony formation assay, flow cytometry analysis, and Western blot analysis for the detection of caspase-3, caspase-9, and BAX. Results TZM induced LV dysfunction in rats, but Rg2 could attenuate TZM-induced LV dysfunction. The mRNA levels of caspase-3, caspase-9, and BAX were significantly higher in TZM-treated rats. The colony formation ability of HCMs was significantly lower in TZM-treated cells but was recovered after pretreatment with Rg2. The apoptosis rate of HCMs was significantly higher in TZM-treated cells but was significantly lower after pretreatment with Rg2. Moreover, protein levels of caspase-3, caspase-9, and BAX were significantly higher in TZM-treated cells but were significantly lower after pretreatment with Rg2. Conclusion Ginsenoside Rg2 inhibited TZM-induced cardiotoxicity, and the mechanism may be related to the downregulation of the expression of proapoptotic proteins caspase-3, caspase-9, and BAX and the inhibition of TZM-induced apoptosis in cardiomyocytes. Ginsenoside Rg2 has a potential to be applied in patients with breast cancer to prevent TZM-induced cardiotoxicity.
Collapse
|
32
|
Shen C, Pan Z, Wu S, Zheng M, Zhong C, Xin X, Lan S, Zhu Z, Liu M, Wu H, Huang Q, Zhang J, Liu Z, Si Y, Tu H, Deng Z, Yu Y, Liu H, Zhong Y, Guo J, Cai J, Xian S. Emodin palliates high-fat diet-induced nonalcoholic fatty liver disease in mice via activating the farnesoid X receptor pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114340. [PMID: 34171397 DOI: 10.1016/j.jep.2021.114340] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/29/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Cassia mimosoides Linn (CMD) is a traditional Chinese herb that clears liver heat and dampness. It has been widely administered in clinical practice to treat jaundice associated with damp-heat pathogen and obesity. Emodin (EMO) is a major bioactive constituent of CMD that has apparent therapeutic efficacy against obesity and fatty liver. Here, we investigated the protective effects and underlying mechanisms of EMO against high-fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD). OBJECTIVE We aimed to investigate whether EMO activates farnesoid X receptor (FXR) signaling to alleviate HFD-induced NAFLD. MATERIALS AND METHODS In vivo assays included serum biochemical indices tests, histopathology, western blotting, and qRT-PCR to evaluate the effects of EMO on glucose and lipid metabolism disorders in wild type (WT) and FXR knockout mice maintained on an HFD. In vitro experiments included intracellular triglyceride (TG) level measurement and Oil Red O staining to assess the capacity of EMO to remove lipids induced by oleic acid and palmitic acid in WT and FXR knockout mouse primary hepatocytes (MPHs). We also detected mRNA expression of FXR signaling genes in MPHs. RESULTS After HFD administration, body weight and serum lipid and inflammation levels were dramatically increased in the WT mice. The animals also presented with impaired glucose tolerance, insulin resistance, and antioxidant capacity, liver tissue attenuation, and pathological injury. EMO remarkably reversed the foregoing changes in HFD-induced mice. EMO improved HFD-induced lipid accumulation, insulin resistance, inflammation, and oxidative stress in a dose-dependent manner in WT mice by inhibiting FXR expression. EMO also significantly repressed TG hyperaccumulation by upregulating FXR expression in MPHs. However, it did not improve lipid accumulation, insulin sensitivity, or glucose tolerance in HFD-fed FXR knockout mice. CONCLUSIONS The present study demonstrated that EMO alleviates HFD-induced NAFLD by activating FXR signaling which improves lipid accumulation, insulin resistance, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Chuangpeng Shen
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; The First People's Hospital of Kashgar Prefecture, Kashgar, Xinjiang Uygur Autonomous Region, China; The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Zhisen Pan
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuangcheng Wu
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingxuan Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Chong Zhong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyi Xin
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Shaoyang Lan
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhangzhi Zhu
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Liu
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haoxiang Wu
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qingyin Huang
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junmei Zhang
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhangzhou Liu
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuqi Si
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haitao Tu
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhijun Deng
- Department of Science and Education, Guangzhou Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Yuanyuan Yu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong Liu
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanhua Zhong
- Department of Acupuncture-rehabilitation, Guangzhou-Liwan Hospital of Chinese Medicine, Guangzhou, China.
| | - Jiewen Guo
- Department of Science and Education, Guangzhou Hospital of Traditional Chinese Medicine, Guangzhou, China.
| | - Jiazhong Cai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Shaoxiang Xian
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
33
|
Yu Y, Zheng C, Lu X, Deng C, Xu Q, Guo W, Wu Q, Wang Q, Liu C, Huang X, Song J. GB1a Ameliorates Ulcerative Colitis via Regulation of the NF-κB and Nrf2 Signaling Pathways in an Experimental Model. Front Med (Lausanne) 2021; 8:654867. [PMID: 34557497 PMCID: PMC8452853 DOI: 10.3389/fmed.2021.654867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease. The intake of African Garcinia Kola nuts has been reported as a therapy for diarrhea and dysentery in the African population. However, the mechanism of action through which Garcinia Kola nuts act to ameliorates UC remains unknown. GB1a is the main active component of Garcinia Kola nuts. In this study, we explored the therapeutic effects and underlying mechanism of GB1a on dextran sodium sulfate (DSS)-induced UC. Human Colonic Epithelial Cells (HCoEpic) were challenged with TNF-α to test the effects of GB1a in protecting against oxidative stress and inflammation in vitro. Our data showed that GB1a significantly attenuated DSS-induced colonic inflammatory injury manifested as reversed loss of body weight and disease activity index (DAI) scores in UC mice. We also showed that GB1a improved the permeability of the intestinal epithelium by modulating the expression of tight junction proteins (ZO-1, Occludin). Mechanistically, GB1a may activate the Nrf2 antioxidant signaling pathway and suppress the nuclear translocation of NF-κB in reduced oxidative stress and expression of inflammatory genes induced by TNF-α in HCoEpic cells. Our study suggests that GB1a alleviates inflammation, oxidative stress and the permeability of the colonic epithelial mucosa in UC mice via the repression of NF-κB and activation of Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Congmin Zheng
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xu Lu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Changsheng Deng
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Affiliated Hospital and The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qin Xu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Affiliated Hospital and The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenfeng Guo
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Affiliated Hospital and The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qingye Wu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Changhui Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinan Huang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Affiliated Hospital and The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianping Song
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Affiliated Hospital and The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
34
|
Liang B, Zhu YC, Lu J, Gu N. Effects of Traditional Chinese Medication-Based Bioactive Compounds on Cellular and Molecular Mechanisms of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3617498. [PMID: 34093958 PMCID: PMC8139859 DOI: 10.1155/2021/3617498] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 04/28/2021] [Indexed: 12/21/2022]
Abstract
The oxidative stress reaction is the imbalance between oxidation and antioxidation in the body, resulting in excessive production of oxygen free radicals in the body that cannot be removed, leading to excessive oxidation of the body, and causing damage to cells and tissues. A large number of studies have shown that oxidative stress is involved in the pathological process of many diseases, so inhibiting oxidative stress, that is, antioxidation, is of great significance for the treatment of diseases. Studies have shown that many traditional Chinese medications contain antioxidant active bioactive compounds, but the mechanisms of those compounds are different and complicated. Therefore, by summarizing the literature on antioxidant activity of traditional Chinese medication-based bioactive compounds in recent years, our review systematically elaborates the main antioxidant bioactive compounds contained in traditional Chinese medication and their mechanisms, so as to provide references for the subsequent research.
Collapse
Affiliation(s)
- Bo Liang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Yong-Chun Zhu
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Jia Lu
- Nanjing University of Chinese Medicine, Nanjing, China
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Ning Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
35
|
Lou T, Huang Q, Su H, Zhao D, Li X. Targeting Sirtuin 1 signaling pathway by ginsenosides. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113657. [PMID: 33276056 DOI: 10.1016/j.jep.2020.113657] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/16/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng is a kind of traditional Chinese herbal medicine, known as "king of herbs" and widely used in China, South Korea, and other Asian countries. Ginsenosides are one of active components of Panax ginseng Meyer, which have many pharmacological effects, such as enhancing memory, improving immunity and cardiovascular system, delaying aging, and preventing cancer. AIMS OF THE REVIEW This review aims to summarize the recent findings for ginsenosides targeting Sirtuin 1 (SIRT1) signaling pathway for the prevention and treatment of a series of diseases. MATERIALS AND METHODS An up-to-August 2020 search was carried out in databases such as PubMed, ScienceDirect, Google Scholar, China National Knowledge Infrastructure, and classic books of traditional Chinese medicine using the keywords: "SIRT1", and/or paired with "ginseng", and "ginsenosides". RESULTS SIRT1 is a class-III histone deacetylase (HDAC), a nicotinamide adenine dinucleotide (NAD+)-dependent enzyme, which is deeply involved in a series of pathological processes. Based on specific intracellular localization, SIRT1 has various cytoplasmic and nuclear targets and plays a potential role in energy metabolism, oxidative stress, inflammation, tumorigenesis, and aging. Ginsenosides are generally classified into three groups and microbially transformed to final metabolites. Among of them, most ginsenosides have been reported as SIRT1 activators, especially those ginsenosides with two glucopyranosyl groups on the C-3 position. Importantly, many ginsenosides can be used to prevent and treat oxidative stress, inflammation, aging, tumorigenesis, depression, and others by targeting SIRT1 signaling pathway. CONCLUSIONS This paper reviews recent evidences of ginsenosides targeting SIRT1 for the first time, which could provide new insights on the preclinical and clinical researches for ginsenosides against multiple disorders.
Collapse
Affiliation(s)
- Tingting Lou
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China; Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Qingxia Huang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China; Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Hang Su
- Practice Innovations Center, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China; Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China.
| | - Xiangyan Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China; Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China.
| |
Collapse
|
36
|
Zhang X, Zhang B, Zhang C, Sun G, Sun X. Effect of Panax notoginseng Saponins and Major Anti-Obesity Components on Weight Loss. Front Pharmacol 2021; 11:601751. [PMID: 33841133 PMCID: PMC8027240 DOI: 10.3389/fphar.2020.601751] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
The prevalence of individuals who are overweight or obese is rising rapidly globally. Currently, majority of drugs used to treat obesity are ineffective or are accompanied by obvious side effects; hence, the options are very limited. Therefore, it is necessary to find more effective and safer anti-obesity drugs. It has been proven in vivo and in vitro that the active ingredient notoginsenosides isolated from traditional Chinese medicine Panax notoginseng (Burk.) F. H. Chen exhibits anti-obesity effects. Notoginsenosides can treat obesity by reducing lipid synthesis, inhibiting adipogenesis, promoting white adipose tissue browning, increasing energy consumption, and improving insulin sensitivity. Although notoginsenosides are potential drugs for the treatment of obesity, their effects and mechanisms have not been analyzed in depth. In this review, the anti-obesity potential and mechanism of action of notoginsenosides were analyzed; thus laying emphasis on the timely prevention and treatment of obesity.
Collapse
Affiliation(s)
- Xuelian Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Chenyang Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
37
|
Huang Q, Su H, Qi B, Wang Y, Yan K, Wang X, Li X, Zhao D. A SIRT1 Activator, Ginsenoside Rc, Promotes Energy Metabolism in Cardiomyocytes and Neurons. J Am Chem Soc 2021; 143:1416-1427. [PMID: 33439015 DOI: 10.1021/jacs.0c10836] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Targeting SIRT1 signaling pathway could improve glucose aerobic metabolism and mitochondrial biosynthesis to resist cardiac and neurological injuries. Ginsenoside Rc has been identified for targeting mitochondrial function, but how ginsenoside Rc interacts with SIRT1 to regulate energy metabolism in cardiomyocytes and neurons under physiological or ischemia/reperfusion (I/R)-injured conditions has not been clearly investigated. Here, we confirm the interaction of Rc on the residue sites of SIRT1 in promoting its activity. Ginsenoside Rc significantly promotes mitochondrial biogenesis and increases the levels of electron-transport chain complex II-IV in cardiomyocytes and neurons. Meanwhile, ginsenoside Rc pretreatment increases ATP production, glucose uptake, and the levels of hexokinase I/II and mitochondrial pyruvate carrier I/II in both cell models. In addition, ginsenoside Rc activates the PGC1α pathway to induce mitochondrial biosynthesis. More importantly, ginsenoside Rc reduces mitochondrial damage and apoptosis through SIRT1 restoration-mediated reduction of PGC1α acetylation in the I/R-induced cardiac and neuronal models. Collectively, the in vitro and in vivo data indicate that ginsenoside Rc as a SIRT1 activator promotes energy metabolism to improve cardio- and neuroprotective functions under normal and I/R injury conditions, which provides new insights into the molecular mechanism of ginsenoside Rc as a protective agent.
Collapse
Affiliation(s)
| | | | | | | | | | - Xinglin Wang
- Guangdong Hanfang Health Research Institute, Guangzhou 510550, P. R. China
| | | | | |
Collapse
|
38
|
Yoon SJ, Kim SK, Lee NY, Choi YR, Kim HS, Gupta H, Youn GS, Sung H, Shin MJ, Suk KT. Effect of Korean Red Ginseng on metabolic syndrome. J Ginseng Res 2020; 45:380-389. [PMID: 34025131 PMCID: PMC8134847 DOI: 10.1016/j.jgr.2020.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/24/2020] [Accepted: 11/02/2020] [Indexed: 12/27/2022] Open
Abstract
Metabolic syndrome (MS) refers to a clustering of at least three of the following medical conditions: high blood pressure, abdominal obesity, hyperglycemia, low high-density lipoprotein level, and high serum triglycerides. MS is related to a wide range of diseases which includes obesity, diabetes, insulin resistance, cardiovascular disease, dyslipidemia, or non-alcoholic fatty liver disease. There remains an ongoing need for improved treatment strategies for MS. The most important risk factors are dietary pattern, genetics, old age, lack of exercise, disrupted biology, medication usage, and excessive alcohol consumption, but pathophysiology of MS has not been completely identified. Korean Red Ginseng (KRG) refers to steamed/dried ginseng, traditionally associated with beneficial effects such as anti-inflammation, anti-fatigue, anti-obesity, anti-oxidant, and anti-cancer effects. KRG has been often used in traditional medicine to treat multiple metabolic conditions. This paper summarizes the effects of KRG in MS and related diseases such as obesity, cardiovascular disease, insulin resistance, diabetes, dyslipidemia, or non-alcoholic fatty liver disease based on experimental research and clinical studies.
Collapse
Key Words
- ACC, Acetyl-Coenzyme A carboxylase
- ADP, adenosine diphosphate
- AG, American ginseng extract
- AGE, advanced glycation end product
- ALT, alanine aminotransferase
- AMPK, AMP-activated protein kinase
- AST, aspartate aminotransferase
- Akt, protein kinase B
- BMI, body mass index
- C/EBPα, CCAAT/enhancer-binding protein alpha
- COX-2, cyclooxygenase-2
- CPT, current perception threshold
- CPT-1, carnitine palmitoyl transferase 1
- CRP, C-reactive protein
- CVD, Cardiovascular disease
- DBP, diastolic blood pressure
- DEN, diethyl nitrosamine
- EAT, epididymis adipose tissue
- EF, ejection fraction
- FABP4, fatty acid binding protein 4
- FAS, Fatty acid synthase
- FFA, free fatty acid
- FR, fine root concentration
- FS, fractional shortening
- GBHT, ginseng-plus-Bai-Hu-Tang
- GLUT, glucose transporter type
- GPx, glutathione peroxidase
- GS, ginsenoside
- GST, glutathione S-transferase
- GST-P, glutathione S-transferase placental form
- GTT, glucose tolerance test
- HCC, hepatocellular carcinoma
- HCEF-RG, hypotensive components-enriched fraction of red ginseng
- HDL, high-density lipoprotein
- HFD, High fat diet
- HOMA-IR, homeostasis model assessment of insulin resistance index
- HbA1c, glycosylated hemoglobin
- I.P., intraperitoneal injection
- IL, interleukin
- IR, insulin resistance
- ITT, insulin tolerance test
- Insulin resistance
- KRG, Korean Red Ginseng
- LDL, low-density lipoprotein
- LPL, lipoprotein lipase
- Lex, lower extremities
- MDA, malondialdehyde
- MMP, Matrix metallopeptidases
- MS, Metabolic syndrome
- Metabolic syndrome
- NAFLD, Non-alcoholic fatty liver disease
- NF-кB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NK cell, Natural killer cell
- NMDA-NR1, N-methyl-D-aspartate NR1
- NO, nitric oxide
- NRF1, Nuclear respiratory factor 1
- Non-alcoholic fatty liver disease
- Nrf2, Nuclear factor erythroid 2-related factor 2
- OLETF rat, Otsuka Long-Evans Tokushima fatty rat
- PCG-1α, PPAR-γ coactivator-1α
- PI3K, phosphoinositide 3-kinase
- PPAR, peroxisome proliferator-activated receptors
- PPD, protopanaxadiol
- PPT, protopanaxatriol
- Panax ginseng
- REKRG, Rg3-enriched KRG
- ROS, Reactive oxygen species
- Rg3-KGE, Rg3-enriched KRG extract
- SBP, systolic blood pressure
- SCD, Stearoyl-Coenzyme A desaturase
- SHR, spontaneously hypertensive rat
- SREBP-1C, Sterol regulatory element-binding protein 1
- STAT5, Signal transducer and activator of transcription 5
- STZ, streptozotocin
- TBARS, thiobarbituric acid reactive substances
- TC, total cholesterol
- TG, triglyceride
- TNF, tumor necrosis factor
- UCP, Mitochondrial uncoupling proteins
- VLDL, very low-density lipoprotein
- iNOS, inducible nitric oxide synthase
- t-BHP, tert-butyl hyperoxide
- tGST, total glutathione
Collapse
Affiliation(s)
- Sang Jun Yoon
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Seul Ki Kim
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Na Young Lee
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Ye Rin Choi
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Hyeong Seob Kim
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Haripriya Gupta
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Gi Soo Youn
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Hotaik Sung
- School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Min Jea Shin
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Ki Tae Suk
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
39
|
Wang F, Roh YS. Mitochondrial connection to ginsenosides. Arch Pharm Res 2020; 43:1031-1045. [PMID: 33113096 DOI: 10.1007/s12272-020-01279-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria play an essential role in energy synthesis and supply, thereby maintaining cellular function, survival, and energy homeostasis via mitochondria-mediated pathways, including apoptosis and mitophagy. Ginsenosides are responsible for most immunological and pharmacological activities of ginseng, a highly beneficial herb with antioxidant, anti-inflammatory, anti-apoptotic, and neuroprotective properties. Studies have shown that ginsenosides assist in regulating mitochondrial energy metabolism, oxidative stress, biosynthesis, apoptosis, mitophagy, and the status of membrane channels, establishing mitochondria as one of their most important targets. This article reviews the regulatory effects of ginsenosides on the mitochondria and highlights their beneficial role in treating mitochondrial diseases.
Collapse
Affiliation(s)
- Feng Wang
- Department of Pharmacy, College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, 28160, South Korea
| | - Yoon Seok Roh
- Department of Pharmacy, College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, 28160, South Korea.
| |
Collapse
|
40
|
Qin X, Chen J, Zhang G, Li C, Zhu J, Xue H, Li J, Guan T, Zheng H, Liu Y, Cai H. Hydroxysafflor Yellow A Exerts Anti-Inflammatory Effects Mediated by SIRT1 in Lipopolysaccharide-Induced Microglia Activation. Front Pharmacol 2020; 11:1315. [PMID: 33041785 PMCID: PMC7517830 DOI: 10.3389/fphar.2020.01315] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Abnormal microglia activation causes sever neuroinflammation, contributing to the development of many diseases, yet the mechanism remains incompletely unknown. In current study, we identified that Hydroxysafflor yellow A (HYA), a chalcone glycoside derived from Carthamus tinctorius L effectively attenuates LPS-induced inflammation response in primary microglia via regulating the expression of inflammatory genes and remodeling the polarization of microglia. We also reported the effects of HYA on improving lipopolysaccharide (LPS)-stimulated mitochondrial dysfunction and oxidative stress for the first time. Interestingly, we found that HYA could serves as an effective SIRT1 activator. Deficiency of SIRT1 abrogates the protective effects of HYA against LPS-induced response. Overall, our data suggest HYA, a novel SIRT1 activator, could serve as an effective approach to treat LPS-induced neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiude Qin
- Encephalopathy Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Juanjuan Chen
- Encephalopathy Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Guowei Zhang
- Department of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Chuanpeng Li
- The 1st Clinical Medical College, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jinqiang Zhu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hong Xue
- Encephalopathy Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jinfang Li
- Encephalopathy Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Tianxiang Guan
- Encephalopathy Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Haotao Zheng
- Encephalopathy Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yu Liu
- Encephalopathy Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Haobin Cai
- Encephalopathy Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|